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Bistable dynamics of turbulence spreading in a corrugated temperature
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Z. B. Guoa) and P. H. Diamond
University of California, San Diego, California 92093, USA

(Received 18 August 2017; accepted 26 September 2017; published online 5 October 2017)

We present a new model of turbulence spreading in magnetically confined plasma. A basic question

in turbulence spreading is how to sustain finite amplitude fluctuations in a stable subcritical region,

where linear dissipation of the turbulence is strong? The answer to this question relies on a consistent

treatment of mesoscale temperature profile corrugation and microscale turbulence. We argue that

inhomogeneous mixing of the turbulence corrugates the mean temperature profile and that the

temperature corrugation then induces subcritical bifurcation of the turbulence. Thus, the system will

transition from a metastable “laminar” state to an absolutely stable, excited state. Incorporating spatial

coupling of the locally excited turbulent regions, a front forms. This front connects the excited and

laminar states and penetrates the linear stable region efficiently. We argue that such bistable

turbulence spreading can explain observations of hysteresis in the intensity of L-mode core turbulence.

Published by AIP Publishing. https://doi.org/10.1063/1.5000850

A longstanding issue in anomalous transport in magneti-

cally confined plasma systems is how turbulent fluctuations

may penetrate stable regions (e.g., a transport barrier), where

the free energy is incapable of driving linear instabilities.

The mechanism most frequently involved for this is so-

called turbulence spreading.1–5 Turbulence spreading pro-

vides a natural way to contaminate stable domains,6 as in the

H ! L transition phenomena.7 Most previous works treat

turbulence spreading as a Fisher front. But Fisher fronts are

in fact heavily damped in the subcritical domains (shown

below) and so do not effectively penetrate these. Thus, an

improved treatment of the turbulence spreading is necessary.

To achieve a sufficient penetration depth, a way to subcriti-

cally excite local turbulence is needed. In this work, we

show that inhomogeneous mixing—specifically mesoscale

corrugation of the temperature profile—can provide such

nonlinear drive. Hence, this new model of bistable turbu-

lence spreading is constructed.

First, we briefly discuss the “standard model”—based

on nonlinear Fisher fronts—of turbulence spreading. This

has the generic structure8

@

@t
I ¼ clI � cnlI

2 þ @

@x
Dnl

@

@x
I; (1)

where clI is a linear driving term. Here, the linear growth

rate cl is proportional to the mean temperature gradient. cnlI
2

is a local nonlinear saturation term. Dnl / I is the nonlinear

diffusion term, which describes spatial coupling of the turbu-

lence field. In the linearly unstable regime, there are two

homogeneous, steady solutions for Eq. (1): I¼ 0 (unstable)

and I ¼ cl/cnl (stable). Otherwise, I either decays as I / t�1

in the near marginal region (cl �0) or exponentially I / eclt

in the subcritical region (cl < 0 &jclj > cnlI). Therefore, the

Fisher turbulence spreading front suffers strong damping in

the subcritical region, so the depth that the turbulence can

penetrate into this region is quite limited. The resolution of

this dilemma of Eq. (1) relies on incorporating the nonlinear

drive effect of the turbulence field, i.e., including a treatment

of how the spreading front modifies the local gradient and

stability as it passes. This induces bistability of the turbu-

lence, in contrast to the Fisher model, which is unistable. In

this work, we show that temperature profile corrugation can

provide such a nonlinear drive and so sustain a finite ampli-

tude of turbulence intensity in the subcritical region. This

enables turbulence spreading and reconciles cl< 0 with that

phenomenon.

Temperature corrugations in magnetically confined

plasma systems have long been observed.9 These were gen-

erally believed to play a secondary role in the supercritical

region and usually were dismissed in various anomalous

transport models. An exception is Ref. 10. In this work, we

show that the temperature corrugation plays an essential role

in driving turbulence penetration of the subcritical region,

i.e., it can overcome the local damping and hence allow effi-

cient turbulence spreading. The underlying physics mecha-

nism is (Fig. 1) inhomogeneous turbulent mixing,11 which

reduces the turbulent heat flux at certain locations while

increasing the temperature gradient at adjacent locations.

This is equivalent to inducing a negative heat flux on meso-

scales. Thermal energy then accumulates near such loca-

tions, so that the temperature gradient sharpens locally,

resulting in the formation of corrugations. These temperature

corrugations will enhance the local temperature gradient

drive and so induce local turbulence excitation. A significant

difference from the traditional Fisher model is that both the

excited state and the “laminar” state are stable, i.e., the sys-

tem is bistable. Thus, a stable turbulence front forms and

spreads. Bistability of the turbulence—the core of our

model—has been observed in experiment.12 Inagaki et al.
discovered an S-curve relation between the turbulence

a)Author to whom correspondence should be addressed: guozhipku@

gmail.com

1070-664X/2017/24(10)/100705/4/$30.00 Published by AIP Publishing.24, 100705-1

PHYSICS OF PLASMAS 24, 100705 (2017)

https://doi.org/10.1063/1.5000850
https://doi.org/10.1063/1.5000850
https://doi.org/10.1063/1.5000850
mailto:guozhipku@gmail.com
mailto:guozhipku@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5000850&domain=pdf&date_stamp=2017-10-05


intensity and the temperature gradient, which strongly sug-

gests turbulence bistability. Note that while bistable S-curve

relations, linking flux and gradient, have long been observed,

this corresponding observation for fluctuation intensity in the
L-mode (without internal transport barrier observed!) is
unique.

Incorporating the nonlinear drive of temperature corru-

gations, Eq. (1) is revised to the following form (A � –@xT):

@

@t
I ¼ c0 hAi þHð ~AmÞ ~Am � AC

� �
I � cnlI

2 þ D1

@

@x
I
@

@x
I

� �
;

(2)

where the linear growth rate is explicitly written as

cl ¼ c0ðhAi � ACÞ with hAi being the mean temperature gra-

dient and AC the critical gradient. Note: more precisely,

L�1
T ðL�1

T � �@xlnTÞ is the drive term, and it has a similar

trend to A. The incremental temperature gradient induced by

the profile corrugation is denoted as ~Am. Since only a posi-

tive temperature gradient corrugation acts as a drive, a step

function Hð ~AmÞ is introduced in Eq. (2). A negative corruga-

tion would render the turbulence stable. Note that the local

nonlinear saturation is composed of two processes: ZF flow

shear (/ jhVZFi0jI) and mode-mode coupling (/ I2). Since

the amplitude of zonal flow shear is proportional to the

turbulence intensity gradient via Reynolds stress, i.e.,

jhVZFi0j / I0 ¼ L�1
I I(LI � I0=I–the characteristic scale of the

turbulence intensity envelope), the local saturation term is

written as cnlI
2. Now cnl is a coefficient which includes both

mode-mode coupling and zonal flow shearing effects.

Equivalently, the zonal flow shear effect can also be related

to a nonlinear shift of the threshold AC, i.e., AC! ACþDAC

and DAC / jhVZFi0j / I. The nonlinear diffusivity is written

as Dnl¼D1I with D1 being a coefficient. Note: h…i should

be understood as a double average, i.e., h…i � hh…isim with

h…is being an average over micro-timescales and h…im
over mesoscales (i.e., the corrugation scale). A simple obser-

vation of Eq. (2) is that, in the subcritical region (hAi < AC),

a strong enough temperature corrugation can induce the local

excitation of the turbulence. To know “how strong is strong?,”

one needs a relation between the corrugation strength and the

turbulence intensity, which constitutes a “closure” of Eq. (2).

To obtain the relation between Hð ~AmÞ ~Am and I, we start

from the temperature evolution equation

@

@t
T þr � QT ¼

@

@x
vneo

@

@x
T

� �
þ SinjdðxÞ; (3)

where QT ¼ ~vT is the turbulent heat flux with being ~v the

E�B convection velocity. Sinj accounts for the heating (cen-

troid, x¼ 0). For the background heat flux in Eq. (3), the neo-

classical term (vneo@xT) is retained.13 As compared with the

conventional form of the temperature evolution equation,13 a

factor 2/3 was absorbed into vneo and inter-species thermal

coupling was ignored. Multiplying by T on both sides of Eq.

(3) and carrying out the double average, one obtains the cor-

rugation strength

h ~A2

mivneo ’ hAihQTi þ h ~Am~vx
~Ti: (4)

In this work, we are interested in how strongly the turbulence

intensity is excited and how far it spreads, for a given corru-

gated profile. As we explore the effect of a statistical ensem-

ble of temperature corrugations, approximation @th ~A
2i ’ 0

was used in deriving Eq. (4). In obtaining Eq. (4), we

assumed h ~T2

mi � h ~T
2

s i with ~Ts temperature fluctuation at the

microscale. The triple coupling term in Eq. (4) reflects meso-

and micro-scale coupling and so contains the physics of tem-

perature corrugation. With the double average, it follows

that h ~Am~vx
~Ti ¼ h ~Amh~vx

~Tisim ¼ h ~Am
~QT;mim, and ~QT;m is the

mesoscale turbulent heat flux. A natural way to induce meso-

scale temperature corrugation is inhomogeneous turbulent

mixing. This also is the most general way to understand

zonal flow structure generation.14 We remark here that there

are other ways to generate temperature gradient corrugations,

such as by the finite time delay effect between ~Qm and

@x
~Tm,15 by magnetic islands,16 and so on. Via inhomoge-

neous mixing, the turbulent heat flux in the strong zonal flow

shear region drops, so the thermal energy “piles up” around

the shear layer and temperature profile steepens locally and

so is corrugated. An important detail is that zonal shear

/ @2
x

~Tm(from local radial force balance), relevant when the

dominant nonlinear process is the zonal flow–turbulence

interaction (Fig. 1). The temperature corrugation / @x
~Tm,

where the rT and I interaction is dominant. Therefore, zonal

shear and mesoscale temperature gradient drive act at some-

where different, but nearby, locations. As we focus how the

temperature corrugations impact turbulence excitation, the

zonal shear evolution is not included explicitly. The process

of corrugation formation is equivalent to a secondary flux

that is locally “up” the mesoscale temperature gradient, i.e.,
~QT;m@x

~Tm > 0. With the Fickian approximation, ~QT;m can be

written as ~QT;m ¼ �vm@x
~Tm. vm is a “negative” thermal con-

ductivity,17 which reflects the up-gradient feature of the

mesoscale heat flux. Such negative conductivity is rooted in

the bistability of the system. The triple coupling term in Eq.

(4) then follows as h ~Am~vx
~Ti ¼ �jvmjh ~A

2

mi. vm is determined

by the detailed process of the inhomogeneous turbulent mix-

ing process, i.e., pumping of the mesoscale temperature field

by turbulence. In fact, due to the natural connection between

@2
x

~Tm and zonal shear, we can expect that vm would resemble

FIG. 1. Sketch of bistable turbulence spreading induced by inhomogeneous

mixing. Blue line: subcritical mean temperature profile.
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the “negative” viscosity, which characterizes secondary

growth as in the modulational instability of a seed zonal

shear. The mean turbulent heat flux is hQTi ¼ �vT@xhTi
¼ vThAi, where the turbulent thermal conductivity has a

form vT¼D0I with D0 being a coefficient. Since the underly-

ing physics of both the heat conductivity (D0) and the turbu-

lent scattering diffusivity (D1) is the same (i.e., mode

coupling induced turbulent mixing), we have D0’D1.

Substituting D0IhAi for hQTi and �jvmjh ~A
2

mi for h ~Am~vx
~Ti in

Eq. (4) yields

h ~A2

mi ¼
D0hAi2

vneo þ jvmj
I: (5)

Equation (5) is a generalized Zeldovich relation,18 and it

indicates that the temperature corrugation strength is propor-

tional to the turbulence intensity. With Eq. (2), the “loop” of

the model is now closed.

To have a more physical understanding of how tempera-

ture corrugation impacts turbulence excitation and spreading

into the subcritical region, we keep only the averaged drive

effect in Eq. (2), i.e., Hð ~AmÞ ~Am ’ hHð ~AmÞ ~Ami. This is valid

when the variation of the corrugations at different locations

is relatively small. Then, one has hHð ~AmÞ ~Ami ’
ffiffiffiffiffiffiffiffiffiffi
h ~A2

mi
q

.

Substituting it into Eq. (2) and employing Eq. (5) yield

@

@t
I ¼ c0 hAi � ACð ÞI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0D0hAi2

vneo þ jvmj

s
I3=2 � cnlI

2

þD1

@

@x
I
@

@x
I

� �
: (6)

Without the temperature corrugation effect (2nd term on

the RHS), Eq. (6) has the conventional Fisher form, i.e.,

reduces to Eq. (1). But Eq. (6) now contains a new term,

which results from the treatment of corrugation. Equation

(6) is driven by two processes: local turbulence excitation

and turbulence spreading. The spatial coupling term in Eq.

(6) has two consequences: steepening [/ ð@xIÞ2] and flat-

tening (/ @2
x I). Combined together, they facilitate the for-

mation of a front, which separates the domains of the

different homogeneous solutions (Fig. 2).19,20 Thus, the

“inner”- and “outer” solutions can be discussed separately.

First, we discuss the local turbulence excitation process,

i.e., the outer solution. By “turning off” the inhomoge-

neous term, Eq. (6) can be written in the variational form

as

@

@t
I ¼ � dFðIÞ

dI
; (7)

where the potential F is

FðIÞ ¼ � 1

2
c0 hAi � ACð ÞI2 � 2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0D0hAi2

vneo þ jvmj

s
I5=2 þ 1

3
cnlI

3:

(8)

For the subcritical case (hAi < AC), it is straightforward to

show that Eq. (7) has two stable steady solutions. Setting dF/

dI¼ 0, these follow as

I ¼ 0 and I ¼ Iþ; (9)

with the stable excited solution

Iþ ¼
9c2

0D0hAi2

25c2
nlvtotal

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 25cnlvtotal

6c0D0hAi2
ðhAi � ACÞ

s0
@

1
A

2

(10)

and one unstable solution

I� ¼
9c2

0D0hAi2

25c2
nlvtotal

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 25cnlvtotal

6c0D0hAi2
ðhAi � ACÞ

s0
@

1
A

2

;

(11)

where vtotal � vneo þ jvmj. In other words, by including the

temperature corrugation effect, the unistable system [Eq. (1)]

is replaced by one which is bistable. Typically, one has

F(Iþ)<F(0), so the laminar state I¼ 0 is metastable, while

the excited state I¼ Iþ is absolutely stable (Fig. 3). Equation

(10) implies that the excited turbulence intensity / hAi2
has a stronger scaling than the Fisher model [/ ðhAi � ACÞ].

FIG. 2. (a) Turbulence front in the Fisher equation based model and the

front is modified by local growth; (b) turbulence front in the bistability

model. c(t) is the front speed at t and t2> t1.

FIG. 3. Configuration of the potential energy F(I). Dashed curve: impact of

mean E�B shear on F(I).
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To initiate local excitation, I must exceed a threshold IC¼ I–,

which is set by the height of the potential barrier of F (Fig. 3).

We thus have arrived a physics picture where the system

given by Eq. (7) can be viewed as a “sea” of laminar (I¼ 0)

and excited (I¼ Iþ) domains. To understand how these

domains are connected, one needs to incorporate the spatial

coupling term in Eq. (6). For a front (i.e., the inner solution),

one has I(x, t)¼ I(z) with z¼ x – c�t (c�:speed of the front

propagation). Equation (6) becomes

�c�
d

dz
I ¼ � dF

dI
þ D1I

d2

dz2
I þ D1

d

dz
I

� �2

: (12)

c� is also the eigenvalue of Eq. (12). Multiplying d
dz I on both

sides of Eq. (12) and integrating from z¼ –1 to z¼þ1
yield

c� ¼ Fðþ1Þ � Fð�1Þðþ1
�1

I02dz

þ
�D1

2

ðþ1
�1

I03dzðþ1
�1

I02dz

; (13)

where I0 � dI=dz. The propagation of the front is driven by

two effects: (1) the free energy difference of the two homo-

geneous states and (2) the spatial steepening of the turbu-

lence intensity due to nonlinear diffusion. For the type of

front sketched in Fig. 1, one has Fðþ1Þ � Fð�1Þ ¼ Fð0Þ
�FðIþÞ > 0 (Fig. 3) and I0 < 0, so that both effects make a

positive contribution to c�. Since Eq. (12) is invariant under

the transformations I0 ! �I0 and c� ! �c�, the front with

Fðþ1Þ ¼ FðIþÞ and Fð�1Þ ¼ Fð0Þ has a propagating

velocity –c�. A simple observation of Eq. (13) is that c� has

a basic structure c� ¼ aLþ b
L with a and b being constant

(determined by the turbulence intensity) and L the character-

istic size of the front layer. Then, one can expect that there

exists a lower limit on the velocity of the front, c� 	 2
ffiffiffiffiffi
ab
p

� cmin.21 An exact solution of Eq. (12) is not crucial here.

We instead pursue the basic scaling of cmin for the near mar-

ginal scenario. After the re-scalings I ! c2
0
D0

c2
nl
ðvneoþjvmjÞ

hAi2I;

x!
ffiffiffiffi
D0

cnl

q
x; t! cnlðvneoþjvmjÞ

c2
0
D0hAi2

t, Eq. (12) is dimensionless. The

scaling of the minimal front speed follows as

c� 	 cmin /
c2

0hAi
2D0

cnlðvneo þ jvmjÞ

ffiffiffiffiffiffi
D0

cnl

s
� V�e

x�e
Dx

kylmix; (14)

where the basic scalings of drift wave turbulence c0hAi
/ x�e ¼ kyV�e(V�e; electron diamagnetic drift velocity and

ky: poloidal wave number), D0’ vGB (Bohm-like thermal

conductivity), cnl’Dx (frequency spectrum width), and

approximations jvmj � vneo; jvmj � vGB were used. lmix �ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0=cnl

p
is the mixing length (or characteristic wavelength)

of the drift wave turbulence. Evidently, the outer solutions

[I(z¼ –1) and I(z¼þ1)] of the bistable front are stable.

The stability of the inner solution is unclear and requires fur-

ther analysis. In fact, an unstable inner solution would induce

the splitting of the front and hence facilitate the spreading of

the turbulence. The possibility for the existence of a unstable

inner solution is an interesting topic to explore in the future.

The linear dissipation effect of the mean E�B shear can

be incorporated directly into this bistable turbulence spread-

ing model. This can up-shift the critical temperature gradient

AC, so that the extent of the subcritical region is enlarged.22

Excitation of the turbulence fluctuations then becomes harder

(Fig. 3), and the amplitude of Iþ is decreased. For a strong

enough mean E�B shear (or transport barrier), the relative

stability of the laminar- and excited states can be reversed,

i.e., the excited state can become metastable and the laminar

state becomes absolutely stable, so that the system tends to

evolve to a laminar state (as in a transport barrier). So, the

bistable model for turbulence excitation and spreading also

provides a stimulating framework for understanding transition

processes between L- and H modes. Through the residual

term of Reynolds stress,23 the energy of the turbulence can be

coupled to the parallel flow; one can expect that the parallel

flow shear would induce a nonlinear saturation effect to I’s
evolution and hence reduce the amplitude of the excited solu-

tion and the spreading speed of the front.
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