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Electron exchange processes between molecules adsorbed on metal surfaces 

and the underlying metal are common in interfacial chemistry, encompassing nearly 

all electrochemical phenomena and molecular electronics and playing important roles 

in many other molecular processes at metal surfaces. In many processes, including 

electrochemical electron transfer and molecular conduction at metal-molecule-metal 

junctions, a central issue is the effect of nuclear motions on the characteristics of the 

electronic process. In many others, including electron induced desorption, electron 

tunneling induced reactions and friction involving molecules at metal surface, the 

focus is on the nuclear dynamics itself. Understanding the nature of this dynamics is a 

potentially complex issue, since a fundamental cornerstone of any molecular theory, 

the Born Oppenheimer (BO) principle which underlines the meaningful existence of 

nuclear potential surfaces, is called here into question. Indeed, while in most 

molecular processes timescale separation between nuclear and electronic motion 

makes it possible to define meaningful nuclear potential surfaces and to discuss non-

adiabatic transitions between them as resulting from relatively rare instances of 

breakdown of this separation, the dense electronic spectrum of metals and the slow 

electronic timescale  associated with the electronic density of states ρ, renders the 

BO approximation questionable in such systems. 

In dealing with this problem, it is useful to consider limiting cases. If we 

represent the metal as a free-electron reservoir and the metal-molecule interaction by 

the usual electron transfer Hamiltonian  where  and  

are single electron annihilation operators on the molecular electronic orbital j and 

metal level k, respectively, the timescale for electron exchange between the molecule 

and the metal is given by , evaluated at the molecular level energy . 

When  we should recover the molecular BO picture, and for small finite Γ 



electron transfer events mark the non-adiabatic crossover (surface hopping) between 

different molecular potential surfaces that characterize the different redox states of the 

molecular species.1 These potential surfaces may be somewhat modified by the 

proximity of the metal, e.g. by interaction of the molecule with the image of its charge 

distribution in the metal, however it is safe to assume that the usual electronic-nuclear 

timescale separation is not affected by this interaction, i.e. that the metal electronic 

response is fast relative to the molecular nuclear timescale. 

The rest of this note concerns the other limit , or more precisely  

where ω is a characteristic vibrational frequency (i.e.  is the characteristic 

nuclear timescale). Denote the electronic and nuclear subsystem of the molecule S by 

A and B, respectively so that the Hamiltonian of the isolated molecule is 

. Let subsystem A be characterized by two states,  and 

 (e.g. two charging states of the molecule, in which case B represents the relevant 

underlying nuclear motion). Assume furthermore that an additional process (e.g. 

electron exchange with a nearby metal) causes a rapid interchange between states 

and , and that this process by itself would bring subsystem A to equilibrium 

characterized by a density matrix . A Born-Oppenheimer-type approximation 

suggests that in the limit where the interchange dynamics between A states is fast 

relative to the characteristic dynamics of B, the motion of B will be described to a 

good approximation by the mean field Hamiltonian  where 

. 

When A represents the electronic states of an adsorbed molecule and B – its 

nuclear subspace, the resulting nuclear potential surface will often bear little 

resemblance to that of the isolated molecule. When the molecular nuclear dynamics is 

represented by a single harmonic oscillator coupled to the electronic subsystem by the 

standard polaron coupling model (charge dependent shift of the harmonic potential 

surface) we have shown2 that the resulting potential surface can possess more than 

one minimum, implying a potential multi-stable behavior. This result was obtained 

using the mean field (MF) argument above, and we have recently3 re-derived it by 

evaluating the electronic Green function G in the coupled system using the linked 

cluster approximation. This procedure yields the standard isolated molecule result in 



the isolated molecule limit, , as well as the MF result in the static limit, 

.  

 The validity of latter derivation was recently questioned by Alexandrov and 

Bratkovsky.4  In particular, they question our use of the non-equilibrium linked cluster 

expansion (NLCE), suggesting that using the renormalized level occupation instead of 

the bare one in the exponentiated cluster amounts to overcounting diagrams in the 

perturbation expansion of the electronic Green function. We believe that this claim is 

wrong. To make the consideration simple let us focus on the relevant static limit, 

, and disregard all the diagrams with non-zero phonon frequency,5 this 

leaves in consideration diagrams of the Hartree type, , only (see Fig. 1a). The 

standard linked cluster expression sums the corresponding clusters to all orders, 

leading (after expansion of exponent into series) to a Dyson-type equation for the 

Green function 

    (1) 

  

 

Fig. 1. The Hartree diagram  (a) and the dressed Hartree diagram  

(b) used in the linked cluster expansion of the electronic self-energy 

 

Instead, in Ref. 3 we have replaced the bare   ΣH
(2) ♣  

                                                
♣ In Eq. (2), M is the electron-phonon coupling and all functions are defined on the Keldysh 

contour c. G0 and D0 are free electron and free phonon Green functions, respectively, and 

 corresponds to the limit 
  
limτ 2 →τ1 +

G0 τ1,τ 2( ) . 



  (2) 

 by the renormalized self-energy  in which the  in (2) (that corresponds to the 

bare (blank) bubble in Fig. 1a) is replaced by the exact Green function 

(corresponding to the dressed (grey) bubble in Fig. 1b). Fig. 2 shows some of the 

terms that constitute the dressed bubble. 

 

Fig. 2. Bubble diagrams contributing to the renormalized self-energy  

The authors of Ref 4 have questioned this renormalization procedure, claiming that it 

leads to double counting in the perturbation expansion of the electronic Green 

function in the electron-vibration coupling. We disagree. In fact the diagrams (Fig. 2) 

that contribute to the renormalization leading to diagram (Fig. 1b) are topologically 

different than those used in the standard linked cluster expansion in diagram (1a), so 

the latter can not account for the dressing processes that results in diagram (1b).  

We further demonstrate this point by evaluating the self-energy to 4th order in 

electron-vibration coupling. As pointed out above, in the static limit only diagrams of 

the Hartree type are of interest. Contributions of this type that corresponds to the third 

and second diagrams in Fig.2 are 

respectively. Here  is the Born (Fock, exchange) 

self-energy. It is easy to show that these contributions are absent in the case of an 

isolated molecule. They do exist however for a molecule in a junction. 

 In summary, Born-Oppenheimer type potential energy surfaces can be defined 

and used for molecules strongly coupled ( ) to metal surfaces. Using the 

undressed cluster in the linked cluster expansion, as proposed in Ref. 4, misses the 

feedback effect: not only do tunneling electrons shift the position of the vibration 

(physics contained in diagrams of type a in Fig. 1), but also shifted (polarized) 

vibration affects tunneling electrons (dressing presented in type b diagrams). We 

believe that both effects should be present in a complete theory. 
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