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ABSTRACT OF THE DISSERTATION

Multi-scale modeling for cell fate specification during regeneration and development

By

Yangyang Wang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Qing Nie, Chair

Tissue regeneration and development involves activities in multiple scales: gene, growth

factor, cell, and tissue. As an example for regeneration, in wound healing process, the tis-

sue recovery is achieved by cell hyper-proliferation and cell movement through regulations

of growth factors. Early embryo development, as an example for development, the over-

all embryo spatial organization depends on cell movement regulated by cell-cell adhesion

genes while cell differentiation is controlled by cell fate genes. In order to study interplay

among those scales, multi-scale hybrid models are developed to incorporate gene and cell

information, and their emergent dynamics in tissue development and regeneration.

In chapter 2, I established a model to study skin wound healing, which focuses on mechanisms

to reduce scar after wound, especially the epidermis-dermis interaction. Each individual cell

in epidermis is modeled discretely using Subcellular Element Method (SEM) to study the

heterogeneous cell activities, whereas the cells and extracellular matrix (ECM) in dermis are

modeled by partial differential equations (PDE) in continuum. To systematically study the

role of signaling factors produced by cells, the model incorporate the signaling factors in con-

tinuum as well. In further, to study the interface between discrete epidermis and continuum

dermis and their interaction, the interface is modeled using Level Set Method (LSM). The

model makes several predictions: First, the signaling factors in both epidermis and dermis

viii



are essential to maintain dermal stability; Second, wound-triggered increase production of

signaling factors in epidermis and fast re-epithelialization kinetics reduce wound size; Third,

high density fibrin clot leads to a raised, hypertrophic scar phenotype, whereas low density

fibrin clot leads to a hypertrophic phenotype. Fourth, shallow wounds, compared to deep

wounds, result in overall reduced scarring.

In Chapter 3, to study pattern formation of early embryo development, I created a data-

informed multi-scale model to reveal the time evolution of gene expression and spatial ar-

rangement in single cell level, allowing us to study both the mechanisms and the effective

times of the mechanisms. The cells are modeled in SEM to study the heterogeneity, and the

gene expressions of each cell are modeled by stochastic differential equations (SDE). Analysis

on single cell RNA sequencing data both validates modeled gene expression and calibrates

coefficients for physical cellular interactions in the model. The model discovered that an

Epha4/Ephrinb2 gene driven cell adhesion between epiblast (EPI) and primitive endoderm

(PE) ensures spatial embryo organization; a good time window for gene regulation involv-

ing fibroblast growth factor (FGF) is essential for cell to change cell fate into EPI and PE

successfully.
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Chapter 1

Introduction

The tissue regeneration and development processes contain activities of cells, growth factors

and genes (or transcription factors of genes). As an example of generation, in wound healing

process, there’re two major activities involving cells: (1) re-epithelialization that epithelial

cells around the wound margin begin to migrate into the wound area [103, 35]; (2) dermal tis-

sue restoration, especially the extracellular matrix (ECM) deposition produced by fibroblast

cells [35]. These two separate activities are related through growth factors: both epithelial

cells and fibroblast cells secrete TGF transforming growth factors-β (TGF-β), which affect

the collagen production from fibroblast [88, 23, 73]. In development, for example, the early

embryo development consists of the formation of different type of cells: trophectoderm cells

(TE), inner cell mass (ICM), primitive endoderm cells (PE) and epiblast cells (Epi), whereas

TE/ICM cell fate decision are controlled by Cdx2 and Oct4 genes, and PE/Epi cell fate de-

cision are controlled by Nanog/Gata6 genes [105]. Those biological facts indicate that tissue

development and generation are controlled by cell activities, and cell activities are controlled

by growth factors and genes. To establish a mathematical model to study tissue development

precisely, a mutiscale model containing both cell activity controlled by growth factors and

genes is necessary. The question is: how to model cell activities and how to model growth

1



factors and gene regulation on cells?

There are three essential parts in cell activities: cell fate decision, cell division and cell

movement. Cell fate could be controlled by some specific genes (For example, PE/Epi cells

are controlled by Nanog/Gata6 genes). Cell fate could also change after division, for example,

when stem cells perform division, the daughter cells may have different cell types compare

to the mother cell [84]. The second case of cell fate decision and cell division can be modeled

together in continuum using ordinary differential equations (ODE) [55]. In this case, the cell

populations of each cell type are modeled in continuum using ODE and controlled by cell

division with two parameters: cell cycle the probability that the cell type of the daughter

cell is same as the mother cell. In further, cell population with spatial information can be

modeled using partial differential equations (PDE) with a convection and diffusion term to

model cell movement [76]. Continuum model could transfer cell fate decision, cell division

and cell movement into terms in ODE and PDE, it could capture cell population but lack

some single cell activities like the direction of division plane when cell divides. To capture

single cell information, discrete model is necessary. One useful discrete model is subcellular

element method (SEM) [69]. SEM model each cell in several elements, which automatically

describes the shape of the cell, and such elements could also model the polarity of the cell by

giving different property on different elements in one cell [30]. SEM could model cell division

by choosing a division plane and separate all elements into two parts, and it is useful when

modeling division with specific division plane, for example, A. Gord, et al. utilized SEM to

study division plane of the asymmetric division of epidermal stem cells [30]. SEM could also

model cell adhesion and repulsion by setting potential between intercelluar elements [69]. In

further, selective cell adhesion can be modeled in SEM by setting different potentials between

different cell types to achieve cell sorting between different cell types [17]. In summary, the

discrete model such as SEM could model some properties in single cell level, like division

plane of the cell, cell adhesion and repulsion and selective adhesions. However, the SEM

model needs to model every cell in the tissue, which could cause high time complexity. One

2



solution to reduce the time complexity of SEM is to use the parallel computing with GPU

[12].

Cell activities are also controlled by growth factors and genes. Growth factors and transcrip-

tion factors of genes could be modeled in continuum using PDE by describing the concen-

tration. In this case, cells can be modeled in continuum, and the cell movement (convention

term) or cell proliferation can be controlled by the density of the growth factor or transcrip-

tion factor. As an example, S. N. Menon, et al. established a wound healing model that

describes epidermal cells, fibroblast cells and TGF-β in continuum, and TGF-β controls epi-

dermal cell proliferation and fibroblast movement [62]; Cells can also be modeled discretely

and single cell property can be controlled by the density of the growth factor/transcription

factor. H. Du, et al. created a mathematical model controlling single cell division cycle

and regeneration probability based on the density of Ovol transcription factors [17]. Genes

and growth factors can also be modeled for each single cell using ODE, and it is possible to

model ligand-receptor based cell-cell interaction using ligand level of the neighbor cells. S.

Bessonnard, et al. studied the cell-cell interaction on Nanog/Gata6 level via a model that

describes Nanog/Gata6 level of each single cell using ODE, and the Nanog/Gata6 level are

controlled by Fgf4/Fgfr2 ligand-receptor pairs of the neighbor cells [4].

Here I developed two models combining cells activities and growth factor/gene regulation

on cells: (1) In Chapter 2, I established a wound healing multiscale model on interaction of

epidermal and dermal cells [108], where the novelty of this work is that I modeled epidermis

in discrete and dermis in continuum with a moving boundary between them, and describes

the interaction between them via growth factors (modeled in continuum); (2) In Chapter 3,

I cretaed a multiscale model via early embryo development (this paper is under review), and

combining single-cell transcriptomics data with SEM models is the novel part of the model.

3



Chapter 2

A multiscale hybrid mathematical

model of epidermal-dermal

interactions during skin wound

healing

Following injury, skin activates a complex wound healing programme. While cellular and

signalling mechanisms of wound repair have been extensively studied, the principles of

epidermal-dermal interactions and their effects on wound healing outcomes are only par-

tially understood. To gain new insight into the effects of epidermal-dermal interactions, we

developed a multiscale, hybrid mathematical model of skin wound healing. The model takes

into consideration interactions between epidermis and dermis across the basement mem-

brane via diffusible signals, defined as activator and inhibitor. Simulations revealed that

epidermal-dermal interactions are critical for proper extracellular matrix deposition in the

dermis, suggesting these signals may influence how wound scars form. Our model makes

several theoretical predictions. First, basal levels of epidermal activator and inhibitor help
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to maintain dermis in a steady state, whereas their absence results in a raised, scar-like

dermal phenotype. Second, wound-triggered increase in activator and inhibitor production

by basal epidermal cells, coupled with fast re-epithelialization kinetics, reduces dermal scar

size. Third, high-density fibrin clot leads to a raised, hypertrophic scar phenotype, whereas

low-density fibrin clot leads to a hypotrophic phenotype. Fourth, shallow wounds, compared

to deep wounds, result in overall reduced scarring. Taken together, our model predicts the

important role of signalling across dermal-epidermal interface and the effect of fibrin clot den-

sity and wound geometry on scar formation. This hybrid modelling approach may be also

applicable to other complex tissue systems, enabling the simulation of dynamic processes,

otherwise computationally prohibitive with fully discrete models due to a large number of

variables.

2.1 Introduction

Skin functions as a vital interface between organism and its environment. When injured, skin

rapidly heals via a wound healing programme characterized by four distinct yet overlapping

phases: hemostasis, inflammation, proliferation and remodelling [19, 100]. The primary goal

of this repair programme is to re-establish barrier function by reforming stratified epidermis

and restoring dermal tissue integrity [103, 35]. During the remodelling phase, regeneration

of new hair follicles [45, 67, 28, 52] and adipose tissue [80, 32] can also take place. Cellular

or molecular defects during any of these phases can lead to pathological wound healing

outcomes.

Molecular composition and high-order structure of collagen bundles laid by wound fibroblasts

determine the architecture and the “quality” of the dermal scar, and collagen deposition is

tightly regulated by paracrine, autocrine and mechanical signals [101]. While collagen ar-

chitecture of normal skin is intricate and weave-like, scars typically have “less desirable”
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highly parallel collagen [112, 113]. Epidermal keratinocytes can signal to dermal fibroblasts

to decrease collagen production [27], while direct contact between two cell types stimulates

keratinocyte proliferation and migration during wound re-epithelialization [109]. Epidermal-

dermal crosstalk occurs via signalling growth factors [111], and, for example, both wound

keratinocytes and fibroblasts secrete transforming growth factor beta (TGFβ) ligands, the

key wound healing mediatorsc [88, 23, 73]. TGFβ1 is also abundant in the platelet-rich

fibrin clot and has been linked to excessive extracellular matrix (ECM) deposition[21]. This

suggests that together with keratinocytes, fibroblasts and immune cells, fibrin clot serves as

an important signalling centre during wound repair. While multiple lines of evidence point

towards the importance of signalling crosstalk between key cellular and molecular compo-

nents of the wound, the overall logic of these interactions during scar formation remains

incompletely understood.

Mathematical modelling offers a useful approach to study principles of wound healing. In the

past, reaction-diffusion model has been implemented to study biochemical regulation of cell

cycle in the epidermis during wound re-epithelialization [94]. Another study implemented

hybrid model to study how collagen fibres organize during wound healing and their role

in scarring [13, 61]. The Cellular Potts model also has been used to investigate sprouting

and branching during angiogenesis [14] and, more recently, to examine proliferation and

migration of skin wound fibroblasts [90].

While the crosstalk between keratinocytes and fibroblasts via soluble signalling factors has

been previously analysed using a continuum model [63], epidermal and dermal compartments

were treated as one spatially homogeneous region, without taking into consideration their

interactions and other important anatomical aspects of the skin. A finite element method

also has been used to study interactions between keratinocytes, fibroblasts and endothelial

cells [104]. Although important, this method did not account for the interface between

epidermis and dermis and, instead, modelled both of these distinct skin compartments as a

6



continuum. Unlike dermis, epidermis consists only of a few layers of densely packed cells,

and its discrete nature likely introduces important biological effects that cannot be captured

by a continuum model.

To simulate interactions between individual cells within spatially distinct epidermis and

dermis and their effects on scarring, we developed an optimized two-dimensional, multiscale

hybrid model of wound healing. This model incorporates dynamically continuous epidermal-

dermal interface, and allows studying individual proliferating and migrating keratinocytes

using discrete single-cell model, and dermal fibroblast functions using continuum model.

Our simulations predict that both dermal and epidermal signalling factors are necessary to

sustain steady-state ECM levels in normal skin, and to regulate new ECM deposition after

wounding. Our model also predicts that high-density fibrin clot, serving as the source for

signalling factors, can induce formation of raised hypertrophic scars, whereas low-density

fibrin clot has the opposite effect. Finally, the model predicts causal relationships between

initial wound width and depth and scarring outcomes.

2.2 Methods

The two-dimensional, multiscale hybrid mathematical model consists of two submodels al-

located on two separate homogeneous regions: the dermal (D) and epidermal (E) regions.

Each region is distinct and was modelled with a dynamic interface between them, termed

Ω. Epidermal cells in E were modelled individually to evaluate their signal production and

proliferation and migration abilities. In contrast, dermal fibroblasts, immune cells, ECM

(including collagen bundles), and signals produced by cell types not explicitly accounted for

(such as vascular cells) were modelled in a continuum.
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2.2.1 Discrete model on epidermal cell dynamics using subcellular

element method

Epidermal keratinocytes were modelled individually through a linear cell lineage composed of

basal, spinous and granular layer keratinocytes. Following our previous work [17], a selective

differential cell adhesion mechanism was implemented to allow for proper layer stratification.

Individual cells and their divisions were modelled by a subcellular element method [69] that

has been adapted to specifically study epidermis [30] (see Section 2.5).

2.2.2 Continuum model on signalling and dermal components

Extracellular matrix deposition and diffusive signalling molecules in both dermis and epider-

mis were modelled by reaction-diffusion differential equations. Dermal fibroblasts and im-

mune cells were modelled using the Keller-Segel model[37], which includes reaction-diffusion-

advection equations controlling their diffusion, chemotactic movement, self-renewal and de-

cay.

2.2.3 Coupling of discrete and continuum models with dynamic

interface

We modelled epidermal basement membrane as a dynamic interface (Ω) to separate the der-

mis and epidermis and used the movement of such interface to mimic dermal scar formation

dynamics during wound healing. The dynamic nature of the interface is implicitly modelled

by the level set method [75] (see Section 2.5).

8



2.3 Results

2.3.1 A multiscale model with a dynamic interface and epidermal-

dermal interactions

We constructed a two-dimensional, multiscale mathematical model composed of a hybrid

epidermal-dermal interface to explore the mechanisms that regulate aspects of skin phys-

iology during homeostasis and after wounding. Epidermis (E) was modelled individually

with discrete keratinocytes, whereas dermis (D) was modelled in a continuum and considers

diffusive signals produced by keratinocytes, dermal fibroblasts, immune cells and other skin

cells not explicitly accounted for (see Methods). Both compartments were modelled inde-

pendently and separated by a dynamic interface, termed Ω . During wound healing, ECM

production and fibroblast proliferation are known to be regulated by multiple signalling fac-

tors [24, 42, 2, 54, 95]. Key signalling factors involved in wound healing are members of the

TGF pathway, although their effects are complex. While TGFβ1 promotes collagen synthe-

sis [24, 22], TGFβ3 shows downregulating effects [42, 66]. Both fibroblasts and keratinocytes

secrete TGFβ1 [2], and fibroblasts respond to TGFβ1 by proliferating [54]. This suggests

that TGFβ1 serves an activator for fibroblast proliferation and ECM production, whereas

TGFβ3 works as an inhibitor of ECM production. Signalling factors belonging to canonical

WNT [106, 110] and PDGF pathways [95, 46, 39] also regulate fibroblast activity and can

serve the role of activators and inhibitors in the model.

To systematically study the role of putative regulatory signals during scar formation, we

modelled diffusive signals as activator (A) and inhibitor (I). A and I assume specific roles

in our model—A promotes fibroblast proliferation and ECM production, whereas I inhibits

ECM production. The model obeys three basic conditions (Figure 2.1). First, both basal

epidermal keratinocytes and dermal fibroblasts produce A and I. Immune cells can also
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Figure 2.1: Schematic of two-dimensional multiscale hybrid model of wound healing.
The modelling domain is separated into epidermis (E) (light blue) and dermis (D) (grey) by
a dynamic interface (Ω) to mimic the basement membrane. In E, keratinocytes are modelled
discretely as basal (yellow), spinous (light brown) and granular (dark brown) cells. Basal
cells are set to produce activators A (shaded green box) and inhibitors I (shaded dark pink
box) (rule (1)). In D, fibroblasts, ECM (shaded blue oval) and immune cells (IM , purple)
are modelled in a continuum, where fibroblasts produce A and I, immune cells produce
A, and these processes are directly activated by ECM (rule (2)). Additionally, fibroblast
proliferation is activated by A, production of A by immune cells is activated by A, and ECM
production is activated by A and inhibited by I (rule (3)). A and I exist in both D and E
and can diffuse across Ω
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produce A. Second, A and I diffuse through the dermis, and their production rates are

directly regulated by fibroblast density and ECM production. Production of A by immune

cells is regulated by their activation state, which they enter when local A signalling levels

are high and above a set threshold. Third, A positively regulates ECM production, while I

does the opposite. These processes are modelled in a continuum and assume the following

sets of partial differential equations:

∂F

∂t
= ∇(DF∇F − vFF∇p2) + fF (F, p2)− dFF (2.1)

∂C

∂t
= DC∆C + fC(F, p1, p2)− dCC (2.2)

∂p1

∂t
= Dp1∆p1 + fp1(F,C, p1) + Ep1 − dp1p1 (2.3)

∂p2

∂t
= Dp2∆p2 + fp2(F,C, p2) + Ep2 + CMp2M + fIM(IM, p2)− dp2p2 (2.4)

where F and C represent fibroblast proliferation/density and overall ECM concentration

(measured as a direct readout of collagen bundle production/deposition), respectively; p1

and p2 represent the concentrations of I and A, respectively. The term Epi represents the

production rate of pi (where i = 1,2 in epidermal basal keratinocytes), and IM represents

immune cells, which also serves as a source of A (see Section 2.5). M represents fibrin clot,

which forms during wound healing (see Section 2.5).

The dynamic interface between E and D was implicitly modelled by the level set method

and implemented by the phase function Φ, which was determined by the velocity field ν.

The change in phase function Φ was defined by:

∂Φ

∂t
= −v · ∇Φ (2.5)

where Φ is the phase function representing the epidermal region (Φ ¿ 0) and dermal region
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(Φ ¡ 0). The initial condition for Φ is the signed distance between the grid point and the

interface (see Section 2.5). The velocity field v is encoded by:

v = −K∇(C − C0) (2.6)

where C0(x, y, t) is zero when (x, y) is in D, and C0(x, y, t) is Cstable 6= 0 when (x, y) is in E.

Cstable is ECM density in the dermis under homeostatic conditions. The interface will rise

up if C > Cstable is satisfied near the interface and decrease C < Cstable is satisfied.

2.3.2 Coupled signalling between basal keratinocytes and fibrob-

lasts maintains dermal homeostasis in the model

To examine the effects of epidermally derived A and I on dermis stability, we varied the

parameters regulating signal production by basal keratinocytes. Initially, A and I were

modelled such that they are found at near-constant levels throughout D and in basal layer of

E. (Figure 2.2 A”, A”’). Simulations suggest that if both basal keratinocytes and fibroblasts

produce A and I at relatively high levels and immune cells do not produce extra A because of

the combined keratinocyte-and fibroblast-derived A levels are below the threshold required

for immune cell activation (see Section 2.5), ECM and fibroblast densities (which serve as

proxies for dermal stability) are uniformly distributed across D (Figure 2.2 A, A’), but form

an upward gradient in E (Figure 2.5A–A”’). The average ECM and fibroblast densities, as

well as A and I levels, remained stable and did not fluctuate over a simulated timescale of

6 days (Figure 2.2 E, F, black line). We used these simulation parameters as a baseline to

represent the homeostatic condition in the following simulations, where A and I production

rates and sources were perturbed.

Next, we tested the effect of disabled epidermal A and I on dermal homeostasis (Figure 2.2

12



Figure 2.2: Dermal homeostasis in normal skin depends on epidermal and dermal signalling.
(A-A”’) Simulated ECM and fibroblast densities in unwounded skin with A and I produced
both by keratinocytes and by fibroblasts. Black line denotes the position of basement mem-
brane relative to the simulated skin surface. Fibroblast density, and I and A levels are
shown in (A’), (A”) and (A”’), respectively. (B) Simulated ECM and fibroblast densities
in the model where only fibroblasts produce A and I. Significantly decreased fibroblast
density, and inhibitor and activator levels are shown in (B’), (B”) and (B”’), respectively.
(C) Simulated ECM and fibroblast densities in the model where fibroblasts produce 10%
more I relative to the homeostatic condition (high I). Corresponding fibroblast density, and
inhibitor and activator levels are shown in (C’), (C”) and (C”’), respectively. (D) Simulated
ECM and fibroblast densities in the model where fibroblasts produce 10% more A relative
to the homeostatic condition (high A). Corresponding fibroblast density, and inhibitor and
activator levels are shown in (D’), (D”) and (D”’), respectively. (E) Temporal change in
average ECM density across modelling time. (F) Temporal change in average fibroblast den-
sity across modelling time. (G) Temporal change in dermal thickness, as measured by the
position of basement membrane relative to the skin surface, across modelling time. Colour
definitions for each line on E-G are provided on the figure. Values along X-axis are in
simulated days, and values along Y-axis are in arbitrary units (a.u.)
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B”, B”’). This change led to near-constant levels of ECM and fibroblast densities in D, except

near the epidermal-dermal interface (Figure 2.2B, B’), where A and I gradients shifted down-

wards into D (Figure 2.5B–B”’) and over time fibroblast density decreased (Figure 2.2F, blue

line), while ECM density increased (Figure 2.2E, blue line). This suggests that epidermal

activator signals are primarily involved in promoting fibroblast self-renewal, while epidermal

inhibitor signals prevent excessive ECM synthesis within the immediate basement membrane

microenvironment. Increase in ECM output under these signalling perturbations led to der-

mal thickening despite modest decrease in fibroblast density (Figure 2.2 G, blue line). This

is because in the model ECM contributes to dermal volume changes substantially more as

compared to fibroblasts. This assumption is in line with the observations that ECM occupies

larger proportion of a given dermal volume in adult mouse skin as compared to fibroblasts

[90]. These results also suggest that epidermal signals (primarily I) can supplement dermal

signals and contribute to maintaining dermal skin compartment in homeostasis.

Next, we modelled the effects of perturbed dermal signalling. We varied the production rate

of A or I in fibroblasts to two opposite extremes and simulated changes in ECM, fibroblast

density and dermal thickness as measures of dermal stability. Simulation results suggest

that when the production rate of I in fibroblasts is increased by more than 10% in the

upper D compartment (Figure 2.2 C”), fibroblast density modestly decreased and ECM

production significantly decreased (Figure 2.2 C, C’), and continued to decrease over the

entire simulation period (Figure 2.2E, F, red lines). As expected, these changes resulted in

continuously reducing dermal thickness (Figure 2.2 G, red line). On the other hand, when

the production rate of A in fibroblasts is increased by more than 10% (Figure 2.2 D”’),

densities of ECM and fibroblasts as well as dermal thickness increased (Figure 2.2 D, 2D’),

and these changes continued over the simulated time (Figure 2.2E–G,green lines). Together,

these modelling results suggest that both epidermal and dermal sources for A and I signals

and their balance are likely necessary for dermal homeostasis.
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2.3.3 Increased signalling and fast re-epithelialization kinetics are

essential for scar-free healing in simulated epidermal abra-

sion wounds

Next, we asked how A and I signals may regulate dermal repair during wound healing. First,

we modelled healing of epidermal abrasion wounds. Epidermal abrasions mainly heal by re-

epithelialization, and no dermal scar typically forms [85]. We carried out several simulations

in which basal and suprabasal keratinocytes are stripped, while dermal fibroblasts and ECM

remain intact (Figure 2.6A, B; see Section 2.5 for modelling details). We modelled two

parameter kinetics that allow for “fast” and “slow” re-epithelialization in order to simulate

kinetics of normal and delayed wound healing, respectively, and evaluated their effects on der-

mal homeostasis during and after re-epithelialization (Figure 2.3). Both re-epithelialization

kinetics were modelled under “basal” (ie unchanged) and “high” (ie increased) epidermal

A/I production rates (Figure 2.7; see Section 2.5). We also assumed that immediately after

epidermal abrasion, A/I levels in the wound area drop below normal levels due to loss of

keratinocytes, which function as the source for signals (Figure 2.6C, D).

First, we simulated the effects of unchanged vs increased A/I epidermal signalling under fast

re-epithelialization kinetics (Figure 2.3A–D”’). Under basal signalling conditions, A/I levels

were normal at the wound edges but dropped directly beneath the epidermal wound (Figure

2.3C”, C”’). Under these simulated conditions, wound re-epithelialization was accompanied

by an increase in dermal thickness (Figure 2.3K, blue line), an outcome that is unusual for

epidermal abrasions. This is underlined by an increased ECM deposition (Figure 2.3D and

2.3I, blue line), which is the consequence of sustained lower I levels. Density of fibroblasts

experienced a modest reduction (Figure 2.3J, blue line), opposite to ECM changes. This is

also an unusual outcome, and it is driven by the disproportionally higher sensitivity of ECM

production to I vs A. In contrast, when epidermal A/I levels were allowed to increase after

15



Figure 2.3: Healing outcomes of abrasion wounds depend on re-epithelialization kinetics and
epidermal signal production rate.
Abrasion wound healing simulations were performed using fast (A-D”’) and slow re-
epithelialization kinetics (E-H”’). For each set of re-epithelialization kinetics, simulations
were ran using “basal” (C-D”’, G-H”’) and “high” epidermal A/I production rates (A-B”’,
E-F”’). For each simulated condition, ECM density (blue), fibroblast density (pink), inhibitor
level (red) and activator level (green) are shown. For each simulation, two consecutive snap-
shots are shown: day 2 and 6 for fast re-epithelialization simulations and day 4 and 10 for
slow re-epithelialization simulations. Black line on each image marks the position of base-
ment membrane. (I) Temporal changes in average ECM density across modelling time. (J)
Temporal changes in average fibroblast density across modelling time. (K) Temporal changes
in dermal scar thickness across modelling time. Colour definitions for each line on I-K are
provided on the figure. Values along X-axis are in simulated days, and values along Y-axis
are in arbitrary units (a.u.)
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abrasion injury (Figure 2.3A”, A”’), dermal thickness of re-epithelialized wounds did not sig-

nificantly change compared to homeostatic pre-wounding state (Figure 2.3K, black line)—a

more biologically realistic outcome. Underlying this dermal compartment behaviour in the

model were near-normal fibroblast density (Figure 2.3J, black line) and ECM density (Figure

2.3I, black line). These modelling results suggest that rapid increase in A/I production by

the wound edge keratinocytes is likely necessary to compensate for the loss of normal A/I

levels due to epidermal injury and for eventual scar-free healing of epidermal abrasions.

Next, we modelled healing of epidermal abrasion wounds under the conditions of slow re-

epithelialization kinetics, designed to simulate chronic wound healing (see Section 2.5).

When modelling combined slow re-epithelialization with basal A/I production levels (Fig-

ure 2.3G– H”’), post-injury ECM deposition (Figure 2.3I, green line) and dermal scarring

became exacerbated (Figure 2.3K, green line). Interestingly, when modelling combined slow

re-epithelialization with increased rate of A/I production (Figure 2.3E-F”’), delayed re-

epithelialization kinetics triggered basal keratinocytes into a state of sustained elevated pro-

duction of A (Figure 2.3E”’) and I (Figure 2.3E”). In turn, such chronically high A/I levels

resulted in dermis in and around the wound area to overproduce fibroblasts and decrease

ECM (Figure 2.3I and 2.3J, red lines), causing modest, albeit abnormal decrease in dermal

thickness over simulated time (Figure 2.3K, red line). Dichotomous behaviour of fibroblasts

and ECM in this simulation is driven by higher sensitivity to changes in A and I, respectively.

Taken together, our simulations indicate that proper closure of epidermal abrasion wounds

and return of injured skin to near-normal homeostasis require both rapid re-epithelialization

and increase in epidermal signalling.

17



2.3.4 Simulating fibrin clot density and different wound geome-

tries predicts their effects on the type and thickness of der-

mal scar

Previous studies showed that physiological inflammatory processes are necessary to achieve

normal full-thickness wound repair, while abnormal inflammation levels may lead to patho-

logical scarring [51]. Important components of the inflammation phase of wound healing

are diverse immune cell types [18] and the formation of a fibrin clot [31]. Fibrin clot is

initiated by the activation and aggregation of platelets,and platelets release α-granule con-

tent, containing mitogenic and chemotactic growth factors important for wound healing [72].

Among these platelet-derived growth factors is TGFbeta1 [21], which functions as a positive

regulator of ECM deposition52. Therefore, in our modelling, we incorporated the effect of

immune cell–derived and fibrin clot–derived putative activator (modelled as A) on healing of

full-thickness dermal wounds (Figure 2.8). We assumed that fibrin clot forms in the wound

bed region during the transition between hemostasis and inflammation phases (the starting

point of our simulations) and that it can have high density or be defective (ie low density)

(Figure 2.9). We also assumed that fibrin clot serves as a “passive” source for A signal that

diffuses through D and E compartments, acts on dermal components and degrades over time

(Figure 2.4L, Figure 2.10). For the immune cells, we assumed that they serve as an “active”

source for A, but that they produce A only when A levels are already above homeostatic.

Naturally, this results in transient activation of immune cells near the wound edge and fibrin

clot—the site of elevated A (Figures 2.11, 2.12).

We ran a series of simulations, starting with dermal wounds that are deep and wide (Figure

2.13A), imitating large excisional wounds, and that form high-density fibrin clot (Figure

2.4A-B”’). Under these conditions, A in the wound bed reached high level (Figure 2.4A”’),

including from immune cells (Figure 2.11A), triggering fibroblast hyper-proliferation in and
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Figure 2.4: Healing outcomes of dermal wounds depend on wound geometry and fibrin clot
density.
All dermal wound healing simulations shown on this figure were performed using high-density
fibrin clot condition. See Figure 2.14 for low-density fibrin clot condition. The following
wound geometries were compared: (A-B”’) deep and wide wounds, (C-D”’) shallow and
wide wounds, (E-F”’) very shallow and wide wounds, and (G-H”’) narrow and deep wounds.
For each simulated condition, ECM density (blue), fibroblast density (pink), inhibitor level
(red) and activator level (green) are shown. For each simulation, two consecutive snapshots
are shown: day 2 and 6. Black line on each image marks the position of basement membrane.
(I) Temporal changes in average ECM density across modelling time. (J) Temporal changes
in average fibroblast density across modelling time. (K) Temporal changes in dermal scar
thickness across modelling time. (L) Degradation dynamics of the fibrin clot across modelling
time. Colour definitions for each line on I-L are provided on the figure. Values along X-axis
are in simulated days, and values along Y-axis are in arbitrary units (a.u.)
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around the wound (Fig 2.4A’, B’, J, black line). Fibroblast overproduction was accompa-

nied by ECM overproduction (Fig 2.4A, B, I, black line), and the resulting scar became

prominently raised and hypertrophic-like (Figure 2.4K, black line). Importantly, although

fibrin clot decayed to zero only after three simulated days (Figure 2.4L, black line), signalling

effects of clot-derived A on ECM deposition and fibroblast density persisted beyond that pe-

riod. This is because expanding fibroblasts overtook as the dominant source of excessive A

production (Figure 2.4B”’) and immune cells continued to produce A beyond day 3 (Figure

2.11I, black line). Confirming these findings about fibrin clot was simulation of deep and

wide wounds with defective, low-density fibrin clot (Figure 2.14A, B”’). Under low-density

clot conditions, signalling levels for A and I in and around wound bed remained relatively

low (Figure 2.14A”, A”’) and fibroblast density decreased (Figure 2.14J, black line), while

that of ECM remained almost unchanged (Figure 2.14I, black line). Consequently, dermal

thickness recovery dynamics were slow, such that raised scar did not develop and, instead,

healed wounds acquired depressed, hypotrophic-like appearance.

Next, we modelled the effects of wound geometries on wound healing, comparing deep and

wide wounds with: (a) shallow and wide, (b) very shallow and wide, and (c) deep and

narrow wounds (Figure 2.13). Under high fibrin clot conditions, wounds of all sizes healed

with raised scars of varying degree (Figure 2.4K) that had increased ECM density (Figure

2.4I) and increased fibroblast density (Figure 2.4J). This was underlined by increased A/I

levels (Figure 2.4), including increased A from immune cells (Figure 2.11), and depended on

initial high A levels originating from high-density clot. At the same time, prominent size-

dependent differences were observed. Simulations suggest that the degree of dermal scarring

strongly correlates with the wound’s depth rather than its width. Indeed, deep and narrow

wounds (Figure 2.4G–H”’) resulted in higher degree of scarring as compared to very shallow

but wide wounds (Figure 2.4E–F”’, K, green vs red line).

Interestingly, the above correlations between wound size and scarring outcome were altered
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under low-density fibrin clot conditions. Wounds of all sizes acquired depressed, hypotrophic-

like appearance (Figure 2.14K), with scars resulting from deep wounds showing decreased fi-

broblast density (Figure 2.14J). At the signalling level, compared to high-density clot wounds,

simulated low-density clot wounds quickly restored A/I levels to pre-wounding state (Figure

2.14).

Lastly, as proof of principle of the model’s scalability, we simulated healing of deep and wide

wounds with dense fibrin clot with the version of the model that contains two activators: A1

that only stimulates ECM production and A2 that only stimulates fibroblast proliferation

(Figure 2.15). We tested the dependency of ECM and fibroblasts on fibrin clot–derived

activator by assigning the clot to contain only A1 (Figure 2.16, yellow lines) or A2 (Figure

2.16, green lines). Simulations showed that fibroblast density highly depended on its activator

A2 (Figure 2.16B), but that lack of A1 can be largely compensated by A2 for ECM production

(Figure 2.16A). This result lays the framework for modelling more complex wound healing

scenarios in the future.

2.4 Discussion

In this work, we describe new hybrid mathematical model designed to study the effects

of epidermal-dermal interactions on the molecular and cellular dynamics, and outcomes of

skin wound healing. Our simulations suggest that putative activator and inhibitor signalling

factors produced both in the epidermis and in the dermis are important for proper wound

repair. If either of these signalling sources were perturbed in the model, dermal homeostasis

and repair became altered, underlined by the defects in maintenance and restoration of ECM

and fibroblast densities. For example, our model predicts how different signalling regimes

affect the degree of skin scarring in the scenario when wound closure kinetics are perturbed.

In the context of epidermal abrasion injuries, the ability of basal keratinocytes to rapidly
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increase the production of A and I over the baseline homeostatic levels was predicted to be

critical for preventing skin scarring in fast re-epithelializing wounds and to minimize scarring

in wounds with defective re-epithelialization, that simulates chronic epidermal wounds.

Our simulations also make several predictions regarding the effects of geometry and fibrin clot

in dermal wounds. First, modelling results suggest that dermal wounds of all geometries heal

by forming scar tissue that differs in its ECM and fibroblast compositions compared to un-

wounded skin. This is consistent with the available experimental and clinical data that adult

partial-thickness and full-thickness wounds repair by scarring [77]. Second, wide but shallow

simulated wounds—an equivalent of superficial partial-thickness dermal wounds—repaired

with smaller scars as compared to deep wounds of different width, an equivalent of deep

partial-thickness and full-thickness dermal wounds. Indeed, this modelling prediction is

broadly consistent with the available experimental and clinical data. Superficial dermabra-

sion wounds, even when relatively wide, typically repair with no noticeable scar [60], while

deep, full-thickness wounds even when relatively narrow, such as full-thickness incisional

surgical wounds, repair with visible scars [38]. Third, simulations suggest strong effects of

fibrin clot on the trajectories and healing outcomes of dermal wounds. Clot density had

the strongest effect on the simulated repair of deep wounds, with high-density clots causing

distinctly raised, hypertrophic-like scars, while deficient, low-density clots causing somewhat

depressed, hypotrophic-like scars. The initial clot density had progressively decreasing influ-

ence on the healing outcomes of shallow wounds. In our model, the effect of clot is mediated

by the amount of activator that it releases, with dense clots releasing larger activator quanti-

ties. Indeed, fibrin clots contain platelet-derived growth factors and recent proteomic studies

started to define their composition [98, 1]. Our modelling predictions warrant new study on

the effect of fibrin clot in the animal model for wound healing, where clot formation can be

regulated.

From the mathematical perspective, our model provides several advantages. Discrete nature
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of the epidermal compartment enables to model behaviour of individual keratinocytes, in-

cluding cell proliferation, migration and signal production. Within its current framework,

the model can be easily adjusted to incorporate additional epithelial cell types, such as hair

follicle and/or sweat gland cell types. The model accounts for dermal compartment dynam-

ics using continuum description, which eliminates the need for a substantially more complex

and computation cost-heavy discrete description. Additional components, as shown with

immune cells and two activator species, can be relatively easily added into the current model

of the dermal compartment without having to fundamentally change it. Our model also

implicitly considers the epidermal (E) and dermal compartments (D) and the Ω boundary

between them via phase function, so that a uniform mesh can be used for both E and D. This

eliminates the necessity of generating two separate meshes for E and D in order to achieve

sharp compartment boundary. This approach can be applied to modelling additional sharp

boundaries within the skin, such as hair follicle/dermal boundary.

In terms of its limitations, our model does not consider potential heterogeneity in skin fibrob-

last populations, and the possibility that different fibroblast subtypes can respond differently

to signalling cues and exert distinct effects on wound healing. Indeed, several recent studies

have identified distinct populations of mouse skin fibroblasts with distinct roles in ECM

deposition during development and wound healing [32, 95, 16, 47, 87, 78]. Rinkevich et al.

identified two populations of mouse skin fibroblasts: En1 (Engrailed homeobox 1)-negative

and En1-positive cells. The former are abundant during skin development, and the lat-

ter increase in numbers late in adulthood and predominantly deposit collagen and remodel

ECM during wound healing [87]. Developmental change in En1-positive vs En1-negative

fibroblast abundance affects scarring outcomes in skin wounding experiments [47]. Driskell

et al. showed that during mouse skin development, two distinct fibroblast types differen-

tially contribute to the formation of the upper papillary and lower reticular dermal layers

[16]. Moreover, during wound healing, reticular fibroblasts populate the wound first, before

papillary fibroblasts, and they deposit early ECM. Shook et al. showed that unwounded
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mouse skin contains three fibroblast populations, that one of them shares high similarity

with En1-positive cells, and that their contributions to wound healing are distinct [95]. Us-

ing single-cell RNA-sequencing, our group showed that early wound scars in mice contain

as many as twelve fibroblast clusters and that they form at least three distinct fibroblast

differentiation trajectories [32]. Drawing on the above experimental evidence for fibroblast

heterogeneity, it will be of interest to incorporate it into wound healing models.

Indeed, a recently reported mathematical model of wound healing that utilized Cellular

Potts model accounted for two fibroblast subtypes—proliferative and collagen-producing fi-

broblasts [90]. In the model, the switch between two fibroblast types was positively regulated

by ECM and was required to achieve dermal scar maturation. Our model herein accounts

only for one type of dermal fibroblasts, and ECM production is controlled by putative acti-

vator and inhibitor factors with ECM feedback onto both, rather than by a fibroblast state

switch. We posit that signalling regulations in combination with uncoupled ECM and fi-

broblast components within the context of a hybrid modelling approach may afford a more

precise description of fibroblast and ECM dynamics and their roles in wound healing.

Lastly, our current model does not fully recapitulate all wound healing phases. Because the

model lacks blood vessel and blood flow elements, it does not reproduce the hemostasis phase.

Because it contains fibrin clot and immune cells, both of which are signalling sources, the

model partially reproduces the inflammation phase. Our model is best suited for studying

the proliferation phase but is not fully optimized for simulating long-term scar remodelling.

Additional elements with negative feedback function in ECM remodelling will be required for

the model to enter new stable steady state, which would recapitulate scar tissue maturation.

Overall, our multiscale hybrid model provides a flexible and efficient computational frame-

work to investigate epidermal-dermal interactions and their effects on wound healing. By

systematically adding various biological processes or elements that are critical to wound

healing, one may use such modelling framework to delineate and predict novel mechanisms
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that have not been previously explored using experimental approaches.

2.5 Modeling details

2.5.1 Subcellular element method for wound healing model

Subcellular element method for cellular dynamics. The subcellular element method describes

each individual cell as a collection of subcellular “elements”. Cell movement is driven by

biomechanical forces, including: (1) intra-cellular forces among elements in the same cell; (2)

inter-cellular forces between elements in different cells; and (3) external interactions between

the basement membrane and cells. The movement of the ithcell among all N cells ( N may

be different at different time intervals) is described by the interactions among a collection of

elements, which we index by αi . The position ( rαi
) of these elements, whose dynamics are

described by the sum total of their interactions with all other elements of the system, evolve

according to:

drαi

dt
= −∇αi

∑
αi 6=βi

Vintra(|rαi
− rβi |)−∇αi

∑
i 6=j

∑
βj

Vinter(|rαi
− rβj |) + Fexternal(rαi

) (2.7)

where Vintra is a pairwise potential energy between elements αi and βi within the same cell

i , Vinter is a pairwise energy between element αi of cell i and element βj of cell j , Fexternal

is any external force.

In our model each cell contains 12 elements. Within each cell there is only one element type,

and both inter- and intra-cellular forces are determined by Morse type potentials:

V = U0exp(−rij
ζ1

)− V0exp(−rij
ζ2

) (2.8)
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where rij is the distance between element i and element j . U0 = Uintra , V0 = Vintra ,

ζ1 = ζ1intra , and ζ2 = ζ2intra for intra-cellular force, and U0 = Uinter , V0 = Vinter , ζ1 = ζ1inter ,

and ζ2 = ζ2inter for inter-cellular force. Without external forces, the intra-cellular forces will

arrange the inner elements so that cells will always have a roughly round shape. There is an

equilibrium bound distance (re) such that when rij < re or rij > re , the force generated by

V is repulsive or adhesive, respectively, between element i and element j.

The adhesion between a basal epidermal cell and the basement membrane is modeled by the

adhesion between the cell’s elements and the basement membrane as:

Fexternal(rαi
) = diαi

· Z

hαi
+ ε

(2.9)

where diαi
is the direction from the element to the basement membrane and hαi

is the

distance between the element and the basement membrane. In the case where element rαi

is located in the dermis, the element position will reset by reflecting along the basement

membrane.

2.5.2 Cell division and lineage specification

We modeled three types of epidermal cells: basal, spinous, and granular keratinocytes. Dur-

ing wound healing, basal cells near the wound center experience a high self-renewal proba-

bility and division frequency. For basal keratinocytes (c0), the division is determined by cell

cycle T0 and self-renewal probability pro0 . During wound re-epithelialization, basal cells

increase their self-renewal probability and frequency. For every division, each basal cell has

a probability pro0 to divide symmetrically into two basal cells, where the division line is per-

pendicular to the basement membrane, and a probability 1− pro0 to divide asymmetrically

into one basal cell and one spinous cell, where the division line is parallel to the basement
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membrane.

Spinous keratinocytes are represented as two generations: proliferative spinous keratinocytes

(c1) and mature spinous keratinocytes (c1). For the first generation (c1), each cell has cell

cycle T1 = (1 + ξT1)T1c , and self-renewal probability pro1 . In this case, orientation of the

division line is stochastic. For the second generation of spinous keratinocytes (c2), cell cycle

is described by T2 = (1 + ξT2)T2c and each spinous keratinocyte will differentiate into one

granular keratinocyte (c3).

After every division, each daughter cell is described by 6 elements. New elements are gradu-

ally added to the cell using the following rule: one new element is added to a uniformly ran-

dom position inside the convex hull of the cell’s current elements every time Tgi = (1+ξgi)Tgic

,i = 0, 1, 2, 3 for cell type ci . Cell growth stops when cell contains 12 elements. When a

granular keratinocyte grows to have 12 elements, this cell is removed from the system in the

following way: one element is randomly selected and deleted progressively Td = (1 + ξd)Tdc

until only two elements remain. Once only two elements remain, the cell is removed by

deleting all its remaining elements.

2.5.3 Selective cell adhesion

We assume that cell sorting is driven by differential adhesion between cells, and that adhesion

between cells of the same type is stronger than adhesion between cells of different types. In

this model, first and second generation of spinous keratinocytes are treated as different

cell types. Cell sorting is modeled by replacing Finter(αi, βj) with csortingFinter(αi, βj) in the

Morse potential function between cells of different types. Here, csorting represents cell sorting

strength. We assume that csorting > 1 for strong adhesion (repulsion) and csorting < 1 for weak

adhesion (repulsion). Cell sorting is assumed to be driven by cell-cell contact. Therefore, we

require that cell sorting strength becomes 1, meaning that cells resume normal interactions,
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if the distance between two cells is larger than the distance required for cell-cell contact

rcontact. We set rcontact as two times the average cell diameter. This is represented by the

equation:

csorting =


1, if |rαi

− rβj | > rcontact

crepulsion, if |rαi
− rβj | > rcontact and arg(Finter(αi, βj), rαi

− rβj) = 0

cadhesion, if |rαi
− rβj | > rcontact and arg(Finter(αi, βj), rαi

− rβj) = π

(2.10)

where crepulsion = crepulsion·diff > 1 and cadhesion = cadhesion·diff < 1 represent strong cell repulsion

and weak cell adhesion if cells i and j are different cell types; while crepulsion = crepulsion·same < 1

and cadhesion = cadhesion·same > 1 represent strong cell repulsion and weak cell adhesion if cells

i and j are the same cell type.

2.5.4 Coupling discrete and continuum models of signal produc-

tion in the epidermis

To distribute the signal produced by one discrete cell onto grids of the PDE mesh, we modeled

that a cell will update the signal field where its center is located. Increase in concentration

at four corner points of the grid is determined by bilinear interpolation of the signal secretion

by a cell. Signal produced by keratinocytes must be located in one grid of the PDE mesh

(grid is of the form [xkx , xkx+1] × [yky , yky+1]).Production of A and I by one cell is Epj0 for

j = 1, 2 . Production of A and I is then mapped to four-corner points of the PDE grid, and
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is encoded by:

Epj(x, y, αi, t) =



Epj0[1− (xαic − xkx)][1− (yαic − yky)], (x, y) = (xkx , yky)

Epj0[1− (xkx+1 − xαic)][1− (yαic − yky)], (x, y) = (xkx+1, yky)

Epj0[1− (xαic − xkx)][1− (yky+1 − yαic)], (x, y) = (xkx , yky+1)

Epj0[1− (xkx+1 − xαic)][1− (yky+1 − yαic)], (x, y) = (xkx+1, yky+1)

0, otherwise

(2.11)

for j = 1, 2, where (xαic, yαic) are the coordinates of the center of cell αi . The total

production is therefore encoded by:

Epj(x, y, t) =
∑
αi

Epj(x, y, αi, t) (2.12)

2.5.5 Description of equations (2.1)-(2.4)

In equations (2.1-2.2) (see Results in Chapter 2), first term on the right side of Eqn (2.1)

represents random movement (diffusion) and active movement (chemotaxis) based on the

Keller-Segel model [37]; second term represents self-renewal of F , promoted by p2; and third

term represents decay of F . First term on the right side of Eqn (2.2) represents diffusion

of ECM; second term represents production of ECM by fibroblasts, which is inhibited by p1

and activated by p2, respectively. Third term represents decay of ECM. In equation (2.3)

and (2.4), first term on the right side represents diffusion; second term represents production

of p1 and p2 from fibroblasts and their promotion by ECM (see following section for details);

third term represents production from keratinocytes; fourth term represents production by

fibrin clot during wound healing; and last term represents decay of p1 or p2. In equation

(2.4), fifth term represents production of p2 by immune cells.
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2.5.6 Activator production by immune cells

Immune cells are modeled as a source of activator (Figure 2.11). In the model, immune cells

produce activator only when the surrounding activator level is high, which mimics activation

of immune cells during inflammation phase of wound healing and lack (or low) activation in

normal, unwounded skin. Density of immune cells (IM) is assumed to be constant in the

dermis. Production rate of activator is fIM(IM, p2) = IM · (p2−plim)nim

1+(p2−plim)nim
, when p2 > plim (

plim is modeled as the threshold) and fIM(IM, p2) = 0 , when p2 < plim.

2.5.7 Production function in equaitons (2.1)-(2.3)

fF (F, p2) =
cFF

1 + ( F
gmF

)nF
· [bF +

aFp
np2F

2

1 + ( p2
gmp2F

)np2F
] (2.13)

fC(F, p1, p2) = cCF · [bcp1 −
acp1p

np1

1

1 + ( p1
gmp1C

)np1C
] · [bcp2 +

acp2p
np2

2

1 + ( p2
gmp2C

)np2C
] (2.14)

fp1(F,C, p1) = cFp1F · [bp1 +
ap1C

np1

1 + ( C
gmp1

)np1
] (2.15)

fp2(F,C, p2) = cFp2F/[bp2 +
ap2C

np2

1 + ( C
gmp2

)np2
] (2.16)

2.5.8 Fibrin clot description

Fibrin clot (M), which is only present during wound healing, is modeled by:

∂M

∂t
= DM∆M − dMM (2.17)

with initial condition:

M(x, y, 0) =


M0, if Φ(x, y) < 0 and Φ(x, y, 0) > 0

0, otherwise

(2.18)
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where Φ0 is the phase function in stable, normal skin, and Φ(x, y, 0) represents the initial

phase function of wounded skin. Equ (A.12) defines M .

2.5.9 Boundary condition for signal and dermal components

Combination of regions D and E forms a rectangular region described by [0, Lx]× [0, Ly]. For

p1, p2,M , whose domain is [0, Lx] × [0, Ly], the boundary condition in x-axis (when x = 0

and x = Lx ) is periodic and no-flux in y-axis (when y = 0 and y = Ly ).

For F,C,CB, whose domain is region D, the boundary condition in x-axis (when x =

0andx = Lx ) is periodic, and no-flux in y-axis (when y = 0 and along Ω).

2.5.10 Initial condition in normal skin

Normal skin is setup with the following conditions: (1) a flat epidermis-dermis interface

where Φ(x, y, 0) = y − LD is the initial phase function, with LD denoting the height of the

dermis; (2) F,C are constants Fin, Cin in region D, while p1, p2 are constants p1in , p2in in

region Ω; and (3) a stratified epidermis with basal, spinous, and granular cell layers.

2.5.11 Model of initial epidermal wound

Epidermal wound is modeled by damaging only epidermis and keeping dermis restricted to

the following criteria: (1) interface between regions D and E is the same as in unwounded

skin simulation; (2) ECM density and fibroblast density are the same as in unwounded skin

simulation; (3) all keratinocytes are the same as in unwounded skin simulation except that

cells are removed by deleting all cellular elements if the distance between x-direction of cell

center and wound center is less than dwound . x-axis of the wound center is defined to be the
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Lx

2
; (4) concentrations of activator and inhibitor are set to half of the concentration as in

unwounded skin simulation in the region [Lx

2
− dwound,

Lx

2
+ dwound]× [0, Ly] ∩E , and equal

to unwounded skin simulation in other regions.

2.5.12 Model of initial full-thickness wound

In the full-thickness wound model, wounding occurs both in the epidermis and dermis. It is

modeled by the following conditions: (1) epidermal-dermal interface is modeled by a phase

function described by: Φ(x, y, 0) = y−LD +αdexp[1− (x−0.5Lx

dwound
)2] where LD is stable height

of dermis in simulations of unwounded skin; (2) ECM and fibroblast densities are equal to

these in unwounded skin, when Φ(x, y, 0) < 0 (in region D); (3) activator and inhibitor

signals in keratinocytes are initialized to be the same as in epidermal wounds (see above);

(4) fibrin clot is initialized as described in Chapter 2.

The end time of our model simulations is when re-epithelialization ends. To ensure that the

re-epithelialization simulation results are stable, we usually continue simulations for another

1.5 cell cycles of the basal cells.

2.5.13 Model of heterogeneity in basal epidermal cells during wound

healing

Modeling heterogeneity with respect to distance

Center of the basal cell nearest to the wound defines the position of the leading epithelial

tongue. We used the distance (d) between cell center and leading tongue to calculate cell’s

self-renewal probability and frequency, A and I production rates, and migration speed. When

d > d0 , cell acts as a cell in normal skin. When d < d0 , heterogeneity (2.1)-(2.3) is modeled
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with respect to d. d0 is set to be 10dcell , where dcell represents average diameter of a cell.

Increased basal cell self-renewal probability and frequency

During wound re-epithelialization, basal cells increase their self-renewal probability (pro0)

and cell cycle (T0), described by

T0 =


(1 + ξT )T0c · (1− g

d0 − d
d0

), during re-epithelialization and d < d0

(1 + ξT )T0c, otherwise

(2.19)

pro0 =


1− (1− pro0c) ·

d

d0

, during re-epithelialization and d < d0

pro0c, otherwise

(2.20)

where d is the distance between cell and leading tongue during wound re-epithelialization,

and ξT is white noise term.

Active movement of basal cells

Velocity (v0) of active movement of basal cells toward the wound center and along the

basement membrane (interface between regions D and E), is described by:

v0 =


(1 + ξv)v0c · (1−

d0 − d
d0

), during re-epithelialization and d < d0

0, otherwise

(2.21)
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Increased production of signals in basal cells

During wound re-epithelialization, a cell’s production of A and I depends on its distance (d)

from the leading epithelial tongue. This is described by:

Epj =


Epjmin + (Epjmax − Epjmin) · (d0 − d

d0

)4, during re-epithelialization and d < d0

Epjmin, otherwise

(2.22)

where Epjmin(j = 1, 2) is the production rate of I(j = 1) and A(j = 2) by keratinocytes in

normal skin.

2.5.14 Scalability of the model

As a proof of principle of the model’s scalability, we simulated deep and wide wounds with

dense fibrin clot with a version of the model that contains two types of activators: A1 (

p2ECM ) that stimulates ECM production only and A2 ( p2F ) that stimulates fibroblast

proliferation only (Figure 2.15). In this version of the model, the function of activator

on fibroblast proliferation fF (F, p2) is replaced with fF (F, p2F ) , whereas the function of

activator on ECM production fC(F, p1, p2) is replace with fC(F, p1, p2ECM).

2.6 Supplementary tables and figures
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Parameter name Parameter value Parameter name Parameter value
One simulated day 6000 ξg3 N(0, 10)

dcell 0.15 Tdc 100
pro0c 0 ξd 100
pro1 0.35 rcontact 0.3
g 0.5 Cdiffusion·diff 1.6

T0c 6000 Cadhesion·diff 0.4
ξT0 N(0, 800) Crepulsion·same 1
T1c 1000 Cadhesion·same 1
ξT1 N(0, 150) Uintra 0.099
T2c 1000 Vintra 0.1782
ξT2 N(0, 150) ζ1intra 0.12
Tg0c 100 ζ2intra 0.36
ξg0 N(0, 10) Uinter 0.0505
Tg1c 100 Vinter 0.04173
ξg1 N(0, 10) Z 0.009
Tg2c 100 ε 0.01
ξg2 N(0, 10) v0c 13
Tg3c 100 ξv N(0, 0.1)

Table 2.1: Parameter values for epidermal discrete model. Parameters are included for
subcellular element method (SEM), cell cycle, cell self-renewal probability, cell growth rate,
cell decay rate, selective adhesion, and cell migration.
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Parameter name Parameter value Parameter name Parameter value
Lx 7 np2 2
Ly 14 bcp1 1
LD 7 acp1 1

Ep1max 36 gmp1c 0.0625
Ep1min 1 bcp2 1
Ep2max 31.5 acp2 1
Ep2min 1 gmp2c 0.0625
Fin 1 cFp1 0.1254
Cin 1 cFp2 0.1188
p1in 0.03856 bp1 1
p2in 0.02407 ap1 1
vF 0.35 gmp1 3.66
cF 4.14 gmp2 3.66
DF 1.225 DM 0.3537
gmF N(0, 10) dM 0.1
bF 0.45 M0 3.3
aF 4 schem 20

gmp2F 0.0625 sdiff 1
dF 1 sc 1
np2F 2 IM 0.5
DC 0.35 nim 2
cc 7.3 plim 0.02777
np1 2

Table 2.2: Parameter values for dermal continuum model. Parameters for fibroblasts, ECM,
immune cells, activator, inhibitor and fibrin clot density are included.

Wound width Wide Narrow
dwound 1.4 0.7

Wound depth Deep shallow Very shallow
αd 1.75 0.875 0.4375

Initial fibrin clot density High Low
M0 3.3 0.1

Table 2.3: Parameter values for wound size and fibrin clot density.
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Figure 2.5: Magnified view of inhibitor and activator levels.
(A, A”) Overall inhibitor and activator levels under homeostatic condition. (A’, A”’) Mag-
nified view of inhibitor and activator levels near the basement membrane (black line). (B,
B”) Overall inhibitor and activator levels under the condition with no A/I in epidermis. (B’,
B”’) Magnified view of inhibitor and activator levels near the basement membrane (black
line).
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Figure 2.6: Initial conditions for epidermal abrasion wound model.
(A) Initial ECM density in the dermis. (B) Initial fibroblast density in the dermis. (C)
Initial inhibitor level. (D) Initial activator level. Black lines mark position of the basement
membrane.
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Figure 2.7: Modeling assumptions in basal epidermal cells after wounding.
(A, B) High (solid line) and basal production rates (dashed line) of I and A. x-axis represents
distance from the leading cell in arbitrary units (a.u.). y-axis represents production rate of
I and A (in a.u.). (A’, B’) Overlay of I and A production rates onto modeled wound
epidermis. (C) Migration speed of basal cells. x-axis represents distance from the leading
cell (in a.u.), y-axis – migration speed (in a.u.). (D) Self-renewal probability of basal cells.
x-axis represents distance from the leading cell (in a.u.), y-axis – self-renewal probability (in
a.u.). (E) Proliferation of basal cells. x-axis represents distance from the leading cell (in
a.u.), y-axis – cell cycle state (in a.u.).
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Figure 2.8: Schematic of two-dimensional multiscale hybrid model of wound healing regulated
by fibrin clot.
The modeling domain is separated into epidermis (E) (light blue) and dermis (D) (gray) by
a dynamic interface (Ω ) to mimic the basement membrane. In E, keratinocytes are modeled
discretely as basal (yellow), spinous (light brown) and granular (dark brown) cells. Basal cells
are set to produce activator A (shaded green box) and inhibitor I (shaded dark pink box).
In D, fibroblasts, ECM (shaded blue oval), immune cells (IM) and fibrin clot (orange) are
modeled in a continuum, where fibroblasts produce A and I, and these processes are directly
activated by ECM. Additionally, fibrin clot and immune cells (IM) produce A. Fibroblast
proliferation is activated by A, and ECM production is activated by A and inhibited by I.
A and I can also diffuse across Ω.
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Figure 2.9: Initial conditions for dermal wound model.
(A) Initial ECM density in the dermis. (B) Initial fibroblast density in the dermis. (C) Initial
inhibitor level. (D) Initial activator level. (E) High initial fibrin clot density condition.
(E’) Low initial fibrin clot density condition. Black lines mark position of the basement
membrane.

Figure 2.10: Activator production dynamics from fibrin clot.
(A) Activator production from high density fibrin clot. (B) Activator production from low
density fibrin clot. x-axis represents time (simulated days).y-axis represents activator pro-
duction from fibrin clot in arbitrary units (a.u.). Different colors correspond to distinct
wound dimensions.
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Figure 2.11: Activator production dynamics by immune cells.
(A, C, E, G) Activator production levels by immune cells in deep/wide, shallow/wide, very
shallow/wide and deep/narrow wounds on simulated day 2, respectively. (B, D, F, H) Cor-
responding activator production levels by immune cells on day 6. (I) Temporal changes in
activator production by immune cells. Color definitions for different wound geometries are as
follows: deep/wide (black), shallow/wide (blue), very shallow/wide (red) and deep/narrow
(green). x-axis represents time (simulated days). y-axis represents activator production in
arbitrary units (a.u.).
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Figure 2.12: Comparison of wound healing outcomes in the model with and without immune
cells.
(A-A”) Temporal dynamics in average ECM density (A), fibroblast density (A’) and dermal
thickness (A”) under homeostatic conditions between the model with immune cells (solid
blue line) and without immune cells (dashed orange line) (see main Figure 2.2A-A”’). No
significant differences are observed. (B-B”) Temporal dynamics in average ECM density
(B), fibroblast density (B’) and dermal thickness (B”) in epidermal abrasion wounds (see
main Figure 2.3A-B”’). No significant differences are observed. (C- C”) Temporal dynamics
in average ECM density (C), fibroblast density (C’) and dermal thickness (C”) in dermal
wounds with high density fibrin clot (see main Figure 2.4A-B”’). All three parameters are
increased in the model with immune cells. (D- D”) Temporal dynamics in average ECM
density (D), fibroblast density (D’) and dermal thickness (D”) in dermal wounds with low
density fibrin clot. ECM density moderately increased and fibroblast density moderately
decreased in the model with immune cells. Values along x-axis are in simulated days and
values along y-axis are in arbitrary units (a.u.).
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Figure 2.13: Initial assumptions about dermal wound geometry.
(A) Deep and wide wound. (B) Shallow and wide wound. (C) Very shallow and wide wound.
(D) Deep and narrow wound. Initial ECM density in the dermis is shown (blue). Black lines
mark position of the basement membrane.
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Figure 2.14: Healing outcomes of dermal wounds depend on wound geometry and fibrin clot
density.
All dermal wound healing simulations shown on this figure were performed using the low-
density fibrin clot condition and included immune cells. The following wound geometries
were compared: (A-B”’) deep and wide wounds, (C-D”’) shallow and wide wounds, (E-F”’)
very shallow and wide wounds, and (G-H”’) narrow and deep wounds. For each simulated
condition, ECM density (blue), fibroblast density (pink), inhibitor level (red) and activator
level (green) are shown. For each simulation, two consecutive snapshots are shown: day 2 and
day 6. Black lines mark position of the basement membrane. (I) Temporal changes in average
ECM density across modeling time. (J) Temporal changes in average fibroblast density across
modeling time. (K) Temporal changes in dermal scar thickness across modeling time. (L)
Degradation dynamics of the low-density fibrin clot across modeling time. Color definitions
for each line on I-L are provided on the figure. Values along x-axis are in simulated days
and values along y-axis are in arbitrary units (a.u.).

45



Figure 2.15: Schematic of two-dimensional multiscale hybrid model of wound healing with
two activators.
The modeling domain is separated into epidermis (E) (light blue) and dermis (D) (gray) by
a dynamic interface (Ω) to mimic the basement membrane. In E, keratinocytes are modeled
discretely as basal (yellow), spinous (light brown) and granular (dark brown) cells. Basal
cells are set to produce activators A1 (shaded yellow box) and A2 (shaded green box), and
inhibitor I (shaded dark pink box). In D, fibroblasts, ECM (shaded blue oval), immune
cells (IM) and fibrin clot (orange) are modeled in a continuum, where fibroblasts produce
A1, A2 and I, and these processes are directly activated by ECM. Additionally, fibrin clot
and immune cells produce A1 and A2. Fibroblast proliferation is activated by A2, and ECM
production is activated by A1 and inhibited by I. A1, A2 and I can also diffuse across Ω.

46



Figure 2.16: Comparison of wound healing outcomes between models with different activa-
tors.
The following four conditions were modeled: (i) Fibrin clot produces both A1 (activator
for ECM production) and A2 (activator for fibroblast proliferation) (blue solid line); (ii)
Fibrin clot produces A1 only (yellow dashed line); (iii) Fibrin clot produces A2 only (green
solid line); (iv) Fibrin clot does not produce activators (red solid line). (A) Difference in
average ECM density. (B) Difference in average fibroblast density. (C) Difference in dermal
thickness. Values along x-axis are in simulated days and values along y-axis are in arbitrary
units (a.u.).
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Chapter 3

A multiscale model via single-cell

transcriptomics reveals robust

patterning mechanisms during early

mammalian embryo development

During early mammalian embryo development, a small number of cells make robust fate de-

cisions at particular spatial locations in a tight time window to form inner cell mass (ICM),

and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcrip-

tomics data allows scrutinization of heterogeneity of individual cells, consistent spatial and

temporal mechanisms the early embryo utilize to robustly form the Epi/PE layers from ICM

remain elusive. Here we build a multiscale three-dimensional model for mammalian embryo

to recapitulate the observed patterning process from zygote to late blastocyst. By integrat-

ing the spatiotemporal information reconstructed from multiple single-cell transcriptomic

datasets, the data-informed modeling analysis suggests two major processes critical to the

formation of Epi/PE layers: a selective cell-cell adhesion mechanism (via EphA4/EphrinB2)
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for fate-location coordination and a temporal attenuation mechanism of cell signaling (via

Fgf). Spatial imaging data and distinct subsets of single-cell gene expression data are then

used to validate the predictions. Together, our study provides a multiscale framework that

incorporates single-cell gene expression datasets to analyze gene regulations, cell-cell com-

munications, and physical interactions among cells in complex geometries at single-cell res-

olution, with direct application to late-stage development of embryogenesis.

3.1 introduction

In mammals, the first two developmental events that occur are 1) the formation of the

trophectoderm (TE) and inner cell mass (ICM) followed by 2) specification of the ICM into

the primitive endoderm (PE) and epiblast (Epi). While both of these processes lead to the

specification of primitive epithelial-like structures (the TE and PE) that wrap the future

embryo (the Epi), the process that gives rise to the PE and TE are markedly different.

While both are highly regulated processes, formation of the PE is both highly dynamic and

stochastic by comparison. This raises the question, how can such a dynamic and stochastic

process proceed robustly and reproducibly.

These first two developmental events lead to the formation of early multi-cellular structures

that differ in both their gene expression and their location within the embryo. In the TE/ICM

case, a monolayer shell of Cdx2 expressing TE cells surrounds an inner core of Oct4 expressing

cells. In the Epi/PE case, an aggregate of Nanog expressing cells [64, 26] forms the Epi,

which is surrounded by PE, a monolayer of Gata6 expressing cells [93] that separates the

Epi from embryonic cavity (blastocoel). These specification processes have a number of

similarities. A tristable gene regulation circuit controls differentiation from an uncommitted

state to one of two differentiated states in both cases [11, 10, 15, 40]. Both also yield similar

physical structures, an aggregate of cells surrounded by a monolayer.
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Formation of the Epi and PE is however a distinctly more stochastic and dynamic process

than TE/ICM formation. During formation of the TE/ICM, cells appear to choose their fate

based on positional information (exterior cells become TE and interior cells become ICM).

That is, cells differentiate in a mostly deterministic fashion and the TE and ICM structures

are essentially constructed as a result of differentiation itself. While cells have been observed

to move within the embryo, as few as 5% are exchanged between the TE and ICM [5]. Epi

and PE cells on the other hand asynchronously (in time) differentiate to initially form a

stochastically organized salt and pepper spatial distribution [48, 91, 8, 81] that later evolves

into the canonical Epi and PE structures through cellular motions.

Epi and PE differentiation is regulated by two mutually antagonistic factors, Nanog and

Gata6 [64, 26, 93]. Prior to the 32-cell stage ( E3), these factors are co-expressed in almost

all cells. By E3.5-E4, they are mutually exclusively expressed [8] in a salt and pepper

distribution of Epi and PE cells. The proposed cause of this salt and pepper distribution

is Fgf signaling [102, 114, 50], which is secreted by differentiated Epi cells and promotes

expression of PE markers in neighbor cells. Interestingly, Epi/PE specification is not a bang-

bang process at the population level. Instead, cells asynchronously differentiate at different

times. While this could be viewed as a simple result of stochasticity, Saiz et al. [92] proposed

the incremental commitment in conjunction with Fgf signaling is functionally important

for controlling the proportions of PE and Epi cells. Numerical simulations verified this

mechanism could robustly produce a salt and pepper distribution with proper cell proportions

[102].

This still leaves the question of how these cells organize into canonical Epi and PE struc-

tures. Intercalation of cells into the PE layer due to blastocoel expansion contributes to

PE formation [81]. Differential adhesion mediated sorting is also thought to play a crucial

role [49, 70]. While this idea sounds enticing however, adhesion factors that would facil-

itate this sorting have, to our knowledge, not been previously identified in the morula or
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early blastocyst stage mammalian embryos. Further, the presence of double positive (DP)

cells expressing both Nanog and Gata6 has not previously been considered. Though these

mechanisms have been investigated in isolated stages, a coherent understanding of how they

corporate through multiple stages is still lacking.

A number of phenomenological modeling studies have been performed to study this devel-

opmental time frame. Non-spatial studies have helped identify the minimal gene interaction

networks that regulate differentiation [11, 10, 15, 4]. Spatial models have been used to study

how mechanical factors such as cell-cell interactions [41] or cell contractility [59] influence

development. Others have more comprehensively spatially modeled physical and regulatory

processes [40, 102, 49, 70]. Each of these studies have however been phenomenological in

that they have largely integrated and been compared to imaging data and have not utilized

the type of single cell RNA sequencing (scRNA-seq) data that has become available in re-

cent years. Also, to the best of our knowledge, there have not been any three-dimensional

models that comprehensively couple regulatory processes, spatial cell soring during Epi/PE

separation, and single cell data to study Epi/PE formation.

Inspired by the promising results of data-centric approaches, several data-informed models

have been introduced, for example, temporal models based on temporal RNA-sequencing

data [43, 7], temporal models using time series of neural activity data [97], and spatiotempo-

ral models calibrated with morphologic data [44]. These data-driven models depend on group

average data without individual cell resolution. Recently the single-cell gene expression pro-

files become available for early mammalian embryo [56]. This opens up the opportunity of

utilizing data in modeling at a resolution of individual cells [57, 58]. A single-cell qPCR

dataset quantified 48 selected genes in mouse embryo from 1-cell stage to 64-cell stage [33].

Several recent scRNA-seq datasets on mouse early embryo provide an unbiased gene edx-

pression profiles of transcriptomics across different developmental stages, including E3.5-E6.5

[65], E5.25-E6.5 [9], and E6.5-E8.5 [79]. These scRNA-seq datasets allow us to explore the
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heterogeneity among individual cells considering the expression levels of all genes. However,

the spatial information is lost in scRNA-seq data, hindering the examination of commu-

nications among cells, which are crucial in cell fate decision. Further, currently no single

dataset covering the time course from zygote to late blastocyst, and different datasets might

be obtained using different techqniues.

Here we develop a data-informed, three-dimensional multiscale model of development of

the mammalian embryo from the 1 to 128-cell stage to study how the dynamic interaction

between the differentiation and sorting processes influences PE and Epi organization. This

model couples 1) a model of gene regulation, 2) a family of models of adhesion mediated

cell-cell interactions based directly from expression data for Eph/Ephrin pairs from single

cell data, and 3) a 3D physical model of the embryo at a subcellular resolution. We use

this model to study two essential questions. First, can observed Eph/Ephrin ligand receptor

pairings found in the single cell data provide the appropriate adhesion conditions ensure

formation of the PE and Epi. Second, what conditions must be met for Fgf signaling to

effectively control allocation of cells to the PE and Epi fates.

Results demonstrate that while there are two candidate ligand receptor pairs observed in

data, EphA4/EphrinB2 pairing is more likely to lead to adhesion differences that will fa-

cilitate sorting. This provides a specific hypothesis that could be tested through genetic

manipulation of these candidate molecules. We further find that while cell allocation and

organization appears to be relatively insensitive to the timing of Fgf signaling onset, con-

tinued signaling into the late 128-cell stage actually impairs proper organization. Further

analysis of the scRNA-seq data confirms this hypothesis.
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3.2 Results

3.2.1 A multiscale three-dimensional model from fertilization (1

cell) to late blastocyst (128 cells) stage

We constructed a 3D, multiscale spatial-temporal model for the development of the multi-

cellular blastocyst from 1-cell to 128-cell stage (Fig 3.1a). The model couples two develop-

mental processes that are critical to this early phase of development. 1) Regulation of cell

fate specifying genes (Oct4/Cdx2 for TE/ICM and Nanog/Gata6 for Epi/PE) is modeled

using ordinary differential equations (ODE) (Fig 3.1b,c). 2) Physical cell-cell interactions

(including selective adhesion, Fig 3.1d) with subsequent cell migrations are modeled using

the subcellular element method. This multiscale model (Fig 3.1e) recapitulates phenomel-

ogically correct developmental process of the embryo from zygote to blastocyst (Fig 3.1f).

We first briefly describe the gene regulatory model used and then subsequently describe the

3D modeling framework used to model the whole early embryo.

Gene regulatory dynamics associated with the TE/ICM and Epi/PE formations are mod-

eled separately. Mutually antagonistic and self-activation dynamics of Oct4/Cdx2 mod-

ulated by cell contact (similar to [40]) are used to model TE/ICM formation (See Sec-

tion 3.5 for detailed gene network equations). Similar mutually antagonistic dynamics be-

tween Nanog/Gata6 describe Epi/PE formation. In this case, cell-cell communication occurs

via Fgf4/Fgfr2 regulation of the Erk signaling pathway (for simplicity, we refer to this as

Fgf4/Fgfr2 or just Fgf signaling). The detailed equations are listed in Eq (3.1)-(3.6).

To integrate these regulatory dynamics with the mechanical and morphological aspects of

embryo development, we developed a 3D spatial model where the embryo is modeled by

a collection of discretely represented cells constrained in a spherical geometry (inspired by

[40, 49]). The model was implemented in the framework of subcellular element method
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Figure 3.1: A multiscale model for early embryo development from fertilization to late blas-
tocyst stage.
(a) Embryo shapes in different stages. The circle color indicates the cell type: Yellow for
unspecified cell; Green for Trophectoderm (TE) cell; In Inner Cell Mass: Purple for double
positive of Nanog and Gata6 (DP); Red for Nanog high and Gata6 low (Nanog+); Blue for
Gata6 high and Nanog low (Gata6+). (b) Gene regulation models for TE/ICM specification
before early blastocyst stage. The grey color represents weak cell contact or weak gene
expression. (c) Gene regulation models for Nanog+/Gata6+ specification during early to
late blastocyst stage. (d) Modeled selective adhesion between different cell types through
early to late blastocyst stage. (e) A schematic illustration of the multiscale model containing
spatial and gene expression dynamics of the cells. The correspondence to equations are as
follows: GRNs, Eqs (3.1)-(3.5); intercellular forces, Eq (3.7); intercellular gene regulation,
Eqs (3.5), (3.6); external forces, Section 3.5 Eqs (3.12), (3.13). (f) Simulated embryo with
Nanog/Gata6 and Fgf4/Fgfr2 expression at different stages.
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(SEM) [69] which represents a cell by a collection of elements (particles in 3D space). The

spatial dynamics of the cells depicted by these elements partially depend on the modeled

gene expressions and, in turn, provide a spatial reference for modeling intercellular gene reg-

ulations [40, 107, 68]. The following aspects are accounted for: cell-cell interactions; selective

adhesion; cell division; confinement of cells by the zona pellucida; and cavity formation (see

Eq (3.7) and Section 3.5 for details).

The cell divisions are modeled by splitting the elements of a mother cell into two subsets

representing the two daughter cells. The cell divisions are scheduled as follows: 1) from

1- to 32-cell stage, all cells divide at the same time, 2) from 32- to 64-cell stage and from

64- to 128-cell stage, the cell cycle for each cell is modeled by a random variable uniformly

distributed over a time window.

Among the aspects modeled in the spatial model, we are especially interested in the con-

sequences of selective adhesion to evaluate how heterogeneous cellular adhesion mechanism

impacts the pattern formation in early embryo development. We represent the selective ad-

hesion mechanisms by assigning adhesion scores (AS) for different cell type pairs. A high AS

means a strong adhesion and a low AS means a weak adhesion. The AS is implemented as

the parameter α in Eq (3.7). To quantify AS and model selective adhesion, we will take two

approaches. First, we will use single-cell RNA sequencing data [65] to quantify expression

levels of adhesion related molecules (Eqs (3.8), (3.9)) and assign AS based on data. Second,

we will explore the effectiveness of different phenomenological models of adhesion (encoded

in the AS) to determine how different types of selective adhesion influence organization (see

Section 3.5 for exact values used).
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3.2.2 Integrative data and model analysis reveals selective adhe-

sion differences driven by EphA4/EphrinB2 heterogeneity

promotes proper sorting of the PE and Epi

In the following results, we classify the inner cell mass during lineage specification as sug-

gested in [92] into Nanog+ (cells expressing high Nanog and low Gata6 committed to Epi),

Gata6+ (cells expressing high Gata6 and low Nanog committed to PE), double positive

(DP, cells expressing high Nanog and Gata6) and double negative (DN, cells expressing low

Nanog and Gata6). We call a simulated pattern successful if a single aggregation of Epi cells

is formed and is attached to the TE shell covered by a PE layer. A simulated pattern is

classified as partial success if multiple Epi aggregates form but are still attached to the TE

shell and covered by a PE layer. A simulated pattern is classified as failure if the embryo

stays in salt-and-pepper pattern or Epi and PE form separate clusters. We have also devel-

oped a loss score to quantify the divergence of a simulated pattern from an ideal pattern

(see Materials and Methods: Embryo pattern loss score).

After initial cell fate specification, Nanog+ and Gata6+ cells form a salt and pepper config-

uration. Biased active cell movement mediated by intercellular interactions was suggested

[81] has been suggested to lead to organization of the resulting PE and Epi structures.

Specifically, differential or selective adhesion has been proposed to sort cells of differing

fates in a number of scenarios [25]. In the context of the embryo, prior phenomenologi-

cal modeling demonstrated that selective adhesion between Epi/PE/TE can induce Epi/PE

separation [49]. This study did not however account for the presence of DP cells (expressing

both Nanog and Gata), which were recently shown to co-exist with Nanog+ and Gata6+

cells [92]. Further, candidate molecules that facilitate this selective adhesion have not been

identified to our knowledge. We thus first investigate this sorting process accounting for

the additional presence of DP cells and use single cell data to identify and test candidate
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adhesion molecules that may drive selective adhesion.

To incorporate a data-informed mechanism for cell sorting into the model, we first quantified

expression levels of adhesion-repulsion associated genes for different cell types from single-

cell RNA sequencing data [65]. A family of ligand-receptor pairs, Eph/Ephrin, has been

shown to contribute to selective adhesion, and different pairs may lead to strengthened or

weakened adhesion [96, 83]. In particular, EphB2/EphrinB2 triggers repulsion [53], and

EphA4/EphrinB2 increases adhesion [82]. Moreover, it has been shown that Eph/Ephrin

pairs contribute to somite formation [36, 29]. We thus use single-cell RNA-seq data on mouse

early embryo (E3.5 to E6.75) to quantitatively assess expressions of different Eph/Ephrin

pairs [65].

We quantified the combined ligand/receptor expression level in the ICM using the logarithm

of multiplication of ligand and receptor expression levels, based on the EphA4/EphrinB2

expression level in scRNA-seq data [65]. Quantification of these genes in the ICM shows

that EphA4/EphrinB2 forms a two-mode Gaussian mixture distribution pattern (Fig 3.2a,

green curve), which is a mixture of one with high adhesion gene expression (Fig 3.2a, blue

curve) and one with low adhesion gene expression (red curve). Further analysis shows that

different fractions of Nanog+/Gata6+/DP cells are in the high/low adhesion gene expression

states (which is quantified through binarization based on the Gaussian mixture) (Fig 3.2b).

Fewer Gata6+ cells highly express adhesion genes compared to Nanog+/DP cells, which

suggests a stronger adhesion among Nanog+/DP cells than Gata6+ cells.

To test if this distribution of EphA4/EphrinB2 can drive correct spatial patterning, we first

derived a data-informed selective adhesion model based on these expression levels. The

selective adhesion is modeled by calculating adhesion scores (AS) directly from expression

of ligand-receptor pairs in scRNA-seq data [33, 34] as described in Eq (3.8) and (3.9).

We focus primarily on the pair EphA4/EphrinB2 at E4.5. We also analyzed the EphB2/EphrinB2
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Figure 3.2: Data-informed selective adhesion model leads to successful cell arrangement at
128 cell stage.
(a) Histogram of z-score of summation of log([EphA4] + 1) and log([EphrinB2] + 1) at E4.5
stage. The green curve shows the distribution of z-score. The red and blue curves show two
components of Gaussian Mixture to fit the distribution. (b) Percentage of high/low adhesive
gene expression levels in Nanog+/Gata6+/DP cells at E4.5 stage. (c) An EphA4/EphrinB2
driven selective adhesion mechanism between Nanog+/Gata6+/DP cells, where higher adhe-
sion score (AS) indicates stronger adhesion, and a positive AS means strengthened adhesion.
(d) Success rate for Nanog+/Gata6+ cells arrangement in simulations with different selective
adhesion hypotheses: (H1) no selective adhesion; (H2) symmetric selective adhesion where
adhesion between Nanog+/Nanog+, Gata6+/Gata6+ and DP/DP cells are the same; (H3)
asymmetric selective adhesion where DP cells have same adhesion with Nanog+ and with
Gata6+; (H4) asymmetric selective adhesion where DP cells have stronger adhesion with
Nanog+ cells than with Gata6+ cells; (H5) asymmetric selective adhesion where DP cells
have stronger adhesion with both Nanog+ and Gata6+ cells; (H6) the Epha4/Efnb2 driven
selective adhesion; (H7) the Ephb2/Efnb2 driven selective adhesion. (e) Pattern loss score
of the simulations. Each data point corresponds to one simulation. A loss score of 0 in-
dicates a perfect pattern and random cell type assignments have an expected loss score of
1. (f) Representative terminal Nanog+/Gata6+ cell arrangements for successful, partially
successful, and failed cases.
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combination (Fig 3.2d,e, model H7). However we are less confident in this data since EphB2

was unidentified in most cells, potentially due to dropout in the scRNA-seq data. Since

our Eph/Ephrin quantification is limited to ICM cells due to the exclusion of TE cells in

scRNA-seq data [65], we assumed adhesion between TE and Epi cells is stronger than that

between PE and TE cells (following [49]). We also validated this mechanism (Fig 3.6) by

demonstrating that without this interaction, organization fails.

For simulations of this Eph/Ephrin based adhesion model, we allowed the embryo to develop

in silico to the 64-cell stage and then turned on selective adhesion (further examination of

the effects of this starting time are discussed in the next section). For EphA4/EphrinB2,

the normalized adhesion strength (AS) is calculated using Eq (3.9) (Fig 3.2c). In the sim-

ulations, EphA4/EphrinB2 driven selective adhesion was able to generate correct spatial

pattern (Fig 3.2d,e, model H6). See Fig 3.2f for examples of success, partial success and

failure cases of pattern formation. Based on the limited data available, results suggest the

EphB2/EphrinB2 model may be insufficient to achieve organization (though better single

cell data is needed here). These simulation results suggest an EphA4/EphrinB2 driven model

of selective adhesion is sufficient to organize the Epi/PE structures.

This is of course not the only possible model of selective adhesion. We thus further studied

the space of potential selective adhesion possibilities using phenomenological adhesion models

that simply assign cell type dependent adhesions. By studying a range of different cell-

type dependent adhesion models (Fig 3.2 and Fig 3.7), we identified two models that lead

to effective organization (Fig 3.2d,e, models H3 and H5). In both effective models, there

is a stronger adhesion among Nanog+ cells than that among Gata6+ cells and between

Nanog+/Gata6+ cells. In model H5, DP cells have a stronger adhesion to Nanog+ cells

whereas in H3, DP cells exhibit unbiased adhesion. Notably, model H5 recapitulates the

qualitative dynamics predicted by the model using single cell expression of EphA4/EphrinB2.

In conclusion, the model suggests that EphA4/EphrinB2 distributions observed in scRNA
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data from the embryo are sufficient to promote Epi/PE sorting. Further analysis of the space

of possible selective adhesion models reveals two potential models that could in principle lead

to proper organization. One of these two models has the exact qualitative structure found

from the adhesion score analysis of EphA4/EphrinB2 interactions. Taken together, these

results suggest this is a candidate ligand/receptor pair that drives sorting of the Epi/PE.

3.2.3 Selective adhesion mechanism occurrence before 128-cell stage

ensures correct Epi/PE pattern formation.

We now consider the effect of timing of selective adhesion onset on embryonic organization.

In the prior section, we artificially implemented this to occur at the 64-cell stage. It could

however potentially take effect either earlier or later. Thus, we tested the EphA4/EphrinB2

driven mechanism with three different initiation times: immediately after the system reaches

32-cell stage, 64-cell stage or 128-cell stage. In the simulations, all three models give similar

Nanog+/Gata6+/DP ratios round 40%/60%/0%, which are consistent with experimental

data [92] (Fig 3.3a). These results suggest that the ratio between Nanog+/Gata6+/DP and

spatial pattern are robust to the selective adhesion occurrence time. On the other hand,

all the simulations with the selective adhesion starting time at 64- or 32-cell stage achieved

correct final pattern (Fig 3.3b) while three out of ten simulations with the selective adhesion

starting from 128-cell stage are only partially successful. In these partially successful cases,

some Gata6+ cells aggregate near the TE (Fig 3.3c). This defect is potentially due to the

absence of a time window overlap between the selective adhesion and the cell type transition

from DP to Nanog+/Gata6+. These results suggest that while the Nanog+/Gata6+/DP

ratio is robust to selective adhesion occurrence time, the corporation between selection ad-

hesion and the cell fate regulation dynamics is crucial to the formation of correct spatial

pattern.
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Figure 3.3: Sensitivity of selective adhesion starting time.
(a) ratio of Nanog+/Gata6+/DP/DN at 128C stage for different selective adhesion (SA)
starting time; (b) Success rate for embryo development at 128C for different SA starting
time. (c) Spatial pattern of simulation where selective adhesion starts from 128 cell stage (a
partially successful case) and simulation where selective adhesion starts from 64 cell stage
(a successful case).
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We also evaluated the impact of cell movement randomness level (implemented as a Gaussian

noise on subcellular element movement) on spatial pattern formation. Simulations were

carried out with less random movement (1/10 of the amount of Gaussian noise compared

to baseline simulation) and high random movement (5 times the amount of Gaussian noise

compared to baseline simulation). Both Nanog/Gata6 expression levels and population ratio

of Nanog+/Gata6+/DP were similar between these simulations and the baseline model

(Fig 3.8). With lower movement randomness, the inner cell mass had a flatter shape, and

there were some misplaced Gata6+ cells, whereas, with higher movement randomness, the

inner cell mass has a rounder shape with few misplaced cells. In summary, the population

ratio between Nanog+/Gata6+/DP is relatively robust the level of random movement but

sufficiently large randomness of motion is required to reduce the instances of misplaced cells

and ensure proper organization.

3.2.4 Attenuation of Fgf signaling after Epi/PE formation is re-

quired to maintain organization

Nanog and Gata6 are key specification factors for Epi/PE cells [74]. Image data shows

that Nanog/Gata6 expression levels are both high at early blastocyst ( 32-cell stage) and

become mutually exclusively expressed in Epi/PE cells at late blastocyst ( 128-cell stage)

with Nanog+/Gata6+ cells maintaining a relatively stable ratio in late blastocyst stage:

55%-60% for Gata6+ cell and 40%-45% for Nanog+ cell [92]. Experimental evidence suggests

this dynamics of Nanog/Gata6 expression is regulated by Fgf4/Fgfr2 signaling. Nanog+ cells

secrete Fgf4 signal. Fgfr2 receptors, which are activated by Fgf4, promote the expression of

Gata6 and antagonize Nanog expression [74]. A mathematical model with this Fgf/Fgfr/Erk

signaling modulating Nanog/Gata6 expression was shown to generate appropriate fractions

of Nanog+ and Gata6+ cells from the initial DP pool [4]. However, cell division and cell

movement were excluded from this model, which are key processes in embryo development.
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We incorporated Fgf/Fgfr2/Erk signaling into a spatial model (including cell division and

cell movement) to evaluate the role of Fgf signaling on Nanog+/Gata6+ specification and

maintenance during embryo development.

First, we evaluated whether Fgf signaling regulation on Nanog/Gata6 is necessary for Nanog+/Gata6+

lineage specification. Simulations with only Nanog/Gata6 mutual cross inhibition but with-

out Fgf signaling cannot lead to the cell fate separation into Nanog+ and Gata6+. These

simulations lead to incorrect Nanog/Gata6 expression patterns (DN dominated, DP domi-

nated, Nanog+ dominated), regardless of the basal expression rate or their cross inhibition

strength (Fig 3.9). Thus, as suggested by others, Fgf signaling regulation of Nanog/Gata6

likely ensures a correct Nanog+/Gata6+ population ratio. However, it is important to recall

that the Fgf mediated specification process is occurring coincident with cell sorting.

We thus evaluated how the time period during which Fgf signaling is active influences cell

ratios while sorting is occurring. We first test whether the timing of Fgf signaling termi-

nation influences organization. We carried out simulations where Fgf signaling either 1) is

attenuated at 128-cell stage or 2) persists through the simulation. The control parameter

εt in Eq (3.1) and (3.2) is used to modulate the effect of Fgf signaling mathematically (See

Section 3.5 for details). Fgf attenuation leads to a Nanog+/Gata6+ cell type separation

at the128-cell stage (Fig 3.4a) with cell type ratios consistent with experimental data [16]

(Fig 3.4b). In contrast, when Fgf signaling remains persistent, there are more uncommitted

cells (Fig 3.4d,e) and the Nanog+/Gata6+ ratio is inconsistent with experimental data (Fig

3.4b). Further results show that when Fgf signaling is persistent, 18.6% of Nanog+ cells

highly express Gata6 (Fig 3.4d) and Gata6 expression is higher overall in these Nanog+ cells

than when Fgf signaling is attenuated at the 64 cell stage (Fig 3.4e). Based on these results,

we propose that the function of Fgf4/Fgfr2 is likely to be attenuated at 128-cell stage.

To test this hypothesis, we quantified the Fgf4/Fgfr2 expression levels in Nanog+/Gata6+

cells at different embryo developmental stages using scRNA-seq data [65] (Fig 3.4c, Fig 3.10).
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Figure 3.4: Nanog/Gata6 pattern for different Fgf4 ceasing time.
(a) Single cell gene expression level in different cell stages in baseline simulation. (b) Cell
number percentage of DP/Nanog+/Gata6+/DN cells at different 128C (simulation)/ 100C-
150C (experiment) stages with different Fgf ceasing time in simulations and experiments.
The horizontal dashed line shows the percentage of Nanog+ cells in wild type experiment.
(c) Fgf4/Fgfr2 expression levels (log1p transformed) in Nanog+/Gata6+ cells in different
cell stages from scRNA-seq data. The vertical bar shows the standard deviation. (d) Gene
expression level of Nanog and Gata6 at 128 cell stage if Fgf ceases at 128C and if Fgf is
always on. (e) Violin plot of Gata6 level of Nanog+ cell (red) and Nanog level of Gata6+
cell (blue) for simulation where Fgf4 is always on and simulation where Fgf4 ceases at 128
cell stage. The hollow circle shows the median.
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Results reveal that Fgf4/Fgfr2 expression levels are maximally different between Nanog+

and Gata+ cells at E4.5. After this stage, expression levels are essentially the same in the

two populations, suggesting Fgf signaling is no longer modulating Nanog or Gata6 in a cell

type-dependent fashion. This is consistent with the model hypothesis that Fgf signaling

should attenuate after organization is achieved. Experiments also show that the percentages

of Nanog+/Gata6+ cells are similar in wild type and the mutants with Fgf/Fgfr inhibitor

added at 128-cell stage [26, 92, 3], further indicating the loss of function of Fgf/Fgfr after

the 128-cell stage.

We next tested the scenario where Fgf signaling ceases at the 64-cell stage. The result shows

there are only Nanog+ cells present at late 128-cell stage, consistent with experimental data

(Fig 3.4b). These results suggest that Fgf signaling must become active at or prior to the

64-cell stage, but must cease functioning as final organization (late 128-cell stage) is reached.

Fgf signaling early is required to ensure the salt and pepper distribution forms with proper

cell ratios. However, Fgf signaling in this setting always tries to produce a salt and pepper

distribution. Thus as the PE and Epi form through sorting, the Fgf signaling must be

attenuated to ensure cells do not erroneously differentiate to reform that salt and pepper

distribution.

Having shown that Fgf signaling is likely to attenuate after 128-cell stage, we now investigate

the beginning time of Fgf signlaing. Prior to cell fate divergence, both Nanog and Gata6

are highly expressed at the beginning of early blastocyst. This motivates us to explore

whether Fgf signaling is necessary for the high expression of Nanog/Gata6 at the beginning

of early blastocyst stage. We tested four scenarios where Fgf signaling begins to regulate

Nanog/Gata6 expression from 1-cell, 16-cell, 32-cell, and 64-cell stages (and ceases at 128-

cell stage). The expression patterns are similar between simulations with Fgf signaling

beginning at 1-cell and 16-cell stages. However, if Fgf signaling does not begin until the

32-cell or 64-cell stage, cell expressions are biased to the Nanog+ state prior to Fgf onset.
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Figure 3.5: Sensitivity of Fgf on-time.
(a) Trajectory of Nanog/Gata6 expression over time for different Fgf on-time. Each dot
represents one cell. The color of the cell represents the stage of the cell. Dashed circles
represent the range of Nanog/Gata6 expression levels for different stages: dark blue for 16C-
32C, little blue for 32C-64C and orange for 64C-128C. (b) Bias of Nanog or Gata6 gene
expression level from the initial state (16C) in simulation with different Fgf on-time. Red
curve shows the cells whose Nanog expression is higher than cells in initial state; Blue curve
shows the cells whose Gata6 expression is higher than cells in initial state. The vertical line
shows the error bar with one standard deviation.
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Even in these cases though, gene expression becomes similar to baseline simulations after Fgf

signaling commences (Fig 3.5). This suggests that while an early starting Fgf signaling is

required to form DP cells at 32-64 cell stage, a later starting Fgf signaling can still induce the

formation of Nanog+/Gata6+ separation even if the system has been biased to Nanog due

to the absence of early Fgf signaling. Recently, experimental studies with inhibition of Fgf

signaling at different stages [26, 92, 3] have shown that only Epi (Nanog+) cells are present

if Fgf signaling is inhibited before early blastocyst ( 32-cell) stage but that PE (Gata6+)

cells can be recovered if Fgf signaling is on at or after 32-cell stage. This result supports our

finding that only Nanog+ cells exist when Fgf signaling is off, and some of Nanog+ cells can

transfer into Gata6+ cells driven by Fgf signaling. Thus while Fgf signaling appears to be

present prior to blastocyst formation, it may not be required at that stage to ensure Epi/PE

formation.

Sufficiently strong gene expression noise was shown to be required to form the correct

ICM/TE pattern [40]. We thus study the impact of noise levels on the expression of

Nanog/Gata6 during Epi/PE formation. We considered scenarios where Nanog/Gata6 ex-

pression noise is lower (1/10 the strength) or higher (2 times the strength) than baseline

levels. In the simulation, a higher noise level leads to fewer Gata6+ cells with commensu-

rately more Nanog+ cells at 128-cell stage compared to the baseline simulation (Fig 3.11.

This suggests that a high noise level on Nanog/Gata6 expression can lead to an incorrect

Nanog+/Gata6+ ratio.

To evaluate whether our model is able to capture correct experimental pattern in different

initial conditions of Nanog/Gata6 expression, we used the Nanog/Gata6/Fgf4/Fgfr2 scRNA-

seq expression data as the initial condition at 32- or 64- cell stage for simulations starting

at the corresponding stages. Thus far, all initial conditions have been spontaneously deter-

mined by the gene expression ODE’s. Here, we initiated simulations from 32-cell stage and

64-cell stage (Fig 3.12) using the corresponding single-cell qPCR data [33, 34] as initial con-
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ditions respectively. In both simulations, correct spatial patterns formed and were similar

to the imaging data at 64-cell and 128-cell stages [92] (Fig 3.12). Besides, the ratio between

Nanog+/Gata6+ cells was qualitatively consistent with the image data [92] when different

initial conditions were used. Despite the demonstrated robustness, the model was also able

to reflect the differences in initial conditions in the simulation results. A Nanog+/Gata6+

population ratio more biased to Gata6 was obtained when the initial conditions contained

more Gata6+ cells (Fig 3.12).

In conclusion, the model reveals that Fgf signaling is likely to attenuate after 128-cell stage,

the correct Nanog+/Gata6+ population at 128-cell stage is robust to the time of Fgf sig-

naling onset, organization can be achieved with biologically observed cell distributions of

Nanog/Gata6 at the 32 and 64-cell stages, and that the noise level in Nanog/Gata6 gene

expression has the potential to alter the proportion of Nanog+ and Gata6+ cells.

3.3 Discussion

We developed a first of its kind (to our knowledge) multiscale model of development of

the early embryo from the 1-cell to 128-cell stage. This three-dimensional model couples

intracellular and intercellular gene regulation with selective adhesion in a realistic embryonic

geometry to model the spatiotemporal development trajectory from the oocyte (1-cell stage)

to blastocyst (128-cell stage). Further, we use scRNA-seq data to inform both the regulatory

and the adhesion interaction parameters of this model.

Using this model, we study the roles of Fgf signaling on gene regulation, along with selective

adhesion mediated cell motions on organization of the PE and Epi. This model makes two

essential predictions. First, that the specific ligand-receptor pair EphA4/EphrinB2 is likely a

major driving force behind the selective adhesion necessary to sort the initial salt and pepper
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distribution of cells into the PE and Epi structures. While models of embryonic development

have been previously used to demonstrate that selective adhesion may facilitate formation of

the Epi/PE, those studies had two shortcomings. First, they did not account for the presence

of double-positive cells expressing both Nanog and Gata6. Second, they were phenomenolog-

ical in nature and the adhesion mechanisms were not supported by experimental data. Here,

used expression of Eph/Ephrin pairs from scRNA-seq data directly parameterize our model.

Results show that EphA4/EphrinB2 distributions among Nanog+ and Gat6+ cells would be

sufficient to direct sorting. Thus while prior models have demonstrated the necessity of cell

sorting, our results demonstrate the sufficiency specifically of EphA4/EphrinB2 in directing

that sorting. This provides the first directly testable hypothesis for the presence of adhesion

mediated cell sorting in the embryo.

Second, we demonstrate that attenuation of Fgf signaling is necessary after organization of

the PE/Epi is achieved. Fgf signaling is known to modulate cell fate decisions during the

formation of the initial salt-and-pepper distribution of cells [102, 114, 50]. We explore when

this timing should be active. Results show that proper organization is not sensitive to the

timing of signaling initiation. When Fgf is not present early on, the model accurately pre-

dicts a reduced presence of DP cells commonly observed at the 64 cell stage. However, as

long as signaling is present by the 64 cell stage, cell allocations are correct as is organization.

We do however find that organization strongly depends on when Fgf signaling is terminated.

Fgf signaling must be attenuated after organization is achieved. Consistent with this, fur-

ther single cell analysis of Fgf/Fgfr expression demonstrates that they are homogeneously

distributed prior to E3.5 and after E5.5, suggesting it is not effecting gene expression in a

cell type dependent fashion. Thus, it appears that Fgf may only be actively influencing gene

expression during the initial formation of the salt and pepper distribution.

Both Fgf signaling and selective adhesion have been shown to be successful in regulating cell

type specification and pattern formation, respectively. However, the corporation between
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them is mostly unknown. The model revealed that a temporal overlap of these two mech-

anisms could increase the robustness of early embryo development. Specifically, the model

occasionally led to PE cells aggregated between TE layer and Epi cells if there is no time

overlap between Fgf signaling and selective adhesion.

Having shown that Fgf signaling is likely to attenuate after 128-cell stage, question follows

that how is Fgf downregulated. We hope to explore this direction in the future based on this

modeling framework utilizing the emerging data resources to identify potential regulators of

Fgf signaling and study how they participate in later embryo developments. Moreover, it

is unknown how is Fgf signaling initiated such that its activity significantly increases dur-

ing a short period from E3.5 to E4.5. These questions can potentially be addressed using

the emerging spatial transcriptomics techniques [89, 20, 99] and integrating machine learn-

ing techniques with modeling. In general applications, modern spatial transcriptomics data

will allow the construction and validation of complex models with numerous genes and in-

teractions. The data-informed model allows the accommodation of realistic 3D geometries

complementary to the spatial transcriptomics data which are mostly in 2D. Moreover, the

data-informed models will, in turn, serve as a sandbox to predict the outcomes from pertur-

bations of the mechanisms which can generate numerous in silico spatial data under different

conditions and mechanisms.

In the temporal direction, it is worth extending the data-driven model to later developmental

stages. This longtitudinal extension can be informed and validated with the available scRNA-

seq data at later temporal points, such as the datasets upto E8.5 [79, 71] or between E9.5

and E13.5 [6]. Moreover, gene regulatory networks could be extracted from scRNA-seq data

in an unsupervised manner to promote the automation of the modeling framework. The

potential simulated embryos beyond late blastocyst can be further validated using spatial

gene expression data [86].

While this work partially relies on knowledge of gene regulatory networks and candidate
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regulators of selective adhesion, it is also possible to unsupervisedly integrate modeling with

data to uncover novel gene-gene interactions and unknown selective adhesion genes. The data

has helped us improve the model, it is worth exploring the other direction of using model

to improve data analysis. For example, one can systematically screen signaling through

different ligand-receptor pairs after predicting the spatial arrangements of scRNA-seq data

using the model. In addition to the interactions and communications between cells, it is

still an open question of how hydrodynamics in the blastocoel influences Epi/PE patterning.

Since our model resembles the geometry in real biological tissues, it is well suited for the

future integration of a fluid mechanics model of the blastocoel. Finally, due to the efficient

implementation that harnesses GPU computing, this model could be extended to study later

developmental stages involving more cells.

3.4 Materials and Methods

3.4.1 Model equations and simulations

The model consists of three major components: 1) a gene regulatory network model ad-

dressing cell type specification, 2) a subcellular element model describing spatial dynamics

of cells, and 3) a data-informed adhesion force model.
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Gene regulatory network model

The gene expression dynamics of Nanog/Gata6/Fgf are represented by the following non-

dimensional stochastic ODE system:

d[Nan]i
dt

= vsn0+
vsn1 ·Kinui

Kinu1 + εt[Erk]ui︸ ︷︷ ︸
Inhibition by Erk

+
vsn2 · [Nan]vi
Kanv + [Nan]vi︸ ︷︷ ︸

Self amplification

· Kinw2
Kinw2 + [Gat]wi︸ ︷︷ ︸
Inhibition by Gata6

− kN [Nan]i︸ ︷︷ ︸
Degradation

+σN [Nan]i · ηN︸ ︷︷ ︸
Noise

(3.1)

d[Gat]i
dt

= vsg0+
vsg1 · εt[Erk]ri
Kagr1 + εt[Erk]ri︸ ︷︷ ︸

Promotion by Erk

+
vsg2 · [Gat]si
Kagv2 + [Gat]si︸ ︷︷ ︸
Self amplification

· Kigq

Kigq + [Nan]qi︸ ︷︷ ︸
Inhibition by Nanog

− kg[Gat]i︸ ︷︷ ︸
Degradation

+σG[Gat]i · ηG︸ ︷︷ ︸
Noise

(3.2)

d[Fr]i
dt

= vsfr1
Kifrx

Kifrx + [Nan]xi︸ ︷︷ ︸
Inhibition by Nanog

+vsfr2
[Gat]yi

Kafry + [Gat]yi︸ ︷︷ ︸
Promotion by Gata6

− kFr[Fr]i︸ ︷︷ ︸
Degradation

+σFr[Fr]i · ηFr︸ ︷︷ ︸
Noise

(3.3)

d[Fs]i
dt

= vsf
[Nan]z

Kaf z + [Nan]zi︸ ︷︷ ︸
Promotion by Nanog

− kFs[Fs]i︸ ︷︷ ︸
Degradation

+σFs[Fs]i · ηFs︸ ︷︷ ︸
Noise

(3.4)

d[Erk]i
dt

= va[Fr]i
[Fp]i

Kd+ [Fp]i
· 1− [Erk]i
Ka+ 1− [Erk]i︸ ︷︷ ︸

Promotion by perceived Fgf4

− kErk
[Erk]i

Ki+ [Erk]i︸ ︷︷ ︸
Degradation

+σErk[Erk]i · ηErk︸ ︷︷ ︸
Noise

(3.5)

where [Nan]i, [Gat]i, [Fr]i, [Fs]i and [Erk]i represent secreted Nanog, Gata6, Fgfr2, Fgf4,

and Erk in cell i . The perceived Fgf4 from neighboring cells for cell i is described by

[Fp]i =
∑

j:|ri−rj |<rcontact

(1 + γj)
[Fs]j
Nj

(3.6)

where rcontact is a cutoff determining if cells located at ri and rj are neighboring cells Nj is
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the number of neighbors of cell j , and γj is a Gaussian noise.

Cell spatial dynamics

Every cell in the model is represented by a collection particles (elements) in space. The

movement of element j of cell i is governed by the following differential equation:

d[Fs]i
dt

= vsf
[Nan]z

Kaf z + [Nan]zi︸ ︷︷ ︸
Promotion by Nanog

− kFs[Fs]i︸ ︷︷ ︸
Degradation

+σFs[Fs]i · ηFs︸ ︷︷ ︸
Noise

(3.7)

where ri,j is its position, α is a parameter depicting the intercelluar adhesion strengths, and

Fexter is the external forces driving zona pellucida confinement and cavity formation (see

Section 3.5 for detailed equations).

Connecting with scRNA-seq data

The adhesion score is estimated from the expression levels of ligand-receptor pairs in scRNA-

seq data:

AS0(CTi, CTj) = (
[L]i[R]j + [L]j[R]i

2
)nforce (3.8)

AS(CTi, CTj) = AS0(CTi, CTj)/AS0(Nanog+, Nanog+) (3.9)

where [L]i and [Ri are the average ligand and receptor expression levels among cells of type i

(CTi ) obtained from single-cell data. The relative adhesion score in Eq (3.3.3.9) is assigned

to the parameter α in Eq (3.7). The parameter nforce corresponds to the type of adhesion

modification such that nforce = 1 for ligand-receptor pairs that strengthens adhesion (e.g.

EphA4/EphrinB2) and nforce = −1 for ligand-receptor pairs that weaken adhesion (e.g.

EphB2/EphrinB2).
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Embryo pattern loss score

We use a pattern loss score to quantitatively describe the successfulness of the resulting

patterns in simulations. Let xi, 1 ≤ i ≤ nicm be the positions of the inner cell mass at the

last frame of the simulation and tmdl
i be the cell type of the i th which is either Epi or PE.

Assuming the embryo is centered at the origin, we assign a reference location called the

ICM pole at rx̄/||x̄|| where x̄ is the average position of inner cell mass and r is the average

distance from TE cells to the embryo center. We then assign an ideal cell type tideal
i that best

replicates the known embryo pattern by assigning the nepi cells closest to the ICM pole as

Epi type and the rest as PE type. From these two cell type assignments, we define two index

collections, J1 = {i : tmdl
i = Epi, tideal

i = PE} and J2 = {i : tmdl
i = PE, tideal

i = Epi} . The

difference between these two cell type assignments is quantified by dmdl = infy∈Γ where Γ is

the collection of all bijections from J1 to J2. Similarly, we also quantify the difference between

randomly assigned cell types and the ideal cell type assignment, and repeat this process to

derive a empirical expected difference d̄rand . Finally, we use dmdl/d̄rand as a normalized loss

score quantifying the successfulness of the formed pattern. A simulated pattern identical to

the ideal cell type assignment has a loss of 0.

Simulation

The model was implemented in C programming language. Parallel computing was used for

the movement of elements through OpenCL. The simulations were carried out on the High

Performance Computing Cluster at University of California Irvine.
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3.4.2 Data analysis

Two different single-cell gene expression datasets were used: 1) a scRNA-seq dataset with

721 cells and 24484 genes at four temporal points from E3.5 to E6.5 [65], and 2) a single-cell

qPCR dataset measuring 48 selected genes in 442 cells from the 1-cell stage up to 64-cell

stage [33]. The spatial imaging data at early and late blastocyst consists of measurement

of cell type marker genes Oct4, Cdx2, Gata6, and Nanog [48, 92]. See Section 3.5 for data

processing details.

3.5 Modeling details

3.5.1 Spatial model

Subcellular element method

Subcellular element method [69] represents a cell by a collection of elements in space. The

movement of element of cell is governed by the following differential equation:

dri,j
dt

= −∇i,j

∑
k 6=j

Vintra (|ri,j − ri,k|)︸ ︷︷ ︸
Intracellular forces

−∇i,j

∑
k 6=i

∑
l

α · Vinter (|ri,j − rk,l|)︸ ︷︷ ︸
Intercellular forces

+ Fexter (ri,j)︸ ︷︷ ︸
External forces

+Fimage (r,gmdl ,gspa )︸ ︷︷ ︸
Image data-driven

(3.10)

where ri,j is its position, α is a parameter depicting the intercellular adhesion strengths, and

Fexter is the external forces driving zona pellucida confinement and cavity formation. The

term Fimage is the image data-driven part using the modeled expression gmdl and expression

in imaging data gspa of some spatial reference gene. Lennard-Jones potential commonly used
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to describe atomic interactions is used here for the potential functions ( Vintra and Vinter )

describing interactions between elements:

V (r) = ε

[(rm

r

)12

− 2
(rm

r

)6
]

(3.11)

where rm is the distance that minimizes the potential function.

Cell division

The simulation begins with 1280 elements representing a single cell and ends with 128 cells

each represented by 10 elements. When dividing a cell into two descendants, a dividing plane

of random orientation is placed where it could divide the elements into two groups of the

same size. The timing of the division was scheduled as the following. There are six milestone

time points when the system reaches 1, 2, 4, 8, 16, 32, 64 cells. At each milestone time point,

the division time for each cell was drawn from a uniform distribution. This approach mimics

the process that the cell divisions are partially synchronized where they do not divide at

the same time but they likely share similar growth speed. Once a cell is divided, its gene

expression is carried on by its two descendants.

External forces

The confinement of cells from zona pellucida and the formation of the inner cavity are realized

by applying external forces (Fexterin Eq. 3.10) to the elements.

Here we model the zona pellucida as a sphere with a fixed volume centered at the origin.
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For an element ri,j , its adhesion to the membrane is modeled by

Fexter-zona (ri,j) =
ri,j

rembryo

min {Fmax, F0/ (rembryo − |ri,j|)} (3.12)

where rembryo is the fixed radius of the embryo, Fmax is a cutoff value to stabilize the move-

ments, and F0 is a coefficient for the force magnitude. In the implementation, if the position

ri,j becomes outside of the sphere after a simulation step, it is moved back into the sphere by

setting its position to (rembryo − ε) ri,j
|ri,j | , where ε is a positive parameter with a small value.

After compaction, cavity is known to form by fluid inside the embryo. Many factors con-

tribute to the formation of cavity such as the sophisticated salt and osmotic transport. Since

our focus is not on the cavity fluids, for simplicity, we use a few phantom elements to oc-

cupy the space of cavity so that the regular elements representing cells could not enter the

cavity. Specifically, when introducing the cavity, the cells should have differentiated into TE

and ICM. We place the first phantom element on the zona pellucida that is farthest away

from the current geometric center of ICM. Then, four more phantom elements are placed

on the zona pellucida around this first one such that they are equally spaced and form a

plane which is perpendicular to the direction specified by the first phantom element with

a distance to the sphere center equal to 2/3 of the sphere radius. The forces due to these

phantom elements are applied to elements ri,j in ICM and are defined as

Fexter-cavity (ri,j) = −Frep

∑
k

ri,j − rphantom ,k

|ri,j − rphantom ,k|
(3.13)

where rphantom ,k is the position of the k th phantom element and Frep is a coefficient for the

repulsion force that pushes the ICM away from the cavity.
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3.5.2 Gene network model

Specification of TE and ICM

A mutual inhibition model of Oct4/Cdx2 is used to model the specification of TE and ICM

[40]. The model is implemented as ODEs:

d[Oct]i
dt

= kO

(
bO + aO

[Oct]ni
θno + [Oct]ni

)
︸ ︷︷ ︸

Self amplification

(
1 + ICO

θnC
θnC + [Cdx]ni

)
︸ ︷︷ ︸

Inhibition by Cdx 2

− dO[Oct]i︸ ︷︷ ︸
Degradation

+σO[Oct]i · ηO︸ ︷︷ ︸
Noise

(3.14)

d[Cdx]i
dt

= kC

(
bC + Si + aC

[Cdx]ni
θnC + [Cdx]ni

)
︸ ︷︷ ︸

Self amplification

(
1 + IOC

θnO
θno + [Oct]ni

)
︸ ︷︷ ︸

Inhibition by Cdx2

− dC [Cdx]i︸ ︷︷ ︸
Degradation

+σC [Cdx]i · ηC︸ ︷︷ ︸
Noise

(3.15)

where [Oct]i and [Cdx]i represent the relative expression levels of Oct4 and Cdx2 in cell

i . The term η is a noise term of zero mean and unit standard deviation. In Eq. 3.15,

Si represents the cell contact impact on Cdx expression. The cell contact parameter Si is

defined as 1.5(number of outer elements)/(number of all elements). An element in a cell is

regarded an outer element if its distance from the embryo boundary is shorter than 1. This

parameter describes the contact intensity between a cell the embryo boundary.
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Specification of Epi and PE

The specification of Epi and PE is modeled by a mutual inhibition model of Nanog/Gata6

mediated by Fgf signaling. The ODEs for the model are defined as:

d[Nan]i
dt

= vsn0+
vsn1 ·Kinu1

Kinu1 + εt[Erk]ui︸ ︷︷ ︸
Inhibition by Erk

+
vsn2[Nan]vi

Kanv + [Nan]vi︸ ︷︷ ︸
Self amplification

· Kinw2
Kinw2 + [Gat]wi︸ ︷︷ ︸
Inhibition by Gata6

− kN [Nan]i︸ ︷︷ ︸
Degradation

+σN [Nan]i · ηN︸ ︷︷ ︸
Noise

(3.16)

d[Gat]i
dt

= vsg0+
vsg1 · εt[Erk]ri
Kagr1 +εt[Erk]ri︸ ︷︷ ︸

Self amplification

+
vsg2[Gat]si

Kagv2 + [Gat]si︸ ︷︷ ︸
Promotion by Erk

Kigq

Kigq + [Nan]qi︸ ︷︷ ︸
Inhibition by Nanog

− kG[Gat]i︸ ︷︷ ︸
Degradation

+σG[Gat]i · ηG︸ ︷︷ ︸
Noise

(3.17)

d[Fr]i
dt

= vsfr1
Kifrx

Kifrx + [Nan]x︸ ︷︷ ︸
Inhibition by Nanog

+ vsfr2
[Gat]y

Kafry + [Gat]y︸ ︷︷ ︸
Prmotion by Gata6

− kFr[Fr]i︸ ︷︷ ︸
Degradation

+σFr[Fr]i · ηFr︸ ︷︷ ︸
Noise

(3.18)

d[Fs]i
dt

= vsf
[Nan]z

Kaf z + [Nan]zi︸ ︷︷ ︸
Promotion by Nanog

− kFs [Fs]i︸ ︷︷ ︸
Degradation

+σFs[Fs]i · ηFs︸ ︷︷ ︸
Noise

(3.19)

d[Erk]i
dt

= va[Fr]i
[Fp]i

Kd+ [Fp]i
· 1− [Erk]i
Ka+ 1− [Erk]i︸ ︷︷ ︸

Promotion by perceived Fgf4

− kErk
[Erk]i

Ki+ [Erk]i︸ ︷︷ ︸
Degradation

+σErk[Erk]i · ηErk︸ ︷︷ ︸
Noise

(3.20)

where [Nan]i, [Gat]i, [Fr]i, [Fs]i and [Erk]i represent secreted Nanog, Gata6, Fgfr2, Fgf4,

and Erk in cell i . The perceived Fgf4 from neighboring cells for cell i is described by

[Fp]i =
∑

j:|ri−rj |<rcontact

(1 + γj)
[Fs]j
Nj

(3.21)

where rcontact is a cutoff determining if cells located at ri and rj are neighboring cells, Nj
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is the number of neighbors of cell j , and γj is a Gaussian noise. The cutoff distance for

cell-cell contact is defined as rcontact =
√

3
2

(ri + rj) , where ri and rj are the average radius of

the cell types of cell i and j.

3.5.3 Variants of baseline multiscale model

We describe how the different timing of the processes and the selective adhesion mechanisms

are implemented in the hypothesis-driven model.

Controlling timing of processes

The simulation is carried out numerically with 260000 temporal steps. The embryo reaches

2-cell, 4-cell, 8-cell, 16-cell, 32-cell, 64-cell, 128-cell states at temporal steps 10000, 20000,

30000, 40000, 50000, 95000, and 120000 respectively. In different in silico experiments, we

set the on or off time of FGF signaling or selective adhesion to 16-cell, 32-cell, 64-cell, and

128-cell stages by beginning or terminating the processes at steps 39000, 75000, 95000, and

120000 respectively. These simulation steps correspond to the t0 and t1 values in Table 3.2

that controls the value of εt.

Selective adhesion models

The potential function governing the intercellular interactions will generate repulsion forces

if the cells are too close or attraction forces otherwise. We implement different cell-type

dependent selective adhesion models by multiplying the generated forces with coefficients

depending on the force direction.
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Model interaction with data

Data informed components in models: 1) In models H6 and H7, the parameters of the

selective adhesion mechanism are inferred using scRNA-seq data [65] based on the expression

of Nanog, Gata6, EphA4, EphB2, EphrinB2. 2) In the simulation in Fig 3.12, the scRNA-

seq data [65] and single-cell qPCR data [34] (Nanog/Gata6 expression) were used as initial

conditions for the models. Validation of the model simulations: 1) The spatial pattern and

cell type composition at late blastocyst are validated by the 3-dimensional imaging data [92].

2) The observed attenuation of Fgf signaling activity from the model was supported by the

analysis of Fgf expression levels in scRNA-seq data [65]. 3) The single-cell qPCR data [34]

is used to validate the early stage of simulations (1C to 32C stages).

3.5.4 Data processing

scRNAseq data

The original data [65] was downloaded using the GEO accession code GSE100597. The count

matrix was preprocessed with log1p operation. The cell types (Nanog+, Gata6+, double

positive, or double negative) were determined based on the expression levels of Nanog/Gata6.

Single-cell qPCR data

The single-cell qPCR data [34] was downloaded as supplementary data of the original publi-

cation. We followed the original publication to assign cell types for 32C and 64C stage cells.

A PCA was first done on the set of 64C cells. We then used k-means clustering with k=3

to split the cells into three clusters. The marker gene expressions were used to assign the

cell types (TE: Cdx2, Epi: Nanog, PE: Gata6). The 32C cells were projected to the PCA
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Figure 3.6: Adhesion mechanisms involving TE cells and the simulation results.
a-c. Different adhesion mechanisms between TE cells and other cell types. The adhesion
mechanism among Nanog+/Gata6+/DP cells is inferred from data based on the ligand-
receptor pair EphrinB2/EphA4. d-f. Phenomenological models about selective adhesion
involving TE cells.

space of 64C cells. The cells were separated into two clusters using k-means clustering with

k=2. The marker gene expressions were then used to assign the cell types to the clusters

(TE: Cdx2, ICM: Oct4).
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Figure 3.7: Adhesion mechanisms involving DP cells and the simulation results.
a-c. Different selective adhesion mechanisms without bias for DP. d, e. Different selective
adhesion mechanisms with biased adhesion for DP.

Parm. Value Parm. Value Parm. Value
ko 0.32 θo 0.5 σO 1.0
kC 0.32 θc 0.5 σC 1.0
bo 2.0 ICO 1.5 ηO ∼ N (0, 1)
bC 0.7 IOC 1.5 ηC ∼ N (0, 1)
aO 1.0 do 0.4 n 4
aC 1.0 dC 0.4

Table 3.1: Parameters in Eq. (3.14) and Eq. (3.15). The parameters for the dimensionless
equations are taken from ref. [40].
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Figure 3.8: Simulation results with different noise levels on cell movement.
a,b. The simulated Nanog/Gata6 expression levels with low or high cell movement noise
level. c,d. The ratios of cell types during simulation with low or high cell movement noise
level. e,f. Representative simulated spatial patterns at 128-cell stage.

84



Figure 3.9: Simulation results with only mutual inhibition between Nanog and Gata6.
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Figure 3.10: Expression of cell fate regulating genes in scRNA-seq data at different stages.
a. The expression levels of Fgfr2 in cells biased to PE ([Nanog] ≤ [Gata6]) The curve is
obtained from Gaussian process regression showing the trend and the bars in the violin plots
show the mean values. Values after log1p transform of the original counts are used. b.
Similar to (a) but for Fgf expression in cells biased to Epi ([Nanog ¿ [Gata6]).
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Figure 3.11: Simulation results with different noise levels on Nanog and Gata6 expression.
a,b. The simulated Nanog/Gata6 expression levels with low or high noise level on Nanog
and Gata6 expression. c,d. The ratios of cell types during simulation with low or high noise
level.
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Figure 3.12: Baseline hypothesis-driven model simulation results using single-cell data as
initial conditions.
a. Expression of Nanog and Gata6 of ICM cells in the single-cell datasets at different stages.
The 32-cell and 64-cell stage data are taken from the single-cell qPCR dataset and the 128-
cell stage data is taken from the scRNA-seq data. Expression values are normalized to match
the scale in the model. b. Simulation result of the baseline hypothesis-driven model using
the 32-cell stage single-cell qPCR data as the initial condition. c. Simulation result of the
baseline hypothesis-driven model using the 64-cell stage single-cell qPCR data as the initial
condition. d. The spatial pattern of Nanog+ and Gata6+ cells in spatial imaging data.
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Parm. Value Parm. Value Parm. Value
∗vsn0 1.1041 Kag2 0.55 ∗σFs 1.0
vsn1 0.0051 ∗σG 1.0 va 20.0
Kin1 0.28 kG 0.2 Kd 2.0
vsn2 0.321 q 4 Ka 0.7
Kan 0.55 r 3 Ki 0.7
∗σN 1.0 s 4 kErk 3.3
kN 0.2 Kig 1.6 ∗σErk 1.0
u 3 vsfr1 2.8 x 1
v 4 Kifr 0.5 y 1
w 4 vsf r2 2.8 z 4
εt 1 · I[t0, t1] Kafr 0.5 ∗ηN N(0, 1)
Kin2 1.604 kFr 1.0 ∗ηG N(0, 1)
∗vsg0 0.04103 ∗σFr 1.0 ∗ηFr N(0, 1)
vsg1 0.04032 vsf 0.6 ∗ηFs N(0, 1)
Kag1 0.28 Kaf 5.0 ∗ηErk N(0, 1)
vsg2 0.321 kFs 0.077 γj N(0, 1)
ki 0.7

Table 3.2: Parameters in Eq. (3.17-3.21). The parameters marked with * are calibrated and
other parameter values are taken from ref. [4]
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H1 H1 H2 H2 H3 H3 H4 H4
Rep. Attr. Rep. Attr. Rep. Attr. Rep. Attr.

Epi-Epi 0.25 4 0.25 4 0.25 4 0.25 4
PE-PE 0.25 4 0.25 4 1 0.75 1 0.75
TE-TE 1 1 1 1 1 1 1 1
DP-DP 0.25 4 0.25 4 0.25 4 0.25 4
Epi-PE 0.25 4 2 1 2 1 2 1
Epi-TE 1 1 1 1 1 1 1 1
Epi-DP 0.25 4 0.25 4 0.25 4 0.25 4
PE-TE 1 1 1 1 6 0.1 6 0.1
PE-DP 0.25 4 2 1 0.25 4 2 1
TE-DP 1 1 1 1 1 1 1 1

H5 H5 H6 H6 H7 H7
Rep. Attr. Rep. Attr. Rep. Attr.

Epi-Epi 0.25 4 0.266 3.756 1.19 0.84
PE-PE 1 0.75 0.850 1.176 0.765 1.308
TE-TE 1 1 1 1 1 1
DP-DP 1 0.75 0.25 4 0.25 4
Epi-PE 2 1 0.474 2.108 0.614 1.628
Epi-TE 1 1 1 3 1 3
Epi-DP 2 1 0.209 4.788 0.538 1.86
PE-TE 6 0.1 6 0.1 6 0.1
PE-DP 1 0.75 0.384 2.6 0.304 3.288
TE-DP 6 0.1 1 1 1 1

Table 3.3: Parameters for selective adhesion models. H1: no SA; H2: Symmetric SA; H3:
Non-biased asymmetric SA; H4: Asymmetric SA with DP behavior biased to Gata6+; H5:
Asymmetric SA with DP behavior biased to Nanog+; H6: EphrinB2/EphA4 induced SA;
H7: EphrinB2/EphB2 induced SA.
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