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 This dissertation describes strategies for the synthesis of low valent f element complexes, 

isolation of f element cryptate complexes using 2.2.2-cryptand, and the analysis of the electronic 

structures of (C5H4SiMe3)3Ln and [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes (Ln = Sm, 

Eu, Gd, Tb) using X-ray photoelectron spectroscopy (XPS).  The primary motivation of this 

research sought to expand the number of f element complexes in the +2 oxidation state by 

modifying counterions and ligand environments to investigate the chemical properties that help 

enable the isolation of these low valent ions.  Several new complexes were isolated and strategies 

for the isolation of these ions will be discussed throughout this dissertation.  In addition to 

developing synthetic strategies, the electronic structure of Ln(II) ions were examined using XPS 

to probe the electronic structure of both core electrons and valence electrons of these unusual 

ions with mixed-electron configurations. 

 In Chapter 1, lithium reduction of Cp′3Ln (Cp′ = C5H4SiMe3; Ln = Y, Tb, Dy, Ho) under 

Ar in the presence of 2.2.2-cryptand (crypt) is discussed.  Examples of crystallographically-

characterizable Ln(II) complexes of these metals are isolable, [Li(crypt)][Cp′3Ln].  In each 

complex, lithium is found in an N2O4 donor atom coordination geometry that is unusual for the 
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cryptand ligand.  Lithium reduction of Cp′3Y under N2 at −35 °C forms the Y(II) complex 

(Cp′3Y)1−, which reduces dinitrogen upon warming to room temperature to generate the (N2)
2− 

complex [Cp′2Y(THF)]2(µ-ƞ2:ƞ2-N2). 

 In Chapter 2, the synthetic options for generating complexes of the actinide metals in the 

+2 oxidation state are discussed.  Reduction of Cp″3U [Cp″ = C5H3(SiMe3)2] and the lanthanide 

analogs, Cp″3La and Cp″3Ce with lithium in the absence of crown ether and cryptand chelates is 

described.  In each case, crystallographically-characterizable [Li(THF)4][Cp″3M] (M = La, Ce, 

U) complexes were obtainable.  Reductions using Cs were also explored and X-ray 

crystallography revealed the formation of an oligomeric structure, [Cp″U(μ-Cp″)2Cs(THF)2]n, 

involving Cp″ ligands that bridge "(Cp″UII)1+" moieties to "[Cp"2Cs(THF)2]
1−" units. 

In Chapter 3, the synthesis of crystallographically-characterizable Ln(II) complexes of Tb 

and Ho by reducing CpMe
3Ln(THF) (CpMe = C5H4Me) with KC8 in THF in the presence of 18-

crown-6 (18-c-6) is described.  X-ray crystallography revealed that these complexes are isolated 

with a methylcyclopentadienide inverse sandwich countercation:  [(18-c-6)K(µ-CpMe)K(18-c-

6)][CpMe
3Ln] (Ln = Tb, Ho).   

In Chapter 4, the reactivity of Cp′2Ln(THF)2 metallocenes with crypt to form Ln(II)-in-

crypt complexes, [Ln(crypt)(THF)][Cp′3Ln]2 (Ln = Sm, Eu) and [Yb(crypt)][Cp′3Yb]2, is 

discussed.  In each of the complexes, a ligand rearrangement occurs to form a Ln(II) dication 

with two [Cp′3Ln]1– counteranions. 

In Chapter 5, the facile encapsulation of U(III) and La(III) by crypt using simple starting 

materials is described.  Addition of crypt to UI3 and LaCl3 forms the crystallographically-

characterizable complexes, [U(crypt)I2]I and [La(crypt)Cl2]Cl.  In the presence of water, the 

U(III)-aquo adducts, [U(crypt)I(OH2)][I]2 and [Ucrypt)I(OH2)][I][BPh4], can be isolated. 
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In Chapter 6, the reactivity of LnI2(THF)2 (Ln = Sm, Eu, Yb) with crypt is discussed to 

examine if these readily accessible precursors could provide new examples of lanthanide-in-

crypt complexes.  The crystallographically-characterized Ln(II)-in-crypt complexes 

[Ln(crypt)(DMF)2][I]2 (Ln = Sm, Eu) and [Yb(crypt)(DMF)][I]2 were synthesized by reacting 

LnI2(THF)2 (Ln = Sm, Eu, Yb) with crypt in THF and recrystallizing from DMF.  

Crystallographic data were also obtained on the Ln(II)-in-crypt complex 

[Ln(crypt)(DMF)2][BPh4]2 which was synthesized by addition of two equivalents of NaBPh4 to 

[Ln(crypt)(DMF)2][I]2. 

In Chapter 7, the synthesis of Ln(III)-in-crypt complexes using Ln(OTf)3 (Ln = Nd, Dy) 

starting materials is discussed.  In MeCN, the Dy(III)-in-crypt complex formed is 

[Dy(crypt)(OTf)][OTf]2 and in DMF, the Nd(III)-in-crypt complex formed is 

[Nd(crypt)(DMF)2][OTf]3.  A Nd(III)-in-crypt complex, [Nd(crypt)(OTf)2][OTf], can also be 

formed in THF and subsequently reduced using KC8 to form the Nd(II)-in-crypt complex 

[Nd(crypt)(OTf)2]. 

In Chapter 8, the electrochemical properties of U(III)-in-crypt complex [U(crypt)I2]I 

were examined in DMF and MeCN to determine the oxidative stability offered by crypt as a 

ligand.  Cyclic-voltammetry revealed a U(IV)/U(III) quasi-reversible redox couple of –0.55 V 

(vs Fc+/0).  In the presence of [CoCp2][PF6] in MeCN, a reversible U(III)/U(II) redox couple of –

1.84 V (vs Fc+/0) was observed.  U(III)-in-crypt complexes were also and was found to be robust 

to water.  Additional examples of a U(III)-in-crypt complex with a DMF, MeCN and water 

adducts have also been crystallographically-characterized. 

In Chapter 9, reduction of Th(OC6H2
tBu2-2,6-Me-4)4 using either KC8 or Li in THF 

forming crystallographically-characterizable Th(III) complexes in the salts 
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[K(THF)5(Et2O)][Th(OC6H2
tBu2-2,6-Me-4)4] and [Li(THF)4][Th(OC6H2

tBu2-2,6-Me-4)4] is 

discussed.  In each structure the four aryloxide ligands are arranged in a square planar geometry, 

the first example of this coordination mode for an f element complex.  The Th(III) ion and four 

oxygen donor atoms are coplanar to within 0.05 Å.  EPR spectroscopy reveals an axial signal 

consistent with a metal-based radical in a planar complex.  DFT calculations yield a C4-

symmetric structure which accommodates a low-lying SOMO of 6dz2 character with 7s Rydberg 

admixture.  

In Chapter 10, using X-ray photoelectron spectroscopy (XPS) and density functional 

theory (DFT) calculations are discussed to evaluate the electronic structure of molecular Ln(II) 

complexes [Cp′3Ln]1– (Cp′ = C5H4SiMe3; Ln = Sm, Eu, Gd, Tb) formed by reduction of the 

Ln(III) precursors, Cp′3Ln.  DFT calculations suggest that Eu(II) has a 4f7 and Gd(II) has a 

4f75d1 electron configuration, whereas Tb(II) could not be unambiguously assigned due to its 

possible multiconfigurational ground state. 
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INTRODUCTION 

 

 Metal oxidation states are fundamental to understanding electron movement in chemical 

redox reactions.  Physical properties of metal ions and the chemical transformations they carry 

out inherently hinge on accessing different metal oxidation states.  Understanding their role in 

chemical reactions could aid in harnessing their chemical potential.  Transition metal ions have 

many accessible oxidation states and have been exploited for a vast variety of applications.  

However, f elements are far more limited to accessing oxidation states compared to transition 

metals.   

 Rare-Earth Metals.  The most common oxidation state for rare-earth metals is the +3 

oxidation state followed by the +2 (Nd, Sm, Eu, Dy, Tm, Yb)1-7 and +4 (Ce,8 Tb9-10) oxidation 

states.  Molecular lanthanides in the +2 oxidation states for Sm, Eu, and Yb were known since 

19061-4 and it was not until the late 1990s and early 2000s when the first examples of Nd(II),5 

Dy(II),6 and Tm(II)7 were isolated.  Extending the +2 oxidation state to the rest of the lanthanide 

series to form isolable molecular complexes was thought to be difficult since the calculated 

potentials to reduce 4fn Ln(III) ions to 4fn+1 Ln(II) ions were too large for syntheses in organic 

solvents.11   

 Reactions of LnI2 (Ln = Nd, Dy, Tm) with N2 in the presence of amide, aryloxide, and 

cyclopentadienide salts were examined which resulted in the isolation of bimetallic Ln(III) 

complexes bridged by a reduced dinitrogen moiety (N=N)2–, eq 0.1.12-14    These  reactions 

helped establish that the reduction of N2 originated from Ln(II).  Additional synthetic routes to 
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bridging (N=N)2– products were explored using Ln(III) (Ln = Nd, Dy, Tm)15-16 precursors in the 

presence of an alkali metal reducing agent, eq 0.2.   In this reaction, the Ln(III) ion presumably  

 

becomes reduced to form a transient Ln(II) ion which proceeds to reduce N2 to form a (N=N)2– 

product.  Surprisingly, other rare-earth metals that were not known in the +2 oxidation state 

could also access this reactivity and form additional examples of the bimetallic Ln(III) bridged 

(N=N)2– products for Ln = Y, La, Ce, Pr, Gd, Tb, Ho, Er, and Lu.15-18  This raised the question 

whether other rare-earth metals not previously known in the +2 oxidation state could be observed 

or even isolated.   

 It was not until 2008 that Lappert and coworkers isolated the first examples of a La(II) 

and a Ce(II) complex, [K(chelate)][Cp″3LaII] and [K(18-crown-6)][Cp″3CeII]·[Cp″3CeIII] [chelate 

= 18-crown-6, 2.2.2-cryptand; Cp″ = C5H3(SiMe3)2], by reducing Cp″3Ln (Ln = La, Ce) using 

potassium metal in the presence of a chelating agent in an argon atmosphere, eq 0.3.19  This 

result 

(0.1) 

(0.2) 
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suggested that other rare-earth metals in the +2 oxidation state could be isolated despite their 

large calculated Ln(III) to Ln(II) reduction potentials.11  

 In 2011, reduction of Y[N(SiMe3)2]3 under an argon atmosphere provided EPR evidence 

of a Y(II) in solution.20  Later that year, the first example of a Y(II) was isolated in a similar 

manner to eq 0.3, but instead of using Cp″, the smaller Cp′ (Cp′ = C5H4SiMe3) ligand was used, 

eq 0.4.21   

 

Soon after, the entire lanthanide series was isolated in the +2 oxidation state using the Cp′ ligand 

with the exception of Pm due to its radioactivity.22-23  These results not only demonstrated that 

Ln(II) are accessible for the entire series, but that the steric bulk of the ligand is important in the 

isolation of lanthanides in the +2 oxidation state.  Complexes of [Cp″3Ln]1– can be isolated for 

the larger Ln = La, Ce, Pr, and Nd 19, 24 

(0.3) 

(0.4) 



4 
 

 The metrical parameters of the Cp′3Ln precursor and the [Cp′3Ln]1– reduction product 

revealed that the Ln–Cp′ centroid distance is longer in the Ln(II) complexes as is expected for 

metals with lower oxidation states.  The complexes Sm, Eu, Tm, and Yb have a difference of 

0.1-0.2 Å in Ln–Cp′ centroid distance.25    However, for Ln = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, 

Er, and Lu, the differences in Ln–Cp′ centroid distances are 0.027-0.031 Å.22, 25 This unexpected 

small change in distance was attributed to the difference in electron configuration upon 

reduction.  The electron configurations for +2 ions of Ln = Sm, Eu, Tm, and Yb, are 4fn+1 which 

was identified by DFT and UV-vis studies.  For Ln = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and 

Lu, the electron configurations were found to be a 4fn5d1 (4d1 for Y) where the additional 

electron populates an essentially non-bonding dz2 orbital instead of an f orbital.  Additionally, 

Nd(II) and Dy(II), which were previously identified to have a 4fn+1 electron configuration, have a 

4fn5d1 electon configuration in the [Cp′3Ln]1– complexes thus demonstrating the variable nature 

of Nd and Dy.25  Since the initial isolation of these the first Ln(II) ions, the first 

crystallographically-characterizable Sc(II)26 complex was isolated using [N(SiMe3)2]
1–.  

Additional examples of Ln(II) complexes have been reported using various cyclopentadienyl 

analogs such as (C5Me4H)1–,27 [C5H2(CMe3)3]
1–,28 [C5H4(CMe3)]

1–,29 and (C5H4Me)1– 30 as well 

as [N(SiMe3)2]
1–,31 [OC6H2(CMe3)2-2,6-Me-4]1–,32 and the tris(aryloxide)mesitylene, 

[(Ad,MeArO)3mes]1–.33-34    

 Actinides.  Unlike the lanthanide series, actinides have a rich number of available 

oxidation states.35  Molecular examples of actinides in the +2 oxidation state, however, are much 

more limited.  Prior to the discovery of [Cp′3Ln]1– complexes, molecular examples of actinides in 

the +2 oxidation state were not known.  Using similar strategies for the isolation of Ln(II) ions as 

described in eq 0.4, the first example of U(II) was isolated by reducing Cp′3U with potassium 
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graphite (KC8) in the presence of 2.2.2-cryptand (crypt) to form [K(crypt)][Cp′3U], eq 0.5.36  

Similarly to the the 4fn5d1 Ln(II) ions, the electron configuration of this U(II) ion was assigned 

 

as 5f36d1 by DFT calculations.  Additional examples of U(II) were later isolated using the bulkier 

Cp″ to form [M(chelate)][Cp″3U] (M = Na, K; chelate = 12-crown-4, 18-crown-6, 2.2.2-

cryptand).37 

 Using the techniques described in eq 0.4 and 0.5, the first Th(II) was also isolated by 

reducing the Th(III) 6d1 complex Cp″3Th38 with KC8 in the presence of a chelating agent.39  

Unlike  the Ln(II) and U(II) examples, the electron configuration of this Th(II) complex was 

assigned as a diamagnetic 6d2 ion.  Both DFT and NMR corroborate this assignment.  Inspired 

by these results, molecular examples of Np(II)40 and Pu(II)41 were also isolated using similar 

methods described in eq 0.5.  

 Dissertation Outline.  In Chapter 1, lithium reduction of Cp′3Ln (Cp′ = C5H4SiMe3; Ln 

= Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) is discussed.  Examples of 

crystallographically-characterizable Ln(II) complexes of these metals are isolable, 

[Li(crypt)][Cp′3Ln].  In each complex, lithium is found in an N2O4 donor atom coordination 

geometry that is unusual for the cryptand ligand.  The Dy and Ho complexes have exceptionally 

high single-ion magnetic moments, 11.35 and 11.67 µB, respectively, and are consistent with 

4fn5d1 electron configurations.  Lithium reduction of Cp′3Y under N2 at −35 °C forms the Y(II) 

(0.5) 
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complex (Cp′3Y)1−, which reduces dinitrogen upon warming to room temperature to generate the 

(N2)
2− complex [Cp′2Y(THF)]2(µ-ƞ2:ƞ2-N2). 

 In Chapter 2, the synthetic options for generating complexes of the actinide metals in the 

+2 oxidation state are discussed.  Reduction of Cp″3U [Cp″ = C5H3(SiMe3)2] and the lanthanide 

analogs, Cp″3La and Cp″3Ce with lithium in the absence of crown ether and cryptand chelates is 

described.  In each case, crystallographically-characterizable [Li(THF)4][Cp″3M] (M = La, Ce, 

U) complexes were obtainable, i.e. chelating agents are not necessary to sequester the lithium 

countercation to form isolable crystalline M(II) products.  Reductions using Cs were also 

explored and X-ray crystallography revealed the formation of an oligomeric structure, [Cp″U(μ-

Cp″)2Cs(THF)2]n, involving Cp″ ligands that bridge "(Cp″UII)1+" moieties to "[Cp"2Cs(THF)2]
1−" 

units. 

In Chapter 3, the synthesis of crystallographically-characterizable Ln(II) complexes of Tb 

and Ho by reducing CpMe
3Ln(THF) (CpMe = C5H4Me) with KC8 in THF in the presence of 18-

crown-6 (18-c-6) is described.  X-ray crystallography revealed that these complexes are isolated 

with a methylcyclopentadienide inverse sandwich countercation:  [(18-c-6)K(µ-CpMe)K(18-c-

6)][CpMe
3Ln] (Ln = Tb, Ho).   

In Chapter 4, the reactivity of Cp′2Ln(THF)2 metallocenes with crypt to form Ln(II)-in-

crypt complexes, [Ln(crypt)(THF)][Cp′3Ln]2 (Ln = Sm, Eu) and [Yb(crypt)][Cp′3Yb]2, is 

discussed.  In each of the complexes, a ligand rearrangement occurs to form a Ln(II) dication 

with two [Cp′3Ln]1– counteranions. 

In Chapter 5, the facile encapsulation of U(III) and La(III) by crypt using simple starting 

materials is described.  Addition of crypt to UI3 and LaCl3 forms the crystallographically-
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characterizable complexes, [U(crypt)I2]I and [La(crypt)Cl2]Cl.  In the presence of water, the 

U(III)-aquo adducts, [U(crypt)I(OH2)][I]2 and [Ucrypt)I(OH2)][I][BPh4], can be isolated. 

In Chapter 6, the reactivity of LnI2(THF)2 (Ln = Sm, Eu, Yb) with crypt is discussed to 

examine if these readily accessible precursors could provide new examples of lanthanide-in-

crypt complexes.  The crystallographically-characterized Ln(II)-in-crypt complexes 

[Ln(crypt)(DMF)2][I]2 (Ln = Sm, Eu) and [Yb(crypt)(DMF)][I]2 were synthesized by reacting 

LnI2(THF)2 (Ln = Sm, Eu, Yb) with crypt in THF and recrystallizing from DMF.  

Crystallographic data were also obtained on the Ln(II)-in-crypt complex 

[Ln(crypt)(DMF)2][BPh4]2 which was synthesized by addition of two equivalents of NaBPh4 to 

[Ln(crypt)(DMF)2][I]2. 

In Chapter 7, the synthesis of Ln(III)-in-crypt complexes using Ln(OTf)3 (Ln = Nd, Dy) 

starting materials is discussed.  In MeCN, the Dy(III)-in-crypt complex formed is 

[Dy(crypt)(OTf)][OTf]2 and in DMF, the Nd(III)-in-crypt complex formed is 

[Nd(crypt)(DMF)2][OTf]3.  A Nd(III)-in-crypt complex, [Nd(crypt)(OTf)2][OTf], can also be 

formed in THF and subsequently reduced using KC8 to form the Nd(II)-in-crypt complex 

[Nd(crypt)(OTf)2]. 

In Chapter 8, the electrochemical properties of U(III)-in-crypt complex [U(crypt)I2]I 

were examined in DMF and MeCN to determine the oxidative stability offered by crypt as a 

ligand.  Cyclic-voltammetry revealed a U(IV)/U(III) quasi-reversible redox couple of –0.55 V 

(vs Fc+/0).  In the presence of [CoCp2][PF6] in MeCN, a reversible U(III)/U(II) redox couple of –

1.84 V (vs Fc+/0) was observed.  U(III)-in-crypt complexes were also and was found to be robust 

to water.  Additional examples of a U(III)-in-crypt complex with a DMF, MeCN and water 

adducts have also been crystallographically-characterized. 
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In Chapter 9, reduction of Th(OC6H2
tBu2-2,6-Me-4)4 using either KC8 or Li in THF 

forming crystallographically-characterizable Th(III) complexes in the salts 

[K(THF)5(Et2O)][Th(OC6H2
tBu2-2,6-Me-4)4] and [Li(THF)4][Th(OC6H2

tBu2-2,6-Me-4)4] is 

discussed.  In each structure the four aryloxide ligands are arranged in a square planar geometry, 

the first example of this coordination mode for an f element complex.  The Th(III) ion and four 

oxygen donor atoms are coplanar to within 0.05 Å with O−Th−O angles of 89.27(8) to 92.02(8)° 

between cis ligands.  The ligands have Th−O−C(ipso) angles of 173.9(2) to 178.6(4)° and the 

aryl rings make angles of 58.5 to 65.1° with the ThO4 plane. The effect of the eight tert-butyl 

substituents in generating the unusual structure through packing and/or dispersion forces is 

discussed.  EPR spectroscopy reveals an axial signal consistent with a metal-based radical in a 

planar complex.  DFT calculations yield a C4-symmetric structure which accommodates a low-

lying SOMO of 6dz2 character with 7s Rydberg admixture.  

In Chapter 10, the use of X-ray photoelectron spectroscopy (XPS) and density functional 

theory (DFT) calculations are discussed to evaluate the electronic structure of molecular Ln(II) 

complexes [Cp′3Ln]1– (Cp′ = C5H4SiMe3; Ln = Sm, Eu, Gd, Tb) formed by reduction of the 

Ln(III) precursors, Cp′3Ln.  The complexes contain 4f5 Sm(III) and 4f6 Eu(III) ions would be 

expected to make 4f6 Sm(II) and 4f7 Eu(II) products upon reduction.  Structural, spectroscopic, 

and magnetic data suggest this is true for Sm and Eu, but for Gd and Tb, the Ln(II) ions have 

4fn5d1 ions. DFT calculations suggest that Eu(II) has a 4f7 and Gd(II) has a 4f75d1 electron 

configuration, whereas Tb(II) could not be unambiguously assigned due to its possible 

multiconfigurational ground state. 
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CHAPTER 1 

Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Non-traditional 

Ln(II) Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations 

 

Introduction* 

The discovery of new oxidation states for the rare-earth metals Y, La, Ce, Pr, Gd, Tb, Ho, 

Er, and Lu via LnA3/M reactions (Ln = rare-earth metal; A = anion; M = alkali metal), eq 1.1,1-4 

initially involved potassium almost exclusively as the alkali metal reductant.  Sodium was 

used successfully as a reductant with Cp′3Y
5 (Cp′ = C5H4SiMe3) and the uranium complex, 

Cp″3U
6 (Cp″ = C5H3(SiMe3)2).  While lithium was used by Lappert and co-workers to examine 

reduction of Cp″3Ln complexes (Ln = La, Ce, Pr) in dimethoxyethane (DME), these reactions 

produced only the Ln3+ methoxide products, [Cp″2Ln(OMe)]2 and Cp″2Nd(OMe)2Li(DME).7  

The reductions of complexes of C5H3(CMe3)2
 (Cptt)7, 8 and C5H2(CMe3)3 (Cpttt)9, 10 and 

complexes of the tris(aryloxide) mesitylene ligand, ((Ad,MeArO)3mes)3−,11 using K were also 

reported in the literature.    

Lithium was not used in the Evans laboratory for LnA3/M rare-earth metal reduction  

 

*Portions of this chapter have been published:  Huh, D. N.; Darago, L. E.; Ziller, J. W.; Evans, W. J. Utility of 

Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-

cryptand)]1+ Cations. Inorg. Chem., 2018, 57, 2096-2102.  DOI:  10.1021/acs.inorgchem.7b03000 
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since these were originally developed to isolate reduced dinitrogen complexes with rare-earth 

reactions metals, eq 1.2.  As lithium can reduce N2 on its own, it was to ensure that the N2 

reduction was caused by the rare-earth metal complex.7, 12, 13  However, there is no reason to 

avoid lithium in reactions to form Ln(II) complexes since reductions are performed under Ar.   

 

Accordingly, lithium has been examined as a reductant in LnA3/M reactions to determine if it 

offers any advantages over sodium or potassium in eq 1.1 and 1.2.  Due to its small size, lithium 

has the capacity to become incorporated into organometallic complexes by coordinating to 

cyclopentadienyl, amide, or aryloxide ligands.14-16  This could produce complexes with different 

reactivity compared to the [K(crypt)][Cp′3Ln], 1-Ln, and [K(crypt)][Cp″3Ln] series of 

complexes in eq 1.1, which are typically isolated with [alkali metal (chelate)]1+ counter-cations.  

To explore these options, reductions with lithium were examined both in the presence and the 

absence of chelators.  

The lithium salts of the (Cp′3Ln)1− anions were of further interest as complexes 

containing non-traditional divalent lanthanide ions with unusual electron configurations.  In 

previous potassium-based reductions of the 4fn Ln3+ complexes, Cp′3Ln, the [K(crypt)][Cp′3Ln], 
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1-Ln, the series was produced with Ln = La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu.  These 

complexes had properties consistent with 4fn5d1 electron configurations rather than the 4fn+1 

electron configurations found in the past for traditional Ln(II) ions of Ln = Eu, Yb, Sm, and Tm.  

Magnetic studies of the Dy(II) and Ho(II) complexes showed high single-ion magnetic moments, 

11.35 and 11.41 µB, for [K(crypt)][Cp′3Dy] (1-Dy) and [K(crypt)][Cp′3Ho] (1-Ho), 

respectively.17  It was of interest here to determine if similar electron configurations, and thereby 

similarly high single-ion magnetic moments, could be observed upon altering the counter-cation 

of 1-Ln. 

Results and Discussion 

 Synthesis of Ln(II) Complexes.  The Cp′3Ln complexes (Ln = Y, Tb, Dy, and Ho) are 

reduced by lithium under argon at −35 °C in the presence of 2.2.2-cryptand (crypt) in Et2O to 

form Y(II), Tb(II), Dy(II), and Ho(II) complexes, [Li(crypt)][Cp′3Ln], 2-Ln, according to eq 1.3.  

As found for the 1-Ln complexes, the products of these reactions must be isolated within 

minutes, since the solutions become colorless with longer reaction times.  The specific 

decomposition pathways were not identified in these cases, but they could involve degradation of 

the solvent7 or the chelate.21  Reductions using Li in the presence of 12-crown-4 also yielded 

dark maroon solutions, but reduction products could not be isolated due to rapid decomposition 

even at −35 °C.  Single crystals of each complex were identified by X-ray diffraction, Figure 1.1.  

Crystalline yields of 2-Ln were lower than for the 1-Ln complexes due to the high solubility of 

2-Ln in Et2O.  Reductions can also be performed in THF, but this solvent was avoided due to 

greater solubility of the reduction products.  
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Figure 1.1.  ORTEP representation of [Li(crypt)][Cp′3Tb], 2-Tb, thermal ellipsoids drawn at the 

50% probability level.  Hydrogen atoms are omitted for clarity.     

 

 Each complex has the intense maroon color previously observed for the 1-Ln3, 4 and 

[K(18-crown-6)][Cp′3Ln] complexes.2, 3, 18  The EPR spectra of 2-Y, Figure 1.2, match those of 
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the previously-reported 1-Y and [K(18-crown-6)][Cp′3Y].2, 3  The g = 1.991 and A = 36.6 G at 

298 K arising from the I = ½ nucleus of 89Y are indistinguishable from those of 1-Y.  

 

Figure 1.2.  Experimental X-band EPR spectra of [Li(crypt)][Cp′3Y], 2-Y, dissolved in THF (10 

mM) collected at 298 K (top; mode: perpendicular; giso = 1.991; Aiso = 36.6 G; υ = 9.817 GHz; P 

= 0.0203; modulation amplitude = 0.902 mT) and 77 K (bottom; mode: perpendicular; g|| =  

2.001, g⊥= 1.987; A|| = 36.6 G, A⊥ = 36.6 G; υ = 9.436 GHz; P = 0.0640; modulation amplitude = 

0.902 mT) and analyzed using EasySpin.22   

 

The X-ray crystal structures of 2-Ln contain (Cp′3Ln)1− anions with a trigonal 

arrangement of the three cyclopentadienyl ring centroids. Structural parameters are 



18 
 

indistinguishable from those of 1-Ln (Table 1.1).  However, the structures of the [Li(crypt)]1+ 

cations are more unusual. 

 

Table 1.1.  [K(crypt)][Cpʹ3Ln], 1-Ln versus [Li(crypt)][Cpʹ3Ln], 2-Ln comparisons of selected 

bond distances (Å) and bond angles (°). 

 Ln−centroid  

Ave (Å) 

Ln−C  

Range (Å) 

centroid–Ln–centroid  

range (°) 

centroid–Ln–centroid  

ave (°) 

1-Y 2.436(6) 2.680(2)-2.750(2) 118.18-122.48 120.0(23) 

2-Y 2.438(14) 2.683(3)-2.755(4) 118.35-122.46 120.0(17) 

     

1-Tb 2.454(5) 2.699(2)-2.766(2) 118.26-123.14 120.0(22) 

2-Tb 2.455(12) 2.699(2)-2.770(2) 118.38-122.48 120.0(18) 

     

1-Dy 2.443(7) 2.686(3)-2.755(3) 118.29-123.16 120.0(22) 

2-Dy 2.445(12) 2.700(4)-2.755(5) 118.27-122.49 120.0(18) 

     

1-Ho 2.426(5) 2.678(2)-2.745(2) 118.25-123.14 120.0(22) 

2-Ho 2.425(13) 2.674(3)-2.741(4) 118.38-122.4 120.0(17) 

     

Reduction Under Dinitrogen.  When the reduction of Cp′3Y using Li is conducted under 

N2 at −35 °C, the EPR spectrum is identical to the spectrum of the [M(crypt)][Cp′3Y] (M = Li, 

K) complexes isolated from reactions under argon.  This was of considerable interest since many 

LnA3/M reductions (A = anion, M = alkali metal) under N2 form reduced dinitrogen complexes 

rather than isolable Ln(II) products, particularly with A = N(SiMe3)2, eq 1.2.7, 12, 13, 23-27  When 

the Cp′3Y/Li reaction under N2 warms to room temperature over 15 min, the previously reported 

complex [Cp′2(THF)Y]2(μ-η2:η2-N2), 3,2 is isolated in 39% yield and was identified by 1H NMR 
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spectroscopy.2  The dark Cp′3Y/Li solutions generated under N2 at −35 °C convert to the green 3 

at similar rates whether crypt is present or not.27 

These syntheses of 3 contrast with the Cp′3Y/K reaction under N2 at room temperature 

which gives some EPR active products rather than purely the diamagnetic (N=N)2− complex, 3.28  

The Cp′3Y/K reaction under N2 exhibited a 16-line EPR spectrum that was not easily modeled.  

Reinvestigation of the reduction of Cp′3Y with K under N2 revealed that it will form 3, but only 

at −78 °C.  These reactions emphasize the importance of both temperature and alkali metal in 

LnA3/M/substrate reactions.  The specific A ligand in these reactions is also important.  For 

example, reduction of (C5Me4H)3Y with K at room temperature forms the reduced dinitrogen 

complex, [(C5Me4H)2Y(THF)]2(μ-η2:η2-N2),
23 but it has not yet been possible to isolate the 

divalent complex, [(C5Me4H)3Y]1−.  Furthermore, the use of lithium in the reduction of amide 

analogues of Cp′3Y, namely Y[N(SiMe3)2]3, revealed that under N2 in THF at room temperature, 

both in the presence and absence of crypt, orange solutions are formed with EPR spectra Figure 

1.3 identical to the previously reported (N2)
3− complex,  

 

Figure 1.3.  Experimental X-band EPR spectra of [{[(Me3Si)2N]2(THF)Y}2(µ-η2:η2-N2)]
1− in 

THF collected at 298 K (mode: perpendicular; giso = 2.004; υ = 9.817 GHz; P = 0.0203; 

modulation amplitude = 0.902 mT). 
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[K(THF)6]{[(Me3Si)2N]2(THF)Y}2(µ-η2:η2-N2).
24Analysis of the orange product by 1H NMR 

spectroscopy revealed the presence of the (N2)
2− product {[(Me3Si)2N]2(THF)Y}2(µ-η2:η2-N2).

27, 

29  Mixtures of the  (N2)
3− and (N2)

2− products had previously been observed.19 

 Unusual Structures of the Li(crypt)1+ Cations.  Although the anions in 2-Ln are not 

unusual, the cations contain a rare coordination environment for lithium in crypt: the metal is 

coordinated with an N2O4 donor atom set.  Usually, lithium has a NO5 donor atom set in 

[Li(crypt)]1+ cations.30-34  Only one previous example of N2O4 coordination has been reported in 

the literature.35   

Lithium salts were also explored in ligand displacement reactions between lithium 

naphthalenide and Cp′3Tb and Cp′3Ho to determine the accessibility of compounds like 

[Cp′2Ln(ƞ4-C10H8)]
1−.36  The naphthalenide products were not isolated, but these reactions gave 

crystals of two products, [Li(crypt)][Cp′4Tb], 4, and [Li(crypt)][(Cp′3Ho)2(µ-H)], 5 (Figure 1.4), 

respectively, which are include here since few [Li(crypt)]1+ salts have been crystallographically 

characterized.  (Cpʹ4Ln)1− complexes are frequent by-products in rare-earth reduction reactions.36  

Hydrides are also observed by-products in rare-earth reduction systems.37  Complex 4 has Li in 

an NO5 coordination environment and 5 contains the first example of Li in an O6 coordination 

environment in crypt, Figure 1.4. 

 

Figure 1.4.  ChemDraw representations of 4 (left) and 5 (right) depicting Li in an NO5 and O6 

coordination environment, respectively. 
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 A full listing of all the Li–O and Li–N distances for the 2-Ln complexes as well as all 

currently known complexes containing [Li(crypt)]1+ cations is given in Table 1.4 of the 

Structural Details section of Chapter 1.  The eight distances in these complexes span a wide 

range, but they fall into two sets, one group of six with short distances in a similar range and two 

distances that are more than 0.5 Å longer with most in the 3-5 Å range. For comparison, Table 

1.2 lists the range of distances to the set of six donor atoms that have the shorter distances.  The 

average Li–N and Li–O bond distances for the 2-Ln complexes are similar to those reported for  

 

Table 1.2.  Li–O and Li–N bond distance ranges of complexes containing [Li(crypt)]1+.  

Compound Li–O (Å) Li–N (Å) NxOy 

This Study 

2-Y 2.061(7)-2.150(6) 2.437(7)-2.499(6) N2O4 

2-Tb 2.068(5)-2.159(4) 2.456(5)-2.474(4) N2O4 

2-Dy 2.06(1)-2.161(8) 2.44(1)-2.478(9) N2O4 

2-Ho 2.057(8)-2.158(7) 2.450(9)-2.485(8) N2O4 

4 2.082(6)-2.186(6) 2.233(4) NO5 

5 2.317(1) -- O6 

 

Previous Studies 

[Li(crypt)]2[LiF2B(C2O4)]
35 2.001(3)-2.187(4) 2.400(5)-2.443(4) N2O4 

 2.105(5)-2.405(3) 2.548(4) NO5 

[Li(crypt)][ClO4]
31 2.072(3)-2.497(3) 2.681(3) NO5 

[Li(crypt)]2[PtP4]
32 2.042(9)-2.64(1) 2.24(1) NO5 

 2.104(9)-2.617(9) 2.230(9) NO5 

[Li(crypt)][C5PMePh3]
34 2.093(8)-2.242(8) 2.244(8) NO5 

[Li(crypt)][C5P
tBuPh3]

34 2.081(3)-2.246(3) 2.254(3) NO5 

[Li(crypt)][CoAlN2]
30 2.09(1)-2.425(7) 2.554(6) NO5 

 

[Li(crypt)]2[LiF2B(C2O4)],which contains one [Li(crypt)]1+ cation with an N2O4 donor atom set 

and the other with an NO5 donor atom set.35  Bond distances for previously reported complexes 

with the NO5 donor atom set show large variability ranging from 2.042(9)-2.64(1) Å  for Li–O 

and 2.230(9)-2.681(3) Å for Li–N.  In contrast, as shown with 2-Ln, the N2O4 coordination sets 
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display rather similar distances from one compound to another.  The bond distances in the NO5 

coordination environment in 4 fall into the broad range of previously observed values of NO5-

coordinated complexes.  The unique example of O6 coordination observed in 5 is, interestingly, 

predicted to be the most stable coordination geometry for [Li(crypt)]1+ by density functional 

calculations.31 

Magnetic Susceptibility Studies. While the magnetic moments of traditional divalent 

4fn+1 ions can be predicted from the standard µeff = g[J(J+1)]1/2 formula, in the case of the non-

traditional divalent 4fn5d1 ions, two models have been proposed by the group of Jeffery Long at 

UC Berkeley to describe the magnetic interaction of the 4f and 5d electrons.17, 38  A “coupled 

model” assumes that spin-spin coupling is stronger than L-S coupling such that an overall spin of 

STOTAL = S4f + ½ is present, which couples to the orbital angular momentum, L, of the 4f 

electrons to produce a new J value, for which an expected magnetic moment can be calculated.  

An “uncoupled model” assumes that L-S coupling of the 4f electrons is much stronger than 

coupling of the 5d and 4f electrons.  In this model, a predicted χMT arises from the sum of the 

χMT value expected for the 5d electron (S = 1/2) plus that calculated from the J value determined 

from L-S coupling of the 4f electrons.  Magnetic measurements of the new lithium salts 

described here were used to further evaluate the ability of these models to assign electron 

configurations consistent with crystallographic, spectroscopic, and magnetic data. 

Table 1.3 shows the magnetic data for the 2-Ln complexes collected by Lucy E. Darago 

in the laboratory of Professor Jeffery R. Long at the University of California, Berkeley, along 

with data on the 1-Ln series.17  Calculated 𝜒MT values for 4fn+1 configurations as well as for the 

two models of the 4fn5d1 configurations are also included.17   

  



23 
 

Table 1.3.  Experimental and predicted (as described in text) 𝜒MT products at 298 K for 1-Ln 

and 2-Ln. 

 Exp. µeff
a Exp. 𝜒MT b 𝜒MT (4fn5d1) 

coupled 
𝜒MT (4fn5d1) 

uncoupled  
𝜒MT (4fn+1) 

1-Tb17 10.48 13.73 
14.42 12.20 14.13 2-Tb  10.58 13.99 

      

1-Dy17 11.35 16.10 
17.01 14.51 14.07 2-Dy 11.35 16.10 

      

1-Ho17 11.41 16.26 

16.9 14.45 11.48 2-Ho 11.67 17.01 

a Units of µB 

b All 𝜒MT data are reported in units of emu·K/mol and were collected under a field of 0.1 T. 

 Complex 2-Tb exhibits a 𝜒MT product of 13.99 emu K･mol–1 at 300 K, under an applied 

dc magnetic field of 0.1 T. This experimental room-temperature 𝜒MT product is somewhat lower 

than the expected value of 14.42 emu K･mol–1 for a Tb(II) ion with a coupled 4f85d1 electronic 

configuration.  An “uncoupled” 4f85d1 configuration is unlikely given that its predicted 𝜒MT 

product is substantially lower than that observed, while the crystallographic data are inconsistent 

with a 4f9 traditional divalent assignment. The slightly lower-than-expected 𝜒MT product may be 

attributed to strong crystal field splitting enforced by the cyclopentadienyl ligands, leading to 

incomplete population of the ground mJ manifold state even at room temperature.  A similar 𝜒MT 

product was observed for [K(crypt)][Cpʹ3Tb], 1-Tb.  

Similar to 2-Tb, complex 2-Dy exhibits a room-temperature 𝜒MT product of 16.10 emu K

･mol–1 under an applied dc magnetic field of 0.1 T, somewhat lower than the expected value of 

17.01 emu K･mol–1 for a Dy(II) ion with a coupled 4f95d1 electronic configuration.  However, it 

is identical to that of the complex [K(crypt)][Cpʹ3Dy], 1-Dy, and, again, a coupled 4f95d1 



24 
 

electron configuration assignment is favored.   The possibility of a multiconfigurational ground 

state may also be considered given the small energy difference between 4f10 and 4f95d1 

configurations anticipated for the Dy(II) ion.4  The holmium complex, 2-Ho, exhibits a 𝜒MT 

product of 17.01 emu K･mol–1 at 300 K, under an applied dc magnetic field of 0.1 T, in good 

agreement with the expected value of 16.9 emu K･mol–1 for a Ho(II) ion with a coupled 4f105d1 

electronic configuration, and again consistent with the value observed for [K(crypt)][Cpʹ3Ho], 1-

Ho. 

The 11.35 and 11.67 µB magnetic moments of 2-Dy and 2-Ho are additional examples of 

the large magnetic moments that can arise from the 4fn5d1 configurations of the Ln(II) ions in 

complexes such as 1-Ln and 2-Ln.  These complexes can display such high magnetic moments 

due to the large sum of their S and L values, which results in a large ground state, J.  Prior to the 

discovery of 1-Dy and 1-Ho, the highest magnetic moments observable for monometallic 

complexes arose from 4f9 and 4f10 configurations, with calculated values of 10.60 and 10.63 µB, 

respectively.39  Complexes 2-Dy and 2-Ho demonstrate that the results of 1-Dy and 1-Ho can be 

extended to other systems, in this case, those with lithium counter-cations.  

Conclusion 

Lithium has proven to be as effective as potassium in reducing Cp′3Ln complexes in the 

presence of 2.2.2-cryptand to form crystallographically-characterizable complexes, 

[Li(crypt)][Cp′3Ln], 2-Ln, of Dy(II) as well as of the non-traditional Y(II), Tb(II), and Ho(II) 

ions.  Complexes of the three later-lanthanide ions provide new examples on which to evaluate 

magnetic models for 4f-5d electron interactions in 4fn5d1 ions, and the Ho and Dy complexes 

provide new examples of single-ion magnetic moments over 11 µB.39  Dy(II) and Ho(II) have 

magnetic ground states, J, that arise from their combined S and L values.  The ions Dy(II) and 
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Ho(II) have the highest sums of S and L possible across both trivalent and non-traditional 

divalent lanthanide electron configurations, thereby yielding the highest possible magnetic 

moments according to the formula: µeff = g[J(J+1)]1/2.  The (Cp′3Ln)1– anions crystallize with 

[Li(crypt)]1+ cations that display unusual N2O4 donor atom coordination geometries. The first 

example of an O6 donor atom set in a [Li(crypt)]1+ cation was also identifiable through these 

studies, found in the complex [Li(crypt)][(Cp′3Ho)2(µ-H)], 5.  Comparison of reductions of 

Cp′3Y with Li versus K under N2 show the importance of the specific alkali metal reductant and 

the temperature in generating reduced dinitrogen complexes.   

Experimental Details 

All syntheses and manipulations described below were conducted under N2 or Ar with 

rigorous exclusion of air and water using glovebox, Schlenk-line, and high-vacuum-line 

techniques.  All Cp′3Ln (Ln = Y,2 Tb,3 Dy,4 Ho18) materials were prepared according to 

previously published literature.  2.2.2-Cryptand (4,7,13,16,21,24-hexaoxa-1,10- 

diazabicyclo[8.8.8]hexacosane, Aldrich) was placed under vacuum (10−3 Torr) for 12 h before 

use. Li metal (99+%) was purchased as granules from Strem and used as received.  Li(C10H8)
19 

and [Li(18-crown-6)(THF2)][C14H10]
20 were prepared according to the literature.  Solvents were 

sparged with UHP Ar and dried over columns containing Q-5 and molecular sieves.  Benzene-d6 

was dried over sodium−potassium alloy, degassed using three freeze-pump-thaw cycles, and 

vacuum transferred before use.  1H (500 MHz) NMR spectra were obtained on a Bruker GN500 

or CRYO500 MHz spectrometer at 25 °C in benzene-d6 unless otherwise stated.  IR samples 

were prepared as KBr pellets on a Varian 1000 FT-IR or a Jasco FT/IR-4700 spectrometer.  

Elemental analyses were performed on a PerkinElmer series II 2400 CHNS analyzer.  Electron 



26 
 

paramagnetic resonance spectra were collected using a Bruker EMX spectrometer equipped with 

an ER041XG microwave bridge in THF at 298 and 77 K. 

[Li(crypt)][Cp′3Y], 2-Y.  In an argon-filled glovebox, a cold (−35 °C) yellow solution of 

Cp′3Y (200 mg, 0.400 mmol) and 2.2.2-cryptand (150 mg, 0.40 mmol) in Et2O (3 mL) was added 

to a flask containing a smear of lithium metal. A dark maroon solution immediately formed.  

This solution was stirred for 15 min and filtered to remove excess lithium metal.  The filtered 

solution was placed in a freezer at −35 °C.  After 1 d, X-ray quality maroon crystals of 2-Y were 

isolated and washed with cold Et2O (−35 °C) (102 mg, 28%).  Crystalline yields are low due to 

the high solubility of these complexes.  IR: 3078w, 3060w, 2947s, 2919m, 2884s, 2814m, 

1477w, 1444w, 1399w, 1360m, 1354m, 1296m, 1256m, 1241s, 1175s, 1133s, 1105s, 1078s, 

1057m, 1038s, 1006w, 981w, 951m, 931m, 923m, 906m, 833s, 767m, 750s, 684w, 679m, 642w, 

629m cm−1.  Anal.  Calcd for C42H75LiN2O6Si3Y:  C, 57.05; H, 8.55; N, 3.17.  Found:  C, 57.11; 

H, 8.92; N, 2.95. 

 [Li(crypt)][Cp′3Tb], 2-Tb.  As described for 2-Y, a yellow solution of Cp′3Tb (200 mg, 

0.350 mmol) and 2.2.2-cryptand (132 mg, 0.35 mmol) added to excess Li produced a dark 

maroon solution.  A solution of 2-Tb in Et2O produced X-ray quality maroon crystals (102 mg, 

31%).  IR:  3080w, 3065w, 2949s, 2922m, 2883s, 2854m, 2818w, 1479w, 1470m, 1451m, 

1435m, 1402w, 1375w, 1360m, 1302m, 1292m, 1238s, 1194w, 1175s, 1128m, 1111s, 1103s, 

1080m, 1072m, 1038m, 945w, 930w, 924w, 903m, 831s, 806m, 762w, 745s, 679w, 629m cm−1.  

Anal.  Calcd for C42H75LiN2O6Si3Tb:  C, 52.87; H, 7.92.; N, 2.94.  Found:  C, 52.51; H, 7.75; N, 

2.91. 

 [Li(2.2.2-cryptand)][Cp′3Dy], 2-Dy.  As described for 2-Y, reaction of a yellow 

solution of Cp′3Dy (200 mg, 0.35 mmol) and 2.2.2-cryptand (131 mg, 0.35 mmol) with excess Li 
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produced a dark maroon solution.  A solution of 2-Dy in Et2O produced X-ray quality maroon 

crystals (120 mg, 36%).  IR:  3081w, 3052w, 2948s, 2924m, 2883s, 2814m, 2759w, 2730w, 

1477w, 1459w, 1451m, 1446m, 1435m, 1399w, 1360m, 1301m, 1292m, 1269w, 1237s, 1196w, 

1176s, 1132s, 1096s, 1079s, 1036s, 1010w, 1004w, 947m, 929m, 921m, 902s, 833s, 266m, 750s, 

737s, 727s, 679m, 631m, 625m, 605w, 604w cm−1.  Anal.  Calcd for C42H75LiN2O6Si3Dy:  C, 

52.67; H, 7.89; N, 2.92.  Found: C, 52.16; H, 7.76; N, 2.85. 

[Li(2.2.2-cryptand)][Cp′3Ho], 2-Ho.  As described for 2-Y, addition of a yellow 

solution of Cp′3Ho (200 mg, 0.350 mmol) and 2.2.2-cryptand (131 mg, 0.35 mmol) to excess Li 

produced a dark maroon solution.  A solution of 2-Ho in Et2O produced X-ray quality maroon 

crystals (123 mg, 37%).    IR:  3081w, 3060w, 2948s, 2923m, 2884s, 2816m 2757w, 2730w, 

1477w, 1456w, 1445w, 1398w, 1361m, 1355m, 1310w, 1294m, 1255m, 1239s, 1176s, 1132s, 

1105s, 1179s, 1038s, 1006w, 950m, 930m, 922w, 906m, 903m, 831s, 768m, 751s, 683w, 641w, 

631m cm−1.  Anal.  Calcd for C42H75LiN2O6Si3Ho:  C, 52.54; H, 7.87; N, 2.92.  Found:  C, 51.94; 

H, 7.84; N, 3.17. 

[Cp′2(THF)Y]2(μ-η2:η2-N2), 3.  This synthesis is an improved version of a previously 

published procedure.2  An H-shaped tube (two 20 cm vertical tubes with 2 cm diameter 

connected at the center by a 15 cm horizontal tube with a 2 cm diameter containing a frit in the 

center) under N2 was charged with THF (10 mL) on one side and Cp′3Y (200 mg, 0.399 mmol) 

with excess pinched Li pellets (8 mg, 1.2 mmol) on the other.  THF was condensed onto the 

solids using a −78 °C dry ice bath.  A dark purple solution immediately formed and was stirred 

for 1 h at −78 °C.  The purple solution remains stable up to −35 °C, but warming to room 

temperature resulted in a light green solution.  The H-tube was taken into an N2 glovebox and the 

green solution was decanted from unreacted Li.  Addition of hexanes (5 mL) formed a green 
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precipitate.  Solvent was removed in vacuo and the solids were washed with hexanes yielding a 

light green powder, 3 (141 mg, 39%), identified by 1H NMR spectroscopy.2  1H NMR (C6D6): δ 

6.20 (t, C5H4SiMe3, 8H), 5.94 (t, C5H4SiMe3, 8H), 0.49 (s, C5H4SiMe3, 36H).  Full 

characterization of this complex is in the literature.2 

Magnetic Measurements.  Magnetic susceptibility data were obtained by SQUID 

magnetometry.  Samples were prepared by adding crystalline powder of 2-Tb (14.7 mg), 2-Dy 

(15.1 mg), or 2-Ho (13.4 mg) to a 5 mm inner diameter quartz tube containing a raised quartz 

platform.  Solid eicosane was added to cover the sample to prevent crystallite torqueing and 

provide good thermal contact between the sample and the cryostat.  The tubes were fitted with 

Teflon sealable adapters, evacuated on a Schlenk line, and flame-sealed under static vacuum.  

Following flame sealing, the solid eicosane was melted in a water bath held at 40 °C.  Magnetic 

susceptibility measurements were performed using a Quantum Design MPMS XL SQUID 

magnetometer.  Dc magnetic susceptibility measurements were collected in the temperature 

range 2 – 300 K under applied magnetic fields of 0.1, 0.5, and 1 T.  Diamagnetic corrections 

were applied to the data using Pascal’s constants to give χD = –0.00056909 emu/mol (2-Tb), χD = 

–0.00056909 emu/mol (2-Dy), χD = –0.00056909 emu/mol (2-Ho), and χD = –0.00024036 

emu/mol (eicosane).  
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Figure 1.5.  Plot of the magnetic susceptibility (left) times temperature (χMT) versus temperature 

(K) for 2-Tb (red circles, 0.1 T; pink circles, 0.5 T, black circles, 1 T).  Solid black line 

corresponds to the theoretical room temperature χMT value for a coupled 4f85d1 electronic 

configuration.  Magnetic hysteresis measurement (right) of 2-Tb at 2 K.   

 

Figure 1.6.  Plot of the magnetic susceptibility (left) times temperature (χMT) versus temperature 

(K) for 2-Dy (green circles, 0.1 T; pink circles, 0.5 T, black circles, 1 T).  Solid black line 

corresponds to the theoretical room temperature χMT value for a coupled 4f95d1 electronic  

configuration.  Magnetic hysteresis measurement (right) of 2-Dy at 2 K. 
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Figure 1.7.  Plot of the magnetic susceptibility (left) times temperature (χMT) versus temperature 

(K) for 2-Ho (blue circles, 0.1 T; pink circles, 0.5 T, black circles, 1 T).  Solid black line 

corresponds to the theoretical room temperature χMT value for a coupled 4f105d1 electronic 

configuration. Magnetic hysteresis measurement (right) of 2-Ho at 2 K. 

 Comments on Magnetic Data of 2-Tb, 2-Dy, and 2-Ho. Ac magnetic susceptibility 

measurements on 2-Tb, 2-Dy, and 2-Ho collected at 2 K from 1 – 1500 Hz and under applied dc 

magnetic fields of 0-0.4 T did not reveal any out out-of-phase peaks, indicating an absence of 

slow magnetic relaxation behavior. The saturation magnetizations at 2 K and 7 T for 2-Tb, 2-Dy, 

and 2-Ho, respectively, are 5.87 µB, 5.84 µB, and 6.25 µB .  

Structural Details 

 X-ray Data Collection, Structure Solution and Refinement for 2-Y, 

[Li(crypt)][Cpʹ3Y].  A purple crystal of approximate dimensions 0.169 x 0.322 x 0.440 mm was 

mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX240 program package was used to determine the unit-cell parameters and for data 

collection (20 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 

processed using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL43 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 
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triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved using the coordinates of the isomorphous terbium complex and refined on F2 by full-

matrix least-squares techniques.  The analytical scattering factors44 for neutral atoms were used 

throughout the analysis.  Hydrogen atoms were included using a riding model.  At convergence, 

wR2 = 0.1321 and Goof = 0.980 for 505 variables refined against 11220 data (0.80Å), R1 = 

0.0525 for those 7702 data with I > 2.0(I).  Based on the isomorphous terbium complex and 

from residual peaks observed in the difference-Fourier map, it appeared that tetrahydrofuran and 

diethylether solvent molecules were present.  Suitable models for the disordered solvents were 

unsatisfactory so the SQUEEZE46a routine in the PLATON46b program package was used to 

account for the electrons in the solvent accessible voids.   

 X-ray Data Collection, Structure Solution and Refinement for 2-Tb, 

[Li(crypt)][Cpʹ3Tb].  A purple crystal of approximate dimensions 0.268 x 0.275 x 0.335 mm 

was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX240 program package was used to determine the unit-cell parameters and for data 

collection (20 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 

processed using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL43 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved by dual space methods and refined on F2 by full-matrix least-squares techniques.  The 

analytical scattering factors44 for neutral atoms were used throughout the analysis.  Hydrogen 

atoms were included using a riding model.  There were tetrohydrofuran and diethylether solvent 

molecules present.  One solvent void was included as a composition of ½ tetrahydrofuran and ½ 



32 
 

diethylether.  The other void contained a disordered diethylether located about an inversion 

center.  Solvent molecules were included using partial site-occupancy-factors and isotropic 

thermal parameters.  At convergence, wR2 = 0.0693 and Goof = 1.072 for 569 variables refined 

against 13425 data (0.73Å), R1 = 0.0262 for those 12489 data with I > 2.0(I). 

 X-ray Data Collection, Structure Solution and Refinement for 2-Dy, 

[Li(crypt)][Cpʹ3Dy].  A purple crystal of approximate dimensions 0.170 x 0.176 x 0.243 mm 

was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX240 program package was used to determine the unit-cell parameters and for data 

collection (20 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 

processed using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL43 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved using the coordinates of the isomorphous terbium complex and refined on F2 by full-

matrix least-squares techniques.  The analytical scattering factors44 for neutral atoms were used 

throughout the analysis.  Hydrogen atoms were included using a riding model.  At convergence, 

wR2 = 0.1199 and Goof = 0.990 for 505 variables refined against 13127 data (0.75Å), R1 = 

0.0477 for those 9880 data with I > 2.0(I). 

Based on the isomorphous terbium complex and from residual peaks observed in the difference-

Fourier map, it appeared that tetrohydrofuran and diethylether solvent molecules were present.  

Suitable models for the disordered solvents were unsatisfactory so the SQUEEZE46a routine in 

the PLATON46b program package was used to account for the electrons in the solvent accessible 

voids. 
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 X-ray Data Collection, Structure Solution and Refinement for 2-Ho, 

[Li(crypt)][Cpʹ3Ho].  A purple crystal of approximate dimensions 0.171 x 0.176 x 0.337 mm 

was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX240 program package was used to determine the unit-cell parameters and for data collection 

(30 sec/frame scan time for a sphere of diffraction data).  The raw frame data was processed 

using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent calculations were 

carried out using the SHELXTL43 program.  There were no systematic absences nor any 

diffraction symmetry other than the Friedel condition.  The centrosymmetric triclinic space 

group P1  was assigned and later determined to be correct.  The structure was solved using the 

coordinates of the isomorphous terbium complex and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors44 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  At convergence, wR2 = 0.0858 

and Goof = 1.000 for 505 variables refined against 11160 data (0.80Å), R1 = 0.0371 for those 

9028 data with I > 2.0(I).  Based on the isomorphous terbium complex and from residual peaks 

observed in the difference-Fourier map, it appeared that tetrohydrofuran and diethylether solvent 

molecules were present.  Suitable models for the disordered solvents were unsatisfactory so the 

SQUEEZE46a routine in the PLATON46b program package was used to account for the electrons 

in the solvent accessible voids.   

 X-ray Data Collection, Structure Solution and Refinement for 4, 

[Li(crypt)][Cpʹ4Tb].  A blue crystal of approximate dimensions 0.220 x 0.338 x 0.419 mm was 

mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX240 program package was used to determine the unit-cell parameters and for data 

collection (15 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 
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processed using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL43 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved by direct methods and refined on F2 by full-matrix least-squares techniques.  The 

analytical scattering factors44 for neutral atoms were used throughout the analysis. H(26A) was 

located from a difference-Fourier map and refined (x,y,z, riding Uiso).  All remaining hydrogen 

atoms were included using a riding model.  At convergence, wR2 = 0.0722 and Goof = 1.049 for 

592 variables refined against 13743 data (0.73Å), R1 = 0.0281 for those 12535 data with I > 

2.0(I). 

 X-ray Data Collection, Structure Solution and Refinement for 5, 

[Li(crypt)][(Cpʹ2Ho)2µ-H].  A brown crystal of approximate dimensions 0.260 x 0.339 x 0.400 

mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  

The APEX240 program package was used to determine the unit-cell parameters and for data 

collection (20 sec/frame scan time for a hemisphere of diffraction data).  The raw frame data was 

processed using SAINT41 and SADABS42 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL43 program.  The systematic absences were 

consistent with the cubic space group P4132 that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors44 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms located from a difference-map and refined (xyz and Uiso).  The 

molecule and counter-ion were located on sites of 32 symmetry.  Least-squares analysis yielded 

wR2 = 0.0324 and Goof = 1.054 for 203 variables refined against 3591 data (0.78Å), R1 = 
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0.0132 for those 3435 data with I > 2.0(I).  The absolute structure was assigned by refinement 

of the Flack parameter45.  There were residuals present in the final difference-Fourier map.  The 

SQUEEZE46a routine in the PLATON46b program package was used to account for the electrons 

in the solvent accessible voids. 

 

Table 1.4. Listing of all the Li–O and Li–N distances (Å) for the [Li(crypt)][Cpʹ3Ln]  

(2-Ln), [Li(crypt)][Cpʹ4Tb] (4), and [Li(crypt)][(Cpʹ3Ho)2(u-H)] (5) complexes and all currently 

known complexes containing [Li(crypt)]1+ cations.  Longer distances are highlighted in gray. 

This Work O1 O2 O3 O4 O5 O6 N1 N2 NxOy 

[Li(crypt)][Cp'3Y] 2.128 2.061 2.078 2.150 3.810 4.652 2.437 2.499 N2O4 

[Li(crypt)][Cp'3Tb] 2.122 2.068 2.068 2.159 3.786 4.658 2.474 2.456 N2O4 

[Li(crypt)][Cp'3Dy] 2.140 2.080 2.058 2.161 3.802 4.645 2.444 2.478 N2O4 

[Li(crypt)][Cp'3Ho] 2.114 2.057 2.073 2.158 3.807 4.644 2.450 2.485 N2O4 

[Li(crypt)][Cp'4Tb] 2.186 2.082 2.161 2.110 2.103 4.465 2.233 3.551 NO5 

[Li(crypt)][(Cp'3Ho)2(u-H)] 2.317 2.317 2.317 2.317 2.317 2.317 2.846 2.846 O6 

Other Work                   

[Li(crypt)][ClO4]31 2.326 2.265 2.076 2.933 2.497 2.072 2.681 3.030 NO5 

[Li(crypt)]2[PtP4]32 2.140 2.133 4.387 2.638 2.155 2.042 2.238 3.568 NO5 

  2.104 2.175 3.694 2.617 2.180 2.126 2.230 3.616 NO5 

[Li(crypt)][C5P(Ph3)]THF34 2.148 2.115 2.093 2.242 2.197 4.414 2.244 3.489 NO5 

[Li(crypt)][C5P(Ph3)]34 2.246 2.083 2.181 2.108 2.081 4.397 2.254 3.478 NO5 

[Li(crypt)][CoAlN2]30 2.114 2.425 2.091 3.928 2.151 2.215 3.264 2.554 NO5 

[Li(crypt)]2[Liboro(oxalates)]35 2.157 2.025 2.001 2.187 4.561 3.957 2.400 2.443 N2O4 

  2.346 2.339 2.405 2.175 2.105 2.946 2.548 3.005 NO5 

 

References 

(1) Hitchcock, P. B.; Lappert, M. F.; Maron, L.; Protchenko, A. V. Lanthanum Does Form 

Stable Molecular Compounds in the +2 Oxidation State. Angew.Chem. Int. Ed. 2008, 47, 1488-

1491. 

(2) MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Synthesis of a Crystalline Molecular 

Complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J. Am. Chem. Soc. 2011, 133, 15914-15917. 

(3) MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Completing the 

Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, 

Tb2+, and Lu2+. J. Am. Chem. Soc. 2013, 135, 9857-9868. 

 

(4) Fieser, M. E.; MacDonald, M. R.; Krull, B. T.; Bates, J. E.; Ziller, J. W.; Furche, F.; 

Evans, W. J. Structural, Spectroscopic, and Theoretical Comparison of Traditional vs Recently 



36 
 

Discovered Ln2+ Ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] Complexes: The Variable 

Nature of Dy2+ and Nd2+. J. Am. Chem. Soc. 2015, 137, 369-382. 

 

(5) Fieser, M. E. Dissertation. Spectroscopic and Computational Analysis of Rare Earth and 

Actinide Complexes In Unusual Coordination Environments and Oxidation States.  University of 

California, Irvine, 2015. 

 

(6) Windorff, C. J.; MacDonald, M. R.; Meihaus, K. R.; Ziller, J. W.; Long, J. R.; Evans, W. 

J. Expanding the Chemistry of Molecular U2+ Complexes: Synthesis, Characterization, and 

Reactivity of the {[C5H3(SiMe3)2]3U}− Anion. Chemistry – A European Journal 2016, 22, 772-

782. 

 

(7) Gun'ko, Y. K.; Hitchcock, P. B.; Lappert, M. F. Activation of a C-O bond by reaction of 

a tris(cyclopentadienyl)lanthanide complex with an alkali metal in dimethoxyethane (DME); 

crystal structures of [Nd{η-C5H3(SiMe3)2-1,3}2(μ-OMe)2Li(DME)] and [{Ce(η-C5H3
tBu2-

1,3)2(μ-OMe)}2]. J. Organomet. Chem. 1995, 499, 213-219. 

 

(8) Cassani, M. C.; Duncalf, D. J.; Lappert, M. F. The First Example of a Crystalline 

Subvalent Organolanthanum Complex:  [K([18]crown-6)- (η2-C6H6)2][(LaCptt
2)2(μ-η6:η6-

C6H6)]•2C6H6 (Cptt = η5-C5H3But
2-1,3). J. Am. Chem. Soc. 1998, 120, 12958-12959. 

 

(9) Jaroschik, F.; Nief, F.; Le Goff, X.-F.; Ricard, L. Isolation of Stable 

Organodysprosium(II) Complexes by Chemical Reduction of Dysprosium(III) Precursors. 

Organometallics 2007, 26, 1123-1125. 

 

(10) Jaroschik, F.; Momin, A.; Nief, F.; Le Goff, X.-F.; Deacon, G. B.; Junk, P. C. Dinitrogen 

Reduction and C-H Activation by the Divalent Organoneodymium Complex [(C5H2
tBu3)2Nd(μ-

I)K([18]crown-6)]. Angew. Chem. 2009, 121, 1137-1141. 

 

(11) Fieser, M. E.; Palumbo, C. T.; La Pierre, H. S.; Halter, D. P.; Voora, V. K.; Ziller, J. W.; 

Furche, F.; Meyer, K.; Evans, W. J. Comparisons of lanthanide/actinide +2 ions in a 

tris(aryloxide)arene coordination environment. Chemical Science 2017, 8, 7424-7433. 

 

(12) Evans, W. J.; Dominguez, R.; Levan, K. R.; Doedens, R. J. Synthesis and X-ray crystal 

structure of a dialkyldicyclopentadienylyttrium complex: 

{(C5H5)2Y[CH2Si(CH3)3]2}2Li2(CH3OCH2CH2OCH3)2(C4H8O2). Organometallics 1985, 4, 1836-

1841. 

 

(13) Lappert, M. F.; Singh, A.; Engelhardt, L. M.; White, A. H. X-ray structure of a derivative 

of the “simplest metallocene: Cyclopentadienyllithium”, [Li{η-

C5H4(SiMe3)}{NMe2(CH2)2NMe2}] (i.e., LiCp′(TMEDA)). J. Organomet. Chem. 1984, 262, 

271-278. 

 

(14) Zheng, P.; Hong, J.; Liu, R.; Zhang, Z.; Pang, Z.; Weng, L.; Zhou, X. Synthesis and 

Reactivities of Guanidinate Dianion Complexes of Heterobimetallic Lanthanide−Lithium 

Cp2Ln[(CyN)2CNPh]Li(THF)3. Organometallics 2010, 29, 1284-1289. 



37 
 

 

(15) Lu, X.-H.; Ma, M.-T.; Yao, Y.-M.; Zhang, Y.; Shen, Q. Controlled synthesis of 

lanthanide–lithium inverse crown ether complexes. Inorg. Chem. Commun. 2010, 13, 1566-1568. 

 

(16) Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. Heterobimetallic complexes of lanthanide and 

lithium metals with dianionic guanidinate ligands: Syntheses, structures and catalytic activity for 

amidation of aldehydes with amines. J. Organomet. Chem. 2010, 695, 747-752. 

 

(17) Meihaus, K. R.; Fieser, M. E.; Corbey, J. F.; Evans, W. J.; Long, J. R. Record High 

Single-Ion Magnetic Moments Through 4fn5d1 Electron Configurations in the Divalent 

Lanthanide Complexes [(C5H4SiMe3)3Ln]-. J. Am. Chem. Soc. 2015, 137, 9855-60. 

 

(18) MacDonald, M. R.; Bates, J. E.; Fieser, M. E.; Ziller, J. W.; Furche, F.; Evans, W. J. 

Expanding Rare-Earth Oxidation State Chemistry to Molecular Complexes of Holmium(II) and 

Erbium(II). J. Am. Chem. Soc. 2012, 134, 8420-8423. 

 

(19) Screttas, C. G.; Micha-Screttas, M. Single-titration method for the determination of 

lithium naphthalenide in tetrahydrofuran. J. Organomet. Chem. 1983, 252, 263-265. 

 

(20) Castillo, M.; Metta-Magaña, A. J.; Fortier, S. Isolation of gravimetrically quantifiable 

alkali metal arenides using 18-crown-6. New J. Chem. 2016, 40, 1923-1926. 

 

(21) Huh, D. N.; Kotyk, C. M.; Gembicky, M.; Rheingold, A. L.; Ziller, J. W.; Evans, W. J. 

Synthesis of rare-earth-metal-in-cryptand dications, [Ln(2.2.2-cryptand)]2+, from Sm2+, Eu2+, and 

Yb2+ silyl metallocenes (C5H4SiMe3)2Ln(THF)2. Chem. Commun. 2017, 53, 8664-8666. 

 

(22) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral 

simulation and analysis in EPR. J. Magn. Reson. 2006, 128, 42-55. 

 

(23) Lorenz, S. E.; Schmiege, B. M.; Lee, D. S.; Ziller, J. W.; Evans, W. J. Synthesis and 

Reactivity of Bis(tetramethylcyclopentadienyl) Yttrium Metallocenes Including the Reduction of 

Me3SiN3 to [(Me3Si)2N]− with [(C5Me4H)2Y(THF)]2(μ-η2:η2-N2). Inorg. Chem. 2010, 49, 6655-

6663. 

 

(24) Evans, W. J.; Fang, M.; Zucchi, G.; Furche, F.; Ziller, J. W.; Hoekstra, R. M.; Zink, J. I. 

Isolation of Dysprosium and Yttrium Complexes of a Three-Electron Reduction Product in the 

Activation of Dinitrogen, the (N2)
3− Radical. J. Am. Chem. Soc. 2009, 131, 11195-11202. 

 

(25) Evans, W. J.; Lee, D. S.; Rego, D. B.; Perotti, J. M.; Kozimor, S. A.; Moore, E. K.; Ziller, 

J. W. Expanding Dinitrogen Reduction Chemistry to Trivalent Lanthanides via the LnZ3/Alkali 

Metal Reduction System:  Evaluation of the Generality of Forming Ln2(μ-η2:η2-N2) Complexes 

via LnZ3/K. J. Am. Chem. Soc. 2004, 126, 14574-14582. 

 

(26) Evans, W. J.; Lee, D. S.; Ziller, J. W. Reduction of Dinitrogen to Planar Bimetallic M2(μ-

η2:η2-N2) Complexes of Y, Ho, Tm, and Lu Using the K/Ln[N(SiMe3)2]3 Reduction System. J. 

Am. Chem. Soc. 2004, 126, 454-455. 



38 
 

 

(27) Fieser, M. E.; Woen, D. H.; Corbey, J. F.; Mueller, T. J.; Ziller, J. W.; Evans, W. J. 

Raman spectroscopy of the N-N bond in rare earth dinitrogen complexes. Dalton Trans. 2016, 

45, 14634-14644. 

 

(28) MacDonald, M. R. Dissertation. Expanding the Redox Chemistry of Yttrium, the 

Lanthanides, and Uranium through Synthesis and Reactivity of Bis-, Tris-, and Tetrakis-

(Trimethylsilylcyclopentadienyl) Complexes.  University of California, Irvine, 2013. 

 

(29) Fang, M.; Lee, D. S.; Ziller, J. W.; Doedens, R. J.; Bates, J. E.; Furche, F.; Evans, W. J. 

Synthesis of the (N2)
3− Radical from Y2+ and Its Protonolysis Reactivity To Form (N2H2)

2− via 

the Y[N(SiMe3)2]3/KC8 Reduction System. J. Am. Chem. Soc. 2011, 133, 3784-3787. 

 

(30) Rudd, P. A.; Planas, N.; Bill, E.; Gagliardi, L.; Lu, C. C. Dinitrogen Activation at Iron 

and Cobalt Metallalumatranes. Eur. J. Inorg. Chem. 2013, 2013, 3898-3906. 

 

(31) Guzei, I. A.; Spencer, L. C.; Su, J. W.; Burnette, R. R. Low-temperature enantiotropic k2 

phase transition in the ionic 222-cryptand complex with LiClO4. Acta Cryst. 2007, 63, 93-100. 

 

(32) Tirla, C.; Mézailles, N.; Ricard, L.; Mathey, F.; Le Floch, P. Dianionic 

Platinadiphospholene Complexes. Inorg. Chem. 2002, 41, 6032-6037. 

 

(33) Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Coordination chemistry of lithium 

ion: a crystal and molecular structure review. Chem. Rev. 1991, 91, 137-164. 

 

(34) Moores, A.; Ricard, L.; Le Floch, P.; Mézailles, N. First X-ray Crystal Study and DFT 

Calculations of Anionic λ4-Phosphinines. Organometallics 2003, 22, 1960-1966. 

 

(35) Han, S.-D.; Allen, J. L.; Jónsson, E.; Johansson, P.; McOwen, D. W.; Boyle, P. D.; 

Henderson, W. A. Solvate Structures and Computational/Spectroscopic Characterization of 

Lithium Difluoro(oxalato)borate (LiDFOB) Electrolytes. J. Phys. Chem. C 2013, 117, 5521-

5531. 

 

(36) Kotyk, C. M.; MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Reactivity of the Ln2+ 

Complexes [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln]: Reduction of Naphthalene and Biphenyl. 

Organometallics 2015, 34, 2287-2295. 

 

(37) Gun'ko, Y. K.; Hitchcock, P. B.; Lappert, M. F. Nonclassical Organolanthanoid Metal 

Chemistry:  [K([18]-crown-6)(η2-PhMe)2]X (X = [(LnCpt
3)2(μ-H)], [(LnCp″2)2(μ-η6:η6-PhMe)]) 

from [LnCpx
3], K, and [18]-crown-6 in Toluene (Ln = La, Ce; Cpt = η5-C5H4SiMe2But; Cp′′ = η5-

C5H3(SiMe3)2-1,3). Organometallics 2000, 19, 2832-2834. 

 

(38) Anderson, D. M.; Cloke, F. G. N.; Cox, P. A.; Edelstein, N.; Green, J. C.; Pang, T.; 

Sameh, A. A.; Shalimoff, G. On the stability and bonding in bis(ƞ-arene)lanthanide complexes. 

J. Chem. Soc., Chem. Commun. 1989, 53-55. 

 



39 
 

(39) Jiang, S.-D.; Wang, B.-W.; Gao, S. In Molecular Nanomagnets and Related Phenomena; 

Gao, S., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp 111-141. 

 

(40) APEX2  Version 2014.11-0, Bruker AXS, Inc.; Madison, WI  2014. 

   

(41) SAINT  Version 8.34a, Bruker AXS, Inc.; Madison, WI  2013. 

   

(42) Sheldrick, G. M. SADABS, Version 2014/5, Bruker AXS, Inc.; Madison, WI  2014.  

   

(43) Sheldrick, G. M. SHELXTL, Version 2014/7, Bruker AXS, Inc.; Madison, WI  2014.  

 

(44) International Tables for Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic 

Publishers. 

 

(45) Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in 

absolute structure refinement. Acta Cryst. 2013, B69, 249-259. 

 

(46) (a) Spek, A.L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent 

contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9-19., (b) Spek, A. L.  

Structure validation in chemical crystallography. Acta. Cryst. 2009, D65, 148-155 
  



40 
 

CHAPTER 2 

Chelate-Free Synthesis of the U(II) Complex, [(C5H3(SiMe3)2)3U]1–, using Li and Cs 

Reductants and Comparative Studies of La(II) and Ce(II) Analogs 

 

Introduction* 

 One of the fundamental properties of any element is the range of oxidation states 

accessible for molecular chemistry.  The range of oxidation states accessible to the actinide 

metals was expanded by the discovery of the first crystalline molecular examples of complexes 

containing the Th(II),1 U(II),2-4 Pu(II),5 and Np(II)6 ions as well as solution reductive chemistry 

consistent with Np(II).7  Many of these complexes were obtained by reduction of tris(silyl-

substituted)cyclopentadienyl actinide complexes, Cp″3An [An = Th, U, Pu, Np; Cp″ = 

C5H3(SiMe3)2] and Cpʹ3U (Cpʹ = C5H4SiMe3), with potassium in the presence of a chelate, 2.2.2-

cryptand (crypt), generating [K(crypt)][Cp″3An] and [K(crypt)][Cpʹ3U], eq 2.1. 

 

A U(II) complex was also synthesized by reduction of the U(III) tris(aryloxide)mesitylene 

ligated complex, [(Ad,MeArO)3mes]U, again with potassium in the presence of crypt3.  However,  

Meyer and coworkers have also shown the reversible U(III)/U(II) electrochemical reduction 

*Portions of this chapter have been published: Huh, D. N.; Ziller, J. W.; Evans, W. J. Chelate-Free Synthesis of the 

U(II) Complex, [(C5H3(SiMe3)2)3U]1–, using Li and Cs Reductants and Comparative Studies of La(II) and Ce(II) 

Analogs. Inorg. Chem., 2018, 57, 11809-11814. DOI:  10.1021/acs.inorgchem.8b01966 
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without the support of [K(crypt)]1+ in solution.8   The (Cp″3U)1– anion in eq 2.1 was also isolated 

in crystalline form by reduction with potassium and sodium in the presence of crown ethers, i.e., 

as salts of [K(18-crown-6)(THF)2]
1+, [Na(18-crown-6)(THF)2]

1+, and [Na(12-crown-4)2]
1+.4   

 In general, it had been assumed that the crypt and crown chelates add stability to these 

highly reactive An(II) complexes by sequestering the alkali metal cations which aids in the 

isolation of crystalline products.  These chelates were also used to make analogous lanthanide 

complexes, [M(chelate)][Cpx
3Ln] where M = Li, Na, K;9, 10 chelate = 2.2.2-cryptand, 18-crown-

6; Cpx = Cpʹ,9-13  Cp″,14 C5H3(CMe3)2,
15, 16 and C5H2(CMe3)3,

17, 18; Ln = lanthanide and  yttrium.  

 The synthesis of An(II) complexes of the transuranic metals, e.g. Np, Pu, and Am, is 

challenging due to the radioactivity of these elements.  The reactions generally are conducted on 

a small scale for both logistical and safety reasons.  Since some of these elements are available in 

only small amounts, it is desirable to miminize the number of experiments conducted and to 

optimize the reaction conditions.  Success in the synthesis of [K(2.2.2-cryptand)][Cp″3Pu]5 was 

aided by prior examination of analogous lanthanide reactions with the larger lanthanides, La and 

Ce, that have radial sizes similar to those of the actinides.19 

 One goal of this research was to develop new options for synthesizing complexes of 

An(II) ions particularly using alkali metals other than the common Na and K and exploring 

reactions in which the alkali metal chelate is not present.  It was found that Li could be a viable 

reducing agent for the formation of Ln(II) complexes.13  Here, it is discussed how lithium can 

also be used to make isolable U(II) complexes in the absence of a chelate.  The chelate-free 

reaction was first investigated with the uranium mimics, La and Ce, and these complexes are also 

described here.   The efficacy of the largest non-radioactive alkali metal, cesium, was also 

evaluated in the absence of chelates.  Color changes consistent with reduction are observed in 
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these cases and a crystallographically-characterizable product was isolated as a polymeric U(II) 

complex. 

Results and Discussion 

The Actinide Mimics, La and Ce.  Cp″3La and Cp″3Ce are reduced by lithium in the 

absence of a chelating agent in THF to form the La(II) and Ce(II) complexes, 

[Li(THF)4][Cpʺ3La], 6-La, and [Li(THF)4][Cpʺ3Ce], 6-Ce, respectively, eq 2.2.  Each complex 

has an intense maroon 

 

color as was previously observed for the [K(crypt)]1+ salts of the La(II) and Ce(II) complexes, 

[K(crypt)][Cpʹ3Ln]10 and [K(crypt)][Cp″3Ln].10, 14  Both 6-La and 6-Ce were identified by X-ray 

crystallography, Figure 2.1, and are isomorphous.   

 

Figure 2.1.  ORTEP representation of [Li(THF)4][Cpʺ3La], 6-La, with thermal ellipsoids drawn 

at the 50% probability level.  Hydrogen atoms were omitted for clarity.  
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The EPR spectrum of 6-La in THF is identical to the previously reported eight line spectra of 

[K(18-crown-6)][Cp″3La] and [K(2.2.2-cryptand)][Cp″3La]14 with gave = 1.97 and Aave = 133.7 G 

arising from the I = 7/2 nucleus of 139La, Figure 2.2.  The UV-Vis spectra of 6-La and 6-Ce are 

also similar to those of [K(crypt)][Cp″3Ln],14, 25 Figure 2.3.   

 

Figure 2.2.  Experimental X-band EPR spectra of [Li(THF)4][Cpʺ3La], 6-La,  in THF collected 

at 298 K (mode: perpendicular; gave = 1.97; Aave = 133.7 G; υ = 9.817 GHz; P = 0.0203; 

modulation amplitude = 0.902 mT). 

 

Figure 2.3.  UV-Vis spectrum of ~5 mM 6-La (red) and 6-Ce (blue) in THF. 
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In both 6-La and 6-Ce, the [Li(THF)4]
1+ cation is well-separated from the (Cp″3Ln)1− 

anion.  The metrical parameters of the (Cp″3Ln)1− anions are nearly identical to those of the 

anions in [K(crypt)][Cp″3Ln]14 and [K(18-crown-6)][Cp″3Ln],14 Table 2.1. The Ln−centroid 

distances of 6-Ln are only 0.02-0.03 Å larger than those in the Cp″3Ln precursors, Table 2.1, 

which is characteristic of 4fn5d1 electron configurations of Ln(II) ions as previously noted. 26, 27    

 

Table 2.1.  M−centroid bond distance averages and ranges of Cp″3M and (Cp″3M)1−  

(M = La, Ce, U).     

 
Average (Å) Range (Å) 

Cp″3La26 2.60(1) 2.586-2.615 

[K(crypt)][Cp″3La]14 2.62(2) 2.606-2.642 

[K(18-crown-6)][Cp″3La]14 2.63(2) 2.629-2.634 

6-La 2.63(1) 2.608-2.638 

   

Cp″3Ce27 2.57(2) 2.542-2.579 

[K(18-crown-6)][Cp″3CeIII][Cp″3CeII]14 2.569(3) 2.565-2.572 

[K(18-crown-6)][Cp″3CeIII][Cp″3CeII]14 2.600(3) 2.596-2.603 

6-Ce 2.60(1) 2.577-2.607 

   
Cp″3U

28 2.54(2) 2.507-2.561 

6-U 2.56(1) 2.541-2.566 

 

 The [Li(THF)4]
1+ cations in 1-La and 1-Ce have Li−O bond distances ranging from 

1.900(4) to 1.953(4) Å.  These are in the range of previously reported structures of salts 

containing the [Li(THF)4]
1+ cation.29-32  

  A Chelate-Free U(II) Complex.  The successful chelate-free reductions of Cp″3La and 

Cp″3Ce complexes encouraged the examination of the Cp″3U analog since the radial size of 6-

coordinate U(III) is 1.025 Å versus 1.032 and 1.010 Å for La(III) and Ce(III), respectively.33  
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The analogous reaction of Cp″3U with a lithium smear in THF followed by the crystallization 

methods used for 6-Ln, yielded crystals of [Li(THF)4][Cp″3U], 6-U, in 45-50% yield according 

to eq 2.2.  The 1H NMR spectrum of 6-U revealed Cp″ signals for C5H3(SiMe3)2 at δ −5 ppm and 

for C5H3(SiMe3)2 at δ 13 and −11 ppm (in a 1:2 ratio) which is similar to the spectra of the 

previously published complexes [M(18-crown-6][Cp″3U] (M = Na, K) and [Na(12-crown-

4)2][Cp″3U], e.g. for the latter compound, C5H3(SiMe3)2 at  δ −4 ppm and C5H3(SiMe3)2 at 11 

and −12 ppm.4  Resonances could not be found using 29Si NMR spectroscopy in the δ +100 to 

−500 ppm region despite previous reports of 29Si resonances for (Cpʹ3U
II)1− and (Cp″3U

II)1−.4, 21  

6-U was also identified by X-ray crystallography and is isomorphous with 6-Ln, Figure 2.4.  

 

Figure 2.4.  ORTEP representation of [Li(THF)4][Cpʺ3U], 6-U, with thermal ellipsoids drawn at 

the 50% probability level.  Hydrogen atoms were omitted for clarity.  
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In contrast to the crystal structures of [M(18-crown-6][Cp″3U] (M = Na, K) and [Na(12-crown-

4)2][Cp″3U],4 which did not provide good crystallographic data due to disorder, 6-U provides 

good data for structural comparison in Table 2.1.2   

Chelate-Free Cs Reductions.  Reduction of Cp″3La, Cp″3Ce, and Cp″3U with Cs metal 

also forms dark maroon solutions as observed in Li and K reductions.  However, when Cs is the 

reductant, crystalline products were isolated only for La(II) and U(II) and the complexes, 

[CpʺM(μ-Cpʺ)2Cs(THF)2]n, 7-M, M = La, U, eq 2.3, Figure 2.5, were identified by X-ray 

diffraction.  The EPR spectrum of 7-La in THF was identical to that of 6-La, Figure 2.2. 

 X-ray crystallography revealed polymeric structures for these complexes with a repeating 

unit of [CpʺM(μ-Cpʺ)2Cs(THF)2]n, Figure 2.5. Unlike the 6-M complexes (M = La, Ce, and U), 

which have well separated [Li(THF)4]
1+ cations, the [(THF)2Cs]1+ cation bridges through two (µ-

Cp″)1− rings to (Cp″M)1+ moieties thereby forming a bent metallocene cesium unit, 

[Cp″2Cs(THF)2]
1−. The structures of 7-La and 7-U are isomorphous. Although good 

crystallographic data were obtainable for 7-U, the data on 7-La were not of sufficient quality for 

detailed metrical analysis. 
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Figure 2.5.  ORTEP representation of [CpʺU(μ-Cpʺ)2Cs(THF)2]n, 7-U thermal ellipsoids drawn 

at the 50% probability level. Hydrogen atoms were omitted for clarity.  
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 The 2.532 Å U−(terminal Cp″ ring centroid) distance in 7-U is shorter than the 2.570 and 

2.578 Å U−(bridging Cp″ ring centroid) distances as is typical for terminal vs bridging ligands.  

These distances are similar to the 2.541 to 2.566 Å range of U−(Cp″ ring centroid) distances in 

[Li(THF)4][Cpʺ3U], 6-U.  In contrast, the two Cs−(bridging Cp″ ring centroid) distances, 3.278 

and 3.435 Å, vary significantly.  The smaller value is similar to the Cs−(cyclopentadiene) 

distances reported in {[(Me3Si)2NCs]2·[(C5H5)2Fe)]0.5·(C6H5Me)}n, 3.396 Å, which contain 

Cs−(µ-C5H5)−Fe34 linkages and [(THF)2Cs(µ3-O)3{[Ti(C5Me5)]3(µ3-CCH2)}],35 3.337 Å, which 

has Cs−(µ-C5Me5)−Ti connections.  The 3.081(7)-3.119(8) Å Cs−OTHF distances of 2-U are 

similar to the Cs−OTHF distances in [(THF)2Cs(µ3-O)3{[Ti(C5Me5)]3(µ3-CCH2)}], 3.034(9)-

3.06(1) Å.  It is interesting that the comparison of 6-U and 7-U shows that the U−centroid 

distances apparently are unaffected by the proximity of the cesium ions.  

Chelate Free M(II) Complexes. The synthesis of chelate-free M(II) complexes, 

[Li(THF)4][Cp″3M], 6-M, with M = La, Ce, and U demonstrates that the tris(cyclopentadienyl) 

M(II) anions, [(C5R5)3M]1− do not necessarily require chelated alkali metal countercations to be 

isolated in crystalline form suitable for X-ray analysis.  Whatever stability for the complex or the 

crystal structure that is provided by the [K(crypt)]1+ cation, it is not a rigid requirement for 

forming tris(cyclopentadienyl) M(II) complexes.  The 6-M complexes are not more stable than 

their chelated analogs, but it is clear that the chelate is not always necessary to obtain crystals. 

Analogous reductions of the Cp′3Ln (Cp′ = C5H4SiMe3) complexes of the less sterically 

demanding mono-silylcyclopentadienyl ligand using Li or Cs without a chelating agent also 

provided dark maroon solutions indicative of Ln(II) formation.  However, the reduction products 

could not be isolated even at −35 °C, as the dark maroon solutions decompose to colorless 

solutions within hours.  This is consistent with previous studies that show that  
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[K(crypt)][Cp″3Ln] (Ln = La, Ce, Pr, Nd) complexes are more stable than their Cpʹ analogs.25 

The steric protection offered by the bulkier (Cp″3)
3− ligand set is likely to be responsible for the 

increased stability of the 6-M complexes versus the Cpʹ3Ln reduction products.  

In the case of chelate-free lithium reactions, it was possible that the lithium would 

coordinate to the "backside" of the cyclopentadienyl ligand away from the f element metal as has 

been found in other rare-earth metal organometallic complexes, e.g. 

{(C5H5)2Y(CH2SiMe3)2}Li2(1,4-dioxane)(DME)2
36 and as is observed in the [K(18-crown-

6)[Cp′3Ln] structures of Ln = Y,12 Ho, and Er,9 which have the cation oriented toward one of the 

Cp′ rings.  Lithium coordination to the rings was not observed, however, in these reactions which 

form [Li(THF)4]
1+ salts, 6-M.  The [Li(THF)4]

1+ cation is a well-known entity, so formation of 

this species is not unusual, but it had been expected that Li would interact with the 

cyclopentadienyl ligands.   

In contrast, it was not expected that the large Cs1+ ion would coordinate to the backside 

of cyclopentadienyl ligands particularly since there are few Cs−(bridging 

cyclopentadienyl)−(metal) complexes in the literature.  Two rare examples involving Cs−(µ-

C5H5)−Fe34 and Cs−(µ-C5Me5)−Ti35 linkages are mentioned above.  Since two Cp″ rings 

coordinate to each cesium in the 7-M complexes, they are essentially bent cesium metallocenes.  

This is a known, but rare, class of metallocenes with [PPh4][Cp3Cs2] as an example.37  Chelate-

free reductions of Cp″3Ln using potassium and rubidium metal have also yielded dark maroon 

solutions similar to the chelate-free reduction of Li and Cs.  However, the reduction products 

were not isolable.   
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Conclusion 

 New options for isolating actinide complexes of +2 ions have been defined by showing 

that Li can reduce Cp″3U in the absence of a chelating reagent to form the crystallographically-

characterizable product, [Li(THF)4][Cp″3U].  This shows that Li can be used for such reductions 

and alkali metal chelating reagents are not necessary.  The lanthanide metals that mimic actinides 

in size, La and Ce, behave similarly.  Investigations of Cs reductions show that chelates are also 

not required to isolate crystals with this alkali metal reductant.  In the cesium case, the cesium 

cation binds to two cyclopentadienyl ligands to create a polymer containing both (Cp″3U)1− 

moieties and (Cp″2Cs)1− metallocene components.  In cases in which is it optimum to make an 

extended structure, Cs without a chelating agent could be the favorable reducing reagent.  

Experimental 

All syntheses and manipulations described below were conducted under Ar with rigorous 

exclusion of air and water using glovebox, Schlenk-line, and high-vacuum-line techniques.  All 

Cp″3M (M = La,20 Ce,15 U21) materials were prepared according to previously published 

literature.  Solvents were sparged with UHP Ar and dried over columns containing Q-5 and 

molecular sieves.  THF-d8 was dried over sodium−potassium alloy, degassed using three freeze-

pump-thaw cycles, and vacuum transferred before use.  1H (500 MHz) NMR spectra were 

obtained on a Bruker GN500 MHz or Bruker CRYO600 MHz spectrometer at 25 °C in THF-d8.  

IR samples were prepared as KBr pellets on a Jasco FT/IR-4700 spectrometer.  UV−vis spectra 

were collected in THF at 298 K using a Varian Cary 60 Scan UV−vis spectrophotometer.  

Elemental analyses were performed on a PerkinElmer series II 2400 CHNS analyzer.  Electron 

paramagnetic resonance spectra were collected using a Bruker EMX spectrometer equipped with 
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an ER041XG microwave bridge in THF at 298 K and the magnetic field was calibrated with 

DPPH (g = 2.0036). 

[Li(THF)4][Cpʺ3La], 6-La.  In a glovebox, addition of a colorless solution of Cpʺ3La 

(50 mg, 0.065 mmol) in THF to excess Li smear produced a dark purple solution.  The mixture 

was stirred for 15 min at room temperature.  The solution was then layered into a vial containing 

hexanes and placed in a −35° C freezer. After 1 d, X-ray quality dark purple crystals of 6-La 

were isolated (52 mg, 75%).  Evans method (THF, 298 K): 1.6 µB.  IR: 3074w, 2953s, 2894s, 

1435m, 1402w, 1319w, 1250s, 1207w, 1175w, 1120m, 1078s, 1043m, 967m, 924m, 752m, 

734m, 688m, 638s.  UV−vis (THF) λmax nm (ε, M−1cm−1): 318 (4100), 430 (2200 shoulder), 531 

(3200 shoulder), 582 (3800).  Anal. Calcd for desolvated C33H63Si6LiLa C, 51.19; H, 8.20.  

Found: C, 50.38; H, 8.34.  Elemental analysis was complicated by incomplete combustion which 

has been observed before for silyl lanthanide complexes.22-24  However, the C:H ratio found by 

elemental analysis, 33:65.1, matches the calculated. 

[Li(THF)4][Cpʺ3Ce], 6-Ce.  As described for 6-La, Cpʺ3Ce (50 mg, 0.065 mmol) was 

treated in THF using excess Li smear and a dark purple solution was produced.  After 

recrystallization, X-ray quality dark purple crystals of 6-Ce were isolated (51 mg, 74%).  Evans 

method (THF, 298 K): 2.5 µB.  IR: 3080w, 3044w, 2982m, 2951s, 2886s, 1677w, 1545w, 

1445m, 1436m, 1401m, 1365w, 1343w, 1314m, 1293w, 1247s, 1203m, 1175w, 1142w, 1128w, 

1115w, 1078s, 1053m, 1042s, 990w, 974w, 961w, 941w, 923s, 885m, 832s, 806m, 775m, 750s, 

686m, 677m, 635s, 624m.  UV−vis (THF) λmax nm (ε, M−1cm−1): 400 (2800), 543 (2000), 667 

(1600).  Anal. Calcd for the partially desolvated complex, [Li(THF)2][Cpʺ3Ce], 

C41H79O4Si6LiCe: C, 53.55; H, 8.66.  Found: C, 52.60; H, 8.94.  
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[Li(THF)4][Cpʺ3U], 6-U.  As described for 6-La, Cpʺ3U (100 mg, 0.115 mmol) was 

reduced in THF using excess Li smear producing a dark purple solution.  After recrystallization, 

X-ray quality dark purple crystals of 6-U were isolated (61 mg, 45%).  1H NMR (THF-d8): δ 

13.04 (s, C5H3(SiMe3)2, 3H), 3.62 (m, C4H8O, 16H), 1.78 (m, C4H8O, 16H), −5.36 (s, 

C5H3(SiMe3)2, 54H), −10.98 (s, C5H3(SiMe3)2, 6H).  Evans method (THF, 298 K): 2.7 µB.  IR: 

3084w, 3054w, 3037w, 2980m, 2953s, 2891s, 1676w, 1545w, 1444m, 1435m, 1402m, 1365w, 

1342w, 1315m, 1292w, 1248s, 1201m, 1185w, 1175w, 1132w, 1120w, 1077s, 1042s, 967m, 

921s, 882m, 833s, 771m, 750s, 687m, 634s.  Calcd for the partially desolvated complex, 

[Li(THF)2][Cpʺ3U], C41H79O4Si6LiU: C, 48.40; H, 7.83.  Found: C, 48.11; H, 7.84. 

[CpʺLa(μ-Cpʺ)2Cs(THF)2]n, 7-La.  Addition of a colorless solution of Cpʺ3La (50 mg, 

0.065 mmol) in THF (1 mL) to excess Cs smear produced a dark purple solution. This was 

stirred for 15 min at room temperature and then layered into a vial containing hexanes for 

crystallization. After 3 d, X-ray quality dark purple crystals of 7-La were isolated (23 mg, 34%).  

Crystalline yields are low due to the high solubility of these complexes. 

[CpʺU(μ-Cpʺ)2Cs(THF)2]n, 7-U.  As described for 7-La, Cpʺ3U (30 mg, 0.035 mmol) in 

THF (1 mL) to excess Cs smear produced a dark purple solution. This was stirred for 15 min at 

room temperature and then layered into a vial containing hexanes for crystallization. After 5 d, 

X-ray quality dark purple crystals of 7-U were isolated (10 mg, 25%).  Incomplete combustion22-

24 was observed for 7-U.  Calcd for C41H79O2Si6CsU: C, 43.06; H, 6.96.  Found: C, 34.00; H, 

4.97.  

Structural Details 

 X-ray Data Collection, Structure Solution and Refinement for [Li(THF)4][Cp″3La], 

6-La.  A black crystal of approximate dimensions 0.156 x 0.234 x 0.359 mm was mounted in a 
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cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX238 program 

package was used to determine the unit-cell parameters and for data collection (20 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT39 

and SADABS40 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL41 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors42 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  Several atoms were disordered 

and included using multiple components with partial site-occupancy-factors.  Least-squares 

analysis yielded wR2 = 0.0588 and Goof = 1.040 for 602 variables refined against 14165 data 

(0.76 Å), R1 = 0.0244 for those 12687 data with I > 2.0(I).   

 X-ray Data Collection, Structure Solution and Refinement for [Li(THF)4][Cp″3Ce], 

6-Ce.  A black crystal of approximate dimensions 0.198 x 0.314 x 0.358 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX238 program 

package was used to determine the unit-cell parameters and for data collection (30 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT39 

and SADABS40 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL41 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors42 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  Disordered atoms were included 
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using multiple components with partial site-occupancy-factors.  Least-squares analysis yielded 

wR2 = 0.0658 and Goof = 1.044 for 603 variables refined against 14032 data (0.76 Å), R1 = 

0.0289 for those 11847 data with I > 2.0(I).   

 X-ray Data Collection, Structure Solution and Refinement for [Li(THF)4][Cp″3U],  

6-U.  A black crystal of approximate dimensions 0.130 x 0.137 x 0.215 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX238 program 

package was used to determine the unit-cell parameters and for data collection (60 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT39 

and SADABS40 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL41 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors42 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  Disordered atoms were included 

using multiple components with partial site-occupancy-factors.  Least-squares analysis yielded 

wR2 = 0.0575 and Goof = 1.039 for 603 variables refined against 14000 data (0.76 Å), R1 = 

0.0262 for those 12016 data with I > 2.0(I).   

 X-ray Data Collection, Structure Solution and Refinement for [CpʺU(μ-

Cpʺ)2Cs(THF)2]n, 7-U.  A purple crystal of approximate dimensions 0.197 x 0.224 x 0.406 mm 

was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX238 program package was used to determine the unit-cell parameters and for data 

collection (60 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 

processed using SAINT39 and SADABS40 to yield the reflection data file.  Subsequent 
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calculations were carried out using the SHELXTL41 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space groups P21 and P21/m.  It 

was later determined that space group P21 was correct.  The structure was solved by dual space 

methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors42 for neutral atoms were used throughout the analysis.  Hydrogen atoms were included 

using a riding model.  The complex was polymeric.  Least-squares analysis yielded wR2 = 

0.0808 and Goof = 1.056 for 478 variables refined against 12181 data (0.76 Å), R1 = 0.0352 for 

those 11335 data with I > 2.0(I).  The absolute structure was assigned by refinement of the 

Flack43 parameter. 
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CHAPTER 3 

Isolation of Reactive Ln(II) Complexes with C5H4Me (CpMe) Ligands Using  

Inverse Sandwich Countercations:  Synthesis and Structure of  

[(18-crown-6)K(µ-CpMe)K(18-crown-6)][CpMe
3LnII]  

(Ln = Tb, Ho) 

 

Introduction* 

 As previously described in Chapter 1, the discovery of oxidation states for the rare-earth 

metals Y, La, Ce, Pr, Gd, Tb, Ho, Er, and Lu by LnA3/M reduction reactions initially involved 

almost exclusively silyl-substituted cyclopentadienyl ligands C5H4SiMe3 (Cp′) and C5H3(SiMe3)2 

(Cp″), eq 3.1.1-8   It was thought that the cyclopentadienyl ligands containing silyl groups were  

 

optimum because the silyl groups provided the “right” balance of electronic and steric 

stabilization.7 EPR studies of reduction reactions of the yttrium complexes (C5H5)3Y, 

(C5H4Me)3Y, (C5Me4H)3Y, and Y(NR2)3 (R = SiMe3) were consistent with this trend.9, 10  In each 

case, an EPR spectrum characteristic of Y(II) was observed, but the complexes proved to have  

 

*Portions of this chapter have been published: Huh, D. N.; Ziller, J. W.; Evans, W. J. Isolation of Reactive Ln(II) 

Complexes with C5H4Me (CpMe) Ligands Using Inverse Sandwich Countercations:  Synthesis and Structure of [(18-

crown-6)K(µ-CpMe)K(18-crown-6)][CpMe
3LnII] (Ln = Tb, Ho). Dalton Trans., 2018, 47, 17285-17290.  DOI: 

10.1039/C8DT03890B 
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only transient stability and were not crystallographically-characterizable.9, 10  

 Studies have shown one reason that the reduction of CpMe
3Ln (CpMe = C5H4Me) 

complexes does not give isolable Ln(II) complexes:  for the large metals, La and Pr, reduction of 

CpMe
3Ln(THF), 8-Ln, forms solutions that ring-open THF to form (OCH2CH2CH2CH2)

2− 

dianions, eq 3.2.11  Spectroscopic evidence was also obtained for ring opening of THF in the 

CpMe
3Y/K reaction.  

  

 Historically, it has been found that yttrium exhibits similar chemistry to the late 

lanthanide metals of similar size, e.g. holmium and erbium.2, 4, 12  Hence, it would be expected 

that the (CpMe
3)

3− ligand set would not support Ln(II) complexes for these metals.  However, 

studies of the reduction of Ln(NR2)3 complexes (R = SiMe3) showed that the late lanthanides,13 

as well as scandium,14 can differ from yttrium10 in the +2 oxidation state chemistry.  

Accordingly, the reduction chemistry of CpMe
3Ln with late lanthanides was investigated.  

Described in this Chapter is the surprising result that crystallographically-characterizable 

complexes of the late lanthanides in the +2 oxidation state could be isolated with the (CpMe
3)

3− 

ligand set and that a cyclopentadienyl inverse sandwich complex, [(18-crown-6)K(µ-CpMe)K(18-

crown-6)]1+, is an effective countercation for their isolation. 

Results and Discussion 

 Reductions of CpMe
3Ln(THF), 8-Ln (Ln = Tb, Ho, Er), using KC8 in the presence of 18-

crown-6 (18-c-6) yield black solutions at −35 °C that retain their color for at least 3 days at low 
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temperature and provide isolable black solids.  Crystals suitable for single-crystal X-ray 

diffraction were isolated and structurally characterized as [(18-c-6)K(µ-CpMe)K(18-c-

6)][CpMe
3Ln], 9-Ln (Ln = Tb and Ho), Figure 3.1.  The unit cell of 9-Er matched that of 9-Tb 

and 9-Ho.  However, due to rapid decomposition of the crystal upon transferring from the 

sample vial to the diffractometer, suitable data could not be collected for X-ray crystallography.   

 

Figure 3.1.  ORTEP representation of [(18-c-6)K(µ-CpMe)K(18-c-6)][CpMe
3Ho], 9-Ho, with 

thermal ellipsoids drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity.   

 

 The X-ray crystal structure of 9-Ln showed that it contained an extra equivalent of 

(CpMe)1− which bridges two [K(18-c-6)]1+ units to generate an inverse sandwich complex, [(18-c-

6)K(µ-CpMe)K(18-c-6)]1+, as the countercation.  In subsequent syntheses of 9-Ln, an extra 

equivalent of KCpMe was added to improve the yield, eq 3.3.  It appears that this countercation is 

particularly effective in allowing isolation of these new Ln(II) complexes.  
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 Several inverse sandwich complexes of this type have been reported with the 

unsubstituted (C5H5)
1− anion, i.e.  the [(18-c-6)K(µ-C5H5)K(18-c-6)]1+ cation,15-22 but only two 

examples with substituted-cyclopentadienyl rings are in the literature, one with a (Cpʹ)1− anion 

bridge (Cpʹ = C5H4SiMe3)
3 and one with a (C5H4CMe3)

1− anion bridge.23  Of these two 

substituted examples, crystallographically-determined metrical parameters were reported only 

for the Cpʹ complex, [(18-c-6)K(µ-Cpʹ)K(18-c-6)][Cp′3Tb].3  

 Although crystals of two examples of 9-Ln could be isolated and characterized by X-ray 

diffraction, further characterization such as elemental analysis was challenging because the 

complexes decompose within seconds at temperatures above −35 °C.  Magnetic measurements of 

9-Ln are also difficult to obtain due to their inevitable contamination of Ln(III) from rapid 

decomposition. Attempts to obtain UV-visible spectra of 9-Ho and 9-Er showed significant 

decomposition with sharp absorbances characteristic of Ho(III) and Er(III) complexes, Figure 

3.2.   

 

Figure 3.2.  UV-visible spectra of 9-Ho (solid) and 9-Er (dashed) decomposition products at 

room temperature. 
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However, the spectra also contained broad features at 490 nm and 493 nm, respectively.  These 

broad absorbances are similar to the most intense absorptions in [K(18-c-6)][Cpʹ3Ho]2 of 507 

nm, [K(18-c-6)][Cpʹ3Er]2 of 510 nm, [K(crypt)][Cpʹ3Ho]3 of 499 nm, and [K(crypt)][Cpʹ3Er]3 of 

502 nm.  Complex 9-Tb did survive long enough to provide a UV-visible spectrum absent of 

sharp Tb(III) features that contained broad absorptions at 458 nm and 660 nm, Figure 3.3, similar  

 

Figure 3.3.  UV-visible spectrum of 9-Tb in room temperature THF; λmax, nm: 458, 481, 660 

nm. 

 

to those previously reported for [K(18-c-6)][Cpʹ3Tb] of 446 nm and 650 nm and 

[K(crypt)][Cpʹ3Tb] of 464 nm and 635 nm.3  Each of the latter complexes was characterized as 

containing a Tb(II) ion with a 4f85d1 electron configuration.24   

 The crystallographic data on complexes of Ln(II) ions normally allows evaluation of the 

electron configuration since a characteristic of 4fn5d1 Ln(II) complexes vs 4fn+1 Ln(II) 

compounds is that the former complexes have metal−ligand bond distances only slightly larger 

than their Ln(III) analogs, within 0.02-0.05 Å.3, 25  In contrast, traditional 4fn+1 Ln(II) complexes 

have metal−ligand distances 0.1-0.2 Å larger than their Ln(III) counterparts.25 This comparison 

cannot be made directly with 9-Ln, since the X-ray crystal structures of CpMe
3Ln for Tb and Ho 

are unknown.  Structural data have been reported on the CpMe
3Ln complexes of Ln = La,26 Ce,27 

Pr,28 and Nd,29 but they crystallize in oligomeric forms with a higher coordination number for the 
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metal.  The structures of CpMe
3Ln(THF) (Ln = Y,9 Sm,30 Dy,31) are not appropriate for this 

analysis because the coordination number in these complexes is larger due to the THF.   

 The structure of unsolvated monomeric CpMe
3Yb32 is known, however, and will be used 

for comparison.  The range of Yb−CpMe ring centroid distances is 2.29-2.38 Å and the average is 

2.35 Å.  Since the Shannon radii33 of Tb(III) and Ho(III) are 0.055 and 0.033 Å larger than that 

of Yb(III), the predicted Tb(III)−CpMe and Ho(III)−CpMe average distances in "CpMe
3Ln" are 

2.405 and 2.383 Å, respectively.  These are similar to Tb(III)−Cpʹ and Ho(III)−Cpʹ distances, 

2.423 and 2.394 Å, in Cpʹ3Ln complexes (Cp′ = C5H4SiMe3).  The observed Ln(III)-CpMe 

distances of 9-Tb and 9-Ho, 2.456 and 2.432 Å, are about 0.05 Å larger than the estimates for 

the “CpMe
3Ln” analogs.  This is slightly larger than the difference found for the Cpʹ 4fn5d1 series, 

but much less than the difference found for 4fn+1 Ln(II) ions.   

 The metrical parameters of the (CpMe
3Ln)1− anions in 8-Ln can be further compared with 

those of the previously reported (Cp′3Ln)1− complexes, Table 3.1.  This table shows that the 

metal−ring centroid distances for 9-Ln are very close to those of previously reported (Cp′3Ln)1− 

anions,2, 3, 34 which are only slightly larger than those of Cp′3Ln.  All of these metrical data are 

consistent with the presence of 4fn5d1 electron configurations for 9-Tb and 9-Ho.  

 The metrical parameters of the [(18-c-6)K(µ-CpMe)K(18-c-6)]1+ inverse cyclopentadienyl 

sandwich cations in 9-Tb and 9-Ho, Figure 3.4, are similar.  The K−CpMe centroid distances for 

9-Ln range from 2.848-2.860 Å and the K−(CpMe ring centroid)−K bond angles in the cations 

approach linearity, 177.2° and 177.1°, respectively.  These metrical parameters are similar to 

previously reported unsubstituted-cyclopentadienyl [(18-c-6)K(µ-C5H5)K(18-c-6)]1+ inverse 

sandwich complexes.15-20, 22  The K−C5H5 ring centroid distances in those compounds range from 

2.812-2.894 Å and the K−(C5H5 ring centroid)−K angles vary from 171.5-179.2°.  In contrast, in 
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Table 3.1.  Ln(II)−(ring centroid) distances (Å) in the [(C5H4R)3Ln]1− anions (R = Me, SiMe3).  

 Ln−cnt range (Å)  Ln−cnt average (Å)   

9-Tb 2.451-2.463 2.456 

[K2(18-c-6)2(µ-Cpʹ)][Cpʹ3Tb]3 2.446-2.464 2.454 

[K(18-c-6)][Cpʹ3Tb]3 2.441-2.453 2.446 

[K(crypt)][Cp′3Tb]3 2.448-2.461 2.454 

[Li(crypt)][Cpʹ3Tb]34 2.441-2.472 2.455 

   

9-Ho 2.430-2.435 2.432 

[K(18-c-6)][Cpʹ3Ho]2 2.417-2.432 2.423 

[K(crypt)][Cp′3Ho]2 2.420-2.433 2.426 

[Li(crypt)][Cpʹ3Ho]34 2.409-2.440 2.425 

  

 

Figure 3.4.  Comparison of the [(18-c-6)K(µ-CpMe)K(18-c-6)]1+ cation in 9-Tb (left) and  

[(18-c-6)K(µ-Cp′)K(18-c-6)]1+ in [(18-c-6)K(µ-Cp′)K(18-c-6)][Cp′3Tb]3 (right). 
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the Cpʹ inverse sandwich cation in [(18-c-6)K(µ-Cp′)K(18-c-6)][Cp′3Tb],3 the K−(Cp′ ring 

centroid)−K angle is significantly bent:  147.5°, Figure 3.4.  The steric bulk provided by the silyl 

substituent on the (Cpʹ)1− ligand evidently causes the K−Cpʹ−K angle to bend.   

 Attempts to reduce CpMe
3Ln(THF), 8-Ln, complexes in the presence of 2.2.2-cryptand 

(crypt), a chelating agent commonly used with potassium as the reductant, eq 3.1, gave dark 

colored solutions.  Although crystalline products could be isolated for Ln = Tb, Ho and Er with 

crypt, these were not suitable for single crystal X-ray diffraction.  This was further complicated 

by the fast decomposition at temperatures above −35 °C.  However, reduction of 7-Dy in THF 

using KC8 and crypt at −35 °C yielded a black solution similar to the previously reported 

reductions of 7-Ln that persisted for days at this temperature.  This allowed the isolation of 

[K(crypt)][CpMe
3Dy], 10-Dy, eq 3.4.  Although crystals suitable for single-crystal X-ray 

crystallography were obtained, Figure 3.5, they were not of sufficient quality to provide useful 

 

Figure 3.5.  Connectivity only ORTEP representation of [K(2.2.2-cryptand)][CpMe
3Dy], 10-Dy. 
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metrical parameters with which to evaluate the presence of either a 4f10 or 4f95d1 configuration.   

 Another characteristic of complexes of 4fn5d1 Ln(II) ions is UV-visible spectra with large 

extinction coefficients compared to 4fn+1 Ln(II) complexes.  The UV-visible spectrum of 10-Dy, 

Figure 3.6, contained broad absorbances at 424 and 674 nm with ε = 2100 and 1200 M−1cm−1, 

respectively, that were similar to those in the UV-visible spectrum of [K(crypt)][Cpʹ3Dy],25 

which has broad absorptions at 483 and 644 nm with ε = 3400 and 1000 M−1cm−1, respectively.  

Hence, by this metric, 10-Dy appears to contain a 4f95d1 ion. 

 

 

Figure 3.6.  UV-visible spectrum of a ~10 mM solution of [K(crypt)][CpMe
3Dy], 10-Dy (solid) 

and [K(crypt)][Cpʹ3Dy]25 (dashed) in THF. 

 The isolation of 9-Ln for Ln = Tb and Ho provides another example in which the divalent 

late lanthanides are not like divalent yttrium.  The solutions obtained by reduction of CpMe
3Ln 

clearly have greater stability than the product of CpMe
3Y reduction.  Dissimilar chemistry for 

yttrium versus the late lanthanides has now been observed in reductions of Ln(NR2)3 (R = 

SiMe3),
13 (C5Me4H)3Ln,35 and CpMe

3Ln.  The origin of this difference is not known, but it is clear 

that the connection of yttrium with the late lanthanides so common for Y(III) complexes should 
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not be expected to necessarily apply for Y(II) species.  It is possible that this is a 4d vs 5d effect 

which is sometimes seen in transition metal chemistry, e.g. in the differences between Pd and 

Pt.36, 37  

 Since the (CpMe
3Ln)1− anions were isolable with an inverse cyclopentadienyl sandwich 

countercation, these results show yet another variation in the importance of the countercation in 

isolating Ln(II) complexes. Attempts to crystallize (CpMe
3Ln)1− anions with [K(crypt)]1+ did not 

provide suitable crystals for X-ray crystallography.  The inverse cyclopentadienyl sandwich 

countercation, however, allowed for facile crystallization and crystals were suitable for X-ray 

crystallography.  Crystallographically-characterizable salts obtained from rare-earth metal 

reduction reactions with 18-c-6 as the chelator have been found with the following types of 

countercations:  [K(crown)]1+,2-4, 38 [K(crown)(Et2O)]1+, [K(crown)(THF)2]
1+,39-42 

{[K(crown)(Et2O)]2}
2+,39 {[K(crown)(Et2O)][K(crown)]}2+,43 and [K2(crown)3]

2+.39  In each 

case, it appears that just one of these variations is the optimum countercation for the anion 

involved, but the reason for the exact pairing is not known. It appears that much remains to be 

learned about matching cation and anion in these reduction reactions.44  The presence of the 18-

c-6 chelator may assist in rapid crystallization which is desirable for the isolation of reactive 

complexes. 

Conclusion 

 It was a surprise that Ln(II) complexes supported by CpMe ligands, [(18-c-6)K(µ-

CpMe)K(18-c-6)][CpMe
3Ln], 9-Ln, could be isolated for the smaller lanthanides, Tb and Ho.  This 

contrasts with the larger metals, La and Pr, that reductively ring-open THF and with the 4d 

metal, yttrium, that has in the past been used as a mimic of the late small lanthanides but does 

not form a stable 9-Y analog.  The isolation of these complexes as salts of the inverse sandwich 
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cation, [(18-c-6)K(µ-CpMe)K(18-c-6)]1+, demonstrates another possibility for 18-c-6 to chelate 

potassium.  This also allowed for the facile crystallization with (CpMe
3Ln)1− anions to form 

additional crystallographically-characterized examples of Tb and Ho in the +2 oxidation state.   

Experimental 

All syntheses and manipulations described below were conducted under Ar with rigorous 

exclusion of air and water using glovebox, Schlenk-line, and high-vacuum-line techniques. 

CpMe
3Ln(THF) (Ln = Tb, Dy, Ho, Er)31, KCpMe, 45 and KC8

46 were prepared according to 

previously published literature. 2.2.2-Cryptand (4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane, Aldrich) was placed under vacuum (10−3 Torr) for 12 h before 

use.  18-crown-6 purchased from Alfa Aesar was sublimed prior to use. THF and hexanes were 

sparged with UHP Ar and dried over columns containing Q-5 and molecular sieves. UV-vis 

spectra were collected on a Cary-60.  IR samples were prepared as KBr pellets on a Jasco FT/IR-

4700 spectrometer.  The thermal instability of the complexes did not allow elemental analytical 

data to be collected.  

 [(18-c-6)K(µ-CpMe)K(18-c-6)][CpMe
3Tb], 9-Tb.  In an argon-filled box, a colorless 

solution of CpMe
3Tb(THF) (50 mg, 0.11 mmol), 18-crown-6 (57 mg, 0.21 mmol) and KCpMe (13 

mg, 11 mmol) in THF (2 mL) as well as a vial containing KC8 (22 mg, 0.16 mmol) were cooled 

to −35 °C.  The THF solution was transferred to the vial of KC8 and vigorously swirled forming 

a black mixture.  The black mixture was immediately filtered and layered into cold (−35 °C) 

hexanes and placed in a −35 °C freezer.  After 1 d, X-ray quality crystals were isolated (73 mg, 

63 %).  IR:  3087w, 3059w, 3040m, 2947m, 2892s, 2859s, 2824m, 2792w, 2743w, 2707w, 

2687w, 1979w, 1634m, 1618m, 1471m, 1452m, 1432w, 1405w, 1350s, 1283m, 1248m, 1109s, 

1059w, 1030w, 1019w.  UV−vis (THF) λmax nm: 458, 660.   
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 [(18-c-6)K(µ-CpMe)K(18-c-6)][CpMe
3Ho], 9-Ho.  As described for 9-Tb, CpMe

3Ho(THF) 

(50 mg, mmol), 18-crown-6 (55 mg, 0.21 mmol) and KCpMe (12 mg, 0.11 mmol) was reduced in 

THF using KC8 (22 mg, 0.16 mmol) which produced a black solution.  Black single crystals of 9-

Ho were grown from THF/hexanes after 1 d (23 mg, 20 %).  IR:  3070m, 3046m, 2948m, 2912s, 

2895s, 2858s, 2824m, 2794w, 2743w, 2710w, 2687w, 2173w, 1975w, 1601w, 1490w, 1471m, 

1452m, 1407w, 1383w, 1351s, 1283m, 1249m, 1111s, 1046w, 1031w, 1019w.  UV−vis (THF) 

λmax nm: 490. 

 [(18-c-6)K(µ-CpMe)K(18-c-6)][CpMe
3Er], 2-Er.  As described for 9-Tb, CpMe

3Er(THF) 

(50 mg, 0.11 mmol), 18-crown-6 (55 mg, 0.21 mmol) and KCpMe (12 mg, 0.11 mmol) treated in 

THF with KC8 (21 mg, 0.16 mmol) which produced a black solution.  Black crystals of 9-Er 

were grown from THF/hexanes after 1 d (18 mg, 16 %).  IR: 3083m, 3063m, 3046m, 2946s, 

2911s, 2889s, 2857s, 2824s, 2795m, 2744m, 2711w, 2688w, 2173w, 1977w, 1572w, 1492w, 

1471s, 1452s, 1433m, 1406w, 1351s, 1283m, 1249s, 1236m, 1110s, 1058m, 1046m, 1031m, 

1019w.  UV−vis (THF) λmax nm: 493. 

 [K(crypt)][CpMe
3Dy], 10-Dy.  In an argon-filled box, a colorless solution of 

CpMe
3Dy(THF) (45 mg, 0.10 mmol) and 2.2.2-cryptand (39 mg, 0.10 mmol) in THF (2 mL) as 

well as a vial containing KC8 (19 mg, 0.14 mmol) were cooled to −35 °C.  The THF solution was 

transferred to the vial of KC8 and vigorously swirled forming a black mixture.  The black 

mixture was immediately filtered and layered into cold (−35 °C) hexanes and placed in a −35 °C 

freezer.  After 1 d, X-ray quality crystals were isolated (40 mg, 51 %).  IR: 3077w, 3059w, 

3036w, 2956s, 2882s, 2817s, 2757m, 2727m, 1476m, 1457m, 1443m, 1410w, 1353s, 1296m, 

1259m, 1236w, 1173w, 1132s, 1102s, 1178s, 1056m, 1031m.  UV−vis (THF) λmax nm (ε, 

M−1cm−1): 424 (2050), 674 (1200), 728 (1100 shoulder). 
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Structural Details 

X-ray Data Collection, Structure Solution and Refinement for [(18-c-6)K(µ-

CpMe)K(18-c-6)][CpMe
3Tb], 9-Tb.  A black crystal of approximate dimensions 0.100 x 0.136 x 

0.335 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX247 program package was used to determine the unit-cell parameters 

and for data collection (120 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT48 and SADABS49 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL50 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/c that was later 

determined to be correct.  The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors51 for neutral atoms were 

used throughout the analysis.  Hydrogen atoms were included using a riding model.  There were 

three molecules of tetrahydrofuran solvent present.  One solvent molecule was disordered and 

included using multiple components, partial site-occupancy-factors, geometric constraints and 

equivalent anisotropic thermal parameters.  Least-squares analysis yielded wR2 = 0.0959 and 

Goof = 1.046 for 680 variables refined against 12924 data (0.80 Å), R1 = 0.0389 for those 10335 

data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for [(18-c-6)K(µ-

CpMe)K(18-c-6)][CpMe
3Ho], 9-Ho.  A black crystal of approximate dimensions 0.060 x 0.116 x 

0.452 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX247 program package was used to determine the unit-cell parameters 

and for data collection (120 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT48 and SADABS49 to yield the reflection data file.  Subsequent 
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calculations were carried out using the SHELXTL50 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/c that was later 

determined to be correct.  The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors51 for neutral atoms were 

used throughout the analysis.  Hydrogen atoms were included using a riding model.  There were 

three molecules of tetrahydrofuran solvent present.  One solvent molecule was disordered and 

included using multiple components, partial site-occupancy-factors, geometric constraints and 

equivalent anisotropic thermal parameters.  Least-squares analysis yielded wR2 = 0.0995 and 

Goof = 1.022 for 680 variables refined against 12898 data (0.80 Å), R1 = 0.0398 for those 9972 

data with I > 2.0(I).   
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CHAPTER 4 

Synthesis of Rare-Earth-Metal-in-Cryptand Dications, [Ln(2.2.2-cryptand)]2+, from Sm(II), 

Eu(II), and Yb(II) Silyl Metallocenes (C5H4SiMe3)2Ln(THF)2 

 

Introduction* 

As described in Chapter 1, studies of reductive rare-earth metal chemistry have shown 

that the +2 oxidation state is available for all of the rare-earth metals (except Pm, which was not 

studied due to its radioactivity) as soluble molecular complexes, [K(crypt)][Cp′3Ln] (Cp′ = 

C5H4SiMe3).
1-4  Rare-earth metals Eu, Yb, Sm, Tm, Dy, and Nd were thought to be capable of 

forming isolable +2 complexes based on the calculated redox potentials for the reduction of 4fn 

Ln(III) ions to 4fn+1 Ln(II) species.5-6 The new Ln(II) ions were obtained according to eq 4.1 in 

tris(cyclopentadienyl) ligand environments 

 

that had low lying dz2 orbitals such that 4fn5d1 ground states became available via reduction of a 

4fn Ln(III) ion with potassium.1-6 

A natural extension of the discovery of new +2 oxidation states is the pursuit of 

molecular complexes of lanthanide metals ions in the +1 oxidation state.  Ln(I) ions are known in  

*Portions of this chapter have been published: Huh, D. N.; Kotyk, C. M.; Gembicky, M.; Rheingold, A. L.; Ziller, J. 

W.; Evans, W. J. Synthesis of Rare-Earth-Metal-in-Cryptand Dications, [Ln(2.2.2-cryptand)]2+, from Sm2+, Eu2+, 

and Yb2+ Silyl Metallocenes (C5H4SiMe3)2Ln(THF)2.  Chem. Commun. 2017, 53, 8664-8666.  DOI:  

10.1039/C7CC04396A 



78 
 

 

the gas phase for all lanthanides,7 molecular complexes of Sc(I) ions have been isolated and 

crystallographically characterized,8-9 and spectroscopic evidence for Sm1+ in the solid state has 

been reported.10  In addition, Ln(C6H3
tBu3-1,3,5)2 complexes have been isolated for Ln = Nd, 

Tb, Dy, Ho, Er, and Lu that have the formal oxidation state of zero.11  Sm(I) is an attractive 

target since it could have a half-filled shell 4f7 electron configuration.  In attempts to isolate Ln1+ 

ions, silylcyclopentadienyl ligands were chosen since they are known to stabilize low oxidation 

state Ln(II) ions.1, 3-6, 12 

 Previous work by Dr. Christopher M. Kotyk demonstrated that reduction of dark green 

Cp″2Sm(THF) with KC8 in the presence of crypt immediately formed a dark brown product that 

was characterized by X-ray crystallography as the bimetallic, mixed-ligand, metallocene/opened-

crypt Sm(II) complex, [Sm(C16H32N2O6-ĸ
2O:ĸ2O′)SmCp″2], 11-Sm, Figure 4.1, eq 4.2.  The 

 

 

Figure 4.1.  ORTEP representation of [Sm(C16H32N2O6-ĸ
2O:ĸ2O′)SmCp″2], 11-Sm, with the 

thermal ellipsoid plot drawn at 30% probability level.  Hydrogen atoms are omitted for clarity. 
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product is highly unusual in that one Sm(II) ion has lost both cyclopentadienyl ligands and 

resides inside a modified cryptand ligand that has lost a “CH2CH2” bridge.13  Many reports of C–

O bond cleavage under reducing conditions are in the literature.14-20  The resulting crypt 

fragment is formally a dianion, (C16H32N2O6)
2− containing two anionic alkoxide functionalities.  

These coordinate to a SmCp″2 moiety, which effectively replaces the “CH2CH2” bridge to 

complete the cryptand structure.  Unfortunately, the X-ray data on 11-Sm were sufficient for a 

connectivity-only structure and detailed bond distance analysis is not possible.   

 This chapter describes reactions of crypt alone with Ln(II) metallocenes which were 

examined to obtain background information on the 11-Sm reduction product.  Crystallographic 

data were obtainable with Cp′2Ln(THF)2 (Ln = Sm, Eu, Yb) that provided a general synthesis of 

Ln(II)-in-crypt dications with ligand redistribution counteranions, [Cp′3Ln]1−.   

Results and Discussion 

 To investigate the unusual result in eq 4.2, the reactivity of Ln(II) silyl metallocenes with 

the crypt ligand alone was studied as a control reaction.  Since reactions of crypt with 

Cp″2Sm(THF)13 did not give tractable products, the reactivity of the less soluble Cp′ analog was 

studied.   

The Cp′2Ln(THF)2 complexes (Ln = Sm,4 Eu15) react in THF with crypt in the absence of 

a reductant within two minutes to form new examples of dark purple Sm(II)-in-crypt and dark 

red Eu(II)-in-crypt complexes, [Ln(crypt)(THF)][Cp′3Ln]2, 12-Ln, isolated in 50% (Sm) and 

67% (Eu) yields.  As shown in eq 4.3, a ligand rearrangement occurs that generates two 

[Cp′3Ln]1– anions. 
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and a [Ln(crypt)(THF)]2+ countercation in the complexes [Ln(crypt)(THF)][Cp′3Ln]2, 12-Ln, 

Figure 4.2.   This reaction is reminiscent of the ligand rearrangement reported by Lappert and 

coworkers in which unsolvated Cp″2Sm reacts with 18-crown-6 (18-c-6) in benzene to form a 

monocyclopentadienyl crown cation complex of a tris(cyclopentadienyl) anion, [Sm(18-c-

6)Cp″][Cp″3Sm].21  

 The [Ln(crypt)(THF)]2+ dication in 12-Ln is unusual in two respects:  it is a rare case of a 

Ln(II) ion in a crypt and a rare case of any lanthanide ion in a crypt without an additional anionic 

ligand.  Several examples of Ln(III) ions in crypt have been reported including the X-ray crystal 

structures of [Ln(NO3)5(OH2)][Ln(crypt)(NO3)] (Ln = Nd, Sm, Eu),22-24 

[La(crypt)(OH2)Cl](Cl)2,
25 [La(crypt)(OTf)(DMF)]2(OTf)2,

25 and [Eu(crypt)(ClO4)](ClO4)2.
26  In 

each of these cases, there is an anionic ligand binding the lanthanide in addition to crypt.  Ln(II) 

ions have not been reported in crypt, but the structure of Eu(II) in a fluorobenzocryptand, [5,6-

(4-fluorobenzo)-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacos-5-ene], 

Eu(fluorobenzocrypt)Cl]Cl, is known.27 As in all other cases, there is one anionic ligand bound 

to the metal in addition to this cryptand.  The metrical parameters in [Eu(crypt)(THF)][Cp′3Eu]2, 

12-Eu, will be discussed in detail, since the crystallographic data on 12-Sm were sufficient for 

connectivity only. The bond distances and angles in the [Cp′3Eu]1− counter-anions in 12-Eu are 

the same as those of [K(crypt)][Cp′3Eu]3 within the error limits.   
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Figure 4.2.  ORTEP representation of [Eu(crypt)(THF)][Cp′3Eu]2, 12-Eu thermal ellipsoids 

drawn at the 50% probability level.  Hydrogen atoms are omitted for clarity.   Distances in Å:  

Eu5–O1 2.656(4), Eu5–O2 2.657(4), Eu5–O3 2.632(4), Eu5–O4 2.620(3), Eu5–O5 2.657(4), 

Eu5–O6 2.682(4), Eu5–O7 2.567(3), Eu5–N1 2.855(5), Eu5–N2 2.871(5), average Eu–Cp′ 

centroid 2.62. 

 

 The nine-coordinate encapsulated Eu(II) ion has an irregular geometry that can roughly 

be described as a hexagonal pyramid that has the THF oxygen, O7, in the axial position and O3 

and O4 below the “plane” of O1, O2, O5, O6, N1 and N2 donor atoms.  The latter six atoms and 

Eu5 are only co-planar to within 0.19 Å.  The 174° N–Eu–N angle in the cation of 12-Eu is 

within the range of angles of 169.26 to 178.72° observed in the five Ln(III) crypt structures listed 

above.  The Eu–OTHF distance 2.568(3) Å in 12-Eu is consistent with that in 
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[(C5Me5)Eu(THF)]2[C8H4(SiiPr3)2], 2.555(5) Å.13, 28  The Eu–Ocrypt distances in 12-Eu range 

from 2.620(3) to 2.681(4) Å and the Eu–Ncrypt lengths vary from 2.849(5) to 2.870(5) Å.  

Previously isolated Eu(III) cryptates were reported to have shorter bond distances as expected for 

the smaller +3 ion29:  [Eu(crypt)(ClO4)](ClO4)2, Eu–Ocrypt 2.44(4) to 2.52(3) Å and Eu–Ncrypt 

2.64(3) to 2.70(5) Å; [Eu(NO3)5(OH2)][Eu(crypt)(NO3)], Eu–Ocrypt 2.440(3) to 2.563(4) Å and 

Eu–Ncrypt 2.747(5) to 2.7776(6) Å.23, 26  

 

 In the case of the smaller metal, ytterbium, a Ln(II)-in-crypt dication was obtained that 

has no coordinated THF.  Purple Cp′2Yb(THF)2 reacts with crypt in toluene to form green 

[Yb(crypt)][Cp′3Yb]2, 13-Yb,  in 18% yield, eq 4.4. The complex 13-Yb is the first example of 

ytterbium in a cryptand.  As in the anion of 12-Eu, the [Cp′3Yb]1− anion bond distances in 13-Yb 

are equivalent to those of the previously reported [K(crypt)][Cp′3Yb].3  The coordination 

geometry of the encapsulated Yb(II) is also irregular, but it can be approximated by a bicapped 

distorted octahedron with the nitrogen atoms in capping vertices.  The Yb–Ocrypt and Yb–Ncrypt 

average distances are 0.15 to 0.16 Å shorter than those in 12-Eu, which is similar to the 

difference in ionic radii of 0.16 Å for nine-coordinate Eu(II) and eight-coordinate Yb(II) ions.29 
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Figure 4.3.  ORTEP representation of [Yb(crypt)][Cp′3Yb]2, 13-Yb thermal ellipsoids drawn at 

the 50% probability level.  Hydrogen atoms are omitted for clarity.  Distances in Å:  Yb3–O1 

2.508(8), Yb3–O2 2.496(6), Yb3–O3 2.444(7), Yb3–O4 2.539(5), Yb3–O5 2.506(6), Yb3–O6 

2.493(6), Yb3–N1 2.634(15), Yb3–N2 2.613(10), average Yb– Cp′ centroid 2.50. 

Conclusions 

 The facile ligand distribution in eq 4.3 and 4.4 was not expected.  It was thought that 

Ln(II) ions would prefer anionic cyclopentadienyl ligands to the neutral ligand environment of 

the [Ln(crypt)(THF)]2+ or [Ln(crypt)]2+ dications.  Formation of the [Cp′3Ln]1− counteranions is 

also unusual since (Cp′)1− loss from these anions appears to be facile in some cases.2  The 

transformation in eq 4.2 is even more unusual.  It is not known if this involves a Sm(I) 

intermediate or if traditional Sm(II) reaction pathways can lead to such species. The Ln(II) 

cryptate cations are interesting in reduction chemistry since Allen and coworkers have found that 

Eu(II) is stabilized with respect to oxidation when encapsulated in cryptates.30-31  Hence, these 

complexes may be good precursors to Ln(I) species. 
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Experimental 

All syntheses and manipulations described below were conducted under nitrogen or 

argon with rigorous exclusion of air and water using glovebox, Schlenk-line, and high-vacuum 

techniques. KC8,
32 Cp′2Ln(THF)2 (Ln = Sm, Eu, Yb),33 and Cp″2Sm(THF)34

 were prepared 

according to previously published literature.  2.2.2-Cryptand (4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane, Aldrich) was placed under vacuum (10−3 Torr) for 12 h before 

use. Solvents were sparged with UHP argon and dried over columns containing Q-5 and 

molecular sieves.  1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were obtained on a 

Bruker GN500 or CRYO500 MHz spectrometer at 298 K.  IR samples were prepared as KBr 

pellets on a Varian 1000 FT-IR system.  Elemental analyses were performed on a PerkinElmer 

series II 2400 CHNS analyzer. 

[Sm(C16H32N2O6-ĸ2O:ĸ2O′)SmCp″2], 11-Sm.  KC8 (28 mg, 0.21 mmol) was added to a 

dark green solution of Cp′′2Sm(THF) (75 mg, 0.12 mmol) and 2.2.2-cryptand (66 mg, 0.18 

mmol) stirred in THF (1.5 mL).  After 5 min, the brown solution was filtered, layered into Et2O, 

and placed in a −35 °C freezer.  After 2 d, X-ray quality dark brown crystals of the product were 

isolated. 

[Sm(crypt)(THF)][Cp′3Sm]2, 12-Sm. Addition of THF (3 mL) to a mixture of purple 

Cp′2Sm(THF)2 (50 mg, 0.088 mmol) and 2.2.2-cryptand (11 mg, 0.029 mmol) formed a dark 

purple solution.  The mixture was stirred for 2 h and placed in a −35 °C freezer in a vial within a 

vial containing pentane for vapor diffusion crystallization.  After 2 d, X-ray quality dark purple 

crystals of 2-Sm were isolated (30mg, 0.018 mmol, 50%).  IR: 3064s, 2947s, 2887s, 2697w, 

2345w, 1665w, 1595w, 1560w, 1476m, 1458m, 1439s, 1397m, 1354s, 1306m, 1275m, 1257s, 

1242s, 1182s, 1109s, 1085s, 1063s, 1038s, 953s, 903s, 827s, 741s, 679m, 638m, 626m cm−1.  
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Anal. Calcd for [Sm(crypt)(THF)][Cp′3Sm]2 C, 48.82; H, 7.08; N, 1.62.   Found: C, 42.11; H, 

6.09; N, 1.66.  Elemental analysis was complicated by incomplete combustion which has been 

observed before for silyl lanthanide complexes.35-37  However, the CHN ratios found by 

elemental analysis, 70:123.6:2.4, match that calculated:  C70H122N2.  

  [Eu(crypt)(THF)][Cp′3Eu]2, 12-Eu. As described for 2-Sm, an orange THF solution of 

Cp′2Eu(THF)2 (50 mg, 0.088 mmol) was reacted with 2.2.2-cryptand (11 mg, 0.029 mmol).  

Upon addition of 2.2.2-cryptand, the solution immediately formed a dark red solution.   The dark 

red solution was placed in a vial within a vial containing pentane for vapor diffusion.  After 4 d, 

dark red X-ray quality crystals were formed.  (34 mg, 0.020 mmol, 67%).  IR: 3065s, 2949s, 

2889s, 2749w, 2697w, 2654w, 2607w, 2540w, 2486w, 2465w, 2407w, 2347w, 2257w, 2160w, 

2087w, 1919w, 1869w, 1665w, 1595w, 1560w, 1553w, 1476m, 1458m, 1438s, 1397m, 1354s, 

1306m, 1292m, 1277m, 1242s, 1182s, 1189s, 1109s, 1086s, 1065s, 1038s, 955s, 903s, 829s, 

744s, 679m, 638m, 627m cm−1.  Anal.  Calcd for [Eu(crypt)(THF)][Cp′3Eu]2:  C, 48.68; H, 7.06; 

N, 1.62.  Found: C, 46.18; H, 6.61; N, 1.54 Elemental analysis was complicated by 

incomplete combustion which has been observed before for silyl lanthanide complexes.35-37  

However, the CHN ratios found by elemental analysis, 70:119.3:2.0, match that calculated:  

C70H122N2. 

 [Yb(crypt)][Cp′3Yb]2, 13-Yb.  A solution of Cp′2Yb(THF)2 (103 mg, 0.17 mmol) in 

toluene (50 mL) was added dropwise to a solution of 2.2.2-cryptand (22 mg, 0.058 mmol) in 

toluene (3 mL) which formed a light green solution.  The mixture was stirred for 2 h and the 

solution was filtered from an insoluble green precipitate.  Toluene was removed from the filtrate 

in vacuo and Et2O (ca. 3 mL) was added. Microcrystals formed at −35° C after 2 d (18 mg, 0.010 

mmol, 18%).  Light green X-ray quality crystals were obtained by placing a concentrated 
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solution of the product in toluene at −35 °C after 1 d.  1H NMR (C6D6):  δ 6.67 (s, C5H4SiMe3, 

12H), 6.46 (s, C5H4SiMe3, 12H), −0.11 (s, C5H4SiMe3, 54H).  13C NMR (C6D6):  δ 133.4 

(C5H4SiMe3), 130.6 (C5H4SiMe3), 127.6 (C5H4SiMe3), −2.08 (C5H4SiMe3).  IR:  3068m, 2947s, 

2886m, 2824s, 2762w, 2731w, 2697w, 2085w, 1958w, 1919w, 1560w, 1479m, 1456m, 1446s, 

1439s, 1416w, 1398w, 1381w, 1360s, 1354s, 1302s, 1260s, 1240s, 1182s, 1134s, 1105s, 1082s, 

1055w, 1036s, 951s, 934s, 905s, 831s, 748s, 741s, 687m, 679m, 664w, 638m, 629m cm−1.  

Structural Details 

X-ray Data Collection, Structure Solution and Refinement for 11-Sm, 

[Sm(C16H32N2O6-ĸ2O:ĸ2O′)SmCp′′2].  A black crystal of approximate dimensions 0.225 x 

0.281 x 0.330 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX238 program package was used to determine the unit-cell parameters 

and for data collection (60 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT39 and SADABS40 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL41 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space groups Cc and C2/c.  It 

was later determined that space group Cc was correct.  The structure was solved by direct 

methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors42 for neutral atoms were used throughout the analysis.  Hydrogen atoms were included 

using a riding model.  There were two molecules of the formula-unit and two molecules of 

tetrahydrofuran solvent present.  Several atoms were disordered and included using multiple 

components with partial site-occupancy-factors.  Least-squares yielded wR2 = 0.2105 and Goof 

= 1.114 for 787 variables refined against 25579 data (0.74Å), R1 = 0.0861 for those 22978 data 

with I > 2.0(I).  The structure was refined as a two-component inversion twin.  There were 
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several high residuals present in the final difference-Fourier map.  It was not possible to 

determine the nature of the residuals although it was probable that additional tetrahydrofuran 

solvent was present.  The SQUEEZE43a routine in the PLATON43b program package was used to 

account for the electrons in the solvent accessible voids.  

X-ray Data Collection, Structure Solution and Refinement for 12-Eu, 

[Eu(crypt)(THF)][Cp′3Eu]2.  An orange crystal of approximate dimensions 0.060 x 0.085 x 

0.140 mm was mounted in a cryoloop.  Data were collected on a Bruker Kappa four-circle 

micro-focus rotating anode diffractometer system equipped with an APEX II CCD detector.  The 

APEX338 program package was used to determine the unit-cell parameters and for data 

collection (3 sec/frame scan time).  The raw frame data was processed using SAINT39 and 

SADABS40 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL41 program.  There were no systematic absences nor any diffraction symmetry other 

than the Friedel condition.  The centrosymmetric triclinic space group P  was assigned and later 

determined to be correct. The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors42 for neutral atoms were 

used throughout the analysis.  Hydrogen atoms were included using a riding model.  Disordered 

atoms were included using multiple components with partial site-occupancy factors.  There were 

two formula-units present (Z=4) and four molecules of tetrahydrofuran solvent present per 

formula-unit.  At convergence, wR2 = 0.0937 and Goof = 1.015 for 1985 variables refined 

against 37495 data (0.82Å), R1 = 0.0402 for those 26135 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 12-Sm, 

[Sm(crypt)(THF)][Cp′3Sm]2.  A violet crystal of approximate dimensions 0.130 x 0.130 x 

0.141 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

1
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diffractometer.  The APEX238 program package was used to determine the unit-cell parameters 

and for data collection (30 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT39 and SADABS40 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL41 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P  was assigned and later determined to be correct.  The structure was 

solved using the coordinates of the europium analogue and refined on F2 by full-matrix least-

squares techniques.  The analytical scattering factors42 for neutral atoms were used throughout 

the analysis.  Hydrogen atoms were included using a riding model.  Disordered atoms were 

included using multiple components with partial site-occupancy factors.  There were two 

formula-units present (Z=4) and four molecules of tetrahydrofuran solvent present per formula-

unit.  Least-squares analysis yielded wR2 = 0.1442 and Goof = 0.941 for 1975 variables refined 

against 37384 data (0.82Å), R1 = 0.0674 for those 17221 data with I > 2.0(I). 

X-ray Data Collection, Structure Solution and Refinement for 13-Yb, 

[Yb(crypt)][Cp′3Yb]2.  A green crystal of approximate dimensions 0.151 x 0.172 x 0.474 mm 

was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The 

APEX238 program package was used to determine the unit-cell parameters and for data 

collection (30 sec/frame scan time for a sphere of diffraction data).  The raw frame data was 

processed using SAINT39 and SADABS40 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL41 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/c that was later 

determined to be correct.  The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors42 for neutral atoms were 

1
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used throughout the analysis.  Hydrogen atoms were included using a riding model.  Disordered 

atoms were included using partial site-occupancy-factors and isotropic thermal parameters.  

There were three molecules of toluene solvent present.  Two of the toluene molecules were 

refined as rigid groups.  At convergence, wR2 = 0.0968 and Goof = 1.048 for 792 variables 

refined against 24068 data (0.73 Å), R1 = 0.0409 for those 19184 data with I > 2.0(I). 
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CHAPTER 5 

Synthesis of Uranium-in-Cryptand Complexes 

 

Introduction* 

 Development of new ligand systems is critical to advancing the chemistry of any metal.   

This Chapter describes the first crystallographic confirmation of uranium encapsulated within the 

2.2.2-cryptand (crypt) ligand.  Since the crypt ligand has been known for decades,1, 2 it was quite 

surprising that it had not been used extensively with actinides.  Numerous studies have been 

published on crypt, but most focus on alkali and alkaline-earth metals.1-4  Lanthanide crypt 

complexes have been reported as early as 1980 in solution5 and several crystal structures have 

been subsequently reported.6-10  Complexes of lanthanide ions encapsulated in ligands that are 

variations of crypt are also known.11, 12 With uranium, there are reports on the spectroscopy and 

elemental analysis of U(IV) and uranyl cryptand complexes dating back to 1976,13-16 but no X-

ray crystal structures of uranium crypt complexes were reported prior to this research. 

 The investigation of U-in-crypt complexes was stimulated by the discovery that Sm(II), 

Eu(II), and Yb(II) can be readily encapsulated into crypt from metallocene precursors according 

to eq 5.1.17  It was sought to determine if facile encapsulation of actinides into crypt was possible 

 

*Portions of this chapter have been published: Huh, D. N.; Windorff, C. J.; Ziller, J. W.; Evans, W. J. Synthesis of 

Uranium-in-Cryptand Complexes. Chem. Commun., 2018, 54. 10272-10275.  DOI:  10.1039/C8CC05341C 
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in toluene or THF and could also lead to crystallographically-characterizable compounds.  This 

would not only establish this special coordination environment for these f block metals, but it 

could also be valuable in manipulating the redox chemistry for these elements.  Lower oxidation 

states of the lanthanides have been shown to stabilized by the crypt ligand.5, 18  Hence metal-in-

cryptand complexes are attractive precursors for generating low oxidation states of the rare-earth 

and actinide metals.19-26 

Results and Discussion 

 To probe the generality of incorporating f elements into the crypt ligand shown in eq 5.1, 

simple halides of uranium and lanthanum, a rare-earth metal of similar size, were treated with 

crypt.  The first crystallographically-characterized actinide-in-cryptand and an analogous 

lanthanum-in-cryptand complex are herein described.  In all the examples described below, there 

are two additional coordination sites accessible to the metal.  This has allowed isolation of aquo 

complexes of U(III),27-30 an ion that under other conditions can readily reduce water.31-35   

 Addition of a blue THF solution of UI3 to a colorless THF solution of 2.2.2-cryptand 

(crypt) immediately forms a brown/green precipitate that is soluble in CH2Cl2.  Recrystallization 

from CH2Cl2/Et2O generates dichroic brown/green crystals of [U(crypt)I2]I, 14-U, eq 5.2.  As 

shown in Figure 5.1, two iodides are coordinated to the U(III) ion in the crypt and one iodide is 

outer sphere.   
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Figure 5.1.  ORTEP representation of [U(crypt)I2]I, 14-U, with thermal ellipsoids drawn at the 

50% probability level.  Hydrogen atoms and three molecules of CH2Cl2 were omitted for clarity. 

 

An analogous reaction was conducted with LaCl3 since the larger rare-earth metals are often used 

as mimics for the actinides36 and it was of interest to see if the reaction was also applicable to 4f 

metals.  Treatment of LaCl3 with crypt in dimethylformamide (DMF) led to the insertion of 

La(III) into the crypt forming [La(crypt)Cl2]Cl, 15-La, Figure 5.2, as shown in eq 5.3. 
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Figure 5.2.  ORTEP representation of [La(crypt)Cl2]Cl, 15-La, with thermal ellipsoids drawn at 

the 50% probability level.  Outer sphere chloride is disordered over two positions.  Hydrogen 

atoms were omitted for clarity. 

 

 In one synthesis of 14-U in THF, adventitious water was present and an aquated variant 

of 14-U was obtained, namely [U(crypt)I(OH2)][I]2, 16-U, Figure 3, which was only 

characterized  

 

Figure 5.3.  ORTEP representation of [U(crypt)I(OH2)][I]2, 16-U, with thermal ellipsoids drawn 

at the 50% probability level.  Hydrogen atoms except those of H2O were omitted for clarity.   
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crystallographically.  The structure revealed one water molecule and one iodide ion coordinated 

to uranium and the complex crystallizes with two outer sphere iodide ions.   

 Anion exchange of an outer sphere iodide of 14-U was performed by reaction with 

NaBPh4 in acetonitrile (MeCN), eq 5.4.  While an iodide was exchanged for (BPh4)
1−, 

crystallographic characterization revealed that a water adduct again had formed, 

[U(crypt)I(OH2)][I][BPh4], 17-U, Figure 5.4.  As in 16-U, compound 17-U was only 

characterized crystallographically. 

 

 

Figure 5.4.  ORTEP representation of [U(crypt)I(OH2)][I][BPh4], 17-U, with thermal ellipsoids 

drawn at the 50% probability level.  Hydrogens except those of H2O were omitted for clarity. 
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 Metrical data on 14-U, 15-La, 16-U, and 17-U are summarized in Table 5.1 as well as data on 

the aquated lanthanum complex, [La(crypt)Cl(OH2)][Cl]2,
9 for comparison.  In each case, the six 

oxygen donor atoms of the crypt form the shortest distances to the metal.  The M−N distances for 

the two nitrogen donors are 0.1-0.2 Å longer than the M−O distances.  The six oxygen atoms of 

the crypt define a trigonal prismatic geometry, but the range of M−O distances show this has 

some distortion from a pure D3h symmetry.  The N atoms of the crypt cap the trigonal faces and 

the additional two ligands in each complex cap two of the three square faces of the O6 trigonal 

prism.  The U(III)−O(OH2) bond distances, 2.549(7) and 2.503(3) Å, in 16-U and 17-U, 

respectively, are distinct from terminally bound U(IV)−O(OH) distances, which range from 

2.040(2)-2.137(7) Å.31, 33, 34, 37, 38  The U(III)-O(OH2) distances are in the 2.47(3)-2.595(3) Å 

range reported for UCl3(OH2)7,
27 UCl3(OH2)6,

27 [U(OH2)9][OTf]3,
28 

(NH4)[U(OH2)5(MeCN)2Br2][Br]2,
29 and (NH4)U(SO4)2(OH2)3•H2O.30 

 

Table 5.1.  Summary of bond distance ranges (Å) of compounds [U(crypt)I2]I 14-U, 

[La(crypt)Cl2]Cl 15-La, [U(crypt)I(OH2)][I]2 16-U, [U(crypt)I(OH2)][I][BPh4] 17-U, and 

[La(crypt)Cl(OH2)][Cl]2.
9 

 [U(crypt)I2]I, 14-U [U(crypt)I(OH2)][I]2, 16-U [U(crypt)I(OH2)][I][BPh4], 17-U 

U−I 3.3106(5)-3.3292(6) 3.2563(7) 3.2845(6) 

U−Ncrypt 2.803(3)-2.853(3) 2.80(1)-2.814(8) 2.781(3)-2.822(3) 

U−Ocrypt 2.568(2)-2.697(2) 2.602(9)-2.683(7) 2.606(3)-2.659(4) 

U−OH2 
 2.549(7) 2.503(3)  

 [La(crypt)Cl2]Cl, 15-La [La(crypt)Cl(OH2)][Cl]2
9  

La−Cl 2.8161(5) 2.827(2)  

La−Ncrypt 2.893(2) 2.800(7)-2.814(6)  

La−Ocrypt 2.673(1)-2.716(1) 2.651(6)-2.725(6)  

La−OH2 
 2.539(6)  

    

 In complex 14-U, the outer sphere iodide anion is 3.2 Å from the nearest atom in the 

[U(crypt)I2]
1+ cation.  In 16-U and 17-U, however, the outer sphere iodide ions are closer to the 

cation and the hydrogen atoms of the coordinated water are oriented toward the outer sphere 
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iodides.  In 3, the H●●●I distances are approximately 2.6 and 2.7 Å and the H●●●I distance in 17-U 

is 2.6 Å.  The H●●●Cl distance in [La(crypt)Cl(OH2)][Cl]2
9 is 2.7 Å.  The ranges of U−O(crypt) 

and U−N(crypt) bond distances in 14-U, 16-U, and 17-U all overlap and show a similarity 

despite the difference in the other ligands on uranium and the extent of hydrogen bonding.  

Conclusion  

 In summary, simple salts of uranium and lanthanum can readily form 

crystallographically-characterizable complexes with 2.2.2-cryptand.  The crypt coordination 

environment allows additional ligands to bind to the metals such that productive chemistry is 

possible with this ligation.  The formation of the aquo adducts 16-U and 17-U is unusual since 

U(III) in other coordination environments is known to reduce water to form U(IV)-hydroxo 

complexes.31-35  It should also be noted that the solubility of [U(crypt)I2]I, 14-U, differs from the 

starting reagent UI3.  Although UI3 is soluble in THF, 14-U is not.  In contrast, the starting UI3 is 

not soluble in CH2Cl2, but 14-U is soluble in this solvent.  These differences in solubility suggest 

interesting possibilities for recycling/extraction of radioactive nuclear waste if an appropriately 

cost-effective chelate were available.  

Experimental 

All syntheses and manipulations described below were conducted under Ar with rigorous 

exclusion of air and water using glovebox, Schlenk-line, and high-vacuum-line techniques.  UI3
39 

and LaCl3
40 materials were prepared according to previously published literature.  2.2.2-

Cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, Aldrich) was placed 

under vacuum (10−3 Torr) for 12 h before use.  THF and Et2O were sparged with UHP Ar and 

dried over columns containing Q-5 and molecular sieves.  DMF, MeCN, and CH2Cl2 were dried 

over 3 Å molecular sieves for 1 week and degassed using three freeze-pump-thaw cycles.  IR 
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samples were prepared as KBr pellets on a Jasco FT/IR-4700 spectrometer.  Elemental analyses 

were performed on a PerkinElmer series II 2400 CHNS analyzer.   

[U(crypt)I2]I, 14-U.  In an argon-filled glovebox, a blue solution of UI3 (100 mg,  0.160 

mmol) in THF (2 mL) was added dropwise to a stirred colorless THF (2 mL) solution of 2.2.2-

cryptand (60 mg, 0.160 mmol).  A green/brown precipitate immediately formed.  This mixture 

was stirred for 30 min.  The solvent was removed in vacuo yielding a light green solid (123 mg, 

76%).  The solid was dissolved in CH2Cl2 (2 mL).  The green solution was filtered and then 

layered with Et2O and placed in a −35 °C freezer.  After 1 d, X-ray quality green crystals were 

isolated.  IR: 3243w, 3169w, 2943w, 2926w, 2894w, 2860w, 1611w, 1490w, 1479m, 1468m, 

1451m, 1437w, 1361w, 1354w, 1335w, 1311w, 1288w, 1262m, 1240w, 1159w, 1103s, 1085s, 

1075s, 1050m, 1029m, 960s, 949m, 911w, 873w, 832m, 823m, 803w, 763w, 757w cm-1.  Anal. 

Calcd. for [U(crypt)I2]I, C18H36N2O6I3U:  C, 21.72; H, 3.65; N, 2.81.  Found:  C, 21.92; H, 3.49; 

N, 2.52. 

[La(crypt)Cl2]Cl, 15-La.  In an argon-filled box, a suspension of LaCl3 (100 mg, 0.408 

mmol) in DMF (2 mL) was added to a solution of 2.2.2-cryptand (153 mg, 0.408 mmol) in DMF 

(2 mL).  The suspension was stirred for 12 h at room temperature.   The colorless solution was 

layered into Et2O at –35 °C.  X-ray quality colorless crystals were isolated (220 mg, 85%).  IR: 

2968m, 2873m, 2821m, 2744w, 1666m, 1641m, 1482m, 1448m, 1427m, 1411w, 1387w, 1373w, 

1354m, 1325w, 1304m, 1291m, 1266w, 1256m, 1233w, 1215w, 1162m, 1116s, 1091s, 1068s, 

1022m, 957s, 936m, 829m, 805w, 757m cm-1.  Anal. Calcd. for [La(crypt)Cl2]Cl, 

C18H36N2O6Cl3La:  C, 34.77; H, 5.84; N, 4.51.  Found:  C, 34.52; H, 5.34; N, 4.93.   

[U(crypt)I(OH2)][I]2, 16-U.  In an argon-filled box, a THF (1 mL) solution of 2.2.2-

cryptand (11 mg, 0.030 mmol) was added to a blue solution of UI3 (19 mg, 0.030 mmol) in THF 
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(2 mL).  The solution immediately became a maroon suspension.  The mixture was placed in a –

15 °C freezer from which green X-ray quality crystals of [U(crypt)(OH2)(I)][I]2 were obtained 

(15 mg, 50%). 

[U(crypt)I(OH2)][I][BPh4], 17-U.  In an argon-filled box, a green MeCN (3 mL) 

solution of [U(crypt)I2]I, 1 (30 mg, 0.03 mmol) was added to a MeCN solution of NaBPh4 (10 

mg 0.03 mmol).  The green mixture was stirred for 2 d and then filtered to remove brown solids.  

The resulting green solution was filtered and layered with Et2O and placed in a –35 °C freezer.  

Brown/green X-ray quality crystals of [U(crypt)I(OH2)][I][BPh4] were obtained (10 mg, 28%). 

Spectral Details 

 

Figure 5.5.  NIR/UV-Vis of 5mM [U(crypt)I2]I, 14-U, in DMF.  Full spectrum (blue, left axis) 

and 20x zoom of full spectrum (red, right axis). 
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Structural Details 

X-ray Data Collection, Structure Solution and Refinement for [U(crypt)I2]I, 14-U.  

A green crystal of approximate dimensions 0.084 x 0.205 x 0.331 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX241 program 

package was used to determine the unit-cell parameters and for data collection (20 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT42 

and SADABS43 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL44 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors45 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  There were three molecules of 

dichloromethane solvent present.  Least-squares analysis yielded wR2 = 0.0497 and Goof = 

1.059 for 352 variables refined against 8749 data (0.76 Å), R1 = 0.0225 for those 7986 data with 

I > 2.0(I). 

X-ray Data Collection, Structure Solution and Refinement for [La(crypt)Cl2]Cl, 15-

La.  A colorless crystal of approximate dimensions 0.089 x 0.117 x 0.283 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX241 program 

package was used to determine the unit-cell parameters and for data collection (25 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT42 

and SADABS43 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL44 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space groups Cc and C2/c.  It was later determined that space 
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group C2/c was correct.  The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors45 for neutral atoms were 

used throughout the analysis. Hydrogen atoms were included using a riding model.  The 

molecule and chloride ion were located on two-fold rotation axes. There was one molecule of 

diethylether solvent present.  The solvent was located on an inversion center.  Both the solvent 

and chloride ion were disordered and included using multiple components with partial site-

occupancy-factors.  Least-squares analysis yielded wR2 = 0.0554 and Goof = 1.069 for 183 

variables refined against 3496 data (0.74 Å), R1 = 0.0210 for those 3298 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for [U(crypt)I(OH2)][I]2, 

16-U.  A green crystal of approximate dimensions 0.154 x 0.241 x 0.404 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX241 program 

package was used to determine the unit-cell parameters and for data collection (20 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT42 

and SADABS43 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL44 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/n that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors45 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms H(71) and H(72) were located from a difference-map and refined 

(x,y,z and Uiso).  The remaining hydrogen atoms were included using a riding model.  At 

convergence, wR2 = 0.1096 and Goof = 1.257 for 288 variables refined against 6137 data 

(0.78Å), R1 = 0.0474 for those 5617 data with I > 2.0(I).   
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X-ray Data Collection, Structure Solution and Refinement for 

[U(crypt)I(OH2)][I][BPh4], 17-U.  A green crystal of approximate dimensions 0.121 x 0.136 x 

207 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX241 program package was used to determine the unit-cell parameters 

and for data collection (20 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT42 and SADABS43 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL44 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/n that was later 

determined to be correct.  The structure was solved by dual space methods and refined on F2 by 

full-matrix least-squares techniques.  The analytical scattering factors45 for neutral atoms were 

used throughout the analysis.  Hydrogen atoms were included using a riding model.  There was 

one molecule of acetonitrile solvent present.  Least-squares analysis yielded wR2 = 0.0766 and 

Goof = 1.019 for 525 variables refined against 12099 data (0.75 Å), R1 = 0.0346 for those 9551 

data with I > 2.0(I).  There were several high residuals present in the final difference-Fourier 

map.  It was not possible to determine the nature of the residuals although it was probable that 

either acetonitrile or diethylether solvent was present.  The SQUEEZE46a routine in the 

PLATON46b program package was used to account for the electrons in the solvent accessible 

voids.   
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CHAPTER 6 

Facile Encapsulation of Ln(II) Ions into Cryptate Complexes  

from LnI2(THF)2 Precursors (Ln = Sm, Eu, Yb) 

 

Introduction* 

 Although the 2.2.2-cryptand (crypt) ligand has been known since 19731-2 and lanthanide-

encapsulated crypt complexes were reported in 1979,3 Ln-in-crypt complexes were not heavily 

studied in subsequent decades.  Most of the examples involved lanthanides in the +3 oxidation 

state.4-7  However, Allen and co-workers also reported examples of Eu(II)-in-crypt8-10 complexes 

as well as related Ln(II)-in-azacrypt11-12 complexes.  Since the crypt ligand has been found to 

stabilize low oxidation states for rare-earth metals,6, 8  Ln(II)-in-crypt complexes could be 

attractive precursors to expand the limits of redox chemistry of rare-earth metals.13  

 Encapsulation of rare-earth ions using crypt first generated interest with the discovery 

that Sm(II), Eu(II), and Yb(II) can be readily incorporated into crypt from the metallocene 

precursors, Cpʹ2Ln(THF)2 (Cpʹ = C5H4SiMe3)
14 as described in Chapter 4.  The trimetallic Ln(II) 

complexes [Ln(crypt)(THF)][Cpʹ3Ln]2, 12-Ln (Ln = Sm, Eu), and [Yb(crypt)][Cpʹ3Yb]2, 13-Yb, 

are formed according to eq 6.1.14  Following this result, it was sought to synthesize Ln(II)-in-  

 

*Portions of this Chapter have been published:  Huh, D. N.; Ziller, J. W.; Evans, W. J.  Facile Encapsulation of 

Ln(II) Ions into Cryptate Complexes from LnI2(THF)2 Precursors (Ln = Sm, Eu, Yb). Inorg. Chem., 2019, 589, 

9613-9617.  DOI:  10.1021/acs.inorgchem.9b01049 



109 
 

crypt examples with a single type of Ln(II) coordination environment to better examine the 

Ln(II)-in-crypt moiety.  It was also of interest to synthesize Ln(II)-in-crypt complexes from 

common Ln(II) starting materials such as the diiodides, LnI2(THF)2, that are precursors to the 

metallocenes of eq 6.1.  It was found that U(III)-in-crypt and La(III)-in crypt complexes can be 

synthesized directly from the metal trihalides.15  Encapsulated Sm(II), Eu(II), and Yb(II) ions can 

be readily prepared by addition of crypt to LnI2(THF)2 precursors.   

Results and Discussion 

 Encapsulation of Sm(II), Eu(II), and Yb(II).  Addition of THF solutions of LnI2(THF)2 

(Ln = Sm, Eu) to a THF solution of 2.2.2-cryptand (crypt) generates precipitates that dissolve in 

DMF.  Crystallization of these solutions yields the Ln(II)-in-crypt complexes, 

[Ln(crypt)(DMF)2][I]2, 18-Ln, identified by X-ray diffraction, eq 6.2, Figure 6.1.   

 

The crystal data show that each metal in 18-Ln is encapsulated by the crypt ligand and is 

also coordinated to two molecules of DMF.  Both iodides in 18-Ln are outer-sphere 

counteranions.  The 10-coordinate geometry of the Ln(II) ion can be described as a tetra-capped 

trigonal prism with crypt nitrogen donor atoms capping the triangular faces and DMF oxygen 

atoms capping two of the rectangular faces.  Similar structures were previously described for the 

Ln(III) complexes [La(crypt)(OH2)Cl]Cl2,
7 [La(crypt)(DMF)(OTf)][OTf]2,

7 [La(crypt)Cl2]Cl,15 

and [U(crypt)I2]I.
15 
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Figure 6.1.  ORTEP representation of [Eu(crypt)(DMF)2][I]2, 18-Eu, with thermal ellipsoids 

drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity.  18-Sm is 

isomorphous with 18-Eu.   

 

 Table 6.1 presents metrical data on all the new Ln(II)-in-crypt complexes in this paper as 

well as comparisons with [Eu(crypt)(THF)][Cpʹ3Eu]2, 12-Eu, [Yb(crypt)][Cpʹ3Yb]2, 13-Yb, and  

[Eu(crypt)Cl][Cl].  Since the crystal structure of [Sm(crypt)(THF)][Cpʹ3Sm]2, 12-Sm, was of 

insufficient quality to provide metrical data, it is not included.  Table 6.1 shows that in the 18-Ln  

Table 6.1.  Ln(II)−O(crypt) and Ln(II)−N(crypt) bond distance ranges (Å).  

 Ln(II)−O(crypt) Ln(II)−N(crypt) C.N. Reference 

20-Sm 2.737(1)-2.783(1)  2.934(2)-2.942(2) 10 this study 

18-Sm 2.740(1)-2.793(1) 2.876(2) 10 this study 

20-Eu 2.731(2)-2.782(2) 2.937(2)-2.945(2) 10 this study 

18-Eu 2.731(2)-2.767(3) 2.871(3) 10 this study 

12-Eu 2.620(3)-2.681(4) 2.849(5)-2.871(5) 9 ref 14 

[Eu(crypt)Cl][Cl]  2.659(3)-2.707(4) 2.838(3)-2.859(3) 9 ref 9 

19-Yb 2.513(2)-2.717(2) 2.783(3)-2.790(3) 9 this study 

13-Yb 2.444(7)-2.539(5) 2.649(6)-2.740(10) 8 ref 14 
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complexes, the 2.740(1) to 2.793(1) Å Sm(II)−O(crypt) and 2.731(2) to 2.767(3) Å 

Eu(II)−O(crypt) bond distances are shorter than the 2.876(2) Å Sm(II)−N(crypt) and 2.871(3) Å 

Eu(II)−N(crypt) distances as is typical in Ln-in-crypt complexes.  The Eu(II)−O(crypt) bond 

distances in 10-coordinate 18-Eu are longer than the 2.620(3) to 2.681(4) Å distances in the 9-

coordinate 12-Eu,14 as expected for a higher coordinate complex.  However, the Eu(II)−N(crypt) 

distance in 18-Eu is in the range of those in 12-Eu.  The 2.546(3) Å Eu(II)−O(DMF) bond 

distance in 18-Eu is significantly shorter than the Eu(II)−O(crypt) distances, but it is similar to 

the 2.558(3) Å Eu(II)−O(THF) distance in 12-Eu. 

 An Yb(II)-in-crypt complex, [Yb(crypt)(DMF)][I]2, 19-Yb,  was synthesized in a similar 

manner to eq 6.2.  However, in the case of this smaller metal, the product contains only one 

coordinated DMF, eq 6.3, Figure 6.2.  This difference in solvation is similar to the difference 

 

between [Ln(crypt)(THF)][Cpʹ3Ln]2, 12-Ln (Ln = Sm, Eu), and [Yb(crypt)][Cpʹ3Yb]2, 13-Yb, eq 

6.1, in that the Yb complex has one less coordinated solvent molecule.14  The 2.513(2) to 

2.717(2) Å Yb(II)−O(crypt) distances in 19-Yb span a wide range that is not so useful for 

comparison with the 2.444(7) to 2.539(5) Å distances in 13-Yb.  Although the 2.783(3) and 

2.790(3) Å Yb−N(crypt) distances in 19-Yb are similar, the analogs in 13-Yb span a wide range, 

2.649(6) to 2.740(10) Å.  The Yb−N(crypt) distances in 19-Yb are 0.090 Å and 0.085 Å less 

than those in 18-Sm and 18-Eu, respectively.  In contrast, the data available in the Shannon radii 
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compilation18 show a 0.18 Å and 0.16 Å difference between the 8-coordinate Yb(II) and 9-

coordinate Sm(II) and Eu(II), 

 

Figure 6.2.    ORTEP representation of [Yb(crypt)(DMF)][I]2, 19-Yb, with thermal ellipsoids 

drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity. 

 

respectively.  On the other hand, the 2.389(2) Å Yb(II)−O(DMF) distance in 19-Yb is 0.168 Å 

and 0.157 Å less than the Sm−O(DMF) and Eu−O(DMF) distances in 18-Sm and 18-Eu, which 

is in the range predicted by the Shannon data.  Overall, the metrical data suggest that the crypt 

ligand is quite flexible in its coordination behavior depending on the specific metal and 

additional ligands present. 

 Ionic Metathesis with Sm and Eu.  Addition of two equiv of NaBPh4 to a DMF solution 

of [Ln(crypt)(DMF)2][I]2, 18-Ln  for Ln = Sm, Eu, in DMF generated tetraphenylborate analogs 

of 18-Ln, namely the isomorphous Sm and Eu complexes, [Ln(crypt)(DMF)2][BPh4]2, 20-Ln, eq 

6.4, Figure 6.3.  The Sm−O(crypt) and Eu−O(crypt) metrical parameters in 20-Ln are similar to 
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those in 18-Ln, but the Sm−N(crypt) is 0.062 Å longer and the Eu−N(crypt) is 0.070 Å longer, 

Table 6.1.  This is another example of the flexibility of the crypt ligand and could be related to 

the position of the [BPh4]
1− anions as described below. 

 

 

Figure 6.3.  ORTEP representation of [Sm(crypt)(DMF)2][BPh4]2, 20-Sm, with thermal 

ellipsoids drawn at the 50% probability level and dashed lines represent hydrogen bonding.  

Hydrogen atoms, except for H19 and H22, were omitted for clarity. 

 

 In all the new structures above, the formyl hydrogen atoms of the DMF molecules have 

short distances to the nearest crypt oxygen atoms.  In 20-Sm, these are H22…O5, 2.75(2) Å, and 

H19…O2, 3.07(2) Å.  Hydrogen bonding from an outer sphere DMF oxygen to an inner sphere 

formyl hydrogen is also observed:   H19…O9 is 2.55(2) Å, Figure 6.3.  Additionally, hydrogen 

atoms of the crypt ligand and the methyl group of the DMF molecules have short distances to the 
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phenyl ring hydrogen atoms in [BPh4]
1− ranging from 2.27 to 2.41 Å, which is in the range 

consistent with dispersion forces.19-21  It is unknown if these distances and the position of the two 

[BPh4]
1− anions are related to the difference in Sm−N(crypt) distances in 18-Sm and 20-Sm (see 

above).  Isomorphous 20-Eu has similar close contacts. 

 Ionic Metathesis with Yb.  Attempts to make 20-Yb according to eq 6.4 by stepwise 

addition of NaBPh4 to isolated 19-Yb and by direct reaction of NaBPh4 with YbI2 and crypt, eq 

6.5, were not successful.  Instead, encapsulation of Na(I) was confirmed by X-ray 

crystallography by comparing the unit cell of the product of eq 6.5 with the known 

[Na(crypt)][I].22  The Yb(II) ion in this reaction was isolated as an orange DMF solvate,  

[Yb(DMF)6][BPh4]2, 21-Yb, eq 6.5.  Solvated Ln(II) complexes have been isolated as [BPh4]
1− 

salts in the past from a variety of reactions, including (C9H7)2Sm(THF)3 + [Et3NH][BPh4] to 

form [Sm(THF)7][BPh4]2, (C5Me5)Sm[N(SiMe3)2](THF)2 + [Et3NH][BPh4]  to form 

[Sm(THF)7][BPh4]2, [(C5Me5)Yb(THF)]2(C8H8) + AgBPh4 to form [Yb(THF)6][BPh4]2, 

[(C5Me5)Yb[N(SiMe3)2](THF)2 + [Et3NH][BPh4] to form [Yb(THF)6][BPh4]2 and 

[Yb[N(SiMe3)2]2(THF)2 + [Et3NH][BPh4] to form [Yb(MeCN)8][BPh4]2.
23   

 

The Yb−O(DMF) distances range from 2.311(2) to 2.403(2) Å in 21-Yb, similar to the 

Yb−O(DMF) distance in 19-Yb.  There are several H…H distances between 2.33 and 2.44 Å in 

this structure involving DMF/(BPh4)
1−, and crypt/(BPh4)

1− combinations.  The 6-coordinate 

Shannon radius of Na(I) and Yb(II) are essentially identical with a radius of 1.02 Å.18 The 

preferential formation of the [Yb(DMF)6]
2+ cation over the encapsulated [Yb(crypt)]2+ cation can 
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be rationalized by Pauling electroneutrality.  Since the DMF molecule can adopt an iminolate 

resonance structure, −O−C(H)=N+Me2, where the oxygen has a partial negative charge and the 

nitrogen has a partial positive charge, DMF would preferentially coordinate to the higher charged 

Yb(II) ion, whereas the neutral oxygen donor atoms in crypt would prefer the lower charged 

Na(I) ion.  

Conclusion 

 In summary, the complexes [Ln(crypt)(DMF)2][I]2, 18-Sm and 18-Eu, and 

[Yb(crypt)(DMF)][I]2, 19-Yb, provide new examples of Ln(II)-in-crypt complexes for Sm(II), 

Eu(II), and Yb(II) and demonstrate that simple starting materials, namely LnI2(THF)2, can be 

used to synthesize them directly.  The tetraphenylborate salts [Ln(crypt)(DMF)2][BPh4]2, 20-Sm 

and 20-Eu, can be obtained by ionic metathesis.  However, attempts to make the 

tetraphenylborate analog of Yb gave the sodium crypt complex [Na(crypt)]I and 

[Yb(DMF)6][BPh4]2, 21-Yb, rather than an Yb crypt product.  Previous studies have shown that 

trivalent LaCl3 can also undergo facile encapsulation by crypt in DMF to form 

[La(crypt)Cl2]Cl,15 but in that case, two of the halide ligands are retained on the metal.  In 18-

Ln, 19-Yb, and 20-Ln, the Ln(II) ions are free of any anionic coordinating ligands.  This may 

facilitate further reduction of the metal.  

Experimental 

All syntheses and manipulations described below were conducted under argon with 

rigorous exclusion of air and water using glovebox, Schlenk-line, and high-vacuum-line 

techniques. All LnI2(THF)2 (Ln = Sm, Eu, Yb)16-17 materials were prepared according to 

previously published literature. 2.2.2-Cryptand (4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane, Aldrich) was placed under vacuum (10−3 Torr) for 12 h before 
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use.  NaBPh4 was purchased from Aldrich and recrystallized from acetone/hexanes.  Solvents 

were sparged with UHP Ar and dried over columns containing Q-5 and molecular sieves. DMF-

d7 was dried with 3 Å molecular sieves and degassed by three freeze-pump-thaw cycles.  1H 

NMR spectra were recorded on Bruker CRYO500 MHz or GN500 MHz spectrometer and 

referenced internally to residual protio-solvent resonances.  IR samples were prepared as KBr 

pellets on a Varian 1000 FT-IR or a Jasco FT/IR-4700 spectrometer. Elemental analyses were 

performed on a PerkinElmer series II 2400 CHNS analyzer. 

 [Sm(2.2.2-cryptand)(DMF)2][I]2, 18-Sm.  In an argon-filled glovebox, a blue THF (3 

mL) solution of SmI2(THF)2 (100 mg, 0.18 mmol) was added to a colorless THF (1 mL) solution 

of 2.2.2-cryptand (69 mg, 0.18 mmol) dropwise while stirring.  A green precipitate immediately 

formed.  After 1 h of stirring, THF was removed in vacuo and 1 mL of DMF was added to 

dissolve the green solid to form a purple solution.  This solution was layered into Et2O and 

placed in a −35 °C freezer.  After 1 d, purple crystals suitable for X-ray crystallography (133 mg,  

79%).  1H NMR (DMF-d7): δ 4.03 [12H, OCH2CH2O], 3.94 [12H, NCH2CH2O], 2.42 [s, 12H, 

NCH2].  IR: 2913m, 2877m, 2849w, 2827w, 2797w, 1653w, 1484m, 1462m, 1380w, 1354s, 

1320m, 1281m, 1271m, 1246m, 1174w, 1128m, 1116m, 1094s, 1074s, 1064s, 1025m, 954s, 

936s, 902m, 872w, 842m, 826m, 814m, 754m, 677w.  Calcd for desolvated [Sm(crypt)]I2, 

C18H36N2O6I2Sm: C, 27.69; H, 4.65; N, 3.59.  Found: C, 27.85; H, 4.59; N, 3.69. 

 [Eu(2.2.2-cryptand)(DMF)2][I]2, 18-Eu.  As described for 18-Sm, a light green THF 

solution of EuI2(THF)2 (100 mg, 0.18 mmol) was added to a solution of 2.2.2-cryptand (68 mg, 

0.18 mmol) dropwise while stirring.  A colorless precipitate immediately formed.  DMF was 

added to dissolve the colorless solid to form a colorless solution.  This solution was layered into 

Et2O and placed in a −35 °C freezer.  After 1 d, colorless crystals suitable for X-ray 
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crystallography (148 mg, 88%). IR: 2913m, 2876m, 2857w, 2825w, 2799w, 1653w, 1481m, 

1460m, 1422w, 1372m, 1353s, 1320m, 1280m, 1273m, 1246m, 1174w, 1128m, 1117s, 1094s, 

1073s, 1062s, 1025m, 953, 937s, 902m, 873w, 843m, 826m, 816m, 754m.  Calcd for desolvated 

[Eu(crypt)]I2, C18H36N2O6I2Eu: C, 27.64; H, 4.64; N, 3.58.  Found: C, 27.98; H, 4.39; N, 3.56. 

 [Yb(2.2.2-cryptand)(DMF)][I]2, 19-Yb.  As described for 18-Sm, a yellow THF 

solution of YbI2(THF)2 (100 mg, 0.18 mmol) was added to a THF solution of 2.2.2-cryptand (66 

mg, 0.18 mmol) forming a colorless precipitate.  After removal of THF, addition of DMF to the 

colorless solid formed a light yellow solution.  This was layered in Et2O and placed in a −35 °C 

and after 1 d, pale yellow crystals suitable for X-ray crystallography were isolated (113 mg, 

74%).  1H NMR (DMF-d7): δ 3.93 [12H, OCH2CH2O], 3.90 [12H, NCH2CH2O], 2.83 [12H, 

NCH2].  IR: 2912m, 2876m, 2840m, 2803w, 1641s, 1492w, 1470w, 1462m, 1456m, 1435m, 

1417m, 1379m, 1352s, 1291m, 1273m, 1257w, 1248w, 1240m, 1170w, 1112m, 1079s, 1066s, 

1059m, 1046m, 1026w, 948m, 935m, 899w, 835w, 819m, 752m, 681m, 664m.  Calcd for 

[Yb(crypt)(DMF)]I2, C21H43N3O7I2Yb: C, 28.78; H, 4.95; N, 4.79.  Found: C, 27.94; H, 4.75; N, 

4.69. 

 [Sm(2.2.2-cryptand)(DMF)2][BPh4]2, 20-Sm.  In an argon-filled glovebox, a colorless 

DMF (1 mL) solution of NaBPh4 (37 mg, 0.11 mmol) was added dropwise to a stirring purple 

DMF (3 mL) solution of [Sm(crypt)(DMF)2][I]2, 18-Sm, (50 mg, 0.054 mmol).  After stirring 

overnight, a white precipitate formed, presumably NaI, and was removed via filtration.  The 

purple DMF solution was layered into Et2O and placed in a −35 °C freezer.  After 1 d, purple 

crystals suitable for X-ray crystallography were isolated (51 mg, 71%). 

 [Yb(DMF)6][BPh4]2, 21-Yb.  In an argon-filled glovebox, YbI2(THF)2 (100 mg, 0.18 

mmol), 2.2.2-cryptand (66 mg, 0.18 mmol), and NaBPh4 (120 mg, 0.35 mmol) were stirred in 
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DMF overnight.  The solution became orange without sign of precipitate.  The solution was 

layered into Et2O overnight and orange crystals suitable for X-ray crystallography were isolated.   

Spectral Details 

 

Figure 6.4.  UV-visible spectrum of [Sm(crypt)(DMF)][I]2, 18-Sm,  in DMF (5 mM). 

 

Figure 6.5.  UV-visible spectrum of [Eu(crypt)(DMF)][I]2, 18-Eu,  in DMF (5 mM). 

 

Figure 6.6.  UV-visible spectrum of [Yb(crypt)(DMF)][I]2, 19-Yb,  in DMF (10 mM). 
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Figure 6.7.  NMR (500 MHz, DMF-d7) spectra of 2.2.2-cryptand, [Sm(crypt)(DMF)2][I]2,  

18-Sm, [Eu(crypt)(DMF)][I]2, 18-Eu, and [Yb(crypt)(DMF)][I]2, 19-Yb. 

 

Figure 6.8.  Variable temperature NMR (500 MHz, DMF-d7) of [Yb(crypt)(DMF)][I]2, 19-Yb, 

at temperatures of 298 K (bottom), 333 K (middle), and 373K (top) zoomed at OCH2CH2O and 

NCH2CH2O 2.2.2-cryptand resonances. 

18-Sm 

2.2.2-cryptand 

18-Eu 

19-Yb 
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Structural Details 

X-ray Data Collection, Structure Solution and Refinement for 

[Sm(crypt)(DMF)2][I]2, 18-Sm.  A purple crystal of approximate dimensions 0.394 x 0.207 x 

0.128 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX224 program package was used to determine the unit-cell parameters 

and for data collection (45 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT25 and SADABS26 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL27 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space groups Cc and C2/c.  It 

was later determined that space group C2/c was correct.  The structure was solved by direct 

methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors28 for neutral atoms were used throughout the analysis.  Hydrogen atoms were located 

from a difference-Fourier map and refined (x,y,z and Uiso).  Least-squares analysis yielded wR2 

= 0.0358 and Goof = 1.053 for 180 variables refined against 4130 data (0.74 Å), R1 = 0.0155 for 

those 3900 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 

[Eu(crypt)(DMF)2][I]2, 18-Eu.  A colorless crystal of approximate dimensions 0.117 x 0.152 x 

0.219 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX224 program package was used to determine the unit-cell parameters 

and for data collection (60 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT25 and SADABS26 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL27 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space groups Cc and C2/c.  It 
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was later determined that space group C2/c was correct.  The structure was solved by dual space 

methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors28 for neutral atoms were used throughout the analysis.  Hydrogen atoms were included 

using a riding model.  The molecule was located on a two-fold rotation axis.  Least-squares 

analysis yielded wR2 = 0.0542 and Goof = 1.041 for 180 variables refined against 3697 data 

(0.78 Å), R1 = 0.0250 for those 3276 data with I > 2.0(I).   

 X-ray Data Collection, Structure Solution and Refinement for 

[Yb(crypt)(DMF)][I]2, 19-Yb.  A pale yellow crystal of approximate dimensions 0.217 x 0.164 

x 0.116 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX224 program package was used to determine the unit-cell parameters 

and for data collection (30 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT25 and SADABS26 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL27 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/c that was later 

determined to be correct.  The structure was solved by direct methods and refined on F2 by full-

matrix least-squares techniques.  The analytical scattering factors28 for neutral atoms were used 

throughout the analysis.  Hydrogen atoms were located from a difference-Fourier map and 

refined (x,y,z and Uiso).  Least-squares analysis yielded wR2 = 0.0574 and Goof = 1.034 for 479 

variables refined against 7197 data (0.74 Å), R1 = 0.0269 for those 6053 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 

[Sm(crypt)(DMF)2][BPh4]2, 20-Sm.  A purple crystal of approximate dimensions 0.132 x 0.191 

x 0.249 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX224 program package was used to determine the unit-cell parameters 
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and for data collection (90 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT25 and SADABS26 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL27 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved by direct methods and refined on F2 by full-matrix least-squares techniques.  The 

analytical scattering factors28 for neutral atoms were used throughout the analysis. Hydrogen 

atoms were located from a difference-Fourier map and refined (x,y,z and Uiso).  Least-squares 

analysis yielded wR2 = 0.0637 and Goof = 1.048 for 932 variables refined against 16298 data 

(0.74 Å), R1 =  0.0264 for those 15044 data with I > 2.0(I). 

X-ray Data Collection, Structure Solution and Refinement for 

[Eu(crypt)(DMF)2][BPh4]2, 20-Eu.  A colorless crystal of approximate dimensions 0.068 x 

0.082 x 0.203 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX224 program package was used to determine the unit-cell parameters 

and for data collection (60 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT25 and SADABS26 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL27 program.  There were no systematic 

absences nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric 

triclinic space group P1  was assigned and later determined to be correct.  The structure was 

solved by dual space methods and refined on F2 by full-matrix least-squares techniques.  The 

analytical scattering factors28 for neutral atoms were used throughout the analysis. Hydrogen 

atoms were included using a riding model.  Least-squares analysis yielded wR2 = 0.0672 and 
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Goof = 1.043 for 835 variables refined against 13766 data (0.80 Å), R1 = 0.0310 for those 11998 

data with I > 2.0(I). 

 X-ray Data Collection, Structure Solution and Refinement for [Yb(DMF)6][BPh4]2, 

21-Yb.  An orange crystal of approximate dimensions 0.382 x 0.268 x 0.196 mm was mounted in 

a cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX224 program 

package was used to determine the unit-cell parameters and for data collection (30 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT25 

and SADABS26 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL27 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by direct methods and refined on F2 by full-matrix least-squares techniques.  

The analytical scattering factors28 for neutral atoms were used throughout the analysis. Disorder 

of one coordinated DMF molecule was modeled in two parts with 67% and 33% occupancy.   

Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and Uiso) with the 

exception of the hydrogen atoms located on the disordered DMF which were included using a 

riding model.  Least-squares analysis yielded wR2 = 0.0733 and Goof = 1.035 for 1104 variables 

refined against 16576 data (0.74 Å), R1 = 0.0301 for those 13983 data with I > 2.0(I).   
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CHAPTER 7 

Isolation of Lanthanide Cryptate Complexes Containing Triflates 

 

Introduction 

 As described in Chapter 6, complexes containing lanthanide ions encapsulated by the 

2.2.2-cryptand ligand (crypt) were first reported in 1979.1  However, in the ensuing four decades, 

only sixteen crystallographically-characterized Ln-in-crypt complexes were reported in the 

literature.1-10  The majority of these complexes involved lanthanides in the common +3 oxidation 

state.1-4, 10 Ln(II)-in-crypt complexes were only identified in the 2010’s.5-9  These 

crystallographically-characterized Ln(II)-in-crypt complexes were accessible only from Ln(II) 

precursors. 

 Ln-in-crypt complexes are of interest because it appears that this ligand may favor lower 

oxidation states as suggested by Gansow11 and Allen.5  Hence, the crypt coordination 

environment could allow the isolation of additional classes of the new Ln(II) ions.12  On the 

other hand, electrochemical studies of Ln-in-crypt complexes of Eu, Sm and Yb by Albrecht-

Schmitt and co-workers found Ln(III)/Ln(II) redox couples comparable to those in the literature 

for non-crypt complexes and some of which were only quasi-reversible.13   

 Ln-in-crypt complexes are of interest in light of the discovery that isolable molecular 

complexes of Ln(II) ions are not limited to the traditional +2 ions of Eu, Yb, Sm, Tm, Dy, and 

Nd.12, 14-16 The new Ln(II) ions for La, Ce, Pr, Gd, Tb, Ho, Er, Lu, and Y were made by alkali 

metal reduction in the presence of 2.2.2-cryptand to stabilize the alkali metal.  However, since 

the lanthanides can be sequestered by crypt, it is important to know the relevant Ln(II)-in-crypt 

chemistry.   
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 Chapter 6 described examples of Ln(II)-in-crypt complexes formed from Ln(II) 

metallocene precursors as shown in eq 7.1.   

 

Chapter 6 also describes how simple LnI2(THF)2 precursors can also form Ln(II)-in-crypt 

complexes such as [Ln(crypt)(DMF)2][I]2 (Ln = Sm, Eu) and [Yb(crypt)(DMF)][I]2 , eq 7.2.  

Since these complexes were insoluble in  

ethereal solvents, DMF was necessary to dissolve these complexes and the crystal structures of 

the compounds revealed that DMF was coordinated to the lanthanide center.8  

 To obtain more information about Ln-in-crypt complexes, reactions of lanthanide triflates 

with crypt were investigated.  This Chapter describes attempt to make Ln(III)-in-crypt from 

lanthanide triflates, LnIII(OTf)3.  In a collaboration with Sierra R. Ciccone, a variety of Ln(III)-

in-crypt complexes were identified whose solubility depends on the size of the metal and the 

presence or absence of coordinating solvents.  This Chapter also describes the reduction 

chemistry of these complexes and demonstrates that reductions of Ln(III)-in-crypt complexes to 

Ln(II)-in-crypt compounds (Ln = Sm, Nd) are possible with crystallographically-characterized 

(7.1) 

(7.2) 
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precursors and products.  These are the first Ln(II)-in-crypt compounds synthesized from Ln(III) 

precursors.  

Results and Discussions 

 Dy(OTf)3 is insoluble in THF and addition of crypt does not solubilize the complex.  The 

Dy(III)-in-crypt complex, [Dy(crypt)(OTf)][OTf]2, 22-Dy, was isolated by reacting Dy(OTf)3 

and crypt in MeCN, eq 7.3, Figure 7.1.  No other smaller lanthanide encapsulated by crypt has 

 

 

Figure 7.1. ORTEP representation of [Dy(crypt)(OTf)][OTf]2, 22-Dy, with thermal ellipsoids 

drawn at the 50% probability level. Hydrogen atoms and disorder were omitted for clarity. 

 

has been previously reported.  The smallest crystallographically-characterized lanthanide in crypt 

reported in the literature is a Eu(III)-in-crypt, [Eu(crypt)(NO3)][Eu(NO3)5(OH2)].
3  Additionally, 

(7.3) 

Dy 
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only one example of a Ln(III)-in-crypt complex containing a coordinated triflate has been 

previously reported in the literature, [La(crypt)(OTf)(DMF)][OTf]2.
4 

 Reaction of Nd(OTf)3 with crypt in DMF also produced a crystallographically-

characterized product, [Nd(crypt)(DMF)2][OTf]3, 23-Nd, and it was found that the Nd(III) metal 

center was solvated with two molecules of DMF with three outer-sphere triflates, (OTf)1–, eq 7.3, 

Figure 7.2.  Unlike the encapsulation reactions using THF, the DMF solvent preferentially  

 

 

Figure 7.2. ORTEP representation of [Nd(crypt)(DMF)2][OTf]3, 23-Nd, with thermal ellipsoids 

drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. 

 

coordinates to the Nd(III) metal center.  This type of coordination mode has been previously 

observed with [Ln(crypt)(DMF)2][X]2 (Ln = Sm, Eu; X = I, BPh4).
8  The geometry of these 

Nd 
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Ln(III)-in-crypt complexes is 10-coordinate tetra-capped trigonal prism with the nitrogen donors 

capping both trigonal faces and the DMF oxygens capping two of the rectangular faces.  This 

geometry has been previously reported for other Ln-in-crypt complexes, [Ln(crypt)(DMF)2][I]2 

(Ln = Sm, Eu),8 [Ln(crypt)(DMF)2][BPh4]2 (Ln = Sm, Eu),8 [La(crypt)(OH2)Cl]Cl2,
4
 

[La(crypt)(DMF)(OTf)][OTf]2,
4 [La(crypt)Cl2]Cl.10

   

 Isolation of the [LnII(crypt)(OTf)2].  Inspired by the results obtained by Sierra R. 

Ciccone, the Ln(III)-in-crypt complexes, [Ln(crypt)(OTf)2][OTf] (Ln = Sm, Nd), 24-Ln, were 

chemically reduced to form the neutral complex [Ln(crypt)(OTf)2], 25-Ln, eq 7.4.  A THF 

solution  

 

of 24-Ln was added to KC8 to form dark solutions.  The reduction product, [Nd(crypt)(OTf)2], 

25-Nd, were crystallographically-characterized and the Nd metal center retained both inner-

sphere triflate ligands, Figure 7.3. 

(7.4) 
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Figure 7.3. ORTEP representation of [Nd(crypt)(OTf)2], 25-Nd, with thermal ellipsoids drawn 

at the 50% probability level. Hydrogen atoms were omitted for clarity.   

 

Electronic Structure Calculations.  Density functional theory (DFT) calculations were 

performed by Saswata Roy in the group of Prof. Filipp Furche using (TPSSh) functional.  

Calculations on [Nd(crypt)(OTf)2], 25-Nd, suggest a 4f4 quintet ground state, Figure 7.4.  This 

electronic assignment is similar to the previously reported [K(crypt)][((Ad,MeArO)3mes)NdII], 

however, two electrons were assigned to f orbitals and two electrons in f/π* orbitals.17  This also 

differs from the [Cp′3Nd]1– and [Cp″3Nd]1– electronic assignment of 4f35d1.16, 18 

Nd 
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Figure 7.4.  HOMO of [Nd(crypt)(OTf)2], 25-Nd, with 4f4 electron configuration.  DFT 

calculations were performed by Saswata Roy in the laboratory of Prof. Filipp Furche. 

 

The simulated UV-vis spectrum using TD-DFT calculations show two broad peaks around 430 

nm and 500 nm, Figure 7.5.  Analyzing the orbitals in these excitations reveals them to be of 

metal to ligand charge transfer (MLCT). The transition around 370 nm is assigned as a f to d 

transition. 
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Figure 7.5. Simulated UV-Vis spectrum using TD-DFT and TPSSh functional.  DFT 

calculations were performed by Saswata Roy in the laboratory of Prof. Filipp Furche. 

Conclusion 

 Additional examples of Ln(III) and Ln(II) cryptate complexes are isolable using 

Ln(OTf)3 starting materials.  The smallest lanthanide cryptate has been isolated by reacting 

Dy(OTf)3 and crypt in MeCN to yield [Dy(crypt)(OTf)][OTf]2, 22-Dy.  The solubility of these 

smaller lanthanide triflates are limited to polar solvents such as MeCN which restricts the ability 

to explore their reductive chemistry.  Coordinating triflates can be substituted by solvents such as 

DMF.  When Nd(OTf)3 is reacted with crypt in DMF, two solvent molecules of DMF coordinate 

to the metal center and three triflate anions are outer-sphere, [Nd(crypt)(DMF)2][OTf]3, 23-Nd.  

This coordination mode has been previously seen with  [Ln(crypt)(DMF)2][X]2 (Ln = Sm, Eu; X 

= I, BPh4).
8  Reactions of larger lanthanide triflates with crypt yield THF soluble products which 

were later characterized by Sierra R. Ciccone as [Ln(crypt)(OTf)2][OTf] (Ln = La, Ce, Pr, Nd, 
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Sm).  The solubility of these Ln(III)-in-crypt complexes in THF allows for reductions using KC8 

to yield the first Nd(II)-in-crypt which was determined by DFT, in collaboration with Saswata 

Roy, have a 4f4 electron configuration. 

Experimental Details 

All manipulations and syntheses described below were conducted with the rigorous exclusion of 

air and water using standard glovebox and high-vacuum line techniques under an argon 

atmosphere.  Solvents were sparged with UHP argon and dried by passage through columns 

containing Q-5 and molecular sieves prior to use.  Deuterated tetrahydrofuran (THF-d8) was 

dried over NaK alloy, degassed by three freeze-pump-thaw cycles, and vacuum transferred 

before use.  1H NMR spectra were recorded on GN500, or CRYO500 MHz spectrometers at 298 

K unless otherwise stated and referenced internally to residual protio-solvent resonances. 

Nd(OTf)3 and Sm(OTf)3  (Fischer Scientific) were dried under high vacuum (10−5 Torr) for 48 h 

at 220 °C before use. 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-

diazabicyclo[8.8.8]hexacosane, Aldrich) was placed under vacuum (1 x 10-3
 Torr) for 12 h before 

use. 

 [Dy(crypt)(OTf)][OTf]2, 22-Dy.  In an argon filled glovebox, a solution of crypt in 

MeCN (2 mL) was added to a stirring suspension of Dy(OTf)3 in MeCN (2 mL). The suspension 

was left to stir and became clear after 30 min.  After 1d of stirring, the solution was layered into 

Et2O and placed in the freezer at −35 °C.  After 1d, colorless crystals suitable for X-ray 

crystallography were obtained. 

 [Nd(crypt)(DMF)2][OTf]3, 23-Nd.  In an argon filled glovebox, a solution of crypt in 

DMF (2 mL) was added to a stirring suspension of Nd(OTf)3 in DMF (2 mL). The suspension 

was left to stir and became clear after 30 min.  After 1d of stirring, the solution was layered into 
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Et2O and placed in the freezer at −35 °C.  After 1d, colorless crystals suitable for X-ray 

crystallography were obtained. 

 [Nd(crypt)(OTf)2][OTf], 24-Nd.  In an argon filled glovebox, a solution of crypt in THF 

(5 mL) was added to a stirring suspension of Nd(OTf)3 in THF (10 mL). The suspension was left 

to stir and became clear after 30 min.  After 24 h of stirring, the solution was concentrated to 1 

mL and placed in the freezer at −25 °C. After 1d, colorless crystals suitable for X-ray 

crystallography were obtained.  

 [Nd(crypt)(OTf)2], 25-Nd.  A pale purple THF solution of 1-Nd was added to a vial of 

KC8 forming a black mixture.  The black mixture was filtered to remove graphite and afforded a 

black solution which was layered into Et2O and placed into a –35 °C freezer.  After 1 d, black 

crystals of 2-Nd suitable for X-ray crystallography were obtained. 

Computational details. Density functional theory (DFT) calculations were performed by 

Saswata Roy on the structure obtained from the solutions of X-Ray crystallography of 26-Nd in 

C1 symmetry. The split valence basis functions (def2-SVP19) was used for all the atoms, and the 

small-core scalar relativistic effective core potential (ECP20) was used for neodymium atom. The 

resolution-of-identity (RI-J) approximation was invoked for the direct Coulomb integrals.21 The 

energy and the density was converged to thresholds of 10-6 a.u. A gauge-invariant 

implementation of the meta generalized gradient approximation (meta-GGA) functional, TPSSh 

was used for the exchange-correlation energy.22 The conductor like solvation model (COSMO23) 

with a dielectric constant of 7.52024 was used to model the solvation effects of THF along with 

Grimme’s dispersion correction. Linear response time dependent density functional theory (TD-

DFT) calculations were used for the UV-vis absorption spectrum. The lowest 45 excitations were 

evaluated using the same TPSSh functional. The spectrum was plotted by overlaying Gaussian 
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function of RMS line width of 0.1 eV at each excitation and was blue-shifted by 0.15 eV. All 

calculations were performed using Turbomole 7.2.25 

Structural Details 

X-ray Data Collection, Structure Solution and Refinement for [Nd(crypt)(OTf)2], 

26-Nd.  A black crystal of approximate dimensions 0.281 x 0.185 x 0.169 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX21 program 

package was used to determine the unit-cell parameters and for data collection (10 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT2 and 

SADABS3 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL4 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved using the coordinates of the isomorphous samarium complex and refined on 

F2 by full-matrix least-squares techniques.  The analytical scattering factors5 for neutral atoms 

were used throughout the analysis. Hydrogen atoms were included using a riding model.  A 

coordinated triflate (CF3SO3) was found to be disordered and modeled as a two part disorder 

(9:1). Least-squares analysis yielded wR2 = 0.0942 and Goof = 1.045 for 9046 variables refined 

against 385 data (0.70 Å), R1 = 0.0403 for those 7284 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 

[Nd(crypt)(DMF)2][OTf]3, 25-Nd.  A colorless crystal of approximate dimensions 0.127 x 

0.151 x 0.285 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX21 program package was used to determine the unit-cell parameters 

and for data collection (30 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT2 and SADABS3 to yield the reflection data file.  Subsequent 
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calculations were carried out using the SHELXTL4 program.  There were no systematic absences 

nor any diffraction symmetry other than the Friedel condition.  The centrosymmetric triclinic 

space group P1  was assigned and later determined to be correct.  The structure was solved by 

dual space methods and refined on F2 by full-matrix least-squares techniques.  The analytical 

scattering factors5 for neutral atoms were used throughout the analysis. Hydrogen atoms were 

included using a riding model.  Least-squares analysis yielded wR2 = 0.1219 and Goof = 1.000 

for 601 variables refined against 10765 data (0.75 Å), R1 = 0.0475 for those 9360 data with I > 

2.0(I). 
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CHAPTER 8 

Synthesis and Electrochemical Analysis of Complexes of U(III) Encapsulated in  

2.2.2-Cryptand in Acetonitrile and Dimethylformamide  

 

Introduction 

The 2.2.2-cryptand ligand (crypt) was studied extensively with alkali and alkaline earth 

metals1, 2 and the number of examples with lanthanides in the literature was increasing.3, 4 5-13 

However, only a single report of crystalline actinide-in-crypt complexes was in the literature as 

described in Chapter 5.13  This was particularly surprising since solution studies of actinides and 

crypt have been in the literature for many years.14-17  As described in Chapter 5, the crystalline 

examples [U(crypt)I2]I, [U(crypt)I(OH2)][I]2, and [U(crypt)I(OH2)][I][BPh4],
13 eq 8.1, all 

involve  

 

uranium in the +3 oxidation state.  In two of these examples, a water molecule is coordinated to 

the U(III) center which suggests some the stability of U(III) in this coordination environment 

toward water.  Although six previous examples of U(III) water adducts have been reported in the 

(8.1) 
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literature,18-21 in all cases the metal complexes were found to undergo decomposition from hours 

to 2 days even as solids.  In contrast, the crystalline water-solvated U(III)-in-crypt complexes 

[U(crypt)I(OH2)][I]2, and [U(crypt)I(OH2)][I][BPh4], appear to be stable indefinitely under an 

inert atmosphere.  

Efforts were made to probe this stabilization of U(III) by crypt through electrochemical 

analysis of the U(IV)/U(III) couple in the absence and presence of water through a collaboration 

with Jeffery M. Barlow in the laboratory of Prof. Jenny Yang.  These results reinforce the early 

observations and show how actinides in lower oxidation states can be stabilized in the presence 

of water.  As part of this study, additional examples of a crystalline water-solvated U(III) 

complex were identified. 

Results and Discussion 

 Isolation of U(III)-in-Crypt. Dissolving [U(crypt)I2]I in MeCN generates green-yellow 

solutions.  Crystallographic-characterization of the reaction product revealed the presence of 

[U(crypt)(MeCN)I][I]2, 26-U, eq 8.4, Figure 8.2.  In this U(III)-in-crypt complex, one MeCN and 

one iodide are coordinated to the metal center.  The U–I bond distance is consistent with other 

previously reported ten-coordinate U(III)-in-crypt complexes, Table 8.1.  The U(III)–N(MeCN)  

 

(8.2) 
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Figure 8.1.  ORTEP representation of [U(crypt)(MeCN)I][I]2, 26-U, with thermal ellipsoids 

drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. 

Table 8.1.  U(III)-in-crypt metrical parameters of 26-U, 27-U, 28-U, [U(crypt)I2]I 14-U, 

[U(crypt)I(OH2)][I]2 16-U, and [U(crypt)(OH2)I][I][BPh4] 17-U. 

 26-U 27-U 28-U 14-U13 

[U(crypt)I2][I]  

16-U13 

[U(crypt)I(OH2][I]2 

17-U13 

[U(crypt)(OH2)I][I][BPh4]  

U–I 3.2594(7)   3.3106(5)-

3.3292(6) 

3.2563(7) 3.2845(6) 

U–N(crypt) 2.797(3)-

2.840(3) 

2.746(3)-

2.817(2) 

2.757(6)-

2.768(5) 

2.803(3)-

2.853(3) 

2.80(1)- 

2.814(8) 

2.781(3)- 

2.822(3) 

U–O(crypt) 2.597(2)-

2.679(2) 

2.595(2)-

2.677(2) 

2.593(5)-

2.778(6) 

2.568(2)-

2.697(2) 

2.602(9)- 

2.683(7) 

2.606(3)- 

2.659(4) 

U–O(OH2)  2.517(3) 2.518(6)  2.549(7) 2.503(3) 

distance in 26-U is 2.647(3) Å which is similar to other previously reported U(III)–N(MeCN) 

reported distances: [U(9S3)I3(MeCN)2] (9S3 = 1,4,7-trithiacyclononane),22 [U(MeCN)9][I]3,
23  

[U(tpza)I3(MeCN)] (tpza = tris[(2-pyrazinyl)methyl]amine),24 and [((ArO3)tacn)U(MeCN)] (tacn 

= 1,4,7-triazacyclononane).25 

Other attempts to crystallize [U(crypt)I2]I from MeCN yielded [U(crypt)(OH2)I][I]2, 14-

U, a previously reported structure,13 and [U(crypt)(OH2)2][I]3, 27-U, Figure 8.2, where the 

U(III)-in-crypt complex is formally a trication.  The U–O(OH2) distances in 28-U are similar to 

other  

U 
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Figure 8.2.  ORTEP representation of [U(crypt)(OH2)2][I]3, 27-U, with thermal ellipsoids drawn 

at the 50% probability level. Hydrogen atoms were omitted for clarity except for water. 

 

Figure 8.3.  ORTEP representation of [U(crypt)(DMF)(OH2)][I]3, 28-U, and thermal ellipsoids 

drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity except for water. 

U 

U 
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previously reported U(III)–O(OH2) bond distances as previously described in Chapter 5. 

Dissolving [U(crypt)I2]I in DMF yields crystals of [U(crypt)(DMF)(OH2)][I]3, 28-U, 

Figure 8.3.  The U–O(OH2) distances in are consistent with a U(III) and similar to previously 

reported U(III)–O(OH2) distances, Table 8.1.18-21  Other f element cryptate complexes containing 

coordinated DMF have also been reported: [La(crypt)(OTf)(DMF)][OTf]2,
7 

[Ln(crypt)(DMF)2][I]2 (Ln = Sm, Eu),11 [Ln(crypt)(DMF)2][BPh4]2 (Ln = Sm, Eu),11 and 

[Yb(crypt)(DMF)][I]2.
11  

 Electrochemistry.  Electrochemical analysis of [U(crypt)I2]I, was performed by Jeffery 

M. Barlow in the laboratory of Prof. Jenny Y. Yang.  The cyclic voltammograms of [U(crypt)I2]I 

in DMF supported with tetrabutylammonium hexafluorophosphate [nBu4N][PF6] electrolyte are 

shown in Figure 8.4.  Two iodide oxidation events are present in both DMF solutions of  

 

Figure 8.4.  Comparison of [U(crypt)I2]I in DMF and tetrabutylammonium iodide (TBAI) 

showing that the two oxidations (*) arise from free iodide in solution (left). Variable scan rates 

of [U(crypt)I2]I in DMF (500 mM TBAI) of the first oxidation event U(III) to U(IV) (Epa1) from 

10 to 500 mV/s scan rates (right). 
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 [U(crypt)I2]I and tetrabutylammonium iodide DMF solutions.  These oxidation states, denoted 

with an asterisk (*),  are the iodide (I–) oxidation to iodine (I2) and the triodide (I3
–) oxidation to 

I2.
26  A U(IV)/U(III) irreversible oxidation is observed at –0.60 V vs Fc+/Fc at slow scan rates, 

however a return peak is observed as the scan rate is increased. The lack of reversibility indicates 

that the complex may be undergoing a change in geometry or ligand dissociation/substitution 

upon oxidation.  After the basic electrochemistry was established for [U(crypt)I2]I in DMF, the 

solution was titrated with 1 to 500 equivalents of water with scans taken at 100 mV/sec, Figure 

8.5.  

 

Figure 8.5.   DMF solution of [U(crypt)I2]I titrated with water (full spectrum, top; zoom, inset) 

scanning anodically. The oxidations centered at Epa1= –0.510 V and Epa2= 0.880 V vs. Fc+/0 both 

disappear as more equivalents are added, indicating a reaction with water (either binding or 

reduction).  
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Cyclic voltammograms of [U(crypt)I2]I in MeCN were also conducted.  Both DMF and 

MeCN cyclic voltammograms displayed similar features, i.e. iodide oxidation events denoted by 

asterisks (*) and U(IV)/U(III) oxidation.  However, unlike in DMF, in the MeCN cyclic 

voltammogram an irreversible U(III)/U(II) reduction wave at –1.80 V (vs Fc+/Fc) is found, 

Figure 8.6.  Unlike the cyclic voltammograms in DMF, the oxidation event at Epa3= 0.880 V vs. 

Fc+/0 

 

Figure 8.6.  Variable scan rates of [U(crypt)I2]I in MeCN scanning cathodically.  Reduction and 

oxidation are observed at Epc1= –1.78 V and Epa1= –1.12 V (vs. Fc+/Fc).   Asterisks are denote 

iodide oxidation.   

 

is no longer present. These events may correspond to U(III/II) reduction and corresponding 

U(II/III) oxidations. The two events move apart by ~65 mV/10 fold increase in scan rate. 

 When one equivalent of [CoCp2][PF6] is added to the MeCN solution of 1, the reduction 

becomes more prominent and becomes reversible, Figure 8.7.  Additionally, the U(IV)/U(III) 
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oxidation is shifted to more negative values (from –0.29 V to –0.42 V vs. Fc+/0).  The first iodide 

 

Figure 8.7.  Variable scan rates of [U(crypt)I2]I and [CoCp2][PF6] in MeCN scanning 

cathodically.  U(III)/U(II) E1/2 = –1.85 V vs Fc+/Fc and Co(III)/Co(II) E1/2 = –1.33 V vs Fc+/Fc. 

 

reduction also shifts to more negative potentials, while the reduction at Epc2= –0.64 V vs. Fc+/0 is  

shifted ~40 mV positive.  Variable scan rates were performed scanning anodically. The U(IV/III) 

oxidation is much smaller in size and becomes more reversible than when scanning cathodically 

first. The U(III/II) couple (E1/2 = –1.85 V vs Fc+/Fc) appears to be fully reversible at all scan 

rates investigated.  It is possible that [CoCp2]
+ acts as a redox mediator, allowing 

oxidation/reduction to occur more easily with the electrode.  Additionally, the E1/2 of the 

U(III)/U(II) redox event is significantly lower than the E1/2 of –2.50 V vs Fc+/Fc reported for 

[{(Ad,MeArO)3-mes}U] U(III)/U(II) by Meyer and co-workers. 27 
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Conclusion 

 Additional examples of U(III)-in-crypt complexes have been crystallographically-

characterized, two of which are new U(III)-aquo complexes and one of which is a water free 

[U(crypt)(MeCN)I][I]2.  These examples of U(III)-in-crypt complexes demonstrate the stability 

offered by the crypt ligand toward coordinating solvents such as DMF, MeCN, and even water.  

Formation of these stable U(III) base-adducts expands the scope of solvents that are typically 

unavailable for highly reducing metal complexes containing low valent f element ions.  

Electrochemical analyses of these U(III)-in-crypt complexes suggests the U(II) ion could be 

accessible in DMF and MeCN at more positive potentials than previously reported.  In the 

presence of MeCN and [CoCp2][PF6], the U(III)/U(II) couple becomes reversible.  This could be 

attributed to [CoCp2] acting as an electron-transfer mediator.   

Experimental 

 All syntheses and manipulations described below were conducted under nitrogen or 

argon with rigorous exclusion of air and water using glovebox, Schlenk-line, and high-vacuum 

techniques. [U(crypt)I][I]2 was prepared using previously published procedures.13  2.2.2-

Cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, Aldrich) THF and Et2O 

were sparged with UHP argon and dried over columns containing Q-5 and molecular sieves.  

MeCN and DMF were sparged with UPH argon and dried over molecular sieves for 1 week. 

 [U(crypt)(MeCN)I][I]2, 26-U.  Addition of MeCN (3 mL) to green [U(crypt)I][I]2 (100 

mg, 0.10 mmol) formed a green-yellow solution.  The solution was stirred for 1 h and layered 

with Et2O and placed in a –35 °C freezer.  After 1 d, X-ray quality green crystals were isolated. 

 [U(crypt)(OH2)I][I]2, 16-U.  As described for 26-U, MeCN was added to green 

[U(crypt)I][I]2 (100 mg, 0.10 mmol) formed a green-yellow solution.  After 1 d, X-ray quality 
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green crystals were isolated and it was found to have the same unit cell as the previously 

reported compound.13 

[U(crypt)(OH2)2][I]3, 27-U.  As described for 26-U, MeCN was added to green 

[U(crypt)I][I]2 (100 mg, 0.10 mmol) formed a green-yellow solution.  After 1 d, X-ray quality 

green crystals were isolated. 

[U(crypt)(DMF)(OH2)][I]3, 28-U.  As described for 26-U, DMF was added to green 

[U(crypt)I][I]2 (100 mg, 0.10 mmol) formed a green-yellow solution.  After 1 d, X-ray quality 

green crystals were isolated. 

Structural Details 

X-ray Data Collection, Structure Solution and Refinement for 

[U(crypt)(DMF)(OH2)][I]3, 28-U.  A green crystal of approximate dimensions 0.044 x 0.063 x 

0.069 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX228 program package was used to determine the unit-cell parameters 

and for data collection (240 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT29 and SADABS30 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL31 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space group P21/n that was later 

determined to be correct.  The structure was solved by direct methods and refined on F2 by full-

matrix least-squares techniques.  The analytical scattering factors32 for neutral atoms were used 

throughout the analysis.  Hydrogen atoms were included using a riding model.  Carbon atom 

C(14) was disordered and modeled using multiple components and with partial site-occupancy-

factors (3:1).  There was one molecule of free water present which was hydrogen bonded to both 

the bound water O(8) and iodine atoms I(1) and I(2).  Least-squares analysis yielded wR2 = 
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0.0736 and Goof = 0.992 for 339 variables refined against 6825 data (0.80 Å), R1 = 0.0432 for 

those 4915 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for [U(crypt)(OH2)2][I]3, 

27-U.  A green crystal of approximate dimensions 0.169 x 0.238 x 0.289 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX228 program 

package was used to determine the unit-cell parameters and for data collection (10 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT29 

and SADABS30 to yield the reflection data file.  Subsequent calculations were carried out using 

the SHELXTL31 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/n that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors32 for neutral atoms were used throughout the 

analysis.  A disordered solvent molecule (MeCN) was model in 2 parts (85:15).  Hydrogen atoms 

were included using a riding model.  Least-squares analysis yielded wR2 = 0.494 and Goof = 

1.106 for 347 variables refined against 8499 data (0.74 Å), R1 = 0.0231 for those 8040 data with 

I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 

[U(crypt)(MeCN)I][I]2, 26-U.  A brown crystal of approximate dimensions 0.106 x 0.188 x 

0.291 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX228 program package was used to determine the unit-cell parameters 

and for data collection (30 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT29 and SADABS30 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL31 program.  The diffraction symmetry was 
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mmm and the systematic absences were consistent with the orthorhombic space group Pccn that 

was later determined to be correct.  The structure was solved by dual space methods and refined 

on F2 by full-matrix least-squares techniques.  The analytical scattering factors32 for neutral 

atoms were used throughout the analysis.   Hydrogen atoms were included using a riding model.  

One non-coordinated iodide was disordered and was modeled as a two-part (1:1) disorder.  

Least-squares analysis yielded wR2 = 0.0522 and Goof = 1.021 for 300 variables refined against 

8990 data (0.70 Å), R1 = 0.0265 for those 7708 data with I > 2.0(I).   
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CHAPTER 9 

Isolation of a Square Planar Th(III) Complex:  

Synthesis and Structure of [Th(OC6H2
tBu2-2,6-Me-4)4]1− 

 

Introduction* 

 Although Th(IV) alkoxide complexes were synthesized in the 1950s by Bradley and 

coworkers,1-4 it was not until the 1980s that Th(IV) aryloxide complexes were reported by 

Lappert.5, 6  In 1992, Clark and Sattelberger isolated the first homoleptic aryloxide Th(IV) 

complex, Th(OC6H3
tBu2-2,6)4, which had the expected tetrahedral geometry.7   

 In contrast, neither alkoxides nor aryloxides of Th(III) had been reported before the 

research in this Chapter was done.  Crystallographically-characterizable Th(III) complexes are 

rare in general and most contain cyclopentadienyl ancillary ligands.  There were only ten 

structurally-characterized examples at the tim of this research:  [K(DME)2]{Th[η8-

C8H6(SiMe2
tBu)2]2},8 [C5H3(SiMe2

tBu)2]3Th,9 [C5H3(SiMe3)2]3Th,9 

(C5Me5)2Th[iPrNC(Me)NiPr],10 (C5Me4H)3Th,11 [K(18-crown-

6)(Et2O)]{[C5H3(SiMe3)2]2ThH2}2,
12 [K(18-crown-6)(THF)][(C5Me5)2ThH2]2,

12
 (C5Me5)3Th,13 

(C5H3
tBu2)3Th,14 and (C5H3

tBu2)2Th(µ-H)3AlC(SiMe3)3.
15  Gambarotta attempted to reduce 

Th[OC6H3(Ph)2-2,6]4 with potassium, but isolated only the Th(IV) hydroxide compound [K(18-

crown-6)(THF)2][Th(OC6H3(Ph)2-2,6)4(OH)(THF)].16  The first examples of Th(III) aryloxides 

and their unusual structure are described in this Chapter. 

 Treatment of a colorless THF solution of ThIV(OAr′)4 (OAr′ = OC6H2
tBu2-2,6-Me-4),  

*Portions of this chapter have been published:  Huh, D. N.; Roy, S.; Ziller, J. W.; Furche, F.; Evans, W. J.  Isolation 

of a Square Planar Th(III) Complex: Synthesis and Structure of [Th(OC6H2
tBu2-2,6-Me-4)4]1−. J. Am. Chem. Soc., 

2019, 141, 12458-12463.  DOI:  10.1021/jacs.9b04399 
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29-Th, with KC8 at room temperature forms a dark purple solution similar to that of 

(C5Me4H)3Th,11 (C5Me5)3Th,13 and (C5Me5)2[
iPrNC(Me)NiPr]Th.10  The product crystallizes 

from a THF/Et2O solution forming dark purple crystals that were structurally characterized as 

[K(THF)5(Et2O)][ThIII(OAr′)4], 30-Th,  eq 9.1, Figure 9.1.  Treatment of 29-Th with Li metal did 

not immediately form a dark solution, but after storage at −35 °C overnight, a purple solution 

was present.  Crystallization from THF/Et2O yielded [Li(THF)4][ThIII(OAr′)4], 31-Th, eq 9.1, 

Figure 9.2, as large, dark purple blocks that had to be cut for X-ray diffraction.  Reactions with  

 

cesium also formed a dark purple solution, but attempts to crystallize the reduction product 

yielded intractable colorless solids. 

 The [ThIII(OAr′)4]
1− anions are the first examples of square planar geometry in f element 

chemistry.  The closest example to this anion is the UIV[N(C6F5)2]4 complex of Schelter.17  This 

U(IV) complex has a square planar array of nitrogen donor atoms enforced by additional 

fluorine-uranium interactions that make it formally 8-coordinate.  The U(III) complex, 

{K[UIII(OC6H2
tBu2-2,6)4]}n, synthesized by Arnold, has a tetrahedral array of oxygen donor 

atoms.18 

(9.1) 

29-Th 

30-Th 

31-Th 



156 
 

 

Figure 9.1.  ORTEP representation of [K(THF)5(Et2O)][Th(OAr′)4], 30-Th, with side-on view 

and thermal ellipsoids drawn at the 50% probability level.  Hydrogen atoms were omitted for 

clarity.  

 

Figure 9.2.  ORTEP representation of [Li(THF)4][Th(OAr′)4], 31-Th, with top view and thermal 

ellipsoids drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity.  

 

 Table 9.1 summarizes the metrical parameters of 30-Th and 31-Th.  The 

[K(THF)5(Et2O)]1+ and [Li(THF)4]
1+ countercations are well separated from the square planar 

anion.  The Th(III) ion and four oxygen donor atoms are coplanar to within < 0.05 Å.  The 

O−Th−O angles range from 88.9(1) to 90.5(2)° for the cis ligands and from 175.45(1) to 

179.6(2)° for the trans ligands.  Interestingly, the Th−O−C(ipso) angles in 30-Th and 31-Th 
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range from 173.9(2) to 178.6(4)°.   In contrast, the tetrakis(aryloxide) complexes of Th(IV), 

[ThIV(OC6H3
tBu2-2,6)4],

7 32-Th, and [ThIV(OC6H3Ph2-2,6)4],
16 33-Th, have bent Th−O−C 

angles of 153.5(10)° and 152.8(7) to 170.7(7)°, respectively, Table 9.1.  The 2.235(3)-2.260(3) Å 

Th(III)−O distances are larger than the 2.177(7)-2.211(9) Å Th(IV)−O distances in 4 and 5.  It is 

well established that M−O distances do not necessarily correlate with M−O−C(ipso) angles,19-21 

but this comparison is complicated by the difference in oxidation state. 

 

Table 9.1.  Selected bond distances (Å) and angles (°) of [K(THF)5(Et2O)][ThIII(OAr′)4], 30-Th, 

[Li(THF)4][ThIII(OAr′)4], 31-Th, [ThIV(OC6H3
tBu2-2,6)4],

7 32-Th, and [ThIV(OC6H3Ph2-2,6)4],
16 

33-Th.  

 
30-Th 31-Th 32-Th 33-Th 

Th−O 2.235(3) 2.238(2) 2.189(6) 2.177(7) 
 

2.239(3) 2.244(2) 
 

2.187(10) 
 

2.257(3) 2.244(2) 
 

2.189(8) 
 

2.260(3) 2.247(2) 
 

2.211(9) 
     

O−C(ipso) 1.349(6) 1.355(4) 1.341(19) 1.34(1) 
 

1.355(6) 1.355(4) 
 

1.35(1) 
 

1.356(6) 1.358(4) 
 

1.354(8) 
 

1.371(6) 1.358(4) 
 

1.36(1) 
     

Th−O−C(ipso) 174.2(3) 173.9(2) 153.5(10) 152.8(7) 
 

176.1(3) 174.7(2) 
 

152.8(7) 
 

178.5(3) 174.7(2) 
 

155.6(7) 
 

178.6(4) 176.5(2) 
 

170.7(7) 
     

Th−O4(plane)a 0.004 0.031 
  

     

C6 torsion angleb 63.21-65.10 58.46-61.81 
  

aDistance of Th from the plane defined by the four O atoms of the (OAr′)1− ligands.   bRange of 

dihedral angles between the C6 aryl rings of the (OAr′)1− ligands and the O4 atom plane. 
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 Complex 30-Th exhibits an isotropic EPR signal at room temperature, Figure 9.3, with a 

giso = 1.84.  This value is the lowest giso value for a Th(III) complex reported so far Table 9.2.8-11, 

13, 13  The 77 K EPR spectrum of 30-Th produced an axial signal with g║ = 1.99 and g⊥ = 1.79.  

This is consistent with data on [C5H3(SiMe3)2]3Th9 (g║ = 1.97 and g⊥ = 1.88), (C5Me5)3Th13 (g║ 

= 1.97 and g⊥ = 1.85) and (C5H3
tBu2)3Th14 (g║ = 1.974 and g⊥ = 1.880).  In all previous cases, the 

Th(III) ions were assigned a 6d1 ground state.  The 298 K and 77 K EPR spectra of 31-Th and 

[K(crypt)][Th(OAr′)4] are indistinguishable from those of 30-Th, Figure 9.12 and 9.13 (Chapter 

9, Spectroscopic Details). 

 

 

Figure 9.3.   Experimental X-band EPR spectra of [Th(OAr′)4]
1− dissolved in THF (10 mM) 

collected at 298 K (left; mode: perpendicular; giso = 1.84; υ = 9.817 GHz; P = 0.0202; 

modulation amplitude = 0.902 mT) and 77 K (right; mode: perpendicular; g║ = 1.99, g⊥ = 1.79; υ 

= 9.672 GHz; P = 0.0203; modulation amplitude = 0.902 mT) and analyzed using EasySpin.22 
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Table 9.2.  Room temperature EPR giso values and 77 K g║ and g⊥ values of Th(III) complexes. 

Th(III) Complex giso g║ g⊥ 

[K(DME)2][C8H6(SitBuMe2)2]2Th8 1.916 - - 

[C5H3(SiMe2
tBu)2]3Th9 1.910 - - 

[C5H3(SiMe3)2]3Th9 1.910 1.97 1.88 

(C5Me5)2Th[iPrNC(Me)NiPr]10 1.871 - - 

(C5Me4H)3Th11 1.92 - - 

(C5Me5)3Th13 1.88 1.97 1.85 

(C5H3
tBu2)3Th14 - 1.974a 1.880a 

[Th(OAr′)4]
1− 1.84 1.99 1.79 

a 100 K EPR g║ and g⊥ values 

 The neutral 29-Th as well as the anion in 30-Th and 31-Th were examined by Saswata 

Roy in the laboratory of Filipp Furche using density functional theory (DFT).  For the neutral 

compound, two qualitatively different minimum energy structures were identified:  an S4-

symmetric structure with a tetrahedral Th coordination environment and a C4-symmetric 

structure with a square planar coordination of Th.  The square planar geometry for Th(OAr′)4 is 

less stable than the tetrahedral structure by 11 kcal/mol, Table 9.3.  This is the expectation based 

on steric factors and it matches the structures of 32-Th and 33-Th.   

 

Table 9.3.  Computed relative energies (kcal/mol) of the S4-symmetric minimum of 29-Th, C4-

symmetric minimum of the neutral species from 31-Th and the C4- and S4-symmetric minima of 

anion of 31-Th. 

 Square planar (C4) Tetrahedral (S4) 

[Th(OAr′)4]
1− 0 33 

Th(OAr′)4 44 29 

 

For [Th(OAr′)4]
1−, the calculations show that the square planar structure is lower in energy than 

the tetrahedral structure by 33 kcal/mol.  Addition of an electron to tetrahedral Th(OAr′)4 is 
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endothermic and yields a positive HOMO energy, indicating that tetrahedral Th(OAr′)4 cannot be 

reduced.  The calculated square-planar C4-symmetric structure of the anion agrees with the X-ray 

diffraction data within error margins typical of the current methodology, approximately 0.01 Å 

in covalent bond distance and a few degrees in bond angles.  The O−Th−O bond angles are 

calculated to be 90° and 180° for cis and trans ligands, respectively, and the Th−O4(plane) 

distance is calculated to be zero within the accuracy of the present approach.  The 2.245 Å 

calculated Th−O bond length and the 1.376 Å O−C distance are similar to those in Table 9.1.  

The nearly linear Th−O−C(ipso) angles are predicted to be 178°.  The calculated 57° C6 torsion 

angle matches the angular arrangement of the ligands found in the structures.  

Mulliken population analysis of the HOMO from the DFT calculations of [Th(OAr′)4]
1− 

suggests it is predominantly 6dz
2 in character, Figure 9.4, with some 7s-type  Rydberg admixture 

which is allowed in C4 symmetry, Figure 9.5.23  Although dz
2 is usually not the energetically 

lowest d orbital in square planar geometry, there are examples such as [PtCl4]
2− 24, 25 where metal 

orbitals with dz
2 character are energetically most stable particularly for ligands with  π-donating  

lone pairs.  To update the calculations from 195824 and 1983,25 [PtCl4]
2− was examined by 

modern methods to confirm the conclusion of a low-lying dz
2 orbital.   

In [Th(OAr′)4]
1−, the doubly occupied π lone pairs repulsively interact with the dxy orbital 

as well as the degenerate dxz and the dyz orbitals.  Schrock et al. 26 have synthesized a square 

planar d2 W(IV) complex, W(OC6H3
iPr2-2,6)4 which Hoffman et al.27 described as having the 

doubly occupied π lone pairs repulsively interacting with the dxy, dxz, and dyz orbitals.  Hayton et 

al.28 have described similar behavior in a pseudo-square planar d4 Fe(IV) ketimide, 

[Fe(N=CtBu2)4], where the π lone pairs of the ketimide repulsively interact with the degenerate 

dxz and dyz orbitals.  Figure 9.5 shows the orbitals responsible for this effect in [Th(OAr′)4]
1−.  A 
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qualitative molecular orbital diagram of the [Th(OAr′)4]
1− anion displaying important frontier 

molecular orbital energies is shown in Figure 9.6.  This is the first 6d1 square planar complex.29  

  

Figure 9.4.  HOMO of [Th(OAr′)4]
1− plotted with an isovalue = ±0.05. 

 

 

Figure 9.5.  Example of antibonding orbitals of [Th(OAr′)4]
1− (isovalue =±0.05) involving the π 

orbitals on oxygen and the dxy orbital on thorium. 
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Figure 9.6. Simplified frontier molecular orbital diagram of [Th(OAr′)4]
1−  showing α spin 

orbitals with strong Th character.  Red and blue levels represent computed energies of 

predominantly d and f orbitals, respectively; numerical values in eV are given in parentheses.  

The dashed blue line is the Fermi energy.  Atomic orbital designations are reported in brackets 

whenever possible. 
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The UV-visible spectrum of 30-Th, Figure 9.7, shows two absorption bands at 483 and 

581 nm with high extinction coefficients (ε = 4000 and 5000 M−1 cm−1, respectively) and a more 

intense peak at 320 nm (ε = 9000 M−1 cm−1).  The simulated spectrum calculated using time 

dependent DFT (TD-DFT) calculations, Figure 9.7, suggests that the two broad peaks in the 

visible spectrum arise from several transitions originating from the 6dz
2 orbital.  The 581 nm 

peak corresponds to symmetry-allowed metal-centered transitions into orbitals of significant 5f 

character, whereas the 483 nm band has additional metal to ligand charge transfer character 

Table 9.4, 9.5, and 9.6.  The intense absorption near 320 nm is attributed to a transition from the 

6dz
2 to a diffuse p-type Rydberg orbital, Figure 9.8. 

 

Figure 9.7. Observed UV-visible spectrum of [K(THF)5(Et2O)][Th(OAr′)4], 30-Th, in THF (700 

µM) (yellow) and simulated UV-visible spectra of [Th(OAr′)4]
1− (purple) with the excitations 

shown as vertical lines. Calculated extinction coefficients are scaled down by a factor of 1.5. 
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Figure 9.8.  Rydberg orbital 71 a (2.73 eV) plotted with isovalue = ±0.02.  The band located at 

321 nm in the UV-visible spectrum results predominately from a transition out of the dz2 HOMO 

into 71 a. 

Table 9.4.  Selected electronic excitations of [Th(OAr′)4]
1− using PBE0 functional in the C2 

symmetry. Oscillator strength are in length representation.  

Wavelength 

(nm) 

Oscillator 

Strength 

(10−2 ) 

IRREP occupied unoccupied 
% 

contribution 
Assignment 

612 1.37 E 
67 a 

67 a 

130 e 

134 e 

70 

30 

6dz
2 → π* 

6dz
2 → 5f 

         581 2.36 A 67 a 68 a 95 6dz
2 → 5fz

3 

568 0.94 E 
67 a 

67 a 

130 e 

134 e 

56 

24 

6dz
2 → π* 

6dz
2 → 5f 

431 3.61 A 67 a 70 a 99 6dz
2 → π* 
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Table 9.5.  Select electronic excitations (with oscillator strengths larger than 0.01) of 

[Th(OAr′)4]
1− using PBE0 functional in the C4 symmetry using single-ζ basis sets on the ligands. 

Oscillator strength are in length representation.  

 

Wavelength 

(nm) 

Oscillator Strength 

(10−2) 
IRREP occupied unoccupied 

% 

contribution 
Assignment 

602 1.44 E 
67 a 

67 a 

130 e 

134 e 

50 

34 

6dz
2 →  π* 

6dz
2 → 5f 

         576 3.57 A 67 a 68 a 83 6dz
2 → 5fz

3 

574 1.16 E 67 a 
134 e 

130 e 

55 

31 

6dz
2 → π* 

6dz
2 → 5f 

389 5.07 A 67a  70 a 88 6dz
2 → π* 

322 13.15 A 67a  71 a 82 6dz
2 → 7pz 

 

Table 9.6.  Select electronic excitations (with oscillator strengths larger than 0.01) of 

[Th(OAr′)4]
1− using PBE0 functional in the C4 symmetry using def2-SV(P) basis sets on the 

ligands.  Oscillator strength are in length representation. 

Wavelength 

(nm) 

Oscillator Strength 

(10−2) 
IRREP occupied unoccupied 

% 

contribution 
Assignment 

582 2.51 E 
67 a 

67 a 

134 e 

136 e 

79 

13 

6dz
2 →  5f 

6dz
2 → 5f 

576 3.04 A 67 a 70 a 79 6dz
2 → 5fz

3 

462 2.61 A 67a  69 a 94 6dz
2 → π* 

351 8.71 A 67a  72 a 60 6dz
2 → 7pz 

 

 The square planar coordination geometry in [Th(OAr′)4]
1− was surprising given that 

tetrahedral geometry is sterically favored and the electron configuration of the new complex is 

not one of the d7-d9 electron configurations that electronically favor square planar geometries.30-

32 It is possible that the arrangement of the eight tert-butyl groups is optimized with the OAr′ 

ligands in a square planar array, although most eight coordinate structures are similar in 

energy.33, 34 The eight tert-butyl tertiary carbon atoms define a square anti-prism which is one of 

the several common geometries for ML8  compounds and M8Lx clusters. 
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Dispersion forces between the tert-butyl groups may also lead to the square planar 

geometry.  The importance of dispersion forces in inorganic chemistry has been thoroughly 

summarized.35 It has also been previously shown that tert-butyl-substituted trityl compound 

[C(C6H3-3,5-tBu2)3]2 has significant dispersion forces, which give it a simple dimeric structure 

and  a melting point of 214 °C!36-38  The C(Me)…C(Me) distances between the tert-butyl groups 

in [Th(OAr′)4]
1− are as low as 3.30(1) to 3.55(1) Å which are well below the 3.95(2)-4.15(2) Å  

range of distances in [C(C6H3-3,5-tBu2)3]2.
36-39  Consistent with this, the closest 

H(CMe3)…H(CMe3) distances in 30-Th and 31-Th are 2.21-2.35 Å which is less than twice the 

sum of the 1.2 Å Van der Waals radius of hydrogen (SI).  However, calculated structures 

optimized without dispersion correction showed little difference from calculated structures 

optimized with dispersion correction.  

The main difference in the electronic structure of the square planar and tetrahedral 

coordination geometries is the accessibility of a low-lying Th orbital with 6d/7s character in 

square planar.  This suggests that the main driving force for the reorganization of the structure 

upon reduction from Th(IV) to Th(III) is a gain in ligand field stabilization energy for a 6d1 

configuration in the square planar relative to the tetrahedral coordination geometry.  The 

calculations also revealed different orientations of the tert-butyl groups for tetrahedral and square 

planar.  In the tetrahedral geometry, one C−Me bond of the tert-butyl groups is aligned nearly 

parallel to the O−Th bonds, whereas it is nearly antiparallel in the square planar geometry Figure 

9.9 and 9.10.  The latter orientation with more methyl groups near the metal facilitates stronger 

dispersive interactions and is better accommodated in the anion since the Th–O distances are 

longer for Th(III) than for Th(IV). 



167 
 

 
Figure 9.9. Space filling model for the C4 structure demonstrating the eclipsed conformation of  

the tert-butyl groups on the aryl rings. None of the methyls are parallel to the C(ipso)–O bond. 

 

Figure 9.10. Space filling model for the S4 structure demonstrating the staggered conformation 

of the tert-butyl groups on the aryl rings. One of the methyls is parallel the C(ipso)–O bond. 
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 In summary, a square planar geometry is accessible to thorium in the +3 oxidation state 

with the suitable ligands.  The aryloxide ligands, which are -donors, favor the formation of a 

square planar d1 complex with a low energy dz2 orbital.  This geometry, which is unusual for an f 

element and for d1 complexes, is likely also favored by the positioning of the eight tert-butyl 

substituents on the four aryloxide ligands.   

Experimental Details 

All manipulations and syntheses described below were conducted with the rigorous exclusion of 

air and water using standard Schlenk line and glovebox techniques under an argon atmosphere.  

HOC6H2
tBu2-2,6-Me-4, HOAr′ (Acros), was sublimed before use.  KOC6H2

tBu2-2,6-Me-4, 

KOAr′, was synthesized by a literature procedure.40    KC8 was synthesized according to 

literature methods41 and Li metal (99+%) was purchased as granules from Strem and used as 

received.  In an adaptation of a literature procedure, Th(OAr′)4 was synthesized by stirring 

ThBr4(THF)4 (1 equiv) and KOAr′ or LiOAr′· Et2O (4 equiv) overnight in THF under argon.7  

Solvents were sparged with UHP argon and dried by passage through columns containing Q-5 

and molecular sieves prior to use.  THF-d8 was stirred in NaK alloy for 1 week and degassed by 

three freeze-pump-thaw cycles, then vacuum transferred.  1H NMR spectra were recorded on 

Bruker GN500 spectrometer and referenced internally to residual protio-solvent resonances at 

298 K.   Elemental analyses were conducted on a Perkin-Elmer 2400 Series II CHNS elemental 

analyzer.  UV−visible spectra were collected in THF using a Varian Cary 60 Scan UV-visible 

spectrophotometer.  EPR spectra were collected using X-band frequency (9.3−9.8 GHz) on a 

Bruker EMX spectrometer equipped with an ER041XG microwave bridge, and the magnetic 

field was calibrated with DPPH (g = 2.0036).  Infrared (IR) transmittance measurements were 
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taken as compressed solids on an Agilent Cary 630 spectrophotometer with a diamond ATR 

attachment.   

[K(THF)5(Et2O)][Th(OAr′)4], 30-Th.  In an argon-filled glovebox, a colorless solution 

of Th(OAr′)4 (50 mg,  0.05 mmol) in THF (2 mL) and a vial containing KC8 (10 mg, 0.07 mmol) 

were chilled to (−35 °C).  The THF solution was transferred to the vial of KC8 and vigorously 

swirled forming a dark maroon mixture.  The mixture was immediately filtered and layered into 

cold Et2O (−35 °C).   After 2 d, X-ray quality dark maroon crystals were isolated (49 mg, 69%).  

IR: 2909s, 2875s, 2834m, 1643m, 1459s, 1417m, 1375w, 1352s, 1318w, 1301w, 1271m, 1241m, 

1213w, 1176w, 1118m, 1097m, 1080s, 1051s, 960w, 947s, 931s, 899m, 874w, 843w, 816m, 

802m, 779w, 751m, 667w cm-1.  Anal. Calcd for desolvated [K][Th(OAr′)4], C60H92KO4Th:  C, 

62.74; H, 8.07; Found:  C, 55.63; H, 7.03.  Elemental analysis was complicated by incomplete 

combustion which has been observed before for f element complexes.42-49  However, the CH 

ratio of C60H90.3 vs calcd C60H92 was found. It was determined that the elemental analytical data 

did not fit with partially desolvated complexes.  However, the observed CH ratios fit reasonably 

well and may be due to complications of incomplete combustion. 

[Li(THF)4][Th(OAr′)4], 31-Th.  In an argon-filled glovebox, a colorless solution of 

Th(OAr′)4 (50 mg,  0.05 mmol) in THF (2 mL) and a vial containing excess Li smear (5 mg) 

were chilled to (−35 °C).  The THF solution was transferred to the vial of Li forming a light 

maroon solution.  The solution with Li metal was placed in a (−35 °C) freezer overnight.  After 2 

d, X-ray quality dark maroon crystals were isolated (55 mg, 87%).  IR: 2911s, 2879s, 2837m, 

1645m, 1459s, 1411s, 1384w, 1373w, 1354s, 1319w, 1303w, 1280m, 1271m, 1245m, 1229m, 

1212m, 1198w, 1176w, 1118m, 1083s, 1057s, 1040s, 1026s, 948s, 935s, 901m, 886w, 875w, 

858w, 841w, 817s, 802s, 779w, 680w, 668w cm-1.  Anal. for desolvated [Li][Th(OAr′)4], 



170 
 

C60H92LiO4Th:  C, 64.55; H, 8.31;.  Found:  C, 54.44; H, 7.25.  Elemental analysis was 

complicated by incomplete combustion which has been observed before for f element 

complexes.42-49  However, the CH ratio of C60H95.2 vs calcd C60H92 was found.  It was 

determined that the elemental analytical data did not fit with partially desolvated complexes.  

However, the observed CH ratios fit reasonably well and may be due to complications of 

incomplete combustion 

[K(2.2.2-cryptand)][Th(OAr′)4].  In an argon-filled glovebox, a colorless solution of 

Th(OAr′)4 (50 mg,  0.05 mmol) and 2.2.2-cryptand (17 mg, 0.05 mmol) in THF (2 mL) and a 

vial containing KC8 (10 mg, 0.07 mmol) were chilled to (−35 °C).  The THF solution was 

transferred to the vial of KC8 and vigorously swirled forming a dark maroon mixture.  The 

mixture was immediately filtered and layered into cold Et2O (−35 °C).  Dark maroon crystalline 

solids were isolated (60 mg, 91%).  IR: 2950s, 2883s, 2865s, 2813m, 1737w, 1599w, 1476w, 

1456w, 1443w, 1407s, 1384m, 1354s, 1319w, 1295m, 1257s, 1227s, 1212s, 1196m, 1131m, 

1101s, 1077s, 1029w, 949s, 930m, 886w, 959m, 816s, 800s, 778m, 752w cm-1.  Anal. for 

[K(2.2.2-cryptand)][Th(OAr′)4], C78H128KN2O10Th:  C, 61.43; H, 8.46; N, 1.84.  Found:  C, 

61.27; H, 8.85; N, 1.78.   
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Spectroscopic Details 

 

 

 

Figure 9.11.  IR spectra of [K(THF)5(Et2O)][Th(OAr′)4], 30-Th (top), [Li(THF)4][Th(OAr′)4], 

31-Th (middle), and [K(crypt)][Th(OAr′)4] (bottom). 
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Figure 9.12.  Experimental X-band EPR spectra of [Li(THF)4][Th(OAr′)4], 31-Th, dissolved in 

THF (5 mM) collected at 298 K (top; mode: perpendicular; giso = 1.84; υ = 9.819 GHz; P = 

0.0604; modulation amplitude = 0.902 mT) and 77 K (bottom; mode: perpendicular; g║ = 1.99, 

g┴ = 1.79; υ = 9.622 GHz; P = 0.0202; modulation amplitude = 0.902 mT) and analysed using 

EasySpin.22 
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Figure 9.13.  Experimental X-band EPR spectra of [K(crypt)][Th(OAr′)4] dissolved in THF (5 

mM) collected at 298 K (top; mode: perpendicular; giso = 1.84; υ = 9.796 GHz; P = 2.15 mW; 

modulation amplitude = 0.902 mT) and 77 K (bottom; mode: perpendicular; g║ = 1.99, g┴ = 1.79; 

υ = 9.434 GHz; P = 2.155 mW; modulation amplitude = 0.902 mT) and analysed using 

EasySpin.22 



174 
 

 

Figure 9.14.  NMR (500 MHz, THF-d8) spectra of K[Th(OAr′)4] (bottom), Th(OAr′)4 (middle) 

and LiOAr′ · Et2O (top) at 298 K. 

Computational Details 

 Density functional calculations.  DFT calculations were performed by Saswata Roy in 

the laboratory of Prof. Filipp Furche.  The molecular structure of the anion of 2 was optimized 

starting from the X-ray structure using the TPSS meta-generalized gradient approximation 

(meta-GGA) functional50 along with Grimme’s D3 dispersion correction.51 Small-core scalar-

relativistic effective core Stuttgart-Cologne potentials (ECPs)52 were used for Th along with the 

corresponding valence basis sets.53  Polarized split valence basis sets def2-SVP54 were used for 

oxygen, and group optimized single-ζ bases54 were used for all other atoms. Fine (size m455) 

quadrature grids along with the resolution-of-the-identity approximation30 were used throughout. 

The conductor like solvation model (COSMO)56 was used to model THF solution (ε = 7.520).57 

Ground state energies were converged to 10-7 Hartrees. For structural optimization, the DFT 

gradients were calculated including the derivatives of the quadrature weights for the density grid 

and converged to a maximum gradient norm of <10-4 au. Unconstrained optimization of the 
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anionic Th(III) species resulted in a C2 symmetric structure. Two structures were optimized for 

the neutral Th(IV) species. Starting from a S4 symmetric structure the neutral Th(IV) species 

optimized to a tetrahedral structure. Optimizing the Th(IV) species starting from the C2 structure 

resulted in a square planar structure. Attempts to converge structures with tetrahedral Th(III) 

coordination were unsuccessful. Mulliken population analysis is used to analyse the frontier 

molecular orbitals. As expected, the 6d orbitals show a single radial node (since the ECP 

accounts for the 3d and the 4d orbitals).  

 Numerical second derivative calculations were carried out to confirm that the optimized 

C2 and S4 structures are minima. Electronic excitation spectrum for the anionic C4 structure was 

computed using time-dependent density functional theory (TD-DFT) with the Perdew-Burke-

Ernzerhof hybrid.   PBE058 and the hybrid TPSSh functional.50, 59  TD-DFT calculations were 

carried within C4 symmetry and 8 excitations of A and 7 excitations of E IRREPS were evaluated 

using both the group optimized single-ζ bases and the def2-SV(P)54 bases for all the ligand 

atoms. The UV/Vis line spectrum was broadened by superimposing Gaussian functions of RMS 

line width of 0.1 eV.  The TPSSh spectrum was blue shifted by 0.15 eV and the PBE0 spectrum 

with the def2-SV(P) bases were blue shifted by 0.075 eV.  The excitation corresponding to the 

peak near 483 nm is a charge transfer excitation and hence is sensitive to the extent of exact-

exchange in the hybrid functional as well as the incompleteness error arising from the basis sets. 

Structures of [PtCl4]
2– and [PdCl4]

2– complexes were optimized using TPSS functional 

and triple-ζ def2-TZVP basis sets along with small-core ECPs.52  COSMO was used to model 

water as solvent (ε = 80.1).57  The optimized structures assumed D4h symmetry. The relative d-

orbital energies are reported in Tables 9.7 and 9.8.  All calculations were performed using 

Turbomole V7-3.59 
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Table 9.7.  d-Orbital splitting in square planar structure for [PtCl4]
2- using TPSS density 

functional and triple-ζ bases.24, 25 

Orbital 
orbital 

energy (eV) 
molecular orbital plot (isovalue=0.05) 

6 b1g -2.1 

 

3 eg -4.64 

 

3 b2g -4.89 

 

7 a1g -5.11 
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Table 9.8.  d-Orbital splitting in square planar structure for [PdCl4]
2- using TPSS density 

functional and triple-ζ bases.25 

Orbital 

orbital 

energy 

(eV) 

molecular orbital plot (isovalue=0.05) 

6 b2g -2.09 

 

3 eg -4.99 

 

3 b1g -5.24 

 

7 a1g -5.29 
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Figure 9.15.  Structure of optimized anion of 31-Th in C4 symmetry. 

 
Figure 9.16. Structure of optimized neutral Th(OAr′)4 in S4 symmetry. 
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Figure 9.17. Spin density of [Th(OAr′)4]

1− plotted with an isovalue =±0.005 

 
Figure 9.18. The simulated absorption spectrum using TD-TPSSh single-ζ (purple), TD-PBE0 

single-ζ (green), and TD-PBE0 SV(P) (blue) functionals compared to the experimentally 

observed spectrum (orange). 
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Structural Details 

Table 9.9.   Table of bond distances and angles for [K(THF)5(Et2O)][Th(OAr′)4], 30-Th, and 

[Li(THF)4][Th(OAr′)4], 31-Th. 

[K(THF)5(Et2O)][Th(OAr′)4], 30-Th 

Th1−O1 Th1−O2 Th2−O3 Th2−O4   

2.260(3) 2.239(3) 2.235(3) 2.257(3)   

      

O1−C1 O2−C16 O3−C31 O4−C46   

1.349(6) 1.355(6) 1.371(6) 1.356(6)   

      

Th1−O1−C1 Th1−O2−C16 Th2−O3−C31 Th2−O4−C46   

178.6(4) 176.1(3) 174.2(3) 178.5(3)   

      

O1−Th1−O1a O1−Th1−O2 O1−Th1−O2a O1a−Th1−O2 O1a−Th1−O2a O2−Th1−O2a 

178.94(15) 89.50(15) 90.51(15) 90.52(15) 89.50(15) 178.49(16) 

      

O3−Th2−O3a O3−Th2−O4 O3−Th2−O4a O3a−Th2−O4 O3a−Th2−O4a O4−Th2−O4a 

178.13(16) 89.75(12) 90.26(12) 90.26(12) 89.75(12) 179.58(16) 

      

[Li(THF)4][Th(OAr′)4], 31-Th. 

Th1−O1 Th1−O2 Th1−O3 Th1−O4 

2.244(2) 2.244(2) 2.238(2) 2.247(2) 

    

O1−C1 O2−C16 O3−C31 O4−C46 

1.355(4) 1.355(4) 1.358(4) 1.358(4) 

    

Th1−O1−C1 Th1−O2−C16 Th1−O3−C31 Th1−O4−C46 

173.9(2) 174.7(2) 176.5(2) 174.7(2) 

    

O1−Th1−O3 O1−Th1−O2 O1−Th1−O4 O2−Th1−O3 

178.54(9) 89.27(8) 88.92(8) 89.87(8) 

 

  



181 
 

Table 9.10.  Selected C…C (CMe3) distances of [K(THF)5(Et2O)][Th(OAr′)4], 30-Th, and 

[Li(THF)4][Th(OAr′)4], 31-Th. 

30-Th  Distance (Å)  31-Th  Distance (Å) 

C7 C12 5.234(7)  C22 C27 5.233(5) 

C7 C12 5.234(7)  C7 C12 5.235(6) 

C22 C27 5.249(8)  C42 C37 5.236(6) 

C22 C27 5.249(8)  C57 C52 5.247(5) 

C12 C27 5.442(7)  C22 C12 5.344(5) 

C12 C27 5.442(7)  C7 C57 5.403(5) 

C7 C22 5.456(8)  C52 C42 5.429(5) 

C7 C22 5.456(8)  C42 C27 5.438(5) 

C27 C12 5.494(8)  C27 C12 5.445(5) 

C27 C12 5.494(8)  C22 C7 5.446(5) 

C22 C7 5.527(7)  C57 C42 5.461(6) 

C22 C7 5.527(7)  C12 C52 5.476(5) 

C22 C12 5.553(8)  C37 C22 5.565(5) 

C22 C12 5.553(8)  C37 C27 5.582(6) 

C7 C27 5.716(7)  C7 C52 5.705(6) 

C7 C27 5.716(7)  C57 C37 5.856(5) 

  

Table 9.11.  Selected H…H distances of [K(THF)5(Et2O)][Th(OAr′)4], 30-Th, and 

[Li(THF)4][Th(OAr′)4], 31-Th. 

30-Th  Distance (Å)  31-Th  Distance (Å) 

H28C H9C 2.293  H45C H59C 2.211 

H9B H24C 2.351  H55C H9C 2.287 

H25B H10C 2.396  H15C H55B 2.312 

H25C H15C 2.409  H39B H23C 2.338 

H15B H29C 2.444  H59A H45A 2.339 

H25C H10A 2.500  H29C H39C 2.350 

H28B H13C 2.502  H24C H14C 2.384 

H15A H25A 2.624  H24A H14A 2.444 

H9C H24A 2.649  H29B H44C 2.485 

H13A H28C 2.665  H8C H24B 2.505 

H28A H9A 2.673  H23A H39C 2.551 

H15C H29A 2.727  H55C H15A 2.581 

 



182 
 

 X-ray Data Collection, Structure Solution and Refinement for 

[K(THF)5(Et2O)][Th(OAr′)4], 30-Th.  A dark purple crystal of approximate dimensions 0.239 

x 0.206 x 0.102 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX260 program package was used to determine the unit-cell parameters 

and for data collection (90 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT61 and SADABS62 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL63 program.  The diffraction symmetry was 

mmm and the systematic absences were consistent with the orthorhombic space group P21212 

that was later determined to be correct.  The structure was solved by direct methods and refined 

on F2 by full-matrix least-squares techniques.  The analytical scattering factors64 for neutral 

atoms were used throughout the analysis.  Hydrogen atoms were included using a riding model.  

Least-squares analysis yielded wR2 = 0.0734 and Goof = 1.058 for 846 variables refined against 

20184 data (0.75 Å), R1 = 0.0346 for those 17359 data with I > 2.0σ(I).  Refinement of the Flack 

parameter was inconclusive (BASF17 = 0.49515).  The structure was refined as a two-component 

inversion twin. 

 X-ray Data Collection, Structure Solution and Refinement for 

[Li(THF)4][Th(OAr′)4], 31-Th.  A purple crystal of approximate dimensions 0.130 x 0.210 x 

0.281 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II 

diffractometer.  The APEX260 program package was used to determine the unit-cell parameters 

and for data collection (60 sec/frame scan time for a sphere of diffraction data).  The raw frame 

data was processed using SAINT61 and SADABS62 to yield the reflection data file.  Subsequent 

calculations were carried out using the SHELXTL63 program.  The diffraction symmetry was 2/m 

and the systematic absences were consistent with the monoclinic space groups Cc and C2/c.  It 



183 
 

was later determined that space group C2/c was correct.  The structure was solved by direct 

methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors64 for neutral atoms were used throughout the analysis.  Hydrogen atoms were included 

using a riding model.  Least-squares analysis yielded wR2 = 0.0967 and Goof = 1.035 for 786 

variables refined against 19934 data (0.74 Å), R1 = 0.0385 for those 16597 data with I > 2.0(I).  

There were several high residuals present in the final difference-Fourier map.  It was not possible 

to determine the nature of the residuals although it was probable that THF solvent was present.  

The SQUEEZE65 routine in the PLATON65 program package was used to account for the 

electrons in the solvent accessible voids.   
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CHAPTER 10 

Exploring 4fn+1 vs 4fn5d1 Electron Configurations for Complexes of Lanthanide(II) Ions 

Using X-ray Photoelectron Spectroscopy 

 

Introduction 

         As described in Chapter 1, in the lanthanide series the +2 oxidation state has been 

extended from six examples, Eu, Yb, Sm, Tm, Dy, and Nd, to all the metals in the series except 

Pm which was not studied due to it radioactivity.1-2  This was surprising since the reduction 

potentials calculated to convert a 4fn Ln(III) ion to a 4fn+1 Ln(II) ion were predicted to be too 

large for the metals other than, Eu, Yb, Sm, Tm, Dy, and Nd, to form isolable complexes that 

would not react with solvents.3  Solid state data were also consistent with this picture in that Ln + 

I2 reactions under forcing conditions gave 4fn+1 Ln(II) products, LnIII2, only for the six metals 

listed above.  For all the other metals, the LnI2 products were identified as LnIII(I)2(e), i.e. Ln(III) 

salts with a delocalized electron in the lattice.4-6   

         The new molecular examples of lanthanides in the +2 oxidation state were synthesized by 

reducing the 4fn Ln(III) precursors, Cp″3Ln (Ln = La, Ce, Pr, Nd)7-8 and Cp′3Ln (Cp′ = 

C5H4SiMe3; Ln = La, Ce, Pr, Gd, Tb, Dy, Ho, Er, Lu),1-2 using potassium graphite (KC8) in the 

presence of a chelating agent 2.2.2-cryptand (crypt) to form [K(crypt)][Cp′3Ln], eq 10.1.   

 

(10.1) 
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Figure 10.1.  Ball-and-stick model of single-crystal X-ray structure of 

[K(crypt)][(C5H4SiMe3)3Ln]. 

 

Additional examples of Ln(II) complexes were subsequently isolated using various 

cyclopentadienyl analogs such as (C5Me4H)1–,9 [C5H2(CMe3)3]
1–,10 [C5H4(CMe3)]

1–,11 and 

(C5H4Me)1– 12 as well as [N(SiMe3)2]
1–,13 [OC6H2(CMe3)2-2,6-Me-4]1–,14 and the 

tris(aryloxide)mesitylene, [(Ad,MeArO)3mes]1–.15-16  For all the new examples of complexes of 

Ln(II) ions, structural, spectroscopic, and magnetic data as well as analysis by density functional 

theory (DFT), indicated that the product of reducing a 4fn Ln(III) ion was not the expected 4fn+1 

Ln(II) but instead a 4fn5d1 Ln(II) ion.1-2, 17  This meant that the previously calculated reduction 

potentials did not apply.  This result also matched with the solid-state data since the delocalized 

electron in the LnIIII2(e) compounds was assigned to a 5d band. 

The unusual nature of the 4fn5d1 mixed principal quantum number configuration made it 

an ideal topic for detailed spectroscopic studies.  For example, the electronic structure of the 

[K(crypt)][Cp′3Ln] complexes of Ln = Pr, Nd, Sm, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb and Lu was 

examined by X-ray absorption near-edge spectroscopy (XANES).18  Surprisingly, the XANES 

shifts of the new ions are only slightly different than those of the Ln(III) Cp′3Ln 
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precursors.  Initially, there was concern that the samples decomposed on the way to the 

synchrotron or in the beam.  However, calculations showed why the spectra were similar for the 

4fn5d1 ions.18 

X-ray photoelectron spectroscopy (XPS) provides a complementary approach to defining 

electronic structure of molecules by evaluation of the core and valence orbitals.  Since excellent 

XPS facilities are available at UC Irvine that have a sample entry system inside a glovebox, it 

was of interest to examine the highly reactive Ln(II) complexes by this method.  Samples could 

be crystallized the night before analysis and loaded into the instrument with little risk of 

decomposition. 

Molecular organometallic lanthanide complexes of this type have yet to be characterized 

by XPS.  Prior studies of XPS of lanthanides have focused on the metals, metal oxides, metal 

chalcogenides, phosphates, and alloys.19-25  These are also known to have complicated surface 

chemistry that involves adsorbed water or other contaminants that further complicate the 

interpretation of the data.  Preliminary data are presented here on a pristine set of crystalline 

molecular species which serve to interrogate the electronic structure of the new ions by a new 

method and to demonstrate the value of XPS in molecular lanthanide chemistry.  The complexes 

[Cp′3Ln]1– (Ln = Sm, Eu, Gd, Tb) were chosen because Sm(II) and Eu(II) are traditional Ln(II) 

ion with a 4f6 and 4f7 configurations, respectively, electron configuration and because Gd(II) and 

Tb(II) have been assigned 4f75d1 and 4f85d1 configurations.  These four were also selected 

because they are adjacent in the periodic table which means that their ionic radii are similar and 

any charge/radius effects should be similar.  The neutral Ln(III) precursors, Cp′3Ln, were also 

examined for comparison. 
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Results and Discussion 

 Sample Preparation and Data Collection.  With the assistance of Sierra R. Ciccone, 

crystalline samples of Cp′3Ln and [K(crypt)][Cp′3Ln] (Cp′ = [C5H4SiMe3]
1–; Ln = Sm, Eu, Gd, 

Tb) were prepared according to previously published procedures.17  The prepared samples were 

transferred to a Schlenk tube with a Teflon screw cap and then placed on a high-vacuum line 

(10–5 torr) overnight to remove residual solvent from sample preparation.  The Schlenk tube was 

then transferred to a N2 glovebox which is directly attached to the XPS instrument, AXIS Supra 

by Kratos Analytical.  In the glovebox, the lanthanide samples were then mounted on a stainless-

steel stub with double-sided copper tape.  The stub was then transferred from the glovebox into 

the XPS instrument for measurement and samples were measured with the assistance of Dr. 

Jared P. Bruce from the laboratory of Prof. John C. Hemminger.  Control samples of KCp′ and 

2.2.2-cryptand were also measured and analyzed by XPS.  All data are summarized in Table 

10.1. 

Table 10.1.  Summary of binding energies (eV) of measured samples Cp′3Ln and 

[K(crypt)][Cp′3Ln] (Ln = Sm, Eu, Gd, Tb). 

 Ln 4d3/2 Ln 4d5/2 Si 2s C 1sring C 1smethyl C 1scrypt 

Cp′3Sm 134.5 130.8 149.2 281.3 282.2  
[Cp′3Sm]1–   148.9 280.9 281.8 283.3 

       
Cp′3Eu 139.2 133.8 149.1 281.3 282.3  
[Cp′3Eu]1– 138.3 132.5 148.5 280.6 281.7 283.3 

       
Cp′3Gd 145.9 139.9 148.7    
[Cp′3Gd]1– 144.9 138.7 148.3 280.5 281.7 283.3 

       
Cp′3Tb   148.7 281.1 282.4  
[Cp′3Tb]1–   148.2 280.5 282.0 283.3 
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Samarium.  The 4d regions of both Cp′3SmIII and [K(crypt)][Cp′3SmII] were measured, 

Figure 10.2.  The Sm(III) and Sm(II) 4d3/2 and 4d5/2 peaks are not well resolved.  However, a  

 

Figure 10.2.  Sm 4d XPS region of Cp′3SmIII (left) and [K(crypt)][Cp′3SmII] (right). 

 

70% Gaussian and 30% Lorentzian model of the Sm(III) spectrum reveals three unique traces, 

shown in red, which could be attributed to 4d3/2 (134.5 eV), 4d5/2 (130.8 eV), and a satellite peak 

(127.7 eV).  The satellite peak could be a result of a shake-down process which will be discussed 

in the Eu 4d section below.  In the Sm(II) spectrum, similar features are observed, however, 

higher resolution is necessary to confidently assign the 4d3/2 and 4d5/2 peaks.  The Si 2s peak is 

also present in both Sm(III) (Si 2s: 149.2 eV) and Sm(II) (148.9 eV) spectra.  

 The C 1s regions of the Sm(III) and Sm(II) complexes were also examined, Figure 10.3.  

In the Sm(III) spectrum, three features can be modeled.  The peak located at 281.3 eV is assigned 

as the cyclopentadienide ring (C 1sring) and the peak at 282.2 eV is attributed to the methyl 

carbon (C 1smethyl).  However, the smaller peak at 283.4 eV is unknown.  In the Sm(II) spectrum, 

similar features are observed for the C 1sring (280.9 eV) and C 1smethyl (281.8 eV).  Unlike the 
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Figure 10.3.  C 1s XPS region of Cp′3SmIII (left) and [K(crypt)][Cp′3SmII] (right). 

 

Sm(III) C 1s spectrum, an additional intense feature is present at 283.3 eV which is assigned as 

the carbon atoms in the [K(crypt)]1+ cation (C 1scrypt).  At higher binding energies, a weak shake-

up peak at 286.7 eV is present. 

Europium.  The 4d regions of both Cp′3EuIII and [K(crypt)][Cp′3EuII] were measured, 

Figure 10.4.  Binding energies of the well-separated Eu 4d3/2 and Eu 4d5/2 peaks, unlike the  

 

Figure 10.4.  Eu 4d XPS region of Cp′3EuIII (left) and [K(crypt)][Cp′3EuII] (right). 
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above-mentioned Sm spectra, were determined for both the Eu(III)  (4d3/2: 139.2 eV, 4d5/2: 133.8 

eV) and Eu(II) (4d3/2: 138.3 eV, 4d5/2: 132.5 eV) complexes and are summarized in Table 10.1.  

A satellite peak is present in both the Eu(III) (127.0 eV) and Eu(II) (125.3 eV) spectra at binding 

energies lower than the 4d5/2 peak.  These features have been previously reported as a shake-

down satellite peak due to a reorganization of the 4f sub-shell.22  This shake-down peak is likely 

also present in the Sm 4d spectra described above.  However, this satellite peak overlaps with the 

Sm 4d3/2 and 4d5/2 peaks.  Additionally, the Si 2s peak from the Cp′ ligand is observed in both 

the Eu(III) (Si 2s: 149.1 eV) and Eu(II) (Si 2s: 148.5 eV) spectra as presented in Figure 10.2.  

These are nearly identical to the Si 2s peaks in the Sm spectra as well.  The Eu 4d and Si 2s 

peaks are overall shifted to more negative binding energies from the Eu(III) to Eu(II) sample 

which is suggestive of a reductive change in oxidation state. 

 The C 1s regions of the Eu(III) and Eu(II) samples were also analyzed, Figure 10.3.  

Several features are nearly identical to the peaks described in the Sm C 1s spectra.  These are 

identified as the Cp′ ring carbon atoms for both Eu(III) and Eu(II) compounds and the carbon 

atoms in the [K(crypt)]1+ cation for the Eu(II) compound.  In the Eu(III) C 1s spectrum (Figure 

10.3; left), the most intense feature in the fitted red trace (C 1sring: 281.3 eV) could be best 

attributed to the ring carbon atoms.  The negative charge in the cyclopentadienide ring shifts the 

carbon binding energies more negative in comparison to the methyl carbon atoms (C 1smethyl: 

282.3 eV) in the trimethylsilyl group.  In the Eu(II) C 1s spectrum (Figure 10.3; right), similar 
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Figure 10.5.  C 1s XPS region of Cp′3EuIII (left) and [K(crypt)][Cp′3EuII] (right). 

 

Cp′ features with more negative shifts are observed (C 1sring: 280.6 eV; C 1smethyl: 281.7 eV).  An 

additional intense feature is present which could be assigned C 1s crypt intensities from the 

[K(crypt)]1+ cation (C 1scrypt: 283.3 eV).   

 Gadolinium.  The Gd(III) and Gd(II) spectra measured for the 4d region and the Gd 4d3/2 

and Gd 4d5/2 peaks are well-resolved, Figure 10.6.  The Gd(III) 4d3/2 is located at 145.9 eV and 

Gd(III) 4d5/2 is located at 139.9 eV.  For the Gd(II), the 4d3/2 is located at 144.9 eV and 4d5/2 is 

located at 138.7 eV.  The peak shifts between the two spectra is approximately 1 eV which is 

suggestive of a change in oxidation state from Gd(III) and Gd(II).  Additionally, unlike the Sm 

and Eu 4d regions, shake-down features are not evident in these Gd 4d spectra.  The Si 2s peak 

in the Gd(III) spectrum is located at 148.7 eV and 148.3 eV in the Gd(II) spectrum.  These Si 2s 

shifts are nearly identical to the previously described Sm and Eu Si 2s spectra. 
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Figure 10.6.  Gd 4d XPS region of Cp′3GdIII (left) and [K(crypt)][Cp′3GdII] (right). 

 

 The C 1s region of the Gd(III) complex possesses features similar to the previously 

described Sm(III) and Eu(III) complexes.  However, unlike the Sm(III) and Eu(III) C 1s spectra, 

the weaker intensity peaks are not observed, Figure 10.7.  The features in the Gd(II) C 1s  

 

 

Figure 10.7.  C 1s XPS region of Cp′3GdIII (left) and [K(crypt)][Cp′3GdII] (right). 

spectrum are similar to the features previously described for the Sm(II) C 1s spectrum including 

a weak shake-up peak located at 285.4 eV.    
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 The valence spectrum was measured and analyzed for Gd(III) and Gd(II) because this 

region is less complicated in comparison to Sm, Eu, and Tb, Figure 10.8.  The most intense  

 

Figure 10.8.  Valence XPS region of Cp′3GdIII (left) and [K(crypt)][Cp′3GdII] (right). 

 

peaks in both spectra are the Gd 4f peaks: Gd(III) 4f: 6.4 eV and Gd(II) 4f: 5.4 eV.  The Gd 5p 

peaks are also observable in both spectra: Gd(III) 5p1/2: 24.5 eV, Gd(III) 5p3/2: 19.4 eV, Gd(II) 

5p1/2: 23.6 eV, Gd(II) 5p3/2: 18.8 eV.  Peaks associated with Cp′ are also identifiable in the 

valence region.  Measurements from the KCp′ control sample, Figure 10.9, revealed a K 3p (13.7 

eV) peak  

 

Figure 10.9.  Valence XPS region of KCp′ (left) and 2.2.2-cryptand (right). 
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and two ligand based peaks at 12.1 and 1.6 eV.  Therefore, the valence peaks in the Gd(III) 

spectrum located at 13.1 eV and the shoulder at 3.4 eV arise from the Cp′ ligand and these are 

11.8 and 3.0 eV in the Gd(II) valence spectrum, Table 10.1. The K 3p peak in the Gd(II) valence 

spectrum is located at 13.6 eV.  The shoulder in the Gd(II) spectrum (Figure 10.8, left) located at 

1.3 eV could be assigned as the 5d orbital, but theoretical calculations that will be discussed later 

in this Chapter were necessary to confirm its identity. 

 Terbium.  The Tb(III) and Tb(II) 4d regions contain three peaks attributed to 4d.  

However the 4d3/2 and 4d5/2 peaks cannot be specified.  However, the Si 2s peak is identifiable by 

its most intense peak: Tb(III) Si 2s (148.7 eV) and Tb(II) Si 2s (148.2 eV).   

 

Figure 10.10.  Tb 4d XPS region of Cp′3TbIII (left) and [K(crypt)][Cp′3TbII] (right). 

 

 The Tb(III) C 1s spectrum contain peaks, the C 1sring (281.1 eV) and C 1smethyl (282.4 eV) 

with similar in binding energies to the Sm(III), Eu(III), and Gd(III) C 1s peaks.  Additionally, the 

Tb(II) C 1s peaks are nearly identical to the Sm(II), Eu(II), and Gd(II) spectra with shake-up 

(285.8 eV) and shake-down (279.4 eV) peaks.   
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Figure 10.11.  C 1s XPS region of Cp′3TbIII (left) and [K(crypt)][Cp′3TbII] (right). 

Theoretical Calculations.  Calculations were performed by Sree Ganesh Balasubramani 

in the laboratory of Prof. Filipp Furche.  The calculations use the random phase approximation 

(RPA) which is a post-Kohn-Sham density functional approximation that incorporates van der 

Waals interactions.  The RPA occupation number derivatives approach is used for the calculation 

of the valence and core ionization potentials of these lanthanide complexes.  

  The geometries of the [Cp′3Ln]1– (Ln = Eu, Gd) complexes were optimized within DFT 

using the hybrid Tao-Perdew-Scuseria-Staroverov (TPSSh) functional including the D3 

dispersion correction of Grimme.  Gridsize 4 with weight derivatives were used for the DFT 

numerical integration.  The conductor like solvation model (COSMO) was used to model the 

effects of the THF solvent (dielectric constant of 7.52). The def2-SVP basis set was used for all 

the atoms except for H atoms for which the def2-SV(P) basis set was used.  

For the calculation of ionization potentials (IPs), RPA occupation number derivatives 

were used with the TPSS input orbitals and orbital energies. The basis sets that were used for the 

geometry optimizations were the same ones used for the IP calculations also except for the metal 
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atom for which the def2-TZVPP basis set was used to better describe the valence ionization 

spectrum.  

Table 10.2.  Calculated binding energies (eV) of Cp′3Gd and [Cp′3Gd]1–. 

Orbital Gd(III) Gd(II) Shift  

4f 
–10.16 –8.64 1.52 

–9.95 –8.35 1.60 

–9.83 –8.36 1.46 

–9.69 –8.40 1.29 

–10.13 –7.98 2.15 

–10.13 –8.20 1.93 

–9.67 –8.61 1.07 

5d 
 

–1.76 
 

 

 

Figure 10.12. The density of states in the valence region for the Gd(III) (left) and the Gd(II) 

(right) complexes broadened using gaussian functions with a half width at half maximum of 0.5 

eV. 
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Figure 10.13.  The density of states in the valence region for the Eu(III) (left) and the Eu(II) 

(right) complexes broadened using gaussian functions with a half width at half maximum of 0.5 

eV. 

Conclusions 

 XPS measurements of Cp′3Ln and [K(crypt)][Cp′3Ln] (Ln = Sm, Eu, Gd, Tb) were 

analyzed for the Ln 4d, Si 2s, and C 1s regions.  Experimentally, the oxidation state shifts from 

Ln(III) to Ln(II) range from 0.3 to 1.0 eV based on the Ln 4d and Si 2s peaks.  Diagnostically, 

the Si 2s peak has been simple to identify despite its overlap in the Gd and Tb 4d region for all 

analyzed complexes.  Shake-up and shake-down features are observed in the Ln 4d and C 1s 

regions.  However, more analysis is required to understand the final state effects associated for 

each satellite feature.   The valence regions of the Gd(III) and Gd(II) complex were analyzed and 

all Gd, K, and ligand peaks were confirmed by binding energy comparisons with KCp′.  A 

shoulder peak in the valence Gd(II) region at approximately 1.3 eV was identified as a 5d peak 

which was then corroborated by DFT calculations.  The simplified Gd valence region allows for 

easier experimental identification of the 5d orbital and simplified DFT calculations due to its 

spin-only 4f7 and 4f75d1 electron configuration.  Both the data and the calculations are consistent 
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with a change in formal metal oxidation state of +3 to +2 upon reduction of Cp′3Ln to 

[K(crypt)][Cp′3Ln]. 

Experimental 

         XPS was performed on a Kratos Axis Supra DLD spectrometer (Kratos Analytical Ltd.) 

with monochromated Al Kα radiation (1486.6 eV) at 10‐mA emission current and 15‐kV anode 

voltage with a base pressure of 1 × 10-9 Torr.  One set of experiments was performed with the 

charge neutralizer with a filament current of 1.8 A and a bias of 3.0 V while the remaining 

spectra were collected without charge neutralization. Spectra were collected with a fixed‐

analyzer transmission mode, survey scans were collected with a pass energy of 160 eV while 

high‐resolution scans of individual elements were collected with a pass energy of 20 eV. All 

samples were mounted on a stainless steel stub with double-sided copper tape in a nitrogen - 

filled glovebox attached to the XPS. Samples were fabricated in a different argon-filled glovebox 

and transported under vacuum in a sealed vial to the glovebox attached to the XPS.  Peak fitting 

was performed with CasaXPS software (Casa Software Ltd.) using a Shirley baseline and 70% 

Gaussian – 30% Lorentzian function for the peaks unless otherwise indicated.  
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APPENDIX A 

Synthesis and Structural Characterization of {(C5H4SiMe3)2Ba(THF)}n 

and Barium-in-2.2.2-Cryptand Complexes 

 

 This Appendix describes the synthesis of Ba(II) coordination complexes using Cp′ (Cp′ = 

C5H4SiMe3) and 2.2.2-cryptand as ligands.  BaI2 reacts with two equivalents of KCp′ in THF to 

form a product that crystallizes out of Et2O as the crystallographically-characterizable colorless 

complex {Cp′2Ba(THF)}n oligomer, Figure A.1.  Although there are 38 examples of Ba(II) 

complexes with at least one coordinated cyclopentadienyl ligand in the literature, there are only 

two reported examples of oligomeric barium metallocenes.1-2    

 Coordination complexes of Ba(II)-in-2.2.2-cryptand were also synthesized by reacting 

BaX2 (X = I, OTf) starting materials with crypt (2.2.2-cryptand).   Both crystallized out of Et2O.  

The colorless complex [Ba(crypt)(DMF)2][I]2 was formed by reacting BaI2 with crypt in DMF 

and crystallographically-characterized, Figure A.2.  The colorless complex [Ba(crypt)(OTf)2] 

was formed by reacting Ba(OTf)2 with crypt in THF and crystallographically-characterized, 

Figure A.3.  This structure was found to be isomorphous with [Ln(crypt)(OTf)2] (Ln = Nd, Sm) 

as described in Chapter 7.  There are only 11 other examples of Ba(II)-in-crypt complexes 

reported in literature.3-11 
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Figure A.1.  ORTEP representation of extended structure of {Cp′2Ba(THF)}n, with thermal 

ellipsoids drawn at the 50% probability level.  Hydrogen atoms were omitted for clarity. 

 

Figure A.2.  ORTEP representation of [Ba(crypt)(DMF)2][I]2, with thermal ellipsoids drawn at 

the 50% probability level.  Hydrogen atoms were omitted for clarity. 

Ba 

Ba 

Ba 

Ba 

Ba 
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Figure A.3.  ORTEP representation of [Ba(crypt)(OTf)2], with thermal ellipsoids drawn at the 

50% probability level.  Hydrogen atoms were omitted for clarity. 

Structural Details 

X-ray Data Collection, Structure Solution and Refinement for {Cp′2Ba(THF)}n.  A 

colorless crystal of approximate dimensions 0.102 x 0.104 x 0.199 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX21 program 

package was used to determine the unit-cell parameters and for data collection (120 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT2 and 

SADABS3 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL4 program.  The diffraction symmetry was mmm and the systematic absences were 

consistent with the orthorhombic space group Pbca that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors5 for neutral atoms were used throughout the 

analysis.  A THF molecule was modeled as a two-part disorder (1:1).  Hydrogen atoms were 

included using a riding model.  Least-squares analysis yielded wR2 = 0.0930 and Goof = 1.034 

Ba 
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for 9424 variables refined against 359 data (0.75 Å), R1 = 0.0352 for those 7293 data with I > 

2.0(I).     

X-ray Data Collection, Structure Solution and Refinement for 

[Ba(crypt)(DMF)2][I]2.  A colorless crystal of approximate dimensions 0.064 x 0.103 x 0.394 

mm was mounted in a cryoloop transferred to a Bruker SMART APEX II diffractometer.  The 

APEX21 program package was used to determine the unit-cell parameters and for data collection 

(120 sec/frame scan time for a sphere of diffraction data).  The raw frame data was processed 

using SAINT2 and SADABS3 to yield the reflection data file.  Subsequent calculations were 

carried out using the SHELXTL4 program.  The diffraction symmetry was 2/m and the 

systematic absences were consistent with the monoclinic space groups Cc and C2/c.  It was later 

determined that space group C2/c was correct.  The structure was solved by dual space methods 

and refined on F2 by full-matrix least-squares techniques.  The analytical scattering factors5 for 

neutral atoms were used throughout the analysis.  

Hydrogen atoms were included using a riding model.  Least-squares analysis yielded wR2 = 

0.1162 and Goof = 1.013 for 10501 variables refined against 581 data (0.82 Å), R1 = 0.0442 for 

those 7396 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for [Ba(crypt)(OTf)2].  A 

colorless crystal of approximate dimensions 0.320 x 0.231 x 0.084 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX21 program 

package was used to determine the unit-cell parameters and for data collection (25 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT2 and 

SADABS3 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL4 program.  The diffraction symmetry was 2/m and the systematic absences were 
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consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved using the coordinates of the isomorphous samarium/neodymium complex 

and refined on F2 by full-matrix least-squares techniques.  The analytical scattering factors5 for 

neutral atoms were used throughout the analysis. Hydrogen atoms were located from a 

difference-Fourier map and refined (x,y,z and Uiso) and included using a riding model.  A 

coordinated triflate (CF3SO3) was found to be disordered and modeled as a two-part disorder 

(1:1).  Least-squares analysis yielded wR2 = 0.0611 and Goof = 1.027 for 7515 variables refined 

against 560 data (0.74 Å), R1 = 0.0261 for those 6726 data with I > 2.0(I).   
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APPENDIX B 

Synthesis of {Cs(THF)(C5H4SiMe3)3Yb}n 

 

 This Appendix describes the synthesis of the complex {Cs(THF)Cp′3Yb}n (Cp′ = 

C5H4SiMe3).  A THF solution of Cp′3Yb was reduced with a smear of Cs metal generating a 

green solution.  The green solution was layered into Et2O and green crystals of 

{Cs(THF)Cp′3Yb}n were isolated after 1 d.  This chelate free Yb(II) oligomer is similar to the 

complexes [CpʺM(μ-Cpʺ)2Cs(THF)2] (M = La, U) where Cs coordinates to the backside of two 

cyclopentadienyl ligands to form a bent metallocene cesium unit, [Cp′2Cs(THF)]1−, as described 

in Chapter 2.  In this case, only one THF is coordinated to Cs.  Attempts to isolate a 

{Cs(THF)Cp′3La}n analog were unsuccessful as the dark purple solution from the reaction of 

Cp′3La and Cs metal decomposed overnight at –35 °C.  

 

 

Figure B.1.  ORTEP representation of {Cs(THF)Cp′3Yb}n, with thermal ellipsoids drawn at the 

50% probability level.  Hydrogen atoms were omitted for clarity. 

 

Yb Cs 
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Structural Details 

X-ray Data Collection, Structure Solution and Refinement for {Cs(THF)Cp′3Yb}n.  

A green crystal of approximate dimensions 0.079 x 0.086 x 0.148 mm was mounted on in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX21 program 

package was used to determine the unit-cell parameters and for data collection (90 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT2 and 

SADABS3 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL4 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/n that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors5 for neutral atoms were used throughout the 

analysis. Hydrogen atoms were included using a riding model.  Least-squares analysis yielded 

wR2 = 0.0562 and Goof = 1.018 for 316 variables refined against 8223 data (0.75 Å), R1 = 

0.0315 for those 6580 data with I > 2.0(I).   
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APPENDIX C 

Synthesis of (C5Me5)2Yb(2.2.2-cryptand) and  

[Sm2(2.2.2-cryptand)2(µ-I)][(C5H4SiMe3)3Sm]3 

 

Reaction of Cp*Yb(BPh4) (Cp* = C5Me5) with crypt (2.2.2-cryptand) in toluene 

generated a light green solution with white precipitate.  The green solution was decanted from 

the white precipitate and layered with hexane.  After 1 d, green crystals of Cp*2Yb(crypt) were 

isolated.  The crystal data collected was sufficient for connectivity only, Figure C.1.   

 

Figure C.1. Connectivity structure of Cp*2Yb(crypt) drawn at the 50% probability level.  

Hydrogens have been omitted for clarity. 

 

 

 

Yb 
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 From an attempted reaction to isolate [Sm(crypt)(THF)][Cp′3Sm]2 (Cp′ = C5H4SiMe), 

previously described in Chapter 4, a crystal of [Sm2(crypt)2(µ-I)][Cp′3Sm]3 and structurally 

characterized, Figure C.2.  Although the crystal data collected was sufficient for connectivity 

only, the structure depicts two [Sm(crypt)]2+ bridged by an iodide with three [Cp′3Sm]1– anions.  

This structure shows that Ln-in-crypt complexes can bridge to each other, despite the steric bulk 

offered by the chelating crypt. 

 

Figure C.2. Connectivity structure of [Sm2(crypt)2(µ-I)][Cp′3Sm]3 drawn at the 50% probability 

level.  Hydrogens have been omitted for clarity. 
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APPENDIX D 

Synthesis of [Cp′2Y(μ-OH)]2 and  

[Li(Me6TREN)][{N(SiMe3)2}2Y{N(SiMe3)2SiMe2CH2}] 

 

Reduction of Cpʹ3Y (Cp′ = C5H4SiMe3) using Li metal without the presence of a 

chelating agent yielded a bridging hydroxide species [Cpʹ2Y(µ-OH)]2, Figure D.1. 

 

 

Figure D.1.  ORTEP representation of [Cpʹ2Y(µ-OH)]2, thermal ellipsoids drawn at the 50% 

probability level.  Hydrogen atoms, except for O−H hydrogens, were omitted for clarity. 
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Reduction of YN*3 [N* = N(SiMe3)2] using Li metal in the presence of Me6TREN 

chelating agent yielded the cyclometalated product 

[Li(Me6TREN)][{N(SiMe3)2}2Y{N(SiMe3)2SiMe2CH2}], Figure D.2. 

 

Figure D.2. ORTEP representation of [Li(Me6TREN)][{N(SiMe3)2}2Y{N(SiMe3)2SiMe2CH2}], 

thermal ellipsoids drawn at the 50% probability level.  Hydrogen atoms, except for O−H 

hydrogens, were omitted for clarity. 

Experimental 

[Cpʹ2Y(µ-OH)]2. In an argon-filled glovebox, a cold (−35 °C) yellow solution of Cp′3Y 

(200 mg, 0.400 mmol) in THF (3 mL) was added to a flask containing a smear of lithium metal 

and a dark maroon solution immediately formed.  The dark purple solution became orange after 

2 h.  The solution was crystallized over 2 d by vapor diffusion with Et2O produced X-ray quality 

colorless crystals of [Cpʹ2Y(µ-OH)]2. 



218 
 

Structural Details 

X-ray Data Collection, Structure Solution and Refinement for [Cpʹ2Y(µ-OH)]2.  A 

colorless crystal of approximate dimensions 0.138 x 0.321 x 0.413 mm was mounted in a 

cryoloop and transferred to a Bruker SMART APEX II diffractometer.  The APEX21 program 

package was used to determine the unit-cell parameters and for data collection (30 sec/frame 

scan time for a sphere of diffraction data).  The raw frame data was processed using SAINT2 and 

SADABS3 to yield the reflection data file.  Subsequent calculations were carried out using the 

SHELXTL4 program.  The diffraction symmetry was 2/m and the systematic absences were 

consistent with the monoclinic space group P21/c that was later determined to be correct.  The 

structure was solved by dual space methods and refined on F2 by full-matrix least-squares 

techniques.  The analytical scattering factors5 for neutral atoms were used throughout the 

analysis.  Hydrogen atoms were included using a riding model.  There were two molecules of the 

formula-unit present (Z =8).  At convergence, wR2 = 0.0881 and Goof = 1.017 for 745 variables 

refined against 16921 data (0.78 Å), R1 = 0.0378 for those 12992 data with I > 2.0(I).   

X-ray Data Collection, Structure Solution and Refinement for 

[Li(Me6TREN)][{N(SiMe3)2}2Y{N(SiMe3)2SiMe2CH2}].  A blue crystal of approximate 

dimensions 0.216 x 0.227 x 0.584 mm was mounted in a cryoloop and transferred to a Bruker 

SMART APEX II diffractometer.  The APEX21 program package was used to determine the 

unit-cell parameters and for data collection (15 sec/frame scan time for a sphere of diffraction 

data).  The raw frame data was processed using SAINT2 and SADABS3 to yield the reflection 

data file.  Subsequent calculations were carried out using the SHELXTL4 program.  The 

diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic 

space group P21/c that was later determined to be correct.  The structure was solved by direct 
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methods and refined on F2 by full-matrix least-squares techniques.  The analytical scattering 

factors5 for neutral atoms were used throughout the analysis.  Hydrogen atoms associated with 

C(1) and C(2) were located from a difference-Fourier map and refined (x,y,z and Uiso).  The 

remaining hydrogen atoms were included using a riding model.  At convergence, wR2 = 0.0770 

and Goof = 1.019 for 448 variables refined against 11841 data (0.75Å), R1 = 0.0344 for those 

9728 data with I > 2.0(I).   
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APPENDIX E 

EPR Spectroscopy of the (C5Me4SiMe3)2YCl + KC8 Reduction Product 

 

This Appendix describes the preliminary results of the reduction of CpN
2YCl (CpN = 

C5Me4SiMe3) using KC8 in toluene.  The complex CpN
2YCl can be synthesized by reacting YCl3 

with 2 equivalents of KCpN, eq E.1.  When a toluene solution of CpN
2YCl is reduced with KC8 

at –35 °C, an orange solution forms, eq E.2.  The orange reduction product was analyzed using 

 

 

EPR spectroscopy and a rhombic pattern was observed in the spectrum, Figure E.1.  Generally, 

the spectrum has a two-line hyper fine with some rhombic features at room temperature which 

would be suggestive of a Y(II) in an low symmetry geometry.   There are also five assignable 

features in the spectrum. 

 

(E.1) 

(E.2) 
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Figure E.1.  Room temperature EPR spectrum of CpN2YCl + KC8 reduction product in toluene. 
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APPENDIX F 

List of Crystal Structures, Cell Parameters, and UCI X-ray Codes 

DNH Formula a b c α β γ Volume 

1 [(Cp'2Y(u-OH)]2 13.09 23.6 25.36 90 102.14 90 7834.31 

2 Li(Cp′)(12-c-4)  10.45 22.93 11.81 90 101.43 90 2829.89 

3 [Li(THF)4]2[(N*3Y)2(u-O)] 28.11 15.3 26.56 90 105.95 90 11423 

4 [Li(Me6TREN)][N*2Y{N(TMS)SiMe2CH2}] 14.51 14.85 22.53 90 95.97 90 4854.62 

5 [Li(Me6TREN)][N*2Y{N(TMS)SiMe2CH2}] 14.51 14.85 22.53 90 95.97 90 4854.62 

6 YCp'3(THF) 13.07 13.35 17.16 90 90 90 2994.15 

7 S8 10.87 12.86 24.49 90 90 90 3423.41 

8 [Li(crypt)][TbCp′3] 12.85 14.81 15.8 85.25 86.25 66.53 3006.87 

9 [Li(crypt)][HoCp′3] 12.81 14.62 15.72 85.34 86.68 66.63 2944.08 

10 [Li(crypt)][DyCp′3] 12.98 14.9 15.97 85.26 86.48 66.48 3088.63 

11 [Li(crypt)][YCp′3] 12.86 14.68 15.81 85.09 86.45 66.6 2984.69 

12 [Li(crypt)][TbCp′4] 13.16 14.2 16.79 

101.1

8 92.06 111.89 3137.58 

13 [Li(crypt)][(HoCp′3)2(u-H)] 21.34 21.34 21.34 90 90 90 9718.14 

14 [YN*2(THF)]2(u-N2H2) 13.73 14.21 15.93 81.43 84.71 88.64 3108 

15 (anthracene)2 18.6 12.1 8.5 90 102.5 90 1913.01 

16 [Sm(crypt)THF][SmCp′3]2 15.6 25.8 26.7 68.4 82.9 82.2 10746.2 

evans3 [Eu(crypt)THF][EuCp′3]2 16.6 24.18 27.71 112 94.1 104.4 11122.5 

17 Sm(OH)many 12.95 13.12 15.92 77.49 71.74 88.15 2704.87 

18 SmI2(THF)5 8.69 8.69 35.93 90 90 90 2713.29 

20 [Sm2(crypt)2(u-I)][Cp′3Sm]3 16.07 31.72 27.64 90 94.76 90 14089.2 

22 [Eu(crypt)OTMS][Eu6(OH)8(O)Cp″6] 16.34 16.48 16.95 72.52 74.74 83.41 4564.35 

23 [K(crypt)][Cp] 11.01 23.9 9.78 90 94.7 90 2564 

24 [Eu(crypt)THF][EuCp′3]2 15.64 16.64 21.9 86.4 78.3 62.3 4931.3 

28 [Li(crypt)][Cp′4Y] 13.13 14.17 16.77 101.2 91.96 111.96 2820.5 

29 Cp*2Yb(crypt) 26.38 9.3 31.55 90 90 90 7741 

30 [Yb(crypt)][Cp′3Yb]2 15.6 25.42 23.89 90 94.89 90 9442.2 

31 [K(crypt)][Cp″2SmI] 11.06 15.73 16.61 92.33 91.04 100 2841.1 

33 [Li(THF)4][Cp″3La] 11.48 18.87 27.56 90 92.4 90 5966 

34 [U(crypt)I2]I 11.48 26.77 12.28 90 101.2 90 3701 
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35 [Dy(crypt)(OTf)][OTf]2 16.81 10.89 21.46 90 108.8 90 3716.7 

38 [Li(THF)4][Cp″3Ce] 11.44 18.91 27.5 90 92.605 90 5940.1 

39 [Li(THF)4][Cp″3U] 11.41 18.92 27.44 90 92.568 90 5921 

40 [La(crypt)Cl2]Cl 13.83 16.25 13.16 90 106.06 90 2842.3 

42 [Cs(THF)2Cp″3La]n 12.49 16.84 12.91 90 106.76 90 2599.8 

44 [Sm(crypt)(DMF)2][BPh4]2 11.53 13.8 21.98 85.48 84.36 89.9 3467.5 

45 [Cp″2M(u-I)]2 M = La or U 10.72 11.52 13.29 72.77 83.26 78.93 1533.5 

47 [K(crypt)][CpMe
3Dy] 10.16 28.86 13.45 90 104.3 90 3826.7 

48 KCp(THF) 9.89 9.89 14.99 90 90 120 1269 

49 [Cs(THF)2Cp″3U]n 12.51 16.9 1271 90 106.10 90 2581.9 

51 [(18-c-6)K(u-CpMe)K(18-c-6)][CpMe
3Ho] 9.6 26.13 25.18 90 90.71 90 6316.7 

52 [(18-c-6)K(u-CpMe)K(18-c-6)][CpMe
3Er] 9.6 26.13 25.18 90 90.71 90 6316.7 

53 [(18-c-6)K(u-CpMe)K(18-c-6)][CpMe
3Tb] 9.6 26.14 25.2 90 90.77 90 6327 

54 [U(crypt)I(OH2)][BPh4][I] 20.14 9.63 26.98 90 107.30 90 4997 

55 [K(18-c-6)][CpMe
3Gd] connectivity 14.89 12.04 17.43 90 102.26 90 3052.7 

56 [H2crypt][BPh4]2 19.47 19.47 37.47 90 90 120 12299 

57 [Yb(DMF)6][BPh4]2 18.98 14.59 24.5 90 97.28 90 6732.7 

58 [(18-c-6)K(u-CpMe)K(18-c-6)][(CpMe
3Gd)2(u-H)] 29.33 

14.97

5 

19.23

2 90 127.73 90 6681 

59 [Na(crypt)][BPh4] 17.96 19.22 22.16 90 90 90 7648.8 

60 [Cs(THF)Cp′3Yb]n 9.44 16.87 21.02 90 92.07 90 3346.4 

61 [Eu(crypt)(DMF)2][I]2 8.48 36.55 10.83 90 92.34 90 3353.8 

62 [Th(DMF)9][Br]4 13.39 24.75 13.66 90 97.05 90 4465 

63 [GdCl2(DMF)5][GdCl4(DMF)2] 8.94 15.7 16.26 63.44 82.51 77.183 1989.2 

64 [Sm(crypt)(DMF)2][BPh4]2 11.53 13.8 21.98 85.48 84.36 89.9 3467.5 

65 [K(crypt)][DyCl4(DMF)2] 13.75 8.357 15.5 90 100.91 90 1749.2 

66 [Yb(crypt)(DMF)2]I2 10.62 22.99 12.32 90 101.56 90 2954.5 

67 [K(THF)5(Et2O)][ThOAr′4] 27.65 31.52 9.6 90 90 90 8371 

68 [Sm(crypt)(DMF)2][I]2 8.48 36.55 10.83 90 92.34 90 3353.8 

69 [K(18-c-6)][OAr'] 31.59 13.78 14.85 90 90 90 6464.6 

71 [Th(OAr′)3(u-OH)]2 14.76 17.33 23.59 90 91.8 90 6036 

72 [Li(THF)4][Th(OAr′)4] 20.99 19.88 39.09 90 95.36 90 16237 

73 [Li(THF)4]2[{U(OAr′)2I}2(u-O)] 15.43 16.71 19.25 90 96.29 90 4930.2 

74 [K(18-c-6)][Cp″] 18.71 18.55 16.81 90 90.12 90 5836.4 

75 [Nd(crypt)(DMF)2][OTf]3 10.34 13.48 18.13 108.8 91.4 106.45 2277 
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76 [CoCp*2][I] 10.42 23.02 11.62 90 90 90 2787.4 

77 [Nd(DMF)8][CoCp*2][I]5 40.73 11.63 12.77 90 90 90 6048.7 

78 [U(crypt)(OH2)(DMF)][I]3 17.76 11.3 17.8 90 111.15 90 3331.7 

79 [Eu(crypt)(DMF)2][BPh4]2 11.54 43.81 22 85.45 84.46 89.33 3477.8 

80 [K(crypt)][I][DMF] 11.15 11.61 12.05 115.3 92.43 94.67 1400.4 

81 [Ba(crypt)(DMF)2][I]2 35.71 18.21 18.04 90 104.67 90 11346.8 

82 {BaCp′2(THF)}n 20.35 17.32 21.7 90 90 90 7644.5 

83 [K(crypt)][Th(OAr′)4] 29.06 29.06 19.1 90 90 90 16130 

86 KCpN(THF) 10.36 17.84 19.82 90 90 90 3660.3 

87 [Nd(crypt)(OTf)2] 16.89 9.88 17.96 90 92.42 90 2994 

88 [U(crypt)(OH2)2][I]3 9.53 10.79 33.82 90 96.27 90 3458 

89 [U(crypt)(MeCN)I][I]2 31.97 13.1 14.14 90 90 90 5918.8 

90 [Ba(crypt)(OTf)2] 17.14 9.76 18.29 90 92.46 90 3055.9 

 




