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Abstract

Comonadicity for Localizations

by

Daniel Chupin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

The Barr-Beck-Lurie comonadicity theorem characterizes when an adjunction C D
L

R

can be used to present C as the category of comodules in D for the coalgebra object
L ◦R ∈ End(D); loosely speaking, the comodule structure supplies the instructions for how
to assemble object in C from an object in D . This thesis explores the proofs and applica-
tions in a number of contexts of this method for endowing categories of interest C with this
tautological algebraically-flavored description, in the hopes of being a kind of handbook and
toolkit for someone looking to demonstrate a comandicity result.

The toolkit grew out of an investigation of a fundamental comonadicity result: Zariski
descent for quasicoherent sheaves. Our main effort, joint with Peng Zhou, is in (1) presenting
comonadicity statements in the case where C

L−→ D is a product of reflective localizations, and
(2) applying it to deduce a descent statement for those closed covers of Lagrangian skeleta
which are locally modeled on ones that arise in the coherent-constructible correspondence of
Fang-Liu-Treumann-Zaslow [4].
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Chapter 1

Overview

1.1 What is this all about?
The goal of this thesis is to present some comonadicity results for a collection of localizations,
with an eye towards applications in microlocal sheaf theory. Loosely speaking, a comonadicity
result is a result saying that a category of interest C is equivalent to a category of “comodules”
built out of another category D that we somehow consider easier to understand:

C︸︷︷︸
hard

Ω coMod(D)︸ ︷︷ ︸
easier/more concrete?

,

c (d, d
∆−→ Ωd)

≃

where part of the notation is a “comonad” Ω acting on D . To get a feel for what these results
look like, let us now turn to a familiar result and see how it is a comonadicity result.

Sheaves and open covers

Suppose we wish to understand C = Sh(X) the 1-category of sheaves of sets on a topological
space X. We ask:

Question 1.1. How to describe a sheaf of sets F on X?

One way is to take some open cover {Ui}i∈I of X and to use it to present F as the data
of

1. a sheaf Fi := j∗i F on each Ui;

2. a morphism Fi|Ui∩Uj

ϕij−→ Fj|Ui∩Uj
over each Ui ∩ Uj
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subject to the cocycle condition

Fi|Ui∩Uj∩Uk
Fk|Ui∩Uj∩Uk

Fj|Ui∩Uj∩Uk

ϕik|Ui∩Uj∩Uk

ϕij |Ui∩Uj∩Uk
ϕjk|Ui∩Uj∩Uk

over each Ui∩Uj∩Uk. We might not know it now, but the “easier” category D in the notation
above that we have thus chosen is Sh(U) =

∏
i∈I Sh(Ui). Before getting to comonadicity, let

us examine ways we can package the above data.
We start by organizing it. The cover {Ui} builds a space U :=

⊔
i Ui and a surjective

map f : U → X, and therefore also an augmented simplicial diagram of topological spaces[
· · · U ×X U ×X U U ×X U U

]
X

π12
π13
π23

π1
π2

f

which, by applying the functor Sh(−)∗, becomes the augmented cosimplicial diagram of
categories abbreviated as Sh(U•+1/X)

f∗←− Sh(X), and unrollable into

[
Sh(U ×X U ×X U) Sh(U ×X U) Sh(U)

]
Sh(X)

{cocycle condition}i,j,k∈I {ϕij}i,j∈I
∏

i∈I Fi F

π∗
12

π∗
13

π∗
23

π∗
1

π∗
2

f∗

The data is stratified by the depth of intersection:

1.
∏

i∈I Fi := f ∗F ∈ Sh(U);

2. π∗1
∏

i∈I Fi
ϕ−→ π∗2

∏
i∈I Fi, which separates into components ϕ =

∏
i,j∈I ϕij for ϕij a

morphism in Sh(Ui ∩ Uj),

and terminates with a condition over triple intersections:

3 π∗12ϕ ◦ π∗23ϕ = π∗13ϕ, which separates into the cocycle condition ϕij ◦ ϕjk = ϕik for
i, j, k ∈ I.

By the way we wrote it, this data is determined by a sheaf F on X by restrictions. But
we can abstract (1)-(3) above into a definition of objects in a new category, detached from
any “origin” sheaf F on X. Call such data that respects the cocycle condition a descent
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datum {Fi, ϕij}; these descent data organize into a category DescU Sh(X) with appropriate
morphisms that preserve this structure, which is related to Sh(X) by functors

Sh(X) DescU Sh(X)

f̃∗

f recon∗

where the top functor f̃ ∗ is the obvious functor that builds such data out of any sheaf F
on X, and the functor going the opposite way as a functor that attempts to “reconstruct”
a sheaf on F from a descent datum by building the Čech (truncated) cosimplicial diagram
and taking the limit:

f recon
∗ ({Fi, ϕij}) : lim

←−

(
f∗G (f∗f

∗)f∗G (f∗f
∗)2f∗G

)
Here, G :=

∏
i∈I

Fi ∈
∏

i∈I Sh(Ui) is the object in the product category, and therefore e.g.

f∗G =
∏

i∈I ji∗Fi is the product of sheaves in Sh(X). A fundamental result is:

Theorem 1.2. Given an open cover {Ui} of a topological space X,

1. DescU Sh(X) ≃ holim
←−

Sh(U•+1/X)∗;

2. the functors f̃ ∗, f recon
∗ are inverse equivalences.

In other words, a sheaf on X is precisely the data of a “coherent” system of sheaves on
the cover Ui and transition maps ϕij on overlaps Ui ∩ Uj subject to the cocycle condition,
and a morphism of sheaves on X is the data of a compatible system of sheaf maps on the
cover Ui.

We come now to the comonadic reformulation of the problem. Both Sh(X) and DescU Sh(X)
have obvious functors to D := Sh(U):

Sh(X) DescU Sh(X)

Sh(U)

f̃∗

f∗

fgt

f recon∗

f∗

Ω

free

and owing to a certain base change result, they induce the same endofunctor

Ω := f ∗f∗ ≃ fgt ◦ free
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of Sh(U). It turns out in this case that the counit and unit of the adjunction give Ω the
structure of a comonad. The data of a comodule for Ω is by definition

1. an object M of Sh(U); that is, a collection of sheaves {Fi ∈ Sh(Ui)}i∈I ;

2. a coaction map M
ψ−→ ΩM ; that is, a collection of maps to restrictions Fi

ψij−−→
j∗i jj∗Fj

∼= Fj|i;

3. subject to a coassociativity condition that picks up compatibility for triples of indices
ijk.

The details are unimportant at the moment, but the key point is that, in the presence of
the same base change result that identifed Ω, this comodule data (M,ψ) can be translated
to identify with the descent data (G , ϕ) using the following dictionary:

M G

{ψij} {ϕij}

coassociativity condition cocycle condition

Here is the comonadicity statement:

Theorem 1.3. For the open cover U f−→ X, the functor f ∗ induces an equivalence of cate-
gories

Sh(X) ≃ Ω coMod Sh(U)

The earlier theorem one might call a limit descent theorem, while this one one might call
a comonadic descent theorem. It is not obvious, but the primordial result here is in some
sense the one on comonadic descent, and limit descent is a consequence of it in the presence
of base change:

comonadic descent limit descentbase change

We will continue to examine the interplay between these concepts throughout the document.
Regardless, the main point is that both kinds of descent statements give presentations of

objects and morphisms in Sh(X) in terms of collections of data and conditions on a cover, and
it might be easier to carry out certain computations for Sh(X) in the equivalent categories
DescU Sh(X) or Ω coMod Sh(U).
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Comonadicity for microlocal sheaves?

One’s familiarity with sheaves of sets might make both of the above results seem silly, basic,
or tautological: after all, we know that sheaves of sets are local, by which we mean exactly
that they obey these results. So to appreciate the content of similar kinds of results, it helps
to sidestep examples in which they look familiar and see if they hold in a context that looks
a bit more strange.

Here is such a context of interest, and the focal one for this document. Consider a closed
conic Lagrangian Λ ⊂ T ∗M for some real manifold M , and suppose {Λi}i∈I is a closed conic
cover of Λ; this results in the functors Li : ShΛ(M) → ShΛi

(M) that are left adjoint to
the inclusions ShΛi

(M) ↪→ ShΛ(M), assembling into an adjunction that builds a comonad
Ω := LR

ShΛ(M)
∏
i∈I

ShΛi
(M)

L

R

Ω

This adjunction sits within the following larger diagram of categories

ShΛ(M) lim
←−

∏
J⊆I

ShΛJ
(M)

∏
i∈I

ShΛi
(M)

Lcan

L

ev0

Ω

R

Functorially, the Li on ShΛ(M) are left adjoints like f ∗i on Sh(X) above. But unlike the f ∗i ,
it turns out that they are wildly non-local operations on sheaves. Still, the categorical set-up
is analogous, and so in analogy to the questions for the categories Sh(−)∗ and open covers
that were answered affirmatively by the theorems above, we can ask:

Question 1.4. In the above set-up,

1. under which conditions on the cover {Λi}i∈I is the map to the limit Lcan an equivalence?

2. under which conditions on the cover {Λi}i∈I is L comonadic, i.e. is the lift of L to
comodules

ShΛ(M)
Lenh

−−→ Ω coMod

(∏
i

ShΛi
(M)

)
an equivalence?
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These are the central questions for this document.
It turns out that neither question has a generally affirmative answer; some restrictions

on the cover {Λi ⊆ Λ}i∈I are necessary to produce descent theorems. In this thesis, we
offer some basic results on when this is true, together with some tools that can be useful for
producing comonadicity statements.

1.2 Guide to the present document
The principal part of this thesis is meant to be an expository account of theorems related to
(co)monadicity, and a compilation of many examples in which (co)monadicity is established,
using various tools. Here is what you can hope to find:

1. Chapter 1 concludes with a brief categorical exposition, and a list of simple but useful
categorical tools.

2. Chapter 2 states and proves two versions of the Barr-Beck monadicity theorem for
1-categories, suggests some perspectives on the hypotheses and methods for showing
monadicity, and explores a few standard and non-stable examples.

3. Chapter 3 introduces the Beck-Chevalley conditions, and an alternative flavor of de-
scent statement to comonadic descent, which we may call “limit” descent. It states
the main theorems intertwining monadicity and limit descent, and explains how the
extended investigations in the coming chapters will follow the blueprints supplied by
these theorems.

4. Chapter 4 is an extended discussion of monadicity and comonadicity statements for cat-
egories of local systems. The monadicity result is easy and general, and the comonadic-
ity result is more refined and requires a restriction of categories, yielding a family of
comonadicity statements that go under the name of Koszul duality.

5. Chapter 5 is an extended discussion of comonadicity statements in topology, for various
kinds of covers of spaces. The two main results are a Koszul-duality type comonadicity
result for any surjective map, and a comonadicity result for a cover by a stratification.

6. Chapter 6 is an extended discussion of the most important descent result for this thesis:
Zariski descent. It proves it in two ways. The second way uses the presence of semi-
orthogonal decompositions that were examined by Dwyer-Greenlees, and is the most
adaptable to the ultimate purpose of this document.

7. Chapter 7 is a preparatory interlude to the final chapter, and describes the world of
sheaves with singular support in which we hope to build comonadicity statements.

8. Chapter 8 is an account of our first attempts at proving comonadicity results for pairs of
localizations. Its main content is a characterization of pullback squares of localizations
in terms of orthogonality of kernels.
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9. Chapter 9 contains what we believe to be our main contributions, joint with Peng Zhou.
Two criteria for comonadicity and one criterion for limit descent in the world of sheaves
with singular support are established, and are used to show that a mild generalization
of FLTZ skeleta and their covers admit both comonadic and limit descent.

Confession 1.5 (On the proofs you will find). The vast majority of the results in this
document are certainly not my original musings. However, unless cited, the proofs are my
often clumsy and misguided efforts to teach myself the subjects that I had been trying to use
all these years. While I have tried to point out where possible mistakes or gaps lie, there must
still be plenty of both that are unannounced. To the extent I got things right, I was likely
inspired by a beautiful explanation I learned from someone long ago whom I have forgotten
to credit. To the extent I got things wrong, that is my own fault. But, though you must read
with skepticism, I hope it is still at least a fraction as useful as writing this thing was for me.

1.3 Categorical synopsis
We provide a brief categorical rundown, mostly to set notation, but also to point out several
results that we will use repeatedly.

With the exception of several introductory sections, this thesis is about the world of
∞-categories, as opposed to 1-categories. In particular, it is about ∞-categories that are
both (1) stable and (2) presentable. We will define these terms soon. Before doing that, we
briefly say why we work in this new context:

1. Traditional triangulated categories, such as the derived category DQCoh(X) of quasi-
coherent sheaves on a variety X, lack an adequate supply of limits and colimits, even
for finite diagrams. For example, while a morphism X

f−→ Y has a cone Cone(f), there
are many to choose from: cones are not universal constructions, and are thus neither
unique nor functorial. Stable ∞-categories correct this by giving functorial cones; dis-
tinguished triangles thus become not a structure, but a property of the stable category.

2. More externally, the category of all triangulated categories also lacks an adequate
supply, or theory, of limits and colimits, even for finite diagrams. For example, the
following commuting square of triangulated categories is not a fiber product square:

DQCoh(P1) DQCoh(C+)

DQCoh(C−) DQCoh(C×)

j∗+

j∗− j∗+−

j∗−+

By moving to their stable∞-categorical enrichments, the property of this being a fiber
product square is restored.
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3. This thesis is about tautology and universal constructions, and this objective justifies
operating in a setting of big ∞-categories, i.e. categories that do not have a (small)
set of objects; these include Set, kMod,QCoh(X). This is to ensure that there is
ready access to a variety of universal constructions both within the categories (e.g.
taking colimits of diagrams of objects) and among categories (e.g. taking colimits of
diagrams of categories, and producing adjoints to functors). The downside to working
with big categories is that they are big, and complicated to “present.” By restricting
our purview to just those big categories which are presentable, we situate ourselves in
a happy medium: presentable categories are big enough to still enjoy the full course
of universal inter- and intra-categorical constructions, and are simultaneously small
enough to be governed by small subcategories.

We now give a bevy of standard definitions:

Definition 1.6. Let C be an ∞-category.

1. C is stable if (i) it has a zero object 0 ∈ C , (ii) it admits all finite limits and colimits,
and (iii) every square

X Y

0 Z

in C is a pullback square precisely when it is a pushout square.

2. C is presentable if there exist a (small) category C 0 and a regular cardinal κ such that
(1) C 0 admits all κ-small colimits, and (2) every object of C is equivalent to a formal
κ-filtered colimit of objects in C 0:

Indκ C 0 ≃−→ C .

If κ can be chosen to be the cardinality of the natural numbers ω, then C is compactly
generated.

Let now C
F−→ D be a functor of ∞-categories.

1. If C ,D are stable categories, then F is called exact if it preserves all finite limits and
colimits.

2. If C ,D are presentable categories, then F is called accessible if there is a regular
cardinal κ so that F preserves all κ-small colimits.

We now use this to define a collection of useful categories of categories. Let Cat∞ denote
the ∞-category of ∞-categories. This has many useful non-full subcategories, which we lay
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out in the following diagram:

PrL,st PrL Pr

CatL,st∞ CatL∞ Cat∞

They are:

1. CatL∞ is the category whose objects are all ∞-categories, and whose morphisms are
only those functors which are left adjoints;

2. CatL,st∞ is the category whose objects are all stable ∞-categories, and whose morphisms
are only those functors which are left adjoint and exact;

3. Pr is the category whose objects are all presentable∞-categories, and whose morphisms
are the accessible functors;

4. PrL is the category whose objects are all presentable ∞-categories, and whose mor-
phisms are those functors which are left adjoint (hence accessible);

5. PrL,st is the category whose objects are all stable presentable∞-categories, and whose
morphisms are those functors which are exact and left adjoint;

We will be most interested in PrL,stfor applications. Abstract discussion might sometimes
only invoke PrL.

The adjoint functor theorem

Though briefly mentioned earlier, the following result is the reason for working with pre-
sentable categories. We will use it many times, possibly without explicit reference:

Theorem 1.7 (Adjoint Functor Theorem, [14] Corollary 5.5.2.9). Let

F : C → D

be a functor between presentable ∞-categories.

1. The functor F has a right adjoint if and only if it preserves small colimits.

2. The functor F has a left adjoint if and only if it is accessible and preserves small limits.

Here is the statement explaining the way in which presentable categories carry enough
universal “internal and external constructions”:

Proposition 1.8. Properties of presentable categories:



CHAPTER 1. OVERVIEW 10

1. Every presentable category C is (small) bicomplete: that is, it admits all (small) limits
and colimits.

2. ([14] Proposition 5.5.3.13) The category PrL of presentable categories and left adjoint
functors is also (small) bicomplete. Furthermore, the functor PrL

fgt−→ Cat∞ preserves
all small limits.

Warning 1.9. On the other hand, the functor PrL
fgt−→ Cat∞ does not preserve colimits. A

large class of examples comes from comparing the colimits

colim
−→
PrL

(
D

⟲T )
colim
−→
Cat∞

(
D

⟲T )
can

for an endofunctor T in PrL; see Lemma 2.53.

A comment on notation

1. The notation for adjunctions will always be: functors labeled by L are left adjoints,
and functors labeled by R are right adjoints, which may be abbreviated in-line by the
notation (L,R). In a diagram with a horizontal adjunction like

C D
L

R

the left adjoint will always be drawn on top.

2. By the definitions above, an adjunction in PrL is a pair of presentable categories C ,D
together with a triple of adjoint functors (L,R,RR):

C D

L

RR

R

Only L and R are morphisms in PrL; we have drawn the functor RR with a dashed
arrow to remember that RR is not actually a morphism in PrL. We will often omit this
functor from diagrams as it does not need to be present, but sometimes will still draw
it, always dashed, if we think it clarifies something.

3. We use derived (hence stable, in their stable pre-triangulated lifts) functors unless
specified, so j∗ for the pushforward of quasicoherent sheaves under an open embedding
of schemes U

j
↪−→ X in algebraic geometry will be used to denote what other texts might

call the right-derived functor Rj∗.
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Basic tricks

We close this introductory chapter by recording a handful of almost absurdy simple but
incredibly useful categorical tricks. We might use them without mention, although usually
we will try to point out their appearance.

Two of them are about how to show that an adjunction

C D
L

R

in Cat∞ is an equivalence. First, here is something no one tells you:

Lemma 1.10. Let T := RL,Ω := LR denote the monad and comonad of the adjunction,
respectively:

C D
L

T

R

Ω

Define the full subcategories

CT := {c : c
ηc−→ RL is an isomorphism} ⊆ C,

DΩ := {d : LRd
ϵd−→ d is an isomorphism} ⊆ D

Then:

1. the adjunction restricts to an equivalence between CT and DΩ:

CT DΩ

C D

L

∼
R

L

T

R

Ω

2. there are no larger subcategories on which L,R could restrict to an equivalence.

Proof. The definition of CT is rigged to be the full subcategory on objects on which L
restricts to an embedding. So it remains to check whether L|CT : CT → D lands inside DΩ.
To that end, take a c ∈ CT so that c ηc−→ RLc is an isomorphism, and get:

Lc
Lηc−−→ LRLc

ϵLc−−→ Lc

By one half of the Zorro adjunction property, the composite is IdLc. Since Lηc is assumed
to be an isomorphism, thus so is ϵLc.

As a corollary of the proof, we obtain the second trick:

Lemma 1.11. The following are equivalent:
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1. R is an equivalence;

2. R is an embedding, and L is conservative;

3. L and R are embeddings.

The statements with L,R switching places are also equivalent to the above.

Proof. We show (2) =⇒ (1). We wish to show that R is essentially surjective, so let c ∈ C.
The same composite as above,

Lc
Lηc−−→ LRLc

ϵLc−−→ Lc,

is IdLc. The functor R is an embedding iff ϵ is an isomorphism, and so we learn that
Lc

Lηc−−→ LRLc is an isomorphism. Since L is conservative, this means that

c
ηc−→ R(Lc)

is an isomorphism, and so R is essentially surjective.

We will use these tautologies to unwind an even deeper tautology—the Barr-Beck-Lurie
monadicity theorem.

The third and final trick concerns the calculation of colimits. Most humans find this
challenging, and prefer calculating limits instead. Fortunately, if one is calculating a colimit
in PrL, one can replace it by the calculation of a limit.

To set it up, let I be an ∞-category and i 7→ Ci a functor I → PrL. For i α−→ j, let
Ci

Lα−→ Cj be the left adjoint functor. By definition, each Lα admits a right adjoint Rα,
which determines a functor

I
op → Pr

fgt−→ Cat∞

Lemma 1.12 ([6], Proposition 2.5.7). If I → PrL is a functor, then

colim
−→

i∈I,Lα

Ci
≃−→ lim

←−
j∈Iop ,Rα

Cj

where the colimit is calculated in PrL and the limit is calculated in Cat∞.

Remark 1.13. If the adjoints Rα also happened to be left adjoints, i.e. if

Ci Cj
Lα

Rα

were a diagram in PrL (as it will be in our applications), then in fact the functor factors as

I
op

Cat∞

PrL

R

fgt
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and by Proposition 1.12, we could conclude that the limit could be calculated in PrL as well:

colim
−→

i∈I,PrL

Ci
≃−→ lim

←−
i∈Iop ,PrL

Ci
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Chapter 2

Monadicity and the Barr-Beck-Lurie
Theorem

2.1 What is in this chapter?
The Barr-Beck monadicity theorem in 1-categories, and the analogous Barr-Beck-Lurie
monadicity theorem in ∞-categories, is a powerful tautology, and a primary goal of this
thesis is to try to understand this tautology from many perspectives and through many ex-
amples, and to compile tautological but useful observations about it. It endlessly fascinates
the author that so many deep theorems follow its blueprint. He is even tempted to posit the
following:

behind every interesting equivalence of categories is a monadicity statement

This itself could be either a deep or a tautological statement. In either case, hopefully it is
useful as a guide for what to expect to see under the hood.

A large portion of the chapter will be devoted to detailed proofs of the Barr-Beck Theorem
2.7, and to the introduction of an alternative but highly useful partner, Theorem 2.21, which
provides another characterization of monadicity. But what is the big idea of monadicity?
We caught a glimpse of it in the previous chapter, but let us now begin anew and dive into
the details.

2.2 A first look
It all begins with a category C , which we imagine that we would like to understand. We
probably would like to understand it in terms of some “related” category D that we under-
stand better. Concretely, let us suppose that this “relation” comes in the form of an adjoint
pair of functors

C D
R

L
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Our goal now is to use this set-up to construct another category that approximates C ,
and which could be equivalent to C under some assumptions. Along the way, we would also
like to build comparison functors between this candidate and C itself.

First guess

A natural candidate is Im(R) ⊆ D , the essential image of R. The good news is that this
already comes with adjoint comparison functors

C Im(R) D
R

L

Furthermore, R is already essentially surjective.
The bad news, of course, is that R may not be faithful or full. If it already was, then

C was a full (coreflective) subcategory of D all along, and there is no better description we
should look for.

Second guess

We first reckon with the thought there is no good way of “separating out” the images of the
morphisms under R to render it faithful, short of quotienting C or in some way shrinking
it. Since C is what we want to understand, we want to keep it as is, and so we immediately
resign ourselves to taking faithfulness as more of an assumption on R rather than something
that we can try to eke out from what is present.

So we instead focus on trying to correct the lack of fullness. To do this, we need to
somehow “cut down” the number of morphisms between objects in Im(R). Usually we cut
down things by imposing conditions, and conditions often arise as requirements to preserve
structure (see Figure 2.1). So we ask:

Question 2.1. Do objects in Im(R) have any special tautological structure?

In fact, they do: the structure they acquire is that of a “module” over the endofunctor
T := RL ∈ End(D):

C D
R

L

T

Before justifying the term “module,” we first show that T is actually a kind of “algebra”:

Lemma 2.2. Given the adjunction (L,R), the object T := RL is a monad: that is, it is an
associative unital algebra object of the (strict) monoidal category

(End(D), ◦, Id)
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Figure 2.1: The functor R is not full, which is depicted by the presence of a red arrow in
D that lacks a preimage in C (this non-existent preimage is depicted as a red dashed arrow
in C ). Taking modules in D over the monad T , instead of just usual objects of D , helps to
correct this lack of fullness of R, because not all maps of objects in D are maps of T -modules
in D . The new functor Renh is the “fuller” avatar of the original functor R.

Proof. The candidate “unit” map Id → RL is the unit η of the adjunction. The candidate
“product” map µ : TT → T comes from the counit ϵ via the formula

R(LR)L
µ:=RϵL−−−−−−→ R(Id)L

It remains to show that µ is unital and associative. This is a consequence of the two Zorro
compatibility axioms between η and ϵ.

Knowing this, we now formalize the notion of “module” structure that is present in this
set-up:

Definition 2.3. Given a monad T ∈ End(D), a (left) module for it is an object d ∈ D to-
gether with an action morphism Td

act−→ d that satisfies unitality and associativity conditions,
spelled out by the following diagrams commuting:

TTd Td

Td d

T act

µd act

act
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and
d Td

d

Idd

ηd

act

In fact, the data and conditions of being a T -module can be tautologically organized into the
following split simplicial diagram in D ,

[
· · ·TTTd TTd Td

]
d

TT act

Lµd

RϵΩLd

TTηd

TηTd

T act

RϵLd

ηTd

Tηd act

ηTd

ηd

where the face maps are bold, the degeneracy maps are dashed, and the splittings are dotted.
These diagrams will become very important for understanding both proofs and applications.

Let
T Mod(D)

denote the category of (left) T -modules in D , where the morphisms are those morphisms in
D that are intertwined by the action maps. We use the underlined notation d for the object
in T ModD , and d := fgt(d) for its “head” in D .

Not every object d ∈ D has such a structure. But:

Lemma 2.4. Every object in Im(R) naturally acquires the structure of a T -module.

Proof. If d = Rc, then RLRc Rϵc−−→ Rc defines an associative unital action of T . Furthermore,
R sends morphisms in C to morphisms of T -modules in D .

Thus R factors through the category of T -modules, via the functor we call the enhanced
version of R, denoted Renh:

C T Mod(D)

D

Renh

R

fgtT

which just remembers this module structure of objects in the image, by sending c 7→
(Rc, TRc

Rϵc−−→ Rc).
It is time to step back and see if we have improved things. By switching from R to Renh,

we have not corrected any lack of faithfulness of the original R at all; if two morphisms
f, g : c1 → c2 gave Rf = Rg in D , then they would also give the same map on the modules.
It is possible that we have remedied R’s lack of essential surjectivity given the above Lemma,
but in fact we have not; see Example 2.37.
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Statement of the theorem

The only saving grace is that the functor Renh now is likelier than R to be full. Now we
turn what is missing into careful assumptions, and state the main theorem. We first collect
a short definition:

Definition 2.5. A functor C
F−→ D is conservative if it reflects isomorphisms. That is, if

c
f−→ c′ is a morphism in C such that Fc Ff−→ Fc′ is an isomorphism, then f must also be an

isomorphism.

Remark 2.6. If C and D are stable categories that thus admit zero objects 0 and F is an
exact functor, then F is conservative if and only if Fc ≃ 0 implies c ≃ 0. We might describe
this situation by saying “F does not kill objects.”

Finally, we state the main theorem:

Theorem 2.7 (Barr-Beck Monadicity). Suppose (L,R) is an adjunction between 1-categories
C ,D , and T := RL ∈ End(D) its associated monad. If

1. R is conservative, and

2. C admits and R preserves the colimits1 of R-split simplicial diagrams2,

then the comparison functor Renh is an equivalence of categories in the diagram below:

C T Mod(D)

D

Renh

R
fgtT

Lrecon

T

L

freeT

Remark 2.8. The functor Lrecon, a left adjoint to Renh, exists as a consequence of a part of
assumption (2): that C admits the colimits of R-split simplicial diagrams. See the proof in
Lemma 2.18.

Definition 2.9. If Renh is an equivalence, we say that R is monadic.

We pause to summarize the main points so far:
1The colimit of a simplicial diagram is often called its geometric realization.
2In 1-categorical references this is often stated as “C admits and R preserves the coequalizers of R-split

reflexive pairs.” We choose the present language because (1) it is equivalent to this more standard one, and
(2) it happens to be the language necessary to make the analogous ∞-categorical statement.
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1. We are thinking of C as a category we would like to understand, and D as a related
category that we know a lot better.

2. The structure of being a T -module in D is the descent datum that enables the under-
lying object in D to “assemble uniquely into an object of C ” under the reconstruction
functor Lrecon. This is the necessary replacement to the property of being in the essen-
tial image of R that corrects for the possible failure of fullness of R.

3. The content of the theorem, then, is that under some assumptions, fullness of R is
“restored” by passing instead to Renh, because there are fewer morphisms of T -modules
than there are of just objects of D .

Remark 2.10. Before proceeding to some examples, let us take a moment to appreciate just
how general this theorem is. It does not assume that the categories have any extra structure
like a tensor product or an abelian category structure or properties like (co)completeness,
and it does not assume any properties like exactness of the functors. It simply works with
a completely general set-up. On the flipside, let us beware that this means that the functors
Renh and Lrecon have no a priori reason to preserve any extra structure that the categories
might hold and the original functors might preserve.

In the given precise phrasing of the theorem, it is in fact an if and only if statement (see
Proposition 2.22 for a proof of the converse). But the following one-way special case is more
digestible, and still very useful:

Corollary 2.11 (Crude Barr-Beck). Let (L,R) be an adjunction as above. Then R is
monadic if

1. R is conservative, and

2. C admits the colimits of simplicial diagrams and R preserves them.

Here is the most common situation in which this version of Barr-Beck applies:

Example 2.12. Let (L,R) be an adjunction where C admits the colimits of simplicial di-
agrams, and R is conservative and admits a right adjoint. So in fact R preserves all the
colimits that C admits, and so in particular preserves the simplicial colimits. Thus R is
monadic.

In the following examples, the Corollary 2.11 version of Barr-Beck will suffice to show
monadicity. However, in later chapters we will navigate arguments for the more minimal
conditions of Theorem 2.7 in cases where the ability of R to preserve any colimits at all is
very much in question.
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2.3 A first example
Consider the projection π : X → Y from two points to one point, and the abelian categories
of sheaves of k-vector spaces on these spaces for a fixed field k3. We ask the following descent
question:

Question 2.13. How can we monadically describe sheaves on one point in terms of sheaves
on two points?

Figure 2.2: The adjunction for the map π : pt⊔ pt → pt. Note that in this simple case,
π! = π∗ and π! = π∗.

This might sound like a silly question: after all, Sh(pt) = Vectk, so what more is there to
understand? Certainly, the point of monadicity results is generally to present a complicated
category in terms of modules living in a simpler one. But our goal here is simply to practice
unwinding the module structure, and to then confirm with our own eyes that we are really
just staring at a vector space!

To fit our set-up into our monadic framework, we examine the adjunction

Sh(pt) Sh(pt⊔ pt)

π!

π!

,

chosen so that indeed C = Vectk. Our set-up is so simple that actually π! = π∗ and π! = π∗,
but we will still stick to the shriek notation. This builds the diagram

3The results would not change if we took k to be a more general ring, and if we took derived categories
of sheaves of k-modules; for the latter, some phrases in the analysis below would just have to be replaced by
more categorically-savvy reasons.
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Sh(pt) T Mod(Sh(pt⊔ pt))

Sh(pt⊔ pt)

π! enh

π!

fgtT

π̃!

π! freeT

A quick warning about notation: the category Sh(pt⊔ pt) ≃ Sh(pt)⊔ Sh(pt) has general
objects denoted by A ⊔ B, where A is a sheaf on one point and B is a sheaf on the other
point. It also has the usual coproduct ⊕ of sheaves, which behaves like

(A1 ⊔B1)⊕ (A2 ⊔B2) = (A1 ⊕ A2) ⊔ (B1 ⊕B2)

The functor π! in our example is monadic:

Lemma 2.14. Vectk ≃ T Mod(Vectk ⊔Vectk).

Proof. We verify the hypotheses of Theorem 2.7:

1. since π!(V
f−→ W ) = (V ⊔ V f⊔f−−→ W ⊔W ), if f ⊔ f is an isomorphism, f must have

been as well. Thus π! is conservative;

2. since C := Sh(pt) = Vectk is abelian, it admits all finite limits and colimits, in par-
ticular the coequalizers of R-split pairs. And π! is exact, so in particular preserves all
finite colimits.

Therefore, π! is monadic.

Notice that π!, though faithful, is not itself full.
This is good. But it would be nice to know:

(1) what is the monad (T, µT , η)?

(2) what does T Mod(Vectk ⊔Vectk) look like?

(3) what is the reconstruction functor π!recon?

We look at each part separately:
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Part (1): understand the monad. On objects, our functors are π!(V ) = V ⊔ V and
π!(A ⊔B) = A⊕B, and so the composite T := π!π! has the effect

T (A ⊔B) = (A⊕B) ⊔ (A⊕B).

The unit η : Id→ π!π! looks like

A ⊔B ηA⊔B :=1A⊕0⊔0⊕1B−−−−−−−−−−−→ (A⊕B) ⊔ (A⊕B)

while the counit ϵ : π!π! → Id looks like

ϵV : V ⊕ V +−→ V.

We also need to know the product map (µT )A⊔B := π!ϵπ!(A⊔B). Well, we know ϵπ!(A⊔B) is just
addition

(A⊕B)2
+−→ A⊕B,

and so the product map is pointwise addition:

(A⊕B)2 ⊔ (A⊕B)2
+⊔+−−−→ (A⊕B) ⊔ (A⊕B).

Guess 2.15. Before honestly getting to parts (2) and (3), let us make a guess: what should
the equivalence be? Well, the essential image of π! is those objects V ⊔W where V ∼= W ,
so T -modules are in particular such objects. Maybe we can even expect that the structure
of being a T -module is exactly a choice of such an isomorphism. If this is true, then the
reconstruction functor πrecon

! should be the act of “taking half ” of a T -module. Indeed, this
will turn out to be the case!

Part (2): understand T -modules A T -module is an object X together with (1) the
data of an action map TX

α−→ X, subject to the conditions that (2) α has ηX as a section,
and (3) α fits into a commutative square certifying associativity:

TTX TX

TX X

Tα

(µT )X α

TηX

α
ηX

Here, the dashed lines denote sections, and are just included here for flavor.
So, what do the α’s look like? They are maps

T (A ⊔B) = (A⊕B) ⊔ (A⊕B)
α=α+⊔α−−−−−−−→ A ⊔B,

with section ηA⊔B. This section condition shows that α+|A = IdA, α−|B = IdB. Thus, α is
determined by two maps αB : B → A and αA : A→ B, fitting into α as

α := α+ ⊔ α− = (IdA+αB) ⊔ (αA + IdB) : (A⊕B) ⊔ (A⊕B)→ A ⊔B.
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The only conditions they must satisfy come from the associativity square above. By our
informal reasoning above, we are looking for associativity to simply yield the conditions “αA
and αB are inverses.”

Does it? Time to really dive into it. The only remaining mystery in the associativity
diagram is what Tα is in this example, and it is

(A⊕B)2 ⊔ (A⊕B)2
Tα=(α+⊕α−)⊔(α+⊕α−)−−−−−−−−−−−−−−→ (A⊕B) ⊔ (A⊕B),

where we remember that α+ : A⊕B → A, and α− : A⊕B → B. We follow an element

(a1 + b1 + a′1 + b′1) ⊔ (a2 + b2 + a′2 + b′2)

along both composites to A ⊔B. The northeast path gives

α

(
(a1 + αBb1)⊕ (αAa

′
1 + b′1) ⊔ (a2 + αBb2)⊕ (αAa

′
2 + b′2)

)
=
(
a1 + αBb1 + αBαAa

′
1 + αBb

′
1

)
⊔
(
αAa2 + αAαBb2 + αAa

′
2 + b′2

)
while the southwest path gives

α

(
(a1 + a′1)⊕ (b1 + b′1) ⊔ (a2 + a′2)⊕ (b2 + b′2)

)
=(a1 + a′1 + αBb1 + αBb

′
1) ⊔ (αAa2 + αAa

′
2 + b2 + b′2).

Comparing terms, we see that associativity holds if and only if αAαB = IdB and αBαA = IdA.
Thus, a T -module in Sh(kX) is precisely a pair

(A ⊔B, ϕ : A
∼=−→ B).

Part (3): calculate πrecon
! Let us take a T -module X := (A⊔B, ϕ : A

∼=−→ B) and compute
πrecon
! (X). We should be expecting this to just be A.

Filling out the defining diagram gives

LTX LX = (A⊕B)⊕ (A⊕B) A⊕B
Lα

ϵLX

(IdA +ϕ−1)⊕(ϕ+IdB)

+

The coequalizer of the above is the same as the cokernel of the difference of these two maps.
This difference sends

(a1 + b1)⊕ (a2 + b2) 7→ (a1 + ϕ−1b1 − (a1 + a2))⊕ (ϕa2 + b2 − (b1 + b2))

= (ϕ−1b1 − a2)⊕ (ϕa2 − b1)
= c⊕−ϕc
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for c := ϕ−1b1 − a2. Thus the image is the graph Γϕ = Γϕ−1 ⊆ A⊕B, and so

π̃!(A ⊔B, ϕ) := (A⊕B)/Γϕ

which is a very choice-free way of saying “take half of the T -module”—as expected!

2.4 A second example
We used the above adjunction (π!, π

!) to monadically describe Sh(pt) in terms of Sh(pt⊔ pt).
Can we now turn the tables, and monadically describe Sh(pt⊔ pt) in terms of Sh(pt)?

Indeed, we can. For this, we shift to the adjunction (π∗, π∗), with T := π∗π
∗, and build

the diagram

Sh(pt⊔ pt) T Mod(Sh(pt))

Sh(pt)

πenh
∗

π∗

fgtT

π̃∗

π∗ freeT

It is equally easy to verify the hypotheses of Theorem 2.7 to see that π∗ is also monadic:
π∗(A ⊔ B) := A ⊕ B is conservative, and exact. But again, we would like to unwind the
meaning of the module category, and of the reconstruction functor. In this case, the maps
are a bit easier:

Part (1): understand the monad. The endofunctor T is

T (V
f−→ W ) :=

V ⊕2
f 0
0 f


−−−−−→W⊕2


The unit and counit are

Id
η−→ π∗π

∗ : V
∆−→ V ⊕ V the diagonal map,

π∗π∗
ϵ−→ Id : (A⊕B) ⊔ (A⊕B)

πA⊔πB−−−−→ A ⊔B the projections

and the product map is

V ⊕4
µT |V =

1 0 0 0
0 0 0 1


−−−−−−−−−−−−−→ V ⊕ V
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Part (2): understand T -modules. A T -module is a vector space V together with an

action map V ⊕ V α=[α1 α2]−−−−−→ V , where αi : V → V , which is unital and satisfies associativity.
The unitality says that α1 + α2 = Id. The associativity condition

V ⊕4 V ⊕2

V ⊕2 V

α⊕α

µT |V α

α

says that the northeast path

[
α1 α2

] [α1 α2 0 0
0 0 α1 α2

]
=

[
α2
1 α1α2 0 0
0 0 α2α1 α2

2

]
is equal to the southwest path

[
α1 α2

] [1 0 0 0
0 0 0 1

]
=

[
α1 0 0 0
0 0 0 α2

]
and so we see that a T -module is precisely the data (V, Id = α1 + α2) of a vector space
together with a decomposition of the identity into two commuting idempotents.

Part (3): calculate π∗recon. This functor is defined to be the coequalizer of

V ⊕2 ⊔ V ⊕2 V ⊔ V

α⊔α

π1⊔π2

In other words,
π∗recon(V, α1, α2) := Coker(α− π1) ⊔ Coker(α− π2)

Since
(α− π1)(v, w) = α1v + α2w − v︸︷︷︸

α1v+α2v

= α2(w − v),

we conclude that Coker(α− π1) = V/ Im(α2) = ker(α1), and so

π∗recon(V, α1, α2) = ker(α1) ⊔ ker(α2).

In summary, we have learned that monadicity for this adjunction is the statement that
the category of pairs of vector spaces is equivalent to the category of vector spaces with the
structure of a decomposition into a direct sum of two subspaces.

We will return to looking at more examples soon. But now that we have some prac-
tice unwinding the structure of modules over monads, we turn to justifying the monadicity
theorem.
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2.5 Proof of Barr-Beck monadicity
The standard monadic phrasing of Barr-Beck is Theorem 2.7. In this section, we also phrase
a second monadicity theorem (which we have not seen stated or proven in the literature),
and prove both versions concretely in the 1-categorical context; we hope that an∞-yogi can
give us the correct incantations to say that would lift the given proofs to that context as
well. Both versions, in their ∞-analogs, will be useful for the chapters that follow.

Editorial 2.16. Before beginning, I wish to say, earnestly but likely to the great frustration
of a reader who is about to see pages of diagrams, that this is all meant to be understandable,
and actually very simple.

Barr-Beck is a beautifully well-organized tautology, and this can be seen from multiple
angles, all of which will be useful. The details that follow are provided for concreteness, but
the spirit and strategy—I continue to hope—can be felt intuitively. Any progress I made on
a descent problem came as a result of getting a better understanding of the proof of Barr-
Beck. If that anecdote is any guide, then I think understanding its proof would be worth it
for anyone looking to use the theorem statement.

Start with the adjunction

C DΩ

R

L

T

decorated with the associated monad and comonad. The preliminary observation to the
theorem, made above, is that R lifts to a functor Renh that lands in T -modules:

C T ModD

D

Renh

R fgt

Lrecon

We wish to study the question of when Renh is an equivalence, i.e. when R is monadic.

Strategy 2.17. Here is a blueprint for examining when Renh is an equivalence:

1. See when a left adjoint Lrecon exists.

2. Once it does, C admits a second comonad, Ωenh := Lrecon ◦ Renh, in addition to Ω :=
L ◦ R, and T ModD admits a second monad, T enh := Renh ◦ Lrecon, in addition to
free ◦ fgt.
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3. Apply Lemma 1.10 to conclude that the adjoint functors (Lrecon, Renh) mediate an equiv-
alence on full subcategories

CLrecon◦Renh (
T ModD

)Renh◦Lrecon

C T ModD

D

∼

Lrecon◦Renh

Renh

R
fgt

Renh◦Lrecon

Lrecon

4. Identify these subcategories more concretely, and look for conditions under which they
coincide with C and T ModD, respectively.

Here is the workhorse result:

Lemma 2.18. A pursuit of the above strategy leads to the following results:

1. Lrecon exists, and is a left adjoint to Renh, if C admits the colimits of R-split simplicial
diagrams;

2. the subcategory CLrecon◦Renh is the full subcategory on objects of C that are the colimits
of their Ω-bar diagrams:

colim
−→

[
· · · ΩΩc Ωc

]
c≃

3. the subcategory
(
T ModD

)Renh◦Lrecon

is the full subcategory on modules d ∈ T ModD
whose L-image yields R-split simplicial diagrams whose colimit R preserves.

Proof. For part (1), let d ∈ T ModD be a module, with fgt(d) =: d, which determines the
following diagram in D4 (dashed arrows will denote degeneracies):[

· · ·TTd Td d

]
T act

µd

act

ηTd

Tηd

ηd

The purpose of the brackets is to delineate a chunk of diagram that will migrate through ap-
plications of multiple functors. Applying L and adding in counits ϵΩ•Ld builds the simplicial

4The solid arrows represent morphisms in T ModD, where the structures on the modules T •d, for • =
1, 2, . . . , are the free module structures. The dotted arrows are morphisms only in D.
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diagram in C [
· · ·LTTd︸ ︷︷ ︸

ΩΩLd

LTd︸︷︷︸
ΩLd

Ld

]LT act

Lµd

ϵΩLd

LTηd

LηTd

L act

ϵLd

Lηd

The colimit of this diagram, were it to exist, should and would be the definition of Lrecon(d).
This diagram is well-structured in the sense that it is an example of an R-split simplicial
diagram, because applying R gives exactly the bold part of the starting diagram that was
determined by d:

[
· · ·TTTd TTd Td

]
d

TT act

Lµd

RϵΩLd

TTηd

TηTd

T act

RϵLd

ηTd

Tηd act

ηTd

ηd

where we have dotted the new arrows that are available to the R-image. Thus, as long
as C admits the colimits of R-split simplicial diagrams, Lrecon is well-defined. Once it is
well-defined, it automatically becomes the left adjoint to Renh because the

1. counit of the adjunction (Lrecon, Renh) is the natural map out of a colimit, induced by
the counit ϵc of the adjunction (L,R) on the last term of the simplicial diagram:[

· · ·Ω2c Ωc

]
c

Lrecon ◦Renh(c) colim
−→
∆

op

Ω•c

Ωϵc

ϵΩc

LηRc ϵc

can

2. the unit of the adjunction (Lrecon, Renh) is gotten by first applying R to the colimit
diagram [

· · ·LTd Ld

]
Lrecon(d)

[
· · ·TTd Td

]
R ◦ Lrecon(d)

d

L act

ϵLd

canLηd

T act

RϵLd

act

R canTηd

ηd

R can ◦ηd
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and then taking the map induced by the splitting to R ◦ Lrecon(d). One should check
that this upgrades to a morphism of T -modules

d
R can ◦ηd−−−−−→ Renh ◦ Lrecon(d),

yielding the unit, and that the Zorro compatibility axioms also hold.

For part (2), we simply note by a diagram above that the counit Lrecon ◦ Renh(c) → c
being an equivalence is precisely the statement that the Ω-bar resolution of c is a
colimit diagram.

For part (3), observe that d belongs to this subcategory if and only if morphism

Td
R can−−−→ R ◦ Lrecon(d)

is an isomorphism, which happens to be true if and only if R preserves the colimit of
the diagram [

· · ·LTTd LTd Ld

]LT act

Lµd

ϵΩLd

LTηd

LηTd

L act

ϵLd

Lηd

which is the statement of the claim.

This gives the immediate corollary:

Corollary 2.19. Given an adjunction (L,R) such that Lrecon exists,

1. Renh is an embedding if and only if each object c ∈ C is the colimit of its Ω-bar diagram;

2. Lrecon is an embedding if R preserves the colimits of simplicial diagrams that it splits.

Two statements of Barr-Beck

As per the outlined strategy, there are actually two statements of Barr-Beck. We reproduce
the basic diagram

C T Mod(D)

D

Ω:=LR
Renh

R
fgtT

Lrecon

T :=RL

L

freeT
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and start with the most common statement, which already appeared as Theorem 2.7:

Theorem 2.20 (Barr-Beck, version 1). Suppose that

1. R is conservative; and

2. C admits and R preserves the colimits of R-split simplicial diagrams.

Then R is monadic.

Proof. The assumption that C admits the colimits of R-split simplicial diagrams ensures that
Lrecon exists. From then on, the argument proceeds by assembling pieces from the discussion
above:

1. Renh is conservative: given that fgt is conservative and R = fgt ◦Renh, this is true if
and only if R is conservative, which is assumed;

2. Lrecon is an embedding: this holds by assumption, via Corollary 2.19.

We conclude by Lemma 1.11. For another proof, see Lecture 3 of [2].

Here is a less common statement, which will also be useful to us:

Theorem 2.21 (Barr-Beck, version 2). Suppose that

1. C admits the colimits of R-split simplicial diagrams (and therefore Lrecon exists);

2. Lrecon is conservative; and

3. every Ω-bar diagram in C is a colimit diagram.

Then R is monadic.

Proof. As before, the assumption that C admits the colimits of R-split simplicial diagrams
is necessary to ensure that Lrecon exists. But now again, the argument is simple:

1. Lrecon is conservative: this is simply assumed;

2. Renh is an embedding: by Corollary 2.19, this is equivalent to the assumption that
every Ω-bar diagram in C is a colimit diagram.

We again conclude by Lemma 1.11.
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Barr-Beck is an if and only if statement

As mentioned earlier, Barr-Beck is an if and only if statement:

Proposition 2.22. Theorem 2.7 is an if and only if statement.

Proof. Suppose that (Lrecon, Renh) are inverse equivalences. We need to show three things:
R is conservative. This is the easiest. Since R is the composite R = fgt ◦Renh of conser-

vative functors, R itself is conservative.
C admits the colimits of R-split simplicial diagrams. We already know that C admits

some such colimits:

1. For Lrecon to be defined, C must already admit those colimits coming from L-images
of diagrams defining T -module structures;

2. Since Renh is an embedding, Corollary 2.19 says that Ω-bars on c ∈ C are all colimit
diagrams. These diagrams are R-split.

We wish to use this to show that in fact any R-split simplicial diagram admits a colimit. So
take ∆

op c•−→ C a simplicial diagram[
· · · c1 c0

]
which is R-split, and look at its split R-image[

· · · Rc1 Rc0

]
dθ

Our strategy will be to show that (1) the object d ∈ D inherits the structure of a T -module
d, and (2) the colimit of c• is Lrecon(d). We now spell this out:

1. The object d ∈ D inherits a T -module structure. Iterate T on the diagram[
· · · Rc1 Rc0

]
dθ
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and use the fact that d is a colimit to build the (bi?)augmented bisimplicial diagram[
. . . ...

...
]

...

[
· · · RΩ2c1 RΩ2c0

]
T 2d

[
· · · RΩc1 RΩc0

]
Td

[
· · · Rc1 Rc0

]
d

T 2θ

Tθ

can

θ

where the rows are (split) colimit diagrams by the R-split hypothesis, and the columns
are (split) colimit diagrams by the hypothesis that Ω-bars are colimit diagrams. It re-
mains to check that the right-most column admits {ηT ⋆+1d} as a splitting. But these are
inherited through the functoriality of the colimits T ⋆+1d from the splittings {ηRΩ⋆+1c•}
on the columns. Thus d admits a canonical T -module structure d := (Td

can−−→ d) which
completes the Renh image[

· · · Rc1 Rc0

]
dθ

in T ModD to a colimit diagram.
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2. The colimit of c• is Lrecon(d). Consider the bisimplicial diagram in C[
. . . ...

...
]

...

[
· · · Ω2c1 Ω2c0

]
LTd

[
· · · Ωc1 Ωc0

]
Ld

[
· · · c1 c0

]
Lrecon(d)

L can

θ

All rows but the bottom row are (split) colimit diagrams, and all columns are colimit
diagrams (the right-most one by the definition of Lrecon). The morphism θ making the
bottom-right square commute is canonical, being defined by the existence of splittings
of the columns.
We now argue that the bottom row is a colimit diagram by considering any given
c ∈ C , together with the corresponding constant simplicial diagram ∆

op ccst−−→C that c
determines, and calculating:

hom∆
op
•
(c•, ccst) = hom∆

op
•
(colim
−→
∆

op
⋆

Ω⋆+1c•, ccst) = lim
←−
∆

op
⋆

hom∆
op
•
(Ω⋆+1c•, ccst)

= lim
←−
∆

op
⋆

homC (L
⋆+1d, ccst) = homC (colim−→

∆
op
⋆

L⋆+1d, c) = homC (L
recon(d), c)

Thus, Lrecon(d) is the colimit of the diagram c•.

This concludes the proof that C admits the colimits of R-split simplicial diagrams.
R preserves geometric realizations of R-split simplicial diagrams. Finally, we must show

that R preserves the colimit diagram[
· · · c1 c0

]
Lrecon(d)θ

This is now immediate given the fact that R ◦ Lrecon(d) = d, because the R-image of this is
therefore the assumed (split) colimit diagram[

· · · Rc1 Rc0

]
R ◦ Lrecon(d)︸ ︷︷ ︸

≃d

θ
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We have therefore seen that the assumption that Renh is an equivalence implies the assump-
tions of Barr-Beck. This concludes our proof of Proposition 2.22.

As a corollary, we also get:

Corollary 2.23. Theorem 2.21 is also an if and only if statement.

Proof. If R is monadic, then certainly (2) and (3) are true. And (1) follows by Proposition
2.22.

Example 2.24. We briefly pause to use this information to make a simple deduction about
a tautological example: T ModD

fgt−→ D , yielding the diagram

T ModD T ModD

D

Ω:=free ◦ fgt
fgtenh

fgt fgt

freerecon

∼

T≃fgt ◦ free

It is tautologically monadic, since fgtenh = Id is an equivalence. The implication of Corollary
2.23 is the fact that the Ω-bars on d ∈ D ,

· · · Td d
T act

µd

actTηd

i.e. the “resolutions” by free modules T •d, are actually resolutions, i.e. colimit diagrams.
Note that these bars are fgt-split:

· · · Td d
T act

µd

act

ηTd

Tηd

ηd

Similarly, inside the full subcategory T Modfree D ↪→ T ModD of free T -modules, Ω-cobars
are also colimit diagrams.

Statement of comonadicity theorem

In our applications, we will actually be most interested in the comonadic version of Barr-
Beck. As before, there will be two statements.

Suppose now that the adjunction is

C D
L

R

giving rise to the diagram
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C Ω coMod(D)

D

T :=RL

Lenh

L

fgt

Rrecon

Ω:=LR

R

cofree

Theorem 2.25 (Barr-Beck, comonadic version 1). If

1. L is conservative, and

2. C admits and L preserves the limits5 of L-split cosimplicial diagrams,

then L is comonadic, i.e. Lenh is an equivalence.

Theorem 2.26 (Barr-Beck, comonadic version 2). If

1. C admits the limits of L-split cosimplicial diagrams,

2. Rrecon is conservative, and

3. the T -cobar on each object c ∈ C ,

c

[
Tc TTc · · ·

]
is a limit diagram,

then L is comonadic, i.e. Lenh is an equivalence.

Finally, as in the monadic version:

Theorem 2.27. Both statements are if and only if statements.

The proofs are entirely mirror to those of their monadic analogs.
5The limit of a cosimplicial diagram is often called its totalization.
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The comonadicity 1-800 hotline

Here we conclude our abstract discussion of comonadicity. We first recapitulate the landscape
of the comonadaicity question with the tautological diagram below, which assumes that C
admits enough limits for Rrecon to exist:

RD Ω coModcofree D

C T enh

(
Ω coModD

)Ωenh

C Ω coModD

D

T enh:=Rrecon◦Lenh

L

Lenh

fgt

Rrecon
Ωenh:=Lenh◦Rrecon

Here, RD is the full subcategory on the objects in the image of R.
Next, we summarize what we have learned:

1. To prove that an adjunction is a pair of inverse equivalences, it is the same as showing
that one functor is an embedding and the other is conservative.

2. Comonadicity has two characterizations, each of which approaches the question of
when Lenh is an equivalence from the perspective of when either Lenh or Rrecon is an
embedding.

3. From the perspective of the Rrecon-centric Barr-Beck version 1, the main kinds of
L-split cosimplicial diagrams to consider in proving comonadicity are those coming
from the structure diagrams of objects in Ω coModD . From the perspective of the
Lenh-centric version 2, the main kinds of L-split cosimplicial diagrams to consider in
proving comonadicity are the T -cobars on objects in C .

Finally, we offer an FAQ for when things just don’t seem to work.

Question 2.28. Hello, I found a functor L, but it is not conservative! What do I do?

You can try restricting L to a subcategory on which L is conservative, and work from
there. Let us work in PrL,stk of k-linear presentable stable categories and left adjoint exact
functors, where every category admits a zero object and the reconstruction functor Rrecon

always exists. There are two canonical choices for such a subcategory, and we only discuss
one:

Ker(L)⊥ := {c : hom(Ker(L), c) = 0}
We now prove the following:
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Lemma 2.29. In PrL,stk ,

1. L|Ker(L)⊥ is conservative;

2. Ker(L) and Ker(L)⊥ are in PrL,st; and

3. Rrecon lands inside Ker(L)⊥.

Proof. To see (1), take any c ∈ Ker(L) ∩Ker(L)⊥ and look at its identity endomorphism

c︸︷︷︸
∈Ker(L)⊥

Idc−→ c︸︷︷︸
∈Ker(L)

which is therefore Idc ≃ 0, whence c ≃ 0. To see (2), note that both categories are the fiber
products of diagrams in PrL:

Ker(L) C Ker(L)⊥ C

pt D pt kMod

L

∏
c∈Ker(L)

homC (c−)

0 0

and conclude by Proposition 1.8. Finally, to see (3), note first that R lands inside Ker(L)⊥

because if c ∈ Ker(L) then

homC (c, Rd) = homC ( Lc︸︷︷︸
≃0

, d) ≃ 0.

Since Ker(L)⊥ admits limits, it follows that Rrecon lands inside Ker(L)⊥ as well.

Thus we can draw the following diagram

Ker(L)⊥ Ω coModD

D

C Ω coModD

D

Lenh|
Ker(L)⊥

L|
Ker(L)⊥

fgt

Rrecon

L

Lenh

fgt

Rrecon

and instead study comonadicity of the top triangle, where L|Ker(L)⊥ is conservative. This is
the perspective taken in arguing for comonadicity for local systems in Theorem 4.37.
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Question 2.30. What if L is not a right adjoint, and thus does not preserve all limits?

It can still preserve enough limits to be comonadic. However, showing such a result is
usually subtle, and requires tools. We survey the two tools that, in due time, we will use:

1. Our main tool, detailed in the final chapter, is semiorthogonality of kernels of localiza-
tions, which sometimes appears under the guises of orthogonality and adjointability,
a.k.a. base change.

2. Another tool comes from taking to heart Barr-Beck version 2, and looking for conditions
that ensure that every T -cobar is a limit diagram in C . This in fact generalizes the
above tool. See the last chapter for a discussion and an application.

Question 2.31. Help! My C does not even admit the necessary limits for Rrecon to exist!

You might be out of luck here. But if you work in Pr, you will not run into this problem!

Question 2.32. Hi, I don’t care about C , or a subcategory of it! I just want monadicity!
Now!

You really are a convert. Koszul duality results are of this type; see Section 2.8 of this
chapter for a discussion.

2.6 Some more examples
In this section we present a few more first examples of (co)monadicity in the 1-categorical
context, as well as some non-examples. Many more detailed examples, though in the world of
∞-categories, will follow in the subsequent chapters. The point presently is to illustrate the
wide jurisdiction of the monadicity theorem, which as mentioned in Remark 2.10 does not
require the categories to have any structures or properties, or to admit any general (co)limits
apart from very precise ones.

The free-forget adjunction for groups

Consider the forgetful functor fgt : Grp → Set from the category of groups to the category
of sets. It has a left adjoint called free : Set → Grp which builds the free group free(X) on
the letters in the set X:

homGrp(free(X), G) ∼= homSet(X, fgt(G))

Is fgt : Grp→ Set monadic? That is, is the functor

Grp
fgtenh−−−→ fgt ◦ free Mod(Set)

an equivalence? It turns out that it is. We verify the hypotheses of Barr-Beck:
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1. The functor fgt is certainly conservative: a morphism of groups G f−→ H is an isomor-
phism iff it is a bijection as a map of sets fgt(G)

fgt(f)−−−→ fgt(H).

2. While Grp is closed under equalizers—and in fact under all finite limits—it is not closed
under all coequalizers. For example, if i : G ↪→ H is a subgroup, then the colimit of
the pair

G H
i

1H

“ought to be” G/H, but this is not a group unless H is normal.
Nonetheless, Grp admits reflexive coequalizers: limits of diagrams of the form

G H
a

b
i

where a ◦ i = b ◦ i = IdH , i.e. pairs where a and b admit a common section. This
occurs because the colimit, if it were to exist, would be H/Q where Q is the subgroup
generated by all elements {a(g)b(g−1) : g ∈ G}. And indeed, the presence of the
section i makes Q a normal subgroup of H: for any h = ai(h) = bi(h) ∈ H,

h
(
a(g)b(g−1)

)
h−1 = (ha(g)h−1)(hb(g−1)h−1)

= a
(
i(h)gi(h−1)

)
b
(
i(h)g−1i(h−1)

)
= a
(
i(h)gi(h−1)

)
b
(
(i(h)gi(h−1))−1

)
which is therefore still in Q. Thus the colimit of this diagram exists in Grp, and is
H/Q.
The final point is that fgt preserves these reflexive coequalizers, and so in particular
preserves the coequalizers of those reflexive forks that it splits.

Therefore, fgt is monadic. This means something unsurprising: that a group is the same
data as a pair of a set X and a map

fgt ◦ free(X)︸ ︷︷ ︸
words in X

a−→ X

that satisfies unitality and associativity properties. The operation a is an instruction for
how to produce an element of X out of any word in X, which associativity dictates must be
independent of order. Since words are finite, the data of the a is equivalent to the data of
its restriction to two-letter words X ×X a|X×X−−−−→ X, which is the group multiplication.

In topology

We again examine a forgetful functor, this time from the one from the category Top of
topological spaces and continuous maps to Set:

fgt : Top→ Set
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This functor has both a left adjoint fgtL := (−)discrete and a right adjoint fgtR := (−)coarse,
called taking the discrete topology on the set and the coarse topology on the set, respectively:

Top Set
fgt

(−)discrete

(−)coarse

The category Top is bicomplete, so it admits all the necessary colimits for Barr-Beck. And
since fgt admits both adjoints, in in fact preserves all limits and colimits, so in particular
preserves the colimits of reflexive pairs that it splits. Things look good!

However, fgt fails to be (co)monadic because it is not conservative: if a continuous
map X

f−→ Y of topological spaces is such that fgt(f) is a bijection of sets, it is still not
necessarily a homeomorphism—that is, f−1 is not necessarily continuous. Another way to
see the lack of monadicity by looking directly at the monad T = fgt((−)discrete): it is the
identity endofunctor, with the identity natural transformation as both the multiplication
TT ⇒ T and the unit Id⇒ T . Thus T ModSet = Set, which certainly do not account of all
of Top. Similarly, Ω coMod Set = Set as well.

One common trick for restoring conservativity, addressed in Question 2.28, is to restrict
the domain category. Recall the following result from point-set topology:

Theorem 2.33. A continuous bijection from a compact space to a Hausdorff space has a
continuous inverse.

So restricting from Top to the full subcategory CHaus of compact Hausdorff spaces does
restore conservativity of fgt on this subcategory. Furthermore, the functor fgt still has a left
adjoint, U , coming from the diagram

CHaus Top Set
ι fgt

β discrete

U

Thus, the monadicity question can be posed for (U, fgt): is fgtenh an equivalence?

CHaus T ModSet

Setfgt

fgtenh

Urecon

fgtT

T :=fgt ◦U

The issue now is whether CHaus admits and fgt preserves the necessary colimits. This turns
out to be the case:
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Theorem 2.34 ([16]). The forgetful functor CHaus
fgt−→ Set is monadic.

Proof. See the Bachelor project [20] for a proof.

Faithfully flat descent

Let SpecB
f−→ SpecA be a morphism of affine schemes, giving rise to the adjunction of

abelian categories and right-exact functors

QCoh(SpecA) QCoh(SpecB)

f∗

f∗

where f ∗M :=M ⊗A B. We wish to know when f ∗ is comonadic.

Proposition 2.35. If f is faithfully flat, then f ∗ is comonadic.

Proof. We know that f ∗ is comonadic if and only if

1. f ∗ is conservative and

2. QCoh(SpecA) admits and f ∗ preserves the limits of those reflexive pairs that it splits.

Since these categories are abelian, f ∗ is conservative if and only if all M for which f ∗M = 0
must in fact be M = 0. This is exactly the definition of B being a faithful module over A.

Since these categories are abelian, they admit all finite limits and colimits. So it remains
to check that f ∗ preserves the limits of f ∗-split reflexive pairs. But f is a flat morphism,
meaning that f ∗ is left-exact, and thus it preserves all equalizers, so in particular it preserves
the necessary limits for comonadicity.

Remark 2.36. We pause to meditate on the role of conservativity, and what it does not
(point 1) and does (point 2) mean:

1. To be (co)monadic, F does not need to “separate” objects in the sense of sending non-
isomorphic objects to non-isomorphic objects. Indeed, all of the above examples fail
this very stringent condition, but are nonetheless (co)monadic! The point is that, while
separation might not happen at the level of F -images in D , it still can happen at the
level of F enh-images in T ModD or Ω coModD , because these categories have “fewer”
morphisms than D .

2. On the other hand, conservativity of F—the milder relative of the above condition,
ensuring that F can “separate” morphisms—is absolutely crucial. If a non-isomorphism
in C is rendered an isomorphism by F , then it will also be rendered an isomorphism
by F enh, and therefore F enh has no hope of being faithful.
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Non-examples of monadicity

Here we address a sobering reality: a right adjoint functor can fail to be monadic (and dually,
a left adjoint can fail to be comonadic). Since Barr-Beck is a characterization of monadicity,
monadicity can fail for three reasons:

1. C does not admit enough colimits for Lrecon to even exist;

2. R is not conservative;

3. R does not preserve enough colimits.

For the curious, here we record a precise example of each:

Point of failure 1: C does not admit enough colimits.

Example 2.37. Let us look at the tautological example where C = T Modfree D :

T Modfree D T ModD

D

Ω=free ◦ fgt

fgt

ι:=fgtenh

fgt

free

T=fgt ◦ free

Here, the following is true:

1. T ModD
fgt−→ D is tautologically monadic;

2. T Modfree D
fgt−→ D is conservative, but generally not monadic. This is because not every

T -module is isomorphic, as a T -module, to a free one; in other words, fgtenh |
T Modfree D

is an embedding, but it is not essentially surjective. Another way of thinking about this
is through Example 2.24 and Theorem 2.21: while all Ω-bar diagrams in T Modfree D
are colimit diagrams, it is generally not true that the category admits enough colimits
for the functor Lrecon to even exist.

3. If all ambient colimits were added back to enlarge T Modfree D into ⟨T Modfree D⟩colimits,
then

⟨T Modfree D⟩colimits = T ModD

and the extended functor fgt would tautologically preserve the necessary colimits for
monadicity.

Point of failure 2: R is not conservative The forget functor Top fgt−→ Set, as discussed
above, is not conservative. But note that the other hypotheses are satisfied: Top admits all
colimits, and fgt preserves all of them since fgt is a left adjoint.
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Point of failure 3: R does not preserve the colimits of R-split simplicial diagrams
See Example 6.15 for a comonadic example.

2.7 In Cat∞ and PrL: comonadicity vs. monadicity
The analog of Barr-Beck in the setting of∞-categories is the Barr-Beck-Lurie theorem, which
reads exactly the same as the 1-categorical statement, but all categories are ∞-categories;
no further hypotheses are levied. So we do not rewrite them, but we do observe that, just
like Barr-Beck for 1-categories, Barr-Beck-Lurie has completely dual versions for monadicity
and comonadicity because left and right adjoint functors are treated equally.

However, instead of vanilla Cat∞, our categorical setting for the future will be PrL, and
its variants PrL,st and PrL,stω . This new context features the following important changes:

1. it only permits one to consider functors which are left adjoints. So all functors in PrL

preserve all colimits, and in particular all simplicial colimits;

2. it assures that all categories considered, being presentable, are in fact bicomplete. So
the reconstruction functors always exist.

These two facts have the following consequence:

Theorem 2.38 (Barr-Beck-Lurie, in PrL). The following are characterizations of monadicity
and comonadicity in PrL:

1. an adjunction (L,R) in PrL is monadic simply if and only if R is conservative;

2. an adjunction (L,R) in PrL is comonadic if and only if L is conservative and L pre-
serves the limits of L-split cosimplicial diagrams.

In summary: PrL, showing comonadicity statements requires more effort than showing
monadicity statements. For a discussion of why the (co)module categories are presentable,
see Lemma 2.53.

2.8 The language of thick envelopes, and Koszul duality
Here we discuss an important construction for our future investigations into descent—that
of the thick envelope of an object—and show how it arises in the context of looking for a
monadicity result.
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Morita theory as monadicity

Let C be a presentable k-linear (hence stable) ∞-category, and X ∈ C an object. We can
try to use X to describe C monadically via the functor

C
homC (X,−)−−−−−−−→ kMod,

which, since it definitionally preserves limits, admits a left adjoint that we denote X ⊗k (−),
with associated reconstruction functor (X ⊗k (−))recon := X ⊗C (−):

C ModEndC (X)

kMod
homC (X−)

homC (X−)enh

fgt

X⊗k(−)

We warn that this diagram is in Prst but not necessarily in PrL,st, because homC (X,−)
need not preserve colimits. But if it did, its monadicity would be in better shape. Here is
the fundamental result:

Theorem 2.39 (Morita theorem). If X is a compact generator, then homC (X,−) is monadic,
rendering an equivalence

C ≃ ModEndC (X)

Proof. By definition, X is a generator if homC (X,−) is conservative. Furthermore, if X
is compact, then homC (X,−) preserve colimits. Thus the functor is monadic by the crude
version of Barr-Beck-Lurie.

The thick envelope

Sometimes, we are not so lucky, and X is neither compact nor a generator. But if we
are willing to abandon the goal of monadically describing C , then we may still be able to
monadically describe something. Intuitively, we would like to engineer a category that is in
some sense “generated” by X, such that the “restriction” of the functor homC (X,−) to it
would have to be both conservative and colimit-preserving.

We build this new category in two steps:

1. take the thick envelope of X, ThickC (X);

2. then take the ind-completion, IndThickC (X).

We now elaborate on the first construction:

Definition 2.40. Let C be a stable ∞-category.
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1. A full subcategory C ′ ⊆ C is thick if it contains 0 and is closed under finite limits and
retracts.

2. Let X ∈ C an object. Then the thick envelope of X,

ThickC (X) ⊂ C ,

is the smallest thick subcategory containing X.

Remark 2.41. The following are equivalent for a subcategory of a stable category:

1. closure under fibers;

2. closure under cofibers;

3. closure under finite limits;

4. closure under finite limits and finite colimits.

To our eyes, here are the important properties of the thick envelope:

Lemma 2.42. Let X ∈ C be an object in a stable ∞-category, and consider ThickC (X).
Then:

1. ThickC (X) is again stable;

2. X ∈ ThickC (X) is a generator for this subcategory.

Proof. Part (1) follows from an equivalent characterization of ThickC (X): it is the smallest
full subcategory of C containing 0 and X that is closed under finite limits and colimits.
For part (2), suppose homC (X, Y ) ≃ 0 for some Y ∈ C , and consider the full subcategory
CY ⊆ ThickC (X) consisting of all those Z ∈ ThickC (X) for which homC (Z, Y ) ≃ 0. If we
can show that Y ∈ CY , then homC (Y, Y ) ≃ 0 would force Y ≃ 0. We do this by showing
that actually, CY = ThickC (X). Well, we know 0, X ∈ CY , and furthermore, CY is closed
under finite limits and colimits. So indeed CY = ThickC (X).

Here is a simple example of this construction:

Example 2.43. For C = AMod for an E1 algebra A, we recognize Perf(A) as ThickA(A),
and therefore

AMod = IndPerf(A) = IndThickA(A)

As a consequence of Lemma 2.42, taking the ind-completion gives

IndThickC (X),

which is a compactly generated category, with compact generator X. The converse is also
true: if X ∈ C is a compact generator, then C ≃ IndThickC (X). We may think of
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ThickC (X) as a full subcategory of both IndThickC (X) and C , but where the latter is
concocted to force X to be a compact generator:

ThickC (X)

IndThickC (X) C

D
R

can

homC (X−)

Here, R := Ind homThickC (X)(X,−) is obtained by first restricting homC (X,−) to ThickC (X) ⊆
C , and then ind-completing. The comparison functor can of evaluating the formal colimit
as a colimit in C is colimit-preserving, but generally is neither an embedding nor essentially
surjective. However, we flag a result for future use:

Lemma 2.44. If X is compact in C , then can is an embedding

ThickC (X) ⊥(X⊥)

IndThickC (X) Ccan

can

that factors through the stable, presentable full subcategory ⊥(X⊥). In fact, it is an equiva-
lence.

Proof. See the proof of Proposition 4.31.

In any case, armed with the concept of the ind-thick envelope, we make the following
revision to Theorem 2.39, which one may interpret as a prototype Koszul duality theorem:

Theorem 2.45. Let C be a presentable k-linear category, and X ∈ C any object. Then the
functor

IndThickC (X)
R−→ kMod

is monadic, rendering an equivalence

IndThickC (X) ≃ ModEndC (X)

Proof. The functor R is rigged to be conservative and bicontinuous, and therefore it admits
a colimit-preserving left adjoint L, which is defined by the condition L(k) = X. Since both
R and L preserve colimits, and in particular tensors, then for any V ∈ kMod we may rewrite

R ◦ L(V ) = R ◦ L(V ⊗k k) ≃ (R ◦ L(k))︸ ︷︷ ︸
EndC (X)

⊗kV

which allows us to identify the monad T := R ◦ L with the algebra EndC (X)
op .
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Example 2.46. Applying this to the example above of C = AMod in the case where A a
classical ring and X = P is a finitely-generated projective module recovers the basic result of
Morita theory:

AMod ≃ ModEndA(P )

Koszul duality is monadicity for IndThick categories

One might wonder whether, like Perf(A), Coh(A) is ever a thick envelope of anything. It
turns out that it is, for particular kinds of algebras. We learned the contents of this subsection
from Lecture 6 of [2].

Definition 2.47. Let k be a field. A dg k-algebra is small if

1. A is connected, i.e. π0(A) = k;

2. A is connective, i.e. πi<0A = 0; and

3. A is of finite type, i.e.
∑

i∈Z dimk πi(A) <∞.

Note that if A is small, then it is automatically and canonically augmented, since the
quotient A→ π0(A) = k is a module map.

Remark 2.48. We may think of this definition as codifying in algebraic geometry the notion
of a “small” connected topological space, with only one classical point 0 ∈ Spec(A). Our
monadic descent question for C = QCoh(A) can be formulated as the hope that sheaves F
living on Spec(A) can be faithfully presented by the data of their fiber F |0 together with an
action of the‘based loop space Ω0 Spec(A) := EndA(k).

As mentioned, in the case that A is small, we can identify ThickA(k):

Lemma 2.49. If A is small, then

ThickA(k) ≃ Coh(A).

Proof. For such A, we leave it as proven that

Coh(A) ≃ {M :
∞∑
n=0

dimk πn(M) <∞} =: Perf/k(A).

Certainly, Coh(A) is thick and contains k, so ThickA(k) ⊆ Coh(A). Now let M ∈ Coh(A),
M ̸= 0. There is some smallest n so that πn(M) ̸= 0, and so M fits into a cofiber sequence

M → πn(M)→M ′

where π≤n(M
′) = 0. But for every nonzero x ∈ πn(M), we can split off a copy of the

augmentation module k via the cofiber sequence k[n] x−→ πn(M)→M ′′, where dimk πn(M
′′) <
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dimk πn(M) < ∞, and πm̸=nM
′′ = 0. So in finitely many steps, we split πn(M) completely

off from M , and now we proceed with the same argument on M ′. This induction is finite,
showing that M ∈ ThickA(k). Note of course that A ∈ ThickA(k) as well.

Here is the consequent Koszul duality result, which just stitches together the previous
few results:

Proposition 2.50. [Lurie, Beilinson-Ginzburg-Soergel] For A a small E1-algebra over k,
the Koszul duality functor D := homA(k,−) induces an equivalence of stable presentable
∞-categories

Ind D′ : IndCoh(A) ≃−→ ModEndA(k)

Proof. This follows immediately from Theorem 2.45 and Lemma 2.49. The functor D′ is the
functor R from the notation in the Theorem.

Example 2.51. Take V a finite-dimensional vector space over k = C, and put Λ :=
Sym•(V [1]) and S := Sym•(V ∗[−2]). Then A := Λ is E1 and small. The vanilla func-
tor D is not colimit-preserving, because k ∈ ΛMod is not compact. But if we restrict to
Coh(Λ) ≃ Perf/k(Λ), i.e. complexes with cohomology in bounded degree and each cohomol-
ogy group finite-dimensional, then k ∈ IndCoh(Λ) becomes compact, and therefore

IndCoh(Λ)
≃−→ ModS

Letting n = dimC V , we may recognize

Λ ∼= C−•(Tn;C), S ∼= C•(BTn;C)

for Tn = (S1)n the real n-torus.
For n = 1, this reads

IndCoh k[λ] ≃ Modk⟨u⟩,

where |λ| = −1 and |u| = 2.

2.9 Appendix: categories of T -modules as homotopy
limits

Here we offer an alternative and non-essential but illuminating origin story for the category
of T -modules, together with its full subcategory of free T -modules. We begin with the
1-categorical story, and then afterwards move into our ∞-categorical context of interest.
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The story in Cat1

Consider again an adjunction of 1-categories

C DΩ

R

L

T

with the monad and comonad drawn. The following proposition is the content of this section:

Proposition 2.52. The category of T -modules, a.k.a. the Eilenberg-Moore category, is the
category of homotopy T -invariants:

T ModD lim
←−

oplax

(
D

⟲T )
≃

The category of free T -modules, a.k.a. the Kliesli category, is the category of homotopy
T -coinvariants:

colim
−→

oplax

(
D

⟲T )
T Modfree D≃

Strictly speaking, it is probably wrong to call these (co)invariants because T is not
invertible and the (co)limits are oplax, but we do it poetically.

Proof. By definition, the limit of the diagram is the data of a triple (L , F, η) of a category
L , a functor L

F−→ D , and a natural transformation TF
η
=⇒ F subject to the conditions

that

1. the “associativity” square
TTF TF

TF F

Tη

µF η

η

commutes; and

2. the “unit” triangle
F TF

F

uF

Id η

commutes
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The limit also satisfies the following universality property: for all other such triples (L ′, F ′, η′),
there exists a unique functor Φ : L ′ → L and natural isomorphism h : Φ ◦ F ⇒ F ′, which
summarized in the diagram

(L ′, η′) D

(L , η)

Φ

F ′

T

Fh

We can probe the objects and morphisms in L by taking L ′ to be the categories pt and
(pt→ pt), respectively:

1. the triples one can build on L ′ = pt are an object d ∈ D together with a morphism
Td

a−→ d subject to the above two conditions, which is precisely a unital associative
T -module;

2. the triples one can build on L ′ = (pt→ pt) are an arrow d1
f−→ d2 in D together with

morphisms we will call ηdi : Tdi → di, which constitute a natural transformation iff
the following square commutes:

Td1 Td2

d1 d2

Tf

ηd1 ηd2

f

This is precisely the condition that f is a morphism of T -modules (d1, ηd1)
f−→ (d2, ηd2).

This shows that the homotopy oplax limit is indeed the triple

(T ModD , T ModD
fgt−→ D , µ)

We now turn to studying the homotopy oplax colimit of (T ↷ D). Dually to the above,
it is the data of a triple (C , G, δ) of a category C , functor G : D → C , and natural
transformation δ : GT ⇒ G which satisfy the conditions that

1. the “associativity” square
GTT GT

GT G

δT

Gµ δ

δ

commutes; and
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2. the “unit” triangle
G GT

G

Gu

Id
δ

commutes

subject to the universality property that for all other such triples (C ′, G′, δ′), there is a
unique functor Ψ : C → C ′ and natural isomorphism k : Ψ ◦G⇒ G′, which is summarized
in the diagram

D

⟲T
(C , δ)

(C ′, δ′)

G

G′

Ψ

k

Let us simply check that this universal property holds for the valid triple

(T Modfree D ,D
free−−→ T Modfree D , µ)

So consider another triple (C ′, G′, δ′); we wish to build a functor Ψ and a natural isomorphism
k such that the following diagram commutes:

D

⟲T
(T Modfree D , µ)

(C ′, δ′)

free

G′

Ψ

k

To see what Ψ should be, take some d ∈ D ; its image in C ′ is G′d, while its image in
T Modfree D is Td, or rather the module it determines:[

· · · TTd Td

]
µTd

Tµd
µd

Apply G′ to the entire diagram to fill it out with extra morphisms (dotted) and backwards
maps (dashed) [

· · · G′TTd G′Td

]
G′d

G′µTd

G′Tµd
δ′TTd

G′µd

δ′Td

G′uTTd

δ′d

G′uTd G′ud
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which in fact constitute a split simplicial diagram. Thus its colimit exists, regardless of
whether C ′ admits colimits, and is G′d. In this way, the formula

Ψ(Td) := G′d

specifies a well-defined functor. In this case, Ψ ◦ free = G on the nose, whence k here is the
identity natural isomorphism. Therefore, free T -modules is the homotopy oplax colimit of
the diagram (T ↷ D).

What changes in Cat∞ and PrL?

The main outcome of the above perspective in Cat1 on module categories as homotopy
(co)limits is that we can use this description as a definition in Cat∞:

T ModD := lim
←−
Cat∞

(
D

⟲T )
, T Modfree D := colim

−→
Cat∞

(
D

⟲T )

Since we will be interested in working in PrL instead of Cat∞, we can ask whether these
categories are presentable. In fact, the move from Cat∞ to PrL treats these categories
differently:

Lemma 2.53. If (L,R) is an adjunction in PrL, then

1. the category of modules T ModD is presentable;

2. it appears as both a limit and colimit in PrL:

colim
−→
PrL

(
D

⟲T )
≃ lim
←−
PrL

(
D

⟲T )
≃ T ModD

3. on the other hand, the category of free modules T Modfree D is generally not presentable.
In fact, T ModD is often its smallest “presentable envelope.”

Proof. Part (1) follows by Remark 1.13, since

T ModD := lim
←−
Cat∞

(
D

⟲T )
≃ lim
←−
PrL

(
D

⟲T )
,
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using implicitly the closure of PrL under limits. Furthermore, part (2) follows by Lemma
1.12:

lim
←−
Cat∞

(
D

⟲T )
≃ colim

−→
PrL

(
D

⟲T )
For part (3), we assert that free modules are typically not closed under colimits, e.g. retracts,
and so cannot form a presentable category. For the second part, let E be a presentable
category sandwiched between T Modfree D and T ModD :

T Modfree D E T ModD

D
fgt

fgt

ι

fgt

free

Since E contains T Modfree D , the left adjoint to E
fgt−→ D is still the functor free. Since E

admits all colimits, the reconstruction functor T ModD
freerecon−−−−→ E exists, and is a left adjoint

to the embedding ι. Therefore, in the event that free is a conservative functor (which is often
the case), freerecon would also be conservative, rendering E ≃ T ModD by Lemma 1.11.
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Chapter 3

Monadicity and Beck-Chevalley

This chapter is an account of the abstract machinery that establishes one domain of usefulness
of monadicity results: as concrete realizations of homotopy limits of cosimplicial diagrams
of categories. We begin with a common instance of this, and then proceed to record the
general results.

3.1 Fundamental construction
Consider a simplicial diagram X• in some category of “spaces”—for example, this could be
Top, or Schk:

· · · X1 X0

Take now a theory of sheaves ShS (−)∗ which is adapted to this category of spaces in the
sense that it affords adjunctions (f ∗, f∗) for each map X f−→ Y of spaces, and apply it to this
diagram to obtain a cosimplicial diagram of categories:

lim←−
∆

ShS (X•)

ShS (X0) ShS (X1) · · ·

ev0

ev1

The (homotopy) limit lim←−
∆

ShS (X•) of this diagram always exists in Cat∞ and is an object

of fundamental importance. We will interpret it in two contexts soon. For now, we assume
its importance, and ask:

Question 3.1. Does lim←−
∆

ShS (X•) admit a concrete description?
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One notion of “concrete description” is a comonadic one. And it is a sensible one here:

1. if the functor ev0 admitted a right adjoint evR0 , we would have the basic groundwork
to investigate whether or not ev0 is comonadic;

2. ev0 seems the most sensible functor to subject to this investigation because it deter-
mines all the other evi. Furthermore, the shape of the diagram suggests that its “tip”
ShS (X0) is its most important category.

In fact, a comonadic description is available, and is afforded in two layers of concreteness
by the following special case of Theorem 3.6:

Theorem 3.2. In the above set-up,

1. if ev0 admits a right adjoint evR0 , then the limit can be described comonadically:

lim←−
∆

ShS (X•) ev0 ◦ evR0 coMod ShS (X0)

ShS (X0)

evenh0

ev0

fgt

ev0 ◦ evR0

2. if furthermore the simplicial diagram ShS (X•) satisfies the Beck-Chevalley condition
(see Theorem 3.6), then the comonad has a more concrete description:

ev0 ◦ evR0 ≃ s∗ ◦ t∗

where s, t are the names of the maps

X1 X0
s
t

Remark 3.3. One may call the consequence ev0 ◦ evR0 ≃ s∗ ◦ t∗ of the Beck-Chevalley con-
dition a “base change” result, because it says that the square built using the dashed arrows
below commutes:

lim←−
∆

ShS (X•) ShS (X0)

ShS (X0) ShS (X1)

ev0

ev0
t∗evR0

s∗

s∗

So, a comonadic description exists quite generally.
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Two sources of simplicial diagrams

As mentioned above, we now present two important kinds of simplicial diagrams of spaces,
and give names to the resulting limits lim←−

∆

ShS (X•). The project of the ensuing chapters

will be to explore many examples of each, in a variety of space-sheaf theories (see the next
section).

The first source of diagrams is a group action within the chosen category of spaces: a
group G = (G, 1G, µ) acting on a space X via a map G × X

act−→ X. This produces the
simplicial diagram

· · · G×G×X G×X X
µ×IdX

IdG× act

act

π2

denoted by G• ×X.

Definition 3.4. The G-equivariant category of S -sheaves on X, denoted ShS (X)G, is de-
fined to be the associated limit:

ShS (X)G := lim←−
∆

ShS (G• ×X)

The goal for this situation is to calculate the category.
The second source of diagrams is a morphism X

f−→ Y in the chosen category of spaces:
iterating fiber products gives the augmented simplicial diagram

· · · X ×Y X ×Y X X ×Y X X Y
π12

π23

π1

π2

f

denoted by X•+1/Y . This builds a comparison map

ShS (Y ) lim←−
∆

ShS (X•+1/Y )
f∗

The goal for this situation is to determine under which conditions f ∗ is an equivalence, and
pair this with comonadicity to calculate the category ShS (Y ).

3.2 Space-sheaf theories
We pause to take stock of the space-sheaf theories we will examine. Let C denote a category
of “spaces”, and S a theory of sheaves on it that carries an adjunction (f ∗, f∗) for every
morphism f : X → Y in C . Here are our main examples:

1. C = the category of spaces with weak equivalences inverted, and S := Lock(−)
the theory of local systems of k-modules (see the next chapter for a more in-depth
discussion);
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2. C = Top the category of topological spaces and continuous maps, and S := Shk(−)
the theory of sheaves of k-modules;

3. C = Schk the category of k-schemes and qcqs morphisms between them, and S :=
QCoh(−) the theory of quasicoherent sheaves of O-modules;

4. C = SchC as above, and S := DMod(−) the theory of D-modules.

Depending on the context, these sheaf theories take values in AbCat, stRex
k , Cat∞, CatL∞, or

PrL,stk .

3.3 All the important theorems
Having asserted that there are important families of cosimplicial diagrams of categories whose
limits would be good to calculate, we now formulate in a very general setting the results
that will be crucial in calculating them monadically.

Here is a basic set-up: suppose we have a cosimplicial category ∆
C •
−→ Cat∞. We would

like to be able to describe its limit, lim←−
∆

C •. Well, we certainly have a canonical functor

lim←−
∆

C •
fgt−→ C 0.

The idea, as mentioned in the beginning of this chapter, is that, given the cofiltered shape of
∆ and the fact that C 0 is at the “tip” of the entire diagram, an object of lim←−

∆

C • “ought” to

just be an object of C 0, plus some extra data coming from the deeper parts of the diagram.
In other words, one roughly expects for this canonical functor fgt to be monadic for some
monad T :

fgtenh : lim←−
∆

C •
≃−→ T Mod(C 0)

The results in this direction are stratified as follows:

1. as long as fgt admits a left adjoint fgtL, it is in fact automatically monadic, for the
monad T := fgt ◦ fgtL;

2. under a few more, we can even more explicitly describe T ;

3. there is a simple criterion for when a functor C −1 → lim←−
∆

C •, i.e. a coaugmentation of

C •, is in fact an equivalence.

Here are these results, in that order:
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Proposition 3.5 ([13] Proposition 4.7.5.1). Suppose J is any small∞-category that contains
an object 0 ∈ J with the property that for each j ∈ J , it can be reached by a morphism 0→ j.

Let now C • : J → Cat∞ be a J-diagram of categories, with 0 7→ C 0, and put lim
←−
J

(C •)
fgt−→

C 0 the canonical map. If fgt admits a left adjoint fgtL, then fgt is monadic:

fgtenh : lim
←−
J

C •
≃−→ fgt ◦ fgtL Mod(C 0)

This is psychologically comforting. However, since lim
←−
J

C • is abstractly-defined, the monad

T := fgt ◦ fgtL is also quite abstract. It would be great if it were possible to rewrite it in
terms of functors within the original diagram C •.

Here is a result about when one can do this, in the case of the favorite example of
J = N(∆) the nerve of the category of cosimplicial sets:

Theorem 3.6 ([13], Theorem 4.7.5.2). Let C • : N(∆) → Cat∞ be a cosimplicial category
with the (left) Beck-Chevalley condition: the functors Cm d0−→ Cm+1 admit left adjoints (d0)L
such that, for every α : [m]→ [n] in ∆, the induced commuting solid square

Cm Cm+1

C n C n+1

d0

α

(d0)L

0⋆α

d0

(d0)L

commutes as a dashed arrow square as well (we say the solid square is left adjointable). Put
C := lim←−

∆

C •, and C
fgt−→ C 0 the canonical map. Then:

1. fgt admits a left adjoint fgtL;

2. the “coaugmentation” square is left adjointable:

C C 0

C 0 C 1

fgt

fgt

fgtL

d1

d0

(d0)L

3. fgt is monadic, where by part (2) above the monad is

T := fgt ◦ fgtL = (d0)L ◦ d1
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Remark 3.7. To remember the diagram above in part (2), think of fgt as the only morphism
C

d0−→ C 0; thus we expect [0] ⋆ fgt = d1, which indeed is the case.

In other words: if the N(∆)-diagram satisfies the left Beck-Chevalley condition, then
the diagram N(∆+) coaugmented by the totalization also satisfies the left Beck-Chevalley
condition for coaugmented cosimplicial categories C −1 → C •, where now m,n can also be
−1 as well as {0, 1, 2, . . . }.

Lastly, there is a theorem about how to identify a coaugmentation of a N(∆)-diagram
as the limit, which will be especially important later:

Theorem 3.8 ([13], Corollary 4.7.5.3). Let C • : N(∆+) → Cat∞ be a coaugmented cosim-
plicial category satisfying the (coaugmentd form of the) left Beck-Chevalley condition. Put
C −1

Θ−→ lim←−
∆

(C •) the canonical map, and C −1
R−→ C 0 the augmentation.

In this set-up: if R is monadic (and thus Renh is an equivalence), then Θ is also an
equivalence. In other words, we simultaneously have the following equivalences:

RLMod(C 0)
≃←− C −1

≃−→ lim←−
∆

(C •) = T Mod(C 0) = (d0)L◦d1 Mod(C 0)

To summarize the above theory briefly:

1. A monadic description of the abstract limit of a cosimplicial diagram of categories C •,
in terms of the first category C 0, is almost always available.

2. In the presence of some base change (for the diagram C •), this monadic describing the
abstract limit can be more explicitly identified. Furthermore, the limit participates in
a further piece of base change with the terms C 0,C 1 of the diagram.

3. A concrete coaugmentation C −1 for the diagram C • can be identified with the abstract
limit under a little more base change (involving C −1 and C 0,C 1), plus a comonadicity
statement for the coaugmentation functor C −1 → C 0.

3.4 How will we use all this?
We conclude the main part of this chapter by returning to our two main examples of cosimpli-
cial limits of categories and recording what we would need to show in order for the theorems
above to apply.
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Equivariant categories Given a group action G ↷ X in C , recall that the goal is to
calculate the limit

ShS (X)G := lim←−
∆

ShS (G• ×X)

ShS (X) ShS (G×X) · · ·

ev0

ev1

act∗

π∗
2

We know:

1. by Proposition 3.5, if ev0 admits a right adjoint evR0 , then

ShS (X)G
evenh0−−−→ ev0 ◦ evR0 coMod ShS (X)

is an equivalence;

2. by Theorem 3.6, if furthermore a base change result holds, then we an rewrite the
comonad on ShS (X) as

ev0 ◦ evR0 ≃ π2∗ ◦ act∗

Remark 3.9. In editing this document, I decided to omit the chapter on comonadicity and
equivariant categories of sheaves. Still, I think it is useful to leave this sketch of the comonadic
perspective on describing equivariant categories of sheaves.

Sheaves on covers Given a morphism X
f−→ Y in C , recall the goal is to understand when

(i.e. under which conditions on f) the canonical map can below is an equivalence:

lim←−
∆

ShS (X•+1/Y )

ShS (Y ) ShS (X) ShS (X ×Y X) · · ·

ev0

ev1

f∗

can

π∗
1

π∗
2

We know:

1. by Proposition 3.5, if ev0 admits a right adjoint evR0 , then

lim←−
∆

ShS (X•+1/Y )
evenh0−−−→ ev0 ◦ evR0 coMod ShS (X)

is an equivalence;
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2. by Theorem 3.6, if furthermore a base change result for the diagram ShS (X•+1/Y )
holds, then we an rewrite this comonad on ShS (X) as

ev0 ◦ evR0 ≃ π2∗ ◦ π∗1;

3. by Theorem 3.8, if furthermore (1) f ∗ is comonadic and (2) the following additinal
base change result holds

ShS (Y ) ShS (X)

ShS (X) ShS (X ×Y X)

f∗

f∗ π∗
1

f∗

π∗
2

π2∗

then the comonad can be rewritten again, this time in terms of f as

ev0 ◦ evR0 ≃ π2∗ ◦ π∗1 ≃ f ∗f∗,

and furthermore
ShS (Y )

can−−→ f∗f∗ coMod ShS (X)

is an equivalence. That is, we can identify the desired category ShS (Y ) with a category
of comodules.

Sheaves with singular support Here we adumbrate, in more detail than in the intro-
duction, how we intend to employ the comonadicity and base change perspective to describe
categories of sheaves with singular support.

Given a manifold X, a singular support Lagrangian Λ ⊆ T ∗X, and a closed cover {Λi ⊆
Λ}i∈I of Λ, the goal is to understand when (i.e. under which conditions on the cover Λi) the
canonical map below is an equivalence:

lim←−
∆

ShΛ•+1(X)

ShΛ(X)
∏

i∈I ShΛi
(X)

∏
i,j∈I ShΛi∩Λj

(X) · · ·

ev0

ev1

L

can

π∗
1

π∗
2

We know:
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1. by Proposition 3.5, if ev0 admits a right adjoint evR0 , then

lim←−
∆

ShΛ•+1(X)
evenh0−−−→ ev0 ◦ evR0 coMod

∏
i∈I

ShΛi
(X)

is an equivalence;

2. by Theorem 3.6, if furthermore a base change result holds for the diagram ShΛ•+1(X),
then we an rewrite this comonad on

∏
i∈I ShΛi

(X) as

ev0 ◦ evR0 ≃ π2∗ ◦ π∗1;

3. by Theorem 3.8, if furthermore (1) L is comonadic and (2) the following additional
base change result holds

ShΛ(X)
∏

i∈I ShΛi
(X)

∏
i∈I ShΛi

(X)
∏

i,j∈I ShΛi∩Λj
(X)

L

L π∗
1

R

π∗
2

π2∗

then the comonad can be rewritten again, this time in terms of L as

ev0 ◦ evR0 ≃ π2∗ ◦ π∗1 ≃ LR,

and furthermore
ShΛ(X)

can−−→ LR coMod
∏
i∈I

ShΛi
(X)

is an equivalence. That is, we can identify the desired category ShΛ(X) with a category
of comodules.

3.5 Appendix: bootstrapping comonadicity results
In this section, we consider the question of when comonadicity for a functor of interest can
be concluded from comonadicity of related functors. We begin with an immediate result:

Observation 3.10. Conservative functors satisfy the two-out-of-three property: given a com-
mutative triangle

C B

D
L2L1

L1

L2

then if any two functors are conservative, so is the third.
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In contrast to conservative functors, comonadic functors only satisfy the following two-
out-of-three property:

Lemma 3.11. If L2L1 and L2 are comonadic, then L1 is comonadic.

Proof. Certainly L1 is conservative. Suppose now that ∆
F •
−→ C is such that L1F

• is split.
Then L2(L1F

•) is also split, whence by comonadicity of L2L1, we know

L2L1lim←−
∆

F • ≃ lim←−
∆

L2L1F
•

Furthermore, again since L2(L1F
•) is split, by comonadicity of L2 we know that

lim←−
∆

L2L1F
• ≃ L2lim←−

∆

L1F
•,

which we chain together to conclude that

L2L1lim←−
∆

F • ≃ L2lim←−
∆

L1F
•

Since L2 is conservative, we conclude that in fact

L1lim←−
∆

F • ≃ lim←−
∆

L1F
•

as desired.

It is a bit of a crime that the other two do not hold. What goes wrong?
Well, the composition L2L1 is always conservative. The issue is with L1 being able to

preserve certain limits. To see it, consider an L2L1-split cosimplicial object ∆ F−→ C ; we wish
to show that the canonical morphism

L2L1lim←−
∆

F •
can−−→ lim←−

∆

L2L1F
•

is an isomorphism. We can begin by noting that L1F
• is L2-split, and therefore, since L2 is

comonadic, that
L2L1lim←−

∆

F •
can−−→ lim←−

∆

L2L1F
• ≃ L2lim←−

∆

L1F
•

But the argument halts here, since there is no reason for L1 to commute past the limit;
indeed, F • is not L1-split, only L2L1-split.

In spite of the above bad luck, there are certain situations in which the composite of two
comonadic functors is comonadic. We continue working in PrL, where all categories admit
all limits; thus the only issue is whether L1 preserves enough limits. This can be achieved
by strengthening either L1 or L2:
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Lemma 3.12. If L1 and L2 are comonadic, and L1 preserves limit cosimplicial diagrams,
then L2L1 is comonadic.

Proof. The assumption allows L1 to commute past the limit.

Lemma 3.13. Let L be a functor. If S is another functor so that SL = Id, then L is
comonadic. In fact, it reflects absolute limit diagrams.

Proof. The assumption immediately implies that L is conservative. Furthermore, if ∆ F •
−→ C

is such that LF • is split, then S(LF •) = F • is also split, whence it is an absolute limit
diagram and so Llim←−

∆

F • ≃ lim←−
∆

LF •.

As an example application, we now show that, once we know that Zariski descent for
QCoh(−) holds, then so does descent under bundle projections P → X.

Lemma 3.14. The functor p∗ is comonadic for any bundle projection P
p−→ X.

Proof. If P ∼= X × F and p is the projection, then it admits a section s, whence s∗p∗ = Id,
and we conclude by the above Lemma. Otherwise, there is a Zariski open cover U f−→ X over
which P ×U X ∼= U × F admits a section sU :

P ×U X P

U X

f ′

p′ p

f

sU
s

Since Zariski covers are stable under base change, (f ′)∗ is comonadic, and therefore by
Lemma 3.11 we will be done if we show that (f ′)∗p∗ is comonadic. By commutativity, this is
the composite (p′)∗f ∗. We now show that this functor preserves the necessary limits. So let
∆

F •
−→ QCoh(X) be a diagram such that (p′)∗f ∗F • is split. Use the section to deduce that

s∗U(p
′)∗f ∗F • ≃ f ∗F • is split. Since f ∗ is comonadic, f ∗lim←−

∆

F • ≃ lim←−
∆

f ∗F •, and thus

(p′)∗f ∗lim←−
∆

F • ≃ (p′)∗lim←−
∆

f ∗F • ≃ lim←−
∆

(p′)∗f ∗F •

where the second isomorphism is due to f ∗F • being split.



65

Chapter 4

Examples of Descent I: Local Systems

4.1 What is in this chapter?
A pointed topological space (X, x) participates in the following silly but important diagram:

pt
x−→ X

p−→ pt

This diagram produces a list of important adjunctions on categories of local systems in PrL,

Loc(pt) Loc(X) Loc(pt)T :=x∗◦xh!

xh!

xh∗

x∗

ph!

ph∗

p∗ Ω:=ph! ◦p
∗

where we recall that our convention is to use dashed arrows to denote right adjoints that
are not necessarily colimit-preserving. We can use these adjunctions to study the category
Loc(X) (co)monadically in terms of the easy category Loc(pt) = kMod. Since kMod is
atomically simple, all of the complexity will lie in the (co)monads.

In particular, we might hope that these adjunctions are monadic and comonadic already,
respectively. After seeing how to identify the algebra x∗xh! (k) ≃ C−•(ΩxX; k) and the coal-
gebra ph! p∗(k) ≃ C−•(X; k), we may therefore formulate this hope as the statement that the
following is a diagram of equivalences:

Loc(X)

C−•(ΩxX) Mod C−•(X) coMod

≃ ≃

This hope generally is only half correct:

1. The good news is that the left-hand side is an equivalence with almost no assumptions:
indeed, as long as X is path-connected, the operation x∗ of taking the fiber at any
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point x ∈ X will detect whether a local system is 0 or not. This assumption of path-
connectivity in fact suffices for monadicity of xh! .

2. The bad news is that conservativity of ph! is harder to arrange, and generally comes
at the price of having to restrict to subcategories of just those local systems that can
“see” the constant local system p∗k ≃ kX . For instance, on X = S1, the rank 1 local
system L−1 with monodromy −1 is a nonzero object that is killed by the functor
ph! = C−•(−; k) of taking homology. But there, restricting to unipotent local systems
fixes the bug, and gives a sub-equivalence on the right-hand side. We will see some
other fixes as well, but they all feature restricting the kinds of local systems, restricting
the kinds of spaces, or both.

This chapter is a pedagogical side quest, and the only goal is to practice proving descent
statements, and in particular ones that involve carefully restricting the domains of functors
to restore certain hypotheses required by Barr-Beck-Lurie.

4.2 Definition of ∞-local systems
Classically, a local system on a space X is a locally constant sheaf over some base ring k.
If X is path-connected and semi-locally simply-connected, then the choice of any basepoint
x ∈ X gives an equivalence of categories

Lock(X) ≃ Repk(π1(X, x))

In this case, there is an equivalence of categories Bπ1(X, x) ≃ Π1X, the fundamental
groupoid of X, and so we can reformulate this equivalence as

Lock(X) Fun(Π1(X), kMod♡),

L

{
x 7→Mx,

(γ : x⇝ y) 7→ (Γ :Mx

∼=−→My)

≃

This erases the dependence on any basepoint, and thus the above equivalence holds for X
not necessarily path-connected.

We now turn this observation into a definition in the setting of ∞-categories. First we
make the following replacements:

1. Π1(X) ⇝ Π∞(X) the fundamental ∞-groupoid of X, or its simplicial set analog
Sing(X);

2. kMod♡ ⇝ kMod the stable presentable ∞-category of k-modules;
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3. Fun⇝ Fun∞ the ∞-category of ∞-functors.

We can now define:

Definition 4.1. For a homotopy type X, the category of ∞-local systems of k-modules is

Loc
k Mod(X) := Fun∞(Π∞X, kMod)

Informally, such a functor assigns a cochain complex of k-modules to each point of X, a
roof of quasi-isomorphisms of complexes to each path in X (the “1-monodromy”), a homotopy
of roofs of quasi-isomorphisms to each 1-cell between paths (the “2-monodromy”), a homotopy
of homotopies to each 2-cell between 1-cells between paths (the “3-monodromy”), and so on.

The goal of this chapter is to use monadicity to describe these categories, or pieces of
them.

4.3 Base change for local systems
We first collect an important tool in the theory of local systems: a Beck-Chevalley, or base
change, type of result.

To do this, we momentarily switch to a more general set-up, replacing kMod by any fixed
∞-category C , and considering the functor

Fun∞(−,C ) : Cat∞ → Cat∞ .

Of course, we can evaluate it on spaces X via the ∞-groupoid construction:

LocC (X) := Fun∞(Π∞X,C ) ∈ Cat∞ .

We abbreviate the latter simply by Loc(X) if C is clear from context. Knowing nothing else,
one of these categories is always easily computable: Loc(pt) = C .

Let us examine the functoriality of these categories. Suppose that A f−→ B is a morphism
in Cat∞:

1. Most basically, f determines a pullback functor f ∗ : Fun(B,C ) → Fun(A,C ), just by
by precomposition with f .

2. If C furthermore admits all colimits, then we can also define an adjoint functor fh! , the
(homotopical) shriek pushforward under f , as being given by the left Kan extension
along f :

pt
−→×
B
A A C

pt B

fgt L

f

b fh! L :=fL
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where by definition pt
−→×
B
A =: Ab/f is the comma category, and

fL := colim
−→

(
pt
−→×
B
A

fgt−→ A
L−→ C

)

Remark 4.2. The superscript h in the notation fh! , which stands for “homotopical,” is
meant to caution us that this functor from homotopy theory is very different from the proper
pushforward f! in topology. To see the difference, we can compare them in the context of a
concrete continuous map f : X → Y of topological spaces and the choice C = kMod. In this
case, the following diagram usually does not commute:

Lock(X) Shk(X)

Lock(Y ) Shk(Y )

fh! f!

Indeed, f! need not even produce local systems out of local systems! But fh! must. We will
see examples in a moment.

In sum, for C a category with colimits over the necessary comma categories, we have an
adjunction in Cat∞

Fun(B,C ) Fun(A,C )f∗
fh!

To calculate these categories Fun(A,C ), the following base change result is crucial, and is
the central result of this section:

Lemma 4.3 (Base change for local systems). Let C be a category with (small) colimits, and
consider a fiber product square in Cat∞

C A

D B

□

g

f f

g

with the further property that

1. A and B are ∞-groupoids, and

2. C and D are small ∞-categories.

Then the following square with dashed arrows commutes:
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Fun(C,C ) Fun(A,C )

Fun(D,C ) Fun(B,C )

gh!

g∗

gh!f
∗ f∗

g∗

i.e. gh! f
∗ ≃ f ∗gh! .

Proof. This result appears in the proof of Proposition 4.4.3 of [8]; we learned about it from
Peter Haine, and the current proof follows the proof of Proposition 1.5 in the note [7]. Let
L ∈ Fun(D,C ). For a ∈ A, we simply wish to relate the following two objects of C :

gh! f
∗
L (a) := colim

−→

(
Ca/g

fgt−→ C
f−→ D

L−→ C

)
,

f ∗gh! L (a) := colim
−→

(
Df(a)/g

fgt−→ D
L−→ C

)
Here, the colimits are indexed by comma categories that are rendered small by property (2),
hence they exist in C by its assumed small co-completeness. To make sense of them, it helps
to look at the diagram

Ca/g pt

C A

D B

C

a

□

g

f f

g

L

The consequences of assumption (1) now allow us to re-interpret it. Since A is a groupoid,
that means that the top square is actually a fiber product, and so the overcategory Ca/g is
pt×hAC. Since B is a groupoid, that means that the overcategory Df(a)/g is pt×hBD. Lastly,
the 2-3 property of fiber product squares identifies the fiber products Ca/g ≃ Df(a)/g, which
identifies the colimits above.

Consequences and examples of base change

Since spaces are by definition objects of the subcategory Grpd∞ ⊆ Cat∞, the following
version of the above base change result holds very generally:

Corollary 4.4. For any category C with colimits, C -valued local systems on spaces satisfy
base change for fh! and f ∗.
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Remark 4.5. A parallel result holds for C a category with limits, and homotopical pushfor-
ward fh∗ , defined as a right Kan extension.

In fact, we now return to picking our favorite instance of C : the category kMod for k a
classical ring. In addition to ensuring that both base change results for Loc(−) hold for any
map X f−→ Y of spaces, it also implies the following nice properties of Loc(X):

Lemma 4.6. Let C := kMod for k a classical ring, or any other bicomplete stable presentable
category. Then the following are true for categories Loc(X) := Fun(X, kMod):

1. the category Loc(X) is stable and presentable, hence in particular bicomplete;

2. every map of spaces X f−→ Y yields adjoints (fh! , f ∗, fh∗ ) in Cat∞, and therefore adjoints
(fh! , f

∗) in PrL:

Loc(X) Loc(Y )
fh!

fh∗

f∗

Proof. For part (1), sinceX is a small simplicial set and kMod is presentable, [14] Proposition
5.5.3.6 implies that Fun(X, kMod) is also presentable. For part (2), as discussed, the adjoints
exist because kMod is bicomplete and hence admit the construction of Kan extensions. Since
fh! and f ∗ are left adjoints, it means that they exist as morphisms in PrL.

Remark 4.7. We record some immediate but useful consequence of the above Lemma, for
X

f−→ Y a map of spaces:

1. pullbacks f ∗ always preserve all limits and colimits on Loc(−), and

2. fh! is proper, i.e. preserves compact objects. Thus xh! k is always compact for any point
pt

x−→ X. Since hom(xh! k,L ) = hom(k, x∗L ) = Lx is the fiber at x of any local system
L , the object xh! k corepresents the stalk functor x∗.

We give a name to the objects xh! k:

Definition 4.8. Let pt x−→ X be a point in a path-connected space X.

1. Call xh! k the couniversal local system, and

2. call xh∗k the universal local system.

As mentioned at the beginning of the chapter, the most important examples of maps for
our discussions are going to be

pt
x−→ X

p−→ pt

which just specify a based space (X, x). The resulting homotopy fiber product square
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ΩxX pt

pt X

□
x

x

will be the centerpiece of our monadic description of local systems on X. Before getting
there, let us calculate these functors on some local systems that are always available.

Example 4.9. Let X be any space. The local system corresponding to the constant functor
k : X → kMod will be denoted kX . It factors through the map X

p−→ pt, and therefore
kX ≃ p∗kpt = p∗k.

Example 4.10. Taking kX and applying ph∗ and ph! to it gives the cohomology and homology
of X, respectively:

ph! kX ≃ C−•(X; k),

ph∗kX ≃ C•(X; k)

To see the first, recall that
C−•(−; k) : Space→ kMod

can be characterized as the unique colimit-preserving functor that is normalized by the con-
dition that pt 7→ k; since every space is a colimit of a diagram of points, this defines the
functor on Space. Another functor Space→ kMod is

X 7→ ph! kX := colim
−→

(
X

kX−→ kMod
)

which by definition is colimit-preserving, and also maps X := pt to k. Thus the two coincide,
hence the isomorphism. A dual argument gives the isomorphism for cochains.

Example 4.11. Let (X, x) be a based space, and consider xh! k ∈ Loc(X). We can understand
its fiber at a point y ∈ X by using Lemma 4.3 applied to the homotopy fiber square

Pathx→y pt

pt X

□

p

p y

x

to get

y∗xh! k = ph! p
∗k

≃ C−•(Pathx→y; k)

≃

{
C−•(ΩxX; k) x ≃ y,

0 otherwise
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Similarly, we can find the fiber of xh∗k by

y∗(xh∗k) = hompt(k, y
∗xh∗h)

≃ hompt(k, p
h
∗p
∗k)

≃ homPathx→y(p
∗k, p∗k)

≃ C•(Pathx→y; k)

≃

{
C•(ΩxX; k) x ≃ y,

0 otherwise

The object kX receives and gives canonical maps

xh! k → kX → xh∗k

coming from the counit for (xh! , x
∗) and the unit for (x∗, xh∗), respectively.

Recall that the couniversal local system xh! k corepresents the functor x∗, and has trivial
homology ph! xh! k ≃ k. Since H0(ΩxX; k) ∼= k[π1(X, x)], we might think of its classical piece

H 0(xh! k)
∼= c∗kX̃ ,

where X̃ c−→ X is the universal cover, as being the local system that is freely generated by
all possible monodromies, and subject only to the condition that loop composition results
in monodromy composition.

Example 4.12. To be more concrete, take X = S1. Since ΩxS
1 ≃ Z are the winding

numbers, the fibers of the couniversal and universal local systems are therefore chains and
cochains on Z:

x∗xh! k ≃ k⊕Z = k[t, t−1],

x∗xh∗k ≃ k×Z = k[[t, t−1]]

Example 4.13. More generally, for X = Sn for n ≥ 2, the fibers are

x∗xh! kS2 ≃ k⟨u⟩, |u| = −(n− 1)

x∗xh∗kS2 ≃ k⟨s⟩, |s| = (n− 1)

Aside: another category of local systems?

We make a short comment about the definition of Loc(X) we chose to work with.
Given that kMod ≃ IndPerf(k), in defining local systems, one could choose to take Ind

before or after taking functors:

Fun(X, IndPerf(k)) vs. IndFun(X,Perf(k))

They are:
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1. Loc(X) := Fun(X, IndPerf(k)), the category of local systems whose fibers are k-
modules;

2. Loc′(X) := IndFun(X,Perf(k)) = IndLocPerf(X), the category of “ind-perfect” local
systems: local systems that are formal inductive limits of finite-rank local systems.

Their relationship is established by the canonical morphism in PrL,st

Loc′(X) Loc(X)

“colim
−→

′′

α
Lα colim

−→ α
Lα

Φ

that sends the formal colimit to an actual colimit calculated in Loc(X), which is the ind-
completion of the embedding LocPerf(X) ⊆ Loc(X). 1

While it preserves colimits by definition, Φ is far from an equivalence:

1. the compact object kX in Loc′(X) need not be compact in Loc(X), because the functor
of cohomology ph∗ := homLoc(X)(kX ,−) does not generally preserve colimits (although
see Corollary 4.30);

2. the object xh! k, compact in Loc(X) by Remark 4.7, has fibers isomorphic to C−•(ΩxX; k),
which is hardly ever a perfect k-module; thus xh! is typically not in the Φ-image of
LocPerf(X).

Note that owing to part (1), Φ does not typically admit a right adjoint in PrL,st.
These categories Loc(X) and Loc′(X) for a space X are the homotopy theory analogs

of QCoh(X) and IndCoh(X) for a scheme X, respectively, in at least the sense of having
similar functoriality. To see the difference, take again the maps pt

x−→ X
p−→ pt:

1. as discussed, the theory of Kan extensions gave the adjunctions in PrL,st

Loc(pt) Loc(X) Loc(pt)p∗ x∗
ph!

ph∗

xh!

xh∗

1Alternatively, one can think of Φ as the natural functor from the colimit to the limit

colim
−→
X

(k Mod)

︸ ︷︷ ︸
Loc′(X)

lim
←−
X

(k Mod)

︸ ︷︷ ︸
Loc(X)

can

where k Mod, thought of as a functor X k Mod−−−−→ PrL,st, is simply the constant diagram pt 7→ k Mod. We
learned this from the note [19].
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2. On the other hand, the functors of stable small categories

Perf(k) LocPerf(X) Perf(k)p∗ x∗

yield the adjunctions in PrL,st

Loc(pt) Loc′(X) Loc(pt)
Ind p∗

(Ind p∗)RR

Indx∗

(Ind p∗)R

(Indx∗)RR

(Indx∗)R

where the fact that p∗ and x∗ preserve compact objects translates into the properness
of their ind-completions, and thus the existence of colimit-preserving right adjoints
(Ind p∗)R and (Indx∗)R.

We will not use Loc′(X) in this document, but one may try to find BGS-type statements
(cf. Proposition 2.50) for Loc′(X) in place of Loc(X).

4.4 Monadicity for local systems
We come to our first descent result for local systems, which as promised is very general:

Theorem 4.14. For a path-connected pointed space (X, x) and classical commutative ring
k, the functor

Loc(X) C−•(ΩxX; k) Mod,

L L |x

x∗,enh

C−•(ΩxX;k)

is an equivalence.

Proof. We first show that the adjunction in PrL

Loc(X) kModx∗

xh!

is monadic, by checking the hypotheses of monadic Barr-Beck-Lurie in PrL. This only
requires x∗ to be conservative, and this holds because X is assumed to be path-connected
and because local systems are locally-constant sheaves.

So x∗ is monadic, and we now identify the monad T := x∗xh! ↷ kMod. Since xh! , x∗
preserve colimits, they in particular commute with every functor (−) ⊗k V for V ∈ kMod,
and therefore

T (V ) = T (k ⊗ V ) = T (k)⊗ V = C−•(ΩxX; k)⊗ V,
under which we see that T Mod

(
kMod

)
≃ C−•(ΩxX;k) Mod. The unit for this algebra can be

identified with the result of applying the chains functor to the inclusion pt
cx−→ ΩxX of the

constant loop at x.
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We record the comonadic version as well:

Corollary 4.15. Under similar hypotheses, the functor x∗enh

Loc(X) Ω coMod,

L L |x

x∗,enh

Ω:=x∗◦xh∗

is also an equivalence.

Proof. We check the hypotheses of comonadic Barr-Beck-Lurie, and work in Cat∞ since the
adjoint xh∗ does not generally preserve colimits. But x∗ is still conservative and bicontinuous,
so x∗,enh is an equivalence. However, while we know that

Ω(k) ≃ C•(ΩxX; k),

the functor xh∗ ≃ homk(C−•(ΩxX; k),−) always will lack the necessary continuity (since A
is never k-compact) for us to be able to say that Ω(V ) ≃ C•(ΩxX; k) ⊗k V for a general
V ∈ kMod.

Remark 4.16. Note that the monadic equivalence x∗,enh is not monoidal. This is because
Loc(X) has the usual fiberwise tensor product of local systems, but C−•(ΩxX;k) Mod is usually
not even a monoidal category! Indeed, the ∞-group ΩxX is generally not abelian, and so
the algebra C−•(ΩxX; k) is not commutative, meaning that there is no monoidal structure
available. Note that this happens in spite of the original categories Loc(X) and kMod being
monoidal, and even the functor x∗ being a monoidal functor.

The lesson, as mentioned earlier, is: if the underlying monadic functor R preserves some
structure between the base categories, that structure may either fail to lift to the category of
T -modules, or fail to be preserved by the monadic equivalence.

Having proven the monadic descent theorem, we use the result to prove a limit descent
theorem. The homotopical cover

pt
x−→ X

of the path-connected space X produces the following augmented simplicial diagram in
spaces: [

· · · pt×X pt×X pt︸ ︷︷ ︸
ΩxX×ΩxX

pt×X pt︸ ︷︷ ︸
ΩxX

pt

]
X

p

p

x
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which gives the diagram in PrL

lim←−
∆

Loc(pt•+1 /X)

Loc(X) Loc(pt) Loc(ΩxX) · · ·

ev0

ev1

x∗

can

T :=x∗◦xh! ≃p
h
! ◦p

∗

p∗

p∗

Here is our limit descent result:

Corollary 4.17. The map can is an equivalence.

Proof. The functor x∗ is monadic by the descent result for local systems Theorem 4.14 that
we just proved, and the augmented cosimplicial diagram of categories on the second row of
the above diagram satisfies the left Beck-Chevalley condition by the base change result for
local systems Proposition 4.3. Therefore can is an equivalence by Theorem 3.8

4.5 Examples: matching local systems with modules
In this section we get a feel for the equivalence

Loc(X) ≃ C−•(ΩxX;k) Mod

of Theorem 4.14 for a path-connected X by seeing how it matches certain objects.

A picture

Before doing so, we make a comment to help with the interpretation. The algebra A :=
C−•(ΩxX; k) has the augmentation homomorphism A → k induced by the map of spaces
p : ΩxX → pt, which we think of as building a distinguished “point” called 1 on the non-
commutative dg scheme 1 ∈ SpecA; see Figure 4.5.

We may think about this by passing to the classical picture: since it is supported in
non-positive degrees, A has a homomorphism

A
ϵ−→ π0(A) ∼= k[π1(X, x)]

to the group algebra of the fundamental group, which is a classical noncommutative algebra.
The augmentation A→ k factors through ϵ as the “evaluation at 1” morphism

ev1 :
∑

γ∈π1(X,x)

cγγ 7→
∑

γ∈π1(X,x)

cγ
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Figure 4.1: Cartoon of SpecA for a general path-connected and simply-connected X. In this
case, the degree zero piece is π0(A) ≃ k. In this case, there is only one classical point, which
supports the augmentation module. We draw the rest of R SpecA with blue negative-degree
non-commutative fuzz.

which builds a distinguished “point,” which we also denote 1, on the noncommutative classical
scheme 1 ∈ Spec k[π1(X, x)].

This point inherits its meaning from ev1: a classical local system L is just the data of
a module L |x ∈ k[π1(X,x)] Mod, and thus it localizes to a sheaf L̃ |x over Spec k[π1(X, x)].
The fiber k ⊗k[π1(X,x)] L̃ |x of this sheaf over the point 1 is the generalized 1-eigenspace of
L |x. We may now loosely apply this classical reasoning to SpecA to think of it as the
space of monodromies for local systems on X, with the augmentation 1 ∈ SpecA playing the
distinguished role of unit monodromy.

Some tautological modules

We now turn to looking for some (left) modules for A. There are several canonical ones.
The most basic is A itself. The second most basic is the augmentation module A → k. Its
kernel I is yet another module, which gives rise to the modules In and A/In, as well as the
completion

AÎ := lim
←−

(
· · · → A/In → A/In−1 → · · · → A/I = k

)
Under the equivalence x∗enh, we get the identifications

xh! k ↔ A,

kX ↔ k = A/I,

xh∗k ↔ A∗

The identification kX ↔ k = A/I fits into the interpretation offered above because kX
is a local system of unit monodromy. The local systems corresponding to A/In are some
generalizations of kX , whose monodromy may not be exactly unital but is not far off from
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it because their classical support is a torsion sheaf based at 1 ∈ Spec π0(A); we call them
unipotent local systems. We also define the universal pro-unipotent local system to be the
canonical limit of the A/In:

L pro-uni
∞ ↔ AÎ := lim

←−
A/In

These examples always exist. We now examine what the corresponding local systems
look like, in the case of X = S1, S2.

Local systems on S1 and modules

As a first example, let us match some other local systems on S1 with modules for A ≃ k[t, t−1].
The augmentation k[t, t−1]→ k is evaluation at 1, so has kernel

I = (t− 1) ↪→ k[t, t−1]
evt=1−−−→ k

Figure 4.2: Local systems on S1 correspond to all modules, supported within A1
k \ {0}. Ind-

unipotent local systems only are supported at {1} ∈ A1
k \ {0}.

The indecomposable module A/In ≃ k[t, t−1]/(t − 1)n can be identified with the space k⊕n
on which t acts by the single indecomposable n× n Jordan block

Jn :=


1 1 0 0

0 1
. . . 0

0 0
. . . 1

0 0 0 1
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which, under the equivalence, corresponds to the rank n indecomposable unipotent local
system L u

n on S1 with monodromy given by Jn:

A/In ↔ L u
n

For n < m, the non-split short exact sequence

A/In ↪→ A/Im ↠ A/Im−n

gives the sequence of Jordan blocks

Jn ↪→ Jm ↠ Jm−n

where the first inclusion is as the top-left n×n corner, and the quotient is onto the bottom-
right (m−n)×(m−n) corner. This gives the non-split extension of indecomposable unipotent
local systems

L u
n ↪→ L u

m ↠ L u
m−n

Using the maps
Jn ↪→ Jn+1, Jn ↠ Jn−1

we can build two more “limiting” local systems:

1. as already introduced, the universal pro-unipotent local system is defined to be the
limit of the projections Jn ↠ Jn−1:

L pro-uni := lim
←−

Ln ↔ k[t, t−1]
(̂t−1) = k[[t− 1]]

It corresponds to the completion at the point {1} ∈ A1
k \ {0};

2. the universal ind-unipotent local system is defined to be the colimit of the inclusions
Jn ↪→ Jn+1:

L ind-uni := colim
−→

Ln ↔ Dist1(k[t, t
−1])

It corresponds to the locally-nilpotent module of distributions supported at {1} ∈
A1
k \ {0}.

Local systems on S2 and modules

Here is a calculation that we take for granted:

Proposition 4.18. For n ≥ 2 and k a field of characteristic 0, there is a quasi-isomorphism
of (noncommutative) E1 algebras over k:

C−•(ΩxS
n; k) ≃ k⟨u⟩, |u| = −n+ 1
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Taking n = 2 gives us the identification

C−•(ΩxS
2; k) ≃ k⟨u⟩,

where for |u| = −1.
Let us examine the local systems that correspond to the modules A/In = k⟨u⟩/(un). We

already know that
A/I ↔ kS2

We will now see that the next object in line is built by the Hopf fibration:

Lemma 4.19. Under the equivalence Loc(S2) ≃ C−•(ΩxS2;k) Mod,

A/I2 ↔ fh! kS3 ,

the homotopy shriek-pushforward of the constant local system kS3 under the Hopf fibration
S3 f−→ S2.

Proof. The Hopf fibration induces a map on basepoints

S3 S2

x f(x)

f

Let us pick the notation

k⟨v⟩ ≃ C−•(ΩxS
3; k), k⟨u⟩ ≃ C−•(Ωf(x)S

2; k).

We first need to first understand the morphism induced by f on these dgas. Then, writing

kS3 ↔ k = k⟨v⟩/(v)

as the augmentation k⟨v⟩-module, we would need to calculate fh!
(
k⟨v⟩/(v)

)
. Let us do both

in turn.
The map f : S3 → S2 induces a map on loop spaces f : ΩxS

3 → Ωf(x)S
2, which induces

a map on chains f• : k⟨v⟩ → k⟨u⟩ which is a homomorphism of dgas. By degree reasons it is
determined by an element α ∈ k where f•(v) = αu2. Since v ∈ π3(S3) ∼= Z is the generator
and f•(v) ∈ π3(S

2) is also a generator, we conclude that α must be a unit, and therefore
freely assume f•(v) = u2.

So the induced map on dgas is v 7→ u2. To calculate fh! kS3 , first take the Koszul resolution
of the module k = k⟨v⟩/(v), which is the quasi-free item (k⟨v⟩[ε], dε := v), where |ε| = −3;
thus ε2 = 0. This gives a model for calculating the derived tensor product classically:

fh! kS3 ↔ k⟨v⟩/v ⊗LC−•(ΩxS3) C−•(Ωf(x)S
2)

≃ k⟨v⟩[ε]⊗k⟨v⟩ k⟨u⟩
= k⟨u⟩[ε], dε = f•(v) = u2

≃ k⟨u⟩/u2
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The last line is the statement that the object k⟨u⟩[ϵ] is nothing but a quasi-free resolution
of the module k⟨u⟩/u2 ∈ k⟨u⟩Mod, which is therefore the module corresponding to the local
system fh! kS3 .

Let us check this by also calculating the global sections πh! fh! kS3 , where S2 π−→ pt, using
this module realization. This map induces the dga morphism π• : k⟨u⟩ → k = k⟨u⟩/u. Using
the quasi-free resolution from above gives

πh! f
h
! kS3 ↔ k⟨u⟩/u2 ⊗Lk⟨u⟩ k⟨u⟩/u

≃ k⟨u⟩[ε]⊗k⟨u⟩ k⟨u⟩/u
= k⟨u⟩[ε]/(u), dε = 0

= k[ε]/(ε2), |ε| = −3
≃ C−•(S

3; k) ∈ kMod

which is what we expected.

Remark 4.20. Since A/I2 ↔ fh! kS3, we might be forgiven to think of the local systems that
match up with A/In as some kinds of “higher” Hopf local systems. Unfortunately, these do
not arise as pushforwards under maps from spheres to S2.

Digression: the Hopf local system is derived

This section is inessential, and is supposed to be fun.
Given a DG local system L ∈ Loc(X), we can extract its cohomology sheaves H iL ∈

Loc(X)♡ ≃ Rep♡π1(X,x), which are classical local systems on X. We can wonder:

Question 4.21. How different is L from the data of its “semi-classical” probes {H iL }i∈Z?
In other words, is there a quasi-isomorphism

L
?≃
⊕
i∈Z

H iL [−i]

Since we are here, we will now use the example of the Hopf local system L := fh! kS3 to
illustrate the point that the two are not quasi-isomorphic.

In the case of smooth fibrations P p−→ X, ph! can be identified with a more familiar functor:

Lemma 4.22. If P p−→ X is a submersion in the world of finite-dimensional manifolds, then

for any finite-rank unipotent local system L
!
∈ Thick(kP ),

ph! L ≃ p!(L ⊗kP p!kX) := p!(L ⊗kP orP/X [dim p])
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Proof. Since both functors are exact, it suffices to show the claim for L = kP . Both functors
satisfy base change, under which the claim reduces to the fiberwise case X = pt, where we
know both of the following equivalences independently:

px
h
! kPx ≃ C−•(Px; k) ≃ (px)!(px)

!k.

This proves the claim.

Let us now apply the above result to L = kS3 and p = f the Hopf fibration.
First, since f is a submersion with oriented 1-dimensional fibers, we know that fh! kS3 ≃

f!kS3 [1]. So let us just look at the more familiar object f!kS3 . If it were true that f!kS3 ≃⊕
i∈Z H if!kS3 [−i], then the sheaves H if!kS3 would be constant by the fact that S2 is simply-

connected. Since the fiber of f is S1, both cohomology sheaves would be rank 1, and so would
force f!kS3 ≃ kS2 ⊕ kS2 [−1]. The global sections of the direct sum are:

Γ(kS2 ⊕ kS2 [−1]) ≃ k ⊕ k[−1]⊕ k[−2]⊕ k[−3].

On the other hand, we know Γ(kS3) ≃ C•(S3; k) ≃ k ⊕ k[−3].
Thus f!kS3 ̸≃ kS2 ⊕ kS2 [−1], and so f!kS3 is fundamentally a derived object.

4.6 Koszul duality for local systems
For a pointed path-connected space (X, x), we considered the fundamental diagram

pt
x−→ X

p−→ pt

and proceeded to monadically describe Loc(X) using the map x∗. Can we obtain a (co)monadic
description using ph! or ph∗? As mentioned, the answer turns out to be: “almost.” There is
only a partial answer, and it will take more work than Theorem 4.14. Why the difficulty?

Broadly: since Barr-Beck-Lurie is a precise characterization of descent, any obstacle to
monadicity for a functor F must be either the failure of F to be conservative, or the failure of
F to preserve enough colimits for monadicity or limits for comonadicity. While F := x∗ was
conservative for a topological reason and preserved enough (co)limits for a purely abstract
reason, the functors ph! and ph∗ are neither conservative nor obviously able to preserve the
(co)monadically necessary (co)limits. Here is an example illustrating the problem:

Example 4.23. Consider the case of X = S1 and the right adjoint functor ph∗ . While here
the ability of ph∗ to preserve the monadically-necessary colimits is good — it preserves all
geometric realizations — the functor fails to be conservative. For example, the local system
L−1 of rank 1 and monodromy −1 has no cohomology:

ph∗L−1 ≃ C•(S1;L−1)

≃
k

L−1|x[0]⊕L−1|x[−1]
≃ 0
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To study this further, let us reformulate our topological problem in terms of functors
between categories of modules.

By monadicity for local systems, a path-connected space X gives Loc(X) ≃ AMod for
A := C−•(ΩxX; k). This algebra carries an augmentation homomorphism A → k induced
by applying the chains functor to ΩxX → pt, and this allows us to identify the functors
(ph! , p

∗, ph∗) as follows, in a diagram drawn in PrL,st.

Loc(X) Loc(pt) : AMod kMod

ph! =C−•(X;−)

ph∗=C
•(X;−)

p∗

k⊗A(−)

homA(k−)

fgt

Question 4.24. In terms of this language, we would like to answer the following:

1. When does ph! = k ⊗A (−) preserve totalizations, and on which subcategory is it con-
servative?

2. When does ph∗ = homA(k,−) preserve geometric realizations, and on which subcategory
is it conservative?

We summarize the results that follow:

Theorem 4.25 (Summary of Koszul duality for local systems). If X is a path-connected
space with the homotopy type of a finite CW complex (e.g. a connected compact manifold),
then k is an A-perfect module, and thus

1. ph! preserves totalizations in the stable category of eventually connective modules AMod<∞,
and is conservative on this subcategory if X is also simply-connected;

2. ph∗ is a colimit-preserving functor, and is conservative on the stable presentable category
⊥(k⊥) ⊆ AMod.

Since both functors thus participate in colimit-preserving adjunctions, the comonadicity result

(ph! )
enh : Loc(X)<∞

≃−→ coModC−•(X;k)
<∞

and the monadicity result

(ph∗)
enh : Loc(X)ind-uni

≃−→ ModC•(X;k)

follow.

Proof. The fact that k is A-perfect will follow from Corollary 4.30. Part (1) is the content of
Theorem 4.40. Part (2) is the content of Theorem 4.33. The identifications in the monadicity
result are the content of Proposition 4.31.
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Example 4.26. The monadicity result holds for all spheres Sn≥1 and the comonadicity result
holds for all spheres Sn≥2.

Remark 4.27. Part (1) of the above theorem has a generalization to path-connected and
simply-connected X whose homology H−•(X; k) is a perfect k-module in each degree. For
example, X = BG for a connected Lie group G. However, we only present the argument for
the more minimal statement.

The rest of this chapter establishes this theorem. Before continuing, we pause to do a
useful calculation.

Interlude: identifying the (co)bar constructions in topology

Here we study the objects that we will encounter in our descent questions: the coalgebra
k⊗Ak and the algebra EndA(k), in the example where A = C−•(ΩxX; k) for a path-connected
space X.

We calculate these objects in terms of a particular free resolution of k, which we can
obtain by a general procedure. Put G := ΩxX, and consider first the simplicial group

E•G :=
[
· · · G×G×G G×G G

]
where EnG = Gn+1, and where the face and degeneracy maps are all group homomorphisms
that are furthermore equivariant with respect to the left action of G on the first factor of each
EnG. Its geometric realization, EG := |E•G|, is contractible. Taking chains gives an action
C−•(G; k) on the simplicial vector space C−•(E•G; k), which as a simplicial C−•(G; k)-module
is

C−•(E•G; k) = C−•(G; k)⊗k C−•(B•G; k) ∈ C−•(G;k) sMod

Since the chains functor C−•(−; k) is colimit-preserving, taking the geometric realization
yields an action

C−•(G; k) ↷ C−•(EG; k) = C−•(G; k)⊗k C−•(BG; k),

which, by the contractibility of |E•G|, is therefore a free C−•(G; k)-resolution of k.
This free C−•(G; k)-resolution of k allows us to calculate

Bark(C−•(G; k)) := k ⊗C−•(G;k) k

≃ C−•(BG; k),

Cobark(C−•(G; k)) := homC−•(G;k)(k, k) ≃ C−•(BG; k)
∗

=: C•(BG; k)

Taking G := ΩxX and X path-connected gives
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Corollary 4.28. For a path-connected space X, the bar and cobar constructions are

k ⊗C−•(ΩxX;k) k ≃ C−•(X; k)

EndC−•(ΩxX;k)(k) ≃ C•(X; k)

Perfectness of k as an A-module and perfectness of the (co)bar as a k-module are related
via the following technical lemma:

Lemma 4.29. Let A→ k be a map of connective E1 rings, whose underlying map π0(A)→
π0(k) of associative rings is a surjection, with nilpotent kernel I ⊆ π0(A). Then k is an
A-perfect module if and only if k ⊗A k is a k-perfect module.

Proof. This is an immediate consequence of [15] Proposition 2.7.3.2, part (d).

We may therefore conclude the following by the identifications in Corollary 4.28:

Corollary 4.30. Let k be a classical commutative ring, and X a path-connected space.
Then k is a perfect C−•(ΩxX; k)-module if and only if C−•(X; k), or C•(X; k), is a perfect
k-module.

Proof. Apply the above Lemma to A = C−•(ΩxX; k), which is possible since the kernel is
I = 0.

We will use this in our descent results.

Monadicity for ph∗
In this section we focus on the subcategory ⊥(k⊥) ⊆ AMod, and study the diagram in Pr:

k⊥ ⊥(k⊥)

AMod T Mod

kMod

Φenh

homA(k−)enh

homA(k−) fgtT

fgtk
recon

T

fgtk freeT

As mentioned, this diagram is not wholly in PrL because homA(k,−) need not preserve
colimits. This, together with its failure to be conservative, are the obstructions to it being
monadic.

Here is the main result:
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Proposition 4.31. Suppose A → k is a homomorphism of E1-algebras over a classical
commutative ring k. Then:

1. the colimit-preserving functor

IndThickA(k)
Ind homThickA(k)(k,−)−−−−−−−−−−−−→ kMod

is monadic, rendering an equivalence

IndThickA(k) ≃ ModEndA(k)

2. if k is A-perfect, then the functor homA(k,−) is colimit-preserving, and we may further
identify

IndThickA(k) ≃ ⊥(k⊥)

3. if X is path-connected and has the homotopy type of a finite CW complex, then we may
identify the category of modules over the monad as

ModEndA(k) ≃ ModC•(X;k).

Thus, for such spaces,

IndThickC−•(ΩxX;k)(kX)
⊥(k⊥X) ModC•(X;k)

Loc(X) C−•(ΩxX;k) Mod

Proof. Part (1) was already proven in Theorem 2.45. To see part (2), since k ∈ ⊥(k⊥) and
the latter is closed under finite colimits, certainly there is furthermore always a canonical
map

ThickA(k)→ ⊥(k⊥).

But by the assumption that k is A-perfect, ThickA(k) ⊆ Perf(A), and therefore

IndThickA(k) ⊆ IndPerf(A) = AMod

Since ⊥(k⊥) is closed under colimits, this embedding in fact factors through ⊥(k⊥), and
therefore indeed

IndThickA(k) ⊆ ⊥(k⊥).

To show equality, we argue that both categories can be monadically reconstructed from
matching monads on the same category, kMod. To that end, we consider the following
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diagram, with dashed arrows denoting left adjoints:

IndThickA(k)
⊥(k⊥) T Mod

kMod
Φ

ι

homA(k−)enh
homA(k−)

fgtT

fgtreconk

(ΦL)recon

ΦL

fgtk

The first order of business is to show that these left adjoints actually exist:

1. The adjoint ΦL exists by the Adjoint Functor Theorem, due to the fact that Φ is a
bicontinuous functor between presentable categories. To see that Φ is bicontinuous, we
observe that it preserves limits by its definition as the restriction of the limit-preserving
functor homA(k,−), and it preserves colimits because the construction of the category
IndThickA(k) ensures that k is a compact object there. Thus we can sensibly study
the monadicity question for IndThickA(k)

Φ−→ kMod.

2. The reconstruction functor (ΦL)recon exists because (ΦL,Φ) is an adjunction, and be-
cause IndThickA(k) admits all colimits.

3. The functor fgtk exists as a functor kMod
fgtk−−→ AMod, but we need to show that it

lands inside the category ⊥(k⊥). This follows by adjunction: if M ∈ k⊥ and V ∈ kMod,
then

homA(fgtk V,M) = homk(V, homA(k,M)︸ ︷︷ ︸
≃0

)
∴≃ 0,

so fgtk V ∈ ⊥(k⊥). Thus we can sensibly study the monadicity question for ⊥(k⊥)
homA(k,−)−−−−−−→

kMod as well.

4. The reconstruction functor fgtreconk exists because (fgtk, homA(k,−)) is an adjunction,
and ⊥(k⊥) admits all colimits.

Now that the functors are all justified, we show that Φ is monadic. As mentioned, it is
bicontinuous, and its domain and codomain categories are presentable. Thus it suffices to
show that Φ is conservative, but this is true because Φ factors through homA(k,−), which
conservative by design.

Next, we show that fgtk in fact lands inside IndThickA(k). For a finitely generated free
k-module V , certainly fgtk(V ) ∈ ThickA(k) ⊆ ⊥(k⊥). Note that kMod is the ind-completion
of the closure under retracts of finitely generated free modules

kMod ≃ Ind

(
kModfree

fg

)τ
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meaning that kMod is built out of infinite colimits applied to kModfree. Since fgtk preserves
colimits, we conclude that it factors through IndThickA(k). This shows that the functors
ΦL = fgtk are identified, and therefore so are (ΦL)recon = fgtreconk .

To conclude that ι is an equivalence, we simply note that homA(k,−)enh is conservative by
design, and (ΦL)recon is an embedding by the monadicity of Φ. Thus fgtreconk is an embedding,
and so homA(k,−) is monadic as well. Therefore,

IndThickA(k)
⊥(k⊥)

T Mod
Φenh

ι

homA(k−)enh

and so ι is an equivalence. This finishes the proof of part (2).
To see part (3), by Corollary 4.28 we can identify T (k) := EndA(k) ≃ C•(X; k), which

by the assumptions on X is a perfect k-module. By Corollary 4.30, this means that k is a
perfect A-module, and so we conclude by part (2).

To see the implication in the topological world, we first make a definition:

Definition 4.32. The category of ind-unipotent local systems on a path-connected space X
is

Loc(X)ind-uni := ⊥(kX
⊥) ⊆ Loc(X)

Similarly, the category of pro-unipotent local systems is

Loc(X)pro-uni := (kX
⊥)⊥ ⊆ Loc(X)

Identifying the monad using Corollary 4.28 and applying Proposition 4.31 immediately
gives:

Theorem 4.33. Let X be any path-connected space with the homotopy type of a finite CW
complex, and let k be a commutative ring. The functor ph∗ of taking cohomology is monadic
on the subcategory of ind-unipotent local systems:

Loc(X)ind-uni ModC•(X;k)
ph∗

,enh

This result finally answers the question: what kinds of local systems on X do modules
over cochains on X describe? The answer is: exactly those that can be built out of kX under
self-extensions, retracts, and filtered colimits—the so-called ind-unipotent local systems.

Example 4.34. Taking X = S1 gives A := C−•(ΩxS
1; k) ≃ k[t, t−1], with augmentation

homomorphism
k[t, t−1]

evt=1−−−→ k[t, t−1]/(t− 1) ≃ k
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Inside k[t,t−1] Mod, the sector of ind-unipotent local systems is tiny, but admits a descent
description

Loc(S1)ind-uni ≃ k[t,t−1] Mod(t−1)−torsion

≃ k[D], |D| = 1

as either sheaves on A1
k \ {0} whose reduced support is the point {1}, or as k-modules with

a second differential D.
Note that, for example, the universal local system is not describable under this equivalence.

The reason why this subcategory of Loc(S1) is so small is because S1 is not simply-connected.

Comonadicity for ph!
This subsection explores the flipside to the story above: what can be said about comonadicity
of the functor ph! = k ⊗A (−)?

We originally learned the contents of this subsection from a lovely note by Rok Gregoric;
however, we unfortunately now cannot track down. Here we attempt a partial reconstruction
of that argument, streamlined slightly for our specific purpose.

Let k be a classical (that is, concentrated in degree 0) commutative ring, and consider a
morphism of E1 k-algebras A f−→ k, where A is concentrated in degrees ≤ 0:

· · · A−2 A−1 A0 0 · · ·

· · · 0 0 k 0 · · ·

Let us furthermore assume that the induced morphism π0A
π0f−−→ π0k = k is an isomorphism.

Example 4.35. The main example we have in mind, as always, is the augmentation map
for A := C−•(ΩxX; k) → k induced by the map ΩxX → pt, where X is path-connected
and simply-connected. It is the simply-connected assumption that ensures that π0f is an
isomorphism.

This gives the adjunction between categories of (left) modules

AMod kMod
k⊗A(−)

fgt

Ω:=(k⊗Ak)⊗k(−)

We would like to argue that k⊗A (−) is comonadic. Unfortunately, even though we assumed
X is simply-connected, this functor is still not generally conservative:

Example 4.36. For X = S2 and thus A = k⟨v⟩ for |v| = −1, the colimit of the infinite
chain of Hopf local systems

colim
−→

[
· · · A/v2 A/v2 A/v2 · · ·

]
·v ·v
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is a non-trivial local system on S2 with zero cohomology.

However, k ⊗A (−) is conservative once we restrict to the subcategory of connective
modules. In fact, under another hypothesis, this restriction is comonadic:

Theorem 4.37. Let A→ k be a map of connective E1 rings, where k is a classical commu-
tative ring, such that π0(A)

∼=−→ π0(k) = k is an isomorphism. Then:

1. the adjunction (k ⊗A (−), fgt) restricts to the subcategories of connective modules, on
which k ⊗A (−) is conservative;

2. if furthermore k ∈ Perf(A), then k⊗A (−) is comonadic between connective categories:

AMod≤0 k⊗Ak coMod≤0

kMod≤0

AMod k⊗Ak coMod

kMod

k⊗A(−)enh

∼

k⊗A(−)

fgtΩ

fgtreconk

k⊗A(−)

k⊗A(−)enh

fgtΩ

fgtreconk

Proof. The adjunction certainly restricts. So we turn to verifying the Barr-Beck-Lurie hy-
potheses:

1. On AMod≤0, k ⊗A (−) is conservative. Suppose that M is a connective A-module so
that k ⊗A M ≃ 0; i.e. πi(k ⊗A M) ≃ 0 for each i ≥ 0. Consider the fiber sequence of
A-modules

F → A
f−→ k

where π0F = 0 by assumption. Apply (−)⊗AM and take the long exact sequence of
homotopy groups:

π−1(F ⊗AM) 0 π−1(k ⊗AM)︸ ︷︷ ︸
=0

π0(F ⊗AM) π0(M) π0(k ⊗AM)︸ ︷︷ ︸
=0

π1(F ⊗AM) π1(M) π1(k ⊗AM)︸ ︷︷ ︸
=0

g−1

g0

g1
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The first column of horizontal morphisms gi are all isomorphisms, and certainly π≤−1(F⊗A
M) = 0, i.e. g≤−1 = 0. The image of g0 is Iπ0(M) for I = π0A → π0k, which by as-
sumption is 0, and so π0(M) = 0. But now we repeat the argument on M [−1], which
is connective, to see that π1(M) = 0, and thus πi(M) = 0 for all i. Thus M ≃ 0,
confirming conservativity.

Let now ∆
M•
−−→ AMod≤0 be a cosimplicial diagram for which ∆

k⊗AM
•

−−−−→ kMod≤0 splits.

2. The category kMod≤0 admits the totalization lim←−
∆

k ⊗A M•. The limit is the splitting,

which by assumption exists in kMod≤0.

3. The functor k ⊗A (−) satisfies k ⊗A lim←−
∆

M• ≃ lim←−
∆

k ⊗A M•. Note the object lim←−
∆

M•

makes sense as an object of AMod, since it is bicomplete. The result is now an
immediate corollary of Lemma 18.2.5.14 in [15], given that k ⊗A k is perfect, hence
almost perfect, over k by assumption. We note that this required each term M• to be
connective.

4. The totalization lim←−
∆

M• exists in AMod≤0. As mentioned, the limit certainly exists in

AMod; it remains to show that it is connective. The only possible obstruction would
be a nonzero π−1. Tensor up with the fiber sequence F → A→ k and use the fact that
k ⊗A (−) preserves the totalization to write down the long exact sequence

π−1(F ⊗A lim←−
∆

M•) π−1(lim←−
∆

M•) π−1(lim←−
∆

k ⊗AM•)︸ ︷︷ ︸
=0

π0(F ⊗A lim←−
∆

M•) π0(lim←−
∆

M•) π0(lim←−
∆

k ⊗AM•)

But since F is supported in strictly negative degrees, F ⊗A lim←−
∆

M• is supported in

strictly non-positive degrees. Thus π−1(F⊗Alim←−
∆

M•) = 0, and therefore π−1(lim←−
∆

M•) =

0.

Remark 4.38. We note from the proof that connectivity was crucial for both conservativity,
and for k ⊗A (−) to preserve totalizations.

We now apply the above to produce another comonadicity statement for local systems:
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Corollary 4.39. Let X be a path-connected and simply-connected space with the homotopy
type of a finite CW complex, and let k be a classical commutative ring. Then there are
equivalences of (unstable) ∞-categories

C−•(ΩxX;k) Mod≤0

Lock(X)≤0 C−•(X;k) coMod≤0

k⊗A(−)enhxh,∗enh

By definition, Lock(X)≤0 is the category of all local systems whose fibers are k-modules
(equivalently, A-modules) in degree ≤ 0.

Proof. SinceX is path-connected, the monadicity theorem above ensures that xh,∗enh restricts
to an equivalence on the depicted connective subcategories. The assumptions that X is
simply-connected and is a finite CW complex activate Theorem 4.37, which, together with
the identification of the comonad k ⊗A k ≃ C−•(X; k) by Corollary 4.28 gives the other
equivalence.

We can stabilize the above statement by taking the colimit of categories of increasing
connectivity degrees, and consequently replace “connective” local systems, modules, and
comodules by “eventually connective” ones:

Theorem 4.40. Let X be a path-connected and simply-connected space with the homotopy
type of a finite CW complex, and let k be a classical commutative ring. Then there are
equivalences of stable ∞-categories

C−•(ΩxX;k) Mod<∞

Lock(X)<∞ C−•(X;k) coMod<∞

k⊗A(−)enhxh,∗enh

As mentioned in Remark 4.27, the results that we have just presented are not in their
most general form; they are just in the form that we understood how to prove. There is
a generalization of the above result to path-connected and simply-connected spaces X for
which k is an “almost” perfect A-module (if and only if k ⊗A k is an “almost” perfect k-
module), which is guaranteed by the k-modules Hi(X; k) being finitely generated; such a
generalization would allow one to also enjoy the following examples:

Example 4.41. Let X = BG where G is a connected finite-dimensional Lie group and k a
classical ring. This implies that the k-modules Hi(BG; k) are finitely generated, and that BG
is path-connected and simply-connected, meaning in particular that k is an almost perfect A-
module. Using the identification ΩxBG ≃ G, one obtains the equivalences of stable bounded
above ∞-categories
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C−•(G;k)Mod<∞

Lock(BG)
<∞

C−•(BG;k) coMod<∞

k⊗A(−)enhxh,∗enh
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Chapter 5

Examples of Descent II: Covers in
Topology

5.1 What is in this chapter?
Chapter 4 discussed descent results for the sheaf theory of local systems of k-modules Loc(−)
on the theory of homotopy typesX. This chapter explores descent results for the sheaf theory
of all sheaves of k-modules Sh(−) on the theory of topological spaces and continuous maps.

Given such a map X f−→ Y , the goal is to understand when the canonical map can below
is an equivalence:

lim←−
∆

Sh(X•+1/Y )

Sh(Y ) Sh(X) Sh(X ×Y X) · · ·

ev0

ev1

f∗

can

π∗
1

π∗
2

Assuming that the spaces are locally compact and Hausdorff, this diagram exists in PrL,
whence all the universal dashed and dotted functors admit (possibly not colimit-preserving)
right adjoints. As mentioned previously, we know:

1. by Proposition 3.5, since ev0 admits a right adjoint evR0 , then

lim←−
∆

ShS (X•+1/Y )
evenh0−−−→ ev0 ◦ evR0 coMod ShS (X)

is automatically an equivalence;
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2. by Theorem 3.6, if furthermore a base change result holds for the diagram X•+1/Y ,
then we an rewrite this comonad on ShS (X) as

ev0 ◦ evR0 ≃ π2∗ ◦ π∗1;

3. by Theorem 3.8, if furthermore (1) f ∗ is comonadic and (2) the following additonal
base change result holds

ShS (Y ) ShS (X)

ShS (X) ShS (X ×Y X)

f∗

f∗ π∗
1

f∗

π∗
2

π2∗

then
ShS (Y )

can−−→ π2∗π∗
1
coMod ShS (X)

is an equivalence. That is, we can identify the desired category ShS (Y ) with the
category of comodules.

We will organize the results by the kind of map X f−→ Y is:

1. a “nice” cover of good spaces;

2. a general surjective map;

3. a cover by pieces of a stratification.

Before proceeding to these examples, we record some basic properties of f ∗:

Observation 5.1. For a continuous map X f−→ Y of topological spaces, the following is true:

1. The functor f−1 is classical and is t-exact; in particular, it commutes with taking
cohomology sheaves H i for all degrees i.

2. Conservativity of f−1 on the bounded-below derived category of sheaves can be checked
on cohomology sheaves; i.e. f−1F ≃ 0 iff f−1H iF = 0 for all i.

3. Since a classical sheaf is 0 iff all its stalks are 0, and since the stalk of the preimage is
(f−1F )y = Ff(y) for a classical sheaf F , it follows that f−1 is conservative iff f : X → Y
is surjective.

4. In general, f∗ does not preserve all colimits, and therefore does not admit a right
adjoint.
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Since we are concerned with the comonadicity of the left adjoint functor f ∗, by Barr-Beck-
Lurie we are therefore concerned with its ability to preserve certain limits. The following
warning tells us that we need to work carefully:

Warning 5.2. The functor f ∗ does not generally preserve limits.

1. It does not preserve infinite products. For example, consider {0} i
↪−→ R, and consider

the sheaf C of continuous functions; thus i∗C =: C0 is the stalk at 0. There is a natural
map

ϕ : (
∏
n∈N

C )0 →
∏
n∈N

C0,

but it is not an isomorphism because it fails to be injective. To see this, take a sequence
of functions f := {fn}n∈N which vanish on [−1/n, 1/n] but are nonzero outside. Then
[f ] ̸= 0 since over any open 0 ∈ U , there is some fn|U ̸= 0. However, ϕ([f ]) = 0.

2. It does not preserve cofiltered limits. Consider the same map {0} i
↪−→ R, and the family

of sheaves k[ 1
n
,∞), whose limit can be determined to be k[0,∞):

k[0,∞) →
[
· · · → k[ 1

n
,∞) → · · · → k[ 1

2
,∞) → k[1,∞)

]
While i∗k[0,∞) = k, the stalk at each term in the diagram i∗k[ 1

n
,∞) = 0. This is the

failure. However, as we will see in Proposition 5.12, one diagnosis of the inability of i∗
to preserve this limit is that the given cofiltered diagram is not j∗-split: this is because
a splitting would be a collection of elements of hom(k[ 1

n
,∞), k(0,∞)) = 0. But zero maps

do not assemble into legitimate splitting data.

5.2 For nice covers
The following lemma defines what constitutes “nice”:

Lemma 5.3. If X f−→ Y is a surjective morphism, such that

1. base change holds for Sh(−) holds over

X ×Y X X

X Y

□

f ′

f ′ f

f

2. this property is stable under pullback,
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then
Sh(Y ) ≃ lim←−

∆

Sh(X•+1/Y ) ≃ f∗◦f∗ coMod Sh(X)

Proof. The assumptions guarantee that the comonads of the vertical functors below match:

Sh(Y ) lim←−
∆

Sh(X•+1/Y )

Sh(X)

f∗

can

ev0

f∗f∗=ev0 evR0

Therefore, by [13] Corollary 4.7.3.16, it suffices to show that can is conservative. Since
f ∗ = ev0 ◦ can, this is equivalent to showing that f ∗ is conservative. But it is by the above
observation, since f is surjective.

Corollary 5.4. If Y is locally contractible and X f−→ Y is

1. a bundle map, or

2. a proper surjective map

then
Sh(Y ) ≃ lim←−

∆

Sh(X•+1/Y ) ≃ f∗◦f∗ coMod Sh(X)

Proof. Both satisfy the hypotheses of the above Lemma; for example, if the map is proper,
the requisite base change results are filled by proper base change.

5.3 For a general surjective map
A more general descent result requires a restriction of categories. In contrast to the above
deductions, this one is purely a comonadicity statement, with no base change hypotheses.

Proposition 5.5. If f is surjective, then the adjunction (f−1, f∗) restricted to bounded-below
categories

Sh(Y )+ Sh(X)+
f−1

f∗

is comonadic.
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Proof. We learned the following proof strategy from the note [10], where it was used to show
that QCoh satisfies fpqc descent; we will reference it again in our future discussion of that
as well.

We first check that the adjunction restricts to these subcategories. By definition,

Sh(Y )+ := colim
−→
n→∞

Sh(Y )≥−n

Since f−1 is exact and since f∗ is defined in terms of a totalization of rightward-growing
injective resolutions, both functors restrict to the subcategories Sh(−)≥−n for each n, and
thus to their colimits Sh(−)+. So without loss of generality we work with the categories
Sh(−)≥0, and show that

Sh(Y )≥0 f−1f∗ coMod Sh(X)≥0≃

Taking the colimit of this equivalence as n→∞ would yield the desired statement.
So let F • be a cosimplicial diagram in Sh(Y )≥0 such that f−1F • is split. It suffices to

show that the natural map
f−1lim←−

∆

F • → lim←−
∆

f−1F •

is an equivalence in Sh(X)≥0. Thus, we need to show that on the level of cohomology sheaves,
the following map is an isomorphism of classical sheaves in Sh(X)♡:

H if−1lim←−
∆

F • ∼=−→H ilim←−
∆

f−1F •, for all i ≥ 0

There is a spectral sequence computing the homotopy groups of totalizations of cosim-
plicial spectra:

Theorem 5.6 (Bousfield-Kan spectral sequence). Suppose E • is a cosimplicial spectrum,
such that the associated cochain complex obtained by applying πi for each i ∈ Z is an acyclic
resolution of the kernel Ki := Ker(αi) of the first map αi, i.e. that the following complex of
abelian groups is acyclic for each i ≥ 0:

0→ Ki ↪→ πiE0
αi−→ πiE1 → πiE2 → · · ·

Then the natural map πilim←−
∆

E • → πiE0 factors through an isomorphism with Ki:

πilim←−
∆

E • πiE 0

Ki

∼=
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In other words, the theorem says that the homotopy groups of the limits are calculable
as the kernels of maps of homotopy groups.

Using this theorem, we deduce the claim in several steps:

1. The cosimplicial object F • yields for each i ≥ 0 a cochain complex of sheaves

0→ Ki ↪→H iF 0 αi−→H iF 1 →H iF 2 → · · · ,

which may not be exact, i.e. a resolution of Ki := Ker(αi).

2. On the other hand, f−1F • is split, which means that the cochain complex H if−1F •

is split exact for each i ≥ 0, and in particular a resolution of its kernel, which we’ll call
K̃i:

0→ K̃i ↪→
[
H if−1F 0 →H if−1F 1 →H if−1F 2 → · · ·

]
3. Since H if−1 ∼= f−1H i, comparing the complexes above gives K̃i

∼= f−1Ki.

4. Since f−1 is conservative, a sequence is exact iff f−1 of it is exact. We therefore deduce
that the original sequence,

0→ Ki ↪→
[
H iF 0 αi−→H iF 1 →H iF 2 → · · ·

]
,

was also exact.

5. We now apply the Bousfield-Kan spectral sequence to both F • and f−1F • to deduce
that

H ilim←−
∆

F • ∼=−→ Ki,

H ilim←−
∆

f−1F • ∼=−→ K̃i

Applying f−1 to the first isomorphism and using the fact that f−1Ki
∼= K̃i, we deduce

the desired canonical isomorphism

H if−1lim←−
∆

F • ∼=−→H ilim←−
∆

f−1F •, for all i ≥ 0

Remark 5.7. This proof made use of “flatness” of the functor f−1 — a compatibility with
t-structures — to reduce to a verification in the familiar world of abelian categories. While a
similar argument works to show fpqc descent for QCoh, it will unfortunately not be a useful
argument to mimic for our ultimate purpose of finding descent statements for ShΛ. See the
Remark 6.3 for a discussion of the issues.
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Aside on the Godement envelope

Here is an example that will couch something familiar in the language of the above results.
It will also illustrate a useful caution.

Take X a space, and let f : Xdiscrete → X be the inclusion of the discretization of X.
Here, Sh(Xdiscrete) ≃

∏̃
x∈X Sh(pt) where

∏̃
denotes the categorical product, and the functors

can be written as
f−1F =

∏̃
x∈X

i∗xF, f∗(̃
∏
x∈X

Vx) =
∏
x∈X

ix∗Vx

where
∏

denotes the product within Sh(X). Since f is continuous and surjective, Theorem
5.5 guarantees that the functor f−1 is comonadic:

Sh(X) f−1f∗ coMod Sh(Xdiscrete)
(f−1)enh

This in particular implies something familiar. The monad T := f∗f
−1 of the adjunction acts

on Sh(X), producing out of any object F its T -cobar diagram

F

[∏
x∈X ix∗i

∗
xF

∏
x∈X

(∏
y∈X iy∗i

∗
yF

)
x

· · ·
]

If F ∈ Sh(X)♡, then turning this cosimplicial diagram into a cochain complex by taking al-
ternating sums of the coface maps gives the familiar Godement resolution of F . This squares
with the content of Remark ??, which records the following consequence of comonadicity:
the above tautological coaugmented cosimplicial diagrams are in fact limit diagrams. So we
learn that the fact that the Godement resolution is actually a resolution is a shadow of the
fact that the functor f−1 is comonadic.

Now the caution. The map f generally is not proper, and neither is it a bundle projection.
In fact, the worst is true: it fails base change for the fiber square

Xdiscrete Xdiscrete

Xdiscrete X

□
f

f

because the inclusion

i∗xF ↪→

(∏
y∈X

i∗yF

)
x

is not an isomorphism. However, since

(Xdiscrete)
×
X
•
= Xdiscrete,
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the Cech nerve of f collapses to a diagram of identity maps[
· · · Xdiscrete Xdiscrete Xdiscrete

]
X

f

which in turn ensures that the resulting diagram of categories of sheaves tautologically
satisfies the Beck-Chevalley condition, and also that

lim←−
∆

Sh(Xdiscrete•/X) ≃ Sh(Xdiscrete)

But the canonical functor Sh(X)
Φ−→ lim←−

∆

Sh(Xdiscrete •/X), which is identified with f , is not

an equivalence. The issue was in the failure of base change for the very first square in the
coaugmented cosimplicial diagram Sh(X) → Sh(Xdiscrete •/X), which we drew above. So
Theorem 3.8 is actually inapplicable here.

Moral 5.8. This example illustrates the generality of the above comonadicity result, while
simultaneously showing that accompanying base change-dependent results may not hold. In
particular, it serves as a warning that, while Beck-Chevalley conditions for a cosimplicial
diagram induce a Beck-Chevalley condition on the specific coaugmentation that is the limit
of the diagram, they do not induce a Beck-Chevalley condition on general coaugmentations.

5.4 For a cover by strata

Finally, we look at maps Y f−→ X of the form

Y =
⊔
s∈S

Xs
ks∗−−→ X

for {Xs
ks
↪−→ X}s∈S a stratification of X; see Definition 7.2. The descent question will be

whether the functor
f ∗ :=

∏̃
s∈S

k∗s

in the adjunction

Sh(X)
∏̃

s∈S Sh(Xs)
f∗

∏
s∈S ks∗

is comonadic.
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Remark 5.9. Note that we still look at the categories of all sheaves Sh(−). The given
functors also descent to an adjunction on the S-constructible categories

ShS(X)
∏̃

s∈S Loc(Xs)
f∗

∏
s∈S ks∗

and therefore any comonadicity result above will restrict to one here.

We will begin with the comonadicity question for a two-piece stratification {Z,U}, where
Z is thus closed and U is open, using

Z
i
↪−→ X, U

j
↪−→ X

as the inclusions Xs
ks
↪−→ X.

This example and the method of proof were absolutely crucial to the content of this
thesis. In all of the subsequent material, we will take the tools used here, generalize them,
and attempt to fit them into a broader framework for application to other comonadicity
questions.

Proposition 5.10. The functor

Sh(X)
f∗−→ Sh(Z)⊞ Sh(U)

is comonadic.

Proof. We verify the Barr-Beck-Lurie hypotheses. First note that f ∗ is conservative because
f is surjective on points. The subtle point is to argue that f ∗ preserves the limits of f ∗-split
cosimplicial diagrams. Equivalently, we must argue that

1. j∗ preserves the limits of cosimplicial diagrams that are both j∗-split and i∗-split, and

2. i∗ preserves the limits of cosimplicial diagrams that are both j∗-split and i∗-split.

Part (1) is immediate because j∗ = j! is a right adjoint, and therefore it preserves all limits.
Part (2) is the hard part. Indeed, recall Warning 5.2.

So let ∆
F •
−→ ShS(X) be a cosimplicial diagram such that j∗F • and i∗F • are split. To

conclude that f ∗ is comonadic, it remains to show that the natural comparison

i∗lim←−
∆

F •
ϕ−→ lim←−

∆

i∗F •

is a quasi-isomorphism. Our strategy will be to sandwich i∗ between two functors for which
the analogous comparison map is a quasi-isomorphism on F •.

We offer two ways to implement this strategy.
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Method 1 : We thank Germán Stefanich for explaining the following strategy to us, and
thereby setting in motion the tinkering that led to the contents of the last chapter. Consider
the fiber sequence

i!i
! → Id→ j∗j

∗

of functors on Sh(X). Applying i∗ yields the fiber sequence

i! → i∗ → i∗j∗j
∗

on Sh(Z). This is the sandwiching we want. To see what it does, apply it to the diagram
F •, and build the following canonical comparison between fiber sequences in Sh(Z), with
our target map ϕ in the center:

i!lim←−
∆

F • i∗lim←−
∆

F • i∗j∗j
∗lim←−

∆

F •

lim←−
∆

i!F • lim←−
∆

i∗F • lim←−
∆

i∗j∗j
∗F •

(∗) ϕ (∗∗)

The canonical map (∗) is an equivalence because i! preserves all limits as a right adjoint.
The canonical map (∗∗) is the chain of equivalences

lim←−
∆

i∗j∗j
∗F • ≃ i∗j∗lim←−

∆

j∗F • ≃ i∗j∗j
∗lim←−

∆

F •,

where the first equivalence comes from the assumption that j∗F • is split, and the second by
the already-mentioned fact that j∗ preserves all limits.

Thus, ϕ is also an equivalence.
Method 2 : Consider the other fiber sequence

j!j
! → Id→ i∗i

∗

of functors on Sh(X). This also is an adequate sandwiching map for F •, which builds the
comparison between fiber sequences in Sh(X), with i∗ϕ on the right side:

j!j
!lim←−
∆

F • lim←−
∆

F • i∗i
∗lim←−

∆

F •

lim←−
∆

j!j
!F • lim←−

∆

F • lim←−
∆

i∗i
∗F •

(∗) i∗ϕ

This time, one of the legs (the center) is an equivalence for free. The map (∗) is the chain
of equivalences

j!j
!lim←−
∆

F • ≃ j!lim←−
∆

j!F • ≃ lim←−
∆

j!j
!F •
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where the first holds because j∗ = j! preserves limits, and the second holds because j!F • =
j∗F • is assumed split.

Thus, the map
i∗(i

∗lim←−
∆

F •)
i∗ϕ−−→ i∗(lim←−

∆

i∗F •) ≃ lim←−
∆

i∗i
∗F •

is an equivalence; we have identified its target using the assumption that i∗F • is split.
Finally, since i∗ is conservative, the fact that i∗ϕ is an isomorphism means that ϕ must

have been an isomorphism.

Remark 5.11. We will generalize Method 2 and apply it to prove all ensuing comonadicity
statements.

A slight modification gives the more general result:

Proposition 5.12. This implies comonadicity for sheaves Sh(X) for a cover by any finite
stratification S of X.

Proof. We induct on the length of the stratification.
Base case: A 1-step stratification, for which the result is trivial.
Inductive step: Take a finite-step filtration of X by closed subsets

∅ = X−1 ⊂ X0 ⊂ X≤1 ⊂ · · · ⊂ X≤k ⊂ · · · ⊂ X≤n−1 ⊂ X≤n = X,

which yields a cover by the locally-closed pieces Xk := X≤k \X≤k−1:

p :
⊔
k

Xk → X

Time to verify the Barr-Beck conditions. First, since p is surjective, p∗ is conservative. So
it remains to check that p∗ preserves the limits of p∗-split cosimplicial diagrams. So suppose
F • is a cosimplicial diagram such that p∗F • is split. Equivalently, we assume:{

j′∗n p
∗F • ≃ j∗nF

• is split (1),
i′n
∗p∗F • ≃ p∗≤n−1i

∗
nF
• is split (2)

where the notation comes from the following diagram, where the bottom row is the open-
closed decomposition produced by the top stratum, and the rest:

Xn

⊔
kXk

⊔
k≤n−1Xk

Xn X X≤n−1

j′n

□
= p p≤n−1

i′n
□

jn

in
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Thus we need to show that the following are equivalences:

j∗nlim←−
∆

F •
≃−→ lim←−

∆

j∗nF
•

i′∗n p
∗lim←−

∆

F •
≃−→ lim←−

∆

i′∗n p
∗F •

The first is true because j∗n preserves all limits. For the second, note first that (∗) below
follows as in the previous argument from the assumption (1) that j∗nF • is split:

i′∗n p
∗lim←−

∆

F • lim←−
∆

i′∗n p
∗F •

p∗≤n−1i
∗
nlim←−

∆

F • lim←−
∆

p∗≤n−1(i
∗
nF
•)

p∗≤n−1lim←−
∆

(i∗nF
•)

(∗)
ϕ

Finally, the sheaf i∗nF • ∈ Sh(X≤n−1) is amenable to the inductive hypothesis, hence the proof
would conclude once it is known to be p∗≤n−1-split. But that is guaranteed by assumption
(2) on F •.

Finally, we generalize the statement slightly:

Corollary 5.13. Sh(−) satisfies descent for (locally finite) stratifications.

Proof. Let p : X → Y be a locally finite stratification, and f : U → Y be an open cover
such that the base change p′ is a disjoint union of finite stratifications:⊔

α∈A
Uα ×Y X U ×Y X X

⊔
α∈A

Uα U Y

⊔
α∈A

p′α

□
p′

f ′

p

f

We know that the open covers f, f ′ are coonadic, as is each p′α from earlier, and thus p′ since
the p′α are disjoint. The only thing to note is that the adjunction (f ∗, f∗) extends to a triple
(left adjoints on top)

Sh(Y )
∏̃

α∈A Sh(Uα) Sh(U)

f!:=⊕αjα!

f∗=
∏̃

αj
∗
α

f∗=
∏

α jα∗
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where
∏̃

α denotes the product in PrL,st and ⊕α and
∏

α denote the coproduct and product
within Sh(Y ). Thus, f ∗ is bicontinuous, and we now argue essentially by Lemma 3.12, but
reproduce all the details here: taking a p∗-split cosimplicial diagram ∆

F•
−−→ Sh(Y ) gives,

after applying f ′∗,

f ′∗p∗lim←−
∆

F • f ′∗lim←−
∆

p∗F •

p′∗f ∗lim←−
∆

F • lim←−
∆

f ′∗p∗F •

p′∗lim←−
∆

f ∗F •

lim←−
∆

p′∗f ∗F •

lim←−
∆

f ′∗p∗F •

(1)

f ′∗ can

(2)

(3)

(4)

∴

For the right-hand column, the justification is that p∗F • is an absolute limit diagram. For
the left-hand column, the justifications top-to-bottom, are as follows:

1. Commutativity of the square;

2. f ∗ preserves all limits;

3. p′∗ is comonadic and f ∗F • is p′∗-split, so this limit is preserved;

4. Commutativity of the square.

Since furthermore f ′∗ is conservative, this implies the desired outcome:

p∗lim←−
∆

F • can≃−−−→ lim←−
∆

p∗F •

Corollary 5.14. Sh(−) also satisfies descent for stratified bundles p : X → Y .

Proof. There is a stratification f : S → Y that base changes p to a split map. Since the base
change f ′ is also a stratification of X, we conclude descent by Lemma 3.13.



107

Chapter 6

Examples of Descent III: Zariski
Comonadicity, Two Ways

6.1 What is in this chapter?
Zariski descent is the model descent statement and is the inspiration for this entire work.
We will take it to mean the following two things:

Theorem 6.1. Let X be a scheme and j : U := ⊔i∈IUi → X a finite qcqs open cover, giving
the diagram

lim←−
∆

QCoh(U•+1/X)

QCoh(X) QCoh(U) QCoh(U ×X U) · · ·

ev0

ev1

j∗

can

Ω:=j∗j∗

π∗
1

π∗
2

where for readability we have omitted the colimit-preserving right adjoints. Then

1. (Zariski comonadicity) j∗ is comonadic; and

2. (Zariski limit descent) can is an equivalence.

Part (2) follows from part (1) by faithfully flat base change, via Theorem 3.8. Thus, the
focus of this chapter will be on exploring part (1) in detail. More specifically, we present two
ways of arguing for Zariski comonadicity:
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1. Way 1 is through t-structures. Its advantage is that it is fairly tidy, and works more
generally to show descent for fpqc covers. The downside, however, is that in making ref-
erence to t-structures, as a method of proof it is not immediately adapted to producing
descent statements in the context of sheaves with prescribed singular support.

2. Way 2 is through recollement and the study of localizations. This has the limitation
of not working for general fpqc covers. But what we lose in beautiful generality that
is useful for algebraic geometry we make up for in an instant ability to transfer the
argument to the mirror world of sheaves with prescribed singular support. That is
because, unlike the pullback p∗ for a general fpqc cover Y p−→ X, both the pullback

QCoh(X)
j∗−→
∏
i∈I

QCoh(Ui)

for an open cover ⊔i∈IUi
j−→ X and the total wrapping functor

ShΛ(M)
L−→
∏
i∈I

ShΛi
(M)

for a closed cover ⊔i∈IΛi ⊆ Λ are products of localizations.

We now present the two ways of arguing for Zariski comonadicity in turn.

6.2 Way 1: using t-structures
As mentioned, this method of argument is more general and works for fpqc covers. We
include it here for visibility and completeness, and with the hope that someone may find it
adaptable to other contexts. We then comment on why it is not immediately adaptable to
the context of sheaves with prescribed singular support.

Let p : Y → X be an fpqc cover of the scheme of interest X, which produces the
adjunction

QCoh(X) QCoh(Y )
p∗

p∗

in PrL,st. We jump straight into it:

Theorem 6.2 (fpqc descent). The functor p∗ is comonadic.

Proof. Writing
QCoh(−) = QCoh(−)>(−∞) ≃ colim

−→
n→∞

QCoh(−)≥−n

and noting that the adjunction (p∗, p∗) restricts to each of these categories, we proceed to
work only with QCoh(−)≥0. This boundedness will be useful, since the thrust of the strategy
is to move calculations into the world of abelian categories by extracting cohomology sheaves.
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We first establish that p∗ is conservative. So suppose p∗F ≃ 0 for some F ∈ QCoh(X)≥0.
Since p is flat, it commutes with the operation of taking cohomology sheaves H ip∗F ∼=
p∗H iF , and so p∗H iF ∼= 0. Faithfulness of p∗ implies that all H iF ∼= 0, which by
boundedness implies that F ≃ 0. Thus p∗ is conservative.

Now suppose that ∆
F•
−−→ QCoh(X)≥0 is a cosimplicial diagram such that p∗F • is split.

We wish to show that the canonical map p∗lim←−
∆

F • ϕ−→ lim←−
∆

p∗F • is a quasi-isomorphism. Tak-

ing cohomology sheaves, this is equivalent to showing that the following maps in QCoh(Y )♡

are isomorphisms of classical sheaves:

H ip∗lim←−
∆

F • H iϕ−−→H ilim←−
∆

p∗F •, for all i ≥ 0

The rest of the proof proceeds verbatim as in Theorem 5.5, again taken from the note [10].

As an immediate corollary, since j = ⊔i∈Iji for a (not necessarily finite) open cover by ji
is fpqc, we get Theorem 6.1.

Having seen the proof, we make the following remark without introducing the notation,
as it may only be relevant for Chapter 9. It is meant to illustrate the limitations of this
method of argument in a desired context, as mentioned earlier:

Remark 6.3. Two issues arise in trying to employ the above argument for the categories
ShΛ(M) (for notation, see the Chapter 7). The first is an annoyance but not prohibitive,
while the second is a real problem:

1. Taking cohomology sheaves does not respect singular support conditions. For example,
consider M = R2 with the closed singular support condition Λ = SS(CR2)∪SS(Cx≥0)∪
SS(Cy≥0), and the cofiber sequence

CR2 → Cx≥0 ⊕ Cy≥0 → F
+1−→

in ShΛ(R2). The cohomology sheaves are

H −1F = Cx,y<0, H 0F = Cx,y≥0,

and in fact F is the nontrivial extension of one by the other

Cx,y<0[1]→ F → Cx,y≥0.

But these sheaves do not belong to ShΛ(R2) because, in the cotangent fiber T ∗0R2, their
singular supports contain more covectors than Λ allows.

2. The functors of “wrapping” (i.e. the left adjoints to the embeddings of categories that are
induced by inclusions of singular support conditions) do not commute with the functor
of taking cohomology sheaves. For example, consider M = R with the skyscraper sheaf
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C0, whose wrapping into the zero section is LC0 = CR[1] is a shifted constant sheaf.
Thus

H 0(LC0) = H 0CR[1] = 0, while LH 0(C0) = LC0 = CR[1].

In some sense, the issue here is that a pullback f ∗ is a “local” operation on sheaves,
and thus commutes with the local operation H •, while wrappings L are very non-local,
or “global,” which is “why” they do not commute with H •.

The second difficulty shows that wrapping functors are not t-exact (or, suggestively, t-“flat”)
with respect to the standard t-structure on ShΛ(M). This means that we cannot use them to
reduce the problem to a calculation in abelian categories. However, looking for t-structures
on ShΛ(M) adapted to this proof is one possible area of future research that might lead to
finding more general conditions for comonadicity for a cover of Λ.

6.3 Prelude to Way 2: localizations in algebraic
geometry

To prepare for Way 2 of proving Zariski comonadicity, we begin with a discussion of how
localizations arise in algebraic geometry. The goal is to understand the statement of Corollary
6.7.

Formal completions along a closed subscheme

Let X be a scheme and Z a closed subscheme, with U := X \ Z the complement. We can
enrich the picture by considering a completion of X along Z. If we do this naively by looking
at the colimit

X∧Z,naive := colim
−→

[
SpecOX/I → SpecOX/I

2 → SpecOX/I
3 → · · ·

]
in the category Sch of schemes, then the category QCoh(X∧Z,naive) will end up not participat-
ing in a useful localization with QCoh(X). Instead, we look at the formal completion X∧Z of
X along Z: that is, we simply think of the whole diagram of growing nilpotent thickenings
of Z := SpecOX/I in X

X∧Z :=

[
SpecOX/I → SpecOX/I

2 → SpecOX/I
3 → · · ·

]
:= “colim

−→
′′ SpecOX/I

n

as formally a single object in the category

Ind Sch ⊆ Fun(Sch
op

, Set) =: PSh Sch
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of ind-schemes rather than schemes. These two categories are related by the Yoneda embed-
ding Y and its left adjoint localization L,

Sch Ind SchY

L

which simply evaluates the formal colimit as the colimit inside Sch:

L(“colim
−→

′′Xn) := colim
−→

Sch(Xn).

Thus, L(X∧Z) ≃ X∧Z,naive. On the other hand, Y (X∧Z,naive) ̸≃ X∧Z , owing to the fact that Y
does not preserve colimits.

We therefore get the following diagram in Ind Sch:

X∧Z Y (X) Y (U)

Y (Z)

î

Y j
Y i

Figure 6.1: An open-closed decomposition of the scheme X. Formal neighborhood X∧Z of Z
is cartoonized in red.

where we will drop the Yoneda functor Y in the future.
The purpose of having looked at the formal completion instead of the naive one is that

the category of sheaves on the formal completion,

QCoh(X∧Z) := lim
←−
n→∞

QCoh(SpecOX/I
n),

can be fortuitously identified with the full subcategory QCohXI−complete of I-complete mod-
ules in QCohX. Believing this, this set-up now yields the following diagram of categories in
PrL,st, where î∗ denotes the embedding above:
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QCoh(X∧Z) QCoh(X) QCoh(U)

QCoh(Z)

î∗

j∗

j∗

i∗

To flesh out this picture, we could like to identify the kernel1 of j∗, and to write a formula
for how to project onto it from QCoh(X). This will lead us to a pair of localizations, between
QCoh(X) and either of QCoh(U),QCoh(X∧Z). These localizations will prove to be very useful
in crafting descent statements.

A recollement fiber sequence for QCoh

The adjunction (j∗, j∗) is already a localization; in this section, we show that QCoh(X) also
localizes onto QCoh(X∧Z). To simplify our analysis, we work affine-locally, and therefore
restrict to the case of an affine X = SpecR. The closed subscheme Z is cut out by an ideal
I ⊆ R be an ideal, and with structure sheaf OZ := A := R/I. Let

E := EndR(A)

be the derived endomorphism algebra of A, and define adjoint functors (T,D,C)

T = (−)⊗E A
D = homR(A,−)
C = homE(A

#,−)

We use this set-up to define the following subcategories of QCoh(X):

A⊥ := Ker(D)

QCoh(X)I−torsion := ⊥(A⊥)

QCoh(X)I−complete := (A⊥)⊥

These are called the A-trivial modules, the I-torsion modules, and the I-complete modules,
respectively. Dwyer-Greenlees situate them in the following diagram:

QCoh(X)

QCoh(X)I−torsion ModE(QCoh(X)) QCoh(X)I−complete

D

ΓI(−):=TD
D

T C

C

T

(−)∧:=CD

D

1Note that functor QCoh(Z)
i∗−→ QCoh(X) factors through Ker(j∗), but the functor QCoh(X∧Z )

î∗−→ does
not.
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We use the notation

1. ΓIM := TD(M), read as “(derived) I-torsion” and interpreted as I-power torsion, or
I∞-torsion2. This is because its classical piece is

H0(TD(M)) = {m : Ikm = 0 for some k > 0}
=

⋃
k

M Ik =:M I∞ ⊆M

2. N∧ := CD(N), read as “(derived) I-completion.”

The following theorem relates these two full subcategories:

Theorem 6.4 ([3], Theorem 2.1). In the given set-up, assume that A ∈ Perf(R). Then the
following hold:

1. all the functors in the bottom row of the diagram are equivalences;

2. the functors ΓI and (−)∧ share the following compatibility:

ΓI(M
∧) = ΓIM, (ΓIM)∧ =M∧

Proof. (Partial) We offer a monadic proof of part of (1), just to illustrate the perspective.
For the closed embedding SpecA

i
↪−→ SpecR, consider the following functors:

RMod AMod RMod
i!=homR(A−) i∗=fgt

i∗=fgt i∗=A⊗R(−)

All of these functors preserve colimits: the only one to check is i!, but this is true because
A is compact and RMod is compactly generated. The bottom functors preserve limits.
Composing the two functors in each direction gives an adjunction in PrL,stω :

RMod RMod
R:=i∗i!

L:=i∗i∗

2To pick up I∞ torsion, it was crucial here that E was the full derived algebra of endomorphisms. Taking
just E0 := End0R(A) produces the “non-local” version as the classical piece:

H0Γ′I(M) := {m : Im = 0} =: M I .
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We study the question of monadicity for R := i∗i
!, and build the following diagram:

A⊥︸︷︷︸
Ker(R)

⊥(A⊥)

QCoh(X) T Mod(QCoh(X))

QCoh(X)

Renh|⊥(A⊥)

R:=i∗i!

Renh:=(i∗i!)enh

fgt

L:=i∗i∗

T

free

By the perfectness of A, the endofunctor T has the formula

TM = i∗i
!i∗i
∗M = homR(A,A⊗RM)

= homR(A,A)⊗RM
= E ⊗RM

The reconstruction functor Lrecon takes a T -module M with structure map E ⊗R M → M ,
and produces

colim
−→

(
· · · A⊗R E ⊗R E ⊗RM A⊗R E ⊗RM A⊗RM

)
which means that

Lrecon = A⊗E (−),
as claimed earlier.

The functor R := i∗i
! preserves limits and colimits, but is not conservative: its kernel is

A⊥. The claim now is that restricting to the subcategory ⊥(A⊥) restores conservativity. We
apply Barr-Beck-Lurie:

1. To show R is conservative on this subcategory, let M be an object in it such that
RM ≃ 0, i.e. M ∈ A⊥ ∩ ⊥(A⊥). Examining the identity morphism

M︸︷︷︸
∈⊥(A⊥)

IdM−−→ M︸︷︷︸
∈A⊥

shows that IdM ≃ 0, meaning that M ≃ 0.

2. To show that the category ⊥(A⊥) admits the colimits of R-split simplicial diagrams,
we simply note that the condition of being in the left orthogonal ⊥(A⊥) is closed under
all colimits available in the ambient category.
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3. To show that L lands inside ⊥(A⊥), let M ∈ QCoh(X), and consider N ∈ A⊥. Then

homR(LM,N) := homR(A⊗RM,N) ≃ homR(M, homR(A,N)) ≃ 0

by assumption. Thus LM ∈ ⊥(A⊥).

This concludes the proof that Renh|⊥(A⊥) is an equivalence.

Remark 6.5. A consequence of the proof is a formula for the projection ΓI onto the sub-
category ⊥(A⊥): it is the reconstruction functor Lrecon = A⊗E (−). Similarly, a formula for
the projection (−)∧ onto the subcategory (A⊥)⊥ is homE(A,−).

Corollary 6.6. Since ModE(QCoh(X)) is presentable for A ∈ Perf(X), so are QCoh(X)I−torsion

and QCoh(X)I−complete.

In summary, QCoh(X) has two isomorphic subcategories, embedded in a variety of in-
teresting ways:

1. the coreflective (in PrL) subcategory of I-torsion modules, which participates in the
following diagram in PrL (the top embedding is the standard embedding):

QCoh(X)I−torsion QCoh(X)

(−)∧

ΓI

where the dashed functor is not necessarily colimit-preserving;

2. the reflective (in Pr) subcategory of I-complete modules, which participates in the
following diagram in PrL (the bottom embedding is the standard embedding):

QCoh(X)I−complete QCoh(X)

ΓI

(−)∧

These are the structures that we will exploit in our proof of Zariski comonadicity. We
encase them in the following statement:

Corollary 6.7. The main consequence is that for QCoh(X), there is the following diagram
in PrL

QCoh(X)I−torsion QCoh(X) QCoh(U)︸ ︷︷ ︸
QCoh(X)/⟨A⟩

ΓI

j∗

j∗
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that is the source of fiber sequences

ΓIM →M → j∗j
∗M

+1−→

for any M ∈ QCoh(X). To mimic notation from topology, we will use î! to denote the usual
embedding of I-torsion modules into QCoh(X), and î! to denote the functor ΓI of taking the
I-torsion; in this notation, the above fiber sequence takes on the form

î!̂i
!M →M → j∗j

∗M
+1−→

Since QCoh(X)I−torsion is presentable, it is bicomplete. Here is how we can calculate
colimits and limits in it:

1. To calculate a colimit in it, simply calculate the colimit inside QCoh(X); this is valid
because the embedding is colimit-preserving.

2. To calculate a limit in it, first calculate the limit inside QCoh(X), and then apply the
coreflector ΓI to the result to build the correct limit.

Example 6.8. Consider X = Spec k[x] and A = k[x]/x. Certainly A is perfect, and so in
this case,

QCoh(X)I−torsion = ⟨k[x]/x⟩colimits
is just the subcategory of QCoh(X) generated under colimits by the object k[x]/x ≃ k. Let
us understand some objects in this category.

Since ΓI is essentially surjective, every object in QCoh(X)I−torsion can be built as ΓIM
for some object M ∈ QCoh(X). So certainly, the objects ΓI(k[x]/x

n) = k[x]/xn are in
this category. To see another object, consider M = k[x]. Looking in the abelian category
QCoh(X)♡ gives the short exact sequence

0→ k[x] ↪→ k[x, x−1]→ k[x, x−1]/k[x]→ 0

which we identify with the (rotated) distinguished triangle

k[x]→ j∗j
∗k[x]→ ΓI(k[x])[1]

+1−→

in QCoh(X). This cone k[x, x−1]/k[x] goes by many names:

1. it is the locally nilpotent module, where the action of x can be written in the natural
k-basis as

· · · k · x−3 k · x−2 k · x−1 0;

·x ·x ·x 0

2. it is the colimit of inclusions

colim
−→

[
k[x]/xn

xk 7→xk+1

↪−−−−−→ k[x]/xn+1

]
;
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3. it is the module of distributions supported at 0 ∈ A1
k, which we might denote Dist0(A1

k).

This module, under the change of coordinates x 7→ t− 1, already appeared in Chapter 4.5 as
the universal ind-unipotent local system L ind-uni on S1.

Remark 6.9. To calculate ΓIM , it can help to view j∗j
∗M as the endpoint of the infinite

process of repeatedly tensoring F with the sheaf O(Z):

j∗j
∗F ≃ colim

−→

[
F ⊗ O(Z)→ F ⊗ O(2Z)→ F ⊗ O(3Z)→ . . .

]
Each term F ⊗ O(nZ) permits poles of order up to n along Z, and thus the colimit permits
poles of arbitrary finite order along Z.

Functors that do not preserve limits

To close this section, we record some examples from algebraic geometry of pullback functors
that do not preserve limits. This is similar in purpose to Warning 5.2 from topology, because
our comonadicity arguments in algebraic geometry will have to reckon with the same reality.

Warning 6.10 (Failure to preserve injective limits). This is a crucial example. Let

j : U ↪→ X

be an affine open embedding into a scheme. The functor j∗ does not preserve all limits.
For example, let X = Spec k[x], U = k[x, x−1], and consider the diagram of modules F :
Nop → QCoh(X) given by

F • =

[
· · · → k[x]/xn → k[x]/xn−1 → · · · → k[x]/x

]
Then certainly j∗F • ≃ 0•, so lim

←−
Nop

j∗F • ≃ 0. But

j∗lim
←−
Nop

F • ≃ j∗k[[x]] ≃ k[[x]][x−1] ̸≃ 0

is Laurent series. We note that the fact that the morphisms in F • were surjections meant that
the diagram F • was already fibrant, and therefore was suitable for calculating the homotopy
limit as lim

←−
F • ≃ k[[x]].

Thus, j∗ does not preserve all cosimplicial limits. This fact will be the biggest obstacle to
reckon with in the upcoming recollement-based proof of Zariski comonadicity.
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Warning 6.11 (Failure to preserve products). Consider

p : Spec k[x]→ Spec k

the projection. It does not preserve arbitrary infinite products: the object

p∗(
∏
Z

k) := (
∏
Z

k)⊗k k[x]

consists of (finite) polynomials with coefficients in V :=
∏

Z k, while∏
Z

(k ⊗k k[x]) =
∏
Z

k[x]

contains more general items, such as the infinite series
∑

i eix
i; here ei is the ith standard

basis vector of V .

The above warnings illustrate two different ways in which an fpqc cover p : X → Y can
have a pullback p∗ which does not preserve limits.

6.4 Way 2: using localizations
Armed with the pair of localizations determined by an open subscheme U ⊂ X, are now
ready to tackle Zariski comonadicity. We start very explicitly with the simplest version, and
then tackle the general finite cover case.

Zariski comonadicity for a two-piece cover

Proposition 6.12. Suppose
X = U1 ∪ U2

is an open covering of a variety X. Then the functor L := j∗1 ⊞ j
∗
2 is comonadic.

Proof. The proof here is very much in the spirit of Proposition 5.12.
We verify the hypotheses of Barr-Beck-Lurie for L = j∗1 ⊞ j

∗
2 = (j1 ⊔ j2)∗. First, since

j1⊔ j2 : U1⊔U2 → X is surjective, that means that L is conservative. So it remains to show,
if F • : ∆ → QCohX is a diagram such that j∗1F •, j∗2F • are split, that the canonical map
ϕi : j

∗
i lim←−

∆

F •
≃−→ lim←−

∆

j∗i F
• is an equivalence for i = 1, 2. Recalling Warning 6.10, we will need

to proceed carefully. Since ji∗ is conservative, this is equivalent to showing that

ji∗ϕi : ji∗j
∗
i lim←−

∆

F •
≃−→ ji∗lim←−

∆

j∗i F
•, for i = 1, 2.

As announced, the strategy will be to prove this using the fiber sequences from the previous
section.
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Put Z1 := U1 \ U2, Z2 = U2 \ U1. Recalling the notation in Corollary 6.7, this gives two
“distribution” fiber sequences3:

î2!̂i
!
2F
•︸ ︷︷ ︸

(B)

→ F • → j1∗j
∗
1F
•︸ ︷︷ ︸

(A)

î1!̂i
!
1F
• → F • → j2∗j

∗
2F
•

The idea is simple: to show that lim←−
∆

commutes with the functors in (A), use the split

hypothesis and functor compatiblities to argue that lim←−
∆

commutes with the functors in (B)

(see Figure 6.2).

Figure 6.2: The logical flow of the argument for comonadicity. The implication (1) is due to
the compatibility î!2F • = î!2j2∗j

∗
2F
• together with the fact that the image under any functor

of a split diagram is still split, and the implication (2) is due to the analysis below of the
“distribution” fiber sequence

î2!̂i
!
2F
• → F • → j1∗j

∗
1F
•

Here are the details. Since j∗1F • is split, then so is î!1j∗1F •, which—importantly—is the
same as î!1F •. Similarly, î!2F • is split. Therefore, taking limits of the first triangle gives:

3To recap: we use the notation î!Z in place of ΓIZ (−) to denote “taking the derived IZ-torsion,” and îZ!

in place of ι to denote the canonical embedding.
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î2!̂i
!
2lim←−

∆

F • lim←−
∆

F • j1∗j
∗
1 lim←−

∆

F •

î2!lim←−
∆

î!2F
•

lim←−
∆

î2!̂i
!
2F
• lim←−

∆

F • lim←−
∆

j1∗j
∗
1F
•

(∗)

j1∗ϕ1

(∗∗)

where (∗) is from the fact that î!2 is a right adjoint, and (∗∗) is from the fact that î!2F • is split.
Thus, j1∗ϕ1 is an equivalence. Since this holds for the other index as well, this concludes the
proof.

Remark 6.13. It is crucial to our strategy that the above proof was completely mechanical
once we knew the following four facts for k = 1, 2:

1. j∗k are jointly conservative;

2. jk∗ are conservative;

3. î!kj∗k ≃ î!k;

4. î!k are right adjoints.

Zariski comonadicity for a finite cover

We now set up some notation for the general proof. For opens V ⊂ U ⊂ X, let jV⊂U : V ↪→ U
denote the inclusion. For a subscheme Z which is closed in an open U and which further is
closed in an open V ⊂ U , write iZ⊂U = jV⊂U ◦ iZ⊂V . These have the following important
compatibilities:

I. j∗V⊂Uj∗W⊂V ≃ j∗W⊂U

II. î!Z⊂U ≃ î!Z⊂V j
∗
V⊂U

By repeatedly using the active ingredient, contained in the above two-piece cover proof
and enshrined abstractly in Lemma 8.6, we have a proof of Zariski comonadicity for finite
covers:

of Theorem 6.1, part (1). Let X = U1 ∪ · · · ∪ Un be an open cover. For K ⊆ [n], put
UK := ∪k∈KUk. For K ⊆ L, put jK⊂L : UK ↪→ UL. Again, we argue for descent by using
recollement technology, whose consequenes we have repackaged into Lemma 8.6.
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Assume that j∗k∈[n]F
• is split for all k; we wish to show that j∗k∈[n]lim←−

∆

F • ≃ lim←−
∆

j∗k∈[n]F
•.

WLOG, up to re-indexing, we wish show that j∗[1]⊂[n]lim←−
∆

F • ≃ lim←−
∆

j∗[1]⊂[n]F
•. The strategy is

to first use Compatibility I to factor

j∗[1]⊂[n] ≃ j∗[1]⊂[2]j
∗
[2]⊂[3] · · · j∗[n−1]⊂[n]

and show that the successive pullbacks preserve the limit. Here is how that goes:

1. First, look at j := j[n−1]⊂[n]; the complement Zn (inside U[n] = X) includes as a
closed subscheme into Un, and thus by the Compatibility II, the restriction î!Zn⊂[n]F

• ≃
î!Zn⊂Un

j∗n∈[n]F
• to this complement is split. By Lemma 8.6, we conclude that

j∗[n−1]⊂[n]lim←−
∆

F • ≃ lim←−
∆

j∗[n−1]⊂[n]F
•

2. Next, look at j := j[n−2]⊂[n−1]; the complement Zn−1 (inside U[n−1]) includes as a closed
subscheme into Un−1, and thus by Compatibility I and II, the restriction

î!Zn−1⊂[n−1]j
∗
[n−1]⊂[n]F

• ≃ î!Zn−1⊂Un−1
j∗(n−1)∈[n−1]j

∗
[n−1]⊂[n]F

• ≃ î!Zn−1⊂Un−1
j∗(n−1)∈[n]F

•

to this complement is split. By Lemma 8.6, we conclude that

j∗[n−2]⊂[n−1]lim←−
∆

j∗[n−1]⊂[n]F
• ≃ lim←−

∆

j∗[n−2]⊂[n−1]j
∗
[n−1][n]F

•

We can chain this together with the result in (1) to obtain, using Compatibility I,

j∗[n−2]⊂[n]lim←−
∆

F • ≃ lim←−
∆

j∗[n−2]⊂[n]F
•

3. Repeat the reasoning in the above step finitely many times to yield j∗[1]⊂[n]lim←−
∆

F • ≃

lim←−
∆

j∗[1]⊂[n]F
•, which is what we wanted to show.

This argument will be recast in more general language in Proposition 8.19.

6.5 Appendix: non-comonadic covers
Zariski comonadicity states that that an open cover can be used to comonadically describe
QCoh(X). One might ask:

Question 6.14. Can other kinds of covers of X in algebraic geometry be comonadic?
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Here is an example of a cover that falls short of comonadicity:

Example 6.15 (Open-closed decomposition). Let C = QCoh(A1) = k[x] Mod, and take the
open-closed decomposition

{0} i
↪−→ A1, U := A1 \ {0}

j
↪−→ A1

Thus, {0},A1 \ {0} is a cover of A1, at least in the sense that the functor

QCoh(A1)
L:=i∗⊞j∗−−−−−→ QCoh({0})⊞QCoh(U)

is conservative.
However, it is not comonadic because it fails to preserve enough limits.
Let us back up a bit. To see that it is conservative, suppose that F ∈ QCoh(A1) is such

that i∗F ≃ 0. Equivalently, F ·x−→ F is a quasi-isomorphism, which means that F ≃ j∗j
∗F .

So if j∗F ≃ 0 as well, then F ≃ 0.
However, L is not comonadic. As proposed by the two comonadic versions of Barr-Beck

from Chapter 2.5, we can examine this failure from two angles:

1. One perspective on the failure is that Lenh is not an embedding, i.e. that there exists an
object F that is not the limit of its T -cobar. Let us find such an object. To arrive there,
note that since i∗j∗ ≃ 0 and j∗i∗ ≃ 0, the subcategories i∗QCoh({0}) and j∗QCoh(A1)
are orthogonal and the monad T is diagonal:

T =

[
i∗i
∗ 0

0 j∗j
∗

]
Consider now F = O the structure sheaf, and build its T -cobar T •+1O:

O i∗i
∗O ⊕ j∗j∗O i∗i

∗i∗i
∗O ⊕ j∗j∗j∗j∗O · · ·

By orthogonality, the limit of the cobar decomposes as a direct sum:

lim←−
∆

T •+1O ≃ lim←−
∆

(i∗i
∗)•+1O ⊕ lim←−

∆

(j∗j
∗)•+1O

≃ O∧0 ⊕ j∗j∗O

But certainly, O does not e.g. have j∗j∗O as a direct summand, so O ̸= lim←−
∆

T •+1O.

Thus L is not comonadic. As we will see in Theorem ??, this particular failure is the
same as the failure of Rrecon to be an embedding.

2. Another perspective on the failure is that Rrecon is not an embedding. This failure would
be implied by the existence of a cosimplicial diagram that is L-split, but whose limit
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is not preserved by L. We can mine our previous example to get one here; take the
following cosimplicial diagram, which we have decorated with its limit:

O∧0

[
i∗i
∗O i∗i

∗i∗i
∗O · · ·

]
We first check that it is L-split. As the cobar for the adjunction (i∗, i∗), it is i∗-split. The
cosimplicial piece is also trivially j∗-split, because its j∗-image is the zero cosimplicial
diagram. Though L-split, its limit is not preserved, because j∗O∧0 ̸≃ 0. Indeed, this is
the same example as Warning 6.10, but in the guise of a cosimplicial diagram; taking
its tower of truncated totalizations gives the injective limit diagram in the warning.

We now look at both failures simultaneously, by first identifying

Ω coMod
(
QCoh({0})⊞QCoh(U)

)
with QCoh(A1)I−complete ⊞QCoh(U),

and then building the comonadicity diagram in PrL

QCoh(A1) QCoh(A1)I−complete ⊞QCoh(U)

QCoh({0})⊞QCoh(U)

i∗⊞j∗

Lenh=(−)∧⊞j∗

fgt

Rrecon=⊕

i∗⊕j∗

This illustrates both failures: Lenh is conservative but not an embedding, and the same is
true of Rrecon.

Remark 6.16. While j∗ is a localization, i∗ is not: its right adjoint i∗ is not an embedding
because

hom(i∗k, i∗k) = k ⊕ T0A1[−1].
However, the enhanced version (i∗)enh ≃ (−)∧ is a localization.

Though the diagram above exhibits the failure of i∗ ⊞ j∗ to be comonadic, it also offers
a correction: instead of considering the functor i∗ to QCoh({0}), consider its completed
version (−)∧ to QCoh(A1)I−complete. That is, make the replacement

i∗ ⊞ j∗ ⇝ (−)∧ ⊞ j∗ =: Lenh

One may then prove the following generalization, at least for the case where Z
i
↪−→ X is

a Cartier divisor on a classical scheme X:

Theorem 6.17 (Beauville-Laszlo). The functor Lenh, i.e. the cover

X∧Z ⊔ U
î⊔j−−→ X

is comonadic.
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Chapter 7

Singular Support

7.1 What is in this chapter?
This chapter introduces the notion of constructible sheaf, and explores the concept of its
singular support. The ultimate purpose is to build the conceptual base for stating the
comonadic problem of interest.

The central notion is that of a microstalk of sheaves. The remainder of this section will
attempt to motivate this construction, which is analogous to that of the directional derivative
of functions.

Let us now build this analogy. First, given a manifold M and a C1 function f :M → R,
at any point x ∈M the function has an associated value, f(x) ∈ R. If M is given a metric,
then f has a gradient vector field ∇f , and so for any point (x, ξ) ∈ T ∗M , f also has a
directional derivative at x in the codirection ξ:

ξ(∇xf) ∈ R.

We now categorify this construction from analysis to the setting of classical sheaves on
M Sh(M)♡. The function f now becomes a sheaf F ∈ Sh(M)♡. The value of f at x ∈ M
becomes the stalk of F at x, Fx. To calculate the “directional derivative” of F at (x, ξ), let
us pick a small open ball B ⊆M around x, and consider an auxiliary C1 function ϕ : B → R
such that

ϕ(x) = 0 and dxϕ = ξ.

Then it makes sense to consider the kernel and cokernel of the restriction map resBBϕ<0
from

sections over B to sections over the half-ball

Bϕ<0 := {m ∈ B : ϕ(m) < 0},

which fill out the exact sequence

Ker(resBBϕ<0
)

[
F (B) F (Bϕ<0)

]
Coker(resBBϕ<0

)
resBBϕ<0
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The size of the cokernel measures the extent to which sections over Bf<0 fail to propagate to
the rest of B. The size of the kernel measures the extent to which sections that do propagate
fail to propagate uniquely.

Figure 7.1: Set-up for taking the directional derivative of a sheaf. The goal is to see which
sections propagate from the orange-colored region Bϕ<0 across the blue frontier ϕ = 0 to the
rest of the ball B, in the codirection ξ that is “normal” to the frontier at x.

We amalgamate the kernel and the cokernel into the homotopically-savvy construction
of the cone, or cofiber, of resBBf<0

, which now makes good sense for any sheaf F in the ∞-
category Sh(M). In fact, we can remove the dependence of B by taking the colimit as these
opens B shrink to x to get something depending only on the shred of M around x:

Definition 7.1. Let F ∈ Sh(M), (x, ξ) ∈ T ∗M , and ϕ ∈ C1(M)x a germ of a C1 function
at x satisfying ϕ(x) = 0 and dxϕ = ξ. The microstalk of F at x in the codirection ξ, with
respect to ϕ, is the (well-defined) k-module

µϕ(x,ξ)(F ) := colim
−→
B∋x

Cone(resBBϕ<0
)

≃ Cone(F |x
(resBBϕ<0

)|x
−−−−−−→ j∗j

∗F |x)

where in the second line, a particular B
j
↪−→ M around x and a particular ϕ : B → R was

chosen, before taking the stalk at x; this is because taking stalks is an operation that preserves
finite limits like cones.

So it is a “directional derivative” of sorts: it is a k-module that tracks the extent to which
the map resBBϕ<0

, in the limit of shrinking B, fails to be a quasi-isomorphism. That is, it
measures the extent to which sections over Bϕ<0 fail to propagate uniquely past the frontier
{ϕ = 0} to the rest of B, in the limit of shrinking B.

However, as declared in the notation, this construction depends not just on the point
(x, ξ), but on a germ ϕ. There is a wiser definition that will be presented later that is, up to
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a shift that is interesting yet irrelevant for our purposes, truly independent of the auxiliary
function ϕ. And it will be particularly calculable for constructible sheaves, to which we now
turn in detail.

7.2 Constructible sheaves
A previous chapter discussed local systems on a topological space X, which we now take
to be a C1 manifold M . A constructible sheaf on M is the next simplest thing to a local
system: loosely speaking, it is a patchwork of local systems.

To be precise, we first describe how M is to be patched together. This is via a stratifica-
tion.

Definition 7.2. A stratification S of M is a collection {Ms}s∈S subsets subsets of M , called
strata, such that on the level of underlying sets,⊔

s∈S

Ms =M.

We demand a few other properties of S:

1. the strata Ms are locally closed subspaces of M , and are smooth manifolds in their own
right;

2. the stratification is locally finite;

3. the frontier condition is satisfied: every Ms \Ms is a disjoint (in the space M) union
of strata in S. This imbues S with the structure of a poset, where s ≤ t if and only if
Ms ⊆Mt

We can now define the key objects:

Definition 7.3. Given a stratification S, a sheaf F is said to be S-constructible if F |Ms is
a local system for all s ∈ S1. Denote by

ShS(M) ⊆ Sh(M)

the full subcategory of S-constructible sheaves. We say that a sheaf F is constructible if it
is S-constructible for some stratification S.

There is one more condition on our stratifications that we will require, and it is a regu-
larity condition that has useful microlocal implications (see Proposition 7.25):

1In the literature, one may see this as the definition of a weakly S-constructible sheaf, with the term
“S-constructible sheaf” reserved for those weakly S-constructible sheaves that have perfect stalks. We do
not make this assumption.



CHAPTER 7. SINGULAR SUPPORT 127

Figure 7.2: An example of a stratification of R2 meeting all of the above criteria, together
with the associated poset.

Definition 7.4. A stratification S of M is a Whitney stratification if, for any pair of strata
Ms and Mt satisfying Ms ⊇Mt and any pair of sequences xn ∈Ms, yn ∈Mt that satisfy the
conditions that

1. both sequences converge xn, yn → x to the same point,

2. the tangent planes TxnMs on the bigger stratum converge to a subspace T ⊆ TxM ,

3. the secant lines (in any Riemannian metric on M) xnyn converge to a line ℓ ⊂ TxM ,

the containment ℓ ⊆ T holds.

In other words, limiting secant lines, when they exist, between two neighboring strata
must be contained in the limiting tangent planes, when they exist, for the bigger stratum.
For example, all stratifications of two-dimensional spaces M are vacuously Whitney stratifi-
cations, but starting in three dimensions there are stratifications that are not Whitney (see
Figure 7.3).

Let T ∗SM denote the union
T ∗SM :=

⋃
s∈S

T ∗Ms
M

of conormals to the strata. It satisfies the following properties:

1. since T ∗Ms
M is a smooth conic Lagrangian for each Ms, T ∗SM is a singular conic La-

grangian in T ∗M ;

2. since S satisfies the Whitney condition, T ∗SM is a closed subset.
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Figure 7.3: The Whitney cusp gives an example of a stratification of R3 by a line (red),
a surface (black), and the complement, which is not a Whitney stratification: the depicted
sequences of xn, yn have vertical secant lines (fuchsia), but the tangent planes TxnMs converge
to a horizontal tangent plane (purple). This beautiful image appears in the note [23].

7.3 Singular support
Let F be a sheaf on M , and ϕ : M → R a C1 function. Choose a t ∈ R, and define the
following closed submanifolds (with boundary) of M :

1. the level set Mt := {m : ϕ(m) = t}
iMt
↪−−→M ; and

2. the suplevel set M≥t := {m : ϕ(m) ≥ t}
iM≤t

↪−−→M .

Now, pick a point x ∈Mt.

Definition 7.5. We say that x is a cohomologically F -critical point of ϕ if

(i!M≥t
F )x ̸≃ 0.

In other words, by first situating F into the open-closed decomposition triangle

iM≥t !i
!
M≥t

F → F → jM<t∗j
∗
M<t

F
+1−→

and then taking the stalk at x

(iM≥t !i
!
M≥t

F )x︸ ︷︷ ︸
(i!M≥t

F )x

→ Fx → (jM<t∗j
∗
M<t

F )x
+1−→
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Figure 7.4: Calculation of (i!M≥tF )x as the derived sections of F in a small half-open half-ball
Bϵ(x) ∩M≥t around x (shaded orange), relative to its frontier Bϵ(x) ∩Mt (red).

we see that the k-module (i!M≥t
F )x measures the extent to which germs of sections around

x fail to propagate across the hypersurface Mt, in the direction of increasing ϕ.
We can use this to define a subset of the cotangent bundle:

Definition 7.6. The singular support, or microsupport, of F is the subset of T ∗M that is
defined to be the closure of the locus of the differentials of C1 functions at their cohomologi-
cally F -critical points:

SS(F ) :=
⋃

ϕ∈C1(M)

{(ϕ(t), dϕ(t)ϕ) : (i!M≥t
F )ϕ(t) ̸≃ 0}

In words, it is the closure of the locus of points and codirections (x, ξ) for which there is
a frontier (say, cut out by a function ϕ with ϕ(x) = 0, dxϕ = ξ) past which local sections of
F do not propagate uniquely. It satisfies the following basic properties:

Theorem 7.7. Some fundamental properties of singular support:

1. SS(F ) is a closed subset which is conic, i.e., stable under the scaling action R>0 ↷
T ∗M ;

2. SS(F ) ∩ 0M = ιM supp(M), where 0M ⊆ T ∗M denotes the zero section, the image of
the embedding M

ιM
↪−→ T ∗M . Thus πSS(F ) = supp(M), where π : T ∗M → M is the

projection;

3. ([9], Theorem 6.5.4) SS(F ) is always a singular coisotropic subset, i.e. a union of
smooth coisotropic submanifolds of T ∗M . In particular, its smooth locus SS(F )smooth

is a smooth coisotropic submanifold, and hence is of dimension ≥ dimRM .
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We also record some basic estimates on the size of the singular support for certain limits
and colimits of sheaves:

Theorem 7.8. The following singular support estimates hold:

1. ([9], Proposition 5.1.3) If F → G→ H
+1−→ is a triangle in Sh(M), then

SS(F )△SS(H) ⊆ SS(G) ⊆ SS(F ) ∪ SS(G)

2. ([9], Exercise V.7) Let I be a set and {Fi}i∈I be a family in Sh(M) indexed by I. Then

SS(
⊕
i∈I

Fi) ⊆
⋃
i∈I

SS(Fi)

and
SS(

∏
i∈I

Fi) ⊆
⋃
i∈I

SS(Fi)

Example 7.9. Here are singular supports to closed and open submanfiolds of M :

1. Let Z ⊆M be a C1 closed submanifold. Then the singular support of kZ is

SS(kZ) = T ∗ZM,

the conormal bundle of Z. For example, for a point m ∈ M , the singular support of
the skyscraper km is

SS(km) = T ∗mM,

the contangent fiber.

2. Let U ⊆M be an open subset with C1 boundary. Then

SS(kU) = 0U ∪ T ∗,≥0∂U M,

the union of the zero section and the outward conormal at ∂U .

We can use singular support conditions to define subcategories of Sh(M):

Definition 7.10. Given any conic subset C ⊆ T ∗M , define the full subcategory of sheaves
with singular support in C to be

ShC(M) := {F : SS(F ) ⊆ C}

Both of the kinds of sheaves we have encountered previously, namely local systems and
constructible sheaves, are in fact cut out by microlocal conditions:

Theorem 7.11. Let F ∈ Sh(M).
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Figure 7.5: Singular supports (nonzero covectors in red) for kZ and kU for Z a closed C1

submanifold and U an open subset with C1 boundary, respectively. Images are depicted on
the ambient manifold M .

1. F is a local system iff SS(F ) = 0M . In other words, Loc(X) = Sh0M (M);

2. F is Whitney constructible if and only if SS(F ) is a singular Lagrangian subset.

In other words, a sheaf with a sufficiently regular conic Lagrangian singular support
condition is constructible. These will be the singular support conditions we are interested
in:

Definition 7.12. A Lagrangian skeleton Λ ⊆ T ∗M is

1. a closed conic half-dimensional subanalytic subset stratified by isotropic submanifolds

2. which contains the zero section 0M .

We may also sometimes call such a Λ a conic Lagrangian.

As a consequence of Theorem 7.8, ShΛ(M) is closed under finite limits, and infinite
products and coproducts. Since we require Λ to contain the zero section, Theorem 7.11 also
implies that

Sh0M (M) = Loc(M) ⊆ ShΛ(M).

Furthermore, ShΛ(M) is compactly generated; see the Appendix for this section and Corol-
lary 7.31 for an argument.
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7.4 Microstalks
In general, the k-modules (i!M≥t

F )x depend on the choice of function ϕ, and not just on the
point (x, ξ). However, if (x, ξ) is a smooth point of Λ, then if we agree to only consider
those local functions ϕ for which {(x, ξ)} represents a transverse intersection between Γdϕ
and Λsmooth, then we create an essentially well-defined object. In more detail:

Definition 7.13. Let Λ ⊆ T ∗M be a Lagrangian skeleton. Let f : U → R be a C1 function
defined on some open subset U ⊆M .

1. A point x ∈ U is called a Λ-critical point of ϕ if the graph of df intersects Λ above x:

Γdϕ ∩ Λ ∩ T ∗xM = {(x, dxϕ)}

2. A Λ-critical point x of ϕ is called Morse if (x, dxϕ) ∈ Λsmooth, and Γdϕ∩Λ is transverse
at (x, dxϕ).

Proposition 7.14 ([9], Proposition 7.5.3). Let Λ ⊆ T ∗M be a Lagrangian skeleton, and
suppose f is a local function on M that has a Morse Λ-critical point at (x, dxϕ). Then for
any F ∈ ShΛ(M), the object (i!M≥t

F )x is independent of such ϕ, up to a shift.

We use these ϕ to define the microstalk functors:

Definition 7.15. Let Λ ⊆ T ∗M be a Lagrangian skeleton, and (x, ξ) ∈ Λsmooth a smooth
point. For F ∈ ShΛ(M), the microstalk functor

µ(x,ξ) : ShΛ(M) → kMod

F 7→ (i!M≥t
F )x

is independent, up to a shift, of the choice of ϕ for which Γdϕ has a transverse intersection
with Λsmooth at (x, ξ).

The shift will not matter to us, so we will freely choose any suitable local function ϕ to
calculate this functor at smooth points (x, ξ) ∈ Λsmooth, and smugly call it the microstalk at
(x, ξ).

Example 7.16. Let M = R and consider Λ = 0R ∪ T ∗0R. Then

Λsmooth = Λ \ {(0, 0)},

which has four pieces. There are four co-cores, depicted in the following figure:

Example 7.17. Let M = R and consider Λ = 0R ∪ T ∗,≥00 R ∪ T ∗,≥01 R. Then

Λsmooth = Λ \ {(0, 0), (1, 0)}

and the singular supports of the co-cores to the two non-zero codirections are depicted in
purple; see Figure 7.7.
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Figure 7.6: The four co-cores for Λ ⊆ T ∗R the cross. The co-cores for the two zero co-
directions are the corepresentatives k(−∞,0), k(0,∞) of the stalks at the two points −1,+1 ∈ R,
respectively.

Figure 7.7: The two co-cores to the nonzero codirections in Λ of Example 7.17.

7.5 Wrapping, and the comonadicity problem
In this section, we define the fundamental functor of “wrapping,” and pose the comonadicity
problem.

Given Λ ⊆ T ∗X a Lagrangian skeleton, recall that we have defined the full subcategory
of Sh(X)

ShΛ(X) := {F : SS(F ) ⊆ Λ}
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If Λ′ ⊆ Λ is an inclusion of Lagrangian skeleta, then the embedding

ι : ShΛ′(X) ↪→ ShΛ(X)

is also bicontinuous. Since ShΛ′(X), ShΛ(X) ∈ PrL are compactly generated by Corollary
7.31, the Adjoint Functor Theorem guarantees that ι has both adjoints

ShΛ′ ShΛ in PrL,stι

ιL

ιR

where we emphasize that ιR may not be a left adjoint, and thus draw it dashed.

Definition 7.18. We call the left adjoint ιL wrapping, or stop-removal.

We now have the language to formulate our fundamental descent question:

Question 7.19. Let {Λi}i∈I be a (finite) closed cover of Λ by closed conic Lagrangians (which
we allow to not contain the entire zero section). Amalgamate all the wrapping functors ιLi
into the left adjoint functor2 L

ShΛ

L:=
∏

i∈I ι
L
i−−−−−−→
∏
i∈I

ShΛi

Which assumptions on {Λi}i∈I would ensure that L is comonadic?

We pursue this question in the final chapter. For the remainder of this chapter, let us
simply try to get a sense of what the wrapping functor ιL does by looking at some examples.

Example 7.20. Let M = S1 and Λ = 0S1 ∪ T ∗0S1 for the basepoint pt 0−→ S1, and Λ′ = 0S1

is just the zero section. Then the wrapping ιL(k0) of the skyscraper k0 is:

ιL(k0) ≃ exp! kR[1] ≃ L univ[1] := 0h! k[1]

i.e. is (up to a shift) the universal local system on S1, which we encountered in an earlier
chapter.

Remark 7.21. Wrapping, thought of as an endofunctor on ShΛ(M) via the embedding

ShΛ(M)
ιL−→ ShΛ′(M)

ι
↪−→ ShΛ(M),

is a “non-local,” or “global,” operation in the sense that to know ιL(F )|U , i.e. the outcome
of ιL(F ) over an open subset U ⊆ M , it is generally not enough to simply know F |U . For

2This is a functor in PrL by Corollary 7.31 and the fact that PrL is closed under limits.
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Figure 7.8: Wrapping of the skyscraper k0 into 0S1 , with singular supports of the sheaves
drawn in red. It is not, so to speak, a “finite” procedure: one can think of it as the colimit
of the “partial wrappings”[

k0 → exp! k(−1,1)[1]→ exp! k(−2,2)[1]→ · · ·
]
→ exp! kR[1]

example, if Λ is the cross T ∗SR for the stratification S = {0,R>0,R<0} and Λ′ is the zero
section 0R, then wrapping the skyscraper at 0 ∈ R results in

ιL(k0) = kR[1]

which, over U := R>0, certainly could not have been constructed from knowledge of the sheaf
k0|U ≃ 0.

7.6 Aside: a first comonadicity result
This section is non-essential, and in retrospect quite silly-looking, but represents one of our
first lines of thinking about the kinds of two-piece covers Λ = Λ1 ∪Λ2 of Lagrangian skeleta
lead to comonadic descriptions of ShΛ(X) using adjunctions with ShΛi

(X). It is an outgrowth
of the following simple question.

Inside T ∗R, consider the cover Λ = Z ∪ C given by the zero section and the cotangent
fiber at 0 ∈ R:

Z := T ∗RR, C := T ∗0R
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Is this cover comonadic?
It turns out to be so. Put

{0} R

pt

i

p

By looking at the generators of the constructible category ShZ∪C(R) and examining the
effects of various functors on the generators, the localization functors LZ , LC can be identified
with

LZ ≃ p!p! ≃ p∗[1]p!, LC ≃ i∗i
∗

as part of the following diagram:

W0 ShC(R) ShZ∪C(R) ShZ(R) V [1]

W Sh(pt) Sh(pt) V

LC LZ

i∗ p!≃
i∗

≃
p!

A specific identification is the data of a trivialization of the Z/2-torsor orR, because it
affords the counit isomorphism of the adjunction p!p! ∼= Id.

Here is the simple result:

Lemma 7.22. LZ ⊞ LC is comonadic.

Proof. The identifications LZ ≃ p!p! and LC ≃ i∗i
∗, together with the identifications p! ≃

i! and p! ≃ p∗[1] in this case, show that LZ , LC preserve all limits and colimits. For
(co)monadicity, it therefore remains to check conservativity. Supposing that i∗F ≃ 0, then
F ≃ j!j

!F where j : R \ {0} ↪→ R is the embedding of the open complement, in which case

p!F ≃
(
F−1 ⊕ F1

)
[1]

is the direct sum of the fibers at ±1. Using the fact that any F is the data of the quiver
representation

F−1
r−←− F0

r+−→ F1,

the further assumption p!F ≃ 0 shows that F ≃ 0.

The next result is both a higher-dimensional and a family version of this example. To
set it up, consider the decomposition of Rr

{0} Rr Rr \ {0} Sr−1

pt

p

j

π
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as in the picture:

Put Λ = Z ∪C = 0Rr ∪T ∗0Rr, and define ShΛ(Rr)ind-uni to be the stable presentable category
appearing as the fiber product

ShΛ(Rr)ind-uni ShΛ(Rr)

⊥(k⊥Sr−1) = Loc(Sr−1)ind-uni Loc(Sr−1)

Loc(pt)

j∗
□

j∗

ph∗ ph∗

where we recall that ⊥(k⊥Sr−1) ⊆ Loc(Sr−1) is the subcategory consisting of those local systems
on Sr−1 that have non-trivial cohomology, i.e. the subcategory on which p∗ is conservative.
So ShΛ(Rr)ind-uni is the category consisting of all Λ-constructible sheaves that either are the
skyscrapers at 0 or restrict to cohomologically-nontrivial local systems on the unit sphere
Sr−1 ⊆ Rr.

The result below is about a family version of the construction ShΛ(Rr)ind-uni:

Proposition 7.23. Let Y ⊂ X be a regularly embedded codimension r closed submanifold
such that X ≃ NY/X . Put

Λ = 0X ∪ T ∗YX := Z ∪ C ⊆ T ∗X,

and let ShΛ(X)ind-uni denote the stable presentable full subcategory of ShΛ(X) consisting of
those objects that restrict to objects of ShΛ∩T ∗(NY/X |y)(Rr)ind-uni on each fiber of the normal
bundle NY/X → Y ; that is, sheaves that restrict to ind-unipotent local systems on the links
of Y inside X (see Figure 7.9). Then the functor

ShΛ(X)ind-uni
LZ⊞LC−−−−→ ShZ(X)⊞ ShC(X)

is comonadic.
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Proof. The proof mirrors the argument in Lemma 7.22. It suffices to show the fiberwise
statement, that the functor

ShΛ(Rr)ind-uni Loc(X)⊞ ShC(X)
LZ⊞LC

is comonadic. First, by the identifications of LZ , LC above, they are biadjointable. Therefore,
L := LZ ⊞LC preserves all limits and colimits, can be identified with L ≃ p! ⊞ i∗, and has a
right adjoint R := p! ⊕ i∗ which does indeed land in the requisite category.

Figure 7.9: The condition defining an object of ShΛ(X)ind-uni for Λ = 0X ∪ T ∗YX.

It remains to verify that the domain of L was properly rigged to make L conservative.
Any object F ∈ ShΛ(Rr)ind-uni fits into a fiber sequence

j!j
!F → F → i∗i

∗F
+1−→,

whose image under p! is the fiber sequence

p!j!j
!F︸ ︷︷ ︸

π∗i∗S [−1]F

p!F p!i∗i
∗F︸ ︷︷ ︸

i∗F

Assuming that LZF = LCF = 0, the identifications mean that the last two terms of the
above sequence vanish, meaning that the first one does as well. But this exactly means
that i∗SF is a π∗-trivial local system, which by definition are excluded from the category
ShΛ(Rr)ind-uni. Thus F must be stitched together from a skyscraper at 0 and a zero local
system in the complement of 0, meaning that F ≃ 0.
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Example 7.24. Taking r = 2, we see that ShΛ(R2) cannot be comonadically described using
the functors p! and i∗ because e.g. the object j!kµ=−1R2\{0}, which is the shriek extension of the
rank 1 local system on S1 ≃ R2 \ {0} with mondromy −1, vanishes under the total wrapping
functor p! ⊞ i∗. In general, the two functors p!, i∗ can recover

1. the global sections of a constructible sheaf F , and

2. the global sections of the local system j∗F , which are only the monodromy invariants
of any fiber (j∗F )|̸=0.

For a general local system, it is impossible to reconstruct the whole fiber and the monodromy
from just the monodromy invariants. But, especially after accounting for the comonad struc-
ture, it is hopefully more believable that this is possible for the less variable ind-unipotent
local systems.

7.7 Appendix: compact generation of ShΛ(M)

In this section we record important formal properties of the categories ShΛ(M), culminating
with the result that it is compactly generated for Lagrangian skeleta Λ. For an even better
exposition of the basics, see Chapter 3 of the PhD thesis of Christopher Kuo [11].

We first record some fundamental results about the interaction between Lagrangian
skeleta and C1 Whitney stratifications:

Proposition 7.25. For a C1 Whitney stratification S of a C1 manifold M , the following
categories coincide:

ShS(M) = ShT ∗
SM

(M)

Lemma 7.26. Let Λ be a Lagrangian skeleton. Then there exists a C1 Whitney stratification
S such that Λ ⊆ T ∗SM . In fact, the S can be chosen to be a Whitney triangulation.

In other words, S-constructible sheaves for a Whitney stratification are cut out by a
microlocal condition, and any sheaf F for which SS(F ) lies within a Lagrangian skeleton is
in fact S-constructible for some Whitney stratification.

Further regularizing to Whitney triangulations affords these categories a particularly nice
combinatorial presentation:

Proposition 7.27. Let S be a C1 Whitney triangulation. Then there is an equivalence

ShT ∗
SM

(M) S
op Mod

kMs ks

≃



CHAPTER 7. SINGULAR SUPPORT 140

where we think of S as a poset as we did in the definition of stratification, and where ks is
the indicator defined by

ks(t) :=

{
k t ≤ s,

0 otherwise

Since S Mod ≃ IndPerf(S) is compactly generated, this immediately implies

Corollary 7.28. The presentable category ShT ∗
SM

(M) is in fact compactly generated. Its
compact objects ShT ∗

SM
(M)c are those sheaves that have compact support and perfect stalks.

Compact generation implies the following important result:

Lemma 7.29. For a C1 Whitney triangulation S of M , the following hold:

1. for any covector ξ ∈ ShS(M), the microlocal stalk functor

ShS(M)
µξ−→ kMod

admits a left adjoint µLξ and a right adjoint µRξ ;

2. the object
P S
ξ := µLξ (k)

is compact, and corepresents µξ;

3. the objects P S
ξ for ξ in the smooth locus

T ∗SM
smooth ⊆ T ∗M

generate ShS(M).

Proof. For (1), both the source and target of µξ are compactly generated, so by the Adjoint
Functor Theorem 1.7 it would suffice to show that µξ preserves all limits and colimits.
This holds because µξ can be calculated as the fiber of two stalk functors, each of which is
bicontinuous because S is a triangulation. This produces the adjunction

ShT ∗
SM

(M) kMod
µξ

µLξ

µRξ

in PrL. Part (2) follows from

homShT∗
S
M (M)(µ

L
ξ (k), F ) ≃ hom

k Mod(k, µξF ) = µξF,
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which shows that µLξ (k) is the corepresentative. It is compact because µξ preserves colimits.
Part (3) holds because, by definition,{

P S
ξ : ξ ∈ T ∗SM smooth

}⊥
= ShI(M)

for I ⊆ T ∗M the isotropic subset, of dimension less than dimRM , of vectors in the non-
smooth locus of T ∗SM . But by Theorem 7.7 there are no sheaves with properly isotropic
singular support, so ShI(M) ≃ 0.

Having established compact generation for the categories ShS(M) for S a C1 Whitney
triangulation, we proceed to establish it for certain categories ShΛ(M) with finer singular
support conditions Λ by embedding them into categories of the form ShS(M) and using the
following lemma:

Lemma 7.30. Let C ′ be a reflective subcategory of C in PrL:

C ′ C in PrLι

ιL

ιR

If C is compactly generated, then so is C ′.

Proof. Consider any object F ∈ C ′. Its image ιF can be written as a filtered colimit of
compact objects in C

ιF ≃ colim
−→

Fi for Fi ∈ C c.

Since ιL is a colimit-preserving localization, applying it to the above isomorphism gives the
following formula for F :

F ≃ ιLιF ≃ ιLcolim
−→

Fi

≃ colim
−→

ιLFi.

The objects ιLFi are compact in C ′ because ιL has a colimit-preserving right adjoint ι.

We apply this strategy to arrive at the concluding result of this section:

Corollary 7.31. Let Λ be a Lagrangian skeleton. Then the category ShΛ(M) is compactly
generated.

Proof. We offer a proof that at least looks morally correct. Another proof can be found in
[17], Section A.1.4.

By Lemma 7.26, there exists a C1 Whitney triangulation S for which Λ ⊆ T ∗SM , which
gives the embedding

ShΛ(M)
ι
↪−→ ShT ∗

SM
(M) ≃ S Mod
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into a category that is compactly generated by Proposition 7.27. Since Λ is closed and conic,
ι furthermore preserves all finite limits and colimits, as well as all products and coproducts,
by Theorem 7.8. If we could guarantee the existence of a left adjoint ιL, and thus of a
reflective localization in PrL

ShΛ(M) ShT ∗
SM

(M) ≃ S Modι

ιL

ιR

then we would conclude by Lemma 7.30 that ShΛ(M) is also compactly generated. By the
Adjoint Functor Theorem 1.7, it suffices to show that ShΛ(M) is presentable and that the
colimit-preserving functor ι is accessible.

Since T ∗SM is a Lagrangian skeleton, by Proposition 7.14 the microstalk functors µξ, for
ξ ∈ (T ∗SM)smooth, are well-defined on the category ShT ∗

SM
. Since each of them is calculated as

a finite limit of stalk functors, which are bicontinuous on the constructible category ShS(M),
the microstalk functors

ShT ∗
SM

(M)
µξ−→ kMod

are therefore themselves bicontinous functors of presentable categories. Since PrL is closed
under products, the funcor

ShT ∗
SM

(M)

Φ:=
∏

ξ∈(T∗
S
M)smooth\Λ

µξ

−−−−−−−−−−−−−→
∏

ξ∈(T ∗
SM)smooth\Λ

kMod

is also a left adjoint functor, and therefore ShΛ(M), cut out by the conditions of having zero
microstalk in codirections ξ ∈ (T ∗SM)smooth \Λ,3 appears as the fiber product of the following
cospan in PrL:

ShΛ(M) ShT ∗
SM

(M)

0
∏

ξ∈(T ∗
SM)smooth\Λ

kMod

□

ι

Φ

The category ShΛ(M) is thus presentable by [14], Proposition 5.5.3.12, and ι is a bicontinuous
functor.

This leads us to one final important result:
3This is the part of the proof where we are uncertain!
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Corollary 7.32. For Λ′ ⊆ Λ an inclusion of Lagrangian skeleta, the kernel D of the local-
ization ShΛ(M)

L−→ ShΛ′(M),
D ShΛ(M)

pt ShΛ′(M)

□

ι̃

L

0

is compactly generated, and its embedding ι̃ admits a right adjoint.

Proof. Being a limit in PrL,st, certainly it is stable and presentable. By Corollary 7.31 and
Lemma 7.29, D is generated by the (small) set of co-cores PΛ

ξ for ξ ∈ Λsmooth \ Λ′. These
objects inherit the property of being compact in D from ShΛ(M).
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Chapter 8

Preparation: Results on Recollement
Squares

8.1 What is in this chapter?
This interlude develops basic tools that are useful for proving comonadicity results, by ex-
ploiting some kind of adjointability. It is also a historical record: it represents our first
attempts at finding ways of arguing for comonadicity. The material here is likely very well
known to experts, but since we did not find a reference, we attempt a detailed presentation.

The first punchline is the key Lemma 8.6, which was already used to prove Zariski
comonadicity.

The second punchline is a characterization of pullback squares for localizations in terms
of orthogonality, which can be easier to check:

Proposition 8.1. Let {C Li−→ C /Di}i=1,2 be two reflective localizations in PrL,st, using which
we can draw the commuting square

C C /D2

C /D1 C /⟨D1,D2⟩

L2

L1

The following are equivalent:

1. this is a pullback square;

2. D1 ⊥ D2 are orthogonal;

3. the functors L1, L2 are jointly conservative, and the square is right-biadjointable (see
Definition 8.8).
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The third and final punchline is the use of (right-bi)adjointability in proving comonadic-
ity:

Proposition 8.2. In the same set-up as above, if the square is a pullback square, then

C
L1⊞L2−−−−→ C /D1 ⊞ C /D2

is comonadic.

This result is superseded by Corollary 9.2, but as mentioned, pullback squares were the
first tool that we learned for proving comonadicity results, and we think they illustrate a
useful method of argument.

We now begin at the beginning, with the notion of recollement. We should admit outright
that our use of the word “recollement” will be a bit of a misnomer, as the traditional recolle-
ment set-up requires more properties than we ask for; in fact, what we call “recollement” is
what is often called a semiorthogonal decomposition. Nonetheless, we locally appropriate the
name because we like it.

8.2 Basics of recollement
Everything will occur in PrL,st. Consider a reflective localization ιL:

C C ′ιL

ι

We may form the pullback in PrL

D := Ker(ιL) C

0 C ′

□

ι̃

ιL

which means the following are true:

1. the category D is presentable, and is the full subcategory on objects c ∈ C such that
ιLc ≃ 0, hence the notation of Ker(ιL);

2. the functor ι̃ admits a right adjoint ι̃R which a priori may not be colimit-preserving,
giving the diagram

D C C ′ι̃ ιL

ι̃R ι
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3. the functor ι can be realized as the embedding of the right-orthogonal subcategory
D⊥ ≃ C ′; we may therefore use the quotient notation for

C ′ ≃ C /D

4. Any object F ∈ C fits into a distinguished triangle that we call the recollement triangle:

ι̃ ◦ ι̃RF → F → ι ◦ ιLF +1−→

5. The endofunctors of C called Q := ι ◦ ιL and P := ι̃ ◦ ι̃R are projections

Q2 ≃ Q, P 2 ≃ P,

and furthermore PQ ≃ QP ≃ 0.

Example 8.3. The first main example of a reflective localization is in algebraic geometry,
arising from the inclusion of an open subscheme U

j
↪−→ X into a qcqs scheme X:

QCoh(X)I−torsion QCoh(X) QCoh(U)
î! j∗

î!
j∗

This is in the notation of Corollary 6.7. As a consequence of Thomason’s compact generation
theorem [21], as generalized to qcqs schemes by Bondal-Van den Bergh [1] and to the derived
setting by Toën [22], the kernel subcategory is compactly generated, and ΓI exists in PrL,st.

Example 8.4. The second main example is in symplectic topology, arising from an inclusion
of closed conic Lagrangians Λ′ ↪→ Λ ⊆ T ∗M :

⟨PΛ
ξ : ξ ∈ Λsmooth \ Λ′⟩colimits ShΛ(M) ShΛ′(M)ιL

ι̃R

Here, the kernel D is the full subcategory generated under ambient colimits by the co-cores

PΛ
ξ := µLξ (k) for ξ ∈ Λsmooth \ Λ′

where µLξ is the left adjoint to the microstalk functor ShΛ(M)
µξ−→ kMod. By Corollary 7.31,

as long as Λ,Λ′ are subanalytic conic closed Lagrangians, D is compactly generated by the
PΛ
ξ and ι̃R exists in PrL,st.
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Remark 8.5. The upshot of the examples above is that we will always assume that the entire
diagram

D C

0 C ′

ι̃

ι̃R ιL
ι

is in PrL,st, i.e. that ιiR is colimit-preserving. For some arguments, we might assume that
all categories are compactly generated.

To prove comonadicity results using Barr-Beck-Lurie, as we have already seen, we will
be interested in showing that a reflective localization ιL commutes past certain totalizations.
The following lemma, which was already used in the guise of Method 2 of Proposition 5.12
and for the proof of Theorem 6.1 part (1), and to be used repeatedly later, is the most
important part of this section, and tells us one situation in which this is possible:

Lemma 8.6. In a recollement, if F • is a cosimplicial diagram in C for which ι̃ ◦ ι̃RF •
(equivalently, ι̃RF •) is an absolute limit diagram, then ιLlim←−

∆

F • ≃ lim←−
∆

ιLF •.

Proof. First, the equivalence of the statements: certainly if ι̃RF • is an absolute limit diagram,
then so is ι̃ ◦ ι̃RF •. The converse holds because in this case, ι̃R ◦ ι̃ ◦ ι̃R ≃ ι̃R. Now let
ϕ : ιLlim←−

∆

F • → lim←−
∆

ιLF • denote the canonical map. By comparing the distinguished triangles

before and after taking the limit, we get:

ι̃ ι̃Rlim←−
∆

F • lim←−
∆

F • ιLι lim←−
∆

F • ι̃ ι̃Rlim←−
∆

F •[1]

ι̃ lim←−
∆

ι̃RF •

lim←−
∆

ι̃ ι̃RF • lim←−
∆

F • lim←−
∆

ιLι F • lim←−
∆

ι̃ ι̃RF •[1]

(∗)

ιLϕ

+1

(∗∗)

+1

where (∗) is from the fact that ι̃R is a right adjoint, and (∗∗) is from the hypothesis that
ι̃RF • is an absolute limit diagram. Thus ιLϕ is an equivalence, and since ιL is conservative
(it is an embedding), we deduce that ϕ is an equivalence.

As a reminder, our favorite kinds of absolute limit diagrams are split cosimplicial dia-
grams. However, the more general language here will be useful in the future.
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8.3 Recollement squares
Suppose now we have a commuting square of reflective localizations

C C /D2

C /D1 C /⟨D1,D2⟩

b

a d

c

which we call a recollement square; the subcategory on the bottom-right is the full subcate-
gory on all objects generated under all colimits in C .

Remark 8.7. This is not necessarily a pullback square. For example, take M = R, Λ1 = 0R
and Λ2 = T ∗0R. Then the square is

ShΛ1∪Λ2 R ≃ Repk
[
• ← • → •

]
ShΛ1 R ≃ kMod

ShΛ2 R ≃ kMod ShΛ1∩Λ2 R ≃ 0

However, the category ShΛ1∪Λ2 in this case still admits a comonadic description.

For visualization, we complete the diagram to include the four recollements, together with
primed functors between them, defined by a′ := c̃Rab̃, a′′ := b̃RaRc̃, and b′, b′′ similarly, giving
the following picture (right adjoints and double-primed functors are omitted for clarity):

D1 D ′1

D2 C C /D2

D ′2 C /D1 C /⟨D1,D2⟩

ã

b′

d̃

b̃

a′ a

b

d

c̃ c

It follows from commutativity data for the localizations ca ≃ db that there is also com-
mutativity data for the embedding aRcR ≃ bRdR. Note the following negative statements:

1. a′, a′′ are not necessarily adjoints;

2. a′ is not necessarily conservative; and

3. a′′ is not necessarily an embedding.

We will be interested in situations when some or all of these actually hold.
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Definition 8.8. We say the recollement square is right-biadjointable if both abR ≃ cRd and
baR ≃ dRc; i.e. the following dashed square commutes

C C /D2

C /D1 C /⟨D1,D2⟩

b

a dbR

c

cR

as does
C C /D2

C /D1 C /⟨D1,D2⟩

b

a d

c

aR

dR

Here are some ways we can characterize this:

Lemma 8.9. Consider a recollement square.

1. It is right-biadjointable iff the top right and the bottom left squares are both right
adjointable.

2. It is right-biadjointable iff both c̃RabRd̃ ≃ 0 and d̃RbaRc̃ ≃ 0.

3. It is right-badjointable iff both abRd̃ ≃ 0 and baRc̃ ≃ 0.

4. It is right-biadjointable iff you mix and match the above conditions.

Proof. Part (1). We measure the distance from half of right-biadjointability abR ≃ cRd by
the cone of the natural map θ : abR → cRd, gotten by subjecting abR to c-recollement, and
using commutativity:

c̃c̃RabRF︸ ︷︷ ︸
measurement

→ abRF
θ−→ cRcabR︸ ︷︷ ︸

cRdbbR=cRd

F →

Thus, since c̃ is an embedding, θ is an equivalence iff c̃RabR ≃ 0.
Similarly, we can measure the distance from right-adjointability of the bottom left square

by taking the cone of ϕ : a′b̃R = c̃Rab̃b̃R → c̃Ra, which is sourced from b-recollement:

c̃Rab̃b̃RF
ϕ−→ c̃RaF → c̃RabRbF︸ ︷︷ ︸

measurement

→

Thus, since b is essentially surjective, ϕ is an equivalence iff c̃RabR ≃ 0, which we saw holds
iff θ is an equivalence. A symmetric argument now shows the characterization of the other
half of right-biadjointability.
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Part (2). Above we learned that right-biadjointability is equivalent to both c̃RabR ≃ 0
and d̃RbaR ≃ 0. Certainly this implies that both c̃RabRd̃ ≃ 0 and d̃RbaRc̃ ≃ 0. So now
suppose that c̃RabRd̃ ≃ 0; we wish to show that c̃RabRF ≃ 0 for any F ∈ C /D2. Apply
c̃RabR to its d-recollement, and use commutativity:

c̃RabRd̃d̃RF︸ ︷︷ ︸
assume ≃0

→ c̃RabRF → c̃RabRdR︸ ︷︷ ︸
c̃RaaRcR=c̃RcR=0

dF →

Thus c̃RabR ≃ 0. The other half is symmetric.
Part (3) is similar to part (2).
Part (4) is true because no single equivalent characterization depends on any other; it

just uses recollement and commutativity.

We introduce one more term, which we can cutely phrase by completing the big diagram
with a 0 at the missing corner:

0 D1 D ′1

D2 C C /D2

D ′2 C /D1 C /⟨D1,D2⟩

ã

b′

d̃

b̃

a′ a

b

d

c̃ c

The reason for doing this is that right-biadjointability of the top-left square is then equivalent
to the condition that both b̃Rã ≃ 0 and ãRb̃ ≃ 0. So:

Definition 8.10. We say the recollement square is strongly right-biadjointable if both the
bottom-right and the top-left squares are right-biadjointable.

Example 8.11. If X = U1∪U2 is a union of open subschemes, then the resulting recollement
square is strongly right-biadjointable.

0 QCU2\U1(X) QCU2\U1(U2)

QCU1\U2(X) QC(X) QC(U2)

QCU1\U2(U1) QC(U1) QC(U1 ∩ U2)

ã

b′

d̃

b̃

a′ a

b

d

c̃ c

Indeed, the nice properties of this diagram, and their relation to excision and descent for
Zariski open covers, was the inspiration for this entire approach to descent on the “A-side.”
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Lemma 8.12. (Semi-orthogonality)

1. b̃Rã ≃ 0 iff homC (D2,D1) ≃ 0 i.e. are semi-orthogonal.

2. b̃Rã ≃ 0 implies that a′′ ≃ (a′)R and b′′ ≃ (b′)R; i.e. it gives adjunctions on kernels.

3. b̃Rã ≃ 0 iff ã ≃ bRbã.

Thus, if the top-left square is right-biadjointable, then

1. D1 ⊥ D2;

2. (a′, a′′) and (b′, b′′) are adjunctions;

3. ã lands inside Im(bR), and b̃ lands inside Im(aR).

Proof. Part (1) is adjunction. For Part (2), consider the case of a; there are canonical maps

Id
η−→ a′′a′, a′a′′

ϵ−→ b̃RaRab̃
ϕa←− b̃Rb̃ = Id

coming from (co)units. The morphism ϕa is a quasi-isomorphism iff b̃RããRb̃ ≃ 0. The given
hypothesis guarantees this, and by symmetry also guarantees that the analogous map ϕb for
the base of b′, b′′ also is a quasi-isomorphism. Thus, both (a′, a′′) and (b′, b′′) are adjunctions.
Part (3) follows immediately from b-recollement applied to ãF :

b̃b̃RãF → ãF → bRbãF →

Lemma 8.13. Some basic facts about recollement squares:

1. a′ := c̃Rab̃ is the formula for the functor induced by a;

2. d̃RbaRc̃ ≃ 0 iff the top square is right-adjointable (i.e. b′ãR ≃ d̃Rb), iff baRc̃ ≃ 0;

3. if d̃RbaRc̃ ≃ 0 and ãRb̃ ≃ 0, then a′ and a′′ are inverse equivalences;

4. if d̃RbaRc̃ ≃ 0 and ãRb̃ ≃ 0 and if c̃RabRd̃ ≃ 0 and b̃Rã ≃ 0, then (a′, a′′), (b′, b′′) are
pairs of inverse equivalences;

5. if (a′, a′′), (b′, b′′) are pairs of inverse equivalences, then b̃Rã ≃ 0 and ãRb̃ ≃ 0 iff
d̃RbaRc̃ ≃ 0 and c̃RabRd̃ ≃ 0.

Proof. We prove each part. (Some of these proofs are redundant.)



CHAPTER 8. PREPARATION: RESULTS ON RECOLLEMENT SQUARES 152

1. For any F ∈ D2, ab̃F = c̃G for some G ∈ D ′2, because c(ab̃F ) = d(bb̃F ) ≃ 0. By the
lower recollement triangle, we have

c̃c̃Rab̃F → ab̃F → cRcab̃F︸ ︷︷ ︸
≃0

→,

which means, since c̃ is an embedding, that G must be ≃ c̃Rab̃F . This also means
that we can write a′ = c̃Rcc̃Rab̃. Note however that, without further hypotheses, the
natural functor b̃RaRc̃ going the other direction is not a right adjoint.

2. The counit for (ã, ãR) gives the comparison map b′ãR := d̃RbããR → d̃Rb, whose cone is
d̃RbaRa. Since a is essentially surjective, this shows that the square is right-adjointable
iff d̃RbaR ≃ 0. We’re not done, since we wish to show that d̃RbaRc̃ ≃ 0 is sufficient to
imply this. Well, split F up by c, and apply d̃RbaR:

d̃RbaRc̃c̃RF︸ ︷︷ ︸
=0

→ d̃RbaRF → d̃RbaRcRcF︸ ︷︷ ︸
≃d̃RbbRdRcF

→,

where the second brace is due to the "backwards commutativity" of the right adjoints
in the square. But now, d̃RbbRdRcF ≃ d̃RdRcF ≃ 0, showing that indeed d̃RbaR ≃ 0.
Lastly, suppose d̃RbaRc̃ ≃ 0; then by recollement, baRc̃F ≃ dRdbaRc̃F . By commuta-
tivity, the latter is dRcaaRc̃F ≃ dRcc̃F ≃ 0, as desired.

3. Let G ∈ D ′2, so c̃G ∈ C /D1. Thus a : aRc̃G 7→ c̃G. We can break up this input object
inside C under the horizontal recollement:

b̃b̃RaRc̃G→ aRc̃G→ bR baRc̃G︸ ︷︷ ︸
d̃d̃RbaRc̃G

→,

where the underbrace uses the fact that caaRc̃G ≃ cc̃G ≃ 0, whence d(baRc̃G) ≃ 0.
The left is b̃ applied to an object from D2; therefore, if d̃RbaRc̃ ≃ 0, then it tells
us that aRc̃G never has a bRb-component in its recollement — i.e. aRc̃ is a section
of c̃Ra; furthermore, b̃ is essentially surjective onto the image of this section, since
aRc̃G ≃ b̃(b̃RaRc̃G) =: b̃a′′G.
What this implies is that a′, a′′ are inverses: first,

a′a′′G := c̃Ra b̃b̃RaRc̃G︸ ︷︷ ︸
aRc̃G

≃ c̃RaaRc̃G ≃ c̃Rc̃G ≃ G;

and second,
a′′a′F := b̃RaR c̃c̃Rab̃F︸ ︷︷ ︸

ab̃F

≃ b̃RaRab̃F,

which we can stick into the vertical recollement

b̃Rã ãRb̃F︸ ︷︷ ︸
=0 by assumption

→ b̃Rb̃F︸ ︷︷ ︸
F

→ b̃RaRab̃F︸ ︷︷ ︸
a′′a′F

→

and therefore a′′a′F ≃ F .
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4. This is just the previous proposition twice.

5. Suppose first that ãRb̃F ≃ 0; this means that b̃F ≃ aRab̃F . We therefore have

d̃RbaRc̃a′F ≃ d̃RbaRc̃c̃Rab̃F ≃ d̃RbaRab̃F ≃ d̃Rbb̃F ≃ 0

Next, suppose that d̃RbaRc̃G ≃ 0. Then

b′ãRb̃a′′G := b′ãRb̃b̃RaRc̃G ≃ d̃Rb b̃b̃RaRc̃G︸ ︷︷ ︸
=aRc̃G

≃ d̃RbaRc̃G ≃ 0;

here, the first equality is a definition, the second is due to right-adjointability (which
holds by part (2)), and the third is because a′′ is an equivalence.

Now that we have this, the rest of the argument is symmetric.

Pullback squares and recollement

We now move towards descent-type statements that we can make in our set-up by comparing
strong right-biadjointability to being a pullback square.

Lemma 8.14. If a recollement square is right-biadjointable and both a′, b′ are conservative,
then in fact a′, b′ are equivalences (equivalently, it is strongly right-biadjointable).

Proof. By the above lemma, it suffices to show that b̃Rã ≃ 0 and ãRb̃ ≃ 0. We just show
the first. Since a′ is conservative, it suffices to show that a′b̃Rã ≃ 0. But by Lemma 8.13.(2)
above, a′b̃R ≃ c̃Ra, which kills the image of ã.

Lemma 8.15. A recollement square is strongly right-biadjointable iff it is a pullback square.

Proof. Suppose first that C ≃ C /D1 ×hC /⟨D1,D2⟩ C /D2 is the pullback, via the identification
Φ(F ) := (aF, bF, id : caF ≃ dbF ). The diagram looks like

Ker(π1) D ′1

Ker(π2) C /D1 ×hC /⟨D1,D2⟩ C /D2 C /D2

D ′2 C /D1 C /⟨D1,D2⟩

π̃1

π′
2

d̃

π̃2

π′
1

π2

π1
πR
2 d

c̃
πR
1

c
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where the formulae are

πR1 (F1) := (F1, d
RcF1, ηd : cF1 ≃ ddRcF1), πR2 (F2) := (cRdF2, F2, ηc : cc

RdF2 ≃ dF2)

This shows that right-biadjointability

π1π
R
2 ≃ cRd, π2π

R
1 ≃ dRc

holds. Finally, Ker(π2) consists of those objects of the form (F1, 0, 0 : 0 ≃ 0), on which π′1 is
certainly conservative. So by the lemma above, the square is strongly right-biadjointable.

For the converse, suppose we have a strongly right-biadjointable recollement square with
C at the corner. Let Φ : C → C /D1 ×hC /⟨D1,D2⟩ C /D2 denote the canonical map

F 7→ (aF, bF, caF
ϕ=id−−−→ dbF ),

and let Ψ : C /D1 ×hC /⟨D1,D2⟩ C /D2 → C be the map

(G,H, cG
ϕ−→ dH) 7→ Cone(aRG⊕ bRH θ−→ aRcRcG)

These are adjoints, so it suffices to show that one of them is an equivalence. First, we
check that Ψ ◦ Φ(F ) ≃ F . We do this by using the octahedral axiom:

aRaF aRaF ⊕ bRbF bRbF

aRcRcaF︸ ︷︷ ︸
(∗) bRbaRaF

b̃b̃RaRaF︸ ︷︷ ︸
(∗∗) b̃b̃RF

[1]

Ψ ◦ Φ(F )

id⊕0

ηb|aRaF

θ

Here, (∗) is due to right-biadjointability, and (∗∗) is due to the “strong” part of strong
right-biadjointability. Thus Ψ ◦ Φ(F ) fits into the same recollement triangle as F , whence
canonically Ψ ◦ Φ(F ) ≃ F .

Thus, Ψ is essentially surjective and full. To conclude showing that Ψ is an equiva-
lence, we should argue that it is faithful. In our set-up of PrL,st, this will be implied by
conservativity. But conservativity holds by right-biadjointability.

Before proceeding, we use the above lemma to collect a proof of Proposition 8.1 from the
beginning:

Proof. (of Proposition 8.1) Take localizations C
a,b−→ D1,D2 of a stable presentable category

C , and build the following commuting diagram, which is based around a recollement square:
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D1 ⟨D1,D2⟩/D2

D2 C C /D2

⟨D1,D2⟩/D1 C/D1 C /⟨D1,D2⟩

ã

b′

d̃

b̃

a′

b

a d

c̃ c

By the above Lemma 8.15, it suffices to show that D1 ⊥ D2 iff the square is strongly right-
biadjointable.

If the square is strongly right-biadjointable, then certainly D1 ⊥ D2.
To argue for the converse, let us first see how far from right-biadjointable the bottom-

right square is. By Lemma 8.9, this is equivalent to baRc̃ ≃ 0 and abRd̃ ≃ 0; let us just look
at the first. We note that aR includes C /D1 as D⊥1 ⊆ C , thus

Im(aRc̃) = {X : homC (D1, X) = 0, X ∈ ⟨D1,D2⟩}

Note that thickness of ⟨D1,D2⟩ guarantees that, since it is closed under b̃b̃R and ããR, it is
also closed under aRa, bRb. Furthermore, b-recollement on aRc̃Y gives

bRbaRc̃Y︸ ︷︷ ︸
∈D⊥

2

→ aRc̃Y︸ ︷︷ ︸
∈D⊥

1

→ b̃b̃RaRc̃Y︸ ︷︷ ︸
∈D2

Furthermore, note that

homC (ãZ, b̃b̃
RaRc̃Y ) ≃ homD1(Z, ã

Rb̃︸︷︷︸
!

b̃RaRc̃Y )

Thus, supposing that D1 ⊥ D2, the fact that ãRb̃ ≃ 0 implies that b̃b̃RaRc̃Y ∈ D⊥1 ,
whence

Im(bRbaRc̃) ⊂ {X : homC (D1, X) = 0, homC (D2, X) = 0, X ∈ ⟨D1,D2⟩},

which by orthogonality is the 0 category. So baRc̃ ≃ 0. This implies the equivalence of
hypotheses (1) and (2).

Hypotheses (2) and (3) are equivalent by Lemma 8.14.

Descent for a square

We are ready to return to what we were initially after, and make our first link with comonadic-
ity. It is the “recollement implies Zariski descent for a two-piece cover” argument, in the
abstract:

Lemma 8.16 (Restatement of Proposition 8.2). Consider a commuting square of reflective
localizations. Suppose that it is strongly right-biadjointable. Then C

a⊞b−−→ C /D1 ⊞ C /D2 is
comonadic.
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Proof. Here is the diagram again:

0 D1 D ′1

D2 C C /D2

D ′2 C /D1 C /⟨D1,D2⟩

ã

b′

d̃

b̃

a′ a

b

d

c̃ c

By Barr-Beck-Lurie, we need to show that L := a⊞ b is conservative, and preserves certain
limits.

First we show conservativity, so let F ∈ C be such that aF ≃ 0 and bF ≃ 0. This
assumption shows that

b̃b̃RF ≃ F ≃ ããRF,

and, by substituting one into the other, that

F ≃ b̃( b̃Rã︸︷︷︸
≃0

)ãRF ≃ 0

by orthogonality. So, L is conservative.
Now, suppose that F • : ∆ → C is such that aF •, bF • are split. We wish to show that

Llim←−
∆

F • ≃ lim←−
∆

LF •, or in other words that both alim←−
∆

F • ≃ lim←−
∆

aF • and blim←−
∆

F • ≃ lim←−
∆

bF •.

Let us show that alim←−
∆

F • ≃ lim←−
∆

aF •, assuming bF • is split; the argument for b will be

symmetric. By Lemma 8.6, it suffices to show that ãRF • is split.

∆

D1 D ′1

C C /D2

C /D1 C /⟨D1,D2⟩

F •

split

ã

b′

d̃

a

ãR

b

d

d̃R

c

Since b′ is an equivalence, thus in particular an embedding, this is the same as showing that
b′ãRF • is split. Right-adjointability of the square at C /D1 means that the upper square
with dashed arrows commutes:

b′ãRF • ≃ d̃R bF •︸︷︷︸
assumed split

.
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So, as the image of a split diagram, b′ãRF • is split.

Remark 8.17. The converse is not true. Consider the example of M = R, Λ1 = SS(k(−∞,0)),Λ2 =
SS(k[0,∞)). Then

ShΛ1∪Λ2(M)
L:=j!−⊞i

∗
+−−−−−−→ ShΛ1(M)⊞ ShΛ2(M)

is comonadic: L is conservative, and the functors have left adjoints

(j!−)
L = j−!, (i∗+)

L = include as zero section

and thus preserve all limits. But it does not yield a pullback square.
Another example is M = R,Λ1 = SS(kR),Λ2 = SS(k0).

Interpretation for sheaves with prescribed singular support

We have reformulated the pullback property of a recollement square in terms of a concrete
orthogonality condition. Though strictly stronger than comonadicity, this condition is hope-
fully easier to check.

Let us interpret this condition in the context of ShΛ(M), and a two-piece closed conic
Lagrangian cover Λ = Λ1∪Λ2. All the categories below are compactly generated by Corollary
7.31, with compact generators their co-cores, and assemble into a recollement square that
we decorate with the kernels:

0 D1 = ⟨PΛ
η∈Λsmooth\Λ1

⟩ D ′1 = ⟨P
Λ2

η∈Λsmooth
2 \Λ1

⟩

D2 = ⟨PΛ
ξ∈Λsmooth\Λ2

⟩ ShΛ(M) ShΛ2(M)

D ′2 = ⟨P
Λ1

ξ∈Λsmooth
1 \Λ2

⟩ ShΛ1(M) ShΛ1∩Λ2(M)

ã

b′

d̃

b̃

a′ a

b

d

c̃ c

Thus, (semi)orthogonality of D1 and D2 is governed by (semi)orthogonality of co-cores.
The following simple result demonstrates a further reinterpretation, in terms of singular
supports:

Lemma 8.18. The condition D1 ⊥ D2 is equivalent to the following:

1. categorically,

homΛ(P
Λ
ξ∈Λsmooth\Λ2

, PΛ
η∈Λsmooth\Λ1

) ≃ 0, homΛ(P
Λ
η∈Λsmooth\Λ1

, PΛ
ξ∈Λsmooth\Λ2

) ≃ 0

2. in terms of singular support,

SS(PΛ
ξ∈Λsmooth\Λ2

) ⊆ Λ1, SS(PΛ
η∈Λsmooth\Λ1

) ⊆ Λ2
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Proof. Since the co-core corepresents the microstalk functor, property (1) being true is equiv-
alent to

(Λsmooth \ Λ2) ∩ SS(PΛ
η∈Λsmooth\Λ1

) = ∅

(together with the symmetric statement for ξ’s), which is equivalent to

SS(PΛ
η∈Λsmooth\Λ1

)︸ ︷︷ ︸
closed skeleton

⊆ Λ2︸︷︷︸
closed skeleton

∪(Λ \ Λsmooth︸ ︷︷ ︸
proper isotropic

)

Since Λ\Λsmooth is a proper isotropic subvariety and both SS(PΛ
η∈Λsmooth\Λ1

) and Λ2 are closed
Lagrangian skeleta, we conclude that in fact

SS(PΛ
η∈Λsmooth\Λ1

) ⊆ Λ2,

which is property (2). The opposite implication is immediate.

In other words, orthogonality is equivalent to the condition that each piece Λi contains
the entire singular support of the co-core to each codirection that is unique to it.

8.4 General shelling argument
Proposition 8.2 has a generalization to multiple pieces, which already appeared in the proof
of Theorem 6.1. We simply rework that proof to look more general:

Proposition 8.19 (General shelling argument). Let {Di}i∈I be a finite collection of co-
reflective subcategories of C in PrL,st such that for every j ∈ I and K ⊂ I, the square

C /(Dj ∩ ∩
k∈K

Dk) C /Dj

C /( ∩
k∈K

Dk) C /⟨Dj, ∩
k∈K

Dk⟩

Lj⊂jK

LK⊂jK

is a pullback square. Assume furthermore that ∩
i∈I

Di = 0. Then

C = C /( ∩
i∈I

Di)
L:=

∏
i∈I

Li⊂I

−−−−−−→
∏
i∈I

C /Di

is comonadic.

Proof. Since we can identify Ker(L) = ∩
i∈I

Di, by assumption the functor L is therefore
conservative. So it remains to show that each Li⊂I preserves the limit of an L-split diagram
∆

F •
−→ C .
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Figure 8.1: A cartoon of the strategy for the shelling argument. To show that the localization
L1⊂123 onto C /D1 commutes with the limit: (1) first show that L12⊂123 commutes with the
limit by using the fact that projection onto the red category within C /(D1 ∩ D2 ∩ D3) is
split; (2) then show that L1⊂12 commutes with this restricted limit by using the fact that
the projection onto the fuchsia category within C /(D1 ∩D2) is split.

Consider for the sake of illustration the case of the three-piece cover; the general argument
easily follows this blueprint. So let F • : ∆→ C = C /(D1∩D2∩D3) be a diagram such that
Li⊂123F

• is split, for all i ∈ {1, 2, 3}. We will show that

L1⊂123lim←−
∆

F •
?≃ lim←−

∆

L1⊂123F
•

(see Figure 8.1 for an outline of the strategy, and Figure 8.2 to follow the notation).
For this, note that L1⊂123 ≃ L1⊂12L12⊂123. We intend to use this factorization to show

that L1⊂123 commutes past the limit first with the factor L12⊂123, and then with the factor
L1⊂12:

1. To show that L12⊂123lim←−
∆

(F •) ≃ lim←−
∆

L12⊂123(F
•), by Key Lemma 8.6, it suffices to show

that
L̃12⊂123L̃

R
12⊂123lim←−

∆

(F •) ≃ lim←−
∆

L̃12⊂123L̃
R
12⊂123(F

•),

for which it suffices to show that L̃12⊂123L̃
R
12⊂123(F

•) is split. By the compatibility of
the top square (recall our earlier notation in this chapter of the ′ and ′′ functors being
inverses), we have

L̃12⊂123L̃
R
12⊂123F

• ≃ L̃12⊂123L
′′
3⊂123L

′
3⊂123L̃

R
12⊂123(F

•)

≃ L̃12⊂123L
′′
3⊂123ϕ

R
1 L3⊂123(F

•)︸ ︷︷ ︸
split
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so L̃12⊂123L̃
R
12⊂123(F

•) is indeed split. So we now know that

L1⊂12L12⊂123lim←−
∆

(F •) ≃ L1⊂12lim←−
∆

L12⊂123(F
•)

∆

K12⊂123 K ′12⊂123

C /(D1 ∩D2 ∩D3) C /D3

K1⊂12 K ′1⊂12

C /(D1 ∩D2) C /D2

C /D1

F •

split

split

L̃12⊂123

L′
3⊂123

ϕ1

L12⊂123

L3⊂123

L̃1⊂12

L′
2⊂12

ϕ2

L1⊂12

L2⊂12

Figure 8.2: The shelling argument, for a three-piece cover. The dotted arrows are split
diagrams by assumption. The horizontal squares are pullback squares, which carry the
necessary adjointability for Key Lemma 8.6 to progressively allow deeper partial localizations
to commute past the limit.

2. It remains to show that L1⊂12lim←−
∆

(L12⊂123F
•) ≃ lim←−

∆

L1⊂12(L12⊂123F
•). Again by Key

Lemma 8.6, it suffices to show that

L̃1⊂12L̃
R
1⊂12lim←−

∆

(L12⊂123F
•) ≃ lim←−

∆

L̃1⊂12L̃
R
1⊂12(L12⊂123F

•),

for which it suffices to show that L̃1⊂12L̃
R
1⊂12(L12⊂123F

•) is split. By the compatibility
of the middle square, we have

L̃1⊂12L̃
R
1⊂12(L12⊂123F

•) ≃ L̃1⊂12L
′′
2⊂12L

′
2⊂12L̃

R
1⊂12(L12⊂123F

•)

≃ L̃1⊂12L
′′
2⊂12ϕ

R
2 L2⊂12(L12⊂123F

•)︸ ︷︷ ︸
L2⊂123F •, split

so L̃1⊂12L̃
R
1⊂12(L12⊂123F

•) is indeed split.
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Chapter 9

Math That Might Be New

9.1 What is in this chapter?
Consider a collection of reflective localizations in PrL,st{

C C /Di

}
i∈I

Li

Ri

We have in mind the following example: for a closed cover {Λi}i∈I of a singular support
Lagrangian Λ ⊆ T ∗X, the collection

{
ShΛ(X) ShΛi

(X)

}
i∈I

Li

Ri

In this final chapter we record all descent-related results that we have been able to find
for collections of localizations. In particular, we

1. present several criteria for

• rendering C
L:=

∏
i∈I Li−−−−−−→

∏
i∈I C /Di comonadic, and

• assuring that the coaugmented cosimplicial diagram

C
[∏

|J |=1 C /⟨Dj⟩j∈J
∏
|J |=2 C /⟨Dj⟩j∈J · · ·

]
L

satisfies the Beck-Chevalley conditions; and

2. interpret the criteria in the language of the running example of covers of singular
support Lagrangians, and

3. present some applications in the microlocal setting.
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9.2 Comonadicity criterion I: semi-orthogonality
This section describes a comonadicity criterion that can be viewed as the reason Zariski open
cover yields comonadicity. It directly generalizes Proposition 8.1. The active ingredient is
semi-orthogonality of kernels, illustrated in the following lemma that serves as the base case
for the general argument.

Lemma 9.1. Suppose homC (D2,D1) = 0 for the square

C C /D2

C /D1 C /⟨D1,D2⟩

b

a d

c

and let ∆ F •
−→ C be a cosimplicial diagram. Then lim←−

∆

F • → F • is an absolute limit diagram

iff lim←−
∆

aF • → aF • and lim←−
∆

bF • → bF • are absolute limit diagrams.

Proof. The “only if” part holds because the property of being an absolute limit diagram
is preserved by any (exact) functor. Conversely, suppose lim←−

∆

aF • → aF •, lim←−
∆

bF • → bF •

are both absolute limit diagrams. The orthogonality hypothesis says that b̃Rã ≃ 0, so first
place F • into b-recollement (horizontal), and then place its left-hand term into a-recollement
(vertical):

b̃b̃RããRF •︸ ︷︷ ︸
≃0

b̃b̃RF • F • bRbF •︸ ︷︷ ︸
absolute

b̃b̃RF •[1]

b̃b̃RaRaF •︸ ︷︷ ︸
absolute

0[1]

∴

+1

+1

This situates F • as the cone of two cosimplicial diagrams whose augmentations by their
limits are absolute limit diagrams; therefore the limits arrange into a fiber square,
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lim←−
∆

b̃b̃RaRaF • lim←−
∆

F • lim←−
∆

bRbF • lim←−
∆

b̃b̃RaRaF •[1]

b̃b̃RaRaF • F • bRbF • b̃b̃RaRaF •[1]

+1

+1

and since exact functors commute with cones, this realizes lim←−
∆

F • → F • as an absolute limit

diagram.

We summarize the above result by saying that semiorthogonal pairs of localizations reflect
absolute limit diagrams. This has the following consequence:

Corollary 9.2. Suppose homC (D2,D1) = 0 Then L := a⊞ b is comonadic.

Proof. The same proof as in Lemma ?? shows that L is conservative. By Lemma 9.1, if
aF •, bF • are split, then lim←−

∆

F • → F • is an absolute limit diagram, in which case alim←−
∆

F • ≃

lim←−
∆

aF • and blim←−
∆

F • ≃ lim←−
∆

bF •.

Example 9.3. Consider the skeleton Λ ⊂ T ∗R from Example 7.17, and take as a cover

Λ1 = 0R ∪ T ∗,≥00 R, Λ2 = 0R ∪ T ∗,≥01 R

We illustrate the effect of wrapping on the co-cores in the various subcategories in Figure
9.1. The functor L1 ⊞ L2 is conservative, and as depicted, the kernels are semiorthogonal.
Thus, this cover is comonadic.1

We now generalize Corollary 9.2 to multiple pieces. The idea of the argument is that
semiorthogonality assures that the property of being an absolute limit “propagates upstream”
of localizations.

Theorem 9.4. Suppose that there is a “shelling” of C by thick subcategories D1, . . . ,Dn in
the sense that each span in the following diagram is semi-orthogonal:

1In fact, comonadicity for this example is even simpler: the functors Li are both bicontinuous.
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Figure 9.1: The square diagram for Example 7.17. Note that there is semi-orthogonality of
the co-cores

C C /Dn

C /(D1 ∩ · · · ∩Dn−1) C /Dn−1

...
...

C /(D1 ∩D2 ∩D3) C /D3

C /(D1 ∩D2) C /D2

C /D1

Then L : C →
∏n

i=1 C /Di is comonadic.

Proof. First we show that L is conservative. It suffices to show that all the spans are jointly
conservative. But this is true because all the spans are semiorthogonal (in fact, all the lower
spans are jointly conservative by definition).
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∆

C C /Dn

...
...

C /(D1 ∩D2 ∩D3) C /D3

C /(D1 ∩D2) C /D2

C /D1

F •

LnF •

L3F •

L2F •

L1F •

L1∪2F •

L1∪2∪3F •

Figure 9.2: The dashed arrows LiF • are split diagrams by assumption, and the dotted arrows
are absolute limit diagrams as a consequence.

Next, suppose that ∆
F •
−→ C is a diagram such that LiF • ∈ C /Di is split for all i; we

will show that F • is itself an absolute limit diagram, from which would immediately follow
that Lilim←−

∆

F • ≃ lim←−
∆

LiF
• for all i. Begin at the bottom of the diagram: since L1F

• and

L2F
• are split, by Lemma 9.1 it means that L1∪2F

• is an absolute limit diagram. On the
next level of the diagram, since L1∪2F

• and L3F
• are absolute limit diagrams, it means that

L1∪2∪3F
• is one too. Following this all the way up shows that F • itself must be an absolute

limit diagram. We conclude by Barr-Beck-Lurie that L is comonadic.

Familiar examples

We use the above theorem to deduce comonadicity results in some familiar examples. The
first is the comonadic form of Zariski descent for a finite open cover:

Corollary 9.5 (Zariski comonadicity). For an open cover {Ui}ni=1 of a qcqs scheme X, the
functor

QCoh(X)
L=

∏n
i=1 j

∗
i−−−−−−→

n∏
i=1

QCoh(Ui)

is comonadic.
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Proof. In the notation of the theorem above,

C /(D1 ∩ · · · ∩Dk) = QCoh(U1 ∪ · · · ∪ Uk),

and so the spans are

QCoh(X)

QCoh(U1 ∪ · · · ∪ Uk) QCoh(Uk)

QCoh(U1 ∪ · · · ∪ Uk−1)

j∗1...k

j∗k

j∗1...k−1

j
∗
k

j
∗
1...k−1

The subcategories Dk and D1 ∩ · · · ∩Dk−1 within QCoh(U1 ∪ · · ·Uk) can be identified with
the full subcategories on those quasicoherent sheaves that are supported on the two disjoint
pieces (closed in U1 ∪ · · · ∪ Uk) of the symmetric difference

Uk △ U1 ∪ · · · ∪ Uk−1

Any pair of objects, one from each category, share no morphisms between them, and thus
these subcategories are orthogonal. In particular, they are semi-orthogonal.

For the next example, consider a strongly semi-orthogonal decomposition of a category
C :

C = ⟨D1,D2, . . . ,Dn⟩

Recall that this means that the derived hom space homC (Di,Dj) is 0 if i > j:

C ⟨D1 D2 · · · Dn⟩
0 0 0

In particular, D1 ∩ · · · ∩Dk−1 = 0, and so certainly

homC (Dk,D1 ∩ · · · ∩Dk−1) = 0

Thus the semiorthogonal shelling that a strongly semiorthogonal decomposition determines
is quite degenerate:
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C C /Dn

C C /Dn−1

...
...

C C /D2

C /D1

This immediately demonstrates the following comonadicity result:

Corollary 9.6. For a strongly semiorthogonal decomposition C = ⟨D1, . . . ,Dn⟩, there is an
equivalence

C Ω coMod
∏n

i=1 C /Di
Lenh

where the comonad Ω is strictly lower triangular:

Ω =


Id 0 · · · 0

L2R1 Id
. . . 0

... . . . 0
LnR1 · · · · · · Id


Example 9.7. Here is how this looks like in the simplest example where C = QCohP1 and
D1 = ⟨O(−1)⟩,D2 = ⟨O⟩. These fit into the square of reflective localizations

QCohP1 QCohP1/⟨O⟩

QCohP1/⟨O(−1)⟩ QCohP1/⟨O(−1),O⟩ ≃ 0

L2

L1

where the bottom-right corner is trivial by Beilinson’s theorem. The square can be rewritten
as

QCohP1
C Mod

C Mod 0

p∗(−⊗O(−1))

p∗
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from which it follows that it is not a pullback square. Nonetheless, since homC (D2,D1) = 0,
the functor L1 ⊞ L2 is still comonadic by the above corollary. To see what comonadicity
means here, we identify the adjoints as

(L1 = p∗)
R = p! := p∗(−)⊗O O(−2)[1],

(L2 = p∗(−⊗ O(−1)))R = p! ⊗ O(1) = p∗(−)⊗O O(−1)[1]

which gives the comonad

Ω =

[
Id 0

C2 ⊗ (−) Id

]
↷ C Mod⊞CMod

A counital coassociative comodule for Ω is thus a pair of vector spaces (V,W ) together with
two maps V → W , which recovers the Beilinson quiver description.

9.3 Beck-Chevalley criterion: separability
In the previous section we established a criterion for comonadic descent for a collection of
localizations. In this section, we establish a criterion in the form of Theorem 9.15 for limit
descent for a collection of localizations.

We begin by interpreting the Beck-Chevalley condition in our context:

Lemma 9.8. Let C• : ∆+ → PrL,st denote the coaugmented cosimplicial diagram

C
[∏

|J |=1 C /⟨Dj⟩j∈J
∏
|J |=2 C /⟨Dj⟩j∈J · · ·

]
L

In this case, the Beck-Chevalley condition translates to the condition that for all J ⊂ I and
i, j ∈ I, the following diagram is (right-)adjointable:

C /⟨DJ⟩ C /⟨DJ∪i⟩

C /⟨DJ∪j⟩ C /⟨DJ∪i∪j⟩

b

a
bR

d

c

cR

Proof. For reference, in our running example this diagram reads

ShΛ∩J
ShΛ∩Ji

ShΛ∩Jj
ShΛ∩Jij

b

a bR d

c

cR
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Stacking diagrams shows that verifying the Beck-Chevalley condition for all α reduces to
verifying it for α = di coface and α = sj codegeneracy maps.

For coface maps we have [0] ⋆ di = di+1. Unwinding the definition of d0, di, Rm = (d0)R

in our cosimplicial diagram gives the above condition. On the other hand, for codegeneracy
maps we have [0] ⋆ sj = sj+1, and unwinding the definitions here gives a condition that is
tautologically satisfied by our system of localizations.

The goal of this section is to show that adjointability of all the J = ∅ squares

C C /⟨Di⟩

C /⟨Dj⟩ C /⟨Di,Dj⟩

b

a
bR d

c

cR

“propagates down” to assure adjointability of all deeper localization squares.
To do this, we first introduce the related notion of “separability” for the collection {Li}i∈I

and show that separability “propagates down.” We then show that adjointability coincides
with separability.

To that end, consider the projection endofunctors of C

Qi := RiLi

coming from a collection of localizations

C C /Di

Li

Qi
Ri

The following insightful definition was already made and studied in [18] in an investigation
of descent for sheaves on noncommutative schemes. It has proved to us to be a particularly
useful lens for thinking about the active ingredients in comonadicity for localizations:

Definition 9.9. We call the collection of localizations {Li}i∈I separable if

QiQj ≃ QjQi

Note that pairwise adjointability certainly implies separability. Separability is related to
commutativity of the other available collection of projections—the ones onto Di := Ker(Li):

D1 ⟨D1,D2⟩/D2

D2 C C /D2

⟨D1,D2⟩/D1 C/D1 C /⟨D1,D2⟩

L̃1

L′
2

L̃2

L′
1

L2

L1
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Lemma 9.10. In the notation of the above diagran, define

Q̃1 := L̃1L̃
R
1 , Q̃2 := L̃2L̃

R
2

Then
Q1Q2 ≃ Q2Q1 ⇔ Q̃1Q̃2 ≃ Q̃2Q̃1

Proof. A simple calculation.

We now collect a range of elementary results about the interplay between squares being
pullbacks, adjointable, separable, conservative, and semiorthogonal.

Lemma 9.11. The following are equivalent for the square

C C /D2

C /D1 C /⟨D1,D2⟩

b

a d

c

1. it is a pullback square;

2. it is conservative (i.e. a, b jointly conservative) and adjointable;

3. it is conservative and separable;

4. it is semiorthogonal and separable;

5. it is conservative and adjointable;

6. it is semiorthogonal and adjointable.

Proof. (1) ⇔ (2) was proven above. (2) ⇒ (3) because adjointable implies separable.
We turn to proving (3) ⇒ (1). So suppose the square is conservative and separable. By

symmetry, it suffices to show that ãRb̃ ≃ 0. The conservativity assumption implies that a′, b′
are conservative, and thus it suffices to show that a′ãRb̃ ≃ 0. Finally, since b̃R is essentially
surjective, it suffices to show that a′ãRb̃b̃R ≃ 0. But

a′ãRb̃b̃R := d̃Rb(ããR)(b̃b̃R) ≃ d̃R b(b̃︸︷︷︸
=0

b̃R)(ããR) ≃ 0

Thus, D1 and D2 are orthogonal.
Finally, we prove (1) ⇔ (4). Certainly (1) ⇒ (4). Suppose that the square is separable,

and b̃Rã ≃ 0; we wish to show that ãRb̃ ≃ 0. Consider the two recollement squares

ããRb̃b̃RF b̃b̃RF aRab̃b̃RF (1)

b̃ b̃Rã︸︷︷︸
=0

ãRF b̃b̃RF b̃b̃RaRaF (1)

∴ separable

+1

+1
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which are matched by the fact that the righthand objects are isomorphic by the separability
assumption; thus the objects in the lefthand column are isomorphic. Thus the top-left object
is 0, which implies that ãRb̃ ≃ 0, as desired.

Parts (5) and (6) can each be easily seen to be equivalent to any of the others.

Lemma 9.12. Consider the commutative diagram of reflective localizations

C

C ′ C2

C1 C12

ϕ

Then the outer square is P iff the inner square is P , where P ∈ {separable, adjointable}.

Proof. Adjointability is easy. For separability, note that ϕ, like every localization, is essen-
tially surjective.

Corollary 9.13. The square

C C /D2

C /D1 C /⟨D1,D2⟩

b

a d

c

is separable iff it is adjointable.

Proof. Adjointability implies separability. To see the converse, form the conservative inner
square

C

C /(D1 ∩D2) C /D2

C /D1 C /⟨D1,D2⟩

ϕ

Separability of the outer square implies separability of the inner square, which by the above
Lemma 9.12, thus adjointable. Adjointability of the inner square now implies adjointability
of the outer square.
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Corollary 9.14. Consider a collection of thick categories Di∈I inside C . If all squares

C C /Dj

C /Di C /⟨Di,Dj⟩

are separable, then every "deeper intersection" is (right-)adjointable

C C /⟨Dk∈K⟩

C /⟨Dj∈J⟩ C /⟨Di∈J∪K⟩

for J,K ⊆ I.

Proof. We can translate from adjointability to separability, which is far easier to check. To
commute

∏
j∈J Qj past

∏
k∈K Qk, simply move each Qj past

∏
k∈K Qk using the pairwise

commutativity assumption.

This helps establish the following main result of this section:

Theorem 9.15. Consider a collection of thick subcategories Di∈I of C . If

1. C
L−→
∏

i∈I C /Di is conservative; and

2. all squares
C C /Dj

C /Di C /⟨Di,Dj⟩

are separable (equivalently, adjointable),

then the coaugmented cosimplicial diagram

C
[∏

|J |=1 C /⟨Dj⟩j∈J
∏
|J |=2 C /⟨Dj⟩j∈J · · ·

]
L

is a limit diagram. In particular, L is comonadic.

Proof. The above Corollary can be rephrased to say that assumption (2) is equivalent the
coagumented cosimplicial diagram above satisfying the Beck-Chevalley condition. So by
Theorem 3.8, it only remains to show that L is comonadic.

Since L is conservative, the following diagram is a “shelling” of C by jointly conservative
spans:
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C C /Dn

C /(D1 ∩ · · · ∩Dn−1) C /Dn−1

...
...

C /(D1 ∩D2 ∩D3) C /D3

C /(D1 ∩D2) C /D2

C /D1

By Theorem 9.4 it would suffice to show that each of these spans (now also decorated with
C as a tip)

C

C /(D1 ∩ · · · ∩Dk) C /Dk

C /(D1 ∩ · · · ∩Dk−1)

Lk

L1...k−1

L1...k

Lk

L1...k−1

satisfies the property

(RjLj)(R1...k−1L1...k−1)
?
= (R1...k−1L1...k−1)(RjLj) for all j ∈ {1, . . . , n}

i.e. that
QjQ1...k−1

?
= Q1...k−1Qj for all j ∈ {1, . . . , n}.

Assumption (2) forms the base case, where k = 2. We now take as our inductive hypothesis
the assumption that

QjQ1...k−2 = Q1...k−2Qj for all j ∈ {1, . . . , n}
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Observe that L1...k−2 × Lk−1 factors through L1...k−1:

D1 ∩ · · · ∩Dk−1 0

C C /(D1 ∩ · · · ∩Dk−2)× C /Dk−1

C /(D1 ∩ · · · ∩Dk−1)

L1...k−2×Lk−1

L1...k−1

L1...k−2×Lk−1

Consider now the triangle

F (L1...k−2 × Lk−1)R ◦ (L1...k−2 × Lk−1)F︸ ︷︷ ︸
R1...k−2L1...k−2F⊕Rk−1Lk−1F

Cone(ϕ)︸ ︷︷ ︸
R1...k−2L1...k−2Rk−1Lk−1F

F [1]

F Q1...k−2F ⊕Qk−1F Q1...k−2Qk−1F F [1]

ϕ +1

ϕ +1

whose cone has the above formula as a consequence of the inductive hypothesis that the
k− 1 level span completed to a pullback square. Now insert this triangle into the purported
equality:

(RjLj)(R1...k−1L1...k−1)F (R1...k−1L1...k−1)(RkLk)F

(RjLj)(R1...k−1(L1...k−2 × Lk−1)R︸ ︷︷ ︸
(L1...k−2×Lk−1)R

(L1...k−2 × Lk−1)L1...k−1︸ ︷︷ ︸
L1...k−2×Lk−1

)F (R1...k−1(L1...k−2 × Lk−1)R︸ ︷︷ ︸
(L1...k−2×Lk−1)R

(L1...k−2 × Lk−1)L1...k−1︸ ︷︷ ︸
L1...k−2×Lk−1

)(RjLj)F

(RjLj)(R1...k−1
(
R1...k−2︸ ︷︷ ︸

R1...k−2

L1...k−2Rk−1︸ ︷︷ ︸
L1...k−2Rk−1

Lk−1
)
L1...k−1︸ ︷︷ ︸

Lk−1

)F (R1...k−1
(
R1...k−2︸ ︷︷ ︸

R1...k−2

L1...k−2Rk−1︸ ︷︷ ︸
L1...k−2Rk−1

Lk−1
)
L1...k−1︸ ︷︷ ︸

Lk−1

)(RjLj)F

?

ϕ1 ϕ2

(∗)

which can be rewritten as

QjQ1...k−1F Q1...k−1QjF

Qj(Q1...k−2F ⊕Qk−1F ) (Q1...k−2F ⊕Qk−1)QjF

QjQ1...k−2Qk−1F Q1...k−2Qk−1QjF

ϕ1

?

ϕ2

The bottom two rows are isomorphisms by the inductive hypothesis, and therefore so is the
top row.
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9.4 Application: comonadicity and limit descent for
skeleta locally of FLTZ type

In this section, we will describe a broad class of examples of pairs (Λ, {Λi}i∈I) of skeleta
and closed covers, which we will call “locally of FLTZ type,” to which our descent criteria
will apply. To set the stage and to explain the name, we first recall the construction of the
skeleton from toric mirror symmetry [4].

Moment map and fan structure

Let Σ be a toric fan in NR ∼= Rn, where N is a rank n lattice, NR = N ⊗ R. Let M = N∨,
MR =M ⊗ R and MT =M ⊗ T where T = R/Z ∼= S1. The FLTZ skeleton for Σ is

ΛΣ := ⊔σ∈ΣΛσ, where Λσ := (Mσ + σ⊥)/M × Int(σ) ⊂MT ×NR = T ∗MT

where Mσ ⊂MR is some refinement of lattice M .
Under toric mirror symmetry [4] [5] [12] [24], Λσ corresponds to torus orbit Oσ, and the

closed subskeleton Λ≤σ := ∪τ≤σΛτ corresponds to the toric Zariski-open neighborhood Uσ of
Oσ given by Uσ = ∪τ≤σOτ . Then

ShΛ≤σ
(MT) ∼= QCoh(Uσ).

We now generalize this class of skeleta ΛΣ and their covers, in two steps. We first consider
the skeleton supported on a hyperplane arrangement on MR with codirections specified by
Σ, and then we turn that into a local condition to define a large class of examples:

Definition 9.16. Let Σ be a rational polyhedral fan in NR. The local FLTZ skeleton for Σ
is

ΛlocΣ :=
⋃
σ∈Σ

σ⊥ × σ ⊂MR ×NR ∼= T ∗MR.

We say a skeleton Λ ⊂ T ∗MR is locally of FLTZ type Σ if for any p ∈MR, there is an open
ball Up around p such that Λ|Up = ΛlocΣp

for some subfan Σp ⊂ Σ.

The following result follows easily from the definition:

Lemma 9.17. For a subfan Σ′ ⊆ Σ, put ΛΣ′ := µ−1(Σ′) ∩ ΛΣ. This is a skeleton locally of
FLTZ type Σ′.

We now identify a cover of skeleta locally of FLTZ type that are adapted to the projection
µ : T ∗MR → NR, which is the moment map for translation by MR on T ∗MR. If Λ is locally
of FLTZ type Σ, it has the following set-theoretic decomposition:

Λ =
⊔
σ∈Σ

Λσ, Λσ := µ−1(Int(σ)) ∩ Λ. (9.1)

The following key technical result holds for these covers. We prove it in the appendix to
this chapter.
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Theorem 9.18. Take

1. Σ a rational polyhedral fan in NR,

2. Λ ⊂ T ∗MR a skeleton of locally of FLTZ type Σ, and

3. σ ∈ Σ any cone.

Put
starΣ(σ) := ∪τ≥στ.

Then for any ξ ∈ Λsmooth
σ , the support of the co-core PΛ

ξ is bounded above in the following
sense:

µ(SS(PΛ
ξ )) ⊆ starΣ(σ)

Therefore, the µ-image of the singular support of PΛ
ξ always is at least as big as the cone

σ for which ξ ∈ Λsmooth
σ , and is guaranteed to be no bigger if σ is maximal.

Definition 9.19. We say σ and τ are adjacent if there exists a cone κ such that τ ≤ κ ≥ σ.
In other words, if σ and τ are the faces of a common bigger cone.

An immediate corollary is the following orthogonality result:

Corollary 9.20. If σ and τ are non-adjacent cones in Σ, then for any ξ ∈ Λsmooth
σ and

η ∈ Λsmooth
τ , we have

homShΛ(M)(P
Λ
ξ , P

Λ
η ) = homShΛ(M)(P

Λ
η , P

Λ
ξ ) = 0.

Proof. By definition,

homShΛ(M)(P
Λ
ξ , P

Λ
η ) = µξP

Λ
η =

{̸
≃ 0 if ξ ∈ SS(PΛ

η )

0 otherwise

but the non-adjacency assumption ensures that µ(ξ) and µ(SS(PΛ
η )) are disjoint.

For example, this happens when σ, τ are maximal cones; see Figure 9.3.
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Figure 9.3: A fan Σ with eight cones. The images of ξ, η, γ ∈ Λ are depicted as lying inside
cones σ1, σ2, and a 1-d cone, respectively. If Λ ⊂ T ∗MR is a skeleton locally of FLTZ type
Σ, then ShΛ(M) would have Pξ ⊥ Pη and Pξ ⊥ Pγ, but not necessarily Pη ⊥ Pγ.

Corollary 9.21. Suppose Σ1,Σ2 ⊆ Σ are two subfans, and ΛΣ is a skeleton locally of FTLZ
type Σ. Then in the notation of Lemma 9.17, the following is a pullback square:

ShΛΣ1∪Σ2
ShΛΣ2

ShΛΣ1
ShΛΣ1∩Σ2

□

Proof. Any pair of cones σ1, σ2 in ΛΣ1 ∆ΛΣ2 is non-adjacent inside ΛΣ1∪Σ2 , and therefore by
Corollary 9.20 there is orthogonality of co-cores

P
ΛΣ1∪Σ2
ξ ⊥ P

ΛΣ1∪Σ2
η

for any ξ ∈ Λsmooth
σ1

and η ∈ Λsmooth
σ2

.

As a consequence, we learn the following main result.

Theorem 9.22. For a skeleton ΛΣ locally of FLTZ type Σ, the cover by Λσ := µ−1(σ) ∩ ΛΣ

for σ ∈ Σmax is comonadic:

ShΛΣ Ω coMod

(∏
σ∈Σmax

ShΛσ

)
Lenh

In fact, the following is a limit diagram:

ShΛΣ

[∏
σ∈Σmax

ShΛσ

∏
σ1,σ2∈Σmax

ShΛσ1∩σ2
· · ·
]

L
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Proof. Apply Theorem 9.15 to Corollary 9.21.

This Theorem 9.22 was a motivating question for this thesis, in the sense that we did not
know of a direct proof that the FLTZ skeleta with their covers from toric mirror symmetry
were comonadic. Certainly, though, there was a beautiful proof through the FLTZ mirror
equivalence: the equivalence linked such FLTZ covers to Zariski open covers on the mirror
side, and so comonadicity for FLTZ skeleta and their covers was a consequence of the well-
known comonadicity for Zariski open toric covers.

Remark 9.23. The honest FLTZ skeleton ΛΣ associated to a rational polyhedral fan Σ,
together with its cover {Λσ}σ∈Σ as detailed [4], is in particular a skeleton locally of FLTZ
type Σ with its canonical cover. Thus, Theorem 9.22 proves comonadicity and limit descent
for the FLTZ set-up (ΛΣ, {Λσ}σ∈Σ) in a way that is independent of, though heavily inspired
by, Zariski comonadicity as transported via the FLTZ mirror equivalence.

9.5 Comonadicity criterion II: limit cobars
In this section, we return to something we saw in Chapter 2: the cobar characterization
of comonadicity. Though simple and likely well known, we have not been able to locate a
mention or proof of it in the literature. For the convenience of the reader, we give a brief
reminder on the set-up, and then restate the result.

As a recollection, the result is an outgrowth of a basic observation: comonadicity of
L : C → D implies that T -cobars on all objects c ∈ C

c Tc TTc · · ·

are limit diagrams. We ask: is it possible to use this to formulate a sort of converse?
First, we consecrate these important objects into named subcategories:

Definition 9.24. Let L : C → D : R be an adjunction in Cat∞, giving a monad T ↷ C .

1. Define
C T

limit cobars ⊆ C

to be the full subcategory on all objects c ∈ C whose T -cobars are limit diagrams.

2. Define
C T

absolute ⊆ C T
limit cobars ⊆ C

to be the full subcategory on all objects c ∈ C whose T -cobars are absolute limit dia-
grams.

And now, the result:
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Theorem 9.25 (Restatement of Theorem 2.26). Let L : C ↔ D : R be an adjunction in
Cat∞, and assume that the right adjoint Rrecon to Lenh exists (for example, if all categories
were presentable). Then

1. Lenh is an embedding (with coreflector Rrecon) if and only if

C T
limit cobars = C

2. L is comonadic if and only if (a) C T
limit cobars = C and (b) Rrecon is conservative.

We summarize the basic result in the following diagram:

RD Ω coModcofree D

C T
limit cobars

C Ω coModD

D

Lenh|RD

Rrecon|
Ω coModcofree D

Lenh|
CT

limit cobars

L

Lenh

fgt

Rrecon

We will now use this characterization of comonadicity to present two criteria. To state
them, we first introduce a final definition:

Definition 9.26. Let C be a category. We say that C is closed under tensors if for any
S ∈ Set and any c ∈ C , the object

c⊗ S := c⊕S

also exists in C . In other words, arbitrary direct sums can be taken of any single object.

The subcategories of objects with limit and absolute limit T -cobars are closed under
several operations:

Lemma 9.27. Let L : C → D : R be an adjunction in PrL,st of stable, presentable categories.
The subcategories C T

limit cobars and C T
absolute enjoy the following properties:

1. C T
limit cobars is closed under finite limits and retracts.

2. C T
absolute is closed under finite limits, retracts, and tensors.

Proof. For part (1), the closure under finite limits follows from the fact that T preserves
finite limits, by virtue of being a functor in PrL,st. Closure under retracts follows from no
hypotheses on the kind of category, for if c ∈ C T

limit cobars and

c′
s
↪−→ c

r−→ c′
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a retract, the retraction r builds maps to c′, rendering it the limit of its cobar.
For part (2), similar arguments, but now with arbitrary exact functors E : C → E thrown

in, show closure of C T
absolute under finite limits and retracts. Finally, for S ∈ Set, since

C
(−)⊕S

−−−→ C

is an exact functor, it transports absolute limit diagrams to absolute limit diagrams, and
thus an absolute limit cobar

c Tc TTc · · ·

is sent to an absolute limit diagram

c⊕S (Tc)⊕S (TTc)⊕S · · ·

which, by the fact that T preserves colimits, is the cobar of c⊕ dimk V :

c⊕S T (c⊕S) TT (c⊕S) · · ·

Thus c⊕S ∈ C T
absolute.

Remark 9.28. In the language of Chapter 2, the above Lemma in particular says that both
C T

limit cobars and C T
absolute are thick subcategories of C .

The purpose of the above result is to conclude the following:

Corollary 9.29. The closure of RD under finite limits, tensors, and retracts is contained
in C T

absolute limit:
⟨RD⟩△,⊗,τ ⊆ C T

absolute limit ⊆ C T
limit cobars ⊆ C

Proof. Since RD ⊆ C T
absolute, the claim follows from the closure of the codomain under△,⊗, τ

by Lemma 9.27.

We gather everything into an easy corollary:

Corollary 9.30. Let L : C → D : R be an adjunction in PrL,st, and suppose that

1. ⟨RD⟩△,⊗,τ = C , or C T
absolute = C , and

2. R is conservative.

Then L is comonadic.

Proof. Assumption (1) implies by Corollary 9.29 that C T
limit cobars = C , and therefore by

Theorem 2.26 ensures that Lenh is an embedding.
Thus it suffices to show that Rrecon is conservative. By assumption (1), L is conservative,

and therefore by assumption (2) Ω := LR is conservative, as is the functor cofree. Therefore,
Rrecon is conservative. Thus Lenh is an equivalence.

We now come to our first criterion.
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Criterion II(a)

Suppose
C C /D1

C /D2

L1

L2

are two localizations in PrL,st. One general idea for exploiting Corollary 9.30 is to observe
the following:

Observation 9.31. If it can be guaranteed that D1 ⊆ C T
limit cobars, then in fact C T

limit cobars =
C .

This works because, for any c ∈ C , the L1-recollement

L̃1R̃1c︸ ︷︷ ︸
∈D1

→ c→ R1L1c︸ ︷︷ ︸
∈R1C /D1

+1−→

shows that c is therefore a finite colimit of objects in C T
limit cobars, meaning that c ∈ C limit cobars.

Therefore C = C T
limit cobars by Corollary 9.29.

Here is one way of arranging this:

Proposition 9.32. Suppose D1 := KerL1 = ⟨d⟩⊕, i.e. D1 is generated by an exceptional
object d. If d ∈ C T

absolute, then

C
L:=L1⊞L2−−−−−−→ C /D1 ⊞ C /D2

is comonadic.

Proof. Let R1, R2 denote the adjoints, and R := R1⊕R2 the right adjoint to L. Since Ri are
embeddings, R is conservative. Thus by Corollary 9.30, it remains to show that C T

absolute = C .
Certainly RiC /Di ⊆ C T

absolute, since the cobars on such objects are in fact split. Further-
more, since for any S ∈ Set,

C
(−)⊕S

−−−→ C

is an exact functor, it follows by the hypothesis and Lemma 9.27 that D1 ⊆ C T
absolute as well.

Therefore, by the immediately preceding discussion, C T
absolute = C .

Remark 9.33. We can view Corollary 9.2 as another way of instantiating the above strategy.
Indeed, semiorthogonality guarantees that

D1 ⊆ ⟨R1C /D1 ⊕R2C /D2⟩△,τ ,

which certainly lies inside C T
absolute.
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Remark 9.34. Note that it was important for the above proof idea that d belonged to C T
absolute

rather than to just C T
limit cobars. The reason is that we wish to also force the entire subcategory

⟨d⟩colimit to also be contained C T
limit cobars, which would involve trying to commute infinite

colimits (of d) past infinite limits (cobars). This typically requires some strong hypotheses,
such as the assumption d ∈ C T

absolute that we made.

Application

The above result grew out of a strangely fanatic attempt to see whether the following simple-
looking collection of examples was comonadic:

Proposition 9.35. For n ≥ 1, fix a point 0 ∈ Sn and let Λ = Λ1 ∪Λ2 be the following cover
of a Lagrangian skeleton inside T ∗Sn:

Λ1 := T ∗0S
n, Λ2 := T ∗SnSn

Then the functor
ShΛ(S

n)
L:=L1⊞L2−−−−−−→ ShΛ1(S

n)⊞ ShΛ2(S
n)

is comonadic.

Proof. We can identify the localizations and their right adjoints with

ShΛ(S
n) Loc(pt)

Loc(Sn)

i∗

W

i∗
ι

(see Figure 9.4 below for a more detailed diagram in the case n = 1). Let U := Sn \pt
j
↪−→ Sn

denote the open complement of pt
i
↪−→ Sn. Then

D1 := Ker(i∗) = ⟨j!kU⟩⊕
is generated by an exceptional object. The open-closed distinguished triangle

j!kU → kSn︸︷︷︸
∈C T

absolute

→ i∗i
∗kSn︸ ︷︷ ︸

∈C T
absolute

+1−→

presents it as a finite limit of objects in C T
absolute, and therefore j!kU ∈ C T

absolute.

Example 9.36. The n = 1 picture translates into algebraic geometry under FLTZ mirror
symmetry, alias the coherent-constructible correspondence, as follows: consider the diagram

P1 pt

U := P1 \ ({0} ∪ {∞})

p

j
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Then the localization functors matching the n = 1 diagram above are, at least up to an
autofunctor,

QCoh(P1) QCoh(pt) ShΛ(S
1) Loc(pt)

QCoh(U) Loc(S1)

p∗

j∗
p!

i∗

W

i∗
j∗ ι

and the upshot is that QCoh(P1)
p∗⊞j∗−−−→ QCoh(pt)⊞QCoh(U) is comonadic.

Figure 9.4: The diagram for n = 1, with Λ1 = 0S1 and Λ2 = T ∗0S
1. Note that

ShΛ1∩Λ2=pt(S
1) ≃ 0 since the intersection is properly isotropic. This example is inacces-

sible to the semiorthogonality Criterion I, but is covered by the more general Criterion II.

Remark 9.37. These examples illustrate the fact that comonadicity does not require the
pieces of a Lagrangian skeleton Λ = Λ1 ∪ Λ2 to have the same homotopy type.

Remark 9.38. While these examples are comonadic, they fail the Beck-Chevalley condition,
and thus do not give rise to limit descent. That is, the category Sh0Sn∪T ∗

0 S
n(Sn) is not the

pullback of the categories Sh0Sn (Sn) and ShT ∗
0 S

n(Sn) over their intersection category {0}.
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Criterion II(b)

We thank Germán Stefanich for the following observation:

Proposition 9.39. Let L : C → D : R be an adjunction in PrL,st, and suppose that C is a
smooth k-linear category over k. If

1. the compact objects C 0 ⊆ C T
absolute, and

2. R is conservative,

then L is comonadic.

Proof. The fact that C is smooth implies that C has a compact generator c such that

C = ⟨c⟩△,⊗,τ

The result now follows by Corollary 9.30.

We would like to find a use for this criterion!

9.6 Questions for further research
We end the main part of this thesis by posing a couple questions:

Question 9.40. If {C Li−→ C /Di}i∈I is a collection of localizations in PrL,st (perhaps even
take compactly generated categories) which are jointly conservative, is it true that L := ⊞i∈ILi
is comonadic, with no other hypotheses?

If the above is not true, then here is a possible strategy for finding descent results:

Question 9.41. Is it possible to find a t-structure on ShΛ(M) adapted to wrappings {Li} for
which the Way 1 method of proof of Zariski descent could work to give comonadicity results?

Best of luck to anyone out there who is interested!

9.7 Appendix: toric stuff
The purpose of this section is to prove Theorem 9.18. The argument is mainly a combination
of Theorem 5.2 in [4] which provides a set of generators for the category ShΛ, and a formal
result on building a co-representing object for a functor over a poset.
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Shard sheaves

Let Σ be a simplicial rational fan in NR, where each k-dimensional cone σ is generated by k
rays. Let Σ(k) be the set of all k-dimensional cone, in particular Σ(1) is the set of rays.

Next, given a collection of ‘shift parameter’, we construct a locally FLTZ-type skeleton.
For each ray ρ ∈ NR in Σ, we have linear hyperplane ρ⊥ ⊂MR. For each b ∈M/ρ⊥, we have
an affine hyperplane b + ρ⊥ ⊂ MR. The shift parameter is a collection of subsets Sρ index
by rays ρ, where SρM/ρ⊥ is a finite subset. The shift parameters for ρ determines the shift
parameter for the cones.

For ρ a ray in Σ, the orthogonal complement

ρ⊥ = {x ∈MR | ⟨v, x⟩ = 0, ∀v ∈ ρ}

is a hyperplane passing through origin. We further equip this hyperplane with a co-direction
ρ. We also want to consider various affine translate of this hyperplane, e.g. x + ρ⊥ for
x ∈MR. Such affine hyperplanes are indexed by [x] ∈MR/ρ

⊥ = (Rρ)∨.
Let σ ∈ Σ(k) be a simplicial k-dimensional cone, and let σ(1) denote the set of rays it

contains. Then
Sσ :=

∏
ρ∈σ(1)

Sρ ⊂MR/σ
⊥.

If σ = 0, the 0-dimensional cone, we have S0 =MR/MR = {0}.
Let Smax = {(s, σ) | σ ∈ Σ, s ∈ Sσ} be the full collection of shift parameters. It is a poset

under the relation
(s1, σ1) ≤ (s2, σ2)⇔ s1 + σ∨1 ⊃ s2 + σ∨2 .

Let S ⊂ Smax be any ≤-saturated subset: that is, if p ∈ S and q ∈ Smax with q ≤ p, then
q ∈ S.

Given any ≤-saturated sub-poset S, we can define a skeleton

ΛΣ,S =
⊔

(s,σ)∈S

(s+ σ⊥)× Int(σ)MR ×NR = T ∗MR.

Following [4], we introduce the notion of “shard sheaves:”2

Definition 9.42. For any σ ∈ Σ and s ∈ Sσ, let s+ σ⊥ be a “shard,” and let

∆s,σ := Cs+σ∨ ,

be the associated shard sheaf, where

σ∨ := {x ∈MR | ⟨x, y⟩ ≥ 0, ∀y ∈ σ}

is the closed cone dual to σ.
2Our shard sheaf differs from [4] by Verdier duality.
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The collection of shards forms a partially ordered set by inclusion. Namely, the following
result holds, whose proof we leave to the reader:

Lemma 9.43 ([4]).

hom(∆s1,σ1 ,∆s2,σ2)
∼=

{
C (s1, σ1) ≤ (s2, σ2)

0 otherwise

Lemma 9.44. The following singular support estimates hold:

µ(SS(Cs+σ∨)) = σ.

In particular, if hom(∆s1,σ1 ,∆s2,σ2) ̸= 0, we have

µ(SS(∆s1,σ1)) ⊂ µ(SS(∆s2,σ2)).

Proposition 9.45. Any constructible sheaf in F ∈ ShΛΣ,S
with finite-dimensional stalks can

be represented by a chain complex of shard sheaves.

Proof. This is essentially due to a devissage argument in [4], Theorem 5.2. For any F ∈
ShΛ(M), its Verdier dual DF ∈ Sh−Λ(M) is expressible as a finite complex of co-standard
shard sheaves ωs+Int(σ∨). So apply D again to express F as a finite complex of standard shard
sheaves Cs+σ∨ .

Building a resolution of a co-core

We would now like to use the singular support estimates on shard sheaves from Lemma 9.44,
together with the guarantee of a resolution by shard sheaves offered by Proposition 9.45,
to find a resolution of a co-core PΦ by shard sheaves, and use that to bound its singular
support.

For the time being, we hop into a more general set-up. Let (Q,≤) be a finite poset, where
we assume that if v ≤ w and w ≤ v, then v = w. If v ≤ w and v ̸= w, we write v < w. We
abuse notation and use Q to denote the C-linear category that it determines, with the set
of objects Q, and with hom(v, w) = C if and only if v ≤ w.

Let ModQ = Fun(Q
op,VectC) be the module category over Q. Then we have the Yoneda

embedding
h : Q→ ModQ, v 7→ hom(−, v).

Let biModQ = Fun(Q
op×Q,VectC) be the category of bimodules over Q. A bimodule B takes

two input q1, q2, and output a vector space B(q1, q2), covariant in q2 and contravariant in q1.
The diagonal bimodule ∆Q is defined as ∆Q(q1, q2) = hom(q1, q2). Given a Q-bimodule B,
we can obtain a tautological functor

B : Q→ ModQ, v 7→ B(−, v).

Given a pair of objects, v, w ∈ Q, we may define the following Yoneda bimodule:

v ⊗ w∨ : (q1, q2) 7→ hom(q1, v)⊗ hom(w, q2).
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Lemma 9.46. The diagonal bimodule ∆Q can be resolved as a finite chain complex of Yoneda
bimodules. (

· · · →
⊕

q1<q1<q2

q0 ⊗ q∨2 →
⊕
q0<q1

q0 ⊗ q∨1 →
⊕
q0

q0 ⊗ q∨0

)
∼= ∆Q (9.2)

where
q0 ⊗ q∨0 → ∆Q

is given by the composition hom(v, q0) ⊗ hom(q0, w) → hom(v, w), and the maps within the
chain complex is given by

[q0 < q1 < · · · < qk]→
∑
i=0k

(−1)k[q0 < · · · < q̂i < · · · < qk]

where [q0 < q1 < · · · < qk] represent the term q0 ⊗ q∨k in the direct sum. and q̂i means omit
that term.

Proof. It is clear that the above rule gives a chain complex. We now need to show that this
chain complex is indeed acylic. We view this chain complex of bimodules as a chain complex
of functors from Q to ModQ, and we verify that this is ‘pointwise’ acylic by applying it to
each element v ∈ Q. To simplify notation, we will identity q ∈ Q with its Yoneda image
hom(−, q) in ModQ. We have

∆Q(v) = v⊕
q0<q1<···<qk

q0 ⊗ q∨k (v) =
⊕

q0<q1<···<qk≤v

q0 =: ⊕[q0 < · · · < qk ≤ v]

where we introduce the notation [q0 < · · · < qk ≤ v] for the summand q0 indexed by
q0 < q1 < · · · < qk ≤ v.

We claim that there is a degree −1 map h,

h : [q0 < · · · < qk ≤ v]→

{
(−1)k+1[q0 < · · · < qk < v ≤ v] if qk < v

0 if qk = v

such that dh+ hd = id. We leave the verification for the interested reader. This finishes the
proof of the lemma.

Corollary 9.47. Let Q be a finite poset, and let Φ : Q → VectCf.d. be a functor to finite-
dimensional vector spaces. Then, we have a resolution of Φ:(

· · · →
⊕

q1<q1<q2

Φ(q0)⊗ q∨2 →
⊕
q0<q1

Φ(q0)⊗ q∨1 →
⊕
q0

Φ(q0)⊗ q∨0

)
∼= Φ.
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If we define PΦ as the finite complex

PΦ :=

(⊕
q0

Φ(q0)
∨ ⊗ q0 →

⊕
q0<q1

Φ(q0)
∨ ⊗ q1 → · · ·

)
(9.3)

then we have
Hom(PΦ,−) ∼= Φ.

Proof. The resolution of Φ is obtained by composing Φ with the identity functor Q → Q,
and resolving the identity functor using (9.2).

Since Φ(q0) is assumed finite-dimensional for any q0 ∈ Q, we get

Φ(q0)⊗ q∨k = hom(qk,−) = hom(Φ(q0)
∨ ⊗ qk,−).

Hence, we have

Φ ∼= · · · →
⊕
q0<q1

Φ(q0)⊗ q∨1 →
⊕
q0

Φ(q0)⊗ q∨0

∼= · · · → hom(
⊕
q0<q1

Φ(q0)
∨ ⊗ q1,−)→ hom(

⊕
q0

Φ(q0)
∨ ⊗ q0,−)

∼= hom(· · · ←
⊕
q0<q1

Φ(q0)
∨ ⊗ q1 ←

⊕
q0

Φ(q0)
∨ ⊗ q0,−)

∼= hom(PΦ,−).

This proves the last part of the claim.

Now we are ready to prove Theorem 9.18.

Proof. (of Theorem 9.18) Let (x, ξ) ∈ Λsmooth
Σ,S , and ξ ∈ Int(σ). Let

Φ = Φ(x,ξ) : ShΛ(M)→ kMod

be the microstalk functor, which is ind-extended from its restriction

Φ : Q→ Perf k

to the poset Q of shard sheaves. Then, we have resolution of PΦ as in Eq (9.3). We have
two properties:

1. if p0 ≤ p1 in Q, then µ(SS(p0)) ⊆ µ(SS(p1));

2. for any p ∈ Q, if Φ(p) ̸= 0, then µ(SS(p)) ⊃ σ.

Hence, for any k-chain p0 < · · · < pk in Q, if Φ(p0) ̸= 0, then

σ ⊂ µ(SS(p0)) ⊆ µ(SS(pk)).

Since the µ-image of the singular support µ(SS(p)) for any shard sheaf p is a cone in Σ, it
means that µ(SS(PΦ)) ⊂ star(σ). This concludes the proof.
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