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Department of Psychology, Stanford University

Abstract

Language comprehension in grounded, social contexts in-
volves integrating information from both the visual and the lin-
guistic signals. But how should listeners prioritize these differ-
ent information sources? Here, we test the hypothesis that even
young listeners flexibly adapt the dynamics of their gaze to
seek higher value visual information when the auditory signal
is less reliable. We measured the timing and accuracy of adults
(n=31) and 3-5 year-old children’s (n=39) eye movements dur-
ing a real-time language comprehension task. Both age groups
delayed the timing of gaze shifts away from a speaker’s face
when processing speech in a noisy environment. This delay
resulted in listeners gathering more information from the vi-
sual signal, more accurate gaze shifts, and fewer random eye
movements to the rest of the visual world. These results pro-
vide evidence that even young listeners adjust to the demands
of different processing contexts by seeking out visual informa-
tion that supports language comprehension.
Keywords: eye movements; language processing;
information-seeking; speech in background noise; devel-
opment

Introduction

When processing language, we integrate information from
the visual and linguistic signals to understand what others
are saying. A classic demonstration of this integration is the
“McGurk effect” where a speaker’s mouth movements sug-
gest one sound while their acoustic output indicates another.
This conflict results in the listener perceiving a third, interme-
diate sound (MacDonald & McGurk, 1978). Findings such as
these have inspired prominent theories of speech perception
(McClelland, Mirman, & Holt, 2006) and lexical processing
(MacDonald & Seidenberg, 2006) that argue for the impor-
tance of interactive processes – where listeners integrate in-
formation from multiple sources in parallel. Moreover, em-
pirical work on speech perception shows that adults are better
able to recover linguistic information in noisy contexts when
they have visual access to a speaker’s face (Erber, 1969).

But how should listeners prioritize different kinds of infor-
mation? Consider that the value of integrating visual infor-
mation can change depending on features of the listener and
the processing context. For example, if a friend asks you to
“Pass the salt” in a noisy restaurant, you could facilitate com-
prehension by looking to the speaker’s face to read her lips
or perhaps the direction of her gaze. A second case is the
comprehension of a visual-manual language, e.g., American
Sign Language (ASL). Here, the value of allocating visual
fixations to the language source (the signer) is high since all
of the language-relevant information is available in that loca-
tion.

In prior work, we showed that, compared to spoken lan-
guage learners, ASL-learners delay shifting gaze away from

a language source until they have accumulated sufficient in-
formation to generate highly-accurate eye movements (Mac-
Donald, Blonder, Marchman, Fernald, & Frank, 2017). In
contrast, spoken language learners were more likely to pro-
duce early, random gaze shifts when seeking named referents.
We explained these differences using an information-seeking
account: that listeners flexibly adapted the dynamics of their
gaze in response to contexts where the value of gathering vi-
sual information was high.

Our account was inspired by ideas from several research
programs. First, work on language-mediated visual attention
shows that adults and children rapidly shift gaze upon hearing
the name of an object in the visual scene (Allopenna, Magnu-
son, & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, Eber-
hard, & Sedivy, 1995). Second, empirical work on visual at-
tention during everyday tasks shows that people overwhelm-
ingly prefer to look at goal-relevant locations – e.g., an up-
coming obstacle while walking (Hayhoe & Ballard, 2005).
Finally, work on “effortful listening” shows that people will
generate compensatory responses (e.g., increases in attention
and working memory) within “challenging” language con-
texts such as processing noisy or accented speech (Van En-
gen & Peelle, 2014). Together, these accounts predict that
gaze dynamics during language comprehension should adapt
to compensate for the reduced quality of the auditory signal
and to facilitate the listener’s goal of comprehension.

Here, we synthesize these ideas and test the generality of
our information-seeking account of eye movements during
grounded language comprehension. We ask whether listen-
ers will adapt the timing of gaze shifts away from a speaker
if the auditory signal is less reliable – as is the case when
processing speech in a noisy environment.

The second goal of this work is to test whether children
show a similar pattern of behavior and flexibly adapt fixations
in response to changes in the utility of gathering certain kinds
of visual information. Recent developmental work shows
that, like adults, preschoolers will flexibly adjust how they in-
terpret ambiguous sentences (e.g., “I had carrots and bees for
dinner.”) by integrating information about the reliability of
the incoming perceptual information with their expectations
about the speaker (Yurovsky, Case, & Frank, 2017). While
children’s behavior paralleled adults, they relied more on top-
down expectations about the speaker, perhaps because their
developing perceptual representations were noisier compared
with adults. These developmental differences provide insight
into how children succeed in understanding language despite
having partial knowledge of word-object links and without a
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Figure 1: Experimental design and stimuli. Panel A shows the timecourse of the linguistic stimuli for a single trial. Panel B
shows the layout of the three fixation locations (speaker, target, and distracter). Panel C shows a visual representation of the
clear and noisy waveforms.

fully-developed language model.
In our experiment, we hypothesized that a noisy audi-

tory environment increases the value of fixating a speaker
to gather visual information that supports comprehension.
Our key behavioral prediction is that listeners in noisy con-
texts will delay generating an eye movement away from a
speaker until they have accumulated additional visual infor-
mation about the identity of the named referent. This delay,
in turn, will lead to fewer random gaze shifts to the rest of
the visual world. We also predicted that preschoolers would
show a parallel pattern of adaptation to noisy contexts and al-
locate more fixations to a speaker’s face when it became more
useful for accurate language comprehension. A plausible al-
ternative to our hypothesis is that the effects of language on
visual attention are so well-practiced that we would not see
listeners adapt their gaze patterns to the processing context.

To quantify the evidence for our predictions, we analyze
the accuracy and reaction times (RTs) of listeners’ first gaze
shifts after hearing the name of an object in the visual scene.
We focus on first shifts because they provide a window onto
changes in the underlying dynamics of decision processes
that generate eye movements.

Experiment

In this experiment, we recorded adults and children’s eye
movements during a real-time language comprehension
task where participants processed familiar sentences (e.g.,
“Where’s the ball?”) while looking at a simplified visual
world with three fixation targets (see Fig. 1). Using a within-
participants design, we manipulated the signal-to-noise ratio
of the auditory signal by convolving the acoustic input with
brown noise (random noise with greater energy at lower fre-

quencies).

First, we present standard behavioral analyses of reaction
time (RT) and accuracy of listeners’ first gaze shifts after tar-
get noun onset. Then, we present two model-based analy-
ses that link observable behavior to underlying psycholog-
ical constructs. We use an exponentially weighted moving
average (EWMA) method (Vandekerckhove & Tuerlinckx,
2007) to classify participants’ gaze shifts as language-driven
or random. In contrast to the standard RT/accuracy analy-
sis, the EMWA approach allows us to quantify participants’
willingness to generate gaze shifts after noun onset but be-
fore collecting sufficient information to seek the named ref-
erent. Higher values indicate that participants were waiting
to shift until they had accumulated enough of the linguistic
signal to locate the named referent. Finally, we use drift-
diffusion models (DDMs) (Ratcliff & Childers, 2015) to ask
whether behavioral differences in accuracy and RT are driven
by a more cautious responding strategy or by more efficient
information processing.

We predicted that processing speech in a noisy context
would make participants less likely to shift before collecting
sufficient information. This delay, in turn, would lead to a
lower proportion of shifts flagged as random/exploratory in
the EWMA analysis, and a pattern of DDM results indicating
a prioritization of accuracy over and above speed of respond-
ing (see the Analysis Plan section below for more details on
the models). We also predicted a developmental difference –
that children would produce a higher proportion of random
shifts and accumulate information less efficiently compared
to adults; and a developmental parallel – that children would
show the same pattern of adapting gaze patterns to gather
more visual information in the noisy processing context.
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Method

Participants Participants were native, monolingual
English-learning children (n = 39; 22 F, Mage = 4.44 years,
SDage = 0.78) and adults (n = 31; 22 F). All participants had
no reported history of developmental or language delay and
normal vision/hearing. 14 participants (11 children, 3 adults)
were run but not included in the analysis because either the
eye tracker falied to calibrate (2 children, 3 adults) or the
participant did not complete the task (9 children).

Stimuli Linguistic stimuli. The video/audio stimuli were
recorded in a sound-proof room and featured two female
speakers who used natural child-directed speech and said one
of two phrases: “Hey! Can you find the (target word)” or
”Look! Where’s the (target word) – see panel A of Fig. 1.
The target words were: ball, bunny, boat, bottle, cookie, juice,
chicken, and shoe. The target words varied in length (shortest
= 411.68 ms, longest = 779.62 ms) with an average length of
586.71 ms.

Noise manipulation. To create the stimuli for the noise con-
dition, we convolved each recording with Brown noise using
the Audacity audio editor. The average signal-to-noise ratio1

in the noise condition was 2.87 dB compared to the clear con-
dition, which was 35.05 dB.

Visual stimuli. The image set consisted of colorful dig-
itized pictures of objects presented in fixed pairs with no
phonological overlap between the target and the distractor
image (cookie-bottle, boat-juice, bunny-chicken, shoe-ball).
The side of the target picture was counterbalanced across tri-
als.

Design and procedure Participants viewed the task on a
screen while their gaze was tracked using an SMI RED
corneal-reflection eye-tracker mounted on an LCD monitor,
sampling at 60 Hz. The eye-tracker was first calibrated for
each participant using a 6-point calibration. On each trial,
participants saw two images of familiar objects on the screen
for two seconds before the center stimulus appeared (see
Fig. 1). Next, they processed the target sentence – which
consisted of a carrier phrase, a target noun, and a question
– followed by two seconds without language to allow for a
response. Child participants saw 32 trials (16 noise trials; 16
clear trials) with several filler trials interspersed to maintain
interest. Adult participants saw 64 trials (32 noise; 32 clear).
The noise manipulation was presented in a blocked design
with the order of block counterbalanced across participants.
Audio levels were kept at a constant level across participants.

Analysis plan

First, we present behavioral analyses of First Shift Accuracy
and Reaction Time (RT).2 RT corresponds to the latency to
shift away from the central stimulus to either picture mea-

1The ratio of signal power to the noise power, with values greater
than 0 dB indicating more signal than noise.

2See https://osf.io/g8h9r/ for a pre-registration of the anal-
ysis plan.

sured from the onset of the target noun. Accuracy corre-
sponds to whether participants’ first gaze shift landed on the
target or the distracter picture. However, it is important to
point out that when we analyze differences in accuracy, we
are not making claims about the overall amount of time spent
looking at the target vs. the distractor image – a measure typ-
ically used in analyses of the Visual World Paradigm.

We used the rstanarm (Gabry & Goodrich, 2016) package
to fit Bayesian mixed-effects regression models. The mixed-
effects approach allowed us to model the nested structure of
our data – multiple trials for each participant and item, and
a within-participants manipulation – by including random in-
tercepts for each participant and item, and a random slope
for each item and noise condition. We used Bayesian estima-
tion to quantify uncertainty in our point estimates, which we
communicate using a 95% Highest Density Interval (HDI).
The HDI provides a range of credible values given the data
and model. Finally, to estimate age-related differences, we fit
two types of models: (1) age group (adults vs. children) as
a categorical predictor and (2) age (in days) as a continuous
predictor within the child sample.

Next, we present the two model-based analyses – the
EWMA and DDM. The goal of these models is to move be-
yond a description of the data and map behavioral differences
in eye movements to underlying psychological variables. The
EWMA method models changes in random shifting behav-
ior as a function of RT. For each RT, the model generates
two values: a “control statistic” (CS, which captures the run-
ning average accuracy of first shifts) and an “upper control
limit” (UCL, which captures the pre-defined limit of when
accuracy would be categorized as above chance level). Here,
the CS is an expectation of random shifting to either the tar-
get or the distracter image (nonlanguage-driven shifts), or a
Bernoulli process with probability of success 0.5. As RTs get
slower, we assume that participants have gathered more infor-
mation and should become more accurate (language-driven),
or a Bernoulli process with probability success > 0.5. Using
this model, we can quantify the proportion of gaze shifts that
were language-driven as opposed to random responding.

Following Vandekerckhove & Tuerlinckx (2007), we
selected shifts categorized as language-driven by the
EWMA and fit a hierarchical Bayesian drift-diffusion model
(HDDM). The DDM quantifies differences in the underlying
decision process that lead to different patterns of behavior.
The model assumes that people accumulate noisy evidence
in favor of one alternative with a response generated when
the evidence crosses a pre-defined decision threshold. Here,
we focus on two parameters of interest: boundary separa-

tion, which indexes the amount of evidence gathered before
generating a response (higher values suggest more cautious
responding) and drift rate, which indexes the amount of evi-
dence accumulated per unit time (higher values suggest more
efficient processing).

Results and Discussion
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Figure 2: Behavioral results for first shift Reaction Time (RT) and Accuracy. Panel A shows violin plots representing the
distribution of RTs for each participant in each condition. Each point represents a participant’s average RT. Color represents
the processing context. The grey insets show the full posterior distribution of RT differences across conditions with the vertical
dashed line representing the null value of zero condition difference. The green shading represents estimates in the predicted
direction and above the null value while the red shading represents estimates below the null. Panel B shows the same information
but for first shift accuracy.

Behavioral analyses: RT. To make RTs more suitable
for modeling on a linear scale, we analyzed responses in
log space with the final model specified as: log(RT ) ⇠
noise condition+ age group+ (noise condition | sub id) +
(noise condition | target item). Panel A of Fig. 2 shows the
full RT data distribution and the full posterior distribution of
the estimated RT difference between the noise and clear con-
ditions. Both children and adults were slower to identify the
target in the noise condition (Children Mnoise = 500.19 ms;
Adult Mnoise = 595.23 ms), as compared to the clear condi-
tion (Children Mclear = 455.72 ms; Adult Mclear = 542.45
ms). RTs in the noise condition were 48.82 ms slower on
average, with a 95% HDI ranging from 3.72 ms to 96.26 ms,
and not including the null value of zero condition difference.
Older children responded faster than younger children (Mage

= -0.44, [-0.74, -0.16]), with little evidence for an interaction
between age and condition.

Accuracy. Next, we modeled adults and children’s first
shift accuracy using a mixed-effects logistic regression with
the same specifications (see Panel B of Fig. 2). Both groups
were more accurate than a model of random responding (null
value of 0.5 falling well outside the lower bound of the
95% HDI for all group means). Adults were more accurate

(Madults = 90%) than children (Mchildren = 61%). The key re-
sult is that both groups showed evidence of higher accuracy
in the noise condition: children (Mnoise = 67%; Mclear = 61%)
and adults (Mnoise = 92%; Mclear = 90%). Accuracy in the
noise condition was on average 4% higher, with a 95% HDI
from -1% to 12%. Note that the null value of zero difference
falls at the very edge of the HDI. But 95% of the credible val-
ues are greater than zero, providing evidence for higher ac-
curacy in the noise condition. Within the child sample, there
was no evidence of a main effect of age or an interaction be-
tween age and noise condition.

Model-based analyses: EWMA. Fig. 3 shows the propor-
tion of shifts that the model classified as random vs. language-
driven for each age group and processing context. On aver-
age, 41% (95% HDI: 32%, 50%) of children’s shifts were cat-
egorized as language-driven, which was significantly fewer
than adults, 87% (95% HDI: 78%, 96%). Critically, process-
ing speech in a noisy context caused both adults and children
to generate a higher proportion of language-driven shifts (i.e.,
fewer random, exploratory shifts away from the speaker),
with the 95% HDI excluding the null value of zero condi-
tion difference (bnoise = 11%, [7%, 16%]). Within the child
sample, older children generated fewer random, early shifts
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Figure 3: EWMA results for children and adults. Each point
represents the proportion of shifts categorized as language-
driven (as opposed to guessing) for a single participant. Color
represents the processing context.

(Mage = -0.21, [-0.35, -0.08]). There was no eivdence of an
interaction between age and condition. This pattern of re-
sults suggests that the noise condition caused participants to
increase visual fixations to the language source, leading them
to generate fewer exploratory, random shifts before accumu-
lating sufficient information to respond accurately.

HDDM. Fig. 4 shows the full posterior distributions for
the HDDM output. Children had lower drift rates (children
Mdri f t = 0.59; adults Mdri f t = 1.9) and boundary separation
estimates (children Mboundary = 1.16; adults Mboundary = 1.67)
as compared to adults, suggesting that children were less effi-
cient and less cautious in their responding. The noise manip-
ulation selectively affected the boundary separation parame-
ter, with higher estimates in the noise condition for both age
groups (bnoise = 0.26, [0.1, 0.42]). This result suggests that
participants’ in the noise condition prioritized information ac-
cumulation over speed when generating an eye movement in
response to the incoming language. This increased decision
threshold led to higher accuracy. Moreover, the high over-
lap in estimates of drift rate suggests that participants were
able to integrate the visual and auditory signals such that they
could achieve a level of processing efficiency comparable to
the clear processing context.

Taken together, the behavioral and EWMA/HDDM re-
sults provide converging support for the predictions of our
information-seeking account. Processing speech in noise
caused listeners to seek additional visual information to sup-
port language comprehension. Moreover, we observed a very
similar pattern of behavior in children and adults, with both
groups producing more language-driven shifts and prioritiz-
ing accuracy over speed in the more challenging, noisy envi-
ronment.

boundary drift

children
adults

1.0 1.5 2.0 0 1 2 3
Parameter Estimate

Processing context: clear noise

Figure 4: HDDM results. Each panel shows the posterior dis-
tribution for either the boundary separation or drift rate pa-
rameters for children (top panels) and adults (bottom panels).

General Discussion

Language comprehension in grounded contexts involves in-
tegrating information from the visual and linguistic signals.
But the value of integrating visual information depends on
the processing context. Here, we presented a test of an
information-seeking account of eye movements during lan-
guage processing: that listeners flexibly adapt gaze patterns
in response to the value of seeking visual information for ac-
curate language understanding. We showed that children and
adults generate slower but more accurate gaze shifts away
from a speaker when processing speech in a noisy context.
Both groups showed evidence of prioritizing information ac-
cumulation over speed (HDDM) while guessing less often
(EWMA). Listeners were able to achieve higher accuracy in
the more challenging, noisy context. Together, these results
suggest that in settings with a degraded linguistic signal, lis-
teners support language comprehension by seeking additional
language-relevant information from the visual world.

These results synthesize ideas from several research pro-
grams, including work on language-mediated visual attention
(Tanenhaus et al., 1995), goal-based accounts of vision during
everyday tasks (Hayhoe & Ballard, 2005), and work on ef-
fortful listening (Van Engen & Peelle, 2014). Moreover, our
findings parallel recent work by McMurray, Farris-Trimble,
& Rigler (2017) showing that individuals with Cochlear Im-
plants, who are consistently processing degraded auditory in-
put, are more likely to delay the process of lexical access as
measured by slower gaze shifts to named referents and fewer
incorrect gaze shifts to phonological onset competitors. Mc-
Murray et al. (2017) also found that they could replicate these
changes to gaze patterns in adults with typical hearing by de-
grading the auditory stimuli so that it shared features with the
output of a cochlear implant (noise-vocoded speech).

The results reported here also dovetail with recent devel-
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opmental work by Yurovsky et al. (2017). In that study,
preschoolers, like adults, were able to integrate top-down ex-
pectations about the kinds of things speakers are likely to
talk about with bottom-up cues from auditory perception.
Yurovsky et al. (2017) situated this finding within the frame-
work of modeling language as a noisy channel where listeners
combine expectations with perceptual data and weight each
based on its reliability. Here, we found a similar developmen-
tal parallel in language processing: that 3-5 year-olds, like
adults, adapted their gaze patterns to seek additional visual
information when the auditory signal became less reliable.
This adaptation allowed listeners to generate more accurate
responses in the more challenging, noisy context.

This work has several important limitations that pave the
way for future work. First, we chose to focus on a single
decision about visual fixation to provide a window onto the
dynamics of decision-making across different language pro-
cessing contexts. But our analysis does not consider the rich
information present in the gaze patterns that occur leading up
to this decision. In our future work, we aim to measure how
changes in the language environment might lead to shifts in
the dynamics of gaze across a wider timescale. For example,
perhaps listeners gather more information about the objects
in the scene before the sentence in anticipation of allocating
more attention to the speaker once they start to speak. Sec-
ond, we chose one instantiation of a noisy processing context
– random background noise. But we think our findings should
generalize to contexts where other kinds of noise – e.g., un-
certainty over a speaker’s reliability or when processing ac-
cented speech – make gathering visual information from the
speaker more useful for language understanding.

This experiment tested the generalizability of our
information-seeking account of eye movements within the
domain of grounded language comprehension. But the ac-
count could be applied to the language acquisition context.
Consider that early in language learning, children are ac-
quiring novel word-object links while also learning about vi-
sual object categories. Both of these tasks produce different
goals that should, in turn, modulate children’s decisions about
where to allocate visual attention – e.g., seeking nonlinguis-
tic cues to reference such as eye gaze and pointing become
critical when you are unfamiliar with the information in the
linguistic signal. More generally, this work integrates goal-
based models of eye-movements with language comprehen-
sion in grounded, social contexts. This approach presents a
way forward for explaining fixation behaviors across a wider
variety processing contexts and during different stages of lan-
guage learning.

All data and code for this paper are available at
https://github.com/kemacdonald/

speed-acc/tree/master/paper/cogsci2018
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