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ABSTRACT 

Occupant presence and behavior can and should influence energy use in buildings. If occupancy is 

measured, predicted, or otherwise inferred, building controls can automatically adjust system operating 

parameters to use less energy without sacrificing user services. However, previous field evaluations and 

simulation studies appear to have overestimated the energy savings associated with this type of smart 

control. In this article we present results from a carefully controlled field evaluation of occupancy-

responsive learning thermostats installed in every bedroom of three high-rise university residence halls. 

While a standard practice energy model developed prior to the retrofit estimated 10–25% savings for 

cooling and 20–50% savings for heating, measurements reveal that the control scheme only reduced 

energy consumption by 0–9% for cooling, and by 5–8% for heating for normal operation during academic 

periods. However, for non-academic periods when the residence halls were sparsely populated, the 

scheme reduced cooling energy consumption by 20–30%. We analyzed these observations in relation to 

occupancy patterns, room temperature records, ambient conditions, and equipment run time. The findings 

provide novel insight about how to improve field evaluations and refine model assumptions to better 

predict the impact of occupancy-responsive thermostat controls. Notably, while analysts often use 

fractional building occupancy trends to simulate building energy performance, this study highlights the 

importance of accounting accurately for both the temporal and spatial variation of vacancy events 

throughout a building. 

  

KEYWORDS 

Smart Thermostats, Energy Savings, Occupancy, Energy Efficiency, HVAC 

 

HIGHLIGHTS 

● Previous modeling studies and field evaluations have overestimated savings for smart thermostats 

● This study measured only 0%–10% savings for cooling and heating during regular use 

● Energy savings were 20-30% for cooling during months with very low occupancy  

● Practitioners have ignored significant factors when modeling occupancy-responsive controls 

● Reduced system runtime in vacant rooms may not result in energy savings for the whole building 
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1. INTRODUCTION 

A substantial body of research has shown that simple programmable thermostats do not reliably 

save energy compared to traditional, manually controlled thermostats. This occurs in part because manual 

thermostats tend to be managed actively by occupants, whereas setpoint schedules on programmable 

thermostats are often set up improperly. Meier et al. and Peffer et. al. reviewed numerous studies on these 

issues [1], [2].  

To overcome some of the challenges that limit the effectiveness of programmable thermostats, the 

buildings industry is beginning to adopt a new class of ‘smart’ thermostats. These emerging controls can 

incorporate a variety of features, including web-based or smart-phone user interfaces, energy-use 

feedback, networked control of multiple zones, occupancy-sensing, learning, fault detection and 

diagnostics, and demand response.  

The present article focuses explicitly on one of the most prominent energy saving features for smart 

thermostats: occupancy-responsive learning setpoint control. These controls automatically relax the 

temperature setpoint during vacant periods, and learn about system response capabilities or occupant 

schedules and preferences to ensure that a room can return to the comfort setpoint for occupied periods. 

Fountain proposed the use of an occupancy-responsive thermostat for hotels more than 20 years ago [3]. 

Since then a substantial body of building science research has advanced the algorithms and functional 

capabilities necessary for these strategies to operate, and major advances in computing and electronics 

have readily enabled commercialization of numerous products.  

Many authors have developed building control strategies that learn from historical trends to 

estimate system response parameters [4], [5], [6]. In an occupancy-responsive thermostat this capability is 

used to automatically choose a setback temperature that will allow for recovery to the comfort set point 

within an acceptable time. So as to avoid potential discomfort when occupants return, some learning 

thermostats employ predictive algorithms that allow systems to recover in anticipation of occupancy [7], 

[8], [9], [10], [11], [12]. Related ‘context-aware’ approaches utilize opportunistic data sources – such as 

smart phone GPS location – to infer the likelihood of impending occupancy [13], [14]. Many of these 

thermostat controls build from the rich bodies of research on environmental sensor networks to measure 

occupancy state or number [15], [16], [17], and on stochastic estimation methods to predict occupant 

presence and behavior [18], [19],  [20]. 

Despite the breadth of research on occupancy, stochastic prediction, and advanced thermostat 

control strategies, comparably few authors have conducted building energy simulations to estimate the 

energy and demand savings provided by occupancy-responsive learning thermostats. Even fewer authors 

have conducted measured evaluations in real buildings. The simulation studies we are aware of used 

differing assumptions, and arrived at a variety of conclusions. Lu et al. simulated heating and cooling 

energy use for a home using measured occupancy data and concluded that an occupancy-responsive 

control scheme would reduce annual energy use by 28% [17]. Kleiminger et al. estimated that savings 

were only 3-10% for a well-insulated house in the heating season [8]. Erickson et al. used observed zone 

level occupancy data as inputs for a simulation and concluded that occupancy sensing control of HVAC 

in an office and laboratory environment could reduce annual energy use for heating cooling and 

ventilation by 42% [15]. Lo et al. used a simpler approach to estimate the energy savings potential for 

occupancy-responsive control of an air conditioning system that reduces air mixing between individual 

work spaces [21]. The authors estimated a 12% reduction in annual cooling energy use. However, they 

also indicated that the current standard practice for building energy simulations is not equipped to make 

good assessments for occupancy-responsive controls in multi-zone buildings because interior 

thermodynamic interactions are not properly represented [21].  
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Several consultants and industry practitioners have published simulation studies for these 

thermostats, largely for the purposes of utility energy efficiency programs [22], [23], [24]. These studies 

focused only on single buildings, dealt only with thermostats in hotels, and used standard practice 

modeling assumptions, similar to Lo et al. [21]. Utilities and public agencies have also commissioned 

several field studies on occupancy-responsive thermostats. These studies have mainly assessed the 

technology applied in hotels and have yielded a wide range of results, with large variation in savings 

between individual rooms, and between buildings and climates. Sullivan and Blanchard reported 10-25% 

energy savings for heating and cooling [25]. Frey et al. observed that energy use decreased by 85% in 

some rooms and increased by as much as 47% in others; the authors concluded that the occupancy-

responsive controls reduced energy use by 25% on average [24]. In 2008, Pistochini reported 10-70% 

savings for hotels in San Diego, CA [26].  Parker et al. conducted a controlled trial in several single-

family residences; the authors observed that occupancy-responsive thermostats resulted in 0-6% increase 

in cooling energy use for some homes and a 0-4% decrease for others [27]. 

In this article we present novel results from a field evaluation of occupancy-responsive 

thermostats installed in university residence halls. This article is the first field evaluation of energy 

savings from occupancy-responsive thermostats within academic literature.  We illustrate that standard 

practice building energy simulations can easily overestimate the energy savings for these thermostats, and 

that most previous field evaluations have made simplifying assumptions that we observed to be false for 

the residence halls in our study.  

2. METHODOLOGY 

2.1. Overview of field evaluation 

This study evaluated the energy impact of occupancy-responsive learning thermostats installed as a 

retrofit in every bedroom of three high-rise university residence halls in Davis, California. The three 

buildings evaluated (named G, M, and R) were among the first of 25 residence halls at the university that 

were retrofit with occupancy-responsive learning thermostats - ultimately, the measure was installed in 

approximately 2,500 individual rooms. The three residence halls studied are similar five-story concrete-

steel-plaster buildings constructed in 1965. Half of the exterior envelope is composed of single pane 

glazing, the remainder is concrete walls with no insulation. Each residence hall consists of 110 bedrooms 

and various common spaces, such as corridors, meeting rooms, laundry rooms, and bathrooms. Bedrooms 

occupy about 50% of the total floor area. Ventilation is provided to each room by continuous central 

exhaust, which draws air from hallways, by infiltration, and through operable windows. A separate air 

handler supplies ventilation air to the central common spaces. Each bedroom has a two-pipe three-speed 

fan-coil unit with a local thermostat. Cooling is provided by district chilled water, and heating is provided 

by district heating hot water. In all cases, the new occupancy-responsive thermostats replaced unrestricted 

manual thermostats in each bedroom. These smart thermostats were also added to control the fan coil 

units in the common lounge areas on each floor. No controls revisions were enacted for the central zone 

air handler or exhaust ventilation systems. The thermostat installed in each bedroom uses an on-board 

(wall mounted) or remote wireless (ceiling mounted) infrared motion detector. The device also 

incorporates an on-board light sensor and logic to distinguish between vacancy and a nighttime condition 

where occupants are sleeping. The control scheme is reactive - not predictive. It uses a learning algorithm 

to select a setback temperature for vacant periods that will allow the room temperature to recover within 

an acceptable time when occupants return.  

We evaluated cooling energy consumption in two buildings during academic periods before and after 

thermostat installation. Then we subjected two of the buildings to a series of controlled trials over the 

following year to assess energy saved for cooling and for heating. Energy savings for cooling was 

measured in academic periods and in non-academic periods. Heating performance was only assessed for 
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academic periods because winter break was too short to conduct a well controlled experiment. During 

academic periods, each building was leased to capacity with two students in each bedroom. During non-

academic periods these buildings were used irregularly for conference housing. The cooling season in 

Davis is characterized by hot days and cool nights. In this study, all cooling season data periods had some 

days with outside temperature above 95°F (35°C) and one cooling season period had some days with 

outside temperature as high as 105°F (40.6°C). Diurnal temperature swing during these periods was 

regularly larger than 35°F (19.4°C). The portion of the heating season analyzed was mild with minimum 

temperatures never below 40°F (4.4°C).  

2.2. Analytical Evaluation 

The analytical assessment presented in this study consists of three parts: 

 

1. A statistical evaluation of temperature response and equipment run time in vacant rooms 

2. A pre- and post-retrofit comparison to assess cooling energy savings during academic periods 

3. Controlled trials to assess savings for: 

a. cooling and heating in academic periods 

b. cooling in non-academic periods 

 

Thermostats were used to record data about occupancy, room temperature, comfort setpoint, 

active setback temperature, and fan-coil run time in every bedroom. The temperature sensor was located 

on board each thermostat. Users could select the comfort setpoint within a limited range specified by 

facilities managers. The thermostat uses a learning algorithm to automatically choose the setback 

temperature to ensure that room temperature can recover to the comfort setpoint within an appropriate 

time when occupants return. Outside air temperature, cooling energy consumption, and heating energy 

consumption were measured for each building through the university’s energy management and control 

system. Water flow measurements were performed using insertion flow meters (Onicon F-1200, ± 2% 

reading), and temperature measurements used fluid insertion thermistors (Omega TH-10, ± 0.2°C). 

The pre-post assessments used a hybrid of standard methods recommended by ASHRAE 

Guideline 14 to compare whole building cooling energy consumption before and after the thermostat 

installation [28]. This method captured the combined effect of all differences between the pre and post-

retrofit periods. Despite the fact that this is an industry standard protocol, the approach is disadvantaged 

by the fact that there is no way to ensure that other exogenous factors have not changed between the two 

periods compared. Following the pre-post assessment, we scheduled a series of “week ON - week OFF” 

controlled trials, where the occupancy-responsive and learning features of the thermostats were enabled 

and then disabled in alternating one-week periods. The alternating “week ON - week OFF” schedule 

operated continuously for 13 months. The “week OFF” periods represent baseline performance, and the 

“week ON” periods represent retrofit performance. This approach isolated for the effect of the occupancy-

responsive features, and minimized the likelihood of confounding factors. This assessment method was 

used to determine savings for cooling and heating during academic periods, and for cooling in non-

academic periods. Data from the baseline period in each savings analysis was used to develop a reduced-

order regression model to describe cooling or heating energy consumption as a function of outside air 

temperature, the average temperature over the previous 24 hours, and the fraction of occupancy in the 

building. The model structure used to represent baseline performance was adapted from the change-point 

or segmented-linear regression models described by Kissock and others [29], [28], [30]. Change-point 

models typically use outdoor temperature as the single independent predictor for cooling or heating 

energy consumption. However, similar to what others have shown [31], [32], [33], [34], we found that the 

inclusion of other measured factors improved model prediction.  
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We developed several model formulations that included different independent predictors and used 

each formulation to identify regression coefficients from several weeks of hour-interval training data. We 

cross-validated the predictions from each model formulation to an independent data set from the same 

building and the same season, then compared the results. We selected the model with the best adjusted 

coefficient of determination (R
2
), which also had the best root mean squared error (RMSE), coefficient of 

variation of the root mean squared error (CV-RMSE), and normalized mean bias error (NMBE), and used 

the following formulation for all subsequent assessments: 

 
(1) 

where: 

 cooling (or heating) energy consumption per interval [W]  

TOSA  outside air temperature [F] 

Occ  building occupancy rate [-] 

T24   average outside air temperature over previous 24 hours [F] 

Ci  change point beyond which βi is applicable 

(  )
+
  term evaluated when quantity >0 

Coefficients and change points were determined for baseline periods in each building. Each 

baseline period consisted of 16–40 days of hour-interval data. All computations were conducted in R 

using Muggeo’s “Package ‘segmented” [35]. The resulting baseline models, documented explicitly in 

sections 3.2.1–3.2.4, achieved adjusted coefficients of determination (R
2
) of 0.81–0.97. This is 

surprisingly good fit compared to most regression models of whole building energy use. The result is 

helped considerably by the fact that our models only represent chilled or hot water energy consumption, 

and therefore avoid many exogenous factors that are usually present in whole building electricity 

consumption data. 

We predicted the baseline energy use by feeding the environmental conditions observed in the 

post-retrofit periods into the baseline models. Energy savings for each assessment was calculated as the 

total difference between the projected baseline energy consumption trends and the actual measured 

energy consumption. 

We cross-validated the predictions from each model to an out-of-sample data set from the same 

building and the same season. The cross validations resulted in somewhat lower R
2
 values. For example, 

our model fit training data from one of the buildings with R
2
=0.944, and cross-validation with out-of-

sample data resulted in R
2
=0.938. In this instance NMBE=0.1263. Lastly, the uncertainty associated with 

each model prediction was calculated for 90% confidence according to ASHRAE Guideline 14 [28]. 

3. RESULTS 

3.1. Temperature response and run time in vacant rooms 

A simplified idealization of temperature response and energy consumption surrounding a vacancy 

event can be broken into the following conceptual periods, and illustrated in Figure 1 [36]: 

1. Cyclic operation to maintain comfort setpoint. The rate of energy consumption during this period 

is driven mainly by the indoor–outdoor temperature difference. Temperature history, solar gains, 

and internal loads also play a role but are ignored in this example. 

2. Drift from setpoint toward setback temperature. No energy is used during this period because no 

conditioning is needed. The rate of drift is driven by the indoor–outdoor temperature difference. 

3. Cyclic operation to maintain setback temperature. Indoor–outdoor temperature difference is 

smaller, therefore thermal load and system runtime are smaller, and less energy is required to 

maintain the setback temperature than would be used to maintain the original comfort setpoint. 
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4. Recovery from setback to setpoint temperature. Energy consumption during this period is greater 

than what is required to maintain the original comfort setpoint, since capacity must be larger than 

the load in order to change the indoor temperature. 

 
Figure 1: The idealized pattern of temperature response and fractional run time for cooling before, during, and after a 

vacancy event. Outdoor temperature and all internal gains are assumed constant and there is no significant effect of wall 
thermal mass. 

Expectations about the effect of occupancy-responsive thermostat controls are often based on this 

simple idealization. For example, previous efforts to demonstrate energy savings from these thermostats 

have indicated temperature drift and reduced run time as evidence of energy savings [24], [37], [25], [38]. 

We approached this study with similar expectations, but found that temperature response and equipment 

runtime was much more complex, and that each zone in a building can respond in unique ways. Figure 2 

presents a summary of the temperature response observed in all rooms in one building over a sixteen-

week period in the cooling season. These observations indicate that temperature in vacant rooms rarely 

drifted all the way to the setback - even when rooms were vacant for long periods. 

 
Figure 2: Setpoint (blue), setback (cyan), and actual (measured) room temperatures for occupied rooms (red), vacant rooms 
(green), and rooms vacant for at least 72 hours (purple). Values are averaged for each room across the 10 week monitoring 
period April–July. (A) Results for each room. (B) Boxplot of results for all rooms. The colors in (A) correspond to the colors in (B). 

The simple idealization presented in Figure 1 would suggest that fan coil run time and 

temperature drift are correlated, but our observations show that this was not true. Figure 3A compares the 

distribution of temperature measured in all rooms during vacant periods to the distribution in occupied 

periods. Temperature in vacant rooms did not drift far from the occupied conditions. Figure 3B compares 
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the distribution of fan coil run time in occupied and vacant rooms. While fan coils in occupied rooms 

cycled over a wide range in response to coincident thermal loads, fan coils in vacant rooms practically 

never operated. Figure 3C and 3D present the same comparison for one of the few rooms where 

temperature did drift during vacant periods. While the fan coil cycled regularly during occupied periods, 

it did not operate during vacant periods. 

 

 
Figure 3: (A) Room temperature and (B) run time for all rooms in all vacant and occupied intervals across the 

monitoring period April–July 2012. (C) Room temperature and (D) run time in room B204 during the same period. B204 is one 
of the few rooms that experienced regular temperature drift during vacant periods. 

Since the response for temperature and run time in the majority of rooms did not agree with the 

the simple idealization, one must doubt the validity of assumptions about the relationship between 

reduced runtime and energy savings. The temperature response in vacant rooms was attenuated by 

something other than the room fan coil. Most likely, the thermal load for vacant rooms was transferred to 

adjacent occupied rooms and to the conditioned corridors. Therefore, it is not appropriate to assume that a 

change in fan coil run time for vacant rooms corresponds to a change in energy consumption for a 

building.  

This observation is significant because several previous studies have assumed a simple 

correlation between run time and energy use. Moreover, many smart thermostats use equipment runtime 

patterns to self report energy savings in real time. In light of these observations, the remainder of our 

analytical investigation assessed energy savings in the whole building as a complete system. 

 

3.2. Measured energy savings for cooling and heating 

This section presents the detailed results from four energy use comparisons: a pre-post 

assessment in the cooling season for an academic period (3.2.1), a controlled trial (“Week On - Week 

Off”) for cooling in an academic period (3.2.2), a controlled trial for cooling in a non-academic period 

(3.2.3) and finally a controlled trial for heating in an academic period (3.2.4).  

The selection of which buildings were used for pre-post comparisons and which buildings were 

used for “Week On - Week OFF” controlled trials was based entirely on facilities construction timelines 

and on the availability of appropriate data for analysis. For example, there was no data for Building M 

preceding installation of the thermostats, so it was not used for pre-post investigation. The results from 

each comparison in each building are summarized in Section 3.2.5. 
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3.2.1. Pre-post assessment of cooling energy consumption 
We used cooling energy consumption data from the springtime academic period immediately 

preceding installation of the thermostats to develop a model (described in section 2) for baseline cooling 

energy consumption in two buildings. For Building R, we developed the following equation with a least 

squares regression that resulted in a very good fit with adjusted R
2
 = 0.97: 

 

(

(2) 

Similar analysis for the baseline period in Building G developed a model with adjusted R
2
 = 0.96. 

The baseline observations were compared to cooling energy consumption data from the fall 

academic period immediately following installation of the thermostats. Figure 4A compares 

measurements from the baseline period to measurements from the post retrofit period. Figure 4B plots the 

time series trend for measurements in the post-retrofit period, and the time series trend for the projected 

baseline performance in the same period. This comparison indicates 3.4% reduction in cooling energy 

consumption associated with the smart thermostat installation (39.2 kWh/day ±12.5 kWh/day). A similar 

analysis for Building G indicated 0.1% savings. In the second case, model uncertainty was larger than the 

savings observed (0.5 kWh/day ± 10.4 kWh/day). 

 
Figure 4: Comparison of pre-post cooling demand during the academic period for Building R. (A) Measured 1-hour 

increment cooling demand for the baseline (OFF) and post retrofit (ON) periods plotted against outside air temperature. (B) 
Measured post retrofit cooling demand and projected baseline performance for the same conditions plotted as time series. The 

baseline model is developed from 40 days of 1-hour increment measurements. The analysis indicates 3.4% savings (39.2 
kWh/day). 

3.2.2. Controlled assessment of cooling energy consumption in high-occupancy (academic) 

periods 
Following the pre-post comparisons of cooling energy consumption, we coordinated a series of 

“week ON – week OFF” controlled trials in Building M and Building G to control for confounding effects 

that could be present in a simple pre-post comparison. We used cooling energy consumption data from 

periods with the occupancy-responsive features disabled to develop a model of baseline energy 

consumption in two buildings during academic periods. For Building M, the following equation for 

cooling performance in the spring academic period resulted in adjusted R
2
 = 0.94: 
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(3) 

A similar analysis of baseline data during the fall academic period resulted in an adjusted R
2
 = 

0.96. Figure 5A compares cooling energy consumption in Building M when the occupancy-responsive 

features were disabled to similar measurements when occupancy-responsive features were enabled. 

Figure 5B plots the time series trend for cooling energy consumption with the occupancy-responsive 

features enabled, and the time series trend for the projected baseline performance in the same periods. 

This comparison indicates 2.9% (26.2 kWh/day ±17.5 kWh/day) reduction in cooling energy 

consumption associated with the occupancy-responsive controls. A similar analysis for the building 

during the fall academic period measured 6.2% savings (33.9 kWh/day ±9.8 kWh/day). 

  

 
Figure 5: Comparison of “week ON – week OFF” cooling demand for Building M during the spring academic period.  

(A) Measured 1- hour increment cooling demand for the baseline (OFF) and post retrofit (ON) periods plotted against outside 
air temperature. B) Measured post retrofit (ON) cooling demand and projected baseline (OFF) performance for the same 
conditions plotted as time series. The baseline model is developed from 30 days of 1-hour increment measurements. The 

analysis indicates 2.9% savings (26.2 kWh/day). 

3.2.3. Controlled assessment of cooling energy consumption in low-occupancy (non-academic) 

periods 
The controlled trials were also used to evaluate cooling energy savings during the non-academic 

summer period, when the residence halls were used intermittently for conference housing. During this 

period, the building occupancy fraction never exceeded 21%, and patterns of occupancy were sporadic. 

We developed the following equation for baseline energy consumption in Building M during the non-

academic period. The model represents the data nicely with adjusted R
2
 = 0.92: 

 

(

(4) 

Similar analysis for Building G resulted in a model with adjusted R
2
 = 0.96. Figure 6A compares 

the measured cooling energy consumption with and without occupancy-sensing during the non-academic 

period. Figure 6B plots the time series trend for cooling energy consumption with occupancy-sensing, and 

the time series trend for the projected baseline performance in the same periods. This comparison 

indicates 20.7% (280.2 kWh/day ±35.0 kWh/day) reduction in cooling energy consumption. A similar 
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analysis for Building G over the same period measured 29% savings (158 kWh/day ±10.6 kWh/day). 

Cooling energy consumption is naturally lower in non-academic periods because internal gains associated 

with occupancy are lower, but importantly, the degree of energy savings achieved by occupancy-

responsive controls is larger. Our explanation for this is discussed in Section 4.1.  

 

 
Figure 6: Comparison of “week ON – week OFF” cooling demand for Building M during the summer non-academic 

period. (A) Measured 1-hour increment cooling demand for the baseline (OFF) and post retrofit (ON) periods plotted against 
outside air temperature. (B) Measured post retrofit (ON) cooling demand and projected baseline (OFF) performance for the 

same conditions plotted as time series. The baseline model is developed from 16 days of 1-hour increment measurements. The 
analysis indicates 20.7% savings (280.2 kWh/day). 

3.2.4. Controlled assessment of heating energy consumption in high occupancy (academic) 

periods 
Finally, we used the controlled trials to assess savings in the heating season for an academic 

period. We used heating energy consumption data from periods with the occupancy-responsive features 

disabled to develop a model for baseline heating energy consumption in each building. The following 

equation represented the measured data well, with adjusted R
2
 = 0.87: 

 

(

(5) 

Similar analysis for Building G resulted in a model with adjusted R
2
 = 0.81. 

Figure 7A compares heating energy consumption from each period as a function of outside air 

temperature. Figure 7B compares the time series trends for energy use with occupancy-sensing to the 

projected baseline performance in the same period. This comparison indicates 5.8% (50.1 kWh/day ±33.8 

kWh/day) reduction in heating energy consumption associated with the occupancy-responsive features. 

Similar analysis for Building G measured 7.9% savings (84.1 kWh/day ±24 kWh/day) over the same 

period. 
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Figure 7: Comparison of “week ON – week OFF” heating energy demand for Building M during the academic period in 

Winter 2014. (A) Measured 1-hour increment heating demand for the baseline (OFF) and post retrofit (ON) periods plotted 
against outside air temperature. (B) Measured post retrofit (ON) heating demand and projected baseline (OFF) performance for 
the same conditions plotted as time series.The baseline model is developed from 22 days of 1-hour increment measurements. 

The analysis indicates 5.8% savings (50.1 kWh/day). 

3.2.5. Summary of the results for measured savings and comparison to modeled savings  
Table 1 summarizes the key results for energy savings determined through each field experiment. 

During academic periods, energy savings was small, but during non-academic periods the reduction in 

energy use was more substantial. These results conflict with many previous studies on occupancy-

responsive thermostats, which have claimed larger savings for similar control strategies in a variety of 

applications.  

Table 1: Summary of results for all periods analyzed to assess savings 

Test Building Study Type Mode Activity Period 

Absolute 
Savings 

(kWhTH/day) 
Uncertainty 

(kWhTH/day) Savings (%) 

1 R Pre-Post Comparison Cooling Academic 39.2 12.5 3.4% 

2 G Pre-Post Comparison Cooling Academic 0.5 10.4 0.1% 

3 G Controlled Week ON – Week OFF Cooling Academic 59.8 15.8 9.8% 

4 M Controlled Week ON – Week OFF Cooling Academic 26.2 17.5 2.9% 

5 M Controlled Week ON – Week OFF Cooling Academic 33.9 9.8 6.2% 

6 M Controlled Week ON – Week OFF Cooling Non-Academic 280.2 35.0 20.7% 

7 G Controlled Week ON – Week OFF Cooling Non-Academic 158 10.6 29.0% 

8 M Controlled Week ON – Week OFF Heating Academic 50.1 33.8 5.8% 

9 G Controlled Week ON – Week OFF Heating Academic 84.1 24.0 7.9% 

 

Table 2 documents the coefficients and change-points (for equation 1) identified for each baseline 

data set, and the number of one-hour interval data points used to develop each baseline model. 
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Differences in model coefficients reflect different buildings, heating or cooling modes, and academic vs. 

non-academic periods. For example, at Tosa=100°F cooling demand for Building M is approximately 200 

kWh/h during the academic period, but only 150 kWh/h during the non academic period. Although this is 

the same building, in similar environmental conditions, the baseline data in the academic period only 

included high occupancy, while the baseline data in the non-academic period only included low 

occupancy. 

Table 2: Summary of coefficients and change points (equation 1) for every baseline model.  

Test β0 β 1 β 2 β 3 β 4 β 5 C2 C3 C4 C5 # of hour increments 

1  9,378 -15.3 1,156 4,290 1,405 - 61.9 69.4 58.2 - 960 

2 7806 -164.8 1,362 3,882 520 - 60.2 75.7 62.5 - 960 

3 1403 -49.1 1,328 5,522 3,040 28,700 62.9 77.4 77.1 0.51 795 

4 66,453 -1,312 3,669 3,496 1,300 81,992 59.7 71.0 62.5 0.62 720 

5 -10,345 298 835 4,525 66,950 13,026 61.8 71.8 71.8 0.49 576 

6 -46,573 830 3,296 -65,770 1,701 169,078 71.5 99.7 71.1 0.01 384 

7 -16,330 241 3,288 1,934 1,886 14,194 71.3 82.5 73.7 0.05 576 

8 357,860 -5,606 4,149 2,005 -899 -32,280 59.2 69.5 50.8 0.46 531 

9 288,390 -4,134 2,463 2,287 -1,472 -63,900 58.7 73.2 55.7 0.77 411 

 

To qualify for a utility rebate incentive program, an engineering consultant conducted a standard 

practice building energy simulation for these residence halls using DOE 2.2 [39]. To represent the effect 

of setback, the model lumped all vacancy events into a common zone, and then adjusted the set-point for 

that vacant zone. In Section 4.3 we critique these standard practice model assumptions and recommend 

opportunities for improvement. Table 3 summarizes the model results and compares them to the range of 

savings that we measured in operation. The standard practice approach overestimated savings by a factor 

of 2-10, with the exception of the summer non-academic period when savings were larger. 

Table 3: - Common practice modeled estimate of energy savings compared to measured energy savings 

Percent Savings Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Space Cooling Modeled - - - 32% 19% 15% 13% 14% 14% 16% - - 

Space Cooling Measured - - - 2.9% - 9.8% 20.7% - 29% 6.2% - - 

Space Heating Modeled 22% 32% 49% 47% - - - - - 46% 38% 23% 

Space Heating Measured 5.8% - 7.9% - - - - - 5.8% - 7.9% 

 

4. DISCUSSION 

The energy savings we observed for occupancy-responsive thermostats in three residence halls 

was much smaller than we had anticipated based on previous studies. In the remaining sections, we 
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discuss the reasons for this unexpected result, based on which we formulate recommendations for   

methodological improvements for field evaluations, and strategies to improve simulations of occupancy-

responsive thermostats in complex buildings.    

4.1 Vacancy is not necessarily an opportunity for energy savings  

Figure 8 presents a boxplot distribution of the fraction of occupied rooms in each hour of the day 

for one building over a ten-week academic period in the cooling season. Superficially, it may seem that 

these residence halls would be an excellent application for occupancy-responsive thermostats. After all, 

daily average occupancy for these buildings was only 60-70%. The hourly occupancy fraction rarely 

exceeded 85%, and it was sometimes as low as 25%. 

 
Figure 8: Boxplot for fraction of occupied bedrooms for each hour during the academic period 

However, there are other factors that diminish the potential for energy savings from setback when 

some rooms are vacant. Most importantly, the temporal and spatial distribution of vacancy events affects 

the way that thermal energy flows within a building. During academic periods, individual vacancy events 

in the residence halls were disaggregate and sporadic. Although some rooms remained vacant for several 

hours or days at a time, adjacent rooms remained occupied. When vacant zones interact thermally with 

adjacent occupied zones, the value of a vacant setback is limited. As noted in Section 3.1, the temperature 

in vacant rooms did not drift far, despite the fact that fan coil run time was reduced to zero.  

The observations prompted us to conclude that individual rooms in a complex building cannot be 

considered independently, but the complete building must be assessed as a whole system. This conclusion 

is significant, because several previous studies have assumed a simple correlation between run time and 

energy use, and because many smart thermostats self report energy savings on the basis of reduced run 

time in each room. Such an approach might be acceptable in very simple scenarios, but it may not be 

accurate for buildings with multiple systems, or in scenarios where equipment run time is dependent on 

other interacting factors correlated with vacancy - such as thermal loads.  

Moreover, in the academic periods many vacancy events were too short for room temperature to 

drift far. In these instances the energy used for recovery would mostly negate the energy saved during a 

brief drift period. 

During non-academic periods occurrences of vacancy in each room were more temporally and 

physically coincident with vacancy throughout the building. This occurred because far fewer rooms were 

occupied, and because occupants’ schedules were more aligned. As a result, the controls had more 
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opportunity to trim energy use between occupancy events because whole blocks of vacant rooms could 

drift toward the setback at the same time. Furthermore, we expect that the occupancy-responsive controls 

would have a larger impact in higher occupancy periods if the instances of vacancy were more prolonged 

and more spatially coordinated. This would be difficult to accomplish purposefully in a residence hall, but 

might be an effective strategy for hotels. Yang and Becerik-Gerber drew similar conclusions when 

optimizing the mechanical system schedules for a multistory office building; the authors recommended 

strategic room reassignment as a method to aggregate similar workplace arrival and departure schedules 

in order to avoid conditioning and ventilating building zones that were only partially occupied [40].  

 

4.2. Opportunities to improve field evaluations 

In light of what we have observed in our study, it appears that some of the methods used in 

previous field evaluations could lead to disputable results. Namely, some previous studies have not 

controlled for interactions between rooms, and some have assumed that equipment run time is 

proportional to energy use. We recommend the following improvements to current practice for future 

field assessments of occupancy-responsive thermostats: 

1. Do not assume that changes in equipment runtime can represent energy savings. 

2. Consider the ways that spatial and temporal diversity in occupancy influence energy performance 

3. Assess the impact on the whole building by measuring energy consumption of all mechanical 

systems. Reduced energy consumption in a vacant room may be offset by increased consumption 

for adjacent occupied rooms, thus changes for individual rooms may not represent the whole. 

4. Do not compare rooms with occupancy-responsive controls to adjacent rooms without the 

controls. Since zones interact thermally, this method could inflate the differences in energy use. 

5. Structure the study as a controlled trial to minimize the effect of of exogenous variables such as 

changes in weather, building operations, room occupancy, and user behavior.  

We are only aware of one publicly available study that conducted this type of controlled trial to 

assess energy savings of occupancy-responsive thermostats. The study - conducted for single family 

homes in Florida - reported 0-6% increase in energy use for some homes and a 0-4% decrease for others. 

The differences were attributed to the ways that people used their thermostats prior to retrofit with the 

smart device [27]. 

4.3 Opportunities to improve simulations 

The common practice for building energy simulations may not properly capture the effects of 

occupancy-responsive thermostats. The main shortcoming is the inaccurate representation of temporal and 

spatial diversity for vacancy events. Modeling error can be compounded by simplification of the 

mechanical systems controlled by these thermostats. 

In many packaged simulation tools, complex building layouts are represented as a few major 

perimeter zones, and a single interior zone. Each of these model zones may group what are in reality 

many independently controlled rooms. Usually, occupancy in these grouped zones is described by 

predefined scheduled coefficients that represent the fractional occupancy in each zone at each time step. 

ASHRAE 90.1-2004 [41] and others [42], [43], [44] provide standard occupancy coefficients for various 

building types to guide practitioners in the building design phase. While this model approach does 

account for the thermal gains associated with occupants in each major building zone, it does not capture 

the local thermodynamic interactions that occur between smaller individually controlled rooms in 

complex buildings. In particular, it does not allow for set point changes associated with local vacancy 

events, since vacancy in a particular room is only described as a reduced occupancy fraction for the whole 
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building. In scenarios where occupancy-responsive thermostats rely on local set point changes in each 

room - such as residence halls and hotels - the level of detail employed by common modeling practice is 

not adequate. Despite the shortcoming, several studies have applied these simplified modeling 

assumptions to estimate energy savings for occupancy-responsive thermostats in complex buildings [22], 

[23], [24].  

We recommend the following improvements to current practice for future simulations of 

occupancy-responsive thermostats: 

● Represent all individually controlled rooms as independent thermal zones, and do not group large 

areas into single thermal nodes. 

● Use accurate occupancy schedules for each individually controlled room, and ensure that the 

group of schedules has temporal and spatial diversity that matches the application modeled. 

More accurate information about building level occupancy fraction would not be sufficient; 

simulation of occupancy-responsive thermostats in complex buildings requires room-level occupancy 

information and appropriate physical detail. State of the art building energy simulation engines are 

capable of accommodating models with this level of detail, but unfortunately the information to populate 

such models is rarely available to practitioners. 

Feng and Hong recently published a compelling approach to model occupancy that combines 

multiple stochastic methods to simultaneously generate schedules for occupancy fraction in the whole 

building, occupancy state for each individual zone, and location for each building occupant [20]. This 

method is more advantageous than standard approaches to modeling occupancy because it generates a 

probabilistic representation of both temporal and spatial distribution of occupancy states in a complex 

multi-zone building. If it were coupled with a sufficiently detailed physical model, this type of method 

could provide an excellent path to predicting the impact of occupancy-responsive controls in complex 

multi-zone buildings. However, the method requires significant knowledge about mean occupant 

tendencies, and the probabilistic distribution of occupant behaviors, factors that are currently not well 

documented. 

5. CONCLUSIONS 

The buildings industry is beginning to adopt a new class of ‘smart’ thermostats that provide a 

variety of advanced features including occupancy-responsive and learning algorithms to automate 

temperature setback during vacant periods. In this study we facilitated a controlled trial to assess the 

extent to which this type of thermostat reduced heating and cooling energy consumption in three high-rise 

residence halls. For operation during the academic period energy savings was much smaller than what 

many previous studies have suggested. However, energy savings during the non-academic period was 

more substantial. 

We discovered that in complex buildings such as residence halls, reduction in equipment runtime 

for vacant rooms does not necessarily result in energy savings for the whole building. This is significant 

because a number of commercially available thermostats rely only on equipment run time information to 

infer energy savings. Many previous field evaluations have also assumed that these parameters are 

correlated. We recommend that future field evaluations should measure energy use in carefully controlled 

trials. 

A standard practice building energy simulation prepared for the buildings evaluated in this study 

overestimated savings by a factor of 2-10, for the academic periods. Our observations explain why it has 

previously been difficult for practitioners to accurately model the impact of occupancy-responsive 

thermostats. Most importantly, common modeling practices do not properly represent the temporal and 

spatial diversity of vacancy events in buildings with many individually controlled zones. Further, these 
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building models often simplify geometry and mechanical systems in ways that would affect energy use 

estimates associated with occupancy-responsive thermostats. 

Researchers have recently advanced stochastic modeling tools that can generate a probabilistic 

representation of the temporal and spatial distribution of occupancy states in a complex multi-zone 

building. Coupled with a sufficiently detailed building model, these methods could improve the accuracy 

of energy simulations for occupancy-responsive learning thermostats. However, these techniques require 

a level of specificity that is not readily available to practitioners. 

As the capabilities for modeling tools progress, we also note the need for further research about 

user behaviors. Smart thermostats could easily increase energy use for end users that actively manage 

manual or programmable thermostats. The energy savings achieved by these new devices will also 

depend on the ways that smart thermostats affect user behavior. 

Although energy savings for the buildings we evaluated was smaller than anticipated, we expect 

that occupancy-responsive controls could have much larger impacts in other scenarios. The savings 

results during the non-academic period are compelling and suggest that occupancy-responsive thermostat 

controls could play a valuable role for energy efficiency in buildings that experience long periods of low 

occupancy. Also, there are many buildings where controls are currently unconstrained, poorly managed, 

or set to maintain a constant temperature, or constant ventilation rate, at all times regardless of occupancy. 

The strategy would offer substantial energy benefits in those applications. 
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