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Abstract

On Cyber Security for Networked Control Systems

by

Saurabh Amin

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

and the Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Alexandre M. Bayen, Co-Chair
Professor S. Shankar Sastry, Co-Chair

The instrumentation of infrastructure systems by embedded sensors, computation, and
communication networks has enabled significant advances in their management. Exam-
ples include monitoring of structural health, traffic congestion, environmental hazards, and
energy usage. The use of homogeneous (especially, commercially available off-the-shelf)
information technology (IT) solutions makes infrastructure systems subject to correlated
hardware malfunctions and software bugs. Over the past decade, many concerns have been
raised about the vulnerabilities of infrastructure systems to both random failures and secu-
rity attacks. Cyber-security of Supervisory Control and Data Acquisition (SCADA) systems
is especially important, because these systems are employed for sensing and control of large
physical infrastructures. So far, the existing research in robust and fault-tolerant control
does not account for cyber attacks on networked control system (NCS) components. Also,
the existing research in computer security neither considers the attacks targeting NCS com-
ponents nor accounts for their interactions with the physical system. The goal of this thesis
is to bridge this gap by focusing on (1) security threat assessment, (2) model-based attack
diagnosis, and (3) resilient control design.

First, cyber-security assessment for SCADA systems is performed based on well-defined
attacker and defender objectives. The mathematical model of SCADA systems considered
in this work has two control levels: regulatory control using distributed proportional-integral
(PI) controllers, and supervisory fault diagnosis based on approximate dynamical system
models. The performance of a PI control based regulatory scheme and a model-based
supervisory diagnostic scheme is studied under a class of deception attacks. In order to
test the system resilience, a class of stealthy attacks which can evade detection by SCADA
systems is presented.

Second, design of attack diagnosis schemes that incorporate the knowledge of physical
dynamics of the system is presented. For SCADA systems used to manage water canal
networks, an observer-based attack diagnostic scheme, in which each observer estimates the
state of a reduced-order flow model, is presented. The observer parameters are computed



2

using a convex optimization method, and the performance of this scheme is tested on a
number of attack scenarios. An application of the theoretical results is illustrated by a
field operational test performed on the SCADA system of the Gignac water canal system,
located in Montpellier, France. A successful experimental cyber-attack on the sensors and
actuators of this canal network revealed new vulnerabilities of the current SCADA system
implementation.

Another illustration includes security analysis of two benchmark scenarios: the Tennessee
Eastman process control system (TE-PCS) and a power system state estimator (PSSE).
In both these cases, model-based statistical detection schemes are used to study stealthy
deception attacks. For the case of TE-PCS, design of practically implementable attack-
detection and response mechanisms to maintain operational safety is presented. For the
case of PSSE, it is assumed that the attacker only has a partial knowledge of the actual
system model. For a set of attacker objectives, the trade-off between the attacker knowledge
and possible impact of a successful attack on the performance of false data detection schemes
is studied.

Third, the stability of linear hyperbolic systems of PDEs when the boundary control
actions and the system parameters switch discontinuously between a finite set of modes is
studied. Switched PDE models can describe a class of fault and attack scenarios resulting
from intermittent withdrawals through offtake nodes and compromise of sensor-control data.
Motivated by such scenarios, a new condition for stability of linear hyperbolic systems
of PDEs under arbitrary switching of boundary control actions and system parameters is
derived. A class of switching attack strategies is presented, which violate the stability
condition and result in unstable flow dynamics.

Fourth, the problem of controlling stochastic linear systems for networked control settings
is considered when the sensor-control data is prone to packet loss and jamming. For a
class of packet drop models, feedback control policies which minimize a given objective
function subject to safety constraints are synthesized. For marginally stable systems, under
mild hypotheses on the noise introduced by the control channel and large enough control
authority, the synthesis of a control policy that render the state of the closed-loop system
mean-square bounded is presented.

Finally, a class of games involving discrete interdependent risks is considered when each
player is a NCS, and their security is interdependent due to the exposure to network induced
risks. The problem of security decisions of individual players is formulated as a two-stage
non-cooperative game defined as follows: in the first stage, the players decide whether to
invest in security or not; and in the second stage, they apply control inputs to minimize the
average operational costs. The characterization of the equilibria of the game is presented,
which includes the determination of the individually optimal security levels. The presence
of interdependent security causes a negative externality, and the individual players tend
to under invest in security relative to the social optimum. From these results, for a wide
parameter range, public policy incentivising higher security investments is desirable.
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Chapter 1

Introduction

Control systems are computer-based systems that monitor and control physical pro-
cesses. These systems represent a wide variety of networked information technology (IT)
systems connected to the physical world. Depending on the application, these control sys-
tems are also called Process Control Systems (PCS), Supervisory Control and Data Acquisi-
tion (SCADA) systems (in industrial control or in the control of the critical infrastructures),
Distributed Control Systems (DCS) or Cyber-Physical Systems (CPS) (to refer to embedded
sensor and actuator networks).

Control systems are usually composed of a set of networked agents, consisting of sensors,
actuators, control processing units such as programmable logic controllers (PLCs), and
communication devices. For example, the oil and gas industry use integrated control systems
to manage refining operations at plant sites, remotely monitor the pressure and flow of
gas pipelines, and control the flow and pathways of gas transmission. Water utilities can
remotely monitor well levels and control the wells pumps; monitor flows, tank levels, or
pressure in storage tanks; monitor pH, turbidity, and chlorine residual; and control the
addition of chemicals to the water.

Modern day industrial control systems have a multi-layer structure Quin and Badgwell
[2003]. The overall objectives of such a control structure are: (1) to maintain safe operational
goals by limiting the probability of undesirable behavior, (2) to meet the production demands
by keeping certain process values within prescribed limits, (3) to maximize production profit.

Several control applications can be labeled as safety-critical : their failure can cause
irreparable harm to the physical system being controlled and to the people who depend on
it. SCADA systems, in particular, perform vital functions in national critical infrastructure
systems, such as electric power distribution, oil and natural gas distribution, water and
waste-water treatment, and transportation systems. They are also at the core of health-
care devices, weapons systems, and transportation management. The disruption of these
control systems could have a significant impact on public health, safety and lead to large
economic losses.

Control systems have been at the core of critical infrastructures, manufacturing and
industrial plants for many decades, and yet, there have been few confirmed cases of cyber
attacks. Control systems, however, are now at a higher risk to computer attacks because
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their vulnerabilities are increasingly becoming exposed and available to an ever-growing set
of motivated and highly-skilled attackers.

No other attack demonstrates the threat to control systems as the Stuxnet worm. The
ultimate goal of Stuxnet is to sabotage that facility by reprogramming controllers to oper-
ate, most likely, out of their specified boundaries Falliere et al. [2010]. Stuxnet demonstrates
that the motivation and capability exists for creating computer attacks capable to achieve
military goals Bellovin [2010]. Not only can Stuxnet cause devastating consequences, but
it is also very difficult to detect. Because Stuxnet used zero-day vulnerabilities, antivirus
software would not have prevented the attack. In fact, the level of sophistication of the
attack prevented some well known security companies such as Kaspersky to detect it ini-
tially Peterson [2010]. In addition, victims attempting to detect modifications to their
embedded controllers would not see any rogue code as Stuxnet hides its modifications with
sophisticated PLC rootkits, and validated its drivers with trusted certificates.

In this thesis it is argued that attackers may be able to hide the specific information
technology methods used to exploit the system and reprogram their computers; however,
they cannot hide their final goal: the need to cause an adverse effect on the physical system
by sending malicious sensor or controller data that will not match the control behavior ex-
pected by a diagnostic system or an an anomaly detection system at the supervisory control
layer. In order to address this problem, this thesis explores attack detection mechanisms
that detect attacks by monitoring the physical system under control. Our goal is to detect
modifications to the sensed or controlled data as soon as possible, before the attack causes
irreversible damages to the system (such as violating safety margins and causing instability).

In the rest of the chapter, we first summarize the vulnerability of control systems by
discussing known attacks. We then discuss the efforts for securing control systems solely from
an information technology perspective and identify the new and unique research problems
that can be formulated by including a model of the physical system under control.

1.1 The Vulnerability of Control Systems and Stuxnet

There have been many computer-based incidents in control systems. Computer-based
accidents can be caused by any unanticipated software error, like the power plant shutdown
caused by a computer rebooting after a patch Krebs [2008]. Non-targeted attacks are inci-
dents caused by the same attacks that any computer connected to the Internet may suffer,
such as the Slammer worm infecting the Davis-Besse nuclear power plant Turk [2005], or
the case of a controller being used to send spam in a water filtering plant.

However, the biggest threat to control systems are targeted attacks. These attacks are
the ones where the miscreants know that they are targeting control systems, and therefore,
they tailor their attack strategy with the aim of damaging the physical system under control.
Targeted attacks against control systems are not new. Physical attacks–for extortion and
terrorism–are a reality in some countries CCTV [2002]. Cyber-attacks are a natural progres-
sion to physical attacks: they are cheaper, less risky for the attacker, are not constrained
by distance, and are easier to replicate and coordinate.
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A classic computer-based targeted attack to SCADA systems is the attack on Ma-
roochy Shire Council’s sewage control system in Queensland, Australia Slay and Miller
[2007]. There are many other reported targeted attacks Attorney [2007]; Greenberg [2008];
Kravets [2009]; Leyden [2008]; Quinn-Judge [2002]; Reed [2004]; however, no other attack
has demonstrated the threats that control systems are subject to as well as the Stuxnet
worm Falliere et al. [2010]; Langner [2010]. Stuxnet has made it clear that there are groups
with the motivation and skills to mount sophisticated computer-based attacks to critical in-
frastructures, and that these attacks are not just speculations or belong only in Hollywood
movies.

Stuxnet intercepts routines to read, write and locate blocks on a Programmable Logic
Controller (PLC). By intercepting these requests, Stuxnet is able to modify the data sent to
or returned from the PLC without the operator of the PLC ever realizing it Falliere et al.
[2010]. Stuxnet was discovered on systems in June 2010 by researchers from Belarus–from
the company VirusBlokAda; however, it is believed to have been released more than a year
before. Stuxnet is a worm that spreads by infecting Windows computers. It uses multiple
methods and zero-day exploits to spread itself via LANs or USB sticks. It is likely that
propagation by LAN served as the first step, and propagation through removable drives
was used to reach PCs not connected to other networks–therefore being isolated from the
Internet or other networks is not a complete defense.

Once Stuxnet infects a computer, It installs its own driver into Windows computers.
Because these drivers have to be signed, Stuxnet used two stolen certificates. Stuxnet
also installs a rootkit to hide itself. The goal of the worm in a Windows computer is to
search for WinCC/Step 7, a type of software used to program and monitor PLCs. (PLCs
are the embedded systems attached to sensors and actuators that run control algorithms
to keep the physical system operating correctly. They are typically programmed with a
ladder logic program: a logic traditionally used to design control algorithms for panels of
electromechanical relays.)

If Stuxnet does not find the WinCC/Step 7 software in the infected Windows machine,
it does nothing; however, if it finds the software, it infects the PLC with another zero-day
exploit, and then reprograms it. Stuxnet also attempts to hide the PLC changes with a
PLC rootkit. The reprogramming is done by changing only particular parts of the code–
overwriting certain process variables every five seconds and inserting rouge ladder logic–
therefore it is impossible to predict the effects of this change without knowing exactly how
the PLC is originally programmed and what it is connected to, since the PLC program
depends on the physical system under control, and typically, physical system parameters
are unique to each individual facility. This means that the attackers were targeting a very
specific PLC program and configuration (i.e., a very specific control system deployment).

Many security companies, including Symantec and Kaspersky have said that Stuxnet is
the most sophisticated attack they have ever analyzed, and it is not difficult to see the rea-
sons. Stuxnet uses four zero-day exploits, a Windows rootkit, the first known PLC rootkit,
antivirus evasion techniques, peer-to-peer updates, and stolen certificates from trusted cer-
tification authorities (CAs). There is evidence that Stuxnet kept evolving since its initial
deployment as attackers upgraded the infections with encryption and exploits, apparently
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adapting to conditions they found on the way to their target. The command and control
architecture used two servers if the infected machines were able to access the Internet, or a
peer to peer messaging system that could be used for machines that are offline. In addition,
the attackers had a good level of intelligence about their target; they knew all the details
of the control system configuration and its programs. The sophistication of this attack has
led many to believe Stuxnet is the creation of a state-level sponsored attack.

This thesis puts forth the viewpoint that a threat like the Stuxnet worm must be
dealt with defense-in-depth mechanisms like anomaly detection schemes. While traditional
anomaly detection mechanisms may have some drawbacks like false alarms, it is shown
in this thesis that for certain control systems, anomaly detection schemes focusing on the
physical system–instead of using software or network models–can provide good detection
capabilities with negligible false alarm rates.

1.2 New Security Problems for Control Systems

1.2.1 Efforts for Securing Control Systems

Most of the efforts for protecting control systems (and in particular SCADA) have fo-
cused on safety and reliability (the protection of the system against random and/or inde-
pendent faults). Traditionally, control systems have not dealt with intentional actions or
systematic failures. There is, however, an urgent growing concern for protecting control sys-
tems against malicious cyberattacks Byres and Lowe [2004]; Eisenhauer et al. [2006]; Geer
[2006]; Igure et al. [2006]; Oman et al. [2000]; Turk [2005]; US-CERT [2008].

There are several industrial and government-led efforts to improve the security of control
systems. Several sectors–including chemical, oil and gas, and water–are currently developing
programs for securing their infrastructure. The electric sector is leading the way with
the North American Electric Reliability Corporation (NERC) cybersecurity standards for
control systems NERC-CIP [2008]. NERC is authorized to enforce compliance to these
standards, and it is expected that all electric utilities are fully compliant with these standards
by the end of 2010.

NIST has also published a guideline for security best practices for general IT in Special
Publication 800-53. Federal agencies must meet NIST SP800-53. To address the security
of control systems, NIST has also published a Guide to Industrial Control System (ICS)
Security Stouffer et al. [2006], and a guideline to smart grid security in NIST-IR 7628. Al-
though these recommendations are not enforceable, they can provide guidance for analyzing
the security of most utility companies. ISA (a society of industrial automation and control
systems) is developing ISA-SP 99: a security standard to be used in manufacturing and
general industrial controls.

The Department of Energy has also led security efforts by establishing the national
SCADA test bed program INL [2010] and by developing a 10-year outline for securing control
systems in the energy sector Eisenhauer et al. [2006]. The report–released in January 2006–
identifies four main goals (in order from short-term goals to long-term goals): (1) measure the
current security posture of the power grid, (2) develop and integrate protective measures, (3)
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implement attack detection and response strategies; and (4) sustain security improvements.
The use of wireless sensor networks in SCADA systems is becoming pervasive, and thus

we also need to study their security. A number of companies have teamed up to bring
wireless sensor network technology in the field of process control systems, and currently,
there are two working groups to standardize their communications Hart [2007]; ISA [2007].
Their wireless communication proposal has options to configure hop-by-hop and end-to-end
confidentiality and integrity mechanisms. Similarly, they provide the necessary protocols
for access control and key management.

All these efforts have essentially three goals: (1) create awareness of security issues with
control systems, (2) help control systems operators and IT security officers design a security
policy, and (3) recommend basic security mechanisms for prevention (authentication, access
controls, etc), detection, and response to security breaches.

While these recommendations and standards have placed significant importance on sur-
vivability of control systems (their ability to operate while they are under attack), this thesis
explores some new research problems that arise when control systems are under attack.

1.2.2 Control System Security vs. IT Security

It is clear that the security of control systems has become an active area in recent years.
However, there is a pressing need to articulate what is new and fundamentally different in
this field from a research point of view when compared to traditional IT security. In this
section, we would like to start this discussion by summarizing some previously identified
differences and by proposing some new problems.

The property of control systems that is most commonly brought up as a distinction with
IT security is that software patching and frequent updates, are not well suited for control
systems. For example, upgrading a system may require months of advance in planning
how to take the system offline; it is, therefore, economically difficult to justify suspending
the operation of an industrial computer on a regular basis to install new security patches.
Some security patches may even violate the certification of control systems, or–as previously
mentioned–cause accidents to control systems Krebs [2008].

Patching, however, is not a fundamental limitation to control systems. A number of
companies have demonstrated that a careful antivirus and patching policy (e.g., the use of
tiered approaches) can be used successfully Cosman [2006]. Also, most of the major control
equipment vendors now offer guidance on both patch management and antivirus deployment
for their control products. Thus there is little reason for SCADA system operators not to
have good patch and antivirus programs in place today Byres et al. [2007].

Large industrial control systems also have a large amount of legacy systems. Several
research efforts have tried to provide lightweight cryptographic mechanisms to ensure data
integrity and confidentiality Tsang and Smith [2008]; Wright et al. [2004]. The recent IEEE
P1711 standard is designed for providing security in legacy serial links Hurd et al. [2008].
Having some small level of security is better than having no security at all; however, it is
widely believed that most of the efforts done for legacy systems can only be considered as
short-term solutions. For properly securing critical control systems the underlying technol-
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ogy must satisfy some minimum performance requirements to allow the implementation of
well tested security mechanisms and standards.

Another property of control systems that is commonly mentioned is the real-time require-
ments of control systems. Control systems are autonomous decision making agents which
need to make decisions in real time. While availability is a well studied problem in informa-
tion security, real-time availability provides a stricter operational environment than most
traditional IT systems. In this thesis it is shown that real-time availability requirements
depend on the dynamics of the physical system.

Not all operational differences are more severe in control systems than in traditional
IT systems. By comparison to enterprise systems, control systems exhibit comparatively
simpler network dynamics: Servers change rarely, there is a fixed topology, a stable user
population, regular communication patterns, and a limited number of protocols. Therefore,
implementing network intrusion detection systems, anomaly detection, and white listing
may be easier than in traditional enterprise systems Cheung et al. [2007].

1.2.3 What is new and fundamentally different?

While all these differences are important, the major distinction of control systems with
respect to other IT systems is the interaction of the control system with the physical dy-
namics. While current tools from information security can give necessary mechanisms for
securing control systems, these mechanisms alone are not sufficient for defense-in-depth of
control systems. When attackers bypass basic security defenses they may be able to affect
the physical world. In particular, research in computer security has focused traditionally
on the protection of information; but it has not considered how attacks affect estimation
and control algorithms–and ultimately, how attacks affect the physical world. This thesis
proposes that a systematic framework for securing control systems should focus on three
fundamentally new areas:

1. Better understand the consequences of an attack for risk assessment : While there
has been previous risk assessment studies on cyber security for SCADA systems
Craig et al. [2008]; Hamoud et al. [2003]; Oman et al. [2000]; Ralston et al. [2007],
currently, there are few studies on identifying the attack strategy of an adversary,
once it has obtained unauthorized access to some control network devices. One no-
table exception is the study of false data-injection attacks to power grids Liu et al.
[2009]. Further research is needed to understand the threat model in order to design
appropriate defenses and to invest in securing the most critical sensors or actuators.

2. Design new attack-detection algorithms: By monitoring the behavior of the physical
system under control, one should be able to detect a wide range of attacks by com-
promised measurements. The work presented in Rrushi [2009] is worth mentioning
here althouth it does not consider dynamical models of the process control system.
This thesis introduces dynamical system models used in control theory as a tool for
specification-based intrusion detection systems (regardless of how an attacker obtained
its unauthorized privileges).
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3. Design new attack-resilient algorithms : A resilient control system is one that main-
tains an accepted level of operational normalcy in response to disturbances, including
random disturbances and malicious attacks. The design goal is then to develop control
algorithms where even if attackers manage to bypass some basic security mechanisms,
they will still face several control-specific security devices that will minimize the dam-
age done to the system. Thus, there is a particular need to investigate how control
systems can be reconfigured and adapted when they are under an attack. Prior work
has not fully addressed the design of new control algorithms or reconfiguration algo-
rithms which are able to withstand attacks, or that reconfigure their operations based
on detected attacks. There is previous work on fault detection and isolation; however,
as we explain in this thesis, these systems are not enough for a complete diagnosis of
deception attacks launched by an intelligent attacker with knowledge on how to evade
fault detection methods used by the system.

In the next chapters, the ideas, experiments, and results for each of the three areas are
presented, i.e., (1) risk-assessment, (2) attack diagnosis, and (3) resilient control mecha-
nisms. We first present a general theory for approaching the topic, and then implement our
ideas to various experimental scenarios.



8

Chapter 2

Attacks on Hierarchically Structured
Water SCADA Systems

The goal of this chapter is to perform security risk assessment for hierarchically struc-
tured supervisory control and data acquisition (SCADA) systems used to monitor and con-
trol water distribution networks. The analysis presented in this chapter includes the per-
formance assessment of a proportional-integral (PI) control based regulation method and
a model-based supervisory scheme for fault detection and isolation (FDI), under deception
attacks on water canal distribution systems. These systems typically use IT-enabled com-
munications and therefore, are representative of SCADA systems used to operate physical
infrastructures. In order to test the resiliency of control methods, this work adopts a conser-
vative approach by assuming that the attacker has knowledge of: 1) the approximate system
dynamics, 2) the parameters of FDI scheme, and 3) the sensor-control signals. A deception
attack to enable water pilfering from the canal system is proposed, and it is demonstrated
that the attack is realizable in practice by implementing it on the Gignac canal system in
Southern France.

2.1 Introduction

Security of water SCADA systems has become an area of considerable focus Weiss [2010].
The question then arises as to what security mechanisms for water SCADA can make them
resilient against cyber-attacks (and enable them to degrade gracefully under very powerful
attacks). One of the goals of this chapter is to highlight that only a sustained progress
in risk assessment and mitigation for NCS security can achieve this goal. In a noteworthy
government-industry initiative, a ten-year roadmap to secure control systems in the water
sector was released in March, 2008 WSCC-CSWG [2008]. This roadmap advocates devel-
opment of risk assessment and mitigation measures for water NCS/SCADA systems so that
they continue to operate with no loss of critical function during and after a cyber event.
In the context of NCS, security risk assessment will involve: 1) determination of the like-
lihood that an attacker will obtain unauthorized access to one or more NCS components
and will successfully compromise their function, and 2) the computation of (physical and



9

operational) losses associated with that particular compromise. Risk mitigation for NCS
will involve: 1) the development of real-time state-monitoring systems for intrusions to NCS,
and 2) the design of attack-resilient control methods which can reconfigure and adapt to
maintain critical NCS functionality under attack.

The aim of this chapter is to perform threat assessment for the Gignac water SCADA
system located in Southern France. The performance of regulatory and supervisory control
methods under deception attacks on the sensor-control data is analyzed. Although the
topic of water contamination through cyber means is an important one, it is not the focus
of this chapter and has been studied elsewhere (e.g., Krause and Guestrin [2009]). The main
contributions of this chapter are as follows:

• The effect of cyber attacks to sensor measurements on the performance of a commonly
used regulation method, which uses distributed proportional-integral (PI) controllers,
is investigated. The performance of a model-based supervisory scheme for fault detec-
tion and isolation (FDI) under a class of deception attacks is also analyzed. The scheme
chosen here is one of the several available FDI methods, all of which use model gener-
ated residuals, e.g., Bedjaoui and Weyer [2011]. The performance assessment of other
detection methods under attacks can be done in a similar manner, e.g., Cárdenas et al.
[2011].

• Next, the results from a field operational test in which deception attacks were im-
plemented on the Gignac water SCADA system are presented. These attacks model
the attacker as an intelligent insider who is resourceful enough to obtain access to
sensor-control data and has knowledge to evade the FDI scheme. The field opera-
tional test shows that such an attack enables water pilfering from the canal system
thereby increasing water loss, decreasing operational efficiency.

This chapter is organized as follows: In Section 2.2, we present a taxonomy of cyber-
attacks on hierarchically structured SCADA systems which typically manage the operations
of automated canal networks. A model of cyber-attacks on level sensors is also specified.
The regulatory control method and the supervisory FDI scheme, which we use to analyze the
effect of cyber-attacks, are presented in Section 2.3. The performance of the supervisory FDI
scheme under a stealthy deception attack is also investigated by way of simulation. In Section
2.4, salient features of the Gignac SCADA system are presented. The results from our field
experiment, in which a deception attack was implemented to enable water pilfering from the
canal, are also discussed. Finally, salient points of our analysis are summarized in Section
2.5. In Chapter 3, we use the insights gained in this chapter to develop a diagnostic scheme
to better detect and isolate deception attacks and suggest some ways to defend against them.
The diagnostic method presented in Chapter 3 uses an enhanced hydrodynamic model, and
performs well in a range of security scenarios.

2.2 Cyber-Attacks Against Water SCADA Systems

Modern water SCADA systems have a hierarchical structure with at least two levels of
control: regulatory control and supervisory control. The regulatory control layer directly
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interacts with the hydrodynamics of the physical canal network through sensors and actua-
tors. These field devices are connected via a field area network to PLCs or remote terminal
units (RTUs), which in turn implement local control actions (regulatory control). Under a
decentralized regulatory control policy, a PLC may also interact with the neighboring PLCs
via the field area network. A control network carries (real-time) data between regulatory
controllers (or PLCs) and supervisory workstations. These workstations are used for data
logging, diagnostic functions such as fault diagnosis or FDI, and supervisory control compu-
tations such as set-point control and controller reconfigurations (e.g., see Section 2.4.1 about
Gignac SCADA implementation). Finally, authorized remote users (e.g., canal managers)
can access information about the canal network and provide specifications to the supervisory
layer via a corporate network.

Attacks on cyber-infrastructure of water SCADA systems can result in partial or com-
plete loss of operational performance such as closed-loop stability, safety with respect to
over-topping, or performance loss. Cyber-attacks to water SCADA systems, and in general
to networked control systems (NCS), can be broadly classified as either deception attacks
or denial-of-service (DoS) attacks. Integrity of sensor and control data packets refers to
their trustworthiness, and lack of integrity results in deception. Availability refers to the
ability of all the system components of being accessible and usable when needed, and lack
of availability results in DoS. While confidentiality, which refers to the system’s ability to
keep information secret from unauthorized users, is an important security attribute for IT
systems, integrity and availability take a natural precedence for security of SCADA systems.
We now explain the characteristics of deception and DoS attacks in the context of water
SCADA systems.

Integrity for automated water SCADA systems can be defined as the ability to maintain
operational goals by preventing, detecting, or surviving deception attacks in the informa-
tion sent and received by the sensors (e.g., water level measurements), the controllers (e.g.,
desired discharges, set-points), and the actuators (e.g., commanded gate openings). Decep-
tion or false information can include an incorrect sensor measurement or command input,
a time stamp which is different from the actual time, or a wrong identity of the sending
device. The adversary can launch these attacks by obtaining the secret keys used by the
sending devices, or by compromising some of the sensors and actuators. During compromise
of the field area network, the adversary may send false measurement data to the regula-
tory controllers, thereby affecting the performance of the closed-loop system. Similarly,
manipulation of actual gate openings can result in unintended gate movements. However,
during a compromise of the control network, multiple sensor and controller signals can be
compromised. In addition to reduction in the control performance, such deception attacks
can also cause the FDI schemes to report false alarms (when there is no malfunction) and
missed/delayed detection (when there is an actual attack). False alarms can result in waste
of maintenance resources, and may ultimately result in loss of canal manager’s confidence in
the SCADA system. However, the case of missed or delayed detection is more problematic
because the attacker can almost arbitrarily affect the control functions, which may result in
considerable losses.

Availability in the context of water SCADA systems can be defined as the ability to main-
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Figure 2.1: Schematic view of a multiple canal system with free-flow gates.

tain operational goals by preventing or surviving DoS attacks to information collected by
the sensors, commands given by controllers, and the actions implemented by the actuators.
To launch a DoS attack, the adversary can jam the communication channels, compromise
field devices and prevent them from sending data, attack the communication protocols used
by field or control networks, flood the network with random data etc. While in numerous
computer systems a temporary DoS attack may not result in long-term compromise of their
service (these system will operate normally again after DoS), water SCADA operation is
often subject to real-time constraints. For example, a DoS on sensor measurements may
prevent the regulatory controllers from maintaining water level fluctuations within safety
bounds. This can compromise the control performance, and may even cause instability. In a
worst case, a prolonged DoS may even render the SCADA system unusable for a prolonged
time period.

2.2.1 Attack Models

We now discuss the possible cyber attacks against a generic hierarchically controlled
water SCADA system. Fig. 2.2 shows the hierarchical control structure and possible attacks
for a cascade canal system of canal pools. Here we assume that the regulation gates are in
free-flow condition at their downstream end (see Fig. 2.1).

Under these conditions, the flow downstream of the gate is super-critical, and the tran-
sition to sub-critical flow happens due to a hydraulic jump. In Section 2.3, we elaborate
on the regulatory control and supervisory FDI methods. For the i−th pool, we denote
the discharge (m3/s) at the upstream end (resp. downstream end) by qi−1 (resp. qi), the
water-level (m) at the downstream end by ydi , and the offtake water withdrawal (m3/s) at
the occurring at the downstream end by pi. We will assume that qi−1 and qi are the control
input variables, ydi is the measurement variable, and pi is the disturbance variable. These
variables are the respective deviations around a steady state flow.

Six possible types of cyber-attacks A0–A6 are illustrated in Fig. 2.2. The attack A0
denotes physical attack against the physical infrastructure (gates, offtakes) or the field
devices (sensors and actuators). Deterrence and prevention of this attack can be achieved by
implementing physical security mechanisms such as fences, surveillance cameras, etc. Since
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Table 2.1: Taxonomy of Cyber-attacks.

Control Layer
Regulatory Control Supervisory Control

Deception spoofing, replay set-point change
Attacks measurement substitution tuning parameter substitution
DoS physical jamming network flooding

Attacks increase comm. latency disrupt process operation

a physical attack requires access to the canal infrastructure, a risk averse attacker is more
likely to launch cyber-attacks A1–A6 on SCADA system components and communications.
We thus do not consider physical attacks in the rest of this chapter.

Attack A1 denotes the DoS attacks (via jamming or increasing communication latency)
on the communication between the PLCs and the field devices, or the deception attack
(via spoofing or replaying) of the sensor measurements ydi and control actuations ui. At-
tack A2 denotes similar DoS or deception attacks on inter-PLC communication. This may
adversely affect the interaction between the canal pools and result in amplification of dis-
turbances across the canal cascade. By A3 we mean cyber-attacks on the control network
which enables communication between the regulatory and the supervisory control layers.
This network transmits 1) water level measurements ydi , gate openings ui, and discharge
readings qi from the PLCs to the supervisory control layer, and 2) set-points for levels, tar-
get dispatches through offtakes, the reconciled data and commands needed for control loop
reconfiguration, and tuning of controller parameters from the supervisory control layer to
the PLCs. Thus, compromise of control network (via man-in-the-middle attacks, flooding
attacks) may result in wrong inputs to the fault diagnosis scheme, unintended set-point
changes, incorrect tuning parameters, etc.

Attacks A4 and A5 denote the attacks on the supervisory control layer, which has state
estimators for data reconciliation and observers for attack or fault diagnosis. The state
estimates and diagnostic information is used to generate set-points and control configura-
tions by using an optimization based procedure, or more commonly by employing human
expertise. Possible attacks here could be manipulation of state estimators and observers for
A/FDI so that incorrect estimates and alerts are generated. As a consequence, one or more
supervisory control functions may behave in a bad manner. Of course, attacks A1–A3 on
the regulatory layer will also affect the performance of supervisory layer, since the latter
could be fed with bad data (deception attacks) or no data at all (DoS attacks) when the for-
mer is under attack. Finally, A6 denotes the attack by a malicious insider who can assume
the role of the canal manager. In Table 2.1, a summary of DoS and deception cyber-attacks
on SCADA control layers is presented.

We now present the model of cyber-attacks specific to level sensor ydi measurements;
attacks on control signals can be similarly modeled. Each sensor measurement can be
assumed to have a nominal range Yi which captures all operating conditions, i.e., ydi (t) ∈ Yi,
for all t. We also assume that each sensor is uniquely authenticated via a cryptographic key.
The notation ỹdi (t) denotes the measurements received by the regulatory and supervisory
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control system at time t. If the i−th sensor is under attack, ỹdi (t) may be different from the
real measurement ydi (t); however, it can be assumed that the attacked signals ỹdi (t) also lie
within Yi (signals outside this range can be easily detected by standard data reconciliation
methods). Furthermore, once the attack is successful, the attacker is likely to continue the
attack until he/she exhausts available resources (e.g., battery power used for jamming) or
achieves the final goal (e.g., over topping or water pilfering). Thus, it is reasonable to assume
block attacks of duration T := [τs, τe]; between the start time τs and stop time τe > τs.
Under these assumptions, a general model for attacks on the sensor signals is the following:

ỹdi (t) =

{
ydi (t), for t /∈ T
gi(t), for t ∈ T , gi(t) ∈ Yi

(2.1)

where gi(t) is the attack signal.
The above sensor attack model can be used to represent both deception and DoS attacks.

In an integrity attack, we can assume that the sensor is compromised and an arbitrary false
value gi(t) is injected. The goal of SCADA system’s A/FDI scheme is to detect the attack as
fast as possible, and identify the compromised sensor i. In a DoS attack, it can be assumed
that lack of available measurements will be detected by the SCADA system, and it uses
ỹdi (t) = 0 (no signal) or ỹdi (t) = ỹdi (τ

s) (last available measurement) to generate control
inputs.

2.3 Flow Models & Hierarchical System Architecture

In this section, first, a dynamical model commonly used in control design for cascaded
canal systems is presented; and second, a frequency-domain controller for regulatory control
layer and a model-based FDI scheme for the supervisory control layer are developed.

2.3.1 Model of Canal Cascade

The following frequency domain input-output relationship has been obtained by Litrico
and Fromion by taking the Laplace transform of the linearized shallow water equations (see
Chapter 3 in Litrico and Fromion [2009b]):

ŷdi (s) = pi,21(s)q̂i−1(s) + pi,22(s) (q̂i(s) + p̂i(s)) , (2.2)

where s is the Laplace variable, and pi,21(s) (resp. pi,22(s)) denotes the infinite-dimensional
transfer function from qi−1 (resp. qi and pi) to ydi . For uniform flow regime, the trans-
fer functions pi,21(s) and pi,22(s) belong to an algebra of irrational transfer function called
the Callier-Desoer class ; powerful methods for direct controller design exist for such sys-
tems Litrico and Fromion [2009a]. Similar results can also be proven for the non-uniform
flow regime; however, this is beyond the scope of our chapter. For low frequencies, these
transfer functions can be approximated by the following integrator-delay (ID) model:

pi,21(s) ≈
adi
s
e−τ¯is, pi,22(s) ≈ −a

d
i

s
(2.3)
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where adi is the inverse of equivalent backwater area (m−2) and τ
¯i

is the propagation delay
(s). Using equation (2.2), the multi-pool representation of the canal cascade is obtained as

ŷd(s) = G(s)q̂(s) + G̃(s)p̂(s), (2.4)

where

yd =
(
yd1 . . . ydm

)
, q =

(
q0 . . . qm

)
, p =

(
p1 . . . pm

)
,

and G(s) = (gjk(s)) is a m× (m+ 1) dimensional bidiagonal matrix, and G̃(s) = (g̃jk(s)) is
a m×m dimensional diagonal matrix. For example, for single canal pool (i = 1),

G(s) =
(
ad1
s
e−τ¯1s −ad1

s

)
, G̃(s) = −a

d
1

s
, (2.5)

and for 2−pool system,

G(s) =
(
ad1
s
e−τ¯1s −ad1

s
0

0
ad2
s
e−τ¯2s −ad2

s

)
, G̃(s) =

(
−ad1

s
0

0 −ad2
s

)
. (2.6)

We will henceforth consider a 2−pool system, noting that our analysis can be easily extended
to multi-pool system.

Taking the inverse Laplace transform of (2.4) for m = 2, we obtain the following time-
domain model with delayed inputs:

ẏd1(t) = ad1q0(t− τ
¯1
)− ad1 [q1(t) + p1(t)] ,

ẏd2(t) = ad2q1(t− τ
¯2
)− ad2 [q2(t) + p2(t)] .

(2.7)

Each regulation gate is represented by the following linearized model around the steady
state:

qi(t) = bdi y
d
i (t) + kiui(t), i = 1, 2 (2.8)

where ui(t) is the controlled gate opening, and the constant bdi (resp. ki) denotes the gain
of the upstream level ydi (resp. gate opening ui(t)). Combining (2.8) and (2.7), we obtain
the state-space representation of the 2−pool system with delayed state and inputs:

ẋ(t) =
2∑

i=0

Aix(t− τi) +
2∑

i=0

Biu(t− τi)

y(t) = Cx(t),

(2.9)

where x :=
(
yd1, yd2

)T
∈ R2 is the state, u :=

(
u0, u1, p1, p2

)T
∈ R4 denotes the known

input, y :=
(
yd1, yd2

)T
∈ R2 is the measured output (perfect state measurements); τ0 = 0,
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τ1 = τ
¯1
, τ2 = τ

¯2
. The system matrices are respectively given by C = diag

(
1, 1

)
, and

A0 =

(
−ad1bd1 0

0 −ad2bd2

)
, A1 =

(
0 0
0 0

)
, A2 =

(
0 0
ad2b

d
1 0

)
,

B0 =

(
0 −ad1k1 −ad1 0
0 0 0 −ad2

)
, B1 =

(
ad1k0 0 0 0
0 0 0 0

)
, B2 =

(
0 0 0 0
0 ad2k1 0 0

)
.

(2.10)

Let τmax denote the upper bound of the time delays τi, i = 0, 1, 2. In practice, controller
design for canal regulation is based on frequency-domain models while supervisory level
fault diagnosis is based on time-domain models, as explained next.

2.3.2 Regulatory Control

The regulatory control layer is responsible for maintaining the operational performance
of the canal cascade by implementing dynamic feedback control actions Litrico et al. [2007].
Two performance objectives are commonly specified at this layer: 1) water is efficiently
delivered to the end users, and 2) unknown perturbations (or disturbances) are rejected.
Here we briefly discuss the structure of frequency-domain based controllers. Following the
approach in Litrico and Fromion [2005], we choose frequency-domain controllers since they
have been classically used for managing canal systems; however, recently, model-predictive
control (MPC) designs have been also been proposed, e.g., Negenborn et al. [2009]. Let yri
denote the set-point or the reference level for pool i, which is typically obtained as a result
of an optimization problem by the supervisory layer. The aim of the regulatory control
is to regulate ydi to set-point yri . Let the output error be defined as ǫi := (yri − ydi ), and
yr :=

(
yr1 . . . yrm

)
, ǫ :=

(
ǫ1 . . . ǫm

)
. Let K(s) denote the Laplace transform of the

multi-variable controller K, i.e.,

q̂(s) = K(s)ǫ̂(s). (2.11)

From (2.4) and (2.11), we see that the control input vector q̂(s) is given by:

q̂(s) = Sq(s)K(s)ŷr(s)− Sq(s)K(s)G̃(s)p̂(s) (2.12)

with Sq(s) := (I +K(s)G(s))−1 the input sensitivity function and the output error ǫ by:

ǫ̂(s) = Sǫ(s)ŷr(s)− Sǫ(s)G̃(s)p̂(s) (2.13)

with Sǫ(s) := (1 + G(s)K(s))−1 the output sensitivity function. The closed-loop trans-
fer matrix M(s) := −Sǫ(s)G̃(s) governs the disturbance rejection performance. A semi-
decentralized controller design, which can be implemented in a PLC for regulatory control
of a multi-pool canal system, is presented in the Section 2.A of the Appendix.
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2.3.3 Supervisory Control (FDI)

Detection and isolation of faults is an important function for canal operations and is
usually carried out by the supervisory control layer. Without proper diagnosis of sensor
and actuator faults due to random events (and component malfunctions carried by a ma-
licious attacker), the supervisory control functions such as set-point control and control
reconfiguration might loose their effectiveness. Thus, correct FDI is also a pre-requisite for
achieving an efficient operation of the closed-loop system and for performing reconfiguration
and maintenance tasks. In the following, we describe a model-based scheme for detection
and isolation of unknown withdrawals from the canal offtakes. We note that the choice of
the FDI scheme presented here is based on its conceptual elegance; other FDI schemes for
canal SCADA systems essentially share the same features Bedjaoui and Weyer [2011]. In
contrast to the decentralized regulatory control scheme described in the previous section,
the FDI scheme is centralized, i.e., it requires all the measured sensor signals and control
commands to be assembled at the base station.

Let us consider faults fi(t) := δpi(t), i = 1, 2, which represent the unmeasured or
unscheduled water withdrawals occurring non simultaneously through the offtakes (located
at the downstream end of the respective canal pools). Extending model (2.9) to include
such faults, we obtain the fault model:

ẋ(t) =
2∑

i=0

Aix(t− τi) +
2∑

i=0

Biu(t− τi) +
2∑

j=1

Ejfi(t)

y(t) = Cx(t),

(2.14)

with Ai, Bi, C given by (2.10), and

E1 =

(
−ad1
0

)
, E2 =

(
0

−ad2

)
. (2.15)

Example 2.3.1. Consider a system (2.14) of two identical pools with parameters: downstream
propagation delays τi = τ

¯i
= 647 s, inverse equivalent backwater areas adi = (3.21)−1 ×

105 m−2, and coefficients of linearized gate equations bdi = 29.05, ki = 18.11, i = 1, 2
(methods for estimating these parameters are discussed in Litrico and Fromion [2009b]).
Assume that u(t) = 0 for t ∈ [−τ

¯1
,∞) and x(t) = 0 for t ∈ [−τ

¯1
, 0]. Water at rate 0.1 m3/s

is withdrawn from offtake of pool 1 (resp. pool 2) during the interval 2.5 − 5.0 hr (resp.
15 − 17.5 hr). Fig. 2.3 shows the upstream and downstream water level deviations (cm)
under the effect of unmeasured withdrawals during a 24 hr simulation.

In order to detect and isolate faults fj, (i = 1, 2), we now describe a model-based
diagnostic scheme. The scheme consists of generating a bank of 2 observers, which are
designed as follows: The observer 1 (resp. observer 2) is designed to be insensitive to f1(t)
(resp. f2(t)). The residual rj of the j−th observer is defined as follows

rj(t) := yj(t)− C x̂j(t), (2.16)
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Figure 2.3: Example 2-pool system: Withdrawals (top), Downstream levels (bottom).

where x̂j(t) is the j−th observer’s output denoting the state of the following fault model:

ẋj(t) =
2∑

i=0

Aixj(t− τi) +
2∑

i=0

Biuj(t− τi) + Ejfj(t) + E−jf−j(t)

yj(t) = Cxj(t).

(2.17)

Here the matrices Ai, Bi i = 0, 1, 2 and C are given by (2.10), and vectors Ej, E−j are given
by (2.15) with −j := (3− j), j = 1, 2.

The following (full-order) model:

żj(t) =
2∑

i=0

Fijzj(t− τi) +
2∑

i=0

TjBiuj(t− τi) +
2∑

i=0

Gijyj(t− τi)

x̂j(t) = zj(t) +Njyj(t),

(2.18)

with initial state zj(θ) = ρ(θ), ∀θ ∈ [−τmax, 0], describes the dynamics of the j−th observer
for the fault model (2.17), and Fij, Gij, i = 0, 1, 2, Tj , and Nj are unknown parameter matri-
ces with real-valued elements. The design of observers is based on the following proposition:

Proposition 2.3.2. If the parameter matrices Fij , Gij , i = 0, 1, 2, Tj, and Nj in the j−th
observer (2.18), are such that the residuals rj(t) = (yj(t) − C x̂j(t)), j = 1, 2 satisfy the
following properties:

1) rj(t) is insensitive to fj(t),

2) rj(t) asymptotically converges to zero if f−j(t) = 0 for every t,

3) ‖rj(t)‖ 6= 0 when f−j(t) 6= 0,

then the diagnosis of faults can be achieved using the decision rule presented in Table 2.2.
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Table 2.2: Decision table for 2−pool system under offtake withdrawals.

If ‖r1‖ ‖r2‖
f1 6= 0 ≈ 0 6= 0
f2 6= 0 6= 0 ≈ 0

In order to achieve this observer design objective, we define the state estimation error
ej(t) as:

ej(t) := xj(t)− x̂j(t),

and observe from (2.16)–(2.18) that the residual rj(t) can be written as output of the error
dynamic:





ėj(t) =
∑2

i=0 Fijej(t− τi(t)) + TjEjfj(t) + T−jE−jf−j(t)

−∑2
i=0

(
Fij + ḠijC − TjAi

)
xj(t− τi(t))

rj(t) = Cej(t).

(2.19)

where we define

Ḡij := (Gij − FijNj), i = 0, 1, 2 (2.20)

Tj := (In −NjC). (2.21)

where In denotes the n (here 2) dimensional identity matrix. Consider the following condi-
tions:

Fij = TjAi − ḠijC, i = 0, 1, 2 (2.22)

TjEj = 0, (2.23)

ėj(t) =
2∑

i=0

Fijej(t− τi(t)) is asymptotically stable. (2.24)

Let (2.20)–(2.24) hold, and note from (2.15) that E1 and E2 are linearly independent.
Then it can be concluded that TjE−j 6= 0, j = 1, 2. Thus, the residuals r1 and r2 satisfy
the conditions of Proposition 2.3.2. The computation of observer parameter matrices is
presented in the Section 2.B of the Appendix.

Example 2.3.3. Consider the fault model (2.17) for the 2−pool system with parameters as
in Example 2.3.1, zero known input signal u(t) = 0, and unknown withdrawals (faults) from
pool 1 (resp. pool 2) during the interval 2.5− 5.0 hr (resp. 15− 17.5 hr) be the fault signal
f1(t) (resp. f2(t)). The LMI conditions presented in Proposition 2.B.1 (Section 2.B of the
Appendix) are feasible for ǫ1 = 10, ǫ2 = ǫ3 = ǫ5 = ǫ6 = −1, ǫ4 = −10, ǭ1 = −1, ǭ2 = −1, and
the parameter matrices of observers (2.18) are obtained according to the procedure outlined
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Figure 2.4: Norms of residuals r1 and r2 [simulated results].

above. From the computed observer matrices T1 and T2 we obtain:

T1E1 = 10−15

(
−0.341
−0.0622

)
≈ 0, T1E2 =

(
−0.002
−0.554

)
6= 0

T2E1 =

(
−0.651
0.0

)
6= 0, T1E2 = 10−16

(
−0.002
−0.548

)
≈ 0.

From Fig. 2.4 we observe that the generated residuals rj(t) j = 1, 2 in Example 2.3.3
satisfy the condition of Proposition 2.3.2:

• r1(t) (resp. r2(t)) is insensitive to f1(t) (f2(t)),

• The residual rj(t) defined by (2.19), is asymptotically zero when f−j(t) = 0 for every
t (note that T1E1 = T2E2 ≈ 0),

• ‖rj(t)‖ 6= 0 when f−j(t) 6= 0 since TjE−j 6= 0, j = 1, 2.

Hence, the diagnosis of faults can be achieved using the decision rule presented in Table 2.2.

Remark 2.3.4. Notice that the error dynamics (2.19) and hence the observer residuals do
not depend on the known control input u and so, the behavior of FDI scheme does not
change when u is manipulated by the regulatory control layer.

2.3.4 Simulation of a Stealthy Attack

Let us consider the attack model (2.1), where the attack duration T and attack signal
gi(t) are chosen by an attacker. We assume that a PI-based regulatory controller and an
observer based FDI scheme has been deployed after proper tuning, and that the attacker
has full knowledge of the regulatory control as well as the FDI schemes. Equivalently, it
amounts to assuming that the attacker has the knowledge of 1) the approximate system
dynamics, 2) the parameters of FDI scheme, and 3) the sensor-control signals. Indeed, such
a powerful attacker may be unrealistic for many SCADA systems with some IT security in
place; however by adopting this conservative approach, we can better test the resiliency of
the regulatory control and FDI schemes. Moreover, this assumption also covers the case of
an adaptive attacker who will attempt to evade detection by the SCADA system.
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Figure 2.5: Residuals under attack on yd1 (top) and yd2 (bottom) [simulated results].

The attacker’s intent is to steal water from the canal system by attacking the downstream
level sensor measurements yd. Our goal is then to synthesize an attack strategy such that
the compromise is not detected by the regulatory and supervisory control layers. We call
such an attack, a stealthy attack. By detection at regulatory control level, we mean that
the regulatory controllers should react as expected to reduce deviations with respect to set-
point targets. Let us recall that performance of regulatory control (resp. supervisory FDI
scheme) essentially depends on the output error ǫ (resp. observer residual r) as defined in
(2.11) defined in Sec. 2.3.2 (resp. (2.16) defined in Sec. 2.3.3); the stealthy attack g should
then be aimed at manipulating these quantities to avoid detection.

In the following example, we propose a stealthy attack strategy which evades detection
by the supervisory FDI scheme. A stealthy attack which evades detection by the regulatory
controller is proposed in Section 2.4.3.

Example 2.3.5. Consider the FDI scheme in Example 2.3.3 which achieve FDI for non-
simultaneous withdrawals for 2−pool system. We consider two cases when true sensor
measurements are spoofed with a deception attack: yd1 (resp. yd2) is compromised, and
spoofed with the signal g1(t) = 0 (resp. g2(t) = 0) for t ∈ [0, 24]; see top (resp. bottom) of
Fig. 2.5.

As shown in Fig. 2.5 (top), when yd1 is compromised, the fault f2 is correctly diagnosed
according to Table 2.2; however, f1 can no longer be diagnosed correctly since r1 (resp.
r2) which was only sensitive to f2 (resp. f1) in the case of no attack, is now sensitive (resp.
insensitive) to f1. More interestingly, when yd2 is compromised, both r1 and r2 are sensitive to
f1 and could lead to mis-detection, but f2 goes completely undetected since neither residual
is sensitive to f2. This is due to the fact that, in the framework presented in this chapter, the
effect of water withdrawal in pool 2 does not propagate upstream due to free-flow condition
of the gates. Thus, under the proposed FDI scheme, compromising yd2 fully achieves the
objective of a stealthy attacker, i.e., the water can be stolen via the second canal pool’s
offtake without being detected by the FDI scheme. The losses due to water withdrawals can
be assessed by estimating the amount of water withdrawn from the canal system before the
attack is detected, which can be considerable in the case of stealthy attacks.
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Remark 2.3.6. (Stealthy attack for multiple pools) The above example also hints toward
a stealthy attack strategy for the case of multiple canal pools when all the level sensor
measurements ydi , i = 1, . . . ,m are vulnerable to compromise by the attacker. In this case,
the stealthy attack strategy is to first compromise the most downstream sensor measure-
ment ydm and systematically proceed to compromise measurements of upstream canal pools
ydm−1, y

d
m−2, . . . , y

d
1.

In the next section, we present results from a field experiment in which deception attacks
were implemented on the Gignac SCADA system.

2.4 Field Operational Test Attacks

2.4.1 Gignac canal network and SCADA system

We now discuss the main components of the Gignac canal network and the SCADA
system which manages this network. The Gignac canal network is located about 40 km
north-west of Montpellier in South France, and irrigates about 3000 ha of agricultural land.
The main canal network is comprised of a 8 km feeder canal which emerges from the Hérault
river, and bifurcates at the diversion structure (or Partiteur in French) into two branches,
to the left and right banks of the river. These branches are of lengths 27 km and 15 km
respectively. The design flow of the canal is about 3.5 m3/s. The canal is equipped with
sensors at different sites to collect water levels, gate openings, and discharge data, as well
as automated structures to control water flow.

The components of the Gignac SCADA system include a centralized control station
with several host computers which communicate with remote local processors and field
devices (or PLCs) operating the sensors and actuators. These components communicate
over standard channels (including the Internet and public-switched telephone networks).
The time-step of data acquisition from field devices can be chosen as low as a few seconds.
The SCADA system is capable of implementing a variety of control-loops for regulatory
control, and also enable supervisory capabilities such as human-machine interfaces (HMIs),
remote diagnostics and maintenance. For a snapshot of supervisory interface at the Avencq
and Lagarel cross-regulators, see Fig. 2.6. The functionalities of the SCADA system include:
1) Real-time hydraulic state monitoring, data-logging, alarming and diagnostic functions
for handling faults, 2) Activating local slave controllers and sending gate position targets in
real-time, 3) Changing parameters of local slave controllers, and 4) Modifying operational
objectives by specifying desired discharges or water levels. Over the past decade, researchers
have developed a suite of automatic control methods for canal management ranging from
simple PI based regulatory controllers to more advanced methods based on H∞, ℓ1, and
model predictive control Litrico and Fromion [2009b]. Implementation of FDI schemes has
also been investigated Bedjaoui and Weyer [2011].

The Gignac SCADA system periodically suffers attacks on SCADA system components,
which we now summarize. Information regarding these incidents was obtained from the
news reported in the French media and through our personal interaction with the canal
manager. First, the solar panels that power radio communication systems used for data
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Figure 2.6: Gignac SCADA supervisory interface.

transmission from sensors to the base station were stolen. This resulted in loss of sensor
data and hindered canal operations for days. In a second attack, social miscreants dam-
aged the monitoring bridge on which a local gate controller was supported soon after it
was repaired. Finally, farmers who use the canal water for irrigation have made repeated
attempts to steal water from the canal by tampering water offtakes and installing additional
pumps to withdraw water. Such threats remain a challenge for the management agency. Al-
though these incidents were mainly physical, they directly affected the functioning of cyber
components of the SCADA system.

2.4.2 Field Operational Test Setup

We now demonstrate the feasibility of a cyber-attack on water SCADA systems by
conducting a field operational test on the Gignac canal and assessing the losses due to
undetected water withdrawals. In our experiment, we consider a two pool system situated
on the canal branch which diverts from the Partiteur device to the right bank of the Hérault
river; see Fig. 2.7.

The first pool is the 4.8 km canal reach between the Partiteur device and the Avencq
cross-regulator, and the second pool is the 5.2 km reach between the Avencq and Lagarel
cross-regulators. The ID model parameters for the respective pools are given by: ad1 =
1.105 × 10−4 m−2, ad2 = 2.597 × 10−5 m−2, τ

¯1
= 45 min, τ

¯2
= 40 min. During our

experiment, the Lagarel gate was submerged and therefore, the linearized gate equation
(2.8) for free-flow gate cannot be used. The linearized gate equation for submerged gate is
given by:

qi(t) = bdi y
d
i (t) + bui+1y

u
i+1(t) + kiui(t), i = 1, 2 (2.25)

bui+1 is the gain from the water level yui+1 downstream of the gate. Both Avencq and Lagarel
regulators are equipped with motorized gates and level sensors, and communicate with the
base station via radio communication. The discharge required to regulate the upstream
water level in response to perturbations caused due to offtake withdrawals is achieved by



24

Figure 2.7: Map of the Gignac canal system.
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Figure 2.8: Upstream of the Avencq station.

the slave controller (PLC) via movement of a 1 m wide sluice gate; see Fig. 2.8. We now
implement a deception attack on the Avencq regulator; this attack corresponds to attack
A1 in Fig. 2.2 and spoofing attack in Table 2.1. Under our attack model, the attacker’s
intention is to steal water from an offtake located upstream of Avencq gate, and he/she tries
to achieve this goal by compromising the level sensor measurements at Avencq.

2.4.3 Effect of cyber-attack on regulatory control

We assess the performance loss of regulatory control under compromise of yd at the
Avencq gate first in simulation, and then in a field operational test on the Gignac canal.
In our setting, the steady state water level is Ȳ = 79 cm. The regulatory control aim is to
stabilize yd (which is the deviation from Ȳ) to 0, i.e., a set-point yr = 0 cm. The upstream
water level is measured every 2 min, and a PI controller

κ(s) = k

(
1 +

1

Ts

)
,

with the proportional gain k = −2.9 and the integral time T = 360 s is used to regulate
yd at Avencq gate. Now, if the attack signal g(t) in the attack model (2.1) is chosen such
that error under attack ǫ̃ = (ỹd − yr) is close to zero, then from (2.11) it follows that
the regulatory controller will not react correctly to reject water level deviations from the
set-point yr. Thus, g(t) ≈ yr(t) achieves a stealthy attack for regulatory control layer.

We now describe a stealthy deception attack scenario on Avencq gate using the SIC soft-
ware as a simulator. The SIC software developed by CEMAGREF provides us with following
capabilities: 1) performance testing of any regulatory control method on a fully nonlinear
shallow water equation simulator, and 2) a direct implementation of the tested controller
on the physical canal via a software interface to the SCADA system Malaterre and Chateau
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[2007]. In the attack scenario shown in Fig. 2.9, the offtake is opened to about 3 cm at
time t = 15 min after the beginning of the test. The PI controller reacts rapidly by closing
the sluice-gate and rejects the perturbation in about 40 min. At t = 75 min, the offtake is
closed. The controller achieves good closed-loop performance and rejects the perturbation
in about 45 min by opening the sluice gate as shown in Fig. 2.9 (bottom right). The offtake

Figure 2.9: Performance of PI controller under attack [simulation results].

is again opened and closed at t = 255 min and t = 315 min respectively, this time under
the influence of attacker’s action; see Fig. 2.9 (top left). The attacker compromises yd and
injects a deception attack g ≈ yr; see Fig. 2.9 (bottom left). Therefore, the PI control does
not react to the opening of the offtake. The effect of this attack on the performance of local
upstream controller is shown in Fig. 2.9 (top right).

The duration of attack is determined as follows: even after the closing of the offtake at t =
315 min, the attacker continues the deception attack until t = 495 min when the water level
– evolving in open-loop – comes close to the set point yr = 0 cm. At t = 495 min the attacker
stops the deception attack and PI controller reacts to the residual error. This may signal
an a posteriori detection; however, it may be still difficult to distinguish between a residual
error resulting from an attack from an error resulting from small (random) perturbations
in yd. The amount of water the attacker manages to withdraw from the offtake between
t = 255 min and t = 315 min can be computed by integrating the gate discharge equation

Q(t) = CgLgU
√
2g
(
yd(t) + Ȳ

)

where Cg ≈ 0.6 denotes the discharge coefficient, Lg = 1 m the gate width, U = 0.03 m the
offtake opening, (yd(t) + Ȳ) the actual water level.

We now demonstrate the feasibility of deception attacks with a field operational test on
Avencq. The experiment was performed on October 12th, 2009 during which we carried out
the attack directly by modifying the sensor measurements sent from the real-time SCADA
interface of the SIC software to the Matlab code which implemented the PI controller.



27

Although we played the attacker’s role in this experiment, the resulting effect is same as
that of a deception attack on the Avencq water level sensor (attack A1 in Fig. 2.2). At
the start of experiment, the PI controller reacts by changing set-points every few minutes
and then letting the water level stabilize close to set-point in closed-loop. As shown in
Fig. 2.10, at t = 90 min, the offtake is opened and the attacker injects false data to water
level measurement such that the PI controller fails to react to perturbation.

Figure 2.10: Performance of PI controller under attack [field operational test].

At around t = 184 min the offtake was fully opened and then fully closed at around
t = 190 min by a physical intervention at the Avencq cross-regulator; see Fig. 2.10 (top
left). This effect is captured in the sudden drop in the actual water level as shown in
Fig. 2.10 (top right). From t = 190 min until t = 510 min, the attacker continues the
attack; see Fig. 2.10 (bottom left). This results in open-loop response of actual water level.
However, a residual error still remains after the end of the attack, and the PI controller reacts
to this error as seen in Fig. 2.10 (bottom right). It can be concluded that the response of the
PI control after the attack ends and the response to random perturbations can be difficult
to distinguish at the regulatory control level.

2.4.4 Effect of cyber-attack on supervisory FDI scheme

In order to assess the effect of attacks on supervisory FDI scheme proposed in Sec-
tion 2.3.3, we collected the 15 min archived data from the Gignac SCADA system. The
data includes the upstream and downstream water levels, gate openings, and discharges. We
used the FDI scheme based on the observer design assuming that the withdrawal through
offtake from pool 1 during 90− 190 min is an unknown withdrawal. The LMI conditions in
Proposition 2.B.1 are found to be feasible, and the parameter matrices of observers (2.18)
are obtained according to the procedure in Section 2.3.3. From the computed observer
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matrices T1 and T2 we obtain:

T1E1 = 10−15

(
0.247
−112

)
≈ 0, T1E2 =

(
−0.001
−0.7595

)
6= 0

T2E1 =

(
−0.729
0.0

)
6= 0, T1E2 = 10−15

(
0.00

−0.125

)
≈ 0.

Similar to example 2.3.3, we can check that the residuals satisfy the conditions of Propo-
sition 2.3.2, and thus, the fault diagnosis can be achieved by Table 2.2. Indeed, Fig. 2.11
(top left) shows that under no attack on sensor measurements, the residual of observer 2
is sensitive to fault occurring in the form of lateral withdrawal in pool 1. However, when
Avencq’s sensor measurements are compromised and false data g = 0 is injected, the ob-
server residuals no longer indicate a correct diagnosis as shown in Fig 2.11 (bottom left).
The actual upstream water level at the Avencq regulator and the computed gate opening
are shown in Fig 2.11 (top right) and (bottom right), respectively. Recall that FDI scheme
uses 15 min archived data from the SCADA system. Hence, the spike in actual water level,
that is clearly visible with a 2 min sampling period (see Fig. 2.10 (top right)), is not visible
here and is not reflected in the residual computed from the observers.
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Figure 2.11: Performance of FDI scheme under attack [field operational test].

2.5 Discussion

In this chapter, we present a taxonomy of deception and denial-of-service (DoS) attacks
on hierarchical water SCADA systems. To demonstrate the effect of cyber attacks on an
actual SCADA system, we discuss results from a field operational test conducted on the
Gignac water SCADA system. This test illustrates the effect of deception attacks on the
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performance of a PI control based regulation method and a model-based supervisory FDI
scheme based on a low-frequency approximation. Our results indicate that it is possible for
the attacker to stealthily withdraw water from the canal pool without getting detected.

Our synthesis of deception attacks can be extended to the case of multiple canal pools.
This could be done by approximating the effect of water withdrawal on the downstream
level sensor readings and subsequently manipulating the sensors such that regulatory and
supervisory controllers react to wrong level deviations. An interesting research question is
then to characterize the relation between the resources required by the attacker to manip-
ulate multiple sensors versus the impact of the resulting attack in terms of water loss and
operational inefficiencies.

Such analyses have many practical and theoretical implications. In particular, they pro-
vide a framework to assess the robustness of detection and regulation methods under cyber
attacks. From a computer security viewpoint, they also provide novel insights on securing
SCADA systems. Finally, we note that the cyber security of SCADA systems managing
other infrastructures (e.g., oil and natural gas distribution networks) can be studied in a
similar manner.

Appendix 2.A Regulatory Control Design

Three classical controller designs are most common for canal regulation: local upstream
(denoted lu) control, distant downstream (denoted dd) control, and mixed control. We
first discuss controller designs for a single canal pool and then illustrate the extension to
multiple canal pools. For a detailed analysis of stability and performance guarantees of
these controllers, the reader is referred to Chapters 7 and 8 in Litrico and Fromion [2009b].

2.A.1 Regulatory control of single canal pool

Local upstream control (denoted lu) of a canal pool consists of controlling the down-
stream water level ydi using the downstream discharge qi as control action variable. Distant
downstream control (denoted dd) consists of controlling ydi using the upstream discharge qi−1

as control action variable. Let the transfer functions of the dd controller and the lu controller
be defined as κi−1i(s) and κii(s) respectively. Thus, we have q̂i−1(s) = κi−1i(s)ǫ̂i(s), q̂i(s) =
0 (resp. q̂i−1(s) = 0, q̂i(s) = κii(s)ǫ̂i(s)) for the dd (resp. lu) control. Using (2.5) and (2.13)
the tracking error ǫi can be expressed as

ǫ̂i(s) =





(
1 +

adi
s
e−τ¯isκi−1i(s)

)−1

[ŷri +
adi
s
p̂i(s)] dd

(
1− adi

s
κii(s)

)−1

[ŷri +
adi
s
p̂i(s)] lu

(2.26)

The disturbance rejection is then characterized by the modulus |adi
s
(1+

adi
s
e−τ¯isκi−1i(s))

−1| for
dd control and by the modulus |adi

s
(1− adi

s
κii(s))

−1| for lu control. The control objective is to
choose the linear controllers κi−1i(s) and κii(s) such that the respective moduli are close to
0 over largest frequency bandwidth. Note that while dd control has low performance due to
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presence of time-delay in
adi
s
e−τ¯is limiting the achievable frequency bandwidth; the lu control

has a higher performance since there is no time-delay in −adi
s
and the achievable bandwidth

is only limited by actuator’s limitation. On the other hand, dd control has high water
efficiency because the controller regulates upstream water supply leading to parsimonious
water management; however, lu control has low water efficiency because it propagates all
perturbations downstream of the canal pool without managing the upstream discharge.

To address limitations the mixed control policy uses both qi−1 and qi to control y
d
i , where

a (fast) lu control qi is used to regulate water level ydi to set-point yri and a (slow) dd control
qi−1 is used to regulate qi to set-point qri . The mixed controller structure can be specified
as

q̂i−1(s) = κ̃i−1i(s)[q̂
r
i (s)− q̂i(s)]

q̂i(s) = κii(s)[ŷ
r
i (s)− ŷdi (s)],

or equivalently,

(
q̂i−1(s)
q̂i(s)

)
=

(
κi−1i(s)
κii(s)

)
ǫ̂i(s) +

(
κ̃i−1i(s)

0

)
q̂ri (s) (2.27)

where κi−1i(s) = −κ̃i−1i(s)κii(s). For steady state conditions, i.e., when qri = 0, from (2.5)
and (2.13) we obtain

ǫ̂i(s) =

(
1 +

adi
s
e−τ¯isκi−1i(s)−

adi
s
κii(s)

)−1

[ŷri +
adi
s
p̂i(s)].

Comparing this with (2.26), it is obvious that the structured mixed controller corresponds
to an addition of lu and dd controllers.

2.A.2 Regulatory control of multiple canal pools

For simplicity but with not loss of generality, we focus on the case of two canal pools.
The controller matrix K in (2.11) has the following structure for dd and lu controllers:

Kdd =



κi−1i κi−1i+1

0 κii+1

0 0


 , Klu =




0 0
κii 0
κi+1i κi+1i+1


 (2.28)

with q̂(s) =
(
q̂i−1(s), q̂i(s), q̂i+1(s)

)T
, and ǫ̂(s) =

(
ǫ̂i(s), ǫ̂i+1(s)

)T
, and where κi−1i and

κii+1 (resp. κii and κi+1i+1) are SISO dd (resp. lu) controllers, and κi−1i+1 (resp. κi+1i) is
the decoupling term. Using (2.5) and (2.28) and for simplicity considering ŷr(s) = 0, the
tracking error (2.13) can be expressed as:

ǫ̂(s) = Mp̂(s),
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where the closed-loop transfer matrix M has the following structure

M =





(
µi−1i µi−1i+1

0 µii+1

)
, dd

(
µii 0

µi+1i µi+1i+1

)
, lu

(2.29)

with

µi−1i =
adi
s

(
1 +

adi
s
e−τ¯isκi−1i

)−1

µii+1 =
adi+1

s

(
1 +

adi+1

s
e−τ¯i+1sκii+1

)−1

µi−1i+1 = µi−1iκii+1µii+1

(
1− κddF e

−τ
¯i
s
)

µii =
adi
s

(
1− adi

s
κii

)−1

µi+1i+1 =
adi+1

s

(
1− adi+1

s
κi+1i+1

)−1

µi+1i = µiiκii
(
κluF − e−τ¯i+1s

)
µi+1i+1,

and
κddF = κi−1i+1κ

−1
ii+1, κluF = κi+1iκ

−1
ii ,

the feed-forward terms which govern the interactions between the pools.
From (2.29) we see that the closed-loop transfer matrix M is structurally upper triangu-

lar (resp. structurally lower triangular) for the dd (resp. lu) control because µii (resp. µii+1)
is null. Therefore, both dd and lu multivariable controllers (2.28) inherit the stability and
performance properties of monovariable systems. In both cases, the interactions between
the two pools decrease the performance of the overall closed-loop systems; these interactions
can be reduced by appropriate choices of the decoupling terms κi−1i+1 and κi+1i. In contrast
to dd, the lu control design allows for perfect decoupling of the canal pools; however, in
practice, the presence of model uncertainties governs the achievable decoupling.

The mixed control policy for multi-pool system is multi-variable controller and can be
designed to satisfy the global objective of low frequency (resp. high frequency) perturbation
rejection using upstream (resp. downstream) discharge. The stability and performance
of the mixed controller are related to those of individual pools. However, the closed-loop
transfer matrix M is not structural upper-triangular in this case, and the robustness with
respect to dynamic uncertainties can only be evaluated a posteriori.

In order to achieve a fault-tolerant design, the mixed control policy can be implemented
in a structured semi-decentralized fashion, i.e., each local controller (PLC) communicates
only with neighboring upstream and downstream controllers. Here we illustrate the design
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Figure 2.12: Control design for a programmable logic controller (PLC).

reported in Litrico and Fromion [2005]; see Cantoni et al. [2007] for a similar analysis where
the disturbance propagation behavior is also investigated. Extending the single pool mixed
controller design (2.27) to the case of multiple-pools, we decompose each control variable
q̂i(s) into a dd control q̂ddi and a lu control q̂lui (s).

q̂i(s) = q̂ddi (s) + q̂lui (s), (2.30)

where
q̂ddi (s) := κii+1(s)ǫ̂i+1(s), q̂lui (s) = κii(s)ǫ̂i(s)

The off-diagonal elements of controller matrix K can be chosen according to the following
rules:

κij(s) =

{
κj−1j, ∀i < j − 1

e−
∑i

k=j+1 τ¯k
sκjj(s), ∀i > j.

(2.31)

This entails choosing κddF = 1 and κluF = e−
∑i

k=j+1 τ¯k
s (the aggregate propagation de-

lay). In the hierarchical control structure of Fig 2.2, the design of i−th PLC is specified
by (2.30), (2.31), along with the equation (2.8) for determining gate opening. This is further
illustrated by Fig 2.12.

In the following example, we state (robust) PI controller tuning rules for lu control of a
canal pool.

We will use this setting in experimental results of Section 2.4.

Example 2.A.1. Consider a canal pool i = 1 with ID model:

yd1(s) =
ad1
s
e−τ¯1sq0(s)−

ad1
s
[q1(s) + p1(s)].
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For lu control we have q̂0(s) = 0, q̂1(s) = κ11(s)ǫ̂1(s), where ǫ1 = (yri − yd1) is the output
error, yr1 is the reference level. The PI controller is given by:

κ11(s) = k1

(
1 +

1

T1s

)
,

with k1 the proportional gain and T1 the integral time. These parameters can be determined
for a gain margin ∆G dB and a phase margin ∆Θ◦ using following tuning rules Litrico et al.
[2007]. We recall that the gain margin (resp. phase margin) is the maximum multiplicative
(resp. additive) increase in the gain (resp. phase) of the system such that the system remains
closed-loop stable. These robustness margins in frequency domain are directly related to
the time domain performance of the system.

k1 =
π

2ad1τ¯1
10−∆G/20 sin

( π

180
∆Θ +

π

2
10−∆G/20

)

T1 =
2τ
¯1
π

10∆G/20 tan
( π

180
∆Θ +

π

2
10−∆G/20

) (2.32)

where the phase margin satisfies ∆Θ < 90(1 − 10−∆G/20), and the parameters τ
¯1

and ad1
are obtained by the relay-feedback auto-tuning method proposed by Åström and Hägglund
[1995]. The method uses a single relay experiment to determine the frequency response of
the canal pool at phase lag of 180◦.

Appendix 2.B Computation of Observer Parameters

The computation of observer parameter matrices Fij, Gij (or equivalently Ḡij), i = 0, 1, 2,
Tj, and Nj for j = 1, 2 proceeds in the following two steps: In the first step, we check that
the fault model (2.17) satisfies conditions for the existence of observer parameter matrices
that are compatible with (2.21)–(2.23). In the second step, the observer parameter matrices
are chosen by determining a free parameter matrix, such that the asymptotic stability
condition (2.24) holds. For notational convenience, we will henceforth drop the observer
index j from the subscripts.

Step 1 Conditions (2.21)–(2.23) can be written as

SΘ = Ψ, (2.33)

where

S =
(
T, N, F0, Ḡ0, F1, Ḡ1, F2 Ḡ2

)
,

Θ =




In E A0 A1 A2

C 0 0 0 0
0 0 −In 0 0
0 0 −C 0 0
0 0 0 −In 0
0 0 0 −C 0
0 0 0 0 −In
0 0 0 0 −C




,

Ψ =
(
In 0 0 0 0

)
.
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Under the condition that rank(CE) = rank(E), the general solution of (2.33) is

S = ΨΘ+ −K(I −ΘΘ+), (2.34)

where K is an arbitrary matrix of appropriate dimension, and Θ+ is the generalized inverse
matrix of Θ. By inserting the solution (2.34) in (2.22), the matrices Fi can now be expressed
as

Fi = χi −Kβi, i = 0, 1, . . . , 2, (2.35)

where

χ0 = ΨΘ+ (A0 0 0 − C 0 0 0 0)
T

χ1 = ΨΘ+ (A0 0 0 0 0 − C 0 0)
T

χ2 = ΨΘ+ (A0 0 0 0 0 0 0 − C)
T

β0 = (I −ΘΘ+) (A0 0 0 − C 0 0 0 0)
T

β1 = (I −ΘΘ+) (A0 0 0 0 0 − C 0 0)
T

β2 = (I −ΘΘ+) (A0 0 0 0 0 0 0 − C)
T

.

From above results, the condition (2.24) can be written as

ė(t) =
2∑

i=0

(χi −Kβi)e(t− τi(t)) is asymptotically stable. (2.36)

Step 2 Note that once the free-parameter matrix K is computed such that conditions
(2.36) holds, then all the observer parameter matrices can be computed. The following
Proposition gives conditions under which K can be computed:

Proposition 2.B.1. System in (2.36) is asymptotically stable if for some scalars, ǫ0, . . . , ǫ6
and ǭ1, ǭ2, there exist matrices Si > 0, Zi > 0, Qi > 0, Ri > 0, Ui, Wi, i=1,. . . ,2, and
matrices Hi, i = 1, . . . , 6, U and P > 0 such that the following linear matrix inequalities
(LMIs) are satisfied:

(
Qi Ui
U

T

i Ri

)
> 0, i = 1, . . . , 4,



Φ h1H̄1 h2H̄2

∗ −h1Z̄1 0
∗ ∗ −h2Z̄2


 < 0,

where

Z̄i :=

(
Si Wi

∗ Zi

)
, H̄i :=




−ǭi(Pχ1 − Uβ1)
T

H1

−ǭi(Pχ2 − Uβ2)
T

H2

−ǭi(Pχ3 − Uβ3)
T

H3

ǭiP H4

0 H5

0 H6



,
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for i = 1, 2, and Φ = (φij) is a symmetric matrix with block elements φij given by the
following:

φ11 =
2∑

i=1

(Qi + hiSi) + ǫ1 sym(Pχ0 − Uβ0) + 2 sym(H1),

φ12 = ǫ1(Pχ1 − Uβ1) + ǫ2(Pχ0 − Uβ0)
T

+ 2H
T

2 −H1,

φ13 = ǫ3(Pχ0 − Uβ0)
T

+ ǫ1(Pχ2 − Uβ2) + 2H
T

3 −H1,

φ14 = P +
2∑

i=1

(Ui + hiWi) + ǫ4(Pχ0 − Uβ0)
T

+ 2H
T

4 − ǫ1P,

φ15 = 2H
T

5 + ǫ5(Pχ0 − Uβ0)
T

,

φ16 = 2H
T

6 + ǫ6(Pχ0 − Uβ0)
T

,

φ22 = −Q1 − sym(H2) + ǫ2 sym(Pχ1 − Uβ1),

φ23 = −HT

3 −H2 + ǫ2 sym(Pχ2 − Uβ2) + ǫ3 sym(Pχ1 − Uβ1)
T

,

φ24 = −HT

4 + ǫ4 sym(Pχ1 − Uβ1)
T − ǫ2P,

φ25 = −U1 −H
T

5 + ǫ5 sym(Pχ1 − Uβ1)
T

,

φ26 = −HT

6 + ǫ6(Pχ1 − Uβ1)
T

,

φ33 = −Q2 + ǫ3 sym(Pχ2 − Uβ2)− sym(H3),

φ34 = −ǫ3P + ǫ4(Pχ2 − Uβ2)
T −H

T

4 ,

φ35 = +ǫ5(Pχ2 − Uβ2)
T −H

T

5 ,

φ36 = −U2 + ǫ6(Pχ2 − Uβ2)
T −H

T

6 ,

φ44 =
2∑

i=1

(Ri + hiZi)− ǫ4 sym(P ),

φ45 = −ǫ5P
T

,

φ46 = −ǫ6P
T

,

φ55 = −R1,

φ56 = 0,

φ66 = −R2

where hi = τi, and sym(M) :=M +M
T

. The parameter matrix K is given by K = P−1U .

The proof is a simplification of a more general case considered in Chapter 3.
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Chapter 3

Detection of Deception Attacks on
Water SCADA Systems

This chapter investigates the problem of detection and isolation of attacks in a water
distribution network of cascaded canal pools when the measured sensor signals are compro-
mised by an adversary. An approach based on a bank of delay-differential observer systems is
proposed, in which each observer has the same general form as an analytically approximate
model of canal hydrodynamics. Each observer is insensitive to one fault/attack mode and
sensitive to other modes. Design of observers is achieved by using a delay-dependent linear
matrix inequality (LMI) method. The performance of the proposed model-based detection
scheme is tested on a class of adversarial scenarios resulting from a generalized fault/attack
model. This model can represent classical sensor-actuator faults as well as communication
network-induced deception attacks. A particular focus of this chapter is on stealthy decep-
tion attacks in which the attacker’s goal is to pilfer water through canal offtakes. From the
viewpoint of canal system operations, this analysis reveals the advantages of using more
advanced physics based models in detecting physical faults and cyber-induced attacks in
automated canal systems. The criticality of measured sensor signals for the purpose of de-
tection is also investigated. Finally, from an attacker’s viewpoint, the knowledge and effort
required to carry out a successful deception attack is discussed.

3.1 Introduction

Modernization of irrigation systems is often viewed as a solution for improving their
performance. In numerous countries networked fully gated irrigation systems have been
upgraded with supervisory control and data acquisition (SCADA) systems to enable com-
munications, sensing, and control. Real-time knowledge of the system state and the ability
to remotely control flows at critical points can vastly improve performance of irrigation
systems (see for e.g., Litrico et al. [2007]; Rijo and Arranja [2010]). In numerous developed
countries (e.g., Australia, France, United States) well-defined rules for demand regulation,
proper maintenance plans, and a required legislative framework are already in place to sus-
tain modernization plans of irrigation systems. Several emerging and developing countries
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(e.g., Brazil, India, Morocco) are also in the process of modernizing their irrigation systems.
A significant body of research work now exists focusing on automatic control methods for
regulation of discharges and levels in networks of irrigation canals. We refer the reader to
Cantoni et al. [2007]; Litrico and Fromion [2009b], and the references therein for a survey
of these methods.

However, modernization does not always imply reliable service Plusquellec [2009]. Even
in developed countries, automated irrigation systems are experiencing large amounts of wa-
ter losses due to management and distribution related inefficiencies. Such issues are more
challenging to address in developing countries. Clemmens Clemmens [2005] has argued that
instability of canal flows and large deviations from target levels at downstream ends can lead
to inefficient water distribution. This can lead to interference from the end users, e.g., water
pilfering by farmers. An increased reliance of communication systems to transmit and re-
ceive control data, has added new concerns of cyber attacks Attorney [2007]; Slay and Miller
[2007] (in addition to existing issues of physical faults).

Chapter 2 highlighted the ways in which simultaneous and uncoupled cyber-physical
faults (or cyber attacks) in automated irrigation canal systems can be achieved by an in-
telligent adversary. By presenting the results from a field operational test, we showed in
Chapter 2 that it is possible for an attacker to stealthily withdraw water from an automated
canal without getting detected. This motivates an improved understanding of hydrodynamic
principles which can assist the design of better fault/attack detection mechanisms. The fo-
cus of this chapter is on the design a fault/attack detection and isolation (F/ADI) scheme
which is based on an accurate hydrodynamic model, and uses the theory of robust observer
design in the presence of unknown inputs. The generalized fault/attack model which we
consider here can model both random sensor-actuator faults and a class of cyber attacks.

3.1.1 Related Work

A wide body of work has been reported during the past few years to address the
problem of fault detection and isolation (FDI) of unknown water withdrawals (or leaks)
Bedjaoui et al. [2009]; Weyer and Bastin [2008], and random sensor-actuator faults in canal
systems Bedjaoui et al. [2008]. The authors in Bedjaoui et al. [2008] use data reconcilia-
tion based on static and dynamic models to isolate unknown water withdrawals and sensor-
actuator faults. A simple finite-dimensional model of canal flow is used in Weyer and Bastin
[2008] to generate differences (i.e., residuals) between the model and observed data. The
residuals are aggregated over time by a cumulative sum (CUSUM) algorithm (based on the
theory of change-point detection Basseville and Nikiforov [1993]). An alert for a leak is
generated when the CUSUM statistic reaches a given threshold. Under the assumption that
the size of the leak and the time of start are known, Bedjaoui et al. [2009] uses a bank of Lu-
enberger observers based on the shallow water equations to localize the leaks. The authors
of Bedjaoui et al. [2009] also discuss the use of observed time-difference between the effect
of leaks seen at the upstream and downstream of canal pools to localize the leaks. Results
from stability of hyperbolic conservation laws Aamo et al. [2006]; deHalleux et al. [2003] is
used to prove observer stability in Bedjaoui et al. [2009]. Some response mechanisms to
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address sensor-actuator faults are presented in Choy and Weyer [2008].
The most closely related works to the approach presented in this chapter are Koenig et al.

[2005] and Bedjaoui and Weyer [2011]. The article by Bedjaoui and Weyer [2011] provides
a comparison of different methods of residual generation based on finite and infinite dimen-
sional models. The authors propose that a properly tuned CUSUM algorithm can achieve
leak detection. An estimation of water leakage is generated from residuals based on a sim-
ple conversion formula. A technique to isolate a single sensor fault from a single leak is
also presented based on monitoring of canal pools located upstream and downstream of
the suspect pool. The article Koenig et al. [2005] uses unknown input observers (UIO) for
time-delay systems, as developed in systems theory (see for e.g., Conte and Perdon [2006];
Darouach et al. [1994]) to design a FDI scheme for a single canal reach. This approach was
extended to multiple pools when only downstream levels are measured in Bedjaoui et al.
[2006].

The aforementioned work indicates that the problem of isolating sensor-actuator faults
from unknown water withdrawals can be difficult because both these faults have similar
effect on the observer residuals. Moreover, to the best our knowledge, the performance of
available detection schemes where sensor-actuator faults and unknown water withdrawals
occur simultaneously has been not been investigated in the literature. From the viewpoint
of security of automated canal systems, such simultaneous faults form an interesting class
of attacks. These attacks have been recently shown to be feasible for an intelligent attacker
who is interested in water pilfering, or has malicious intentions to harm canal operations
(see Chapter 2).

3.1.2 Contributions for Fault and Attack Diagnosis

Based on the discussion above, the contributions of this chapter are as follows:

• This chapter presents conditions for detectability and isolability of faults due to non-
simultaneous (and uncoupled) withdrawals/leaks and sensor disturbances in cascade
of canal pools using a bank of UIOs. The UIO design uses an analytic approximation
of the canal hydrodynamics (Theorem 3.4.1). This model captures the effect of both
upstream and downstream flow variations. The detection scheme can be designed
provided that a feasible solution to delay-dependent observer stability criterion exists
(Proposition 3.4.2), and observer decoupling conditions are satisfied (Definition 3.4.3).

• A F/ADI scheme is proposed based on residuals generated from the bank of UIO, and
its performance is analyzed under simultaneous and uncoupled faults (called attacks),
for e.g., simultaneous compromise of one or more sensor measurements and water
pilfering using offtake structures. This analysis points toward fundamental limitations
of model-based detection schemes in isolating attacks caused by a malicious attacker
on distributed physical infrastructure systems. Implications of these findings on the
security of canal SCADA systems are also discussed.

This chapter is organized as follows. In Section 3.2 we first introduce infinite-dimensional
models for a cascade of canal pools, and propose the use of an analytically approximate finite-
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dimensional model. This model is used to design a UIO based scheme for detecting faults
entering in state and measurement equations in Section 3.4. In Section 3.5, we first present a
generalized fault/attack model which captures attack scenarios such as simultaneous water
pilfering through offtakes and sensor compromise. Next, we analyze the advantages and
limitations of the proposed detection scheme under the generalized fault/attack model. We
also discuss security implications of attack scenarios which can result in such failures. Some
concluding remarks are drawn in Section 3.6.

3.2 Models of Canal Pool Cascade

3.2.1 Model of Flow Dynamics

Consider an irrigation system consisting of a cascade of m canal pools. Each canal pool
is represented by a portion of canal in between two automated hydraulic structures; thus,
the cascade has (m+1) hydraulic structures. We assume that pool i, where i = 1, . . . ,m has
prismatic cross-section and is of length li (m). Let the space variable be denoted by x ∈ [0, li]
and time variable by t ∈ R+. The unsteady flow dynamics of each canal pool are classi-
cally modeled by the one-dimensional shallow water equations (SWE) Litrico and Fromion
[2009b]. The SWE is a model of coupled hyperbolic PDEs with Ai(t, x) the wetted cross-
sectional area (m2) and Qi(t, x) the discharge (m

3/s) across cross-section Ai as the dependent
variables, and t and x as independent variables. The SWE for pool i is given by

∂t

(
Ai
Qi

)
+ F(Ai,Qi)∂x

(
Ai
Qi

)
= H(Ai,Qi), (3.1)

on the domain x ∈ (0, li), t > 0 with

F(Ai,Qi) =

(
0 1

gAi∂Ai
Yi(Ai)− Q2

i

A2
i

2Qi

Ai

)
, H(Ai,Qi) =

(
0

gAi(Sbi − Sfi(Ai,Qi))

)
.

Here the notation ∂t, ∂x, and ∂Ai
denote the partial derivatives with respect to t, x, and

Ai respectively. The function Sfi(Ai,Qi) denotes the friction slope (m/m), Sbi the bed
slope (m/m), Yi(Ai) the water depth (m) in section Ai, and g the acceleration due to

gravity (m2/s). We model the friction slope as Sfi :=
Q2

in
2
i

A2
iRi(Ai)4/3

, where ni is the Manning

roughness coefficient (sm−1/3), Ri(Ai) := Pi

Ai
is the hydraulic radius (m), Pi is the wetted

perimeter (m), Vi(t, x) := Qi(t,x)
Ai(t,x)

is the average velocity (m/s) in section Ai, Ci(t, x) :=√
gAi(t,x)
Ti(t,x)

is the celerity (m/s), and Ti is the top width (m).

We assume that Vi < Ci (sub-critical flow), and therefore, one boundary condition must
be specified at each boundary. The initial and boundary conditions are given by:

Qi(t, 0) = Qu
i (t), Qi(t, li) = Qd

i (t) + Pi(t), t > 0, (3.2)

Ai(0, x) = A0,i(x), Qi(0, x) = Q0,i(x), x ∈ (0, li). (3.3)
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Figure 3.1: Free-Flow and submerged hydraulic structures.

Here Qu
i (t) and Qd

i (t) denote the controllable upstream and downstream boundary discharges
(m3/s) for pool i respectively, and Pi(t) denote the withdrawals through lateral offtakes
(m3/s). The boundary discharges are constrained as

Qd
i (t) = Qu

i+1(t), t > 0 i = 0, . . . m. (3.4)

We will assume the following: a) the effect of offtakes along the canal pool can be
lumped into a single perturbation Pi(t) acting near the downstream end of the pool1; b) the
conversion of the boundary discharges into automated movement of hydraulic structures is
handled by the respective controllers located at these structures; c) the water levels Yi(t, 0)
and Yi(t, li) (or equivalently, the areas Ai(t, 0) and Ai(t, li)) are measured variables, the
boundary discharges Qu

i (t) and Qd
i (t) are control variables, and the offtake withdrawals

Pi(t) are disturbance variables.

3.2.2 Model of Hydraulic Structures

Overflow weirs and underflow gates are the most commonly used hydraulic structures
for regulating flows in canal networks. These structures can be in free-flow or submerged
condition (see Fig. 3.1).

In submerged condition (resp. free-flow condition), the downstream level influences
(resp. does not influence) the flow through the structure. We define Y0(t, l0) := Yup(t)
and Ym+1(t, 0) := Ydo(t), where Yup(t) (resp. Ydo(t)) are the upstream (resp. downstream)
water levels of the first (resp. last) canal pool in the cascade. The flow through structure i
is modeled by a static nonlinear relation Gi with following general form :

Qi(t, li) = Gi(Yi(t, li),Yi+1(t, 0),Ui(t)) (3.5)

for i = 0, . . . ,m, where Ui(t) denotes opening of the structure (m) at time t. The level-
discharge relations for overflow weirs and underflow gates under both free-flow and sub-
merged conditions are presented below:

1Distributed offtake withdrawal models have been considered elsewhere (see for e.g., Bedjaoui et al. [2009]
and Amin et al. [2010]). The FDI scheme presented in Section 3.4 can be readily extended to the case of
distributed withdrawals by suitable expansion of the observer bank.
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Remark 3.2.1. (Level-discharge relations) For underflow gates, we have

Qi(t, li) =

{
Cg,iLg,iUi(t)

√
2g(Yi(t, li)− Yi+1(t, 0)) (sf)

Cg,iLg,iUi(t)
√
2g(Yi(t, li)) (ff),

where (ff) and (sf) respectively denote the free-flow and submerged flow conditions, Cg,i
denotes the discharge coefficient (generally close to 0.6), Lg,i the lateral width (m) of the
gate. For overflow weirs, we have

Qi(t, li) =

{
Cw,i

√
2g(Yi(t, li)− Yi+1(t, 0))

3/2 (sf)

Cw,i
√
2g(Yi(t, li)− Ui(t))

3/2 (ff),

where Cw,i denotes the discharge coefficient for weirs (generally close to 0.4). ⊳

3.2.3 Linearized Models

Under compatible and constant openings Ui(t) = Ūi, withdrawals Pi(t) = P̄i, and lev-
els Yup(t) = Ȳup, Ydo(t) = Ȳdo, the system (3.1)–(3.4) achieves a steady state. Let the
corresponding wetted area and discharge in steady state be denoted by Āi(x) and Q̄i(x)
respectively; similarly for other variables. We henceforth omit the dependence on x. Follow-
ing Litrico and Fromion [2009b], SWE (3.1) can be linearized around a steady state (Āi, Q̄i)
using the approximation:

f(Ai,Qi) ≈ f(Āi, Q̄i) +
(
∂Ai

f
)
ai +

(
∂Qi

f
)
qi,

where ai(t, x) := (Ai(t, x) − Āi(x)), qi(t, x) := (Qi(t, x) − Q̄i(x)) are the deviations from
steady state. The notation (̄·) indicates that all quantities are evaluated at steady state.
The linearized shallow water equations (LWSE) are given by

∂

∂t

(
ai
qi

)
+ F̄i(x)

∂

∂x

(
ai
qi

)
+ Ḡi(x)

(
ai
qi

)
= 0, (3.6)

on the domain x ∈ (0, li), t > 0, where
(
ai(t, x), qi(t, x)

)T
is the state of canal pool i, and

F̄i(x) :=

(
0 1

αi(x)βi(x) αi(x)− βi(x)

)
, Ḡi(x) :=

(
0 0

−γi(x) δi(x)

)
.

Omitting the dependence on x, and defining κi :=
7
3
− 4Āi

3T̄iP̄i

∂P̄i

∂Ȳi
, we have

αi = C̄i + V̄i, βi = C̄i − V̄i, δi =
2g

V̄i

(
S̄fi −

V̄2
i T̄i

gĀi

dȲi

dx

)
,

γi =
C̄2
i

T̄i

dT̄i

dx
+ g

[
(1 + κi)Sbi − (1 + κi − (κi − 2)

V̄2
i T̄i

gĀi
)
dȲi

dx

]
.

System (3.6), along with the initial and boundary conditions

ai(0, x) = a0,i(x) and qi(0, x) = q0,i(x), x ∈ (0, li), (3.7)

qi(t, 0) = qui (t) and qi(t, li) = qdi (t) + pi(t), t > 0, (3.8)
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Figure 3.2: Schematic view of a multiple pool canal system with submerged gates.

and the constraint

qdi (t) = qui+1(t), t > 0, (3.9)

form the linearized model for canal pool i, where qui (t) = Qi(t, 0) − Q̄i(0) and qdi (t) =
Qi(t, li)− Q̄i(li) denote the boundary discharge deviations, and pi(t) = Pi(t)− P̄i the with-
drawal deviations from the respective steady states. We note that for rectangular cross-
sections, the linearized model with yi(t, x) and ai(t, x) as state can be deduced by using

ai(t, x) = T̄(x)yi(t, x).

With a slight abuse of notation, we define (see Fig. 3.2):

qi−1(t) := qui (t), qi(t) := qdi (t), yui (t) := yi(t, 0), ydi (t) := yi(t, li). (3.10)

Finally, linearizing (3.5) about the steady state we obtain

qi(t) = bdi y
d
i (t) + bui+1y

u
i+1(t) + kiui(t), (3.11)

where ui(t) = (Ui(t) − Ūi) denotes the deviation in the structure opening, the coefficients
bdi =

(
∂Yi

Gi

)
and bui+1 =

(
∂Yi+1

Gi

)
are the feedback gains of the upstream and downstream

levels, and ki =
(
∂Ui

Gi

)
is the gain of structure opening. These coefficients can be computed

by linearizing the respective level-discharge relations for the case of gate and weir. Note
that bui+1 is strictly negative (resp. zero) for submerged (resp. free-flow) condition, and bdi
and ki are positive.

Remark 3.2.2. (Uniform Flow) The following condition corresponds to the uniform flow
regime:

S̄fi(Q̄i(x), Āi(x)) = Sbi, x ∈ (0, li),

Let the steady state in uniform flow be denoted by Āi and Q̄i. The matrix functions
in (3.6) now become independent of x, and the constants γi and δi simplify to γi =

gSbi

(
10
3
− 4Āi

3T̄iP̄i

dP̄i

dȲi

)
, and δi =

2gSbi
V̄i

. ⊳



43

3.3 Characteristic form and IDZ model

3.3.1 Characteristic Form

The matrix function F̄i(x) in (3.6) can be diagonalized as

F̄i(x) = Xi(x)
−1Ai(x)Xi(x),

where

Xi(x) =

(
βi(x) 1
−αi(x) 1

)
, Ai(x) =

(
αi(x) 0
0 −βi(x)

)
,

Using the following change of coordinates

ξi(t, x) :=

(
ξ1,i(t, x)
ξ2,i(t, x)

)
= Xi(x)

(
ai(t, x)
qi(t, x)

)
, (3.12)

where ξ1,i(t, x) and ξ2,i(t, x) denote the characteristic variables, and applying the transfor-
mation (3.12), the system (3.6) can be expressed as

∂ξi
∂t

+Ai(x)
∂ξi
∂x

+Bi(x)ξi = 0, t > 0, (3.13)

with Bi(x) =
[
Xi(x)Ḡi(x)− Āi(x)∂xXi(x)

]
Xi(x)

−1. The initial conditions are

ξ1,i(0, x) = ξ01,i(x) and ξ2,i(0, x) = ξ02,i(x), x ∈ (0, li), (3.14)

where ξ01,i(x) := +βi(x)a0,i(x) + q0,i(x) and ξ02,i(x) := −αi(x)ā0,i(x) + q̄0,i(x). Under the
assumption that the boundary control actions are linear functions of the local state variables,
the boundary conditions can be expressed as

(
ξ̂1,i(s, 0)

ξ̂2,i(s, li)

)
= Ki

(
ξ̂1,i(s, li)

ξ̂2,i(s, 0)

)
, (3.15)

where Ki is the controller matrix. One can observe that along the characteristic curves
defined by the ODEs

dx1(t)

dt
= αi(x1(t)), and

dx2(t)

dt
= −βi(x2(t)),

the characteristic variables verify

dξ1,i
dt

(t, x1) =− b11,i(x1)ξ1,i(t, x1)− b12,i(x1)ξ2,i(t, x1),

dξ2,i
dt

(t, x2) =− b21,i(x2)ξ1,i(t, x2)− b22,i(x2)ξ2,i(t, x2),

where the dependence of x1 and x2 on t is omitted, and (bjk,i(x)) denote the elements of
Bi(x). From the above characteristic form, we observe that the state at any point (t, x)
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Figure 3.3: Characteristic curves for i−th pool.

depends on information from both upstream and downstream propagating characteristic
curves (see Fig 3.3).

The elements of the matrix function Bi(x) = (bjk,i(x)) can be expressed as

Bi(x) =

(
−γi+αiδi−αi∂xβi

αi+βi

γi+βiδi+αi∂xβi
αi+βi−γi+αiδi−βi∂xαi

αi+βi

γi+βiδi+βi∂xαi

αi+βi
,

)

where the dependence on x in the right-hand-side is omitted for notational convenience.
For uniform flow, the matrix functions Xi(x) in coordinate transformation given by

equation (3.12), and Ai(x), Bi(x) and Ci(x) in linear SWE expressed in the χi variables
(3.13) also become independent of the space variable x, and thus, Xi(x) = Xi, Ai(x) = Ai,
Bi(x) = Bi, and Ci(x) = Ci . In particular, the elements of the matrix Bi = (bjk,i) are
given by

Bi =

(
−γi+αiδi
αi+βi

γi+βiδi
αi+βi−γi+αiδi

αi+βi

γi+βiδi
αi+βi

)

3.3.2 Integrator-Delay Model

Using analytic approximation in the frequency domain, Litrico and Fromion have derived
a finite-dimensional input-output model which accounts for the effect of both upstream
and downstream variations (see also Section 5.3 in Litrico and Fromion [2009b]). In low-
frequencies, this approximate model is given by the integrator-delay (ID) model2:

(
ŷui (s)
ŷdi (s)

)
=

(
aui
s

−aui
s
e−τ̄is

adi
s
e−τ¯is −adi

s

)(
q̂i−1(s)

q̂i(s) + pi(s)

)
. (3.16)

2The integrator-delay-zero (IDZ) model, as presented in Litrico and Fromion [2004a], also accounts for
high frequencies by using a constant gain (in addition to an integrator and a delay).
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The parameter aui (resp. adi ) corresponds to the inverse of the equivalent backwater
area for the upstream (resp. downstream) water level, and the parameter τ̄i (resp. τ

¯i
) is

the upstream (resp. downstream) propagation time delays, i.e., the minimum time for a
change in the downstream (resp. upstream) discharge to have an effect on the upstream
(resp. downstream) water level. For uniform flow, these parameters can be obtained ana-
lytically Litrico and Fromion [2009b]:

aui =
γi

αiβiT̄i

(
e

γili
αiβi − 1

) , adi =
γi

αiβiT̄i

(
1− e

− γili
αiβi

) , τ
¯i

=
li
αi
, τ̄i =

li
βi
.

For non-uniform regime, these parameters can be computed via a numerical scheme which
connects several (virtual) uniform flow pools Litrico and Fromion [2009b]. Notice from (3.16)
that the ID model accounts for the influence of both upstream and downstream discharge
and thus, captures the input-output behavior in backwater flow configurations. In the time-
domain, we have the following ODE with delayed inputs:

ẏui (t) = aui qi−1(t)− aui [qi(t− τ̄i) + pi(t− τ̄i)] ,

ẏdi (t) = adi qi−1(t− τ
¯i
)− adi [qi(t) + pi(t)] .

(3.17)

Applying Laplace transform to (3.6), we obtain the following ODE system in x variable,
parameterized by the Laplace variable s:

∂

∂x

(
âi(s, x)
q̂i(s, x)

)
= Ai(s, x)

(
âi(s, x)
q̂i(s, x)

)
+ Bi(x)

(
ai(0, x)
qi(0, x)

)
, (3.18)

where

Ai(s, x) =

(
(αi(x)−βi(x))s+γi(x)

αi(x)βi(x)
− s+δi(x)
αi(x)βi(x)

−s 0

)
,

Bi(x) =
(
βi(x)−αi(x)
αi(x)βi(x)

1
αi(x)βi(x)

1 0

)
.

In general, solution of (3.18) cannot be obtained analytically; however, its general solution
exists, is unique (see Chapter 3, Section 4 in Litrico and Fromion [2009b]), and can be
expressed as

(
âi(s, x)
q̂i(s, x)

)
= Ψi(s, x)

[(
âi(s, 0)
q̂i(s, 0)

)
+

(
ā0,i(s, x)
q̄0,i(s, x)

)]
, (3.19)

where Ψi(s, x) = (ψi,jk(s, x)) is the state transition matrix for (3.18), and

(
ā0,i(s, x)
q̄0,i(s, x)

)
:=

∫ x

0

Ψi(s, v)
−1Bi(v)

(
ai(0, v)
qi(0, v)

)
dv.
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For the uniform flow regime Ψi(s, x) can be obtained analytically.

Ψi(s, x) =




λ1,ie
λ1,ix−λ2,ieλ2,ix
λ1,i−λ2,i

λ1,iλ2,i(e
λ1,ix−eλ2,ix)

s(λ1,i−λ2,i)
s(eλ2,ix−eλ1,ix)

λ1,i−λ2,i
λ1,ie

λ2,ix−λ2,ieλ1,ix
λ1,i−λ2,i


 .

For nonuniform flow regime, Ψi(s, x) can be computed numerically using an efficient numer-
ical scheme proposed in Litrico and Fromion [2004b]. Since we are interested in obtaining
an analytically approximate model, we only consider uniform flow regime here, and note
that our framework also extends to non-uniform regime via the numerical scheme which
interconnects several (virtual) uniform flow pools Litrico and Fromion [2009b].

Using (3.19) at x = li and assuming that ψ21,i(s, li) 6= 0, we obtain3

T̄iŷi(s, 0) = −ψ22,i(s, li)

ψ21,i(s, li)
q̂i(s, 0) +

1

ψ21,i(s, li)
q̂i(s, li). (3.20)

Let Pi(s) = (pi,jk(s)) denote the input-output transfer matrix in the Laplace domain
relating the inputs q̂i−1(s) and (q̂i(s) + p̂i(s)) to the outputs ŷui (s) and ŷdi (s). Assuming zero
initial conditions for simplicity, substituting (3.20) in (3.19), and using the notation (3.10),
we obtain the following relation:

(
ŷi(s, x)
q̂i(s, x)

)
= Gi(s)

(
q̂i−1(s)

q̂i(s) + p̂i(s)

)
, (3.21)

(
ŷui (s)
ŷdi (s)

)
= Pi(s)

(
q̂i−1(s)

q̂i(s) + p̂i(s)

)
, (3.22)

The transfer matrices Gi(s) and Pi(s) are given by

Gi(s, x) =




1
T̄i(x)

(
ψ12,i(s, x)− ψ11,i(s, x)

ψ22,i(s,li)

ψ21,i(s,li)

)
1

T̄i(x)

(
ψ11,i(s,x)

ψ21,i(s,li)

)

ψ22,i(s, x)− ψ21,i(s, x)
ψ22,i(s,li)

ψ21,i(s,li)

ψ21,i(s,x)

ψ21,i(s,li)


 ,

and

Pi(s) =




1
T̄i(0)

(
ψ12,i(s, 0)− ψ11,i(s, 0)

ψ22,i(s,li)

ψ21,i(s,li)

)
1

T̄i(0)

ψ11,i(s,0)

ψ21,i(s,li)

1
T̄i(li)

(
ψ12,i(s, li)− ψ11,i(s, li)

ψ22,i(s,li)

ψ21,i(s,li)

)
1

T̄i(li)

ψ11,i(s,li)

ψ21,i(s,li)


 .

In uniform flow regime, the matrix functions Ai(s, x) and Bi(x) in (3.18) become inde-
pendent of x, and the state transition matrix Ψi(s, x) in (3.19) can be expressed analytically

Ψi(s, x) =




λ1,ie
λ1,ix−λ2,ieλ2,ix
λ1,i−λ2,i

λ1,iλ2,i(e
λ1,ix−eλ2,ix)

s(λ1,i−λ2,i)
s(eλ2,ix−eλ1,ix)

λ1,i−λ2,i
λ1,ie

λ2,ix−λ2,ieλ1,ix
λ1,i−λ2,i


 , (3.23)

3The poles of the system correspond to the values of s such that ψ21,i(s, li) = 0.
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The distributed transfer matrix Gi(s) in (3.21), and the input-output transfer matrix
Pi(s) in (3.22) are given by

Gi(s) =




λ2,ie
(λ1,i−λ2,i)(li−x)−λ1,i

T̄is(1−e(λ1,i−λ2,i)li )
eλ1,ix

λ1,ie
(λ1,i−λ2,i)(x)−λ2,i

T̄is(1−e(λ1,i−λ2,i)li )
e−λ2,i(li−x)

1−e(λ1,i−λ2,i)(li−x)

1−e(λ1,i−λ2,i)li
eλ1,ix 1−e(λ1,i−λ2,i)x

1−e(λ1,i−λ2,i)li
e−λ2,i(li−x)


 ,

Pi(s) =




λ2,ie
(λ1,i−λ2,i)li−λ1,i

T̄is(1−e(λ1,i−λ2,i)li )

(λ1,i−λ2,i)e−λ2,ili

T̄is(1−e(λ1,i−λ2,i)li )

(λ2,i−λ1,i)eλ1,ili
T̄is(1−e(λ1,i−λ2,i)li )

λ1,ie
(λ1,i−λ2,i)li−λ2,i

T̄is(1−e(λ1,i−λ2,i)li )


 .

Here the λ1,i(s) and λ2,i(s) (dependence on s is omitted in the above for notational simplicity)
are the eigenvalues of Ai(s).

Remark 3.3.1. The eigenvalues λ1,i(s) and λ2,i(s) are

λ1,i(s) = −r1,i −
s

αi
+ θiF̂i(s)

λ2,i(s) = r2,i +
s

βi
− θiF̂i(s),

where

F̂i(s) = s+ bi −
√

(s+ bi)2 − a2i , a2i =
4αiβi(αiδi − γi)(γi + βiδi)

(αi + βi)4
, θi =

(αi + βi)

2αiβi
,

and

r1,i =
αiδi − γi
αi(αi + βi)

, r2,i =
βiδi + γi
βi(αi + βi)

, bi =
(αi − βi)γi + 2αiβiδi

(αi + βi)2
.

⊳

The input-output transfer matrix Pi(s) can approximated to obtain the integrator-delay-
zero (IDZ) model:

(
ŷui (s)
ŷdi (s)

)
= Qi(s)

(
q̂i−1(s)

q̂i(s) + p̂i(s)

)
, (3.24)

where

Qi(s) =




(
aui
s −aui

s e
−τ̄is

adi
s e

−τ
¯i
s −adi

s

)

︸ ︷︷ ︸
low freq. approx.

+

(
c̄ui −c̃ui e−τ̄is

c̃di e
−τ
¯i
s −c̄di

)

︸ ︷︷ ︸
high freq. approx.



.

The IDZ model is an analytically approximate model of the input-output relation (3.22).
It accounts for low frequencies by an integrator and a delay, and high frequencies by a
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constant gain and a delay. The parameters c̄ui , c̃
u
i , c̃

d
i , and c̄di are obtained as the mean

values of |pi,jk(s)| as s→ ∞:

c̄ui =
1

T̄iαi

√√√√1 +
α2
i

β2
i
e−2(r1,i+r2,i)li

1 + e−2(r1,i+r2,i)li
,

c̄di =
1

T̄iβi

√√√√1 +
β2
i

α2
i
e−2(r1,i+r2,i)li

1 + e−2(r1,i+r2,i)li
,

c̃ui =
αi + βi
T̄iαiβi

e−r2,ili√
1 + e−2(r1,i+r2,i)li

,

c̃di =
αi + βi
T̄iαiβi

e−r1,ili√
1 + e−2(r1,i+r2,i)li

.

Taking the inverse laplace transform of (3.24), we obtain the following time-domain
model for pool i:

ḣui (t) = aui qi−1(t)− aui [qi(t− τ̄i) + pi(t− τ̄i)]

ḣdi (t) = adi qi−1(t− τ
¯i
)− adi [qi(t) + pi(t)]

yui (t) = hui (t) + c̄ui qi−1(t)− c̃ui [qi(t− τ̄i) + pi(t− τ̄i)]

ydi (t) = hdi (t) + c̃di qi−1(t− τ
¯i
)− c̄di [qi(t) + pi(t)] ,

(3.25)

where hdi (t) and hui (t) are intermediate variables initialized by hdi (t) = 0 and hui (t) = 0.
Let us recall that, under our assumptions, the local slave controllers are responsible to

deliver the required input discharge. In practice, only low frequency compensation can be
achieved due to the bandwidth limitation imposed by the digital implementation of the slave
controllers; the high-frequency control is achieved in a passive manner. This feature leads to
recovery of only the low frequency part of (3.24). With this justification, we now consider
the following low-frequency approximation (the integrator-delay (ID) model).

Combining (3.11) and (3.17), we obtain the delay-differential equation:

ẏui (t) = aui
[
bdi−1y

d
i−1(t) + bui y

u
i (t) + ki−1ui−1(t)

]

− aui
[
bdi y

d
i (t− τ̄i) + bui+1y

u
i+1(t− τ̄i) + kiui(t− τ̄i)− pi(t− τ̄i)

]

ẏdi (t) = adi
[
bdi−1y

d
i−1(t− τ

¯i
) + bui y

u
i (t− τ

¯i
) + ki−1ui−1(t− τ

¯i
)
]

− adi
[
bdi y

d
i (t) + bui+1y

u
i+1(t) + kiui(t) + pi(t)

]
.

(3.26)

We now consider the specific case of a two pools (m = 2) canal with three submerged
hydraulic gates (see Fig. 3.2 and consider i = 1). For sake of simplicity, we will assume that
the upstream level at gate 0 and downstream level at gate 2 are constant, i.e., yd0 = 0 and
yu3 = 0, and moreover, the opening of gate 2 is fixed, i.e., u2 = 0. The full model for the
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2-pool system can be written in state-space form as follows

ẋ(t) =
4∑

i=0

Aix(t− τi) +
4∑

i=0

Biu(t− τi)

y(t) = Cx(t),

(3.27)

where x :=
(
yu1 , yu2 , yd1, yd2

)T
∈ R4 is the state, u :=

(
u0, u1, p1, p2

)T
∈ R4 denotes

the known input, y :=
(
yu1 , yu2 , yd1, yd2

)T
∈ R4 is the measured output; τ0 = 0, τ1 = τ̄1,

τ2 = τ
¯1
, τ3 = τ̄2, τ4 = τ

¯2
. The matrices C, Ai, Bi are known matrices in R4×4 which are

respectively given by C = diag
(
1, 1, 1, 1

)
, and

A0 =




au1b
u
1 0 0 0

0 au2b
u
2 au2b

d
1 0

0 −ad1bu2 −ad1bd1 0
0 0 0 −ad2bd2


 , B0 =




au1k0 0 0 0
0 au2k1 0 0
0 −ad1k1 −ad1 0
0 0 0 −ad2


 ,

A1 =




0 −au1bu2 −au1bd1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , B1 =




0 −au1k1 −au1 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

A2 =




0 0 0 0
0 0 0 0

ad1b
u
1 0 0 0

0 0 0 0


 , B2 =




0 0 0 0
0 0 0 0

ad1k0 0 0 0
0 0 0 0


 ,

A3 =




0 0 0 0
0 0 0 −au2bd2
0 0 0 0
0 0 0 0


 , B3 =




0 0 0 0
0 0 0 −au2
0 0 0 0
0 0 0 0


 ,

A4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 ad2b

u
2 ad2b

d
1 0


 , B4 =




0 0 0 0
0 0 0 0
0 0 0 0
0 ad2k1 0 0


 .

Consider the case of unmeasured water withdrawals (denoted δpi(t)) occurring through the
offtakes, located at the downstream ends (see Fig. 3.2). Model (3.27) now becomes

ẋ(t) =
4∑

i=0

Aix(t− τi) +
4∑

i=0

Biu(t− τi) +
2∑

i=1

Eifi(t)

y(t) = Cx(t),

(3.28)

where

fi(t) =
(
δpi(t) δp̃i(t)

)T
, i = 1, 2

E1 =




0 −au1 0 0 0
0 0 0 0 0

−ad1 0 0 0 0
0 0 0 0 0


 , E2 =




0 0 0 0 0
0 0 0 −au2 0
0 0 0 0 0

−ad2 0 0 0 0


 .

(3.29)
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Figure 3.4: Withdrawals (top), Pool 1 (middle) and Pool 2 (bottom) levels.

with δp̃i(t) :=
(
δpi(t− τ1) . . . δpi(t− τ4)

)
.

We will consider the following numerical example of a 2−pool system throughout the
chapter:

Example 3.3.2. (Two Pool System) Consider (3.28) with following parameters: upstream
(resp. downstream) propagation delays τ̄1 = 846.5 s, τ̄2 = 750.5 s (resp. τ

¯1
= 707.5 s, τ

¯2
=

647.5 s), equivalent inverse backwater areas for upstream (resp. downstream) water levels
au1 = 3.975 × 10−5 m−2, au2 = 3.675 × 10−5 m−2 (resp. ad1 = 3.21 × 10−5 m−2, ad2 = 3.115 ×
10−5 m−2) . Let the coefficients of linearized gate equations bd1 = 20.0, bd2 = 29.0, bu1 =
−21.36, bu2 = −25.36, k0 = 18.1, k2 = 12.1. Assume that u(t) = 0 for t ∈ [−τ

¯1
,∞) and

x(t) = 0 for t ∈ [−τ
¯1
, 0]. Water at the rate 0.1 m3/s is withdrawn from offtake of pool 1

(resp. pool 2) during the interval 2.5 − 5.0 hr (resp. 15 − 17.5 hr). Fig. 3.4 shows the
upstream and downstream water level deviations (cm) under the the effect of unmeasured
withdrawals during a 24 hr simulation. ∆

3.4 UIO Based Fault Detection and Isolation

In this section we present the design of unknown input observers (UIO) for linear time
delay systems when unknown inputs are present in both state and measurement equations.
A bank of UIO observers so designed are then used for detection and isolation under coupled
disturbance/fault signals.
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3.4.1 Unknown Input Observer Design

Consider the following linear, time-invariant, delay differential system (DDS) with un-
known inputs

ẋ(t) =
r∑

i=0

Aix(t− τi(t)) +
r∑

i=1

Biu(t− τi(t)) + Ef(t)

x(θ) = ρ1(θ), u(θ) = ρ2(θ), θ ∈ [−τmax, 0]

y(t) = Cx(t) +Hf(t),

(3.30)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the known input vector, f ∈ Rq the
unknown input vector, y ∈ Rp the measurement output vector, and ρ1 ∈ Rn and ρ2 ∈ Rm

are continuous initial vector functions for the state and input. The matrices Ai, Bi, C, and
E are known real matrices of appropriate dimensions. The matrix E (resp. H) is called
the disturbance distribution matrix for state (resp. observation) equation, and Hf(t) (resp.
Ef(t)) determines the unknown sensor disturbance (resp. unknown input uncertainty). The
time delays τi(t) are bounded but possibly time varying, and satisfy4

τi(t) 6 hi, τ̇i(t) 6 di < 1, i = 1, . . . , r,

τmax := max{h1, . . . , hr}
(3.31)

where hi and di are known constants.
Consider the following full-order observer for system (3.30):

ż(t) =
r∑

i=0

Fiz(t− τi) +
r∑

i=0

TBiu(t− τi) +
r∑

i=0

Giy(t− τi)

z(θ) = ρ3(θ), θ ∈ [−τmax, 0]

x̂(t) = z(t) +Ny(t),

(3.32)

where z(t) ∈ Rn is the observer state vector, ρ3 ∈ Rn the initial vector function, and x̂(t)
the estimate of x(t). The matrices Fi, Gi, T and N are constant matrices of appropriate
dimensions which must be determined such that x̂(t) asymptotically converges to x(t), re-
gardless of the presence of unknown inputs f(t). Such an observer, if it exists, achieves
perfect decoupling from unknown inputs. We define the error between x(t) and its estimate
x̂(t) as

e(t) = x̂(t)− x(t) = z(t)− T x(t) +NHf(t),

where T = In −NC. The error dynamics is given by

ė(t) =
r∑

i=0

Fie(t− τi) + (Fi − TAi + (Gi − FiN)C) x(t− τi)

− (TE + F0NH −G0H) f(t)−
r∑

i=1

(FiN −Gi)Hf(t− τi) +NH ḟ(t)

(3.33)

Then it is straightforward to obtain the following result

4For e.g., time varying delays in automated canal systems can result via a communication network which
transmits the sensor-control data packets.
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Theorem 3.4.1. The full order observer (3.32) will asymptotically estimate x(t) if the
following conditions hold

1. ė(t) =
∑r

i=0 Fie(t− τi) is asymptotically stable,

2. In = T +NC,

3. Ḡi = Gi − FiN, i = 0, . . . , r,

4. Fi = TAi − ḠiC, i = 0, . . . , r,

5. Ḡ0H = TE,

6. ḠiH = 0, i = 1, . . . , r,

7. NH = 0.

Thus, the observer design problem is reduced to finding the matrices T,N , and Fi, Ḡi,
i = 0, . . . , r such that the conditions in Theorem 3.4.1 are satisfied. For r = 4 (for e.g., this
is the case for 2−pool system), the conditions (2)–(7) in Theorem 3.4.1 can be written as
follows:

SΘ = Ψ, (3.34)

where

S =
(
T N F0 Ḡ0 . . . F4 Ḡ4

)
∈ R

n×(6n+6p),

Θ =
(
Θ1 Θ2 Θ3

)
∈ R

(6n+6p)×(6n+6q),

Ψ =
(
In 0

)
∈ R

n×(6n+6q),

and

Θ1 =




In E

C 0
0 0
0 H

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




, Θ2 =




A0 A1 A2 A3 A4

0 0 0 0 0
−In 0 0 0 0
−C 0 0 0 0
0 −In 0 0 0
0 −C 0 0 0
0 0 −In 0 0
0 0 −C 0 0
0 0 0 −In 0
0 0 0 −C 0
0 0 0 0 −In
0 0 0 0 −C




, Θ3 =




0 0 0 0 0
H 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 H 0 0 0
0 0 0 0 0
0 0 H 0 0
0 0 0 0 0
0 0 0 H 0
0 0 0 0 0
0 0 0 0 H




.

Following the general solution of a set of linear matrix equations (see for e.g., Darouach et al.
[1994]), there exists a solution to (3.34) if and only if:

rank

(
Θ
Ψ

)
= rank

(
Θ
)
,
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or equivalently,

rank

(
CE
H

)
= rank

(
E
H

)
. (3.35)

Under the above rank condition, the general solution of (3.34) is

S = ΨΘ+ −K(I −ΘΘ+), (3.36)

where K is an arbitrary matrix of appropriate dimension, and Θ+ is the generalized inverse
matrix of Θ. The choice of matrix K is important in determining the asymptotic stabil-
ity of the observer. This can be seen by inserting the solution (3.36) in condition (4) of
theorem 3.4.1. The matrices Fi can now be expressed as

Fi = χi −Kβi, i = 0, 1, . . . , 4, (3.37)

where

χ0 = ΨΘ+ (A0 0 0 − C 0 0 0 0 0 0 0 0)
T

χ1 = ΨΘ+ (A0 0 0 0 0 − C 0 0 0 0 0 0)
T

χ2 = ΨΘ+ (A0 0 0 0 0 0 0 − C 0 0 0 0)
T

χ3 = ΨΘ+ (A0 0 0 0 0 0 0 0 0 − C 0 0)
T

χ4 = ΨΘ+ (A0 0 0 0 0 0 0 0 0 0 0 − C)
T

β0 = Θ̃ (A0 0 0 − C 0 0 0 0 0 0 0 0)
T

β1 = Θ̃ (A0 0 0 0 0 − C 0 0 0 0 0 0)
T

β2 = Θ̃ (A0 0 0 0 0 0 0 − C 0 0 0 0)
T

β3 = Θ̃ (A0 0 0 0 0 0 0 0 0 − C 0 0)
T

β4 = Θ̃ (A0 0 0 0 0 0 0 0 0 0 0 − C)
T

with Θ̃ := (I − ΘΘ+). Under condition (3.35), and from above results, the error dynam-
ics (3.33) for r = 4 can be written as

ė(t) =
4∑

i=0

(χi −Kβi)e(t− τi(t)). (3.38)

Thus the problem of observer (3.32) design reduces to the determination of the matrix
parameter K such that the stability condition (1) of theorem 3.4.1 holds. We now give
delay-dependent conditions for the stability of the observer under the delay bounds (3.31).
By extension, similar conditions can be determined for any r.

Proposition 3.4.2. Suppose that condition (3.35) is satisfied, and let r = 4. Then there
exists an asymptotically stable unknown input observer (3.32), if for some scalars ǫ0, . . . , ǫ9
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and ǭ1, . . . , ǭ4, there exist matrices Si > 0, Zi > 0, Qi > 0, Ri > 0, Ui, Wi, i=1,. . . ,4, and
matrices Hi, i = 0, . . . , 9, U and P > 0 such that the following linear matrix inequalities
(LMIs) are satisfied:

(
Qi Ui
U

T

i Ri

)
> 0, i = 1, . . . , 4, (3.39)




Φ h1H̄1 h2H̄2 h3H̄3 h4H̄4

∗ −h1Z̄1 0 0 0
∗ ∗ −h2Z̄2 0 0
∗ ∗ ∗ −h3Z̄3 0
∗ ∗ ∗ ∗ −h4Z̄4



< 0, (3.40)

where

Z̄i :=

(
Si Wi

W
T

i Zi

)
, H̄i :=




−ǭi(Pχ0 − Uβ0)
T

H0

−ǭi(Pχ1 − Uβ1)
T

H1

−ǭi(Pχ2 − Uβ2)
T

H2

−ǭi(Pχ3 − Uβ3)
T

H3

−ǭi(Pχ4 − Uβ4)
T

H4

ǭiP H5

0 H6

0 H7

0 H8

0 H9




, (3.41)

for i = 1, . . . , 4, and Φ = (φjk) is a symmetric matrix of the form (3.56) with block elements
φjk presented in (3.57) (see Appendix 3.6). The parameter matrix K is given by K = P−1U .

The proof is presented in the Appendix 3.6. We now present our FDI scheme for delay-
differential system of the form (3.30) which uses the LMI method of Proposition 3.4.2.

3.4.2 Residual Generation

Consider j−th DDS, j = 1, . . . , s, with s candidate fault signals:

ẋj(t) =
r∑

i=0

Aixj(t− τi) +
r∑

i=1

Biuj(t− τi) +
s∑

i=1

Eifi(t)

yj(t) = Cxj(t) +
s∑

i=1

Hifi(t).

(3.42)

The FDI scheme we consider here is required to detect the occurrence as well as isolate
an unknown signal fj(t) from other unknown signals fk(t) k 6= j. Each unknown sig-
nal models a coupled disturbance/fault in the state and measurement equations. Follow-
ing Conte and Perdon [2006], we consider the problem of residual generation according to
following definition:
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Definition 3.4.3. (Residual Generation Problem) The problem consists of finding residuals
rj(t) defined as follows:

rj(t) := yj(t)− C x̂j(t), j = 1, . . . , s, (3.43)

where x̂j(t) is the output of the j−th UIO of the form (3.32), and yj(t) is the output of
system (3.42), with the following properties:

1. rj(t) is insensitive (i.e., robust) to fj(t),

2. rj(t) converges to zero asymptotically if fk(t) = 0, k 6= j for every t,

3. ∃p > 0 such that d
dfk

(
dprj(t)

dtp

)
6= 0 for k 6= j.

If the residuals ri(t) i = 1, . . . , s satisfy the properties of Definition 3.4.3, fault diagnosis
can be successfully achieved based on the following decision rule:

fj(t) 6= 0 if ‖rj(t)‖ ≈ 0, and ‖rk(t)‖ 6= 0, k 6= j. (3.44)

We now discuss the FDI scheme for non-simultaneous withdrawals for the 2-pool system.

Example 3.4.4. (FDI Scheme for Unknown Withdrawals) System (3.42) models a 2−pool
system with r = 4, s = 2. Assume E1 and E2 are of the form (3.29), H1 = H2 = 0, all other
parameters as in Example 3.3.2, and zero known input signal u(t) = 0 (the system evolves
in open-loop). Let the unknown withdrawal from pool 1 (resp. pool 2) during the interval
2.5 − 5.0 hr (resp. 15 − 17.5 hr) be the fault signal f1(t) (resp. f2(t)). Assume the bounds
of the time delays τi(t) to be 1.1 times their nominal values, for e.g., h1 = 1.1× τ̄1, and so
on; and the time derivatives of the delays all less than 0.1, i.e., di < 0.1. Two observers are
designed as follows:

Observer 1 (resp. observer 2) is designed to be insensitive to f1(t) (resp. f2(t)). Residual
rj(t) j = 1, 2 of the j−th observer is defined by (3.43), and x̂j(t) is the output of j−th UIO
designed for the following model:

ẋj(t) =
4∑

i=0

Aixj(t− τi) +
4∑

i=0

Biuj(t− τi) + Ejfj(t) + E−jf−j(t)

yj(t) = Cxj(t).

(3.45)

where −j := (3 − j). In (3.45) f2(t) = 0 (resp. f1(t) = 0) for observer 1 (resp. observer
2). The LMI conditions in Proposition 3.4.2 are feasible for ǫ0 = 10, ǫ1 = · · · = ǫ9 = −1,
and ǭ1 = · · · = ǭ4 = −1, and the parameter matrices Fij, Gij , Tj and Nj (i = 0, . . . , 4) are
obtained for the observers:

żj(t) =
4∑

i=0

Fijzj(t− τi) +
4∑

i=0

TjBiuj(t− τi) +
4∑

i=0

Gijyj(t− τi)

x̂j(t) = zj(t) +Njyj(t).
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From the computed observer matrices T1 and T2 we obtain:

T1E1 = 10−15 ×




0.040 0.041 0 0 0
−0.286 −0.054 0 0 0
0.241 0.010 0 0 0
−0.388 −0.330 0 0 0


 ≈ 0,

T1E2 =




−0.000 0 0 −0.000 0
0.288 0 0 0.149 0
−0.383 0 0 −0.021 0
0.044 0 0 0.289 0


 6= 0,

T2E1 =




0.523 −0.106 0 0 0
−0.077 0.074 0 0 0
−0.026 0.479 0 0 0
0.000 0.000 0 0 0


 6= 0,

T2E2 = 10−14 ×




−0.014 0 0 −0.007 0
0.008 0 0 −0.006 0
0.002 0 0 −0.001 0
0.150 0 0 −0.227 0


 ≈ 0.

∆

We can check that the residuals rj(t) j = 1, 2 in Example 3.4.4 satisfy the properties of
Definition 3.4.3:

• r1(t) (resp. r2(t)) is insensitive to f1(t) (f2(t)) (follows from UIO property of observers
1 and 2),

• The residual dynamics defined by

ṙj(t) = C

(
4∑

i=0

Fijej(t− τi)

)
,

converges to zero asymptotically when f−j(t) = 0 for every t because the conditions of
Theorem 3.4.1 are satisfied (e.g., T1E1 = T2E2 = 0),

• d
df−j

drj(t)

dt
= TjE−j 6= 0.

Hence, the FDI scheme for the above example can be achieved using the decision rule
presented in Table 3.1. From Fig. 3.5 we can observe that the generated residuals successfully
achieve FDI for 2−pool system.

3.5 Attack Detection and Isolation

In this section, we study the performance of the FDI scheme designed in Section 3.4
on a generalized fault/attack model. This model allows the modeling of many adversarial
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Figure 3.5: Fault signals δp1 and δp2 (top), and norms of residuals r1 and r2 (bottom).

Table 3.1: Decision table for 2−pool system.

If ‖r1‖ ‖r2‖
f1 6= 0 ≈ 0 6= 0
f2 6= 0 6= 0 ≈ 0

scenarios in which, differently from faults, the failure signals in the state and measurement
equations are uncoupled. For the sake of simplicity, we will only consider the 2−pool system,
noting that similar analysis can be performed for multi-pool systems.

3.5.1 Generalized Fault/Attack Model for Two Pool System

Consider the DDS when fault/disturbances signals in the input and sensor measurements
appear in uncoupled forms:

Σa =

{
ẋ(t) =

∑4
i=0Aix(t− τi) +

∑4
i=0Biu(t− τi) +

∑s
i=0Eifi(t)

y(t) = Cx(t) +
∑s

i=0Higi(t),
(3.46)

where, fi(t) and gi(t) with i = 1, . . . , s are fault/disturbance signals affecting the state
and measurement equations. Notice that this is in contrast to (3.42) where these signals
are linearly coupled. We now show that the model (3.46) can represent traditional faults
such as non-simultaneous discharge withdrawals (leaks) or sensor-actuator faults, and many
adversarial scenarios when these disturbances can be manifested simultaneously.

Leaks and Sensor-Actuator Faults

Unmeasured withdrawals or leaks (denoted δpi(t)) may be caused by random faults
or deliberate tampering of offtakes Bedjaoui and Weyer [2011]. For system (3.46), such
discharge withdrawals can be modeled by considering s = 2, H1 = 0, H2 = 0, and E1 and
E2 given by (3.29) (see Example 3.3.2). Similarly, we can model the actuator fault (denoted
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δui(t)) caused due to blockage of hydraulic structures or intentional manipulation of control
actions. Consider, for example, H1 = 0, and H2 = 0, and

fi(t) =
(
δui(t) δũi(t)

)T
,

E1 =




au1k0 0 0 0 0
0 0 0 0 0
0 0 ad1k0 0 0
0 0 0 0 0


 , E2 =




0 −au1k1 0 0 0
au2k1 0 0 0 0
−ad1k1 0 0 0 0

0 0 0 0 ad2k1


 ,

with δũi(t) :=
(
δui(t− τ1) . . . δui(t− τ4)

)
. The sensor signals yui (t) and ydi (t) may be

subjected to random faults Choy and Weyer [2008] (e.g., effect of temperature variations in
pressure sensors, malfunction of electronic circuitry in ultrasonic sensors), or b) adversarial
biases which distort the true sensor signals (e.g., false-data injection attack Amin et al.
[2010]). Sensor failures (denoted δyi(t)) in system (3.46) can be modeled by considering
s = 2, E1 = 0, E2 = 0, and

gi(t) =
(
δyui (t) δydi (t)

)T
, i = 1, 2

H1 =




1 0
0 0
0 1
0 0


 , H2 =




0 0
1 0
0 0
0 1


 .

(3.47)

In many situations, faults/disturbance signals can appear in both measurement and state
evolution equations in a linearly coupled manner, i.e., fi(t) = gi(t) and the system (3.46)
takes the same form as (3.30). For example, when a level sensor measurement is subjected
to an additive bias and is injected in the system via output feedback control, the same bias
will enter in the state equation as well.

Finally, note that the scheme proposed in Section 3.4 can be extended to achieve detec-
tion and isolation of faults in all the above mentioned scenarios under the assumption of
non-simultaneous faults (i.e., if fi(t) 6= 0, then fj(t) = 0 where j 6= i).

Simultaneous and Uncoupled Attacks

In many adversarial scenarios, the faults or disturbances on inputs and measurements
can enter in an uncoupled manner (i.e., fi(t) 6= gi(t) in (3.46)). Moreover, they can manifest
simultaneously. Consider an adversarial scenario for system (3.46) when a deception attack
simultaneously causes distortion of true sensor signals and unknown water withdrawal from
the offtake. This scenario can be modeled with fi(t), E1 and E2 (resp. gi(t), H1 and H2)
given by (3.29) (resp. (3.47)). This attack was the main focus of Chapter 2, where it
was shown that a deception attack on sensor signals prevented correct isolation of unknown
withdrawals through offtakes.

In general, without assuming any prior knowledge of attack signals, the FDI scheme of
Section 3.4 cannot be extended to such adversarial scenarios. In the following example, we
evaluate the performance of this scheme on different adversarial scenarios.
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Figure 3.6: Residuals under attack on yu1 , y
d
1 (top), and yu2 , y

d
2 (bottom).
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Figure 3.7: Residuals under attack on yu1 , y
u
2 (top), and yd1, y

d
2 (bottom).

Example 3.5.1. Consider the FDI scheme designed in Example 3.4.4 which generated correct
residuals to detect and isolate non-simultaneous withdrawals for 2−pool system. To evaluate
the performance of this scheme when the true sensor measurements are spoofed with an
additive deception attack, we consider four cases: 1) For each pool i, yui and ydi are spoofed
simultaneously (Fig. 3.6), 2) Both yu1 and yu2 are spoofed simultaneously; similarly for yd1
and yd2 (Fig. 3.7), 3) Middle gate measurements yd1, y

u
2 are spoofed (Fig. 3.8), 4) All yu1 ,

yd1 and yu2 are spoofed simultaneously; similarly for yd1, yu2 and yd2 (Fig. 3.9). In all the
four cases, it is assumed that the attacker injects an additive attack such that the targeted
level sensor measurement signal does not deviate from zero. For e.g., for case 1), gi(t) :

=
(
−yui (t) −ydi (t)

)T
, where yui (t) and ydi (t) are true measurement signals, and Hi is given

by (3.47); similarly for other cases. ∆
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2 and yd2 (bottom).

3.5.2 Implications for Water Security

Based on the performance of our FDI scheme on adversarial scenarios from the gener-
alized attack model (3.46), and in particular from the deception attack scenarios of Exam-
ple 3.5.1, we can make several interesting observations. Firstly, the diagnosis rule presented
in Table 3.1 can no longer be used in the presence of deception attacks. In general, the
residuals will not satisfy the conditions of Definition 3.4.3 and hence, (3.44) is not guaran-
teed to achieve a correct diagnosis. However, in certain adversarial scenarios (for e.g., the
case when yu1 and yu2 are spoofed in Fig. 3.7 (top), a correct diagnosis can still be achieved
using the following fault/attack detection and isolation (F/ADI) rule:

fj(t) 6= 0 if ‖rj(t)‖ < ϑfj , and ‖rk(t)‖ > ϑfk , k 6= j, (3.48)

where the parameters ϑfi i = 1, . . . , s are the isolation threshold parameters of the F/ADI
scheme. These parameters can be constant or time-varying depending on the nature adver-
sarial scenarios which are likely to be encountered in practice5.

The F/ADI rule (3.48) may not successfully isolate unknown withdrawals in a pool
(say i) when both yui and ydi are compromised. For example, in Fig. 3.6 (top), observer 1
which was designed to be insensitive to f1 is no longer able to maintain r1 to zero (whereas,

5An elaborate discussion regarding the tuning of these parameters is outside the scope of our work.
However, we recommend that, similar to the case of CUSUM implementation, parameter tuning can be
achieved by testing the performance based on desired false-alarm and missed-detection rates.
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r2 generated by observer 2 is still sensitive to f1). However, note that in this case f2 can
be still be correctly isolated using (3.48). From this observation, it can be concluded that
when both upstream and downstream measurements of a canal pool are compromised, it
is difficult to isolate the local faults in the pool; however, faults in other pools can still be
isolated.

Another observation is that the location of compromised sensor measurements relative to
the location of the fault is an important factor for achieving successful diagnosis. We recall
that, under our setting, the offtakes are located near the downstream ends (see Fig. 3.2).
From Fig. 3.6 (bottom) it can be seen that, in contrast to Fig. 3.6 (top), the attack on
downstream measurements is more detrimental to the performance of residuals in detecting
unknown withdrawals from offtakes. Since our diagnosis scheme is based on the physics-
based ID model (see model (3.26) in Section 3.2), the effect of water withdrawals is captured
by both upstream and downstream level sensors; however, the effect is more pronounced at
the downstream level sensors. This insight can also be applied when both measurements of
a single gate are compromised. See Fig. 3.8 when attack on yd1 and yu2 of the middle gate
makes the diagnosis of fault f1 located near the gate difficult, while f2 can still be diagnosed
successfully based on (3.48).

Last but perhaps the most interesting observation is that when sensor measurements of
multiple pools are accessible to a strategic attacker, the deception attack can be perfectly
stealthy, i.e., the attack can result in wrong diagnosis or may not be even detected! Consider,
for e.g., Fig. 3.9 (top) (resp. Fig. 3.9 (bottom)) when yu1 , y

d
1 and yu2 (resp. yd1, y

u
2 and yd2) are

compromised. Residual r1 (resp. r2) which was only sensitive to fault f2 (resp. f1) in the case
of no attack, now reacts to both faults, whereas r2 (resp. r1) is not sensitive to either faults.
Following (3.48), this leads to incorrect diagnosis, i.e., f1 is detected when f2 is presented
and vice versa. Moreover, from a practical viewpoint, the norms of residuals in the case of
such attacks may not be high enough to enable the F/ADI rule (3.48) to distinguish these
faults from random disturbances.

By comparing this stealthy attack with the stealthy attack reported in Chapter 2, the
following remarks can be made: 1) From an attacker’s point-of-view more sensor measure-
ments (three sensors as opposed to a single sensor in Chapter 2) need to be compromised
to achieve perfect stealthiness when the F/ADI scheme proposed herewith is used, 2) The
attacker requires strategic knowledge (and perhaps more resources) to carry out such an
attack; for e.g., only a particular choice of compromised measurements result in a stealthy
attack, 3) In contrast to Chapter 2 where the f2 under the compromise of yd2 went com-
pletely undetected since neither residuals reacted to the fault, here the residual r2 shows a
delayed response (see Fig. 3.9 (bottom)). Thus detection is not completely evaded in this
case, although the diagnosis is incorrect. The observed delay is the delay in propagation
of disturbance due to offtake withdrawal in the second pool to reach the upstream of first
pool.
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3.6 Discussion

In this chapter, we investigated the applicability of a model-based scheme for detection
and isolation of a wide class of faults and attacks in automated canal systems. The scheme
is based on a bank of UIO designed for a linear delay-differential system obtained as an an-
alytically approximate model of the linearized SWE. Our approach is based on a simplified
model of canal hydrodynamics which captures the influence of both upstream and down-
stream variations. We present conditions for the existence of a UIO when failure signals in
the state and measurement equations are coupled. These conditions are delay-dependent,
and can also incorporate communication network induced time-delays in the sensor-control
data. A residual generation procedure is used to detect and isolate such failure signals.

The performance of the UIO-based FDI scheme is investigated on scenarios when the
fault signals in the state and measurement equations are uncoupled. Such scenarios can
result from the actions of an attacker which simultaneously compromises sensor-control
data and offtakes for the purpose of water pilfering (or even for causing damage to the canal
system). For a class of attack scenarios, we also propose a simple modification of the UIO
based FDI scheme to a threshold-based A/FDI scheme. While practical tuning rules of the
proposed A/FDI scheme is a topic of further investigation, an interesting theoretical open
question is to adapt these threshold parameters to be sensitive to attacks.

From the viewpoint of cyber-security of canal automation systems, we find that sensor re-
dundancy (i.e., installation of multiple sensors for each candidate fault/attack), and making
critical sensors more resilient to manipulation and tampering is a reasonable cyber-defense
strategy. For e.g., for the cases when offtake withdrawals are located near the downstream
end, the downstream level sensors are more critical for successful isolation of failures and
hence, more investment should be made to make them tamper resistant.

When the compromise of sensor measurements is restricted to a given pool, the diagnosis
of faults that are local to the pool is the most severely affected. The effect is also propagated
to neighboring pools, although to a lesser extent. However, when sensor measurements from
multiple pools are compromised by a strategic and resourceful attacker, the F/ADI scheme
can result in an incorrect diagnosis (or even perfect stealthiness). Thus reducing the chance
that multiple and coordinated compromises occur should be prioritized for cyber-security
of water SCADA systems.

Finally, we believe that the insights presented in this chapter motivates further investiga-
tion of novel model-based attack detection schemes which are not based on the assumptions
made by classical fault detection and isolation schemes (for e.g., the assumption of non-
simultaneous failure signals). From our analysis we conclude that a proper selection of
internal model, and increased emphasis on securing critical sensor measurements could lead
to better performance of F/ADI schemes under deception attacks. Such attack-sensitive de-
tection schemes will also assist in the development of automatic controller response schemes
which are resilient to a broad class of physical faults and cyber-attack signals.
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Appendix 3.A Conditions for observer design

Proof. Under (3.40), we note that Z̄i defined in (3.41) satisfies Z̄i > 0, i = 1, . . . , 4. Inspired
by the work of Lin et.al. Lin et al. [2006], under (3.39) and P > 0, we consider the following
Lyapunov-Krasovskii functional:

V (e(t)) = e(t)
T

P e(t)

+
4∑

i=1

∫ t

t−τi(t)

(
e(s)
ė(s)

)T (
Qi Ui
U

T

i Ri

)(
e(s)
ė(s)

)
ds

+
4∑

i=1

∫ hi

0

∫ t

t−θ

(
e(s)
ė(s)

)T (
Si Wi

W
T

i Zi

)(
e(s)
ė(s)

)
ds dθ.

(3.49)

Let us define the following vectors:

η(t)
T

:=
(
ẽ(t)

T

, ˜̇e(t)
T
)
, ζ(s)

T

:=
(
e(s)

T

, ė(s)
T
)
.

where ẽ(t)
T
:=
(
e(t)

T

, e(t− τ1(t))
T

, . . . , e(t− τ4(t))
T
)
, and

˜̇e(t)
T

:=
(
ė(t)

T

, ė(t− τ1(t))
T

, . . . , ė(t− τ4(t))
T
)
.

We make the following two observations: First, using the Leibnitz rule,

4∑

i=1

e(t− τi(t)) = 4e(t)−
4∑

i=1

∫ t

t−τi(t)

ė(s)ds,

we obtain for any matrices Hi, with appropriate dimensions, and i = 0, . . . , 9,

0 = 2

(
4∑

i=0

e(t− τi(t))
T

Hi +
9∑

i=5

ė(t− τi(t))
T

Hi

)

×
(
4e(t)−

4∑

i=1

e(t− τi(t))−
4∑

i=1

∫ t

t−τi(t)

ė(s)ds

)
,

(3.50)

or equivalently,

0 = 2η(t)
T

H∆1η(t)− 2
4∑

i=1

∫ t

t−τi(t)

η(t)
T

(
0

H
T

)T

ζ(s)ds, (3.51)

where

H
T

:=
(
H

T

0 H
T

1 . . . H
T

9

)
, ∆1 :=

(
4 −1 −1 −1 −1 0 0 0 0 0

)
.
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Second, using
∑4

i=0 Fie(t − τi) − ė(t) = 0, we obtain for a matrix P with appropriate
dimensions and scalars ǫ0, . . . , ǫ9, ǭ1, . . . , ǭ4

0 =2

(
4∑

i=0

e(t− τi(t))
T

ǫi +
9∑

i=5

ė(t− τi(t))
T

ǫi +
4∑

i=1

∫ t

t−τi(t)

e
T

(s)dsǭi

)
P

×
(

4∑

i=0

Fie(t− τi)− ė(t)

)
,

(3.52)

or equivalently,

0 = 2η(t)
T

Υ∆2η(t)− 2
4∑

i=1

∫ t

t−τi(t)

η(t)
(
−ǭi∆T

2P
T

0
)
ζ(s)ds, (3.53)

where

Υ
T

:= P
T (
ǫ0 ǫ1 . . . ǫ9

)
, ∆2 :=

(
F0 . . . F4 −I 0 0 0 0

)
.

Adding (3.51) and (3.53) to the time derivative of V (e(t)) along the solution of (3.33),
we can write:

V̇ (e(t)) = 2e(t)
T

P ė(t) +

4∑

i=1

(
e(t)
ė(t)

)T (
Qi Ui

U
T

i Ri

)(
e(t)
ė(t)

)

−
4∑

i=1

(1− τ̇i(t))

(
e(t− τi(t))
ė(t− τi(t))

)T (
Qi Ui

U
T

i Ri

)(
e(t− τi(t))
ė(t− τi(t))

)

+
4∑

i=1

hi

(
e(t)
ė(t)

)T (
Si Wi

W
T

i Zi

)(
e(t)
ė(t)

)

−
4∑

i=1

∫ t

t−hi(t)

(
e(s)
ė(s)

)T (
Si Wi

W
T

i Zi

)(
e(s)
ė(s)

)
ds

+ 2η(t)
T

[H∆1 +Υ∆2]η(t)− 2
4∑

i=1

∫ t

t−hi(t)
η(t)

T

H̄iζ(s)ds

+
4∑

i=1

(
τi(t)η(t)

T

H̄iZ̄iH̄
T

i η(t)−
∫ t

t−τi(t)
η(t)

T

H̄iZ̄iH̄
T

i η(t)ds

)

(3.54)
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where Z̄i and H̄i are given by:

Z̄i :=

(
Si Wi

W
T

i Zi

)
, H̄i :=




−ǭi(PF0)
T

H0

−ǭi(PF1)
T

H1

−ǭi(PF2)
T

H2

−ǭi(PF3)
T

H3

−ǭi(PF4)
T

H4

ǭiP
T

H5

0 H6

0 H7

0 H8

0 H9




,

for i = 1, 2, 3, 4. Using the fact that τi(t) 6 hi, and τ̇i(t) 6 di < 1, for i = 1, 2, 3, 4,

V̇ (e(t)) 6 η(t)
T

(
Φ +

4∑

i=1

hiH̄iZ̄
−1
i H̄

T

i

)
η(t)−

4∑

i=1

∫ t

t−hi(t)
Γi(t, s)

T

Z̄−1
i Γi(t, s)ds, (3.55)

where Γi(t, s) :=
(
H̄

T

i η(t) + Z̄iζ(s)
)
, and

Φ :=




φ00 φ01 φ02 φ03 φ04 φ05 φ06 φ07 φ08 φ09

∗ φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18 φ19

∗ ∗ φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29

∗ ∗ ∗ φ33 φ34 φ35 φ36 φ37 φ38 φ39

∗ ∗ ∗ ∗ φ44 φ45 φ46 φ47 φ48 φ49

∗ ∗ ∗ ∗ ∗ φ55 φ56 φ57 φ58 φ59

∗ ∗ ∗ ∗ ∗ ∗ φ66 φ67 φ68 φ69

∗ ∗ ∗ ∗ ∗ ∗ ∗ φ77 φ78 φ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ φ88 φ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ φ99




, (3.56)
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with block elements φjk given by

φ00 =
4∑

i=1

(Qi + hiSi) + ǫ0 sym(PF0) + 4 sym(H0)

φ01 = ǫ0PF1 + ǫ1(PF0)
T

+ 4H
T

1 −H0, φ02 = ǫ0PF2 + ǫ2(PF0)
T

+ 4H
T

2 −H0

φ03 = ǫ0PF3 + ǫ3(PF0)
T

+ 4H
T

3 −H0, φ04 = ǫ0PF4 + ǫ4(PF0)
T

+ 4H
T

4 −H0

φ05 = P +
4∑

i=1

(Ui + hiWi)− ǫ0P + ǫ5(PF0)
T

+ 4H
T

5 , φ06 = ǫ6(PF0)
T

+ 4H
T

6 ,

φ07 = ǫ7(PF0)
T

+ 4H
T

7 , φ08 = ǫ8(PF0)
T

+ 4H
T

8 , φ09 = ǫ9(PF0)
T

+ 4H
T

9 ,

φ11 = ǫ1 sym(PF1)− (1− d1)Q1 − sym(H1)

φ12 = ǫ1PF2 + ǫ2(PF1)
T −H1 −H

T

2 , φ13 = ǫ1PF3 + ǫ3(PF1)
T −H1 −H

T

3 ,

φ14 = ǫ1PF4 + ǫ4(PF1)
T −H1 −H

T

4 , φ15 = −ǫ1P + ǫ5(PF1)
T −H

T

5 ,

φ16 = +ǫ6(PF1)
T − (1− d1)U1 −H

T

6 , φ17 = +ǫ7(PF1)
T −H

T

7 ,

φ18 = +ǫ8(PF1)
T −H

T

8 , φ19 = +ǫ9(PF1)
T −H

T

9

φ22 = +ǫ2 sym(PF2)− (1− d2)Q2 − sym(H2)

φ23 = +ǫ2PF3 + ǫ3(PF2)
T −H2 −H

T

3 , φ24 = +ǫ2PF4 + ǫ4(PF2)
T −H2 −H

T

4

φ25 = −ǫ2P + ǫ5(PF2)
T −H

T

5 , φ26 = +ǫ6(PF2)
T −H

T

6

φ27 = −(1− d2)U2 + ǫ7(PF2)
T −H

T

7 , φ28 = +ǫ8(PF2)
T −H

T

8 , φ29 = +ǫ9(PF2)
T −H

T

9

φ33 = −(1− d3)Q3 + ǫ3 sym(PF3)− sym(H3)

φ34 = +ǫ3PF4 + ǫ4(PF3)
T −H3 −H

T

4 , φ35 = −ǫ3P + ǫ5(PF3)
T −H

T

5 ,

φ36 = +ǫ6(PF3)
T −H

T

6 , φ37 = +ǫ7(PF3)
T −H

T

7

φ38 = +ǫ8(PF3)
T − (1− d3)U3 −H

T

8 , φ39 = +ǫ9(PF3)
T −H

T

9

φ44 = −(1− d4)Q4 + ǫ4 sym(PF4)
T − sym(H4)

φ45 = −ǫ4P + ǫ5(PF4)
T −H

T

5 , φ46 = +ǫ6(PF4)
T −H

T

6 ,

φ47 = +ǫ7(PF4)
T −H

T

7 , φ48 = +ǫ8(PF4)
T −H

T

8 , φ49 = −(1− d4)U4 + ǫ9(PF4)
T −H

T

9

φ55 =
4∑

i=1

(Ri + hiZi)− ǫ5 sym(P ),

φ56 = −ǫ6P
T

, φ57 = −ǫ7P
T

, φ58 = −ǫ8P
T

, φ59 = −ǫ9P
T

,

φ66 = −(1− d1)R1, φ67 = 0, φ68 = 0, φ69 = 0

φ77 = −(1− d2)R2, φ78 = 0, φ79 = 0,

φ88 = −(1− d3)R3, φ89 = 0, φ99 = −(1− d4)R4

where sym(M) := M + M
T

. From (3.55), we see that if
(
Φ +

∑4
i=1 hiH̄iZ̄

−1
i H̄

T

i

)
< 0

(equivalently, using Schur complements if LMI (3.40) holds), then V̇ (e(t)) < 0. Following



67

stability theory of delay differential equations Hale and Lunel [1993], the error dynamic
(3.38) is asymptotically stable. Using (3.37) and defining U := PK, we obtain H̄i.

Finally, from (3.37) and using U = PK, we obtain the terms φjk:

φ00 =
4∑

i=1

(Qi + hiSi) + ǫ0 sym(Pχ0 − Uβ0) + 4 sym(H0)

φ01 = ǫ0(Pχ1 − Uβ1) + ǫ1(Pχ0 − Uβ0)
T

+ 4H
T

1 −H0,

φ02 = ǫ0(Pχ2 − Uβ2) + ǫ2(Pχ0 − Uβ0)
T

+ 4H
T

2 −H0

φ03 = ǫ0(Pχ3 − Uβ3) + ǫ3(Pχ0 − Uβ0)
T

+ 4H
T

3 −H0,

φ04 = ǫ0(Pχ4 − Uβ4) + ǫ4(Pχ0 − Uβ0)
T

+ 4H
T

4 −H0

φ05 = P +
4∑

i=1

(Ui + hiWi)− ǫ0P + ǫ5(Pχ0 − Uβ0)
T

+ 4H
T

5 ,

φ06 = ǫ6(Pχ0 − Uβ0)
T

+ 4H
T

6 ,

φ07 = ǫ7(Pχ0 − Uβ0)
T

+ 4H
T

7 ,

φ08 = ǫ8(Pχ0 − Uβ0)
T

+ 4H
T

8 ,

φ09 = ǫ9(Pχ0 − Uβ0)
T

+ 4H
T

9

φ11 = ǫ1 sym(Pχ1 − Uβ1)− (1− d1)Q1 − sym(H1)

φ12 = ǫ1(Pχ2 − Uβ2) + ǫ2(Pχ1 − Uβ1)
T −H1 −H

T

2 ,

φ13 = ǫ1(Pχ3 − Uβ3) + ǫ3(Pχ1 − Uβ1)
T −H1 −H

T

3

φ14 = ǫ1(Pχ4 − Uβ4) + ǫ4(Pχ1 − Uβ1)
T −H1 −H

T

4 ,

φ15 = −ǫ1P + ǫ5(Pχ1 − Uβ1)
T −H

T

5

φ16 = +ǫ6(Pχ1 − Uβ1)
T − (1− d1)U1 −H

T

6 ,

φ17 = +ǫ7(Pχ1 − Uβ1)
T −H

T

7 ,

φ18 = +ǫ8(Pχ1 − Uβ1)
T −H

T

8 ,

φ19 = +ǫ9(Pχ1 − Uβ1)
T −H

T

9

φ22 = +ǫ2 sym(Pχ2 − Uβ2)− (1− d2)Q2 − sym(H2)

φ23 = +ǫ2(Pχ3 − Uβ3) + ǫ3(Pχ2 − Uβ2)
T −H2 −H

T

3 ,

φ24 = +ǫ2(Pχ4 − Uβ4) + ǫ4(Pχ2 − Uβ2)
T −H2 −H

T

4

φ25 = −ǫ2P + ǫ5(Pχ2 − Uβ2)
T −H

T

5 ,

φ26 = +ǫ6(Pχ2 − Uβ2)
T −H

T

6

(3.57)
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φ27 = −(1− d2)U2 + ǫ7(Pχ2 − Uβ2)
T −H

T

7 ,

φ28 = +ǫ8(Pχ2 − Uβ2)
T −H

T

8 ,

φ29 = +ǫ9(Pχ2 − Uβ2)
T −H

T

9 ,

φ33 = −(1− d3)Q3 + ǫ3 sym(Pχ3 − Uβ3)− sym(H3)

φ34 = +ǫ3(Pχ4 − Uβ4) + ǫ4(Pχ3 − Uβ3)
T −H3 −H

T

4 ,

φ35 = −ǫ3P + ǫ5(Pχ3 − Uβ3)
T −H

T

5

φ36 = +ǫ6(Pχ3 − Uβ3)
T −H

T

6 , φ37 = +ǫ7(Pχ3 − Uβ3)
T −H

T

7

φ38 = +ǫ8(Pχ3 − Uβ3)
T − (1− d3)U3 −H

T

8 ,

φ39 = +ǫ9(Pχ3 − Uβ3)
T −H

T

9

φ44 = −(1− d4)Q4 + ǫ4 sym(Pχ4 − Uβ4)
T − sym(H4)

φ45 = −ǫ4P + ǫ5(Pχ4 − Uβ4)
T −H

T

5 ,

φ46 = +ǫ6(Pχ4 − Uβ4)
T −H

T

6

φ47 = +ǫ7(Pχ4 − Uβ4)
T −H

T

7 ,

φ48 = +ǫ8(Pχ4 − Uβ4)
T −H

T

8 ,

φ49 = −(1− d4)U4 + ǫ9(Pχ4 − Uβ4)
T −H

T

9

φ55 =
4∑

i=1

(Ri + hiZi)− ǫ5 sym(P )

φ56 = −ǫ6P
T

,

φ57 = −ǫ7P
T

,

φ58 = −ǫ8P
T

,

φ59 = −ǫ9P
T

,

φ66 = −(1− d1)R1,

φ67 = 0,

φ68 = 0,

φ69 = 0,

φ77 = −(1− d2)R2,

φ78 = 0,

φ79 = 0,

φ88 = −(1− d3)R3,

φ89 = 0,

φ99 = −(1− d4)R4.
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Chapter 4

Stability of Flow Networks under
Switching Attacks

4.1 Introduction

This chapter considers the initial-boundary value problem governed by systems of linear
hyperbolic partial differential equations in the canonical diagonal form, and studies condi-
tions for exponential stability when the system discontinuously switches between a finite
set of modes. The main motivation of this chapter is to model the random failures and
malicious attacks on automated water distribution networks as a switching system. The
switching system considered here is fairly general in that the system matrix functions as
well as the boundary conditions may switch in time. It is shown how the stability mecha-
nism developed for classical solutions of hyperbolic initial boundary value problems can be
generalized to the case in which weaker solutions become necessary due to arbitrary switch-
ing. An explicit dwell-time bound for guaranteeing exponential stability of the switching
system is provided when, for each mode, the system is exponentially stable. The stability
conditions presented here only depend on the system parameters and boundary data. These
conditions easily generalize to switching systems in the non-diagonal form under a simple
commutativity assumption. Finally, some tutorial examples are presented to illustrate the
instabilities that can result from switching.

4.1.1 Switching Infinite-Dimensional Systems

Switched systems are a convenient modeling paradigm for a variety of control applica-
tions in which evolution processes involve logical decisions. However, in contrast to their
simplicity on modeling grounds, the stability analysis of switched systems is often non-
trivial. An extensive body of literature now exists for the case of switched (linear and
non-linear) ordinary differential equations (ODEs) and more generally for differential alge-
braic equations (DAEs) in finite dimensional spaces. As surveyed in Shorten et al. [2007]
and Lin and Antsaklis [2009], two different approaches have been mainly considered in the
literature: Either one designs switching signals such that solutions of the switched system
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Figure 4.1: Switching triggered by the controller.

decay exponentially (or otherwise behave ‘optimally’), or one tries to identify conditions
which guarantee exponential stability of the switched system for arbitrary switching sig-
nals. The later approach is of particular interest when the switching mechanism is either
unknown or too complicated for a more careful stability analysis D. Liberzon [2003], Morse
[1996]. The traditional motivation to study stability under arbitrary switching comes from
operational scenarios in which certain parameters of the system may exhibit switching in
time triggered by external factors, or the controller based on externally specified logical
rules may switch between one of several possible control actions; see Fig. 4.1. Stability
under arbitrary switching is mainly achieved by constructing common Lyapunov functions
or, more directly, by identifying algebraic/geometric conditions on the involved parameters.

During the past years, several attempts have been made to also consider switched sys-
tems in the context of infinite dimensional control theory. Mostly, the problem of designing
(optimal or stabilizing) switching control is considered for problems in which the state equa-
tion is fixed and just the controller is switched. For example, in El-Farra and Christofides
[2004], model reduction together with control synthesis for the reduced finite dimensional
model is used to construct switching control for quasi-linear parabolic equations. The de-
sign of boundary switching control actions for semi-linear hyperbolic balance equations us-
ing switching time sensitivities is considered in Hante and Leugering [2009]. An algorithm
to construct optimal switching control for abstract linear systems on Hilbert spaces with
switching control operator at fixed switching times is proposed in Iftime and Demetriou
[2009]. Moreover, for the heat equation, a systematic way of building switching control
based on variational methods is described in Zuazua [2011] and, in a similar context, Gugat
[2008] gives conditions under which such switching controls exist for the one dimensional
wave equation.

Despite the aforementioned developments, much less is known for problems when not
only the controller, but also the state equation is switched. Some general ideas are sketched
in Seidman [2009] and, for semi-linear hyperbolic equations with application to transport
networks, optimal open-loop and closed-loop switching control is addressed in Hante et al.
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[2009] and Hante et al. [2010]. For problems concerning the stability of switched infinite
dimensional systems, the construction of common Lyapunov functions gets very difficult
when the state equation is switched, even for abstract switched linear systems on Hilbert
spaces. The only available result appears to be Sasane [2005], in which a common quadratic
Lyapunov function is provided for the case when the semigroup generators commute. This
condition is, however, too restrictive for some applications. Nevertheless, it is interesting to
note that without further restrictions on the generators, common (not necessarily quadratic)
Lyapunov functions exist, even more generally for switched linear systems on Banach spaces
Hante and Sigalotti [2011]. Under constrained switching, some algebraic conditions for sta-
bility of switched non-linear systems on Banach spaces utilizing Lyapunov functions in each
mode are provided in Michel et al. [2005].

4.1.2 Stability under Switching Attacks

In this chapter we are interested in the stability properties of solutions to switched linear
hyperbolic systems with reflecting boundary conditions when the boundary conditions and
the state equation are switched arbitrarily. Our motivation here is to model the random fail-
ures and malicious attacks on automated water distribution networks as a switched system.
Consider the following example:

Example 4.1.1. Consider, for example, the networked control setting for a reservoir-canal
system in Fig 4.2. The state variables are the water level and the water flow. The down-
stream gate is equipped with a water level sensor and the upstream gate can be controlled
to move vertically, thereby controlling the water inflow into the system. The level sensor
transmits measurements to a remote controller that computes the control signal to be trans-
mitted to the upstream gate actuator. The remote controller designs a control signal that
will regulate the water inflow at the upstream gate such that the downstream water level
remains within prescribed safety-bounds at all times, and under the effect of downstream
demand perturbations. The framework presented in this chapter can be used to model at-
tack scenarios in which the demand perturbations, the level sensor transmits measurements,
and the control signal can be modeled as piecewise-constant switching signals.

Let us first introduce the following (unswitched) system of n linear hyperbolic partial
differential equations (PDEs) defined for some interval [a, b] ⊂ R:

∂ξ

∂t
+ Λ(s)

∂ξ

∂s
+ B(s)ξ = 0, s ∈ (a, b), t > 0, (4.1)

where Λ(s) = diag(λ1(s), . . . , λn(s)) is a diagonal real matrix function and B(s) is a n× n
real matrix function on [a, b]. Assuming appropriate regularity of the matrix functions Λ(·)
and B(·) and under the hyperbolicity assumption that for some 1 < m < n

λ1(s), . . . , λm(s) < 0 and λm+1(s), . . . , λn(s) > 0 (4.2)

uniformly in s ∈ [a, b], a n-dimensional vector solution ξ(t, s) of the system (4.1) with
components ξi(t, s) for i = 1, . . . , n, arrayed as

ξI(t, s) = (ξ1(t, s), . . . , ξm(t, s))
⊤ and ξII(t, s) = (ξm+1(t, s), . . . , ξn(t, s))

⊤,
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Figure 4.2: Network controlled reservoir-canal system.

is uniquely determined on the time-space strip R+ × (a, b) with the initial condition

ξ(0, s) = ξ̄(s), s ∈ (a, b), (4.3)

for specified Rn-valued initial data ξ̄(s) and boundary conditions

ξII(t, a) = GLξI(t, a), ξI(t, b) = GRξII(t, b), t > 0 (4.4)

where GL, GR are constant matrices of dimensions (n−m)×m and m× (n−m), respec-
tively. A common class of problems studied for initial-boundary value problems (4.1)–
(4.4) is the stability and stabilization under boundary control actions specified by the
matrices GL and GR. These problems are of interest because hyperbolic PDE systems
can model flows in networks that are monitored and controlled at the boundary nodes
Leugering and Schmidt [2002]. Examples include transportation systems Haut and Bastin
[2007], Bayen et al. [2006], canal systems Litrico et al. [2008], and gas distribution sys-
tems Banda et al. [2006]. The available results for this class of problems for linear hyperbolic
systems can be found in Rauch and Taylor [1974], Besson et al. [2006], and more generally
for quasilinear hyperbolic systems in Li [1994], deHalleux et al. [2003], Coron et al. [2008]
and Prieur et al. [2008].

Here we are interested in the stability properties of the hyperbolic initial boundary value
problem (4.1)–(4.4) when Λ(·), B(·), GL and GR are not fixed, but are known to satisfy

(Λ(·), B(·), GL, GR) ∈ {(Λj(·), Bj(·), Gj
L, G

j
R) : j ∈ Q}

at any time t > 0, where Q = {1, . . . , N} is a finite set of modes and, for all j ∈ Q, the data
Λj(·), Bj(·), Gj

L, G
j
R is given. This is equivalent to studying the stability of the switching

system 



∂ξ

∂t
+ Λσ(t)(s)

∂ξ

∂s
+ Bσ(t)(s)ξ = 0,

ξII(t, a) = G
σ(t)
L ξI(t, a), ξI(t, b) = G

σ(t)
R ξII(t, b),

ξ(0, s) = ξ̄(s),

(4.5)
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for the time-space strip [0,∞) × [a, b] where switching occurs according to a piecewise-
constant switching signal σ(·) : R+ → Q. Preliminaries and wellposedness of the switched
system (4.5) will be discussed in Section 4.2. Then, recalling the classical observation in
the finite dimensional control theory of switched systems that exponential stability of all
subsystems does not necessarily guarantee an exponential decay of the solution when the
system is switched D. Liberzon [2003], we study, motivated by a simple PDE counterpart
to this observation, the following two specific problems for the switched system (4.5) in
Section 4.3:

(A) Find conditions on the matrix functions Λj(·), Bj(·) and the matrices Gj
L and Gj

R

that guarantee exponential stability for arbitrary switching signals.

(B) Alternatively, characterize a (preferably large) class of switching signals for which
exponential stability of all subsystems is sufficient for exponential stability of the
switched system.

There are two main contributions of this chapter. Firstly, we show how the techniques
mainly developed for classical solutions (with C1 data) can be used for weaker solutions
(with L∞ data) based on the geometric picture of propagation along characteristics. This
is necessary because switching boundary conditions may introduce discontinuities into the
solution. Secondly, we show how the switching enters the known stability mechanism such
that the decay rate obtained in this way is independent of the switching signal (Theorem 1).
Following from our analysis, we also obtain an explicit dwell-time bound guaranteeing ex-
ponential stability of the system under constrained switching when all subsystems satisfy
the known stability condition individually (Corollary 1). In Section 4.4, we discuss how our
results for switched diagonal system (4.5) generalize to switched hyperbolic systems in non-
diagonal form under a commutativity assumption (Proposition 1). In Sections 4.3 and 4.4,
we also provide illustrative examples of instabilities which can result from switching. In
Section 4.5, we discuss the stability of canal cascade under attack scenarios that can be
modeled as a switched system. Some remarks are mentioned in Section 4.6.

4.2 Preliminaries

For an interval (a, b) ⊂ R and a measurable function f : (a, b) → Rn, let

‖f‖∞ := ess sup
s∈(a,b)
i=1,...,n

|fi(s)|.

We call L∞((a, b);Rn) the space of all measurable functions f : (a, b) → Rn for which ‖f‖∞ <
∞. For an n× n real matrix M = (mij), we define

‖M‖∞ := max
16i6n

n∑

j=1

|mij|.
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Also define the non-negative matrix of M as |M | := (|mij|) and for eigenvalues λ1, . . . , λn
of |M | define the spectral radius of |M | as ρ(|M |) = max16i6n |λi|.

A switching signal σ(·) is a piecewise-constant function σ(·) : R+ → Q. Here, we restrict
admissible piecewise-constant signals to those for which during each finite time interval of
R+, there are only finitely many switches j y j′ to avoid Zeno behavior. This assumption
anticipated with the accumulation of switching times is commonly made in the field of
switched and hybrid systems to obtain global existence results; see for e. g. Zhang et al.
[2001]. Thus, necessarily, σ(·) has switching times τk ∈ R+ (k ∈ N) at which σ(·) switches
discontinuously from one mode jk−1 ∈ Q to another mode jk ∈ Q. We denote S(R+, Q) for
the set of all such switching signals σ(·).

We say that for a given σ(·) ∈ S(R+, Q) the system (4.5) is exponentially stable (with
respect to the norm ‖ · ‖∞) if there exist constants c > 1 and β > 0 such that the solution
ξ(t, ·) satisfies

‖ξ(t, ·)‖∞ 6 c exp(−βt)‖ξ(0, ·)‖∞, t > 0. (4.6)

In view of problem (A), we say that the switched system (4.5) is absolutely exponentially
stable (with respect to a norm ‖ · ‖∞) if (4.6) holds for all σ(·) ∈ S(R+, Q) with constants
c > 1 and β > 0 independently of σ(·). In view of problem (B), we say that a value τ > 0 is
a dwell-time of a switching signal σ(·), if the intervals between consecutive switches are no
shorter than τ , that is, τk+1 − τk > τ for all k > 0 and we let Sτ (R+;Q) ⊂ S(R+;Q) denote
the subset of switching signals with dwell-time τ .

4.3 Diagonal Switching System

For each j ∈ Q, we have the diagonal subsystem





∂ξj

∂t
+ Λj(s)

∂ξj

∂s
+Bj(s)ξj = 0, s ∈ (a, b), t > 0

ξjII(t, a) = Gj
Lξ

j
I (t, a), ξ

j
I (t, b) = Gj

Rξ
j
II(t, b), t > 0

(4.7)

for which we impose the following assumptions:

(A1) The matrix function Λj(s) = diag(λj1(s), . . . , λ
j
n(s)) is such that the characteristic

speeds λji (·) are uniformly bounded, Lipschitz-continuous functions of s ∈ [a, b] for
i = 1, . . . , n, and there exists mj such that for some 0 < mj < n, λjr(s) < 0 (r =
1, . . . ,mj) and λ

j
l (s) > 0 (l = mj + 1, . . . , n); the matrix function Bj(s) is such that

Bj(·) : [a, b] 7→ Rn×n is bounded measurable with respect to s.

(A2) For all j, j′ ∈ Q, mj = mj′ =: m.

It is well-known that under the hyperbolicity assumption (A1) for any j ∈ Q, T > 0,
and initial data ξj(0, ·) = ξ̄j(·) where ξ̄j : (a, b) 7→ Rn is bounded measurable with respect
to s, a solution ξji of (4.7) in the broad sense can be defined by the method of characteristics
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Courant and Hilbert [1962], Kreiss [1970]. In this method, for each i and each point (t∗, s∗),
one uses that the ODE

d

dt
zji (t) = λji (z

j
i (t)), zji (t

∗) = s∗ (4.8)

has a unique Carathéodory solution, defined for all t. As usual, we say that this solution t 7→
zji (t; t

∗, s∗) passing through (t∗, s∗) is the i-th characteristic curve for the j-th subsystem.
The broad solution ξj(·, ·) is then defined as a vector function with components ξji , i =
1, . . . , n, that are absolutely continuous and satisfy

d

dt
ξji (t, z

j
i (t; t

∗, s∗)) = −
n∑

k=1

bjik(z
j
i (t; t

∗, s∗))ξjk(t, z
j
i (t; t

∗, s∗)) (4.9)

along almost every characteristic curve zji (t; t
∗, s∗). Here bjik(·) corresponds to the i-th row

and k-th column of Bj(·).
Existence and uniqueness of such broad solutions ξj(·, ·) with initial data and boundary

conditions for the subsystems (4.7) with ξj(t, ·) ∈ L∞((a, b);Rn) for all t can be obtained
on arbitrary finite time horizons using Banach’s fixed point theorem. Uniqueness then
has to be understood within the usual Lebesgue almost everywhere equivalence class. For
further details on the existence and uniqueness of broad solutions, we refer to the iteration
method of Courant and Hilbert [1962], pages 470–475, and to the text of Bressan Bressan
[2000], pages 46–50, though noting that the latter does not treat boundary conditions. For
treatment of the boundary conditions see, instead, Kreiss [1970].

We now justify the existence and uniqueness of solutions for the switching system (4.5),
which we need in deriving the main stability result in Section 4.3. Any switching signal
σ(·) ∈ S(R+, Q) defines a mode jk ∈ Q for each interval [τk, τk+1). For an initial condition,
ξ̄ := ξ̄(·) ∈ L∞((a, b);Rn), we define ξ(t) = ξ(t, ·) where

ξ(t, ·) = ξjk(t, ·), for t ∈ [τk, τk+1]

and ξjk(t, ·) is a solution of the subsystem corresponding to mode j = jk in (4.7) with the
initial condition

ξjk(τk, ·) =
{
ξjk−1(τk, ·) if k > 0,

ξ̄(·) if k = 0.

Thus, under Hypothesis (A1), for every σ(·) ∈ S(R+, Q), by construction there exists a
unique broad solution ξ(·) with data ξ(t) ∈ L∞((a, b);Rn)) for all t ∈ R+ of the switching
system (4.5). Again, uniqueness then has to be understood within the usual Lebesgue almost
everywhere equivalence class.

In the following, we denote by z
σ(t)
i (t; t∗, s∗) the i-th characteristic path that passes

through a point (t∗, s∗) ∈ [0,∞)× [a, b] and is the concatenation of the characteristic curves
zji (t) through switching times defined by the switching signal σ(·). When needed, we omit the

dependence of z
σ(t)
i (t; t∗, s∗) on σ(t) for notational convenience and simply write zi(t; t

∗, s∗).
Observe that, if (A2) holds in addition to (A1), each characteristic path can be classified

into left- and right-going depending on the sign of the corresponding characteristic speeds
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Figure 4.3: Instability by switching.

λji (s), independently of the switching signal σ(·). Although (A2) is not required for the
existence and uniqueness of the solution, it is crucial for the kind of stabilizing mechanisms
that we consider here. This is further discussed in Example 4.3.5.

Furthermore, for the switching system (4.5) we define

τ̄ :=
b− a

min
i=1,...,mj

s∈[a,b],j∈Q

|λji (s)|
+

b− a

min
i=mj+1,...,n

s∈[a,b],j∈Q

|λji (s)| (4.10)

Geometrically, τ̄ is an upper bound of the time in which the slowest of all possible character-
istic paths will have undergone reflections at both boundaries. Our motivation to study the
stability of the diagonal switching system (4.5) is inspired a simple PDE counterpart to the
classical ODE observation D. Liberzon [2003] that exponential stability of all subsystems is
not sufficient for the exponential stability of the switching system.

Example 4.3.1. Let Q = {1, 2}, [a, b] = [0, 1], Λj = diag(−1, 1), Bj = diag(0, 0), Gj
L =

1.5(j − 1), Gj
R = 1.5(2 − j), and consider ξ̄(s) =

[
1 1

]⊤
for s ∈ (0, 1). For the case of

no switching, that is when σ(t) = 1 or σ(t) = 2 for all t ∈ R+, the solution ξ(·) of the
system (4.5) is zero after t > 2, but the solution of the system with a switching signal σ(t)
that is defined over the switching times τk = 0.5, 1.5, 2.5, . . . and alternates between modes
in Q starting with σ(0) = 2 is not exponentially stable. Indeed, ‖ξ(t)‖∞ is not bounded
as t → ∞, because the values on the right-going characteristic emerging from s ∈ (0, 0.5)
always increase by reflection of the characteristics along the boundary; see Figure 4.3. Thus,
we can conclude that the instability due to switching can occur for certain combinations
between the characteristic speeds and the switching times. (Note, however, that with a
switching signal σ(t) that is defined over the switching times τk = 0.5, 1.0, 1.5, 2.0, . . . the
system is exponentially stable.) �

We now focus on conditions on the matrix functions Λ(s)j, Bj(s) and the boundary
data Gj

L, G
j
R under which the switching system is absolutely exponentially stable. Our

main result, presented next, shows that if a spectral radius condition is jointly satisfied for
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the left and right boundary data and all pairs of modes j, j′ ∈ Q then a sufficiently small
bound on ‖Bj(s)‖∞ exists such that the switching system is absolutely exponentially stable
with respect to the norm ‖ · ‖∞.

Theorem 4.3.2. Assume Hypotheses (A1) and (A2) and suppose that for j, j′ ∈ Q the
following condition holds:

ρ

([
0 |Gj′

R|
|Gj

L| 0

])
< 1. (4.11)

Then there exists an ǫ > 0 such that if ‖Bj(s)‖∞ 6 ǫ for all s ∈ [a, b] and j ∈ Q, the
switching system (4.5) is absolutely exponentially stable with respect to the norm ‖ · ‖∞.

Proof. We define the following constants in terms of boundary data

K1 := max{1, K̃1}, K2 := max{1, K̃2}, K := max{K1, K2} (4.12)

where K̃1 = max
r=1,...,m

j∈Q

∑n
l=m+1 |gR,jrl | and K̃2 = max

l=m+1,...,n

j∈Q

{∑m
p=1 |gL,jlp |

}
. From the Lemma 2.1

of Li Li [1994], we note that the condition (4.11) implies

θ := max
j,j′∈Q

{‖|Gj
L||Gj′

R|‖∞, ‖|Gj′

R||Gj
L|‖∞}

= max
r=1,...,m

l=m+1,...,n

j,j′∈Q

{ m∑

p=1

n∑

k=m+1

|gR,j′rk ||gL,jkp |,
n∑

k=m+1

m∑

p=1

|gL,jlp ||gR,j′pk |
}
< 1,

(4.13)

where Gj
L = (gL,jpq ) and G

j′

R = (gR,j
′

pq ). Let us define

Tmin :=
b− a

max
a6s6b
i=1,...,n

j=1,...,N

|λji (s)|
, Tmax :=

b− a
min
a6s6b
i=1,...,n

j=1,...,N

|λji (s)|
.

Thus, Tmin (resp. Tmax) is the time in which the fastest (resp. slowest) of all possible
characteristic paths will have traveled the domain (a, b).

Under the assumption of the theorem, we choose a c > 1 such that

c :=
K

θ
, (4.14)

and we choose an ω such that θ < ω < 1, and select a β > 0 such that

β :=
1

2Tmax

ln
(ω
θ

)
. (4.15)

We also choose an η > 0 such that θ < ω < η < 1, and select an ǫ > 0 such that

ǫ := min{ǫ1, ǫ2} (4.16)
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where

ǫ1 =
θ

TminKω
ln
( η
ω

)
, ǫ2 =

θ(1− η)

2TmaxKη
ln
(ω
θ

)
.

We will show that under the aforementioned assumptions and the choice of constants, if
the bound

‖Bj(s)‖∞ 6 ǫ (4.17)

holds for s ∈ [a, b] and for all j ∈ Q, then

‖ξ(t)‖∞ 6 c exp(−βt)‖ξ̄‖∞, t > 0 (4.18)

uniformly for all switching signals σ(·) ∈ S(R+, Q). Note that the chosen c, β, and ǫ are
independent of σ(·) and only depend on the boundary data and system parameters. We will
prove (4.18) using the method of characteristics and induction. To this end, we will first
prove the induction basis in Part A and the induction step in Part B. We define

‖̂ξ(t)‖∞ := exp (βt)‖ξ(t)‖∞. (4.19)

Part A. Proof of the induction basis. We show that under the chosen constants β >
0, c > 1, ǫ > 0, (4.18) holds on the domain [0, δ] × (a, b) when δ satisfies 0 6 δ < Tmin.
For any σ(·), let zi(t; t∗, s∗) denote the i-th characteristic path passing through the point
(t∗, s∗) ∈ [0, δ]× (a, b), (i = 1, . . . , n). Then, we have

dzi(t; t
∗, s∗)

dt
= λ

σ(t)
i (zi(t; t

∗, s∗))

zi(t
∗; t∗, s∗) = s∗.

For any fixed r = 1, . . . ,m, consider the r-th characteristic path zr(t; t
∗, s∗) passing

through (t∗, s∗). Under the assumptions (A1) and (A2), backwards in time, zr(t; t
∗, s∗)

either intersects t = 0 within the interval [a, b] before hitting any boundary (case A.1)
or it intersects the line s = b (case A.2). See Figure 4.4 for an illustration of both
possible cases. The point of intersection of the characteristic path with the boundary of
the domain is denoted by (0, zr(0; t

∗, s∗)) for case A.1 and (tr(t
∗, s∗), b) for case A.2 with

zr(tr(t
∗, s∗); t∗, s∗) = b. Furthermore, let zl(t; tr(t

∗, s∗), b) denote the l-th characteristic path
passing through (tr(t

∗, s∗), b) (l = m + 1, . . . , n). Then, since δ < Tmin, zl(t; tr(t
∗, s∗), b)

intersects the line t = 0 before hitting the line s = a. We denote the point of intersection
by (0, zl(0; tr(t

∗, s∗), b)). For the ease of notation, we will use tr for tr(t
∗, s∗).

Estimate for paths with negative slope. We first obtain an estimate of eβt
∗ |ξr(t∗, s∗)|

for any (t∗, s∗) ∈ [0, δ] × (a, b) by considering cases A.1 and A.2 for the r-th characteristic
path zr(t; t

∗, s∗) passing through (t∗, s∗) (r = 1, . . . ,m).
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Figure 4.4: Illustration of cases for the proof of induction basis.

Case A.1: Using j = σ(t) in (4.9), and integrating the r-th equation from 0 to t∗ for any
r = 1, . . . ,m we get

ξr(t
∗, s∗) = ξr(0, s̃1)−

∫ t∗

0

n∑

k=1

b
σ(t)
rk (zr(t))ξk(t, zr(t))dt

where we use the notation s̃1 for zr(0; t
∗, s∗) and zr(t) for zr(t; t

∗, s∗). Using the bound
(4.17), we obtain

|ξr(t∗, s∗)| 6 ‖ξ̄‖∞ + ǫ

∫ t∗

0

‖ξ(t)‖∞dt.

Multiplying both sides by eβt
∗

, and noting that t∗ 6 δ < Tmin, we obtain

eβt
∗ |ξr(t∗, s∗)| 6 eβt

∗‖ξ̄‖∞ + ǫ

∫ t∗

0

eβ(t
∗−t)‖̂ξ(t)‖∞dt

6 C1‖ξ̄‖∞ + C2

∫ t∗

0

‖̂ξ(t)‖∞dt (4.20)

where C1 = eβTmin and C2 = eβTminǫ.
Case A.2: Integrating the r-th equation from tr to t

∗ we get

ξr(t
∗, s∗) = ξr(tr, b)−

∫ t∗

tr

n∑

k=1

b
σ(t)
rk (zr(t))ξk(t, zt(t))dt.

Using ξr(tr, b) =
∑n

l=m+1 g
R,j
rl ξl(tr, b) with j = σ(tr),

|ξr(t∗, s∗)| 6
n∑

l=m+1

|gR,jrl ||ξl(tr, b)|+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt. (4.21)
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Integrating l-th equation from 0 to tr we get

ξl(tr, b) = ξl(0, s̃2)−
∫ tr

0

n∑

k=1

b
σ(t)
lk (zl(t))ξk(t, zl(t))dt,

where we use the notation s̃2 for zl(0; tr(t
∗, s∗), b) and zl(t) for zl(t; tr, b). Again using the

bound (4.17),

|ξl(tr, b)| 6 ‖ξ̄‖∞ + ǫ

∫ tr

0

‖ξ(t)‖∞dt

Substituting this bound in equation (4.21), we obtain

|ξr(t∗, s∗)| 6 K̃1‖ξ̄‖∞ + ǫK̃1

∫ tr

0

‖ξ(t)‖∞dt+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt

6 K1‖ξ̄‖∞ +K1ǫ

∫ t∗

0

‖ξ(t)‖∞dt

where K̃1 and K1 are defined in (4.12). Multiplying by eβt
∗

and noting again that since
t∗ 6 δ < Tmin, we have

eβt
∗ |ξr(t∗, s∗)| 6 C3‖ξ̄‖∞ + C4

∫ t∗

0

‖̂ξ(t)‖∞dt (4.22)

with C3 = K1e
βTmin and C4 = K1ǫe

βTmin .
Combination of cases A.1, A.2. From inequalities (4.20) and (4.22) we obtain a combined

estimate

eβt
∗ |ξr(t∗, s∗)| 6 C5‖ξ̄‖∞ + C6

∫ t∗

0

‖̂ξ(t)‖∞dt (4.23)

with C5 = K1e
βTmin and C6 = K1ǫe

βTmin .

Estimate for paths with positive slope. Similarly, we can estimate eβt
∗|ξl(t∗, s∗)| (l =

m + 1, . . . , n) for (t∗, s∗) ∈ [0, δ] × (a, b) by considering the corresponding cases for l-th
characteristic path zl(t; t

∗, s∗) passing through (t∗, s∗) (l = m+ 1, . . . , n). We have

eβt
∗|ξl(t∗, s∗)| 6 C7‖ξ̄‖∞ + C8

∫ t∗

0

‖̂ξ(t)‖∞dt (4.24)

with C7 = K2e
βTmin and C8 = K2ǫe

βTmin , where K2 is defined in (4.12).

Estimate for all paths. From (4.23) and (4.24), by taking the maximum over r-th and

l-th characteristic paths (r = 1, . . . ,m and l = m + 1, . . . , n) respectively, and taking the
essential supremum over s∗ ∈ (a, b) we obtain the estimate

̂‖ ξ(t∗) ‖∞ 6 C9‖ξ̄‖∞ + C10

∫ t∗

0

‖̂ξ(t)‖∞dt (4.25)
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Figure 4.5: Illustration of cases for the proof of induction step.

with C9 = KeβTmin and C10 = KǫeβTmin , where K is defined in (4.12).
Now, by using c as defined in (4.14) and noting that Tmin < 2Tmax, we can write

̂‖ ξ(t∗) ‖∞ 6 C11‖ξ̄‖∞ + C12

∫ t∗

0

‖̂ξ(t)‖∞dt (4.26)

with C11 = cθe2βTmax and C12 = KǫeβTmin . By applying Gronwall’s lemma, we obtain the
inequality for any (t∗, s∗) ∈ [0, δ]× (a, b)

‖̂ξ(t∗)‖∞ 6 C11 exp(C12Tmin)‖ξ̄‖∞, (4.27)

for all σ(·). With the β > 0 and ǫ > 0 chosen according to (4.15) and (4.16) respectively,
we note that

θ exp(2βTmax) exp (KǫTmin exp(βTmin)) 6 ω exp
(
KTminǫ1

ω

θ

)
= η < 1.

Then by expanding the right-hand-side of inequality (4.27) we obtain,

‖̂ξ(t∗)‖∞ 6 c [θ exp(2βTmax) exp (KǫTmin exp(βTmin))] ‖ξ̄‖∞ < c‖ξ̄‖∞

holds on (t∗, s∗) ∈ [0, δ]× (a, b) for all switching signals σ(·) ∈ S(R+, Q). Finally, using the
definition (4.19), we obtain that

‖ξ(t)‖∞ 6 c exp (−βt)‖ξ̄‖∞, 0 6 t 6 δ < Tmin.

This completes the proof of the induction basis.

Part B. Proof of the Induction Step. We will now show that under the chosen con-

stants β > 0, c > 1, ǫ > 0, if (4.18) holds on the domain [0, T ]× (a, b), then it still holds on
domain [0, T + Tmin]× (a, b). Let T > 0 and assume that (4.18) holds on [0, T ] × (a, b). In
this case we have to distinguish three cases as illustrated in Figure 4.5.
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Proceeding as before, for any fixed r = 1, . . . ,m, the r-th characteristic path zr(t; t
∗, s∗)

passing through (t∗, s∗) considered backward in time, either intersects t = 0 within the inter-
val [a, b] before hitting any boundary (case B.1) or it intersects the line s = b (case B.2); the
points of intersection with the boundary of the domain are denoted by (0, zr(0; t

∗, s∗)) and
(tr(t

∗, s∗), b) respectively, where zr(tr(t
∗, s∗); t∗, s∗) = b. Furthermore, the l-th characteristic

path zl(t; tr(t
∗, s∗), b) passing through (tr(t

∗, s∗), b) (l = m+1, . . . , n) either zl(t; tr(t
∗, s∗), b)

intersects the line t = 0 before hitting the line s = a (case B.2(i)) or it hits s = a
(case B.2(ii)). The point of intersection is denoted by (0, zl(0; tr(t

∗, s∗), b)) for case B.2(i)
and (trl(t

∗, s∗), a) for case B.2(ii). We will again use tr for tr(t
∗, s∗) and trl for trl(t

∗, s∗).

Estimate for paths with negative slope. We first obtain an estimate of eβt
∗|ξr(t∗, s∗)| for

any (t∗, s∗) ∈ [T+Tmin]×(a, b) by considering the above three cases for the r-th characteristic
path zr(t; t

∗, s∗) passing through (t∗, s∗) (r = 1, . . . ,m).
For case B.1: Using j = σ(t) in (4.9), and integrating the r-th equation from 0 to t∗ for

any r = 1, . . . ,m, and using the bound (4.17),

|ξr(t∗, s∗)| 6 ‖ξ̄‖∞ + ǫ

∫ t∗

0

‖ξ(t)‖∞dt

6

(
1 +

ǫc

β

)
‖ξ̄‖∞ + ǫ

∫ t∗

T

‖ξ(t)‖∞dt

where the second inequality is obtained using the assumption that (4.18) holds on [0, T ] ×
(a, b). Multiplying both sides by eβt

∗

, using definition (4.19); and noting that for the present
situation (case B.1), we have t∗ 6 Tmax, then T 6 Tmax, and for t∗ ∈ [T, T +Tmin], t ∈ (T, t∗)
then (t∗ − t) 6 Tmin, we obtain

eβt
∗|ξr(t∗, s∗)| 6 C13‖ξ̄‖∞ + C14

∫ t∗

T

‖̂ξ(t)‖∞dt (4.28)

with C13 = (1 + ǫc
β
)eβTmax and C14 = ǫeβTmin .

For case B.2: Again integrating the r-th equation from tr to t
∗, and using that ξr(tr, b) =∑n

l=m+1 g
R,j
rl ξl(tr, b) with j = σ(tr),

|ξr(t∗, s∗)| 6
n∑

l=m+1

|gR,jrl ||ξl(tr, b)|+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt. (4.29)

For case B.2(i) Integrating l-th equation from 0 to tr and using the bound (4.17) we
have

|ξl(tr, b)| 6 ‖ξ̄‖∞ + ǫ

∫ tr

0

‖ξ(t)‖∞dt
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Substituting this bound in equation (4.29), we obtain

|ξr(t∗, s∗)| 6 K̃1‖ξ̄‖∞ + ǫK̃1

∫ tr

0

‖ξ(t)‖∞dt+ ǫ

∫ t∗

tr

‖ξ(t)‖∞dt

6 K1‖ξ̄‖∞ +K1ǫ

∫ t∗

0

‖ξ(t)‖∞dt

6 K1

(
1 +

ǫc

β

)
‖ξ̄‖∞ +K1ǫ

∫ t∗

T

‖ξ(t)‖∞dt,

where the last inequality is obtained using the assumption that (4.18) holds on [0, T ]×(a, b).
Noting that for the present situation (case B.2(i)), t∗ 6 2Tmax then T 6 2Tmax, and for
t∗ ∈ [T, T + Tmin], t ∈ (T, t∗) then (t∗ − t) 6 Tmin we obtain

eβt
∗|ξr(t∗, s∗)| 6 C15‖ξ̄‖∞ + C16

∫ t∗

T

‖̂ξ(t)‖∞dt (4.30)

with C15 = K1

(
1 + ǫc

β

)
e2βTmax and C16 = K1ǫe

βTmin .

For case B.2(ii), we have

ξl(tr, b) = ξl(trl, a)−
∫ tr

trl

n∑

k=1

b
σ(t)
lk (zl(t))ξk(t, zl(t))dt

Using ξl(trl, a) =
∑m

p=1 g
L,j′

lp ξp(trl, a) with j
′ = σ(trl), we have

|ξl(tr, b)| 6
m∑

p=1

|gL,j′lp ||ξp(trl, a)|+ ǫ

∫ tr

trl

‖ξ(t)‖∞dt

Substituting this bound in equation (4.29), and using the induction hypothesis, we obtain

|ξr(t∗, s∗)| 6 θce−βtrl‖ξ̄‖∞ +K1ǫ

∫ t∗

trl

‖ξ(t)‖∞dt

6

(
θ +

K1ǫ

β

)
ce−βtrl‖ξ̄‖∞ +K1ǫ

∫ t∗

T

‖ξ(t)‖∞dt

with θ as in (4.13). Again, noting that for t∗ ∈ [T, T + Tmin], in the present situation
(case B.2(ii)), 0 6 trl 6 T and T − trl 6 2Tmax, we obtain

eβt
∗|ξr(t∗, s∗)| 6 C17‖ξ̄‖∞ + C18

∫ t∗

T

‖̂ξ(t)‖∞dt (4.31)

with C17 = c
(
θ + K1ǫ

β

)
e2βTmax and C18 = K1ǫe

βTmin .
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Combination of cases B.1, B.2(i) and B.2(ii). From inequalities (4.28), (4.30), (4.31)
and the K defined in (4.12), we obtain

eβt
∗|ξr(t∗, s∗)| 6 C19‖ξ̄‖∞ + C20

∫ t∗

T

‖̂ξ(t)‖∞dt, (4.32)

with C19 = c
(
θ + Kǫ

β

)
e2βTmax and C20 = KǫeβTmin .

Estimate for paths with positive slope. By using similar arguments, we also obtain an

estimate of eβt
∗|ξl(t∗, s∗)| for any (t∗, s∗) ∈ [T+Tmin]×(a, b) by considering the corresponding

cases for the l-th characteristic path zl(t; t
∗, s∗) passing through (t∗, s∗) (l = m + 1, . . . , n),

for c chosen according to (4.14), and K defined in (4.12)

eβt
∗|ξl(t∗, s∗)| 6 C21‖ξ̄‖∞ + C22

∫ t∗

T

‖̂ξ(t)‖∞dt, (4.33)

with C21 = c
(
θ + Kǫ

β

)
e2βTmax , C22 = KǫeβTmin .

Estimate for all paths. We now combine (4.32) and (4.33) by taking the maximum over

r-th and l-th characteristic paths (r = 1, . . . ,m and l = m + 1, . . . , n) respectively, taking
the essential supremum over s∗ ∈ (a, b) to obtain the estimate

‖̂ξ(t∗)‖∞ 6 C23‖ξ̄‖∞ + C24

∫ t∗

T

‖̂ξ(t)‖∞dt (4.34)

where C23 = c
(
θ + Kǫ

β

)
e2βTmax , C24 = KǫeβTmin . By applying Gronwall’s lemma, we obtain

the inequality

‖̂ξ(t∗)‖∞ 6 C23 exp(C24(t
∗ − T ))‖ξ̄‖∞ (4.35)

for any (s∗, t∗) ∈ [T, T + Tmin]× (a, b) and thus

‖̂ξ(t∗)‖∞ 6 C23 exp(C24Tmin))‖ξ̄‖∞

for all σ(·). Using (4.34), plugging in the expressions for C23 and C24, given the expression
of β in (4.15) we obtain the inequality

‖̂ξ(t∗)‖∞ 6 c

(
θ +

Kǫ

β

)
ω

θ
exp

(
Kǫ

ω

θ
Tmin

)
‖ξ̄‖∞. (4.36)

With β and ǫ given by (4.15) and (4.16) respectively, we have

(
θ +

Kǫ

β

)
ω

θ
exp

(
Kǫ

ω

θ
Tmin

)
6

(
θ +

Kǫ2
β

)
ω

θ
exp

(
Kǫ1

ω

θ
Tmin

)
= 1,
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and using this in the right hand side of (4.36) we obtain

‖ξ̂(t∗)‖∞ 6 c‖ξ̄‖∞
holds on (t∗, s∗) ∈ [T, T + Tmin] × (a, b) for all switching signals σ(·) ∈ S(R+, Q). Finally,
from (4.19) we obtain that

‖ξ(t)‖∞ 6 c exp (−βt)‖ξ̄‖∞, 0 6 t 6 T + Tmin.

This completes the proof of the induction step.

Remark 4.3.3. From the proof of Theorem 4.3.2 we see that withK and θ given by (4.12) and
(4.13) respectively, and the constants ω and η chosen such that θ < ω < η < 1, equation
(4.16) gives a concrete value of ǫ for which the conditions of Theorem 4.3.2 guarantee
exponential stability for all switching signals. That is, (4.18) holds uniformly for all switching
signals σ(·) ∈ S(R+, Q) with c and β given by (4.14) and (4.15) respectively. We then see
that the so obtained bound on ‖Bj(s)‖∞ satisfies ǫ → 0 as θ → 1. Similar conditions are
known for the unswitched case, where such systems with sufficiently small inhomogeneities
are called ‘almost conservative’ Bastin et al. [2008].

For an illustration of the decay estimate and the size of ǫ obtained by Theorem 4.3.2
and Remark 4.3.3 we provide the following example.

Example 4.3.4. Consider a switched system of the form (4.5) with two modes (Q = {1, 2})
and [a, b] = [0, 1]. The parameters and boundary data are specified as

Λ1 =

[
−1.2 0
0 1.8

]
, B1 =

[
−0.005 0

0 −0.005

]
,

Λ2 =

[
−0.8 0
0 1.4

]
, B2 =

[
0 0.005

0.005 0

]
,

G1
L = 0.61, G1

R = 1.15, G2
L = 0.42, G2

R = 1.21.

(4.37)

In this example the hypotheses (A1) and (A2) of Theorem 4.3.2 are clearly satisfied. We
have K = 1.21 and

θ = max
j,j′∈Q

ρ

([
0 |Gj′

R|
|Gj

L| 0

])
= 0.7381 < 1. (4.38)

Following Remark 4.3.3, we choose ω = 0.87 and η = 0.88 to obtain that ‖B1,2‖∞ = 0.0050 <
ǫ = 0.0054. Therefore, according to Theorem 4.3.2, the switched system is absolutely
exponentially stable. Moreover, for equation (4.18), we obtain c = 1.6393 and β = 0.0658

from equations (4.14) and (4.15) respectively. For initial data ξ̄(s) =
[
1 1

]⊤
on s ∈ (0, 1),

the exponential bound in (4.18) is plotted together with the observed decay of ‖ξ(t)‖∞
for three different switching signals σ(·) in Figure 4.6. The solution approximations are
computed using the two-step Lax-Friedrichs finite difference scheme from Shampine [2005].
�

In general, assumption (A2) is necessary for exponential stability under arbitrary switch-
ing as evident from the following example.
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Figure 4.6: Bound from Thm. 4.3.2 (solid) & example switching signals (dashed).

Example 4.3.5. Let Q = {1, 2}, [a, b] = [0, 1], Λ1 = diag(−1, 1, 1), Λ2 = diag(−1,−1, 1),
Bj = diag(0, 0, 0) and let G1

L, G
2
R, G

2
L, and G1

R be any boundary data of appropriate
dimensions. It is clear that this example satisfies assumption (A1) but does not satisfy

(A2). Now consider initial data ξ̄(s) =
[
1 1 1

]⊤
on s ∈ (0, 1), and a switching signal

σ(t) defined over the switching times τk = 0.5k, where k = 0, 1, 2, . . . and σ(τ0) = 1,
σ(τ1) = 2, σ(τ2) = 1 and so on. For the second component of the solution ξ(t), we then
have ξ2(t, s) = 1 for s almost everywhere on the interval (0, 0.5) and t = 1, 2, 3, . . .. Hence,
the solution ‖ξ(t)‖∞ cannot decay exponentially irrespective of the decay that might be
imposed on ξ1(t, s), ξ2(t, s) and ξ3(t, s) by the boundary data. �

A consequence of our results is that, when the only stabilizing mechanism is at the
boundary and arbitrary changes of sign of the eigenvalues of Λ cannot be ruled out a-priori,
the decay of the solution can in general not be concluded from the rate of decay at the
boundary (for e. g., in terms of condition (4.11) of Theorem 4.3.2).

Remark 4.3.6. The condition (4.11) implies the following spectral radius condition to hold
for the subsystems (4.7) with j ∈ Q fixed:

ρ

([
0 |Gj

R|
|Gj

L| 0

])
< 1. (4.39)

Under this assumption, classical solutions of (4.7) are known to be exponentially stable Li
[1994]. However, assumption (4.39) for all j ∈ Q is not sufficient for the switching system
to be exponentially stable. Note that Gj

L, G
j
R in Example 4.3.1 satisfy (4.39) but not (4.11)
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for j = 1, 2, i. e.,

ρ

([
0 1.5
0 0

])
= ρ

([
0 0
1.5 0

])
= ρ

([
0 0
0 0

])
= 0,

but

ρ

([
0 1.5
1.5 0

])
= 1.5.

Nevertheless, as shown next in Corollary 4.3.7, the switched system satisfying (4.39) in
every mode j can be stabilized by switching slow enough. Note that Corollary 4.3.7 does
not require assumption (A2) to hold.

Corollary 4.3.7. (Dwell-Time) Under the hypotheses (A1), there exists an ǫ > 0 such that
if ‖Bj(s)‖∞ < ǫ for all s ∈ [a, b] and j ∈ Q, the switching system in diagonal form (4.5) is
exponentially stable with respect to the norm ‖ · ‖∞ for all switching signals in Sτ (R+;Q)
for which the dwell-time τ > τ̄ (τ̄ given by (4.10)) if the condition (4.39) holds for all j ∈ Q.

Proof. From the definition of τ̄ in (4.10) it is easy to see that if τ > τ̄ , then in case B.2(ii),
tr and trl lie in the same inter switching interval and all the required estimates can be made
using a θ̃ defined similar to (4.13) but where the maximum is only taken over j ∈ Q.

4.4 Non-diagonal Switching System

We now focus on non-diagonal systems. Suppose that the system switches among non-
diagonal subsystems





∂uj

∂t
+ Aj(s)

∂uj

∂s
+ B̃j(s)uj = 0, s ∈ (a, b), t > 0

Dj
Lu

j(t, a) = 0, Dj
Ru

j(t, b) = 0, t > 0
(4.40)

where, for each j ∈ Q, Aj(s), Bj(s) are n × n dimensional matrix functions on (a, b) and
Dj
L, D

j
R are constant matrices of appropriate dimensions. Each subsystem can be written

in the diagonal form (4.7) under certain assumptions. For instance, if we impose that for
each j ∈ Q,

(A1)∗ The matrix function Aj(·) : [a, b] 7→ Rn×n is Lipschitz-continuous such that for all
s ∈ [a, b], there exists mj such that 0 < mj < n and Aj(s) has mj negative and
(n − mj) positive eigenvalues λji (s) with n corresponding linearly independent left
(resp. right) eigenvectors lji (s) (resp. rji (s)), i = 1, . . . , n all Lipschitz-continuous
functions of s. The matrix function B̃j(·) : [a, b] 7→ Rn×n is bounded measurable with
respect to s. Furthermore, the following two rank conditions hold for Dj

L ∈ R(n−mj)×n

and Dj
R ∈ Rmj×n

rank
[
(Dj

L)
⊤∣∣lj1(a)

∣∣ · · ·
∣∣ljmj

(a)
]
= n

rank
[
(Dj

R)
⊤∣∣ljmj+1(b)

∣∣ · · ·
∣∣ljn(b)

]
= n.
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Under the assumption (A1∗) the matrix functions Sj(·) = [lj1(·)
∣∣ . . .

∣∣ljn(·)]⊤ and S−1
j (·) =

[rj1(·)
∣∣ . . .

∣∣rjn(·)]⊤ are Lipschitz-continuous functions with partial derivatives defined a. e.
We refer the reader to the text by Bressan Bressan [2000], pages 46 − 50, for the details
about assumption (A1)∗.

For all s ∈ [a, b], we have

Sj(s)A
j(s)S−1

j (s) = Λj(s). (4.41)

with Λj(s) as in (A1). By applying a transformation uj(t, s) = S−1
j (s)ξj(t, s), D̃j

L =

Dj
LS

−1
j (a) and D̃j

R = Dj
RS

−1
j (b) and using the representation

Bj(s) = Sj(s)

(
Aj(s)

∂

∂s
S−1
j (s) + B̃j(s)S−1

j (s)

)
,

D̃j
L = [D̃j

L,I

∣∣D̃j
L,II ], D̃

j
R = [D̃j

R,I

∣∣D̃j
R,II ], (4.42)

Gj
L = −(D̃j

L,II)
−1D̃j

L,I , G
j
R = −(D̃j

R,I)
−1D̃j

R,II ,

with D̃j
L,I ∈ R(n−mj)×mj , D̃j

L,II ∈ R(n−mj)×(n−mj), D̃j
R,I ∈ Rmj×mj , D̃j

R,II ∈ Rmj×(n−mj),

Gj
L ∈ R(n−mj)×mj and Gj

R ∈ Rmj×(n−mj), the system corresponding to (4.40) and initial
data ū(s) corresponding to mode j becomes (4.7) with initial data ξ̄j(s) = Sj(s)ū(s).

Now observing that the switching system in the non-diagonal form for a switching sig-
nal σ(·) ∈ S(R+, Q)





∂u

∂t
+ Aσ(t)(s)

∂u

∂s
+ B̃σ(t)(s)u = 0, s ∈ (a, b), t > 0

D
σ(t)
L u(t, a) = 0, D

σ(t)
R u(t, b) = 0, t > 0

u(0, s) = ū(s), s ∈ (a, b)

(4.43)

can be written as a switching system in the diagonal form with discontinuous resets at the
switching times τk for k = 1, 2, . . . and τ0 = 0, i. e.,





∂ξ

∂t
+ Λσ(t)(s)

∂ξ

∂s
+ Bσ(t)(s)ξ = 0, t ∈ [τk, τk+1]

ξII(t, a) = G
σ(t)
L ξI(t, a), ξI(t, b) = G

σ(t)
R ξII(t, b),

ξ(0, ·) = ξ̄(·) = Sσ(τ0)(·)ū(·),
ξ(τk, ·) = Sjk(·)S−1

jk−1
(·) lim

t→τk,t<τk
ξ(τk, ·), k > 0,

(4.44)

Our next proposition is a very simple consequence of simultaneous diagonalization.

Proposition 4.4.1. Under hypotheses (A1∗)-(A2) and under the pairwise commutativity
assumption that for all s ∈ [a, b] and for all j, j′ ∈ Q

Aj(s)Aj
′

(s) = Aj
′

(s)Aj(s), (4.45)

and let Gj
L, G

j
R and Bj(s) are given by (4.42). Then, if condition (4.11) holds for all j, j ∈ Q,

there exists an ǫ > 0 such that if ‖Bj(s)‖∞ < ǫ for all s ∈ [a, b] and j ∈ Q, the switching
system in non-diagonal form (4.43) is absolutely exponentially stable in ‖ · ‖∞.
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Proof. Recall that a set of diagonalizable matrices are simultaneously diagonalizable if (and
only if) they commute. Thus, system (4.43) can be transformed into a switching system
in diagonal form (4.44) with a common diagonalizing matrix function Sj(·) ≡ S(·). The
assertion then follows.

Though the commutativity assumption in Proposition 4.4.1 seems very strong, we include
an example showing that it is in general necessary for conditions such as in Section 4.3 to
be sufficient for absolutely exponential stability.

Example 4.4.2. Consider a non-diagonal switching system of form (4.43) with two modes

(Q = {1, 2}) and initial data ū(s) =
[
1 1

]⊤
on s ∈ (a, b), for an alternating switching

signal σ(·) with switching times τk = 0.5k where k = 0, 1, 2, 3, . . . and σ(τ0) = 1, σ(τ1) = 2,
σ(τ2) = 1 and so on. The parameters and boundary data are specified as

A1 =

[
−1 0
0 +1

]
, A2 =

[
−1 −4
0 +1

]
, B1,2 =

[
0 0
0 0

]

D1
L =

[
−3

2
1
]
, D2

L =
[
−3

4
−1
]
,

D1
R =

[
1 −1

4

]
, D2

R =
[
1 7

4

]

The non-diagonal system so specified satisfies (A1∗)-(A2) but does not satisfy the commu-
tativity condition (4.45) (A1A2 6= A2A1). With

S1 =

[
1 0
0 1

]
, S2 =

[
1 2
0 1

]
,

and doing a change of variables by this transformation, both the constituting subsystems of
the non-diagonal switching system reduce to the same diagonal subsystem

∂ξ

∂t
+

[
−1 0
0 1

]
∂ξ

∂s
= 0,

ξ2(t, 0) =
3

2
ξ1(t, 0), ξ1(t, 1) =

1

4
ξ2(t, 1),

(4.46)

which satisfied the spectral radius condition

ρ

([
0 1

4
3
2

0

])
= 0.6124 < 1,

implying that the solution of the subsystem (4.46) starting with initial condition for ξ̄(s) =[
1 1

]⊤
, s ∈ (0, 1) decays exponentially for t → ∞. However, following the representa-

tion (4.44), we observe that for the non-diagonal switching system ‖u(t)‖∞ is not bounded
as t→ ∞. See Figure 4.7 for the growth of ‖u(t)‖∞ where the solution u is again obtained
by using a two-step Lax-Friedrichs scheme as in Example 4.3.4. �
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Figure 4.7: Blowup for the system considered in Example 4.4.2.

4.5 Application to Stability of Canal Cascade under

DoS attacks

We apply the stability results to water flow in a cascade of m canal reaches as depicted
in Figure 4.8 (a). Consider a setting in which DoS attacks trigger switching of the boundary
control actions. The control actions are applied at the underflow sluice gates, and affect
the corresponding gate openings wji for reach i in mode j. Theorem 4.3.2 can be applied
to investigate the stability of linearized dynamics to a steady-state flow in such a m−reach
cascade of open channels for attack scenarios in which boundary control actions switch
between a number of modes.

The flow of water in reach i is characterized by velocity Vi(t, s) and elevation Hi(t, s).
For horizontal, prismatic canals with rectangular cross-section and frictionless walls, the
flow under gravity g satisfies the Saint-Venant equations Leugering and Schmidt [2002]

∂

∂t

(
Hi

Vi

)
+

(
Vi Hi

g Vi

)
∂

∂s

(
Hi

Vi

)
=

(
0
0

)
(4.47)

for i = 1, . . . ,m, each defined on the domain {(t, s) : 0 6 t < ∞, 0 6 s 6 1}. Fol-
lowing deHalleux et al. [2003], let the initial data be given by Hi(0, s), Vi(0, s) and the
boundary conditions modeling decentralized feedback control actions in mode j together
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Figure 4.8: Cascade of canal pools and representation in characteristic variables.

with flow conservation for each reach i be given by

f j1 (w
j
0(t), Hup, H1(t, 0), V1(t, 0)) = 0

f ji (w
j
i (t), Hi(t, 1), Hi+1(t, 0), Vi(t, 1)) = 0

f jm(w
j
m(t), Hm(t, 1), Hdo, Vm(t, 1)) = 0

Hi(t, 1)Vi(t, 1)−Hi+1(t, 0)Vi+1(t, 0) = 0

where Hup, Hdo are the (known) up and down stream water levels.
Assume that under constant gate openings w̄i and constant Hup, Hdo, each reach attains

a uniform steady state (H̄i, V̄i) such that Hdo < H̄m < . . . < H̄1 < Hup and H̄1V̄1 > 0. Using
vi(x, t) = Vi(x, t)− V̄i and hi(x, t) = Hi(x, t)− H̄i, the linearized model can be written as

∂

∂t

(
hi
vi

)
+

(
V̄i H̄i

g V̄i

)
∂

∂s

(
hi
vi

)
=

(
0
0

)
(4.48)

with initial conditions hi(0, ·), vi(0, ·) for i = 1, . . . ,m. The traditional Riemann coordinate

change Leugering and Schmidt [2002] ξi(t, s) = hi(t, s) + vi
√
H̄i/g, ξm+i(t, s) = hi(t, s) −

vi
√
H̄i/g leads to a diagonal system:

∂

∂t

(
ξi
ξm+i

)
+

(
λi 0
0 λm+i

)
∂

∂s

(
ξi
ξm+i

)
=

(
0
0

)
(4.49)

with λi = (
√
gH̄i − V̄i) and λm+i = (

√
gH̄i + V̄i).

Under sub-critical flow, the eigenvalues satisfy λi < 0 < λm+i. For the system ofm−canal
reaches, equation (4.49) can be written in the form

∂tξ + Λ∂sξ = 0, (4.50)

where ξ = (ξ1, . . . , ξm, ξm+1, . . . , ξ2m)
⊤ and Λ = diag(λ1, . . . , λ2m) (see Figure 4.8 (b)). More-

over, setting ξI = (ξ1, . . . , ξm), ξII = (ξm+1, . . . , ξ2m) and taking into account the coordinate
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transformation while assuming sufficient regularity of f ji , the boundary conditions in lin-
earized form for each j can be rewritten as

ξII(t, 0) = Gj
LξI(t, 0) ξI(t, 1) = Gj

RξII(t, 1) (4.51)

with appropriately defined jacobians Gj
L, G

j
R (for details on the derivation for an explicit

control law f ji see deHalleux et al. [2003]).
Our results from Section 4.3 provide a set of sufficient conditions for solutions of (4.50)-

(4.51) to decay for any admissible attack scenarios.

4.6 Discussion

We presented a generalization of a well-known mechanism for stability of hyperbolic PDE
systems Li [1994] to the case in which the switching occurs among a set of systems that
may differ in the system matrix function and/or boundary conditions. When constituent
PDEs are in the canonical diagonal form, we derived a sufficient condition for exponential
stability under arbitrary switching signals. For the case in which the system matrix functions
are not diagonal, the result holds when they are jointly diagonalizable. This results in a
commutativity condition that has a counterpart in the switched ODE literature D. Liberzon
[2003].

It is also clear that, although the switching signal represents joint switching of the bound-
ary conditions and system matrices, the results apply for switching the boundary conditions
or system matrices individually by introducing appropriate auxiliary modes, which is just a
matter of notational convenience. Thus, the treatment presented in this chapter might be
of interest in control settings under abruptly changing boundary conditions and operating
regimes such as the opening and closing of gates in a cascade of open-canal pools, the dynam-
ics of which are classically modeled by the linearized Saint-Venant equations Bastin et al.
[2008].

A limitation of the results obtained here is that they are valid only for almost conser-
vative systems (see Remark 4.3.3). Thus, it will be interesting to investigate if, possibly by
using different methods, other conditions can be found that guarantee absolute exponential
stability for less conservative systems. In particular, our results motivate a Lyapunov theory
for switching infinite dimensional systems.

Finally, we also argued that the results presented here can be used to study stability
of a cascade of canal pools under attack scenarios which result in arbitrary switching of
boundary control actions.
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Chapter 5

Detection of Deception Attacks on
Process Control Systems

5.1 Introduction

In the previous chapters we have described the cyber-security threat assessment, attack
diagnosis, and resilient control methods for water SCADA systems used to operate cas-
caded canal networks. The developments presented earlier use the tools from robust and
switched control system theory to provide control system guarantees for water SCADA sys-
tems against a class of deception and DoS attacks. In this chapter, we extend the ideas
presented earlier to develop cyber-security tools for process control systems.

In the last years there has been an increasing interest in the security of process control
and SCADA systems. Furthermore, recent computer attacks such as the Stuxnet worm,
have shown there are parties with the motivation and resources to effectively attack process
control systems. While a significant body of research work exists on the security mechanisms
of process control systems, few researchers have explored practically implementable solu-
tions for securing these systems. In particular, the sophistication of new malware attacking
control systems–malware including zero-days attacks, rootkits created for control systems,
and software signed by trusted certificate authorities–has shown that it is very difficult to
prevent and detect these attacks based solely on IT system information.

In this chapter it is shown how, by incorporating knowledge of the physical system under
control, one can detect computer attacks that change the behavior of the targeted control
system. By using knowledge of the physical system we are able to focus on the final objective
of the attack, and not on the particular mechanisms of how vulnerabilities are exploited,
and how the attack is hidden. We also analyze the safety of our mechanisms by exploring
the effects of stealthy attacks, and by ensuring that automatic attack-response mechanisms
will not drive the system to an unsafe state.

An accurate assessment of potential losses under cyber-attacks is a pre-requisite for any
risk management program. Risk management is the process of shifting the odds in your favor
by finding among all possible alternatives, the one that minimizes the impact of uncertain
events. Probably the best well known risk metric is the average loss Rµ = E[L] ≈∑i Lipi,
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where Li is the loss if event i occurs, and pi is the probability that event i occurs. Other
risk metrics try to get more information about the probability distribution of the losses,
and not only its mean value (Rµ). For example the variance of the losses Rχ = E[L2]− Rµ

is very useful in finance since it gives more information to risk averse individuals. This
is particularly important if the average loss is computed for a large period of time (e.g.
annually). If the loss is considered every time there is a computer event then we believe the
average loss by itself provides enough risk information to make a rational decision.

In this chapter, we focus on attacks on sensor networks and the effects they have on the
process control system. Therefore pi denotes the likelihood that an attacker will compromise
sensor i, and Li denotes the losses associated with that particular compromise. To simplify
our presentation we assume that pi is the same for all sensors, therefore our focus in the
remaining of this section is to estimate the potential losses Li. The results can then be
used to identify high priority sensors and to invest a given security budget in the most
cost-effective way.

5.1.1 Attack models

We consider the case when the state of the system is measured by a sensor network
of p sensors with measurement vector y(k) = {y1(k), . . . , yp(k)}, where yi(k) denotes the
measurement by sensor i at time k. All sensors have a dynamic range that defines the
domain of yi for all k. That is, all sensors have defined minimum and maximum values
∀k, yi(k) ∈ [ymin

i , ymax
i ]. Let Yi = [ymin

i , ymax
i ]. We assume each sensor has a unique identity

protected by a cryptographic key.
Let ỹ(k) ∈ Rp denote the received measurements by the controller at time k. Based on

these measurements the control system defines control actions to maintain certain opera-
tional goals. If some of the sensors are under attack, ỹ(k) may be different from the real
measurement y(k); however, we assume that the attacked signals ỹi(k) also lie within Yi
(signals outside this range can be easily detected by fault-tolerant algorithms).

Let Ka = {ks, . . . , ke} represent the attack duration; between the start time ks and stop
time ke of an attack. A general model for the observed signal is the following:

ỹi(k) =

{
yi(k) for k /∈ Ka

ai(k) for k ∈ Ka, ai(k) ∈ Yi

where ai(k) is the attack signal. This general sensor attack model can be used to represent
integrity attacks and DoS attacks. In an integrity attack we assume that if attackers have
compromised a sensor, then they can inject any arbitrary value, therefore in this case, ai(k)
is some arbitrary non-zero value.

In a DoS attack, the controller will notice the lack of new measurements and will react
accordingly. An intuitive response for a controller to implement against a DoS attack is to
use the last signal received: ai(k) = yi(ks), where yi(ks) is the last measurement received
before the DoS attack starts.
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5.1.2 Experiments

To test our attacks, we use the Tennessee-Eastman process control system (TE-PCS)
model and the associated multi-loop PI control law as proposed by Ricker Ricker [1993]. We
briefly describe the process architecture and the control loops in Figure 5.1. The original
process model is implemented in Fortran and the PI control law is implemented in Matlab.
We use this code for our study.
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Figure 5.1: Architecture of the Simplified TE Plant.

The chemical process consists of an irreversible reaction which occurs in the vapor phase
inside a reactor of fixed volume V of 122 (m3). Two non-condensible reactants A and C
react in the presence of an inert B to form a non-volatile liquid product D:

A+ C
B−→ D.

The feed stream 1 contains A, C and trace of B; feed stream 2 is pure A; stream 3 is the
purge containing vapors of A, B, C; and stream 4 is the exit for liquid product D. The
measured flow rates of stream i is denoted by Fi (kmol h−1). The control objectives are

- Regulate F4, the rate of production of the product D, at a set-point F sp
4 (kmol h−1),

- Maintain P , the operating pressure of the reactor, below the shut-down limit of
3000 kPa as dictated safety considerations,

- Minimize C, the operating cost measured in (kmol-of-product). The cost depends
linearly on the purge loss of A and C relative to the production rate of D. The cost
considerations dictate that the pressure be maintained as close as possible to 3000 kPa.
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The production rate of D, denoted by rD (kmol h−1) is

rD = k0y
v1
A3y

v2
C3P

v3,

where yA3 and yC3 denote the respective fractions of A and C in the purge and v1, v2, v3
are given constants.

There are four input variables (or command signals) available to achieve the above control
objectives. The first three input variables, denoted as u1, u2 and u3, trigger the actuators
that can change the positions of the respective valves. The fourth input variable, denoted
as u4, is the set point for the proportional controller for the liquid inventory. The input
variables as used by the controller in the following way:

• Production rate y4 = F4 is controlled using Feed 1 (u1) by loop−1 controller,

• Pressure y5 = P is controlled using the purge rate (u3) by loop−2 controller,

• Partial pressure of product A in the purge y7 = yA3 is controlled using Feed 2 (u3) by
loop−3 controller,

When u3 saturates, the loop−4 controller uses u1 to control the pressure P . The controllers
for all four loops in figure 5.1 are proportional integral (PI) controllers.

In steady-state operation, the production rate F4 is 100 kmol h−1, the pressure P is
2700 KPa and the fraction of A in the purge is 47 mol%.

We study the security issues of control systems by experimenting and simulating cyber
attacks on sensor signals in the TE-PCS model. Because operating the chemical reactor
with a pressure larger than 3000 kPa is unsafe (it may lead to an explosion or damage of the
equipment) We.assume that that the goal of the attacker is to raise the pressure level of the
tank to a value larger than 3000 kPa. We model an attacker that only has access to a single
sensor at a given time. We also assume Li > Lj, when an attack i can drive the system to
an unsafe state and an attack j cannot, and Li = Lj if both attacks i and j either do not
drive the system to an unsafe state, or both can compromise the safety of the system.

From the experimental results, we found that the most effective of these attacks were
max/min attacks (i.e., when ai(k) = ymin

i or ai(k) = ymax
j ). However, not all of the max/min

attacks were able to drive the pressure to unsafe levels. We now summarize some of the
results.

• By attacking the sensors, a controller is expected to respond with incorrect control
signals since it receives wrong information from the compromised sensors. For example,
by forging y7 as ymax

7 from t = 0 to 30, the controller believes there is a large amount
of component A in the tank.

From the experiments, we found that the plant system can go back to the steady state
after the attack finishes, as illustrated in Fig 5.2. Furthermore, the pressure in the
main tank never reaches 3000 kPa. In general we found that the plant is very resilient
to attacks on y7 and y4. Attacks in the limit of the sensing range (ymin and ymax) were
the more damaging, but they did not force the system into an unsafe state.
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Figure 5.2: Integrity attack ymax
7 from t = 0 to 30. Safety preserved for attacks on y7.

• By launching attack ymin
5 the controller turns down the purge valve to increase the

pressure and prevent the liquid products from accumulating. We can see that the real
pressure of the tank (y5 in Fig 5.3(a)) keeps increasing past 3000 kPa and the system
operates in an unsafe state. In this experiment, it takes about 20 hours (t = 10 to
t = 30) to shut down (or cause an explosion to) the plant. This long delay in causing
an effective attack may give defenders the advantage: for physical processes with slow-
dynamics, it is possible that human system operators may have enough time to observe
unusual phenomenon and take proper actions against the attack.

• We found out that in general DoS attacks do not affect the plant. We ran the plant
20 times for 40 hours each and for a DoS attack lasting 20 hours the pressure in the
tank never exceeded 2900kPa.
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Figure 5.3: Safety violated by compromising y5. DoS attacks do not cause damage.

We conclude that if the plant operator wants to prevent an attack from making the
system operate in an unsafe state, it should prioritize defenses against integrity attacks
rather than on DoS attacks. If the plant operator only has enough budget to deploy advanced
security mechanisms for one sensor (e.g., tamper resistance, or TPM chips), y5 should be
the priority.
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5.2 Detection of Attacks

Detecting attacks to control systems can be formulated as an anomaly-based intrusion
detection problem Denning [1987]. One big difference in control systems compared to tradi-
tional IT systems, is that instead of creating models of network traffic or software behavior,
we can use a representative model of the physical system.

The intuition behind this approach is the following: if we know how the output sequence
of the physical system, y(k), should react to the control input sequence, u(k), then any
attack to the sensor data can be potentially detected by comparing the expected output
ŷ(k) with the received (and possibly compromised) signal ỹ(k). Depending on the quality
of our estimate ŷ(k) we may have some false alarms. We revisit this problem in the next
section.

To formalize the anomaly detection problem, we need (1) a model of the behavior of
the physical system, and (2) an anomaly detection algorithm. In section 5.2.1 we discuss
our choice of linear models as an approximation of the behavior of the physical system. In
section 5.2.2, we describe change detection theory and the detection algorithm we use–a
nonparametric cumulative sum (CUSUM) statistic.

5.2.1 Linear Model

To develop accurate control algorithms, control engineers often construct a representative
model that captures the behavior of the physical system in order to predict how the system
will react to a given control signal. A process model can be derived from first principles
(a model based on the fundamental laws of physics) or from empirical input and output
data (a model obtained by simulating the process inputs with a carefully designed test
sequence). It is also very common to use a combination of these two models; for example,
first-principle models are typically calibrated by using process test data to estimate key
parameters. Likewise, empirical models are often adjusted to account for known process
physics Quin and Badgwell [2003]; Rawlings [2000].

For highly safety-critical applications, such as the aerospace industry, it is technically and
economically feasible to develop accurate models from first principles Quin and Badgwell
[2003]. However, for the majority of process control systems, the development of process
models from fundamental physics is difficult.

In many cases such detailed models are difficult to justify economically, and even impos-
sible to obtain in reasonable time due to the complex nature of many systems and processes.
(The TE-PCS system used in our experiments is one of the few cases available in the liter-
ature of a detailed nonlinear model of an industrial control problem; this is the reason why
the TE-PCS system has been used as a standard testbed in many industrial control papers.)

To facilitate the creation of physical models, most industrial control vendors provide
tools (called identification packages) to develop models of physical systems from training
data. The most common models are linear systems. Linear systems can be used to model
dynamics that are linear in state x(k) and control input u(k)

x(k + 1) = Ax(k) + Bu(k) (5.1)
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where time is represented by k ∈ Z+, x(k) = (x1(k), . . . , xn(k)) ∈ Rn is the state of the
system, and u(k) = (u1(k), . . . , um(k)) ∈ Rm is the control input. The matrix A = (aij) ∈
Rn×n models the physical dependence of state i on state j, and B = (bij) ∈ Rn×m is the
input matrix for state i from control input j.

Assume the system (5.1) is monitored by a sensor network with p sensors. We obtain
the measurement sequence from the observation equations

ŷ(k) = Cx(k), (5.2)

where ŷ(k) = (ŷ1(k), . . . , ŷp(k)) ∈ Rp, and ŷl(k) ∈ R is the estimated measurement collected
by sensor l at time k. The matrix C ∈ Rp×n is called output matrix.

5.2.2 Detection Methods

The physical-model-based attack detection method presented in this chapter can be
viewed as complementary to intrusion detection methods based on network and computer
systems models.

Because we need to detect anomalies in real time, we can use results from sequential
detection theory to give a sound foundation to our approach. Sequential detection theory
considers the problem where the measurement time is not fixed, but can be chosen online
as and when the measurements are obtained. Such problem formulations are called optimal
stopping problems. Two such problem formulations are: sequential detection (also known
as sequential hypothesis testing), and quickest detection (also known as change detection).
A good survey of these problems is given by Kailath and Poor Kailath and Poor [1998].

In optimal stopping problems, we are given a time series sequence z(1), z(2), . . . , z(N),
and the goal is to determine the minimum number of samples, N , the anomaly detection
scheme should observe before making a decision dN between two hypotheses: H0 (normal
behavior) and H1 (attack).

The difference between sequential detection and change detection is that the former
assumes the sequence z(i) is generated either by the normal hypothesis (H0), or by the
attack hypothesis (H1). The goal is to decide which hypothesis is true in minimum time.
On the other hand, change detection assumes the observation z(i) starts under H0 and then,
at a given ks it changes to hypothesis H1. Here the goal is to detect this change as soon as
possible.

Both problem formulations are very popular, but security researchers have used se-
quential detection more frequently. However, for our attack detection method, the change
detection formulation is more intuitive. To facilitate this intuition, we now briefly describe
the two formulations.

Sequential Detection

Given a fixed probability of false alarm and a fixed probability of detection, the goal of
sequential detection is to minimize the number of observations required to make a decision
between two hypotheses. The solution is the classic sequential probability ratio test (SPRT)
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of Wald Wald [1947] (also referred as the threshold random walk (TRW) by some security
papers). SPRT has been widely used in various problems in information security such as
detecting portscans Jung et al. [2004], worms Schechter and Berger [2004], proxies used by
spammers Xie et al. [2006], and botnets Gu et al. [2008].

Assuming that the observations z(k) under Hj are generated with a probability distri-
bution pj, the SPRT algorithm can be described by the following equations:

S(k + 1) = log
p1(z(k))

p0(z(k))
+ S(k)

N = inf
n
{n : S(n) /∈ [L,U ]},

starting with S(0) = 0. The SPRT decision rule dN is defined as:

dN =

{
H1 if S(N) > U
H0 if S(N) 6 L,

(5.3)

where L ≈ ln b
1−a and U ≈ ln 1−b

a
, and where a is the desired probability of false alarm and

b is the desired probability of missed detection (usually chosen as small values).

Change Detection

The goal of the change detection problem is to detect a possible change, at an unknown
change point ks.Cumulative sum (CUSUM) and Shiryaev-Roberts statistics are the two
most commonly used algorithms for change detection problems. In this chapter, we use the
CUSUM statistic because it is very similar to the SPRT.

Given a fixed false alarm rate, the CUSUM algorithm attempts to minimize the time
N (where N > ks) for which the test stops and decides that a change has occurred. Let
S(0) = 0. The CUSUM statistic is updated according to

S(k + 1) =

(
log

p1(z(k))

p0(z(k))
+ S(k)

)+

(5.4)

where (a)+ = a if a > 0 and zero otherwise. The stopping time is:

N = inf
n
{n : S(n) > τ} (5.5)

for a given threshold τ selected based on the false alarm constraint.
We can see that the CUSUM algorithm is an SPRT test with L = 0, U = τ , and

whenever the statistic reaches the lower threshold L, it re-starts.
We now describe how to adapt the results of change detection theory to the particular

problem of detecting compromised sensors. In the following, we use the subscript i to denote
the sequence corresponding to sensor i.

One problem that we have in our case is that we do not know the probability distribution
for an attack p1. In general, an adaptive adversary can select any arbitrary (and possibly)
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non-stationary sequence zi(k). Assuming a fixed p1 will thus limit our ability to detect a
wide range of attacks.

To avoid making assumptions about the probability distribution of an attacker, we use
ideas from nonparametric statistics. We do not assume a parametric distribution for p1 and
p0; instead, only place mild constraints on the observation sequence. One of the simplest
constraints is to assume the expected value of the random process Zi(k) that generates the
sequence zi(k) under H0 is less than zero (E0[Zi] < 0) and the expected value of Zi(k) under
H1 is greater than zero (E1[Zi] > 0).

To achieve these conditions let us define

zi(k) := ‖ỹi(k)− ŷi(k)‖ − bi (5.6)

where bi is a small positive constant chosen such that

E0[‖ỹi(k)− ŷi(k)‖ − bi] < 0. (5.7)

The nonparametric CUSUM statistic for sensor i is then:

Si(k) = (Si(k − 1) + zi(k))
+, Si(0) = 0 (5.8)

and the corresponding decision rule is

dN,i ≡ dτ (Si(k)) =

{
H1 if Si(k) > τi
H0 otherwise.

(5.9)

where τi is the threshold selected based on the false alarm rate for sensor i.
Following Brodsky and Darkhovsky [1993], we state the following two important results

for Eq. (5.8)-(5.9):

- The probability of false alarm decreases exponentially as the threshold τi increases,

- The time to detect an attack, (Ni − ks,i)
+, is inversely proportional to bi.

5.2.3 Stealthy Attacks

A fundamental problem in intrusion detection is the existence of adaptive adversaries
that will attempt to evade the detection scheme; therefore, we now consider an adversary
that knows about our anomaly detection scheme. We take a conservative approach in our
models by assuming a very powerful attacker with knowledge of: (1) the exact linear model
that we use (i.e., matrices A,B, and C), the parameters (τi and bi), and (3) the control
command signals. Such a powerful attacker may be unrealistic in some scenarios, but we
want to test the resiliency of our system to such an attacker to guarantee safety for a wide
range of attack scenarios.

The goal of the attacker is to raise the pressure in the tank without being detected (i.e.,
raise the pressure while keeping the statistic he controls below the corresponding threshold
τi).
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We model three types of attacks: surge attacks, bias attacks and geometric attacks.
Surge attacks model attackers that want to achieve maximum damage as soon as they get
access to the system. A bias attack models attackers that try to modify the system discretely
by adding small perturbations over a large period of time. Finally, geometric attacks model
attackers that try to shift the behavior of the system very discretely at the beginning of the
attack and then maximize the damage after the system has been moved to a more vulnerable
state.

5.2.4 Surge Attacks

In a surge attack the adversary tries to maximize the damage as soon as possible, but
when the statistic reaches the threshold, it then stays at the threshold level: Si(k) = τ for
the remaining time of the attack. To stay at the threshold, the attacker needs to solve the
following quadratic equation:

Si(k) +
√
(ŷi(k)− ỹi(k))2 − bi = τi

The resulting attack (for y5 and y4) is:

ỹi(k) =

{
ymini if Si(k + 1) 6 τi
ŷi(k)− |τi + bi − Si(k)| if Si(k + 1) > τi

For y7 we use

ỹ7(k) =

{
ymax7 if Sy7(k) 6 τ7
ŷ7 + |τ7 + b7 − Sy7(k)| if Sy7(k) > τ7

5.2.5 Bias Attacks

In a bias attack the attacker adds a small constant ci at each time step.

ỹi,k = ŷi,k − ci ∈ Yi
In this case, the nonparametric CUSUM statistic can be written as:

Si(n) =
n−1∑

k=0

|ŷi(k)− ỹi(k)| − nbi

Assuming the attack starts at time k = 0 and assuming the attacker wants to be unde-
tected for n time steps the attacker needs to solve the following equation:

n−1∑

k=0

ci = τi + nbi

Therefore ci = τi/n+ b. This attack creates a bias of τi/n+ bi for each attacked signal.
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This equation shows the limitations of the attacker. If an attacker wants to maximize
the damage (maximize the bias of a signal), the attacker needs to select the smallest n it
can find. Because ỹi ∈ Yi this attack reduces to an impulse attack.

If an attacker wants to attack for a long time, then n will be very large. If n is very
large then the bias will be smaller.

5.2.6 Geometric Attacks

In a geometric attack, the attacker wants to drift the value very slowly at the beginning
and maximize the damage at the end. This attack combines the slow initial drift of the bias
attack with a surge attack at the end to cause maximum damage.

Let α ∈ (0, 1). The attack is:

ỹi(k) = ŷi(k)− βiα
n−k
i .

Now we need to find α and β such that Si(n) = τi.
Assume the attack starts at time k = 0 and the attacker wants to be undetected for n

time steps. The attacker then needs to solve the following equation.

n−1∑

k=0

βiα
n−k
i − nbi = τi

This addition is a geometric progression.

n−1∑

k=0

βiα
n−k
i = βiα

n
i

n−1∑

k=0

(α−1
i )k = βi

1− αni
α−1
i − 1

By fixing α the attacker can select the appropriate β to satisfy the above equation.

5.2.7 Experiments

We continue our use of the TE-PCS model. In this section we first describe our selection
criteria for matrices A, B, and C for the linear model, and the parameters bi and τi for the
CUSUM statistic. We then describe the tradeoffs between false alarm rates and the delay
for detecting attacks. The section ends with the study of stealthy attacks.

Linear Model

In this chapter, we use the linear system characterized by the matrices A, B, and C,
obtained by linearizing the non-linear TE-PCS model about the steady-state operating
conditions. (See Ricker Ricker [1993].) The linear model is a good representative of the
actual TE-PCS model when the operating conditions are reasonably close to the steady-
state.



104

Nonparametric CUSUM parameters

In order to select bi for each sensor i, we need to estimate the expected value of the
distance |ŷi(k)−yi(k)| between the linear model estimate ŷi(k) and the sensor measurement
yi(k) (i.e., the sensor signal without attacks).
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Figure 5.4: Anomaly detection module (ADM) parameter b.

We run experiments for ten thousand times (and for 40 hours each time) without any
attacks to gather statistics. Fig 5.4 shows the estimated probability distributions (without
normalization).

To obtain bi, we compute the empirical expected value for each distance and then round
up to the two most significant units. We obtain by4 = 0.065, by5 = 4.1, by7 = 0.042.

Once we have bi for each sensor, we need to find a threshold τi to balance the tradeoff
between false alarms and detection time.

False Alarm Rate We run simulations for twenty times without attacks and compute
the total number of false alarms for different values of τ (and for each sensor). Fig 5.5 shows
the results. Taking y4 as an example, we notice that Sy4 alerts frequently if we set τy4 < 6.
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Figure 5.5: The number of false alarms decreases exponentially with increasing τ .

In general, we would like to select τ as high as possible for each sensor to avoid any false
alarm; however, increasing τ increases the time to detect attacks.

Detection Time To measure the time to detect attacks, we run simulations by launching
scaling attacks (ai(k) = λmyi(k)) on sensors y4, y5 and y7. Figs 5.6 and 5.7 shows the
experimental results.
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Figure 5.6: Detection time v.s. scaling attack. Note that for λmi = 1 there is no alarm.
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Figure 5.7: The time for detection increases linearly with increasing τ .

The selection of τ is a trade-off between detection time and the number of false alarms.
The appropriate value differs from system to system. Because the large number of false
alarms is one of the main problems for anomaly detection systems, and because the TE-
PCS process takes at least 10 hours to reach the unsafe state (based on our risk assessment
section), we choose the conservative set of parameters τy4 = 50, τy5 = 10000, τy7 = 200.
These parameters allow us to detect attacks within a couple of hours, while not raising any
false alarms.

Stealthy Attacks

To test if our selected values for τ are resilient to stealthy attacks, we decided to investi-
gate the effect of stealthy attacks as a function of τ . To test how the attacks change for all
thresholds we parameterize each threshold by a parameter p: τ testi = pτi. Fig. 5.8 shows the
percentage of times that geometric stealthy attacks (assuming the attacker controls all three
sensor readings) were able to drive the pressure above 3000kPa while remaining undetected
(as a function of p).

We implemented all stealth attacks starting at time T = 10 (hrs). We assume the goal
of the attacker is to be undetected until T = 30 (hrs). For example, Fig. 5.9 shows the
results of attacking all three sensors with a geometric attack. The nonparametric CUSUM
statistic shown in Fig. 5.10 shows how the attacker remains undetected until time T = 30
(hrs).



106

Figure 5.8: Percentage of unsafe stealthy attack percentage vs. scaling parameter p.

We found that a surge attack does not cause significant damages because of the inertia of
the chemical reactor: by the time the statistic reaches the threshold τ , the chemical reactor
is only starting to respond to the attack. However, since the attacker can only add very
small variations to the signal once it is close to the threshold, the attack ceases to produce
any effect and the plant continues operating normally.
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Figure 5.9: Geometric attacks to sensors: real state (solid), false data (dotted).

Finally, we assume two types of attackers. An attacker that has compromised y5 (but who
does not know the values of the other sensors, and therefore can only control Sy5(k)), and
an attacker that has compromised all three sensors (and therefore can control the statistic
S(k) for all sensors). We launched each attack 20 times. The results are summarized in
Figure 5.11.

Our results show that even though our detection algorithm fails to detect stealthy at-
tacks, we can keep the the plant in safe conditions. We also find that the most successful
attack strategy are geometric attacks.



107

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60
S4

Time (hour)
0 5 10 15 20 25 30 35 40

0

2000

4000

6000

8000

10000

12000
S5

Time (hour)
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

180

200

220
S7

Time (hour)

Figure 5.10: Statistics of geometric attacks with sensors compromised.

Figure 5.11: Effect of stealthy attacks. Each attack last 20 hours.
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5.3 Response to Attacks

A comprehensive security posture for any system should include mechanisms for preven-
tion, detection, and response to attacks. Automatic response to computer attacks is one
of the fundamental problems in information assurance. While most of the research efforts
found in the literature focus on prevention (authentication, access controls, cryptography
etc.) or detection (intrusion detection systems), in practice there are quite a few response
mechanisms. For example, many web servers send CAPTCHAs to the client whenever they
find that connections resemble bot connections, firewalls drop connections that conform to
their rules, the execution of anomalous processes can be slowed down by intrusion detection
systems, etc.

Given that we already have an estimate for the state of the system (given by a lin-
ear model), a natural response strategy for control systems is to use this estimate when
the anomaly detection statistic fires an alarm. Fig 5.12 shows our proposed architecture.
Specifically: for sensor i, if Si(k) > τi, the ADM replaces the sensor measurements ỹi(k)
with measurements generated by the linear model ŷi(k) (that is the controller will receive
as input ŷi(k) instead of ỹi(k)). Otherwise, it treats ỹi(k) as the correct sensor signal.

Computing Blocks

Figure 5.12: An Anomaly Detection Module (ADM).

Introducing automatic response mechanisms is, however, not an easy solution. Every
time systems introduce an automatic response to an alarm, they have to consider the cost of
dealing with false alarms. In our proposed detection and response architecture (Fig. 5.12),
we have to make sure that if there is a false alarm, controlling the system by using the
estimated values from the linear system will not cause any safety concerns.

5.3.1 Experiments

The automatic response mechanism works well when we are under attack. For example,
Fig. (5.13) shows that when an attack is detected, the response algorithm manages to keep
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Alarms Avg y5 Std Dev Max y5
0 2700.4 14.73 2757

Table 5.1: For Thresholds τy4 = 50, τy5 = 10000, τy7 = 200 we obtain no false alarm. Therefore
we only report the expected pressure, the standard deviation of the pressure, and the maximum
pressure reached under no false alarm.

Alarms Avg y5 Std Dev Max y5
y4 61 2710 30.36 2779
y5 106 2705 18.72 2794
y7 53 2706 20.89 2776

Table 5.2: Behavior of the plant after response to a false alarm with thresholds τy4 = 5, τy5 =
1000, τy7 = 20.

the system in a safe state. Similar results were obtained for all detectable attacks.
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Figure 5.13: Safety of response mechanism under deception attack ỹ5 = y5 ∗ 0.5.

While our attack response mechanism is a good solution when the alarms are indeed an
indication of attacks, Our main concern in this section is the cost of false alarms. To address
these concerns we ran the simulation scenario without any attacks 1000 times; each time
the experiment ran for 40 hours. As expected, with the parameter set τy4 = 50, τy5 = 10000,
τy7 = 200 our system did not detect any false alarm (see Table 5.1); therefore we decided to
reduce the detection threshold to τy4 = 5, τy5 = 1000, τy7 = 20 and run the same experiments
again. Table 5.2 shows the behavior of the pressure after the response to a false alarm. We
can see that while a false response mechanism increases the pressure of the tank, it never
reaches unsafe levels. The maximum pressure obtained while controlling the system based
on the linear model was 2779 kPa, which is in the same order of magnitude than the normal
variation of the pressure without any false alarm (2757 kPa).

In our case, even if the system is kept in a safe state by the automated response, our
response strategy is meant as a temporary solution before a human operator responds to
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the alarm. Based on our results we believe that the time for a human response can be very
large (a couple of hours).

5.4 Discussion

In this work we identified three new research challenges for securing control systems. We
showed that by incorporating a physical model of the system we were able to identify the
most critical sensors and attacks. We also studied the use of physical models for anomaly
detection and proposed three generic types of stealthy attacks. Finally, we proposed the use
of automatic response mechanisms based on estimates of the state of the system. Automatic
responses may be problematic in some cases (especially if the response to a false alarm
is costly); therefore, we would like to emphasize that the automatic response mechanism
should be considered as a temporary solution before a human investigates the alarm. A
full deployment of any automatic response mechanism should take into consideration the
amount of time in which it is reasonable for a human operator to respond, and the potential
side effects of responding to a false alarm.

In our experiments with the TE-PCS process we found several interesting results. (1)
Protecting against integrity attacks is more important than protecting against DoS attacks.
In fact, we believe that DoS attacks have negligible impact to the TE-PCS process. (2) The
chemical reactor process is a well-behaved system, in the sense that even under perturba-
tions, the response of the system follows very closely our linear models. In addition, the
slow dynamics of this process allows us to be able to detect attacks even with large delays
with the benefit of not raising any false alarms. (3) Even when we configure the system to
have false alarms, we saw that the automatic response mechanism was able to control the
system in a safe mode.

One of our main conclusions regarding the TE-PCS plant, is that it is a very resiliently-
designed process control system. Design of resilient process control systems takes control
system design experience and expertise. The design process is based on iteratively evaluating
the performance on a set of bad situations that can arise during the operation of the plant
and modifying control loop structures to build in resilience. In particular, Ricker’s paper
discusses the set of random faults that the four loop PI control is able to withstand.

We would like to make two points in this regard: (1). The PI control loop structure
is distributed, in the sense that no PI control loop controls all actuators and no PI loop
has access to all sensor measurements, and (2). The set of bad situations to which this
control structure is able to withstand may itself result from the one or more cyber attacks.
However, even though the resilience of TE-PCS plant is ensured by expert design, we find
it interesting to directly test this resilience within the framework of assessment, detection
and response that we present in this article.

However, as a word of caution, large scale control system designs are often not to resilient
by design and may become prey to such stealth attacks if sufficient resilience is not built
by design in the first place. Thus, our ideas become all the more relevant for operational
security until there is a principled way of designing fully attack resilient control structures
and algorithms (which by itself is a very challenging research endeavor and may not offer a
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cost effective design solution).
Even though we have focused on the analysis of a chemical reactor system, our principles

and techniques can be applied to many other physical processes. An automatic detection and
response module may not be a practical solution for all control system processes; however,
we believe that many processes with similar characteristics to the TE-PCS can benefit from
this kind of response.
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Chapter 6

Deception Attacks on Power System
State Estimators

6.1 Introduction

In Chapter 5 we described the design of an attack detection module based on an ap-
proximate model of system dynamics and used it for detection and response under cyber
threats to a benchmark process control system. The aim of this chapter is to analyze the
cyber security of state estimators in Supervisory Control and Data Acquisition (SCADA)
systems operating in power grids. Safe and reliable operation of these critical infrastructure
systems is a major concern in our society. The power system state estimation algorithms
which are currently in use also employ bad data detection (BDD) schemes to detect random
outliers in the measurement data. Such schemes are based on high measurement redun-
dancy. Although such methods may detect a set of basic cyber attacks, they may fail in
the presence of a more intelligent attacker. We explore the latter by considering scenarios
in which deception attacks are performed, sending false information to the control center.
Similar attacks have been studied before for linear state estimators, assuming the attacker
has perfect model knowledge. Here, we instead assume the attacker only possesses a per-
turbed model. Such a model may correspond to a partial model of the true system, or
even an out-dated model. We characterize the attacker by a set of objectives, and propose
policies to synthesize stealthy deceptions attacks, both in the case of linear and nonlinear
estimators. We show that the more accurate model the attacker has access to, the larger
deception attack he can perform undetected. Specifically, we quantify trade-offs between
model accuracy and possible attack impact for different BDD schemes. The developed tools
can be used to further strengthen and protect the critical state-estimation component in
SCADA systems.

Power networks are operated through supervisory control and data acquisition (SCADA)
systems complemented by a set of application specific software, usually called energy man-
agement systems (EMS). Modern EMS provide information support for a variety of applica-
tions related to power network monitoring and control. The power system state estimator
(PSSE) is an on-line application which uses redundant measurements and a network model



113

to provide the EMS with an accurate state estimate at all times. The PSSE has become
an integral tool for EMS for instance for contingency-constrained optimal power flow. The
PSSE also provides important information to pricing algorithms. Monitoring and control of
power systems is done through SCADA systems, which collect data from remote terminal
units (RTUs) installed in various substations, and relay aggregated measurements to the
central master station located at the control center. Several cyber attacks on SCADA sys-
tems operating power networks have been reported. Major blackouts, as the August 2003
Northeast blackout, may be caused due to the misuse of the SCADA systems. The 2003
blackout also highlighted the need of robust state estimators that converge accurately and
rapidly in such extreme situations, so that necessary preventive actions can be taken in a
timely manner. As discussed in Giani et al. [2009], there are several vulnerabilities in the
SCADA system architecture, including the direct tampering of RTUs, communication links
from RTUs to the control center, and the IT software and databases in the control center.
For instance, the RTUs could be targets of denial-of-service (DoS) or deceptions attacks
injecting false data Liu et al. [2009].

Power networks, being systems for which control loops are closed over communication
networks, represent an important class of networked control systems (NCS). Unlike other
IT systems where cyber security mainly involves encryption and protection of data, here
cyber attacks may influence the physical processes through the digital controllers. Therefore
encryption may not be enough to guarantee security. In order to increase the resilience of
these systems, one needs appropriate tools to first understand and then to protect NCS
against cyber attacks. Some of the literature has already tackled these problems such as
false data injection in power system state estimation Liu et al. [2009], security constrained
control Amin et al. [2009b], and replay attacks Mo and Sinopoli [2009].

In this chapter, we analyze the cyber security of the PSSE in the SCADA system. In
current implementations of PSSE algorithms there are bad data detection (BDD) schemes
designed to detect random outliers in the measurement data. Such schemes are based on
high measurement redundancy and are performed at the end of the state estimation pro-
cess. Although such methods may detect basic attacks, they may fail in the presence of
more intelligent attackers that wish to stay undetected. We explore the latter by consid-
ering scenarios where deception attacks are performed by sending false information to the
control center. A related study was performed in Liu et al. [2009] for linear state estimators,
assuming the attacker has perfect model knowledge. Here we instead assume the attacker
only possesses a perturbed model. Such a model may correspond to a partial model of the
true system, or an out-dated model. We characterize the attacker by defining a set of ob-
jectives, and propose policies to synthesize stealthy deceptions attacks, both for linear and
nonlinear estimators. We show that the more accurate model the attacker has access to,
the larger deception attack he can perform undetected. Specifically, we quantify trade-offs
between model accuracy and possible attack impact for different BDD schemes.

The outline of this chapter is as follows. We present the main concepts behind state
estimation in power systems, the attacker model, and problem formulation in Section 6.2.
The properties of estimation algorithm which are deployed in practice are discussed in Sec-
tion 6.3. In Section 6.4, two common BDD methods are reviewed. The analysis of stealthy
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deception attacks with partial knowledge is performed in Section 6.5. An example that
illustrates the results is presented in Section 6.6, followed by the conclusions in Section 6.7.

6.2 Stealthy Deception Attacks

We focus on additive deception attacks aimed toward manipulating the measurements to
be processed by the PSSE in such a manner that the resulting systematic errors introduced
by the adversary are either undetected or only partially detected by a BDD method. We
call such attacks stealthy deception attacks on the PSSE. We are also interested in find the
class of stealthy deception attacks that do not pose significant convergence issues for the
estimator.

6.2.1 Power System State Estimation (PSSE)

The basic PSSE problem is to find the best n-dimensional state x for the measurement
model

z = h(x) + ǫ, (6.1)

in a weighted least square (WLS) sense. Here z is them-dimensional vector of measurements,
h is a nonlinear function modeling the power network, and ǫ ∼ N (0, R) is a vector of
independent zero-mean Gaussian variables with covariance matrix R = diag(σ2

1, . . . , σ
2
m).

For an electric power network with N buses, the state vector x = θ⊤, V ⊤)⊤, where V =
(V1, . . . , VN)

⊤ is the vector of bus voltage magnitudes and θ = (θ2, . . . , θN)
⊤ the vector

of phase angles. Without loss of generality, bus 1 is considered as the reference bus with
θ1 = 0, so the state dimension is n = N − 1. The measurements z can be grouped into
two categories: (1) zP , the active power flow measurements Pij from bus i to j and active
power injection measurement Pi at bus i, and (2) zQ, the reactive power flow measurements
Qij from bus i to j, reactive power injection measurement Qi and Vi voltage magnitude
measurement at bust i.

Defining the residual vector r(x) = z − h(x), we can write the WLS problem as

min
x∈Rn

J(x) =
1

2
r(x)⊤R−1r(x).

The PSSE yields a state estimate x̂ as a minimizer to this minimization problem. The
measurement estimates are defined as ẑ := h(x̂). The WLS estimate x̂ satisfies the following
first order necessary condition for optimality

F (x̂) := ∇J(x̂) = −H⊤(x̂)R−1r(x̂) = 0, (6.2)

where H = dh/dx is the m × n dimensional measurement Jacobian matrix. The solution
x̂ of the nonlinear equation F (x̂) = 0 may be obtained by the Newton method in which a
linear equation is solved at each iteration to compute the correction ∆xk := xk+1 − xk:

[F ′(xk)](∆xk) = −F (xk), k = 0, 1, . . . , (6.3)
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where the Hessian matrix [F ′(xk)] = ∇2J(xk) is given by

[F ′(xk)] = H⊤(xk)R−1H(xk) +
m∑

i=1

ri(x
k)

σ2
i

∇2ri(x
k).

The iterates (6.3) guarantee the convergence to a local minimum as long as the generated
sequence {xk} converges and the matrices [F ′(xk)] remain non-singular during the iteration
process. A nearly singular Hessian matrix [F ′(xk)] can result in a convergence failure.

The second order information in [F ′(xk)] is computationally expensive, and its effect of-
ten negligible when applied to PSSE. Thus, the symmetric approximation is used in practice

[F ′(xk)] ≈ H⊤(xk)R−1H(xk) =: Kk

where Kk is called the gain (or information) matrix. This approximation leads to the
Gauss-Newton steps obtained by solving the so called normal equations :

(
H⊤(xk)R−1H(xk)

)
(∆xk) = H⊤(xk)R−1r(xk), (6.4)

for k = 0, 1, . . .. For an observable power network, the measurement Jacobian matrix

H(xk) is full column rank. Consequently, the gain matrix Kk =
∑m

i=1
H⊤

i (xk)Hi(x
k)

σ2
i

in (6.4)

is positive definite and the Gauss-Newton step generates a descent direction, i.e, for the
direction ∆xk = xk+1 − xk the condition ∇J(xk)⊤∆xk < 0 is satisfied. . One can observe
that Kk is also relatively sparse, i.e., a Hi(x

k) with p non-zero elements introduces p2 non-
zero elements in Kk. We now present the attacker model.

6.2.2 Attacker Model

The main goal of the stealthy attacker is to deceive the PSSE and introduce a desired bias
in a set of targeted measurements, known as the target set, while remaining undetected by
the BDD scheme. More precisely, the goal of a stealthy deception attacker is to compromise
the telemetered measurements available to the PSSE such that: 1) The PSSE algorithm
converges; 2) For the target set, the estimated measurements at convergence are close to the
compromised measurements introduced by the attacker; and 3) The attack remains fully
undetected by the BDD scheme.

As a consequence of the attacker’s stealthy action, the incorrect state estimates generated
by the PSSE can have different affects on other power management functions. In fact, as
depicted in Figure 6.1, the state estimate is used as an input to other software applications,
in particular the contingency analysis and optimal power flow. These components analyze
the state of the grid based on the estimates generated by the PSSE, and compute the optimal
control action which reduces the costs while maintaining the grid in a safe state.

Let the corrupted measurement be denoted za. We assume the following additive attack
model

za = z + a, (6.5)
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Figure 6.1: The state estimator under a cyber attack.

where a ∈ Rm is the attack vector introduced by the attacker. The vector a has zero
entries for uncompromised measurements. Under attack, the normal equations (6.4), give
the estimates

x̃k+1 = x̃k +
(
H⊤(x̃k)R−1H(x̃k)

)−1
H⊤(x̃k)R−1ra(x̃k),

for k = 0, 1, . . . , where x̃k is the biased estimate at iterate i, and ra(x̃k) := za − h(x̃k).
If the local convergence conditions hold, then these iterations converge to x̂a, which is the
biased state estimate resulting from the use of za. Thus, the convergence behavior can be
expressed as the following statement:

1) The sequence {x̃0, x̃1, . . . } generated by the mapping

G(x) = x+ (H⊤(x)R−1H(x))−1H⊤(x)R−1ra(x),

converges to a fixed point x̂a of G in a region Saϑ,
where Saϑ is a closed ball in Rn of radius ϑ governed by the conditions required for the
local convergence to hold. We will occasionally use the notation x̂a(za) to emphasize the
dependence on za.

The BDD schemes for PSEE are based on checking if the weighted p-norm of the measure-
ment residual is below some threshold τ , which is selected based on permissible false-alarm
rate. Thus, the attackers action will be undected by the BDD scheme provided that the
following condition holds:

2) The measurement residual under attack ra := r(x̂a) = za−h(x̂a), satisfies the condition
‖Wr(x̂a)‖p < τ .

Finally, let the target set be represented by Itgrt containing indices of the measurements
which are targeted by the attacker. For each i ∈ Itgrt, the attacker would like the estimated
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measurement ẑai := hi(x̂
a(za)) to be equal to the actual corrupted measurement zai . However,

such a condition may not be satisfied since corrupted measurements may not be consistent
with the model, and can result in violation of conditions 1), and 2) mentioned above.
Therefore, we arrive at the following condition which will additionally govern the synthesis
of attack vector a:

3) The attack vector a is chosen such that |zai − ẑai | < η for i ∈ Itgrt, where η is a small
positive constant.

The aim of a stealthy deception attacker is then to find and apply an attack a that satisfies
conditions 1), 2), and 3). In Section V, we take a similar approach as in Liu et al. [2009] to
synthesize stealthy attack policies of the form of a = H̃c, where H̃ is the impefect model
known by the attacker. Unlike in Liu et al. [2009], we do not assume the attacker has the
exact model of the system and we consider both linear and nonlinear estimators.

6.3 PSSE Iterates as Linear WLS Problems

6.3.1 Normal Equations as Linear Least Squares

The normal equation can be interpreted as the solution of a linear least squares problem.
In particular, writingH(xk) asH, and ∆xk as ∆x, and r(xk) = z−h(xk) as ∆z for notational
convenience, and defining ∆z̄ = R−1/2∆z and H̄ = R−1/2H, the k−th iteration as given by
equation (6.4) is the solution of the linear least squares problem

min
∆x

(∆z̄ − H̄∆x)⊤(∆z̄ − H̄∆x).

It can be obtained as a solution of the overdetermined system of equations

H̄∆x ∼= ∆z̄. (6.6)

Given that H̄ has full column rank and using the notation of the pseudo-inverse H̄† :=
(H̄⊤H̄)−1H̄⊤,

∆x = H̄†∆z̄ = (H̄⊤H̄)−1H̄⊤∆z̄.

For the approximate (linear) model

∆z̄ = H̄∆x̄+ ǭ

where ǭ = R−1/2ǫ, the measurement residual can be expressed as

r̄ = S̄ǭ, (6.7)

where S̄ = (I − H̄(H̄⊤H̄)−1H̄⊤) is called the weighted sensitivity matrix. Since the matrix
T̄ = H̄(H̄⊤H̄)−1H̄⊤ is symmetric and orthogonal with range space Im(H̄(H̄⊤H̄)−1H̄⊤))
same as Im(H̄), we call it the orthogonal projector on to Im(H̄) and denote it by PIm(H̄).
Such matrix is known as the hat matrix in the power system literature. Consequentially,
we see that S̄ in (6.7) is the orthogonal projector onto the null-space (kernel) of H̄⊤, i.e.
S̄ = (I − PIm(H̄)) = PKer(H̄⊤). Since ǭ ∼ N (0, I), we note that in the absence of gross
measurement errors we have r̄ ∼ N (0, S̄).
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6.3.2 Decoupled State Estimation

A useful observation in electric power systems is that of active-reactive decoupling, i.e.,
the active measurements zP (resp. reactive measurement zQ) predominantly affect the
phase angles θ (resp. the voltage magnitudes V ). In the decoupled state estimation, the
approximate values of the corrections ∆θ and ∆V are then not computed simultaneously,
but independently Wu [1990].

Following (6.6), the correction to state estimate ∆x = (∆θ⊤,∆V ⊤)⊤ at each iteration
can be obtained as the solution to the overdetermined system

(
H̄Pθ H̄PV

H̄Qθ H̄QV

)(
∆θ
∆V

)
=

(
∆z̄P
∆z̄Q

)
, (6.8)

where the submatrices H̄Pθ and H̄PV correspond to active measurements and H̄Qθ and H̄QV

correspond to reactive measurements. The mismatches are ∆z̄P and ∆z̄Q. The submatrices
and mismatches depend on θ and V , and hence vary from iteration to iteration. The
traditional version of fast decoupled state estimation is based on the following decoupled
normal equations, where the coupling submatrices H̄PV and H̄Qθ have been set to zero:

∆θk = H̄†
Pθ∆z̄P (θ

k, V k),

∆V k = H̄†
QV∆z̄Q(θ

k, V k).
(6.9)

Equations (6.9) are alternately solved for ∆θk and ∆V k, where the mismatches ∆z̄P and
∆z̄Q are evaluated at the latest estimates. The submatrices H̄Pθ and H̄QV are evaluated at
flat start and branch series resistances are ignored in forming H̄Pθ.

In the new version of fast decoupled state estimator, the matrices H̄PV and H̄Qθ are
not ignored. Using simple matrix operations, (6.8) can be transformed in to the following
decoupled form

(
H̄Pθ 0

0 H̃QV

)(
∆θ
∆V

)
=

(
∆z̃P
∆z̃Q

)
, (6.10)

where H̃QV = H̄QV − H̄QθH̄
†
PθH̄PV , ∆z̃Q = ∆z̄Q − H̄QθH̄

†
Pθ∆z̄P , and ∆z̃P = ∆z̄P −

H̄PV H̄
†
QV∆z̃Q. The basic (primal) decoupled algorithm which solves (6.10) is presented

as follows.

i Compute intermediate angle corrections

∆θkint = H̄†
Pθ∆z̄P (θ

k, V k),

ii Compute voltage corrections

∆z̃Q(θ
k, V k) = ∆z̄Q(θ

k, V k)− H̄Qθ∆θ
k
int

∆V k = H̃†
QV∆z̃Q(θ

k, V k),

iii Compute complementary angle corrections
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∆θkcom = −H†
PθHPV∆V

k

∆θk = ∆θkint +∆θkcom

For the above algorithm, it can be shown that if measurements are normalized, i.e., mea-
surements are replaced by the normalized measurements Pi,m/Vi,m, Pij,m/Vi,m, Qi,m/Vi,m,
and Qij,m/Vi,m, the matrix H̄ can be approximated by a constant matrix evaluated at a flat
voltage profile (V = 1 and θ = 0). Also, for the QV iteration, it is observed that H̃QV can
be directly obtained from the network topology and element impedances as in the case of
H̄QV ; however, branch susceptances bkm are replaced by corresponding reactances 1/xkm.

6.4 Bad Data Detection

The measurements used in PSSE may be corrupted by random errors and so a necessary
security capability of the PSSE is bad data detection (BDD). Traditionally, the bad data
is understood as a result of parameter errors which corrupt the values of modeled circuit
elements, incorrect network topology descriptions, and gross measurement errors due to
device failures and incorrect meter scans. However, in view of new security threats, bad data
can be deliberately introduced by an active adversary which manipulates the communication
between remote RTUs and the SCADA system.

Through BDD the PSSE detects gross errors in the measurements, meaning it detects
measurements corrupted by errors whose statistical properties exceed the presumed standard
deviation or mean. This is achieved by hypothesis tests using the statistical properties of
the weighted measurement residual (6.7). We now introduce two of the BDD hypothesis
tests widely used in practice, the performance index test and the largest normalized residual
test. These indices are used to model the BDD objective in Section 6.2.2.

Performance index test

For the measurement error ǭ ∼ N (0, I), the random variable y :=
∑m

i=1 ǭi
2 has a chi-

square distribution withm degrees of freedom (χ2
m) with E {y} = m. Consider the quadratic

cost function evaluated at the optimal estimate x̂

J(x̂) = r̄⊤r̄ = ǭ⊤S̄ǭ. (6.11)

Recalling that rank(H̄) = n, Im(H̄)⊕Ker(H̄⊤) = Rm, and using the definition of orthogonal
projector, we note that S̄ = PKer(H̄⊤), and we have rank(S̄) = m − n. Therefore, in the
absence of bad data, the quadratic form ǭ⊤S̄ǭ has a chi-squares distribution with m − n
degrees of freedom, i.e. J(x̂) ∼ χ2

m−n with E {J(x̂)} = m − n. The main idea behind the
performance index test is to use J(x̂) as an approximation of y and check if J(x̂) follows the
distribution χ2

m−n. This can be posed as a hypothesis test with a null hypothesis H0, which
if accepted means there is no bad data, and an alternative bad data hypothesis H1 where

H0 : E {J(x̂)} = m− n, H1 : E {J(x̂)} > m− n
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Defining α ∈ [0, 1] as the significance level of the test corresponding to the false alarm rate,
and τχ(α) such that ∫ τχ(α)

0

gχ(u)du = 1− α, (6.12)

where gχ(u) is the probability distribution function (pdf) of χ2
m−n, and noting that J(x̂) =

‖R−1/2r(x̂)‖2 the result of the test is

reject H0 if ‖R−1/2r‖2 >
√
τχ(α),

accept H0 if ‖R−1/2r‖2 6
√
τχ(α).

Largest normalized residual test

From (6.7), we note that r̄ ∼ N(0, S̄) and equivalently r ∼ N(0,Ω) with Ω = R1/2S̄R1/2.
Now consider the normalized residual vector

rN = D−1/2r, (6.13)

with D ∈ Rm×m being a diagonal matrix defined as D = diag(Ω). In the absence of bad
date each element rNi , i = 1, . . . ,m of the normalized residual vector then follows a normal
distribution with zero mean and unit variance, i.e. rNi ∼ N(0, 1), ∀i = 1, . . . ,m. Thus, bad
data could be detected by checking if rNi follows N(0, 1). Posing this as hypothesis test for
each element rNi

H0 : E
{
rNi
}
= 0, H1 : E

{
|rNi |)

}
> 0

Again defining α ∈ [0, 1] as the significance level of the test and τN such that

∫ τN(α)

−τN(α)
gN(u)du = 1− α, (6.14)

where gN(u) is the pdf of N(0, 1), and noting (6.13), the result of the test is

reject H0 if ‖D−1/2r‖∞ > τN(α)

accept H0 if ‖D−1/2r‖∞ 6 τN(α)

We observe that for the case of single measurement with bad data, the largest normalized
residual element |rNi | corresponds to the corrupted measurement. It is clear that both tests
may be written as ‖Wr(x̂)‖p < τ , for suitable W , p and τ .

6.5 Deception Attacks on Linear State Estimator

Several scenarios of stealthy deception attacks on PSSE for the DC case have been
analyzed in Liu et al. [2009]. The authors of Liu et al. [2009] considered linear models, which
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was fully known by the attacker, and focused on additive attack policies that would guarantee
the measurement residual to remain unchanged for the linear least squares algorithm. The
feasibility of such attack policies was then analyzed for several IEEE benchmarks under
different resource constraints of the attacker (for e.g., number of sensors the attacker could
corrupt) and attacker objectives (for e.g., random attack, targeted attack). The main result
related to attack policies was that if the attack vector a was in the range space of H, then
the measurement residual ra = (z+a)−Hx̂ would be the same as the residual r when there
was no attack. Thus, such attack vectors would not increase the residual. Such undetectable
errors have been analyzed previously within the power system’s community, see Wu and Liu
[1989].

In this section we analyze how the attacker may fulfill the objective Section 6.2.2, and
thereby remain undetected.

6.5.1 Attack Synthesis

As indicated in Section 6.2.2, the attacker aims at injecting false data in a few targeted
measurements without being detected. In general a stealthy attack requires the corruption
of more measurements than the targeted ones, see Liu et al. [2009]; Sandberg et al. [2010].
This relates to the fact that a stealthy attack must have the attack vector a fitting the
measurement model, which for the weighted linear case is equivalent to have a ∈ Im(H̄).

We now present a general methodology for synthesizing stealthy attacks for the linear
case with specific target constraints. Suppose the attacker wishes to compute an attacker
vector a such that z̄a = z̄ + a satisfies a set of goals, encoded by a ∈ G, and the attack is
stealthy, i.e. a ∈ Im(H̄). Assuming the attacker knows the weighted measurement model
H̄, such attack could be computed by solving the optimization problem

min
a

‖a‖p
s.t. a ∈ G, a ∈ Im(H̄) ,

(6.15)

corresponding to the ”least-effort“ attack in the p-norm sense. An interesting case is that
of p = 0, which means the attacker is computing the attack with minimum cardinality, e.g.,
minimizing the number of sensors to corrupt. Another particular formulation is the 2-norm
case with a single attack target, zia = zi + 1 or ai = 1. By recalling that a ∈ Im(H̄) means
that a = H̄c for a given c, the optimization problem may be recast as

min
c

‖H̄c‖22
s.t. e⊤i H̄c = 1

, (6.16)

where ei is a unitary vector with 1 in the i-th component. Recall T̄ = PIm(H̄) = H̄H̄†.

Proposition 6.5.1. The optimal solution a∗ to the optimization problem (6.16) is given by
a∗ = T̄

T̄ii
ei
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Proof. The Lagrangian of this optimization problem is L(c, ν) = cH̄⊤H̄c+ν(e⊤i H̄c−1) and
the KKT conditions for an optimal solution (c∗, ν∗) are

{
H̄⊤H̄c∗ + ν∗H̄⊤ei = 0

e⊤i H̄c
∗ − 1 = 0

. (6.17)

Since it is assumed the power network is observable, the solution for the first equation
is c∗ = ν∗H̄†ei. Including this in the second equation results in ν∗e⊤i T̄ ei = 1 which is
equivalent to ν∗ = 1

T̄ii
with T̄ii being the i-th diagonal element of T̄ . We then have that

a∗ = H̄c∗ = T̄
T̄ii
ei.

In the power system’s literature, the hat matrix T̄ is known to have information regarding
measurement redundancy and correlation. This result highlights a new meaning: each
column of T̄ actually corresponds to an optimal attack vector yielding a zero residual.

6.5.2 Relaxing the Assumptions on Adversarial Knowledge

Here we consider the scenario where the attacker has only a partial or corrupted knowl-
edge of the measurement model. Such knowledge may be obtained, for instance, by recording
and analyzing data sent from the RTUs to the control center using suitable statistical meth-
ods. The corrupted measurement model may also correspond to an out-dated model or an
estimated model using the power network topology, usual parameter values and uncertain
operating point. We further assume that the covariance matrix R is known.

In the following analysis we provide bounds on the measurement residual under this kind
of attack scenario. These bounds give some insights on what attacks may go undetected,
given the model uncertainty. For the moment we assume there are no random errors in the
measurements and so we consider the weighted measurements z̄ = H̄x.

Let the perturbed measurement model known by the attacker be denoted by H̃, such
that

H̃ = H̄ +∆H̄, (6.18)

and consider the linear policy to compute attacks on the measurements to be a = H̃c,
resulting in the corrupted set of measurements z̄a = z̄ + a. Recall the objectives of the
attacker as defined in Section 6.2.2.

The third objective, being undetected, depends both on the desired bias on the flow
measurements a and on the model uncertainty ∆H̄. The measurement residual under attack,
ra := r̄(z̄a), can be written as

r̄(z̄a) = S̄(z̄ + H̃c) = S̄z̄ + r̄a6) (6.19)

Using (6.18) and the fact that S̄ = PKer(H̄⊤), we can rewrite it as

r̄(z̄a) = S̄(z̄ + H̄c) + S̄∆H̄c = S̄∆H̄c. (6.20)

We denote r̄a = S̄∆H̄c as the residual due to the attack, since it only depends on c and
∆H̄. Furthermore, we see that ‖r̄a‖ 6 ‖S̄‖‖∆H̄‖‖c‖ = ‖∆H̄‖‖c‖, since S̄ is an orthogonal
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projector, showing that the residual norm is linear in terms of the model uncertainty. How-
ever, this bound does not capture an important property of the sensitivity matrix S̄, i.e., S̄
is the orthogonal projector on to Ker(H̄⊤). To show this, assume H̃ = δH̄ for some nonzero
δ, yielding ∆H̄ = (1− δ)H̄. From the previous result we have ‖r̄a‖ 6 ‖(1− δ)H̄‖‖c‖. How-
ever, since S̄ is the orthogonal projector onto Ker(H̄⊤) and this subspace is the orthogonal
complement of Im(H̄) we know that r̄a = S̄∆H̄c = 0. Therefore, although there is model
uncertainty, the residual is still zero. This reasoning indicates that there is a geometrical
meaning in the residual, since all the model perturbations ∆H̄ spanning Im(H̄) will yield a
zero residual. To further explore this property, we will make use of the so-called principal
angles and projection theory described in Galántai [2006]. The main results and definitions
used in this work are now given.

Definition 6.5.2 (Galántai [2006]). Let M1 and M2 be subspaces of Cm. The smallest
principal angle γ1 ∈ [0, π/2] between M1 and M2 is defined by

cos(γ1) = max
u∈M1

max
v∈M2

|uHv|

subject to ‖u‖ = ‖v‖ = 1
(6.21)

Lemma 6.5.3 (Galántai [2006]). Let P1,P2 ∈ Rm×m be orthogonal projectors of M1 and
M2, respectively. Then the following holds

‖P1P2‖2 = cos(γ1) (6.22)

Proposition 6.5.4. Let γ1 be the smallest principal angle between Ker(H̄⊤) and Im(H̃).
The residual increment due to a deception attack following the policy a = H̃c satisfies

‖r̄a‖2 6 cos γ1‖a‖2. (6.23)

Proof. Recall the so-called hat matrix defined by T = H̄H̄†, which is the orthogonal pro-
jector onto Im(H̄) and define T̃ = PIm(H̃) = H̃H̃†. The residual under attack in Eq. (6.19)
may be rewritten as

r̄a = S̄T̃ H̃c, (6.24)

since T̃ H̃ = H̃. The residual norm can be upper bounded as

‖r̄a‖2 6 ‖S̄T̃‖2‖H̃c‖2 = cos γ1‖a‖2, (6.25)

where γ1 is the smallest principal angle between Ker(H̄⊤) and Im(H̃).

Analyzing the example where H̃ = δH̄, we see that Im(H̃) = Im(H̄) is orthogonal to
Ker(H̄⊤). Hence the smallest principal angle between these subspaces is γ1 = π

2
, yielding

‖r̄a‖2 6 cos(γ1)‖a‖2 = 0.
Thus we achieved a tighter bound that explores the geometrical properties of the residual

subspace. In brief, γ1 measures how close the subspaces Ker(H̄⊤) and Im(H̃) are from each
other. In order for the model uncertainty not to affect the residual, it is desired that Ker(H̄⊤)
and Im(H̃) are as close to orthogonal as possible.
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6.5.3 Stealthy Attacks

Consider the measurement residual under attack in (6.19). Taking into account the
random error vector ǭ we can rewrite the residual as

r̄(z̄a) = S̄ǭ+ S̄a. (6.26)

The residual then has the following distribution r̄(z̄a) ∼ N (r̄a, S̄). Note that due to the
model uncertainties the residual has a non-zero mean, which increases the chances of trig-
gering an alarm in the BDD. Recall that one of the attacker’s objective is to keep such
probability as low as possible, i.e. ‖Wr(x̂a)‖p < τ . We now provide insights on how such
objective may be fulfilled for the two BDD schemes presented in Section 6.4.

Performance index test

Recall that without any attack on the measurements we have J(x̂) ∼ χ2
m−n. Under

attack the cost function Ja(x̂) = r̄(z̄a)⊤r̄(z̄a) will have the so-called non-central chi-squares
distribution Muirhead [1982], due to the non-zero mean which affects all the statistical
moments of the χ2

m−n distribution. We denote Ja(x̂) ∼ χ2
m−n(λ) where λ = ‖S̄a‖22. Recalling

the relationship between the false alarm probability α and the detection threshold τχ(α)
in (6.12), in the presence of attacks we have

∫ ∞

τχ(α)

gλ(u)du = α + δλ(λ), (6.27)

with gλ(u) being the pdf of χ
2
m−n(λ). We call δλ(λ) the increase in the alarm probability that

the attacker must minimize to remain undetected. It is not possible to attack the PSSE and
guarantee that no alarm is triggered, due to the presence of random measurement errors.
Therefore we assume the attacker has an upper limit on δλ(λ) which is considered acceptable,
δ̄λ. Given reasonable values of α, the attacker is able to compute feasible values of λ by
solving ∫ ∞

τχ(α)

gλ(u)du 6 α + δ̄λ. (6.28)

Under the reasonable assumption that δλ(λ) increases with λ, since the mean of χ2
m−n(λ)

is shifted along the positive direction and its variance increases as λ increases, we provide
the following result.

Proposition 6.5.5. Given α and δ̄λ an attack is stealthy regarding the performance index
test if the following holds

cos γ1‖a‖2 6
√
λ̄(α, δ̄λ) (6.29)

where λ̄(α, δ̄λ)6 is the maximum value of λ for which (6.28) is satisfied.

Proof. First note that from our assumption δλ(λ) increases with λ. Therefore stealthy attack

vectors satisfy ‖r̄a‖2 6
√
λ̄, as this implies by definition that λ 6 λ̄ and δλ(λ) 6 δ̄λ. The

rest of the proof follows from Prop. 6.5.4.
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Largest normalized residual test

Recall that the residuals without attack follow a normal distribution r̄ ∼ N (0, S̄),
whereas under attack we have r̄a ∼ N (d, S̄) with d = S̄a. Each element of the normal-

ized residual vector then has distribution rNai ∼ N (dNi , 1) with d
N
i = D

−1/2
ii di being the bias

introduced by the attack vector. Similarly as before, defining δ̄d as the maximum admissible
increase in the alarm probability and given α, the biases dNi providing the required level of
stealthiness satisfy the inequality

∫ τN(α)

−τN(α)
gNdNi

(u)du > 1− α− δ̄d, (6.30)

with gN
dNi
(u) being the pdf of rNai .

Proposition 6.5.6. Given α and δ̄d an attack is stealthy regarding the largest normalized
residual test if the following holds

‖D−1/2‖2 cos γ1‖a‖2 6 d̄N(α, δ̄d) , (6.31)

where d̄N(α, δ̄d) is the maximum value of ‖dN‖∞ for which (6.30) is satisfied with dNi =
‖dN‖∞.

Proof. Clearly it is sufficient to require (6.30) to hold for |dNi | = ‖dN‖∞, as this corresponds
to the worst-case bias. Note that the increase in alarm probability δd increases with |dNi |
due to the symmetrical nature of gN

dNi
(u). Thus (6.30) reaches equality for ‖dN‖∞ = d̄N and

a sufficient condition for (6.30) to hold is to have ‖dN‖∞ 6 d̄N . Recalling dN = D−1/2S̄a
and ‖ · ‖∞ 6 ‖ · ‖2, we conclude the attack is stealthy if ‖D−1/2S̄a‖2 6 d̄N , which is satisfied
by ‖D−1/2‖2‖S̄a‖2 6 d̄N . The rest follows from Prop. 6.5.4.

The main result of this section is as follows:

Theorem 6.5.7. Given the perturbed model H̃, the false-alarm probability α and the
maximum admissible increase in alarm probability δ̄, an attack following the policy a = H̃c
is stealthy if

‖a‖2 6 β(α, δ̄) , (6.32)

where β(α, δ̄) is given by the BDD scheme of the SCADA system.

Proof. Assuming the BDD method is the performance index and taking β(α, δ̄) =

√
λ̄(α,δ̄λ)

cos γ1
,

the proof directly follows from Prop. 6.5.5. For the largest normalized residual, defining

β(α, δ̄) = d̄N (α,δ̄d)

‖D−1/2‖2 cos γ1 the proof follows from Prop. 6.5.6.

Note that in the scenario analyzed here the designer of the BDD scheme chooses both
the detection method as well as the false-alarm probability α. These elements are fixed and
usually unknown to the attacker, who defines the maximum risk δ̄ he is willing to take and
has some knowledge of the power network H̃, that used to compute the attack vector a.
However α can be estimated by reasonable values and the same happens for the degrees of
freedom of the chi-squares distribution.
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Figure 6.2: Power network with 6 buses.

6.6 Case study

6.6.1 Worst-Case Model Uncertainty

An interesting analysis is to understand what is the worst-case uncertainty ∆H̄ maxi-
mizing the orthogonality between Im(H̃) and Ker(H̄⊤). This corresponds to maximize the
effect of the attack vector a on the measurement residual. From the attacker’s view, this
could lead to a set of robust attack policies. As for the control center this could be useful
to implement security measures based on decoys, for instance. It is known that the network
model used in the PSSE can be kept in the databases of the SCADA system with little pro-
tection. Thus a possible defensive strategy would be to replace that model by a perturbed
one which, if used by an attacker, would increase the residuals and increase the detection
of intelligent attacks.

The first observation at this point is that it is of little interest to consider cases when only
the maximum magnitude of the model perturbation is considered, i.e. ‖∆H̄‖ 6 ω. Note
that this formulation only tells us that the uncertainty is within a ball of radius ω from
the nominal model H̄. Thus one can always choose a worst-case perturbation satisfying
‖∆H̄‖ = ω which is orthogonal to H̄, yielding ‖S̄T̄∆‖ = 1. Hence scenarios where the
uncertainty is more structured are of greater interest.

We now apply the previous results to the scenario where the attacker knows the exact
topology of the network but has an error on the transmission line’s parameters of ±20%. The
detectability of attacks in this scenario is intimately related to the detectability of parameter
or topology errors. Consider the power network in Fig. 6.2 with the data in Tab. 6.1 and
linear measurement model z = Hx.1 The parameter errors in Tab. 6.1 were computed so
that cos(γ1) = ‖S̄T̃‖2 is maximized for errors up to ±20%, corresponding to the worst-

1The author is grateful to Andre Teixeira for conducting this case study.
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Table 6.1: Data of the 6 buses network.

Branch From bus To bus Reactance (pu) Parameter Error
b1 1 4 0.370 -20%
b2 1 2 0.518 +20%
b3 6 5 1.05 -20%
b4 6 3 0.640 -20%
b5 5 4 0.133 -20%
b6 4 2 0.407 -20%
b7 3 2 0.300 +20%
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Figure 6.3: Attack stealthiness as a function of the detection risk.

case uncertainty. Note that this actually corresponds to the constrained maximization of a
convex function, which was solved using the numerical solvers available in Matlab.

In Fig. 6.3 we show how the maximum 2-norm of a stealthy attack vector β(α, δ) in
terms of Thm. 6.5.7 varies with respect to the detection risk δ, for α = 0.05. The solid line
represents the 2-norm of the optimal attack vector a∗ constrained by ab1 = 1, where ab1
is the power flow in branch b1. The curves denoted as χ2 and LNR represent the value of
β(0.05, δ) for the performance index test and largest normalized residual test, respectively.
As it is seen, the performance index test allows for larger attacks than the largest normalized
residual test. Since attacks following a = H̃c have a similar meaning to multiple interacting
bad data, this validates the known fact that largest normalized residual test is more robust
to such bad data than the performance index test. Note that the norm of the optimal attack
vector in the sense of (6.16) when targeting the power flow between buses 1 and 4 is also
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shown. We see that such attack would have a small risk, even for the largest normalized
residual.

6.7 Discussion

In this chapter we provided methods to analyze cyber-security of PSSE in scenarios
where the attacker has a limited knowledge of the network and unlimited resources. In
particular we proposed a framework to model such attackers, which is capable of taking
into account resource constraints. We also considered two BBD methods widely used and
showed that such tools do not guarantee security against cyber-attacks.
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Chapter 7

Security Constrained Networked
Control

7.1 Introduction

In this chapter, we consider the problem of security constrained optimal control for
discrete-time, linear dynamical systems in which control and measurement packets are trans-
mitted over a communication network. The packets may be jammed or compromised by a
malicious adversary. For a class of denial-of-service (DoS) attack models, the goal is to find
an (optimal) causal feedback controller that minimizes a given objective function subject to
safety and power constraints. We present a semi-definite programming based solution for
solving this problem. Our analysis also presents insights on the effect of attack models on
solution of the optimal control problem.

As discussed in the previous chapters, attacks to computer networks have become preva-
lent over the last decade. While most control networks have been safe in the past, they
are currently more vulnerable to malicious attacks Cárdenas et al. [2008]; Turk [2005]. The
consequences of a successful attack on control networks can be more damaging than attacks
on other networks because control systems are at the core of many critical infrastructures.
Therefore, analyzing the security of control systems is a growing concern Cárdenas et al.
[2008]; Nguyen et al. [2008]; Pinar et al. [2010]; Salmeron et al. [2004]; Turk [2005].

There is a significant body of work on networked control Schenato et al. [2007], stochas-
tic verification Amin et al. [2006]; Chatterjee, de Alfaro and Henzinger [2009], robust con-
trol Amin et al. [2007]; Ben-tal et al. [2005]; D.Q. [2000]; Goulart et al. [2006], and fault-
tolerant control Yu et al. [1994]. We argue that several major security concerns for control
systems are not addressed by the current literature. For example, fault analysis of control
systems usually assumes independent modes of failure, while during an attack, the modes
of failure will be highly correlated. The existing body of work in networked control systems
assumes that the failure modes follow a given class of probability distributions; however,
a real attacker has no incentives to follow this assumed distribution, and may attack in
a non-deterministic manner. Finally, the work in stochastic system verification has ad-
dressed safety and reachability problems for fairly general systems; however, the potential
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applicability of these results for securing control systems has not been studied.
In this chapter, we formulate and analyze the problem of secure control for discrete-

time linear dynamical systems. Our work is based on two ideas: (1) the introduction
of safety-constraints as one of the top security requirements of a control system, and (2)
the introduction of new adversary models—we generalize traditional uncertainty classes for
control systems to incorporate more realistic attacks. The goal in our model is to minimize
a performance function such that a safety specification is satisfied with high probability
and power limitations are obeyed in expectation when the sensor and control packets can
be dropped by a random or a resource-constrained attacker. Our analysis uses tools from
optimal control theory such as dynamic and convex programming.

7.1.1 Attacks on control systems

As discussed in the previous chapters, malicious cyber attacks to networked control
systems can be classified as either deception attacks or denial-of-service DoS attacks.
In the context of control systems, integrity refers to the trustworthiness of sensor and control
data packets. A lack of integrity results in deception: when a component receives false data
and believes it to be true. Figure 7.1 adopts a simplistic viewpoint, where A1 and A3
represent deception attacks, and the adversary sends false information ỹ 6= y or ũ 6= u
from (one or more) sensors or controllers. The false information can include: an incorrect
measurement, the incorrect time stamp, or the incorrect sender identity. The adversary can
launch these attacks by compromising some sensors (A1) or controllers (A3).
On the other hand, availability of a control system refers to the ability of all components
of being accessible. Lack of availability results in a DoS of sensor and control data. A2
and A4 represent DoS attacks in Figure 7.1, where the adversary prevents two entities
from communicating. To launch a DoS the adversary can jam the communication channels,
compromise devices and prevent them from sending data, attack the routing protocols, flood
with network traffic some devices, etc.
Lastly, A5 represents a direct attack against the actuators or the plant. Solutions to these
attacks, fall in the realm of detecting such attacks and improving the physical security of
the system.

As shown by the analysis of a database that tracked cyber-incidents affecting industrial
control systems from 1982 to 2003 Byres and Lowe [2004], DoS is the most likely threat to
control systems; therefore in this chapter we focus on DoS attacks.
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Figure 7.1: Attacks on a control system.

7.2 Problem Setting

7.2.1 System Model

We consider a linear time invariant stochastic system over a time horizon k = 0, . . . , N−1
with measurement and control packets subject to DoS attacks (γk, νk):

xk+1 = Axk + Buak + wk k = 0, . . . , N − 1, (7.1)

uak = νkuk νk ∈ {0, 1}, (7.2)

xak = γkxk γk ∈ {0, 1}, (7.3)

where xk ∈ Rn and uk ∈ Rm denote the state and the control input respectively, wk ∈ Rn is
independent, Gaussian distributed noise with mean 0 and covariance W (denoted as wk ∼
N (0,W )), x0 ∼ N (x̄, P0) is the initial state, and {γk} (resp. {νk}) is the sensor (resp. actu-
ator) attack sequence. Also, x0 and wk are uncorrelated. The available state (resp. available
control input) is denoted by xak (resp. u

a
k) after a DoS attack on the measurement (resp. con-

trol) packet. Following Schenato et al. [2007], for an acknowledgment based communication
protocol such as TCP, the information set available at time k is Ik = {xa0, . . . , xak, γk0 , νk−1

0 }
where γji = (γi, . . . , γj) and ν

j
i = (νi, . . . , νj). Define u

N−1
0 = (u0, . . . , uN−1).

We note that due to (7.3), the controller receives perfect state information xk when γk = 1
and 0 when γk = 0. However, our analysis presented can also be extended for the case of
measurement equation yak = γkCsxk + vk.

7.2.2 Goals and Requirements

At this stage, we have not specified any restrictions on the DoS attack actions except
that (γk, νk) ∈ {0, 1}2 for k = 0, . . . , N − 1. We will impose constraints on the attacker
actions in Section 7.3.1. Given such constraints, our goal is to synthesize a causal feedback
control law uk = µk(Ik) such that for the system (7.1), (7.2), and (7.3), the following
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finite-horizon objective function is minimized

JN(x̄, P0, u
N−1
0 ) = E

[
x⊤NQ

xxxN +
N−1∑

k=0

(
xk
uk

)⊤(
In 0
0 νkIm

)
Q

(
xk
uk

) ∣∣uN−1
0 , x̄, P0

]
(7.4)

where Qxx ≻ 0, and Q � 0 is partitioned as

Q =

(
Qxx 0
0 Quu

)
∈ R

(n+m)×(n+m),

and constraints on both the state and the input in an expected sense

E

[(
xk
uk

)⊤(
In 0
0 νkIm

)
Hi

(
xk
uk

)]
6 βi for i = 1, . . . , L, and k = 0, . . . , N − 1 (7.5)

with Hi � 0 and scalar constraints on the state and the input in a probabilistic sense

P

[
t⊤i

(
In 0
0 νkIm

)(
xk
uk

)
6 αi

]
> (1− ε) for i = 1, . . . , T, and k = 0, . . . , N − 1 (7.6)

with ti ∈ Rn+m are satisfied. The constraints (7.5) can be viewed as power constraints
that limit the energy of state and control inputs at each time step. The constraint (7.6)
can be interpreted as a safety specification stipulating that the state and the input remain
within the hyperplanes specified by ti and αi with a sufficiently high probability, (1 − ε),
for k = 0, . . . , N − 1. Equations (7.5) and (7.6) are to be interpreted as conditioned on the
initial state, i.e., E[·] := E[·|x0] and P[·] := P[·|x0].

7.3 Optimal control with constraints and random at-

tacks

7.3.1 A random DoS attack model

Networked control formulations have previously considered the loss of sensor or control
packets and their impact on the system. While previous results model packet drops caused
by random events (and not by an attacker) we believe these packet drop models can be
used as a first-step towards understanding the impact of DoS attacks to our objective and
constraints.

One of these models is the Bernoulli packet drop model, in which at each time, the
attacker randomly jams a measurement (resp. control) packet according to independent
Bernoulli trials with success probability γ̄ (resp. ν̄). This attack model, referred as the
Ber(γ̄, ν̄) adversary, has the following admissible attack actions

ABer(γ̄,ν̄) = {(γN−1
0 , νN−1

0 )|P(γk = 1) = γ̄,P(νk = 1) = ν̄, k = 0, . . . , N − 1}. (7.7)
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For the ABer(γ̄,ν̄) model, we can write the Kalman filter equations for the state esti-

mate x̂k|k := E[xk|Ik] and the state estimation error ek|k := (xk − x̂k|k). For the update step
we have

x̂k+1|k = Ax̂k|k + νkBuk and, ek+1|k = Aek|k + wk

and for the correction step

x̂k+1|k+1 = γk+1xk+1 + (1− γk+1)x̂k+1|k and, ek+1|k+1 = (1− γk+1)ek+1|k,

starting with x̂0|−1 = x̄ and e0|−1 ∼ N (0, P0). It follows that the error covariance ma-
trices Σk+1|k := E[ek+1|ke

⊤
k+1|k|Ik] and Σk|k := E[ek|ke

⊤
k|k|Ik] do not depend on the control

input uk. Thus, the separation principle holds for TCP-like communication Schenato et al.
[2007]. Furthermore, it is easy to see that

E[ek|kx
⊤
k|k] = 0. (7.8)

Taking expectations w.r.t. {γk}, the expected error covariances follow

Eγ [Σk+1|k] = AEγ[Σk|k]A
⊤ +W and, Eγ[Σk+1|k+1] = (1− γ̄)Eγ[Σk+1|k],

for k = 0, . . . , N − 1 starting with the initial condition Σ0|−1 = P0. For the ease of notation,
we denote x̂k+1 := x̂k+1|k, ek+1 := ek+1|k, and Σk+1 := Σk+1|k. Using the Kalman filter
equations we obtain for k = 0, . . . , N − 1

x̂k+1 = Ax̂k + νkBuk + γkAek (7.9)

ek+1 = (1− γk)Aek + wk (7.10)

Eγ[Σk+1] = (1− γ̄)AEγ[Σk]A
⊤ +W. (7.11)

Definition 7.3.1. For Bernoulli attacks, (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) over systems controlled
over TCP-like communication protocols, the safety-constrained robust optimal control prob-
lem is equivalent to minimizing (7.4) subject to (7.9), (7.11), (7.5) and (7.6).

7.3.2 Controller parameterization

In this section, we deal with the safety-constrained optimal control problem as defined
in Definition 7.3.1. Naive implementation of the control law u∗k = −Lkx̂k|k may not guar-
antee constraint satisfaction for any initial state. Recent research has shown that for the
optimal control problems involving state and input constraints, more general causal feed-
back controllers can guarantee a larger set of initial states for which the constrained opti-
mal control problem admits a feasible solution Ben-tal et al. [2005]; Goulart et al. [2006];
Primbs and Sung [2009]; Skaf and Boyd [2010]; van Hessem and Bosgra [2003]. Specifically,
these approaches consider the problem of designing causal controllers that are affine in all
previous measurements such that a convex objective function is minimized subject to con-
straints imposed by the system dynamics, and the state and inputs constraints are satisfied.
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When considering a system under DoS attacks, (7.1), (7.2), and (7.3), the class of causal
feedback controllers can be defined as an affine function of the available measurements, i.e.,

uk = ūk +
k∑

j=0

γjMk,jxj, k = 0, . . . , N − 1 (7.12)

where ūk ∈ Rm is the open-loop part of the control, and Mk,j ∈ Rm×n is the feedback gain
or the recourse at time k from sensor measurement xj. For a lost measurement packet, say
xj′ for γj′ = 0, the corresponding feedback gainMk,j′ has no contribution toward the control
policy. We note that the above parameterization can be re-expressed as an affine function
of innovations vk|k−1 := γk(xk − x̂k|k−1) = γkek as

uk = u◦k +
k∑

j=0

γjMk,jej, k = 0, . . . , N − 1 (7.13)

where u◦k := ūk +
∑k

j=0 γjMi,jx̂j|j−1.

Remark 7.3.2. When only the current available measurement is used for computing the
feedback policy, the mapping µk can be expressed as

uk = ūk + γkMk,kxk = u◦k + γkMkek, k = 0, . . . , N − 1, (7.14)

where Mk :=Mk,k for ease of notation and u◦k := ūk + γkMkx̂k|k−1.

7.3.3 Convex characterization

In this section, we will show that unlike (7.12), the use of control parameterization (7.13)
yields an affine representation of state and control trajectories in terms of the control pa-
rameters ūk (or u◦k) and Mk,j. We use x, x̂, u, e and w to denote the respective trajec-
tories over the time horizon 0, . . . , N . That is, x = (x⊤0 , . . . , x

⊤
N)

⊤ ∈ Rn(N+1) and similarly
for x̂ ∈ Rn(N+1) and e ∈ Rn(N+1); u = (u⊤0 , . . . , u

⊤
N−1)

⊤ ∈ RmN and similarly for w ∈ RnN .
Using this representation, the system (7.1) and the control parameterization (7.12) can be
written as

x = Aw +BNu+ x0, (7.15)

u = ū+MΓx, (7.16)

where x0, A, B, Γ, N are given by:

x0 :=




In
A
A2

...
AN



x0 ∈ R

n(N+1), A :=




0 0 0 . . . 0
In 0 0 . . . 0
A In 0 . . . 0
...

...
...

. . . 0
AN−1 AN−2 AN−3 . . . In




∈ R
n(N+1)×nN ,
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B := A(IN ⊗ B) =




0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0
...

...
...

. . . 0
AN−1B AN−2B AN−3B . . . B




∈ R
n(N+1)×mN ,

Γ = diag(γN−1
0 )⊗ In =



γ0In

. . .

γN−1In


 ∈ R

nN×nN ,

N = diag(νN−1
0 )⊗ Im =



ν0Im

. . .

νN−1Im


 ∈ R

mN×mN ,

and

e0 =




In
(1− γ0)A

(1− γ0)(1− γ1)A
2

...∏N−1
j=0 (1− γj)A

N



e0 ∈ R

n(N+1)

H =




0 0 . . . 0
In 0 . . . 0

(1− γ1)A In . . . 0
...

...
...

. . .
...∏N−1

j=1 (1− γj)A
N−1

∏N−1
j=2 (1− γj)A

N−2 . . . In




∈ R
n(N+1)×nN ,

and

M =




M0,0 0 . . . 0
M1,0 M1,1 . . . 0
...

. . . . . .
...

MN−1,0 . . . MN−1,N−1 0


 ∈ R

mN×n(N+1), ū =




ū0
...

ūN−1


 ∈ R

mN (7.17)

Using (7.15) and (7.16), we can show that the closed-loop system response can be written
as (

x
u

)
=

(
G̃xw

G̃uw

)
w +

(
x̃
ũ

)
(7.18)

where

G̃xw =
(
A+BNMΓ(I −BNMΓ)−1A

)

G̃uw =
(
MΓ(I −BNMΓ)−1A

)

x̃ = x0 +BNū+BNMΓ(I −BNMΓ)−1(x0 +BNū)

ũ = MΓ(I −BNMΓ)−1(x0 +BNū) + ū
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Equation (7.18) is nonlinear in the control parameters (ū,M) and hence, parameteriza-
tion (7.12) cannot be directly used for solving constrained stochastic optimal control prob-
lems. On the other hand, using (7.10), the error trajectory can be written as

e = e0 +Hw (7.19)

where e0 and H are also given in the Appendix. Using (7.19), (7.15) and the control
parameterization (7.13) we can re-express the closed-loop system response as

(
x
u

)
=

(
Ĝxw

Ĝuw

)
w +

(
x̂
û

)
(7.20)

where

Ĝxw = (A+BNMΓH), Ĝuw = MΓH

x̂ = BNMΓe0 + x0 +BNu◦, û = MΓe0 + u◦

Thus, we arrive at the following result

Theorem 7.3.3. Under the error feedback parameterization (7.13), the closed loop system
response (7.20) is affine in the control parameters (u◦,M).

We will now use the error feedback parameterization (7.13) for our analysis. Alterna-
tively, we also note the following result:

Remark 7.3.4. Using the transformation

Q := MΓ(I −BNMΓ)−1, r := (I +QBN)ū (7.21)

where Q ∈ RmN×n(N+1) and r ∈ Rmn, the terms in equation (7.18) can be written as:
Gxw = (I +BNQ)A, Guw = QA, x̃ = (I +BNQ) x̄ + BNr, and ũ = Qx̄ + r. Using
simple matrix operations, the relations in (7.21) can be inverted as MΓ = (I +QBN)−1Q
and ū = (I − MΓHN)r. Thus, under parameterization (7.21), the closed-loop system
response also becomes affine in the control parameters (r,Q).

7.3.4 Safety-constrained optimal control for Bernoulli attacks

For the control parameterization (7.12), and for the Bernoulli attack model, ABer(γ̄,ν̄)
we will now solve the safety-constrained optimal control problem as stated in Lemma 7.3.1,
i.e., minimize (7.4) subject to (7.9), (7.11), (7.5), and (7.6). We state the following useful
lemma

Lemma 7.3.5 (Schur Complements). For all X ∈ Sn, Y ∈ Rm×n, Z ∈ Sm, the following
statements are equivalent:

a)Z ≻ 0, X − Y ⊤Z−1Y � 0,

b)Z ≻ 0,

(
X Y ⊤

Y Z

)
� 0
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For the sake of simplicity we will consider the parameterization (7.14). However, our
results can be re-derived for the parameterization (7.12). First, we will derive the expression
for

Vk = E

[(
x̂k
u◦k

)(
x̂k
u◦k

)⊤
]

Using (7.14), the update equation for the state estimate (7.9) becomes

x̂k+1 = Ax̂k + νkBu
◦
k + γk(A+ νkBMk)ek, (7.22)

and further defining F = [In, 0] ∈ Rn×(n+m) we have,

FVk+1F
⊤ = V x̂x̂

k+1 = E
[
x̂k+1x̂

⊤
k+1

]

= E
[
(Ax̂k + νkBu

◦
k + γk(A+ νkBMk)ek)(Ax̂k + νkBu

◦
k + γk(A+ νkBMk)ek)

⊤]

=
[
A
∣∣√ν̄B

]
E

[(
x̂k
u◦k

)(
x̂k
u◦k

)⊤
]
[
A
∣∣√ν̄B

]⊤

+
√
γ̄(A+

√
ν̄BMk)Eγ[Σk](A+

√
ν̄BMk)

⊤√γ̄
=
[
AVk

∣∣√ν̄BVk
]
(Vk)

−1
[
AVk

∣∣√ν̄BVk
]⊤

+
√
γ̄(AEγ[Σk] +

√
ν̄BUk)(Eγ[Σk])

−1(AEγ[Σk] +
√
ν̄BUk)

⊤√γ̄
where we have used Uk = MkEγ[Σk]. An upper bound on V can be obtained in the form
of the following LMI by replacing the equality by � and using Schur complements for
k = 0, . . . , N − 1:




(FVk+1F
⊤) ∗ ∗ ∗[

AVk
√
ν̄BVk

]⊤
0 Vk ∗√

γ̄(AEγ[Σk] +
√
ν̄BUk)

⊤ 0 0 Eγ[Σk]


 � 0 (7.23)

The objective function (7.4) can be expressed as

E
[
Tr

{
QxxxNx

⊤
N

}]
+
N−1∑

k=0

E

[
Tr

{(
Qxx 0
0 νkQ

uu

)}(
xk
uk

)(
xk
uk

)⊤]

= Tr

{
QxxE

[
xNx

⊤
N

]}
+
N−1∑

k=0

Tr

{(
Qxx 0
0 E[νk]Q

uu

)
E

[(
xk
uk

)(
xk
uk

)⊤]}

= Tr

{
QxxE

[
x̂N x̂

⊤
N

]}
+
N−1∑

k=0

Tr

{(
Qxx 0
0 ν̄Quu

)
E

[(
x̂k
uk

)(
x̂k
uk

)⊤]}

+
N∑

k=0

Tr {QxxEγ [Σk]}

Since Σk does not depend on the control input (refer to eq. (7.11)),
∑N

k=0Tr {QxxEγ[Σk]}
is a constant and minimizing JN(x̄, P0, u

N−1
0 ) is the same as minimizing

Tr
{
QxxV x̂x̂

N

}
+

N−1∑

k=0

Tr

{(
Qxx 0
0 ν̄Quu

)
Pk

}
(7.24)
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where V x̂x̂
N is equal to E

[
x̂N x̂

⊤
N

]
and the upper bound Pk is defined as

Pk � E

[(
x̂k
uk

)(
x̂k
uk

)⊤
]
= E

[(
x̂k

u◦k + γkMkek

)(
x̂k

u◦k + γkMkek

)⊤
]

= E

[(
x̂k
u◦k

)(
x̂k
u◦k

)⊤
]
+

[
0 0
0 γ̄Uk(Eγ[Σk])

−1U⊤
k

]

Again using Schur complement, we obtain for k = 0, . . . , N − 1




Pk ∗ ∗
Vk Vk ∗[
0√
γ̄Uk

]⊤
0 Eγ[Σk]


 � 0 (7.25)

The power constraints (7.5) can be written as

Tr

{
Hi

[
In 0
0 E[νk]Im

]
E

[(
xk
uk

)(
xk
uk

)⊤
]}

= Tr

{
Hi

[
In 0
0 ν̄Im

]
E

[(
x̂k
uk

)(
x̂k
uk

)⊤
]}

+Tr {Hxx
i Eγ [Σk]}

Therefore the power constraints (7.5) become for i = 1, . . . , L, k = 0, . . . , N − 1

Tr

{
Hi

[
In 0
0 ν̄Im

]
Pk

}
6 βi −Tr {Hxx

i Eγ[Σk]} . (7.26)

Thus, we can now state the following theorem

Theorem 7.3.6. For the (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) attack model the optimal causal con-

troller of the form (7.14) for the system (7.1), (7.2), (7.3) that minimizes the objective func-
tion (7.4) subject to power constraints (7.5) is equivalent to solving the following semidefinite
program (SDP):

P(x̄, P0, N) :

{
minVi,Pi,Ui

(7.24)

subject to (7.23), (7.25), (7.26).
(7.27)

To address safety specification (7.6), we refer to Theorem 3.1 in Calafiore and El Ghaoui
[2007] which says that for any ǫ ∈ (0, 1), the chance constraint of the form

inf
d∼D

P
[
d⊤x̃ 6 0

]
> 1− ǫ
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is equivalent to the second order cone constraint (SOCP)
√

1− ǫ

ǫ
x̃⊤Γx̃+ d̂⊤x̃ 6 0

where D is the set of all probability distributions with mean d̂ and covariance Γ, d is the
uncertain data with distributions in the set of distributions D, and x̃ is the decision variable.
We claim without proof that safety specifications of type (7.6) can be converted to SOCP
constraints following Calafiore and El Ghaoui [2007],van Hessem and Bosgra [2003].

7.4 Modeling general DoS attacks

From the security viewpoint, it might be difficult to justify the incentive for the attacker
to follow a ABer(γ̄,ν̄) model. Therefore, in this section we introduce more general attack

models that impose constraints on the DoS attack actions (γk, νk).
First, note that if we know in advance the strategy of the attacker—for any arbitrary

sequence (γN−1
0 , νN−1

0 )—we can use the results from the previous theorem.

Corollary 7.4.1. The results of Theorem 7.3.6 be specialized to any given attack signa-
ture (γN−1

0 , νN−1
0 ) ∈ {0, 1}2N .

However, in practice we do not know the strategy of the attacker, thus we need to prepare
for all possible attacks. Our model constrains the attacker action in time by restricting the
DoS attacks on the measurement (resp. control) packet for at most p < N (resp. q < N)
time steps anywhere in the time interval i = 0, . . . , N − 1. This attack model is motivated
by limitations on the resources of the adversary—such as its battery power, or the response
time of the defenders—which in turn limits the number of times it can block a transmission.
We refer this attack model as the (p, q) adversary and it has the following admissible attack
actions

Apq = {(γN−1
0 , νN−1

0 ) ∈ {0, 1}2N
∣∣ ‖ γN−1

0 ‖1> N − p, ‖ νN−1
0 ‖1> N − q}, (7.28)

where ‖ · ‖1 denotes the 1−norm. The size of Apq is
∑p

i=0

(
N
N−i
)
·∑q

j=0

(
N
N−j
)
.

An interesting sub-class of Apq attack actions is the class of block attack strategies

Aτxτu
pq = {(γN−1

0 , νN−1
0 ) ∈ {0, 1}2N |γτx+p−1

τx = 0, ντu+q−1
τu = 0} (7.29)

where τx ∈ {0, . . . , N−p} and τu ∈ {0, . . . , N−q} are the times at which the attacker starts
jamming the measurement and control packets respectively. The size of Aτxτu

pq is (N − p +
1) · (N − q+1). The intuition behind this attack sub-class is that an attacker will consume
all of its resources continuously in order to maximize the damage done to the system. In
this attack sub-class, p and q can represent the response time of defensive mechanisms. For
example, a packet-flooding attack may be useful until network administrators implement
filters or replicate the node under attack; similarly a jamming attack may be useful only
until the control operators find the jamming source and neutralize it. We note that Apq

and Aτxτu
pq are non-deterministic attack models in that the attacker can choose its action

non-deterministically as long as the constraints defined by the attack model are satisfied.
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7.4.1 DoS attacks against the safety constraint

One possible objective of the attacker can be to violate safety constraints:

Definition 7.4.2. [Most unsafe attack] For a given attack model A and control strat-
egy µk(Ik), the best attack plan to violate safety specification that a output vector zk :=
(Cxk + νkDuk) remains within safe set S is

max
A

P[(Cxk + νkDµ(Ik)) ∈ Sc] for k = 0, . . . , N − 1 (7.30)

where Sc denotes the unsafe set.

We will now show that for control parameterization (7.12), the block pq attacks, Aτxτu
pq can

be viewed as the best attack plan for violating the safety constraint (refer to Definition 7.4.2).
We can write the system equation (7.1) as

xk+1 = Axk + νkBūk + νk

k∑

j=0

γjMk,jxj + wk

and for the attack strategy Aτxτu
pq :

xk+1 =





Axk + wk for k = τu, . . . , τu + q − 1

Axk +Būk + B
∑min(τx−1,k)

j=0 Mk,jxj

+1(k > τx + p)B
∑k

j=0Mk,jxj + wk for k =

{
0, . . . , τu − 1

τu + q, . . . , N − 1.

(7.31)

Now, if we ignore ūk and substitute τx = 0, τu = p in (7.31) we obtain

xk+1 =

{
Axk + wk for k = 0, . . . , p+ q − 1

Axk +B
∑k

j=pMk,jxj for k = p+ q, . . . , N − 1
(7.32)

Thus, using the attack strategy A0p
pq, the first p+ q − 1 time steps evolve as open-loop and

beyond time step p + q, the system evolves as closed using available measurements since
time p. With this strategy output vector zk is expected to violate the safety constraint in
the shortest time.

7.5 Discussion

From the controller’s viewpoint, it is of interest to design control laws that are robust
against all attacker actions, i.e.:

Definition 7.5.1. [Minimax (robust) control] For a given attack model A, the security
constrained robust optimal control problem is to synthesize a control law that minimizes
the maximum cost over all (γN−1

0 , νN−1
0 ) ∈ A, subject to the power and safety constraints.

This can be written as the minimax problem

min
µk(Ik)

max
A

[(7.4) subject to (7.1), (7.2), (7.3), (7.5) and, (7.6)] . (7.33)
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In general, we note that the problem (7.33) may not always be feasible. When A is
probabilistic, Definition 7.5.1 can be treated in sense of expectation or almost-surely.

On the other hand, from the attacker’s viewpoint, it is of interest to determine the
optimal attack plan that degrades performance, i.e.,

Definition 7.5.2. [Maximin (worst-case) attack] For a given attack model A, the optimal
attack plan is the attacker action that maximizes the minimum operating costs. This can
be written as the maximin problem

max
A

min
µk(Ik)

[(7.4) subject to (7.1), (7.2), (7.3)] . (7.34)

To analyze these goals, we consider the classical linear quadratic control problem, and
analyze the cost function for the case of (1) no attacks, (2) ABer(γ̄,ν̄)attacks, and (3) Apq

attacks.
The problem is to find the optimal control policy uk = µk(Ik) that minimizes the objec-

tive (7.4) for the system (7.1), (7.2), and (7.3). The solution of this problem can be obtained
in closed form using dynamic programming (DP) recursions Gattami [2007]; Schenato et al.
[2007].
We recall that for the case of no-attack, i.e., (γk, νk) = (1, 1) for all k, the optimal control
law is given by u∗k = −Lkxk where Lk := (B⊤Sk+1B+Quu)−1B⊤Sk+1A and the matrices Sk
are chosen such that SN = Qxx and for k = N − 1, . . . , 0,

Sk = A⊤Sk+1A+Qxx −Rk

with Rk = L⊤
k (B

⊤Sk+1B +Quu)Lk. The optimal cost is given by

J∗
N = x̄⊤S0x̄+Tr{S0P0}+

N−1∑

k=0

Tr{Sk+1W}. (7.35)

Following Schenato et al. [2007], the optimal control law for the case ofABer(γ̄,ν̄) attack model
is given by u∗k = −Lkx̂k|k where x̂k|k is given by the Kalman filter equations; the expressions
for Lk, Rk, SN are same as those for the no-attack case, and for k = N − 1, . . . , 0,

Sk = A⊤Sk+1A+Qxx − ν̄Rk.

The optimal cost in this case is given by

J∗
N,ABer(γ̄,ν̄)

= x̄⊤S0x̄+Tr{S0P0}+
N−1∑

k=0

Tr{Sk+1W}+
N−1∑

k=0

Tr{ν̄RkEγ[Σk|k]} (7.36)

Lemma 7.5.3. J∗
N,ABer(γ̄,ν̄)

> J∗
N for all (γ̄, ν̄) ∈ [0, 1].

We now consider the case of Apq attacks. We can solve the problem of optimal attack
plan for the Apq attack class (refer to Definition 7.5.2):
For any given attack signature, (γN−1

0 , νN−1
0 ) ∈ {0, 1}2N , the update equations of error
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covariance are Σk+1|k = AΣk|kA
⊤+W and Σk+1|k+1 = (1−γk+1)Σk+1|k and the optimal cost

is given by

JN,Apq =x̄
⊤S0x̄+Tr{S0P0}

+
N−1∑

k=0

Tr{Sk+1Q}+
N−1∑

k=0

Tr{(A⊤Sk+1A+Qxx − Sk)Σk|k} (7.37)

where SN = Qxx and for k = N − 1, . . . , 0,

Sk = A⊤Sk+1A+Qxx − νkA
⊤Sk+1B(B⊤Sk+1B +Quu)−1B⊤Sk+1A. (7.38)

and for k = 1, . . . , N − 1,

Σk|k =
k∏

j=1

(1− γj)A
kP0A

k⊤ +
k−1∑

i=0

k∏

j=(k−i)
(1− γj)A

iWAi
⊤
. (7.39)

Proposition 7.5.4. An optimal attack plan for Apq attack model is a solution of the fol-
lowing optimization problem:

max
Apq

(7.37) subject to (7.38), (7.39),

‖ γN−1
0 ‖1> (N − p), and ‖ νN−1

0 ‖1> (N − q).

We note that while Σk|k is affected by the past measurement attack sequence {γk0}, Sk
is affected by the future control attack sequence {νN−1

k }.
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Chapter 8

Stabilization of Networked Control
Systems using Bounded Inputs

8.1 Introduction

In Chapter 7, the problem of controlling stochastic linear systems for networked control
settings was considered when the sensor-control data is prone to packet loss and jamming.
For a class of packet drop models, a synthesis procedure was presented to compute feedback
control policies which minimize a given objective function subject to safety constraints. In
this chapter, we consider the problem of controlling marginally stable linear systems using
bounded control inputs for networked control settings in which the communication channel
between the remote controller and the system is unreliable. We assume that the states are
perfectly observed, but the control inputs are transmitted over a noisy communication chan-
nel. Under mild hypotheses on the noise introduced by the control communication channel
and large enough control authority, we construct a control policy that renders the state of
the closed-loop system mean-square bounded. The noise introduced by the control channel
is assumed to be independent and identically distributed and hence, this chapter is only
concerned with stabilization using an unreliable control channel. However, the complexity
of the problem considered here arises from the fact that hard bounds on the control inputs
must be satisfied. Moreover, the analysis developed in this chapter only requires mild as-
sumptions on the distribution of control channel noise. The relationship between unreliable
channel communication and the insecurity introduced due to interdependent network risks
is explored in Chapter 9.

In applications such as remotely operated robotic systems Hokayem and Spong [2006],
the measurement and control signals are exchanged via a lossy and noisy communication
channels, which makes the system a networked control system (NCS). The research in NCS
has branched into many different directions that deal with the effects of delays, limited infor-
mation exchanged, and information losses on the stability of the plant, see, e.g., Nair et al.
[2007] and the references therein. Control under information loss in the communication chan-
nel has been extensively studied within the Linear Quadratic Gaussian (LQG) framework
Imer et al. [2006]. Typically, the communication channel(s) are modeled by an independent
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and identically distributed (i.i.d) Bernoulli process, which assign probabilities to the suc-
cessful transmission of packets. Perhaps the most well known result in this setting is: When
the transmission of sensor and control data packets happens over a network with TCP-like
protocols, the closed-loop system under LQG controller can be mean-square stabilized pro-
vided that the probabilities of successful transmission are above a certain threshold. Since
the TCP-like protocols enable the receiver to obtain an acknowledgment of whether or not
the packets were successfully transmitted, the separation principle holds and the optimal
LQG controller is linear in the estimated state. Thus, this result is a proper generalization
of the classical LQG control problem to the networked control setting.

Within the LQG setting, control inputs are not assumed bounded and therefore linear
state feedback is a permissible and optimal strategy. However, guaranteeing hard bounds
on the control inputs is of paramount importance in applications. Consequently, many re-
searchers have pursued the problem of optimal control and stabilization for linear systems
with bounded control inputs Bernstein and Michel [1995]; Saberi et al. [1999]; Toivonen
[1983]; Wonham and Cashman [1969]. This problem has also received a renewed interest
in recent years Chatterjee, Hokayem and Lygeros [2009]; Digăılova and Kurzhanskĭı [2004];
Hokayem et al. [2009]; Wang and Boyd [2009]. In the deterministic setting, it is well-known
Yang et al. [1997] that global asymptotic stabilization of a linear system xt+1 = Axt + But
is possible if and only if the pair (A,B) is stabilizable under unbounded controls and the
spectral radius of the system matrix A is at most 1. In the stochastic setting, it was argued
in Nair and Evans [2004] that ensuring a mean-square bound for every initial condition is
not possible for linear systems with bounded control elements if the system matrix A is
unstable. The article Ramponi et al. [2010] establishes the existence of a policy with suf-
ficiently large control authority that ensures mean-square boundedness of the states of the
system under the assumption that A is Lyapunov stable. Although Lyapunov stability of A
is a stronger requirement than the spectral radius of A being at most 1, to the best of our
knowledge, this is the current state of the art.

In this chapter we generalize the results of Ramponi et al. [2010] to incorporate noisy
control channels. We consider mean-square boundedness of stochastic linear systems under
the following specification:

1. the communication channel between the controller and the system actuators is noisy
whereas the communication channel between sensors and controller is noiseless, and

2. hard constraints on the control inputs must be satisfied.

We are thus concerned with a networked setting as proposed in Elia [2005]; Schenato et al.
[2007] when generalized to incorporate bounded control inputs Ramponi et al. [2010]. The
control input u(i) for the i-th plant is communicated to the corresponding plant actuator via
a lossy communication channel, which is characterized by the noise ν(i) affecting the control
input multiplicatively as shown in Figure 8.1. We assume that the states are perfectly
observed and are transmitted to the controller without any loss.

The remainder of this chapter is organized as follows. In Section 8.2 we formalize the
main problem with all the underlying assumptions. In Section 8.3 we state the main results
and defer the proofs until Section 8.4. Section 8.5 mentions some future work.
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Figure 8.1: Topology of the control system.

Notation

For any random vector ν let µν := E[ν] denote its mean and σν := var(ν) := E
[
‖ν − µν‖2

]

denote its second moment. For a matrix M we let ‖M‖ denote the induced Euclidean norm
of M . We shall employ the standard notation diam(S) := supx,y∈S ‖x − y‖ to denote
the diameter of a subset S of Euclidean space. For n ∈ N, by 1n we denote a vector of
length n with all entries equal to 1. For r > 0 and n ∈ N, define the saturation function
satr : R

n −→ Rn, as

satr(z) =

{
z if ‖z‖ < r

rz/ ‖z‖ otherwise
(8.1)

8.2 Problem Setup

Consider the following discrete-time stochastic linear system subjected to packet drops
in the control communication channel

xt+1 = Axt + Bũt + wt,

ũt := νt ⊙ ut,
t ∈ N0, (8.2)

where xt ∈ Rd is the state, ut ∈ Rm is the control input, A ∈ Rd×d is the dynamics matrix,
B ∈ Rd×m is the input matrix, (wt)t∈N0 is an Rd-valued random process noise, and (νt)t∈N0

is an Rm-valued random process modelling the uncertainty in the control communication
channel, and ⊙ denotes the Schur or Hadamard product of matrices.1 The initial condition
x0 = x̄ is given and the state xt is perfectly observed by the controller.

The controller determines the control input ut based on the history of k states ζt,k :
= (xt−k+1, . . . , xt−1, xt). (For t = 0, . . . , k − 2, ζt,k := ( x0, . . . , x0︸ ︷︷ ︸

(k−1−t)-times

, x0, x1, . . . , xt).) The

controller synthesizes a deterministic control policy π = (πt)t∈N0 which maps the states
vector ζ into a control set U . To wit,

ut = πt(ζt,k), t ∈ N0,

1Recall [Bernstein, 2009, p. 444] that if M ′,M ′′ are n1 × n2 matrices with real entries, then M ′ ⊙M ′′

is the n1 × n2 matrix defined by (M ′ ⊙M ′′)i,j := (M ′)i,j(M
′′)i,j .
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where the maps πt : R
kd −→ U ⊆ Rm, t ∈ N0, are Borel measurable. Such a control policy

π is known as a k-history dependent policy. The control set U is assumed to be nonempty,
compact, and containing the origin. Any control policy π = (πt)t∈N0 which guarantees that
the control input sequence (ut)t∈N0 satisfies

ut ∈ U , t ∈ N0, (8.3)

is called an admissible k-history dependent policy. In many practical situations involving
saturating actuators and hard bounds on control inputs, U is chosen to be a ball, i.e.,

U :=
{
z ∈ R

m
∣∣ ‖z‖ 6 Umax

}
, (8.4)

where Umax > 0 is called the control authority available to the controller.
Our control objective is to synthesize an admissible k-history dependent policy which

ensures that the second moment of the closed-loop system, for any initial condition x̄ ∈ Rn,

xt+1 = Axt + Bνt ⊙ πt(ζt,k) + wt, t ∈ N0, (8.5)

remains bounded for all t ∈ N0. We shall focus on the following problem:

Problem 8.2.1. Find, if possible, a control authority Umax and an admissible policy π =
(πt)t∈N0 with control authority Umax, such that the following condition holds: for every
initial condition x̄ ∈ Rd there exists a constant ζ > 0 such that the closed-loop system (8.5)
satisfies

Ex̄[‖xt‖2] 6 ζ, ∀t ∈ N0.

In practice, a performance index that accounts for the average sum of cost-per-stage
functions (involving the state and control inputs) of the system is often required to be
minimized; however, in this chapter we are only concerned with the stability property defined
in Problem 8.2.1.

We shall make the following standing hypotheses:

Assumption 8.2.2.

(i) The matrix A is Lyapunov stable, i.e., all the eigenvalues of A lie in the closed unit
circle, and all eigenvalues λ satisfying |λ| = 1 have equal algebraic and geometric
multiplicities.

(ii) The pair (A,B) is stabilizable.

(iii) The process noise (wt)t∈N0 is an independent sequence, and has bounded fourth mo-
ment, i.e., C4 := supt∈N0

E[‖wt‖4] <∞.

(iv) The control input sequence (ut)t∈N0 satisfies (8.3) and (8.4).

(v) The control channel noise (νt)t∈N0 is i.i.d. ♦
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It follows from Assumption 8.2.2-(iii) that there exists C1 > 0 such that E[‖wt‖] 6 C1

for all t ∈ N0. (For instance, Jensen’s inequality shows that C1 6 4
√
C4.) Note also that

Assumption 8.2.2-(iii) does not require that the process noise vectors (wt)t∈N0 be identically
distributed. The assumption of mutual independence of (wt)t∈N0 can also be relaxed, but
we shall not pursue this line of generalization here.

Without any loss of generality, we also assume that A is in real Jordan canonical form (cf.
Nair and Evans [2004]). Indeed, given a linear system described by system matrices (Ã, B̃),
there exists a coordinate transformation in the state-space that brings the pair (Ã, B̃) to the
pair (A,B), where A is in real Jordan form [Horn and Johnson, 1990, p. 150]. In particular,
choosing a suitable ordering of the Jordan blocks, we can ensure that the pair (A,B) has

the form

([
A1 0
0 A2

]
,

[
B1

B2

])
, where A1 ∈ Rd1×d1 is Schur stable, and A2 ∈ Rd2×d2 has its

eigenvalues on the unit circle. By Assumption 8.2.2-(i), A2 is therefore block-diagonal with
elements on the diagonal being either ±1 or 2 × 2 rotation matrices. As a consequence,
A2 is orthogonal. Moreover, since (A,B) is stabilizable by Assumption 8.2.2-(ii), the pair
(A2, B2) must be reachable in a number of steps κ 6 d2 that depends on the dimension of
A2 and the structure of (A2, B2), i.e., rank(Rκ(A2, B2)) = d2, where

Rκ(A2, B2) :=
[
Aκ−1

2 B2 · · · A2B2 B2

]
.

The smallest such κ is called the controllability index of (A2, B2) and is fixed throughout
the rest of this chapter. Summing up, we can start by considering that the state equation
(8.2) has the form [

x
(1)
t+1

x
(2)
t+1

]
=

[
A1x

(1)
t

A2x
(2)
t

]
+

[
B1

B2

]
ũt +

[
w

(1)
t

w
(2)
t

]
, (8.6)

where A1 is Schur stable, A2 is orthogonal, and the subsystem (A2, B2) is reachable in κ
steps. Since the matrix Rκ(A2, B2) has rank full rank, its Moore-Penrose pseudoinverse
exists and is given by

Rκ(A2, B2)
+ :=

Rκ(A2, B2)
T
(
Rκ(A2, B2)Rκ(A2, B2)

T
)−1

.

8.3 Admissible Policy of Bounded Control Authority

We now state the main result pertaining to the existence of a policy of bounded au-
thority that renders the state of the system (8.2) mean-square bounded. Let us define
the normalized measure of dispersion or the noise-to-signal ratio of the channel Ψ :=√
σν ·maxi=1,...,m |(µν)i|−1. We impose the following additional requirements:

Assumption 8.3.1. In addition to Assumption 8.2.2 we stipulate that:

(vi) The control channel noise has bounded range, i.e., ν0 ∈ T, where T is a bounded subset
of Rm, and that µν has nonzero entries.
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(vii) The following two technical conditions hold:

(vii.a) κΨ
√
σν ‖Rκ(A2, B2)

+‖ ‖Rκ(A2, B2)‖ < 1.

(vii.b) Umax >
(√

κC1 maxi=1,...,m |(µν)i|−1 ‖Rκ(A2, B2)
+‖ ‖Rκ(A2, I2)‖

)
÷
(
1 − κΨ

‖Rκ(A2, B2)
+‖ ‖Rκ(A2, B2)‖

)
. ♦

Proposition 8.3.2. Consider the system (8.2), and suppose that Assumption 8.3.1 holds.
Then there exists a κ-history dependent policy π := (πt)t∈N0 with control authority at most
Umax, such that for every initial condition x̄ there exists a constant ζ = ζ(x̄, κ, µν ,Ψ , C1) > 0
with

Ex̄[‖xt‖2] 6 ζ for all t ∈ N0

in closed-loop.

Remark 8.3.3. Proposition 8.3.2 assumes minimal structure from the set in which the con-
trol channel noise takes its values. In particular, we do not assume that the control channel
noise takes values in a finite set—in fact, T may be uncountable. While the standard choice
of modelling uncertainty in the control channels has focussed on a multiplicative Bernoulli
{0, 1} random variable multiplying the entire control vector, there are cases in which the
uncertainty model considered in (8.2) (i.e., different random variables multiplying the com-
ponents of the controller,) makes sense. For instance, the standard processes of control
quantization or “binning” can be viewed as introducing uncertainty to the controller—
components of the controller being multiplied by bounded but not necessarily identically
distributed random variables; the set T has the natural interpretation of the “largest bin.”
In view of this, Assumption 8.3.1-(vii.a) is a technical condition stipulated as a trade-off for
the absence of any further structure in the set T. ⊳

In Section 8.4 we prove Proposition 8.3.2 by a constructive method. It turns out that
our policy (see (8.12) below) is derived from the κ-subsampled system (xκt)t∈N0 , and is κ-
history dependent. To wit, for each n ∈ N0, at time κn, based on the state xκn, the policy
synthesizes a κ-long sequence of control values for time steps κn, κn+ 1, . . . , κ(n+ 1)− 1.

Let us assume that the same uncertainty enters all the control channels, i.e., ũt = νtut,
where νt ∈ R. The structure of our control policy permits us to transmit the control data
packets in a single burst each κ steps. This however, necessitates the presence of a buffer at
the actuator to store the κ control values {νκnuκn, νκnuκn+1, . . . , νκnuκ(n+1)−1} transferred
in a burst at time κn, such that at each time t ∈ {κn, . . . , κ(n + 1)− 1}, the control νκnut
can be applied.

Assumption 8.3.4. In addition to Assumption 8.2.2, we require that:

(vi′) Control signals are sent to the actuator every κ steps, and for each t ∈ N0, the control
channel noise is of the form νκt1κm, with νκn ∈ {0, 1} and P(νκn = 1) = p ∈ ]0, 1[ for
each n ∈ N0.

(vii′) Umax >
√
κC1 ‖Rκ(A2, B2)

+‖ ‖Rκ(A2, I2)‖ /p. ♦
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Proposition 8.3.5. Consider the system (8.2), and suppose that Assumption 8.3.4 holds.
Then there exists a κ-history dependent policy π := (πt)t∈N0 with control authority at most
Umax, such that for every initial condition x̄ there exists a constant ζ ′ = ζ ′(x̄, κ, p, C1) > 0
with

Ex̄[‖xt‖2] 6 ζ ′ for all t ∈ N0

in closed-loop.

Remark 8.3.6. We noted in Remark 8.3.3 that Proposition 8.3.2 assumes minimal structure
from the bounded set T. In contrast, Proposition 8.3.5 assumes a rather specific structure
of the set T—that it consists of two elements (note that νκn ∈ {0, 1} for each n ∈ N0

in Assumption 8.3.4-(vi′)). The i.i.d Bernoulli assumption on (νκt)t∈N0 leads to a simpler
description of the control authority Umax in Assumption 8.3.4-(vii′) compared to Assumption
8.3.1-(vii.b), and the analog of Assumption 8.3.1-(vii.a) is not required here. ⊳

Example 8.3.7. Consider the scalar system xt+1 = xt + ũt +wt, t > 0, with initial condition
x0 = x̄, ũt = νtut. Suppose that (νt)t∈N0 is i.i.d Bernoulli {0, 1} with P(νt = 1) = p > 0, and
let (wt)t∈N0 be i.i.d, and satisfy supt∈N0

E[|wt|4] = C ′
4 <∞. This implies, in particular, that

supt∈N0
E[|wt|] 6 C ′

1 6
4
√
C ′

4. Suppose that Umax > C ′
1/p, where ut ∈ [−Umax, Umax] for all t.

With this much data it is easy to verify the conditions of Assumption 8.3.4. We conclude by
Proposition 8.3.5 that there exists a policy with control authority at most Umax such that
the system is mean-square bounded. In fact, we see that for every nonzero probability p of
transmission of the control signal, there exists a control authority Umax > 0 and a policy
with control authority at most Umax, under which the state of the system is mean-square
bounded. ∆

Remark 8.3.8. Notice that Proposition 8.3.5 does not contradict the classical results of NCS
under packet losses. For e.g., it was proved in [Schenato et al., 2007, Lemma 5.4] that there
exists a threshold probability of i.i.d. Bernoulli packet drops such that a stabilizing linear
feedback for unstable linear systems can be found provided the drop probability is less than
that threshold. Indeed, in Assumption 8.2.2 we have specifically ruled out unstable A. ⊳

8.4 Proofs for the Existence of Admissible Policies

For our proofs of Propositions 8.3.2 and 8.3.5 we shall employ the following immediate
adaptation of [Pemantle and Rosenthal, 1999, Theorem 1] on L2 bounds of nonnegative
random variables:

Proposition 8.4.1 (Pemantle and Rosenthal [1999]). Let (Ω,F,P) be a probability space,
and let (Ft)t∈N0 be a filtration on (Ω,F,P). Suppose that (ξt)t∈N0 is a family of nonnegative
random variables adapted to (Ft)t∈N0 , such that there exist constants a,M, J > 0 such that
ξ0 < J , and for all t ∈ N0,

EFt [ξt+1 − ξt] 6 −a on the set {ξt > J}, (8.7)

E[|ξt+1 − ξt|4 | ξ0, . . . , ξt] 6M. (8.8)
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Then there exists c = c(a, J,M) > 0 such that sup
t∈N0

E
[
ξ2t
]
6 c.

In what follows we let I2 denote the d2 × d2 identity matrix.

Lemma 8.4.2. Given the system (8.2), suppose that Assumption 8.2.2 holds, and consider
the decomposition (8.6). Let Ft be the σ-algebra generated by (xt)t∈N0 . Then there exists
a, J > 0 such that

EFκt

[∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]
6 −a on the set

{∥∥∥x(2)κt
∥∥∥ > J

}

for all t ∈ N0.

Proof. To simplify notation we write compactly

νκt :=




νκt
νκt+1
...

νκ(t+1)−1


 and uκt :=




uκt
uκt+1
...

uκ(t+1)−1


 . (8.9)

It follows from the system dynamics that

x
(2)
κ(t+1) = Aκ2x

(2)
κt +Rκ(A2, B2)uκt

+Rκ(A2, I2)w
(2)
κt:κ(t+1)−1, t ∈ N0,

where w
(2)
κt:κ(t+1)−1

:=
[
(w

(2)
κt )

T · · · (w
(2)
κ(t+1)−1)

T

]T
. Therefore,

EFκt

[∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

= EFκt

[∥∥Aκ2x
(2)
κt +Rκ(A2, B2)uκt

+Rκ(A2, I2)w
(2)
κt:κ(t+1)−1

∥∥−
∥∥∥x(2)κt

∥∥∥
]

6 EFκt

[∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)uκt

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

+ ‖Rκ(A2, I2)‖E
[∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥
]

6 EFκt

[∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)uκt

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

+
√
κ ‖Rκ(A2, I2)‖C1.

Since A2 is orthogonal, we have
∥∥∥Aκ2x

(2)
κt

∥∥∥ =
∥∥∥x(2)κt

∥∥∥. We require uκt be Fκt-measurable.
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Employing Jensen’s inequality and sublinearity of the square-root function, we get

EFκt

[∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)uκt:κ(t+1)−1

∥∥∥
]

6

√
EFκt

[∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)ũκt:κ(t+1)−1

∥∥∥
2]

=
(∥∥∥x(2)κt

∥∥∥
2

+ 2
(
x
(2)
κt

)T
(Aκ2)

TRk(A2, B2)(E
Fκt [νκt]⊙ uκt)

+ EFκt
[(
Rκ(A2, B2)(νκt ⊙ uκt)

)T

·
(
Rκ(A2, B2)(νκt ⊙ uκt)

)])1/2

6

∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)(E

Fκt [νκt]⊙ uκt)
∥∥∥

+
(
EFκt

[
‖Rκ(A2, B2)(νκt ⊙ uκt)‖2

]

−
∥∥Rκ(A2, B2)(E

Fκt [νκt]⊙ uκt)
∥∥2
)1/2

,

The last term under the square-root is the conditional variance of vector Rκ(A2, B2)(νκt ⊙
uκt) given Fκt. Since (νn)

κ(t+1)−1
n=κt is independent of Fκt, ν̄ := EFκt [νκt] is a constant, and

equals vec{µν , . . . , µν︸ ︷︷ ︸
κ-times

}.) Thus, we see that

EFκt

[∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)ũκt:κ(t+1)−1

∥∥∥
]

6

∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)(ν̄ ⊙ uκt)

∥∥∥

+
√

EFκt
[
‖Rκ(A2, B2)((νκt − ν̄)⊙ uκt)‖2

]

6

∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)(ν̄ ⊙ uκt)

∥∥∥

+
√
κ ‖Rκ(A2, B2)‖Umax

√
EFκt

[
‖νκt − ν̄‖2

]

6

∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)(ν̄ ⊙ uκt)

∥∥∥
+ κ ‖Rκ(A2, B2)‖Umax

√
σν .

Collecting the inequalities above, we see that

EFκt

[∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

6

∥∥∥Aκ2x
(2)
κt +Rκ(A2, B2)(ν̄ ⊙ uκt)

∥∥∥−
∥∥∥Aκ2x

(2)
κt

∥∥∥

+ κ
(
‖Rκ(A2, B2)‖Umax

√
σν +

‖Rκ(A2,I2)‖C1√
κ

)
.

(8.10)
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In view of Assumption 8.3.1-(vii.a) we see that there exists

0 < a := Umax

(
1− κΨ

∥∥Rκ(A2, B2)
+
∥∥ ‖Rκ(A2, B2)‖

)

−√
κC1

(
max

i=1,...,m
|(µν)i|−1

)∥∥Rκ(A2, B2)
+
∥∥ ‖Rκ(A2, I2)‖ .

We now define

r := a+ κ
(
‖Rκ(A2, B2)‖Umax

√
σν +

‖Rκ(A2,I2)‖C1√
κ

)

6 Umax. (8.11)

By Assumption 8.3.1-(vi), every entry of ν̄ is nonzero; we let ν̄(−1) be the vector of reciprocals
of each entry of ν̄ (i.e., (ν̄(−1))i = (ν̄i)

−1 for each i). We define our control policy2

uκt := uκt
(
x
(2)
κt

)
:= −Rκ(A2, B2)

+ satr
(
Aκ2x

(2)
κt

)
⊙ ν̄(−1), (8.12)

where satr is the function defined in (8.1). Clearly, uκt is Fκt-measurable. Substituting into
(8.10) we see that

EFκt

[∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

6 −r + κ
(
‖Rκ(A2, B2)‖Umax

√
σν +

‖Rκ(A2,I2)‖C1√
κ

)

on the set
{∥∥∥x(2)κt

∥∥∥ > r
}

6 −a on the set
{∥∥∥x(2)κt

∥∥∥ > r
}
,

where the last inequality follows from the definition of r above.
Thus, it only remains to see that the control policy defined in (8.12) satisfies the bound

‖ut‖ 6 Umax for each t. But in view of the definition of r in (8.11) and our policy (8.12), we
see that ‖uκt‖ 6 Umax, and the assertion follows.

Lemma 8.4.3. Given the system (8.2), suppose that Assumption 8.2.2 holds, and consider
the decomposition (8.6). Then there exists M > 0 such that

E
[∣∣∣
∥∥x(2)κ(t+1)

∥∥−
∥∥x(2)κt

∥∥
∣∣∣
4 ∣∣∣
∥∥x(2)0

∥∥, . . . ,
∥∥x(2)κt

∥∥
]
6M

for all t ∈ N0.

2This controller resembles in part the Ackermann’s formula in linear control theory [Franklin et al., 2006,
p. 477] employed in unconstrained deadbeat controllers.
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Proof. We retain the notation w
(2)
κt:κ(t+1)−1 from the proof of Lemma 8.4.2. Fix t ∈ N0.

Observe that since A2 is orthogonal,
∥∥∥x(2)κt

∥∥∥ =
∥∥∥Aκ2x

(2)
κt

∥∥∥, and therefore,

E
[∣∣∣
∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
∣∣∣
4 ∣∣∣
{∥∥x(2)κn

∥∥}t
n=0

]

= E
[∣∣∣
∥∥∥Aκ2x

(2)
κt +Rκ(A2, B2)ũκt:κ(t+1)−1+

Rκ(A2, I2)w
(2)
κt:κ(t+1)−1

∥∥∥−
∥∥∥Aκ2x

(2)
κt

∥∥∥
∣∣∣
4 ∣∣∣
{∥∥x(2)κn

∥∥}t
n=0

]

6 E
[∥∥∥Aκ2x

(2)
κt +Rκ(A2, B2)ũκt:κ(t+1)−1+

Rκ(A2, I2)w
(2)
κt:κ(t+1)−1 − Aκ2x

(2)
κt

∥∥∥
4 ∣∣∣
{∥∥x(2)κn

∥∥}t
n=0

]

= E
[∥∥∥Rκ(A2, B2)ũκt:κ(t+1)−1 +Rκ(A2, I2)w

(2)
κt:κ(t+1)−1

∥∥∥
4

∣∣∣
{∥∥x(2)κn

∥∥}t
n=0

]
.

By Assumption 8.2.2-(iv), ‖ũt‖ 6
√
mUmax diam(T), which implies that

E
[∥∥∥Rκ(A2, B2)ũκt:κ(t+1)−1 +Rκ(A2, I2)w

(2)
κt:κ(t+1)−1

∥∥∥
4

∣∣∣
{∥∥x(2)κn

∥∥}t
n=0

]

6 E
[(
κ
√
mUmax diam(T) ‖Rκ(A2, B2)‖+

‖Rκ(A2, I2)‖
∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥
)4 ∣∣∣

{∥∥x(2)κn
∥∥}t

n=0

]
.

Noting that w
(2)
κt:κ(t+1)−1 is independent of

∥∥∥x(2)0

∥∥∥ , . . . ,
∥∥∥x(2)κt

∥∥∥ in view of Assumption 8.2.2-(iii),

applying Jensen’s inequality to the right-hand side above yields

E
[(
κ
√
mUmax diam(T) ‖Rκ(A2, B2)‖+

‖Rκ(A2, I2)‖
∥∥∥w(2)

κt:κ(t+1)−1

∥∥∥
)4]

= E
[(
κ
√
mUmax diam(T) ‖Rκ(A2, B2)‖+

κ ‖Rκ(A2, I2)‖
∥∥∥w(2)

κt

∥∥∥
)4]

6 κ4
(√

mUmax diam(T) ‖Rκ(A2, B2)‖+

‖Rκ(A2, I2)‖C1

)4
.

The assertion follows at once with M equal to the right-hand side of the last inequality.
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Proof of Proposition 8.3.2: From (8.6) we see that the system splits into two parts, x(1)

and x(2), with the sequence (x
(1)
t )t∈N0 describing the evolution of the Schur stable component

of the state, and (x
(2)
t )t∈N0 describing the evolution of the orthogonal component of the

state. It is well-known that (x
(1)
t )t∈N0 is mean-square bounded so long as the control is

bounded, which by Assumption 8.3.1-(vi) clearly holds (i.e., there exists ζ(1) > 0 such that

Ex̄
[∥∥∥x(1)t

∥∥∥
2]

6 ζ(1) for all t ∈ N0). It thus suffices to concentrate on (x
(2)
t )t∈N0 . We let

ξt :=
∥∥∥x(2)κt

∥∥∥ for each t ∈ N0. We see that:

◦ the condition (8.7) of Proposition 8.4.1 holds with J = r, where r is as defined in (8.11),
by Lemma 8.4.2, and

◦ the condition (8.8) of Proposition 8.4.1 holds by Lemma 8.4.3.

Defining J := max
{∥∥∥x(2)0

∥∥∥ , r
}
, we see that by Proposition 8.4.1 there exists a ζ̃(2) =

ζ̃(2)(a,M, J) such that Ex̄
[∥∥∥x(2)κt

∥∥∥
2]

6 ζ̃(2) for all t ∈ N0. Since the subsampled process

(x
(2)
κt )t∈N0 is mean-square bounded, and x(2) is generated by a linear dynamical system, we

conclude that there exists ζ(2) > 0 such that Ex̄
[∥∥∥x(2)t

∥∥∥
2]

6 ζ(2) for all t ∈ N0. The assertion

of Proposition 8.3.2 follows with ζ := ζ(1) + ζ(2) and noticing that a and J depend on x̄, κ,
µν , Ψ and C1. �

Proof of Proposition 8.3.5 Let us consider the κ-subsampled system

x
(2)
κ(t+1) = Aκ2x

(2)
κt +Rκ(A2, B2)νκtuκt:κ(t+1)−1

+Rκ(A2, I2)wκt:κ(t+1)−1, t ∈ N0,

where uκt:κ(t+1)−1 :=
[
uTκt . . . uTκ(t+1)−1

]T
. For this subsampled system we propose the

control policy:
uκt:κ(t+1)−1 = −Rκ(A2, B2)

+ satr
(
Aκ2x

(2)
κt

)
, (8.13)

for some r > 0 to be defined shortly. Let us verify the conditions of Proposition 8.4.1 for
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the process
(∥∥∥x(2)κt

∥∥∥
)
t∈N0

under the control policy proposed above. We see immediately that

EFκt
[∥∥∥x(2)κ(t+1)

∥∥∥−
∥∥∥x(2)κt

∥∥∥
]

6 EFκt
[∥∥∥Aκ2x

(2)
tκ +Rκ(A2, B2)νκtuκt:κ(t+1)−1

∥∥∥
]

−
∥∥∥x(2)κt

∥∥∥+ E
[∥∥Rκ(A2, I2)wκt:κ(t+1)−1

∥∥]

= p
∥∥∥Aκ2x

(2)
κt +Rκ(A2, B2)uκt:κ(t+1)−1

∥∥∥

+ (1− p)
∥∥∥Aκ2x

(2)
κt

∥∥∥−
∥∥∥x(2)κt

∥∥∥
+ E
[∥∥Rκ(A2, I2)wκt:κ(t+1)−1

∥∥]

= p
(∥∥∥Aκ2x

(2)
κt +Rκ(A2, B2)uκt:κ(t+1)−1

∥∥∥−
∥∥∥x(2)κt

∥∥∥
)

+
√
κ ‖Rκ(A2, I2)‖C1

= −pr +√
κ ‖Rκ(A2, I2)‖C1,

where we have employed orthogonality of A2 to arrive at the second equality above. By
Assumption 8.3.4-(vii′) we see that there exists a > 0 such that

∥∥Rκ(A2, B2)
+
∥∥ (a+

√
κC1 ‖Rκ(A2, I2)‖ /p

)
6 Umax.

Letting r := a+
√
κC1 ‖Rκ(A2, I2)‖ /p, we see that the condition (8.7) is verified with J = r.

The condition (8.8) follows readily from Lemma 8.4.3, since the elements of the control input

are uniformly bounded. Letting J := max
{
r,
∥∥∥x(2)0

∥∥∥
}
, we see that by Proposition 8.4.1 there

exists a constant ζ(2) > 0 such that Ex̄
[∥∥∥x(2)t

∥∥∥
2]

6 ζ(2) for all t ∈ N0. By the same argument

involving the Schur stable part x(1) as in the proof of Proposition 8.3.2, we see that there
exists a constant ζ ′ > 0 such that Ex̄[‖xt‖2] 6 ζ ′ for all t ∈ N0. In view of the fact that a
and J depend on x̄, κ, p, and C1, this concludes the proof. �

8.5 Discussion

We considered a networked systems setup in which the control inputs are transmitted
via a noisy communication channel. Under mild assumptions on the statistics of the channel
noise and control authority, we constructed a causal κ-steps control strategy that renders
the state of the closed-loop networked system mean-square bounded. Future work will focus
on extending the current results to encompass the case of imperfect and incomplete state
measurements. In addition, the noise model presented in this chapter will be extended to
adversarial stochastic noise models. The next chapter investigates the effect of network-
induced risks on the failure probabilities affecting the sensor and control communication
channels.
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Chapter 9

Security Interdependencies for
Networked Control Systems

9.1 Introduction

In this chapter, we study the security choices of identical networked controlled systems
(NCS), when their security is interdependent due to the exposure to network induced risks.
Each NCS is modeled by a discrete-time stochastic linear system, which is sensed and
controlled over a communication network. Today, NCS already exhibit substantial inter-
dependence. An imminent wider deployment of smart devices is only likely to result in a
higher degree of interdependence Anderson and Fuloria [2010]; Weiss [2010].

The current state-of-the-art literature on NCS assumes independent and identically dis-
tributed (IID) packet losses for systems, even when the systems use the same communication
network for their operation Amin et al. [2009a]; Garone et al. [2010]; Hespanha et al. [2007];
Imer et al. [2006]; Schenato et al. [2007]. In such settings, attacks on the availability of sen-
sor and control data packets for one system do not affect the availability of data packets for
other systems.

The analysis based on the IID packet loss models does not capture the environments in
which an attack on the availability of data packets of one system can propagate to other sys-
tems due to fact that they share the same communication network. An important example
of such attacks are the so-called distributed-denial-of-service (DDOS) attacks Amin et al.
[2009a]; Cárdenas et al. [2008]; Weiss [2010]. Since the DDOS attacks affect the availability
of sensor and control data packets of multiple systems, any security choice of one system
is also likely to influence the security of other systems. This chapter contributes to the
existing literature by considering a setting where security of one system affects security of
other systems.

Several factors exacerbate the severity of the losses which may be caused by security
interdependencies. First, only a small number of vendors provide embedded controller de-
vices Weiss [2010], causing a danger of highly correlated software–hardware malfunctions.
Due to the prevalence of identical devices, a single glitch could bring major disruption of
NCS functioning. Second, since the NCS will soon govern the operation of critical infras-
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tructure systems, the NCS interdependencies could be exploited by nation states. So far, no
such occurrences have been recorded, but presence of aforementioned cyber attack capabil-
ities is well documented W.A. Owens and Lin [2009], and cannot be ignored Weiss [2010].
The risks of such rare (but extremely disruptive) events are similar to risks of terrorist at-
tacks Bier et al. [2007], and it is established that private mitigation of such risks fails, thus
likely requiring governments to step in Heal and Kunreuther [2004].

We model the problem of operator’s security choice as a non-cooperative two-stage game
between m plant-controller systems (or players). Each of these players is modeled in a
standard NCS setting (e.g., Imer et al. [2006]; Schenato et al. [2007]). In the first stage,
each player has a binary choice of investing versus non-investing into enhanced security
measures at his plant. In the second stage, players choose optimal control inputs for their
respective plants. Each players’ objective is to minimize the average long-term cost, which
is comprised of the plant operating costs and the cost of security measures. We compare the
individually optimal choices with that of the social planner, whose objective is to minimize
the sum of aggregate operating costs of all the players (which include costs of security
measures). The approach in this chapter compliments the existing and growing literature on
investment efficient security strategies for critical systems systems Alpcan and Başar [2011];
Başar and Olsder [1999]; Cavusoglu et al. [2005]. By imposing penalties on the players not
investing in security, we induce individually optimal player choices that coincide with the
socially optimal ones. Such correction of individual incentives is frequently referred as
internalizing the externalities Alpcan and Başar [2011].

The importance of network externalities for incentives to invest in security have been
noted and modeled by many researches (e.g., Anderson et al. [2008]; Böhme and Schwartz
[2010] and the references therein). The relevance of these effects for critical infrastructures,
and in particular, the provision of electricity was raised in Anderson and Fuloria [2009,
2010], but to the best of our knowledge, so far nobody attempted formal modeling of se-
curity interdependencies in NCS. The closest models to ours are the application of security
interdependencies to Internet security such as Lelarge and Bolot [2008], where the authors
apply Heal and Kunreuther [2004], and present an analytical model, which permits them
to study the deployment of security features and protocols in the sub-nets with different
network topologies. Also, Lelarge [2009] expands on Heal and Kunreuther [2004] to study
economics of malware (propagation of viruses and worms).

Our modeling of security choices builds on the Heal and Kunreuther’s interdependent
security model (see Heal and Kunreuther [2003, 2004]; Kunreuther and Heal [2002]). We
refer the reader to Mounzer et al. [2010], Grossklags et al. [2008]; Hofmann [2007] for similar
approaches.

In our setting, player actions differ from social optimum ones; this reflects the presence
of externalities. Indeed, in general, when player costs are affected by other player’s choices,
players impose externalities on each other. The externalities manifest by the gap between
the individually and socially optimal security choices Alpcan and Başar [2011]. In the case
of negative externalities, players tend to under-invest in security. This is commonly referred
to free-riding in economics. To internalize the externalities, an instrument (e.g., penalty)
is commonly suggested which alters individually optimal security choices and makes them
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Figure 9.1: Networked Control System (NCS).

coincide with the socially optimum ones.
This chapter is organized as follows: In Section 9.2, we formulate the game between

NCS when interdependencies are present. In Sections 9.3 and 9.4, we present the analysis
of the game of two and m players respectively. For the two player case, we also derive the
penalties to be imposed on players for not investing in security under which the individually
and socially optimal choices coincide. Section 9.5 discusses some consequences of the results
presented in this chapter.

9.2 Problem Setup

9.2.1 The Game

We consider an m−player stochastic two-stage game. The players are denoted by
P1,P2, . . . ,Pm, and the index set {1, . . . ,m} is denoted by M . We model each player
as a NCS (e.g., Schenato et al. [2007]) in which each Pi’s plant and controller communicate
over a network; see Fig. 9.1. In the first stage, each Pi (i ∈ M ) chooses to make a security
investment (S) or not (N ). Let V i denote the security choice of Pi, i.e.,

V i :=
{
S, Pi invests in security,

N , Pi does not invest in security,

and let V denote the set of player security choices, i.e.,

V := {V1, . . . ,Vm}.

Once player security choices are made, they are irreversible and observable by all the players.
The Pi’s first stage investment is given by

J iI (V) := (1− I i)ℓ, i ∈ M , (9.1)

where I i is the indicator function:

I i :=
{
0, V i = S,
1, V i = N ,

(9.2)
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and ℓ > 0 is the security investment incurred by Pi only if it (or he) has chosen S, i.e.,
V i = S.

The plant of Pi is modeled as the discrete-time stochastic linear system:

xit+1 = Axit + νitBu
i
t + wit

yit = γitCx
i
t + vit

t ∈ N0, i ∈ M , (9.3)

where xit ∈ Rd denotes the system state, uit ∈ Rm the control input, wit ∈ Rd the process
noise, yit ∈ Rp the measured output, vit ∈ Rp the measurement noise, for Pi at the t−th time
step. The matrices A ∈ Rd×d, B ∈ Rd×m, C ∈ Rp×d are given. We assume that wit (resp.
vit), for any i ∈ M and t ∈ N0, are independent and identically distributed (i.i.d.) Gaussian
random vectors with mean 0 and covariance Q ∈ Rd×d (resp. R ∈ Rp×p). The initial state
xi0 is also Gaussian with mean x̄ ∈ Rd and covariance P̄ ∈ Rd×d. We assume uncorrelated
xi0, w

i
t, and v

i
t. For a fixed i ∈ M and any t ∈ N0, the random variables γit (resp. ν

i
t) are

i.i.d. Bernoulli with the failure probability γ̃i (resp. ν̃i), and model the packet loss in the
sensor (resp. control) communication channel.

In contrast to the existing NCS literature (e.g., Imer et al. [2006],Schenato et al. [2007]),
we assume that the failure probabilities γ̃i and ν̃i are interdependent between the players
due to the exposure to network induced insecurities. In order to reflect security interdepen-
dencies, in our model, the failure probabilities γ̃i and ν̃i depend on the Pi’s own security
choice V i and on the other players’ security choices {Vj, j 6= i} (chosen in the first stage),
i.e.,

P[γit = 0 | V ] = γ̃i(V), P[νit = 0 | V ] = ν̃i(V), t ∈ N0,

where the failure probabilities γ̃i(V) and ν̃i(V) forPi are introduced below by (9.9) and (9.10)
in Sec. 9.2.2 for the case of m = 2 and m > 2 players, respectively.

In the second stage, each Pi (i ∈ M) chooses a control input sequence U i := {uit, t ∈ N0}
for its plant based on the available information defined as1:

ζ it = ζ it−1 ∪
{
yit, ν

i
t−1, γ

i
t

}
, t ∈ N, (9.4)

with ζ i0 = {V , yi0, γi0}. The class of control policies considered here consist of the sequence
of functions µi0, µ

i
1, . . . such that each µit maps ζ it into Rm, i.e.,

uit = µit(ζ
i
t), t ∈ N0, i = 1 . . .m. (9.5)

Let U denote the set of player control input sequences:

U := {U1 ∪ · · · ∪ Um}.
For given V and U , the Pi’s second stage cost is given by the average Linear Quadratic
Gaussian (LQG) cost:

J iII(V ,U) := lim sup
T−→∞

1

T
E

[
T−1∑

t=0

xit
⊤
Gxit + νitu

i
t

⊤
Huit

]
, (9.6)

1This information set corresponds to the packet acknowledgment behavior of TCP-like protocols
(see Imer et al. [2006]).
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where G > 0 (resp. H > 0) is a known matrix in Rd×d (resp. Rp×p).
The objective of each Pi is to minimize his total cost:

J i(V ,U) = J iI (V) + J iII(V ,U), i ∈ M , (9.7)

where J iI (V) (resp. J iII(V ,U)) is given by (9.1) (resp. (9.6)). To summarize, in the first stage,
each Pi makes a security choice V i. In the subgame that starts after the first stage, each
Pi chooses the control input sequence U i to minimize the average cost (9.6). The solution
concept for the game is subgame perfect Nash equilibrium. Next, we introduce the baseline
case of a social planner whose objective is to minimize the aggregate cost of all players:

Jso(V ,U) =
m∑

i=1

J i(V ,U). (9.8)

9.2.2 Security Interdependence

For a two player game (m = 2), we model the failure probabilities for Pi as follows:

γ̃i(V) = I iγ̄ + (1− I iγ̄)α(I i, I−i),

ν̃i(V) = I iν̄︸︷︷︸
reliability

+ (1− I iν̄)α(I i, I−i)︸ ︷︷ ︸
security

, (9.9)

where the superscript −i denotes the other player. In (9.9), the first term reflects the
probability of a direct failure, and the second term reflects the probability of an indirect
failure. The second term in (9.9) reflects player interdependence due to being networked
and subjected to communication losses (for e.g., resulting from distributed denial-of-service
(DDOS) attacks). We define the interdependence term α : {0, 1}2 →]0, 1[ as follows:

0 =: α(0, 0) = α(1, 0) < α(0, 1) := α
¯
< α(1, 1) := ᾱ < 1,

where ᾱ is such that γ̄ + (1− γ̄)ᾱ < 1 and ν̄ + (1− ν̄)ᾱ < 1. Thus, we assume that, due to
network interdependence, the probability of indirect failure increases when more players in-
secure. Here γ̄ (resp. ν̄) is the failure probability of the sensor (resp. control) communication
channel (identical for both players) when α(I i, I−i) = 0, i.e., no interdependence. Then,
the failure probabilities in our model coincide with the existing NCS literature Imer et al.
[2006],Schenato et al. [2007].

We now extend (9.9) to m > 2 players as follows:

γ̃i(V) = I iγ̄ + (1− I iγ̄)β(ηi),
ν̃i(V) = I iν̄ + (1− I iν̄)β(ηi), (9.10)

where ηi :=
∑

j 6=i Ij denotes the number of players (excluding Pi) who have chosen N .
As in the two-player case, we assume that the probability of indirect failure (the second
term in (9.10)) increases when more players are insecure. To reflect this, we define the
interdependence term β : {0, 1, . . . ,m− 1} −→]0, 1[ as follows:

0 =: β (0) < · · · < β
(
ηi
)
< · · · < β (m− 1) := β̄ < 1, (9.11)
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where γ̄ + (1− γ̄)β̄ < 1, and ν̄ + (1− ν̄)β̄ < 1. In contrast to (9.9), the interdependence for
Pi as defined in (9.10) does not depend his own choice of security investment. Notice that
although we do not specifically model the interdependencies between the failure probabilities
of sensor and control channels, they are still interdependent due to the second terms in (9.9)
and (9.10).

9.2.3 Second Stage LQG Problem

For any fixed security choices V , the problem of minimizing Pi’s expected second stage
cost J iII(V ,U i) over uit = µit(ζ

i
t) becomes an infinite horizon LQG problem defined by (9.3)–

(9.6). Following Schenato et al. [2007]2, we assume that (A,B) and (A,Q1/2) are control-
lable, (A,C) and (A,G1/2) are observable, and the maximum failure probabilities are below
“certain” thresholds, i.e., for (9.9):

γ̄ + (1− γ̄)ᾱ < γ̃c, ν̄ + (1− ν̄)ᾱ < ν̃c,

where γ̃c (resp. ν̃c) depends on A, C, Q, and R (resp. A, B, G, and H); similarly for (9.10).
In general, the minimum second stage cost cannot be analytically expressed; however, The-
orem 5.6 of Schenato et al. [2007] provides analytical expressions for the upper and lower
bounds of this cost. To simplify the exposition, we restrict our attention to the case of
invertible C and R = 0, which allows us to analytically express the minimum cost3:

J i∗II (V) := min
U i∋uit=µit(ζit)

J iII(V ,U) = tr(Si(V)Q)

+ γ̃i(V) tr
(
(A⊤Si(V)A+G− Si(V))P

¯
i(V)

)
,

(9.12)

where the matrices Si(V) and P i(V) are the respective positive definite solutions of the
following equations:

Si(V) =A⊤Si(V)A+G− (1− ν̃i(V))
× A⊤Si(V)B(B⊤Si(V)B +H)−1B⊤Si(V)A,

P i(V) =γ̃i(V)AP i(V)A⊤ +Q.

(9.13)

The following lemma provides that J i∗II (V) decreases in failure probabilities:

Lemma 9.2.1. Let γ̃i(V1) < γ̃i(V2) and ν̃i(V1) < ν̃i(V2). Then, J i∗II (V1) < J i∗II (V2).

Proof. From (9.13) Si and P i, are increasing with ν̃i and γ̃i respectively. The proof follows
from (9.12).

Remark 9.2.2. From (9.9) and (9.10), when Pi invests in security, the probability of direct
failure is reduced to 0. However, our results easily extend to cases when Pi’s investment in
security reduces this probability to a non-zero value.

2In Schenato et al. [2007], these expressions are given for the arrival probabilities 1− γ̃i and 1− ν̃i, while
we work with γ̃i and ν̃i.

3In a general case, the minimum J i
II(V,U i) can be obtained via Monte-Carlo simulations.
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Example 9.2.3. Consider (9.3) for the scalar setting with d = 1, B = 1, C = 1. Then
Q,R,G,H are scalars. For |A| > 1, γ̃c = ν̃c = A−2. Following Schenato et al. [2007], the
upper and lower bounds for J i∗II (V) are given by:

J̄ i∗II (V) = QSi(V) + P̄ i(V)T i(V)
(
P̄ i(V)γ̃i(V) +R

)

P̄ i(V) +R

J
¯
i∗
II (V) = QSi(V) + γ̃i(V)P

¯
i(V)T i(V)

(9.14)

where

Si(V) = (A2H +G−H) +
√
(A2H +G−H)2 + 4GH(1− A2ν̃i(V))
2(1− A2ν̃i(V)) ,

and

P̄ i(V) = (A2R +Q−R) +
√

(A2R +Q−R)2 + 4QR(1− A2γ̃i(V))
2(1− A2γ̃i(V)) ,

P
¯
i(V) = Q

1− A2γ̃i(V) ,

and T i(V) = ((A2 − 1)Si(V) +G). Notice that J̄ i∗II (V) = J
¯
i∗
II (V) if R = 0. ∆

9.3 Equilibria for two player game

Consider a 2−player game, where the interdependent failure probabilities are given
by (9.9). For any fixed security choices V , each Pi’s minimum expected cost in the sec-
ond stage J i∗II (V) is given by (9.12)–(9.13). Following (9.7), the player objectives for the
second stage subgame are presented in Fig. 9.2(top). Following (9.8), the social planner
objectives are presented in Fig. 9.2(bottom). To derive optimal player actions in the first

P1

P2
S N

S J∗
II({S,S}) + ℓ, J∗

II({S,S}) + ℓ J∗
II({S,N}) + ℓ, J∗

II({N ,S})
N J∗

II({N ,S}), J∗
II({S,N}) + ℓ J∗

II({N ,N}), J∗
II({N ,N})

S N
S 2(J∗

II({S,S}) + ℓ) J∗
II({S,N}) + J∗

II({N ,S}) + ℓ

N J∗
II({S,N}) + J∗

II({N ,S}) + ℓ 2J∗
II({N ,N})

Figure 9.2: Objectives: 2−player game (top) & social planner (bottom).

stage (security choices V i), we will distinguish the following two cases:

J∗
II({N ,N})− J∗

II({S,N}) 6 J∗
II({N ,S})− J∗

II({S,S}), (9.15)

J∗
II({N ,S})− J∗

II({S,S}) 6 J∗
II({N ,N})− J∗

II({S,N}). (9.16)
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If (9.15) holds and a player invests in security, other player gain from investing in security
increases. However, if (9.16) holds, each player decision to secure decreases the other player
gain from investing in security. In Sections 9.3.1 and 9.3.2, we present equilibria for different
ℓ, and compare with social optima.

9.3.1 Increasing incentives

Let (9.15) hold, and let us define

ℓ
¯1

:= J∗
II({N ,N})− J∗

II({S,N}), ℓ̄1 := J∗
II({N ,S})− J∗

II({S,S}).

From Fig. 9.2(top), we infer that if ℓ < ℓ
¯1

(resp. ℓ > ℓ̄1), {S,S} (resp. {N ,N}) is unique
Nash equilibrium. Thus, ℓ

¯1
(resp. ℓ̄1) is the cut-off cost below (resp. above) which both

players invest (resp. neither player invests) in security. However, if ℓ
¯1

6 ℓ 6 ℓ̄1, both
{S,S} and {N ,N} are individually optimal. From Fig. 9.2(bottom), if ℓ 6 ℓso1 , the socially
optimum choices are {S,S} with

ℓso1 := J∗
II({N ,N})− J∗

II({S,S}). (9.17)

For ℓ in the range ℓ̄1 6 ℓ 6 ℓso1 , individually optimal choices are {N ,N}, while the socially
optimal choices are still {S,S}. If ℓ > ℓso1 , the individually and socially optimal choices
coincide at {N ,N}. Case 1 of Fig. 9.3 summarizes pure strategy equilibria for different ℓ.

For ℓ in the range ℓ
¯1

6 ℓ 6 ℓ̄1, a mixed strategy equilibrium exists. Let θi1 (resp.
(1 − θi1)) denote the mixing probability with which Pi chooses S (resp. N ). Then, P1’s
mixing probability θ11 is such that the P2’s expected costs for both choices S or N are equal,
i.e.,

θ11 [J
∗
II({S,S}) + ℓ] +(1− θ11) [J

∗
II({S,N}) + ℓ]

= θ11J
∗
II({N ,S}) + (1− θ11)J

∗
II({N ,N}).

Simplifying the above equation, we obtain

θ11 =
ℓ− ℓ

¯1
ℓ̄1 − ℓ

¯1
, for ℓ ∈ (ℓ

¯1
, ℓ̄1).

By writing a similar equation for P1, it is easy to check that θ21 = θ11. Thus, mixed
equilibrium is symmetric.

9.3.2 Decreasing incentives

Let (9.16) hold, and let us define

ℓ
¯2

:= J∗
II({N ,S})− J∗

II({S,S}), ℓ̄2 := J∗
II({N ,N})− J∗

II({S,N}).

Using Fig. 9.2(top), we infer that if ℓ < ℓ
¯2

(resp. ℓ > ℓ̄2) then {S,S} (resp. {N ,N}) is
unique Nash equilibrium. However, if ℓ

¯2
6 ℓ 6 ℓ̄2, both {S,N} and {N ,S} are individually
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ℓ
{S,S} {N ,N}{S,N} & {N ,S}

{S,S} {N ,N}
social optimum
{S,N}&{N ,S}

ℓ̄so
2

ℓ
{S,S} {N ,N}

{S,S} {S,N}&{N ,S} {N ,N}

ℓ
{S,S} {N ,N}{S,S} & {N ,N}

{S,S}{N ,N}
social optimum

social optimum

{S,N} & {N ,S}

ℓ̄so
2ℓ

¯
so
2

ℓ
¯
so
2

ℓso
1ℓ

¯1
ℓ̄1

ℓ
¯2

ℓ
¯2

ℓ̄2

ℓ̄2

Case 1

Case 2(i)

Case 2(ii)

Figure 9.3: Nash equilibria and social optima for different ℓ.

optimal. From Fig. 9.2(bottom), if ℓ < ℓ
¯
so
2 (resp.ℓ > ℓ̄so2 ), the socially optimum choices are

{S,S} (resp. {N ,N}) with

ℓ
¯
so
2 := J∗

II({N ,S}) + J∗
II({S,N})− 2J∗

II({S,S}),
ℓ̄so2 := 2J∗

II({N ,N})− J∗
II({S,N})− J∗

II({N ,S}). (9.18)

Note that ℓ
¯
so
2 can be either above or below ℓ̄2. If ℓ

¯
so
2 6 ℓ 6 ℓ̄so2 , both {S,N} and {N ,S}

are socially optimum choices. Case 2(i) (resp. Case 2(ii)) of Fig. 9.3 summarizes the pure
strategy equilibria for different ℓ when ℓ̄2 < ℓ

¯
so
2 (resp. ℓ̄2 > ℓ

¯
so
2 ).

Finally, a symmetric mixed strategy equilibrium exists for ℓ in the range ℓ
¯2

6 ℓ 6 ℓ̄2
where each player invests in security with probability:

θ12 = θ22 =
ℓ̄2 − ℓ

ℓ̄2 − ℓ
¯2
, for ℓ ∈ (ℓ

¯2
, ℓ̄2).

We now provide an example system for each case of Fig 9.3.

Example 9.3.1. Case 1. Let A = 0.80, G = Q = H = R = 1, and γ̄ = ν̄ = α
¯
= ᾱ = 0.1.

From (9.14), this system satisfies (9.15). Case 2(i). Let A = 1.2, G = H = Q = R = 1,
γ̄ = ν̄ = 0.1, α

¯
= ᾱ = 0.25. This system satisfies (9.16) and ℓ̄2 < ℓ

¯
so
2 . Case 2(ii). Let

γ̄ = ν̄ = 0.25 and all other parameters be as in Case 2(i). This system satisfies (9.16) and
ℓ̄2 > ℓ

¯
so
2 . ∆

9.3.3 Penalties for insecure players

In both increasing and decreasing incentive cases for the 2−player games of Sections 9.3.1
and 9.3.2, the individual and socially optimal security choices differ for a range of security
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costs. From Fig. 9.3, we observe that players tend to under-invest in security relative to the
social planner. This reflects the presence of negative externalities. We suggest an instrument
(penalty) to alter individually optimal security choices and make them coincide with the
socially optimum ones. Let F denote the penalty imposed on the players who do not invest
in security. In the game with penalties, when Pi chooses S (resp. N ), the cost of P − i
when he chooses N is J∗

II({N ,S})+F (resp. J∗
II({N ,N})+F ). We now show that a range

of penalties can be computed such that the individually optimum choices in the game with
penalties coincide with the social optimum ones.

With (9.15) imposed, the individual and socially optimal choices coincide if the penalties
F1 for the corresponding game satisfy:

ℓso1 + J∗
II({S,S}) 6 F1 + J∗

II({N ,S}), (9.19)

and

J∗
II({N ,N}) + F1 6 J∗

II({S,N}) + ℓso1 . (9.20)

From (9.19) and (9.20), and using (9.17), we obtain:

J∗
II({N ,N})− J∗

II({N ,S}) 6 F1 6 J∗
II({S,N})− J∗

II({S,S}).
Similarly, with (9.16) imposed, the individual and socially optimal choices coincide if the
penalties F2 for the corresponding game satisfy:

ℓ
¯
so
2 + J∗

II({S,S}) 6 F2 + J∗
II({N ,S}), (9.21)

and

J∗
II({N ,N}) + F2 6 J∗

II({S,N}) + ℓ̄so2 . (9.22)

From (9.21) and (9.22), and using (9.18), we obtain:

J∗
II({S,N})− J∗

II({S,S}) 6 F2 6 J∗
II({N ,N})− J∗

II({N ,S}).

9.4 Equilibria for M player game

We now extend the analysis of Section 9.3 to m−player games (m > 2), where the
interdependent failure probabilities are given by (9.10). Consider the Pi’s security choice
of S or N , and let the security choices of all other players be fixed. Recall from Sec. 9.2.2
that ηi denotes the number of players (excluding Pi) who have chosen N . To simplify the
notation, we will henceforth omit the superscript i. Let η other players be insecure. Without
loss of generality, we assume that P1, . . . ,P(i− 1) (resp. P(i+ 1), . . . ,Pm) have chosen S
(resp. N ), where i = m− η. We use the following simplifying notation:

〈S, η〉 :=
{
V1, . . . ,Vm

∣∣V i = S,
∑

−i
I−i = η

}
,

〈N , η〉 :=
{
V1, . . . ,Vm

∣∣V i = N ,
∑

−i
I−i = η

}
,
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where Ij is the indicator function defined by (9.2). Let ∆(η) denote the gain of a player
from investing in security when η other players are insecure, i.e.,

∆(η) := J∗
II(〈N , η〉)− J∗

II(〈S, η〉), η ∈ {0, . . . ,m− 1}. (9.23)

To derive optimal player security choices V i, we will distinguish the following two cases
(which generalize the increasing and decreasing incentive cases for the 2−player games of
Sections 9.3.1 and 9.3.2):

∆(η) 6 ∆(η − 1), for all η ∈ {1, 2, . . . ,m− 1}, (9.24)

and

∆(η) > ∆(η − 1), for all η ∈ {1, 2, . . . ,m− 1}. (9.25)

Thus, similar to (9.15), (9.24) corresponds to the case when the decision of an extra player
to invest in security increases other players’ gains from investing in security. Also, similar to
(9.16), (9.25) corresponds to the case when player gain from investing in security decreases
as more players invest in security.

9.4.1 Increasing incentives

Analogous to Section 9.3.1, we have:

Theorem 9.4.1. In the m player game (m > 2) with (9.24) imposed, a pure strategy equi-
librium exists, and is symmetric. Depending on the magnitude of ℓ ∈ R+, the equilibrium
is

{S, . . . ,S} if ℓ < ℓm−1
1

{N , . . . ,N} if ℓ > ℓ01
{S, . . . ,S} or {N , . . . ,N} if ℓm−1

1 6 ℓ 6 ℓ01

(9.26)

where ℓm−1
1 := ∆(m− 1) and ℓ01 := ∆(0).

Proof. First, with (9.24) imposed, the existence of symmetric pure strategy Nash equilib-
rium (9.26) follows from adopting the construction of Section 9.3.1. Indeed, if ℓ < ℓm−1

1 6

∆(η) for all η ∈ {0, . . . ,m − 2} (resp. ℓ > ℓ01 > ∆(η) for all η ∈ {1, . . . ,m − 1}), each Pi’s
dominant strategy is S (resp. N ). Thus, {S, . . . ,S} (resp. {N , . . . ,N}) is unique Nash
equilibrium. If ℓ 6 ℓ01 (resp. ℓ > ℓm−1

1 ), {S, . . . ,S} (resp. {N , . . . ,N}) is a Nash equilibrium.
Hence, if ℓ is in the range ℓm−1

1 6 ℓ 6 ℓ01, both {S, . . . ,S} and {N , . . . ,N} are equilibria.
Second, we show that no asymmetric equilibrium exists. Assume on the contrary that

{S, . . . ,S,N . . . ,N︸ ︷︷ ︸
m1 players

} is an equilibrium, i.e., when P1, . . . ,P(m−m1) invest in security and

Pm1, . . . ,Pm do not. For P(m−m1 + 1),

∆(m1 − 1) < ℓ, (9.27)
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and for P(m−m1),

ℓ < ∆(m1). (9.28)

Combining inequalities (9.27) and (9.28), we obtain

∆(m1 − 1) < ∆(m1),

which contradicts (9.24) for η = m1. The same contradiction can be shown for any other
asymmetric equilibrium. Thus, no asymmetric equilibrium exists.

9.4.2 Decreasing incentives

Analogous to Section 9.3.2, we have:

Theorem 9.4.2. In the game of m players with (9.25) imposed, a pure strategy equilibrium
exists. Depending on the magnitude of ℓ ∈ R+, equilibrium is:

{
V1, . . . ,Vm

∣∣V i ∈ {S,N},
m∑

i=1

I i = η

}
,

where

η =





0 if ℓ 6 ℓ02
m if ℓ > ℓm−1

2

k if ℓk−1
2 6 ℓ 6 ℓk2, k ∈ {1, . . . ,m− 1},

(9.29)

and ℓj2 := ∆(j), j ∈ {0, . . . ,m− 1}.

Proof. If ℓ 6 ℓ01 (resp. ℓ > ℓm−1
1 ), all players invest (resp. no player invests) in security, and

{S, . . . ,S} (resp. {N , . . . ,N}) is an equilibrium. However, if ℓ is in the range ℓη−1
2 6 ℓ 6 ℓη2,

an asymmetric equilibrium exists where (m− η) players choose S and η players choose N ,
i.e., {S, . . . ,S,N . . . ,N︸ ︷︷ ︸

η players

} is an equilibrium. The uniqueness of the equilibrium follows by

construction.

Theorem 9.4.1 (resp. Theorem 9.4.2) characterizes the pure strategy Nash equilibria
for the case of increasing (resp. decreasing) incentives. Note that m player game in both
cases is symmetric, and a symmetric mixed equilibrium can be computed as follows: Any
equilibrium mixing probability θ is such that any Pi’s expected costs for both choices S or
N are equal. Player expected costs for choosing S is

θm−1 (J∗
II(〈S, 0〉) + ℓ) +

(
m

1

)
θm−2(1− θ) (J∗

II(〈S, 1〉) + ℓ)

+ · · ·+
(

m

m− 1

)
θ(1− θ)m−2 (J∗

II(〈S,m− 2〉) + ℓ)

+ (1− θ)m−1 (J∗
II(〈S,m− 1〉) + ℓ)
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Similarly, player expected cost for choosing N is

θm−1 (J∗
II(〈N , 0〉)) +

(
m

1

)
θm−2(1− θ) (J∗

II(〈N , 1〉))

+ · · ·+
(

m

m− 1

)
θ(1− θ)m−2 (J∗

II(〈N ,m− 2〉))

+ (1− θ)m−1 (J∗
II(〈N ,m− 1〉))

Equating the above expressions and noting (9.23), we conclude that mixing probability
θ ∈ (0, 1) is a solution of the following polynomial:

m−1∑

j=0

(
m− 1

j

)
(ℓ−∆(j))× θm−1−j(1− θ)j = 0 (9.30)

9.5 Discussion and Concluding Remarks

In this paper, we investigated the incentives to invest in security for players which operate
interdependent and identical NCS. We presented a new model of interdependendent NCS,
where the players’ failure probabilities are dependent on the security investments of other
players. In such cases, the externalities are present.

We hope that our findings are relevant for analyzing the effects of DDoS attacks on NCS
governing the critical infrastructures, for e.g., the next generation electric power grid. It is
well accepted that in the future grid, a large number of commodity IT solutions will be de-
ployed. A wider deployment of smart devices is likely to result in a higher number of players
(higher M), a higher degree of interdependence between the players (a higher second terms
in (9.11)), and also a higher security cost ℓ due to the increased configuration (and overall
system) complexity. Thus, we expect that with the NCS becoming increasingly ”smarter”,
the magnitude of negative externalities, and therefore the gap between the individually and
socially optimal outcomes will only widen.

Such underinvestment in the presence of interdependencies raises the possibility of major
breakdowns, see Bier et al. [2007], which would create losses (due to higher costs) far beyond
the NCS losses considered in this paper. Our model does not incorporate these extra loses,
which makes our estimates of security investments, including the socially optimal ones,
rather conservative.
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Chapter 10

Conclusion and Future Plans

The extensive use of Information and Communications Technologies (ICT) raises con-
cerns about the vulnerabilities of the nation’s critical infrastructures to security attacks.
Cyber-security of Distributed Control Systems (DCS) and Supervisory Data Control and
Data Acquisition (SCADA) systems is especially important, because they are used for sens-
ing and control of large physical infrastructures. The use of homogeneous commercial off-the-
shelf ICT components makes control systems subject to correlated software and hardware
malfunctions. Consequently, DCS/SCADA inherit the vulnerabilities of ICT components
(for e.g., the Stuxnet worm), making these systems both safety- and security-critical. The
main focus of this thesis is on the design of reliable and secure control for infrastructure sys-
tems. The work presented in this thesis can be of particular interest to the next generation
SCADA and other networked embedded systems for power grid, water and gas distribution,
highway and air transportation, cyber-enabled energy management systems (for e.g., hybrid
electric vehicles and buildings equipped with smart meters). The existing research frame-
work in robust and fault-tolerant Networked Control Systems (NCS) does not account for
cyber-attacks on SCADA communications. In this thesis, we have developed the basis of a
comprehensive theoretical framework and proposed several practical tools for building re-
silient NCS, with the focus on reliability and security in the presence of ICT vulnerabilities.
The following issues will need to be addressed in future:

1. Analysis of attacks on NCS, and attacker interactions with the physical dynamics.

2. Development of a framework to jointly analyze security and reliability failures.

3. Design of resilient control methods and incentive mechanisms to reduce global risks.

4. Testing and evaluation of attack diagnosis and control algorithms.

10.1 Proposed future technical approach

Security requirements are traditionally evaluated in three dimensions: confidentiality,
integrity, and availability. For the purpose of this research, confidentiality is relatively less
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important. The availability and integrity are profound concerns for many critical infrastruc-
tures. The necessity to satisfy the real-time constraints imposes limitations on the possible
defenses against denial-of-service (DoS) attacks. Another challenge in this area is dealing
with compromises of unattended nodes deployed in the field; a reliable operation of criti-
cal infrastructures must be ensured even if the adversary controls a subset of devices. In
addition, wider deployment of distributed sensors networks increases the opportunities for
privacy abuses. In many cases, the users are not fully aware of the large number of details
which could be inferred from their usage of infrastructure resources. Indeed, information
might be revealed indirectly (for instance, the increase in power usage indicates the presence
of building’s occupants). The operating systems of upcoming infrastructures such as smart
buildings and smart structures portend immense data collection in places routinely occu-
pied by individuals. Aggregating privacy-sensitive data permits to uncover the individuals’
behavioral patterns from their usage and exploit this information. There is a unique oppor-
tunity to improve privacy concerns by considering them early in the security design, and by
incorporating them into concurrently developed policy and consumer protection tools.

10.1.1 Attack Models and Threat Assessment

Attacks on NCS are aimed at causing degraded closed-loop performance, and may lead
to other undesirable effects for system’s safety and stability (the word crash is literal for
control systems). To achieve these goals, an adversary can disrupt control systems by
carrying out deception attacks: manipulating set-points, tuning control parameters and/or
sensor readings. The DoS attacks increase communication latencies, which could disrupt the
communications between NCS components. Several countermeasures have been proposed
in the past for the cyber-security of wireless sensor networks. However, the key drawback of
these counter-measures is that they do not address security vulnerabilities which are unique
to closing-the-loop around wireless sensor networks. In this thesis, a taxonomy of attacks
on SCADA systems has been developed, which includes attributes such as (i) mode of
attack (availability, integrity, confidentiality); (ii) signature (targeted, resource constrained,
random); and (iii) time of attack (surge, bias, geometric).

10.1.2 Diagnostic Methods for Stealthy Attacks

In this thesis, we have also developed diagnostic methods for distinguishing whether
control variables are manipulated by attackers, and studied the consequences of attacks for
the underlying physical system dynamics. Successful attacks may change the master node’s
perception of the environment, modifying the semantics of the information. Traditional
intrusion detection systems were not designed for NCS environments with ICT, and thus
perform poorly against cyber-attacks. Both sensing and control data use ICT, and therefore
are subject to DoS and integrity attacks. Future work will involve work on a class of
model-based detection schemes, formulated as an adversarial game between the detection
system and the attacker. For a desired false alarm rate, the detection system’s objective
is to maximize the detection probability; while the attacker’s objective is to minimize this
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probability via intelligent manipulation of the data that the compromised NCS components
send. The creation of a reference model which captures the misbehavior of NCS, and can be
used as a baseline for evaluating both existing and new control strategies, will be beneficial
for future research.

Several implementable secure control tools were developed in this thesis. The thesis
presents the cyber-security analysis of the SCADA system of the Gignac water distribution
network in Southern France. We conducted a field experiment to demonstrate considerable
losses from hacking water level sensors. To improve the system’s resilience, an observer-
based diagnostic method, in which each observer estimates the state of a reduced-order
flow model, was introduced. The European Task Committee on canal automation has
recognized this research as an important contribution to risk assessment and attack diag-
nosis of water SCADA systems. The thesis also presented the design of attack-detection
and response mechanisms to maintain system safety and operational performance for the
Tennessee-Eastman benchmark chemical process control system. Finally, an analysis of the
cyber security of state estimators in SCADA systems operating the Nordic electric power
grid was conducted. It has been shown that while the current power system state estimation
algorithms are equipped with detection schemes for measurement errors, they can fail to
detect deception attacks. A diagnostic method to study the relationship between attacker’s
information and his ability to evade power grid monitoring systems was developed. In the
aforementioned case studies, the proposed diagnostic and response mechanisms maintained
closed-loop stability under a wide class of attacks. The work presented in this thesis is still
in its infancy; future work will extend it in several conceptual directions, for e.g., using
non-parametric estimation and machine learning tools.

10.1.3 Scalable Attack Resilient Control Algorithms

The theory of robust control models the controller-disturbance interaction as a game
where disturbance is non-strategic. The proviso of a deliberately malicious (strategic) at-
tacker should be considered to increase the robustness of NCS. In the future, a learning-based
approach to optimal control, in which probabilistic constraints must be satisfied for a class
of DoS attacks, will be investigated. Guaranteed margins obtained from this approach can
be used to improve the resilience of regulatory control level (i.e., the systems which reg-
ulate process variables). Attacks to supervisory control level (i.e., higher level controls)
can cause instantaneous switches of modes due to the changes in system dynamics, control
inputs, and sensor measurements. To address the attacks on supervisory control level, the
synthesis of control strategies which guarantee safety and stability for mixed-mode (analog
plus digital) hybrid cyber-physical systems will be investigated. This work will incorporate
stochastic and distributed nature of physical infrastructure systems in the analysis of safety
and stability - a significant contribution to the theory of hybrid cyber-physical systems.



172

10.1.4 Management of Interdependent Network Risks

This thesis has also approached the design of resilient NCS from game theoretic per-
spective (multi-player games). While the usefulness of game theory methods in modeling
cyber-security is well established, the novelty of this approach is the integration of game and
control theory. The respective optima of (i) strategic security decisions, and (ii) real-time
control actions were computed. Future work will involve the computations of Nash equilibria
for multi-player games with heterogeneous players, and broad assumptions on the interde-
pendencies between the individual player’s payoffs and the other players’ security decisions.
Such games with externalities are known to have subtle equilibrium properties. In general,
they can only be analyzed numerically. The externalities caused by information incomplete-
ness are of special interest, for e.g., information asymmetries due to unknown attacker type.
The effects of multiple stake-holders or players (power generators, system operators, and
electric utilities) on the NCS/SCADA resilience, when player security decisions are inter-
dependent due to cyber (e.g., Internet Protocol (IP)) and physical (e.g., power line failures
due to external factors) risks, will be studied. Due to network-induced externalities, the
individual players tend to under-invest in security (relative to a social planner). Another
type of interdependency emerges due to high costs of detecting and isolating between se-
curity failures (attacks) and reliability failures (faults). Future work will investigate the
connection between NCS security and reliability, and will develop a framework for jointly
analyzing failures due to interdependent security and reliability failures.

The effects of security decisions (e.g., investments in security) on system resilience will
also be investigated. A widely cited review by Prof. Hal Varian establishes that in non-
cooperative Nash equilibria underinvestment in security occurs. For public goods, such
as security, regulatory impositions (e.g., due care standards) can be used improve social
efficiency (in our case, system resilience). Several recent studies have suggested that the
alternative approaches such as raffle scheduling also modify player incentives, and reduce
the gap between the non-cooperative allocations and the global societal optimum. Such
approaches require modest information exchanges. Thus, they are less susceptible to ICT
attacks. Finally, in most physical infrastructures, individual consumption data is privacy-
sensitive. Hence, future work will involve the development of approaches which have weak
requirements on private data, relative to currently considered alternatives of demand re-
sponse mechanisms (which require real-time communications between the command center
and the individual users).
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