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Abstract

We report the structural revision via synthesis of the abietane diterpenoid plebeianiol A. The 

synthesis was accomplished via a short and convergent sequence that featured our previously 

established cobalt-catalyzed hydrogen-atom-transfer-induced radical bicyclization. We further 

connected plebeianiol A as the likely biogenetic precursor to another, previously reported ether-

bridged abietane. Finally, we demonstrated that the key cyclization event is efficient with the 

A-ring diol protected with two different cyclic acetal protecting groups or in unprotected form.
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Species in the Salvia genus are well-known to produce structurally diverse abietane 

diterpenoids.1,2 Extracts of these plants are used in traditional Chinese medicine to treat 

bacterial infections and a variety of inflammatory disease indications.1–3 Common phenolic 

abietanes, such as carnosic acid (1, Figure 1) and carnosol (2), exhibit significant antioxidant 

activities,4 surely owing to their catechol function. They also demonstrate anti-inflammatory 

activities.5,6 There is significant ongoing interest in both of these compounds and analogues 

in the development of anticancer chemotherapeutics.7,8 Owing to their high abundance, 

some of these polycyclic diterpenoids have found application in real-world problems. For 

instance, rosemary extracts containing carnosic acid and carnosol are commonly used as 

preservatives for perishable produce,9 whereas ferruginol (3), which also has antitumor 

activity, serves as a biomarker in resin fossil analysis.10

In 2015, Liang, Wu, and coworkers disclosed a phytochemical study of Salvia plebeia R. 

Br. wherein a novel, highly oxidized abietane, plebeianiol A was isolated and assigned 

structure 4.11 These authors showed that plebeianiol A has radical-scavenging properties, 

and inhibits the production of reactive oxygen species and nitric oxide. Based on 2D NMR 

experiments, the authors proposed a structure with the canonical octahydrophenanthrene 

abietane substructure, bearing hydroxyl groups in positions C2, C3, C20, and C11, which 

are often found oxidized in abietane compounds.2 In an unusual twist, the authors proposed 

the presence of an isopropyl group on the B ring at C7, and a phenolic hydroxyl group 

in the location typical of the abietane isopropyl group, at C13. While the authors noted 

that this proposal was unusual given the typical structures of abietane natural products (see 

1–3), and the co-isolation of plebeianiol A with carnosol and other “normal” abietanes, they 

nonetheless proposed a highly unusual biogenesis of this compound.11–13 Additionally, the 

absolute configuration at C10 was designated as R even though all documented aromatic 

abietanes have been assigned S configurations at this position. On these grounds and after 

careful re-examination of the NMR spectral data disclosed for plebeianiol A, we were led to 
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conclude that the structure had likely been misassigned and might in fact be 5, with typical 

features of an abietane diterpenoid. Liang and coworkers had previously isolated a related 

abietane (6) from Ajuga forrestii (in the same Lamiaceae family as Salvia species), to which 

5 is likely a biosynthetic precursor.13

Our group recently disclosed total syntheses of related oxidized abietane diterpenoids14 

via cobalt-catalyzed hydrogen-atom-transfer-induced radical bicyclizations15 that were 

inspired by the cationic biogenetic cyclizations known to produce abietanes and related 

diterpenoids.12a We surmised that we could avail ourselves of a similar approach to access 

the proposed revised structure of plebeianiol A (5) and to thereby correct its structure. 

Furthermore, we anticipated accessing 6 via a further oxidative cyclization of 5, thus 

connecting these compounds via synthesis. In this disclosure, we describe our successes 

in these endeavors, as well as the efficiency of the hydrogen-atom-transfer from a metal 

hydride (MHAT) based method for bicyclization of substrates with the proto-A-ring diol 

protected as an acetonide, a butanedione diacetal (BDA), and in unprotected form.

On the basis of our previous work, we aimed to use the cobalt-catalyzed, MHAT-induced 

bicyclization to access the tricyclic core of 5 and 6 (Scheme 1). The corresponding 

polyene precursor 8 would arise from suitably protected fragments 9 and 1014 via Horner–

Wadsworth–Emmons alkenylation. The key architecture-building bicyclization event would 

feature a more oxidized A-ring than in any of our previous studies.

Our synthesis began with the ozonolysis of commercially available 4-pentenenitrile (11) 

and subsequent Wittig reaction of the in-situ generated aldehyde to give 12 (Scheme 

2). The acrylate ester was subjected to Sharpless asymmetric dihydroxylation,16 which 

produced a diol with 97:3 er as measured by analysis of the corresponding Mosher 

esters (see SI for details). This highly polar diol proved exceedingly difficult to purify 

via silica gel chromatography and we therefore subjected the crude material to protection 

as the 2,3-butanedione-derived cyclic diacetal (BDA).17 Treatment of the crude diol with 

p-TsOH and 2,3-butanedione cleanly afforded the protected intermediate 13. Importantly, 

this circumvented the handling issues associated with the diol and provided a stable 

intermediate upon which to install the isopropenyl substituent. Owing to the differences 

in electrophilicity of the methyl ester and nitrile, selective nucleophilic methylation was 

achieved providing the tertiary alcohol. Several conditions were examined for elimination 

of the resulting tertiary alcohol (e.g., SOCl2, MsCl) but we found that the Burgess reagent 

was the most efficient for the formation of the requisite 1,1-disubstituted alkene of 14. Next, 

nitrile-stabilized carbanion formation and reaction with diethyl chlorophosphate afforded the 

desired cyanophosphonate 15 as an inconsequential mixture of diastereomers.18 Convergent 

coupling of 15 with orthoformate-protected catechol/aldehyde 1614 proceeded smoothly in 

80% yield and with preference for the desired Z-alkene (>10:1 dr), thus permitting access to 

ample quantities of polyene cyclization precursor 17.

Prior to evaluating the cyclization of 17, we had engaged in a model study to determine 

whether or not the use of the BDA protecting group was necessary for successful 

bicyclization. One potential advantage of this protecting group is the rigid chair-like 

configuration that might help enforce a reactive conformation for cyclization, and we 
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therefore chose it initially over the more-often-used acetonide. Additionally, previous work 

had indicated that while unprotected carbinols are tolerated under the cyclization conditions, 

free alcohols at C3 were associated with only moderate levels of diastereoselectivity (~ 

3:1),14 and we were thus unable to predict the outcome of a free C2/C3 diol. To probe 

this question, we prepared slightly simpler model substrates 21a–c (Figure 2) containing a 

dimethyl resorcinol terminating group in place of the protected catechol needed for the total 

synthesis. We found that the model BDA substrate 21a cyclized in excellent yield (84%) 

providing the product as a single diastereoisomer (>20:1 dr), confirming our predictions 

of its proclivity for cyclization. We were pleased to learn that the unprotected diol (21b) 

also reacted smoothly to provide the tricyclic product in 74% yield and again as a single 

diastereoisomer. These results are in line with our previous studies showing that these 

radical polyene cyclizations can be performed on highly oxygenated substrates, even in 

unprotected form.. Finally, acetonide 21c also cyclized efficiently (82%) and completely 

stereoselectively, indicating that the identity of the protecting group does not strongly 

influence the key reaction. The configurations of each of the three cyclized products (22a-c) 

were confirmed by X-ray crystallographic analysis.19 We note that our ultimate choice of 

the BDA protecting group was informed by its robustness and ease of handling during early 

stages of our cyclization substrate synthesis.

We next exposed 17 to our cobalt bicyclization to establish the tricyclic core of plebeianiol 

A (18, Scheme 2). This reaction proceeded with good efficiency (78% yield) when the 

reaction was buffered with 2,6-di-tert-butylpyridine (DTBP) to preserve the orthoformate 

protecting group. Reduction of the neopentylic nitrile with DIBAL-H provided the aldehyde 

which could be further reduced with sodium borohydride in a second step to give the desired 

carbinol 19. With all of the carbons at the proper oxidation states, we then removed both 

protecting groups using aqueous methanolic HCl, which afforded 5 in quantitative yield 

(11 steps LLS, ~13% overall yield). Spectroscopic analysis of this pentaol were in good 

accord with the 1H and 13C NMR data reported for plebeianiol A and originally assigned 

to structure 4.11 Further support for the structural revision was obtained by conversion of 

plebeianiol A to a related abietane natural product13 by oxidation of the catechol with 

molecular oxygen (presumably generating intermediate 20) followed by cycloisomerization 

to 6.20 The 1H and 13C NMR spectral data of this bridged ether product were also in good 

agreement with those previously published.13,19

In parallel with our synthesis efforts, we calculated 13C NMR data for structures 4 and 5 
to corroborate our proposed structural reassignment of plebeianiol A (Table 1). Reasoning 

that the fundamental differences in connectivity between 4 and 5 should manifest in the 13C 

spectrum of plebeianiol A, we adapted the predictive method described by Rychnovsky21–23 

to calculate 13C chemical shifts for both structures (Table 1). As we anticipated, the 

predicted 13C shifts obtained for 4 deviate substantially from experimental 13C data 

previously reported for isolated plebeianiol A.11 With an absolute average deviation of 5.9 

ppm and with four carbon atoms deviating by more than 10 ppm (in one instance by 21 

ppm), these computational data bolstered our hypothesis that the initially reported structure 

4 was misassigned. Conversely, the calculated chemical shifts for 5 are in good agreement 

with our experimental data for synthetic 5, as evidenced by a low absolute average deviation 
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of 1.7 ppm and with no atoms deviating by more than 6 ppm. Direct comparison of the 
13C data for isolated plebeianiol A 4 and synthetic plebeianiol A 5 reveals near congruence 

between the two data sets, strongly suggesting that the correct structure for plebeianiol A 

is in fact 5. Additional evidence is obtained by comparison of the two-dimensional NMR 

spectra (COSY, HMQC, and HMBC; see SI) as well as specific rotation data (+25.8 reported 

for 4, +26.2 for 5). The latter suggests that the absolute configuration of plebeianiol A 

(5) now fits with the observed configurations of all other abietane natural products (the 

α-disposition of the C20 carbon in 4 has not been observed in this class of molecules2). 

Taken together, we conclude that the originally proposed structure of plebeianiol A (4) 

was incorrect, and this work combining chemical synthesis with computational methods 

necessitates a revision of the structure of plebeianiol A to 5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. Select abietane diterpenoids and their applications. b. Proposed structures of plebeianiol A 

and structure of a biogenetically related abietane
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Figure 2. 
Cyclization experiments on model systems 21a–c
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Scheme 1. 
Approach to the proposed revised structure of plebeianiol A
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Scheme 2. 
Total synthesis of plebeianiol A (5) and its oxidized cyclic ether congener 6. 

[(DHQD)2PHAL: hydroquinidine 1,4-phthalazinediyl diether; Burgess reagent: methyl 

N-(triethylammoniumsulfonyl)carbamate; LDA: lithium diisopropylamide; KHMDS: 

potassium bis(trimethylsilyl)amide; DTBP: 2,6-di-t-butylpyridine; TMDSO: 1,1,3,3-

tetramethyldisiloxane; DIBAL-H: diisobutylaluminum hydride.]
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Table 1.

Comparison of 13C NMR chemical shifts calculated for structures 4 and 5, as well as those obtained by 

isolation and synthesis of plebeianiol A, reveal that its correct structure is 5.

a
For the comparison of the predicted shifts for 4 with the data reported by Liang, Wu, and co-workers,11 the resonances are simply listed in order 

of decreasing chemical shift because there was no way to use abietane numbering for the incorrect structure.
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b
We have assigned the resonances to carbons atoms in 5, which are in the right-hand column. Please see the SI for more details.

c
Analysis of the HMBC spectrum was ambiguous with respect to the resonances for C8 and C9, but the predicted shifts strongly imply the 

assignments shown.

d
We were unable to unambiguously assign these methyl carbon resonances on the isopropyl group.

e
These resonances were exactly coincident.
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