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Introduction 

Many soils contain rock fragments the sizes of which are much larger than the 

average pore size of the sieved soil. Due to the fact that these fragments are often 

fairly large in relation to the soil testing apparatus, it is common to remove them 

before performing hydrologic tests on the soil (Reinhart, 1961; Dunn and Mehuys, 

1984). The question then arises as to whether or not there is a simple way to correct 

the laboratory-measured values to account for the fragments, so as to arrive at property 

values that can apply to the soil in situ. This question has arisen in the surface 

infiltration studies that are part of the site characterization program at Yucca Mountain, 

where accurate values of the hydraulic conductivities of near-surface soils are needed 

in order to accurately estimate infiltration rates. Although this problem has been 

recognized for some time, and numerous review articles have been written (Childs and 

Flint, 1990; Brakensiek and Rawls, 1994; Poesen and Lavee, 1994), there are as yet no 

proven models to account for the effect of rock fragments on hydraulic conductivity 

and water retention. In this report we will develop some simple physically-based 

models to account for the effects of rock fragments on gross hydrological properties, 

and apply the resulting equations to experimental data taken from the literature. These 

models are intended for application to data that is currently being collected by scien

tists from the USGS on near-surface soils from Yucca Mountain. 

Overall Hydraulic Conductivity 

We assume that the rock/soil mixture can be modeled as a two-component contin

uum (see Fig. 1). One condition that must be satisfied in order for this assumption to 

be justified is that the characteristic size of the rock fragments must be larger than the 

REV length scale of the soil (Bear, 1972). This scale, L 1, is in general assumed to be 

at least an order of magnitude larger than the size of the largest soil particles, which 

we will denote as dP . Therefore, we will require that the characteristic size of the rock 
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fragments, d f , be at least an order of magnitude larger than the largest soil particles, 

i.e., d1 ~ L 1 » dP. If this is the case, the soil can then be treated as a continuum on 

the length scale of the rock fragments. The REV scale for the soil/rock mixture is 

then taken to be at least an order of magnitude larger than the characteristic rock frag

ment size, i.e., L 2 » d1 . Another requirement for the validity of the continuum treat

ment of the two-component mixture is that the matric potential be nearly uniform over 

the length scale L 2. If the potential changes drastically over distances that are on the 

same order as d1 , the continuum treatment of the soil/rock mixture would not be 

justified. For example, during vertical infiltration it would be necessary for the wetting 

front to have penetrated to a depth z ~ L 2 in order for this approach to be valid. If all 

of these conditions are fulfilled, the problem is reduced to a classical effective two

component conductivity problem, in which case numerous bounds, models, etc. that 

were originally derived in the context of thermal or electrical conductivity are directly 

applicable. 

We will develop a model for the effective hydraulic conductivity of a soil/rock 

system in the general case where both the soil and the rock have finite conductivities, 

although in most practical applications the conductivity of the rock fragments could be 

assumed to be negligible. We expect the effective hydraulic conductivity of a two

component rock/soil mixture to lie between the conductivity of the soil, Ks, and that of 

the rock fragments, Kr, in some proportion that depends on the relative amounts of 

rock and soil. This proportion is often expressed in terms of the weight (or mass) 

fraction of rock fragments, which is easier to measure than is the volume fraction. As 

particle density does not enter into the governing equations for conductivity in any 

way, the effective conductivity should not depend explicitly on weight fraction. How-
' 

ever, the weight fraction may be useful in estimating the volume fraction (Flint and 

Childs, 1984). The rock and soil conductivities will each vary with the potential, but 

for the purposes of discussing effective conductivity, we must assume that 'If is 
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essentially uniform over a certain REV. We will work in terms of the hydraulic con-

ductivity K, which is related to the permeability k through the relation K = pgk /Jl, 

where p and J.1 are the density and viscosity of the pore fluid, and g is the gravitational 

acceleration. As these other parameters are constant at any given temperature, the 

equations we present for the effective conductivity apply equally well to the effective 

permeability. 

The simplest theoretical predictions of the effective conductivity are the arith

metic and harmonic means of the two conductivities, which correspond to "parallel" 

and "series" models, respectively. These models yield the following effective con-

ductivities: 

K = cKr + ( 1- c )Ks (arithmetic mean) , (1) 

1 c 1-c 
\- = - + -- (harmonic mean) , 
K Kr Ks 

(2) 

where c is the volume fraction of the rock fragments. A weighted geometric mean, 

K =K/-cK; is sometimes used to predict the effective conductivity, although it has no 

particular theoretical justification, nor does it correspond to any simple geometrical 

model. The arithmetic and harmonic means were rigorously shown by Wiener in 1912 

to be upper and lower bounds on the actual effective conductivity (see Dagan, 1989), 

regardless of the precise shape and distribution of the inclusions. They are not, how

ever, the narrowest known bounds that are still independent of microstructure. The 

following bounds derived by Hashin and Shtrikman (1962) are always at least as res-

trictive as the series and parallel bounds: 
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(3) 

The hydraulic conductivities of all porous geological media depend strongly on the 

matric potential. Although the soil component of the mixture will typically be the 

more conductive at small values of"'' the rock may in fact become the more perme

able component at sufficiently large values of the suction (see Peters and Klavetter, 

1988). Hence, a completely general model must be able to allow for arbitrary ratios of 

Kr/Ks. In the regime of low suctions, at which the conductivity of the rocks is negli-

gible, the Hashin-Shtrikman and the Wiener lower bounds both degenerate to zero. In 

these cases the Hashin-Shtrikman upper bound is still somewhat more restrictive, and 

therefore more useful, than the arithmetic mean. Nevertheless, the theoretical bounds 

only restrict the conductivity to lie within a fairly large range. In order to arrive at 

more specific predictions of the effective conductivity, we need to consider models that 

take into account the shape of the rock fragments. 

Maxwell-Fricke Model 

The effective hydraulic conductivity could in principle be found by solving for 

the flow through a representative REV that contained a sufficiently large number of 

rock fragments. It is unfortunately not feasible to solve such problems analytically, 

and numerical solutions seem to be feasible only for highly idealized geometries (Mar

tinez et al., 1992). Most theoretical approaches to the effective conductivity problem 

therefore begin by calculating the perturbation in the flowrate caused by a single inclu

sion in a medium that is subjected to a uniform "far-field" potential gradient. This 

perturbation is then averaged over all possible spatial orientations of the inclusion with 

respect to the potential gradient. Anisotropic distributions of the inclusion orientations 

can be accounted for, at the expense of some increase in algebraic complexity 
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(Artemieva and Chesnokov, 1991; Bachu, 1991). We will only discuss soils in which 

the orientations of the rock fragments are more or less isotropically distributed. As the 

analytical results for a single inclusion are strictly applicable only to very small 

volume fractions, some approximate method must be used to extend the results to 

higher concentrations. Many such methods have been proposed, but their predictions 

usually differ substantially only when the volume fraction of the inclusions is greater 

than about 30%. As the rock fragment volume fractions are not expected to exceed 

30% for mo~t soils at Yucca Mountain, we can use one of the simplest of such 

theories, that developed by Maxwell (1873) and Fricke (1924). 

Maxwell (1873) derived the following expression for the effective conductivity K 

of a medium in which there are dispersed spherical inclusions composed of a second 

material: 

K 
-= 

(2+r)-2(1-r)c 
(2 + r) + (1 - r )c ' 

(4) 

where r'=K7 1Ks is the ratio of rock conductivity to soil conductivity. In the special 

case where K7 = 0, Maxwell's result reduces to 

K 1-c 
=---

Ks 1 +0.5c ' 
(5) 

which has been used by various authors (Dunn and Mehuys, 1984; Brakensiek et al., 

1986b) to account for the effect of inclusions on the saturated hydraulic conductivity 

of soils. Maxwell's expression coincides with the Hashin-Shtrikman upper bound, as 

can be seen by rewriting eq. (3) in terms of the conductivity ratio r. Hence, one 

would expect that angular rock fragments would cause the effective conductivity to lie 
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below Maxwell's result. Dunn and Mehuys (1984) found this to be the case when 

they measured the saturated conductivities of several Uplands sands that contained up 

to 20% gravel by volume. They concluded that it would be desirable to have a 

modification of the Maxwell model that accounted in some way for fragment shape 

(cf., Peck, 1983). 

In order to account for fragment shape, we can use the results of Fricke (1924), 

who used Maxwell's approach to derive an expression for the effective electrical con

ductivity of a fluid containing a collection of randomly-oriented spheroids. A spheroid 

is a degenerate ellipsoid which has two axes of equal length. The shape of a spheroid 

is characterized by its aspect ratio, a, which is the ratio of the length of the unequal 

axis to the length of one of the equal axes. Prolate spheroids (a> 1) are roughly 

cigar-shaped, whereas oblate spheroids (a< 1) are doorknob-shaped. In its limiting 

cases, the spheroid can represent a cylindrical fragment (a -7 oo), a spherical fragment 

(a= 1), or a thin, disk-like fragment (a-70). Fricke's expression for the effective 

conductivity is 

K _ (1-c)(l-r)+r~c 
Ks - (1-c)(1-r)+~c ' 

(1-r) [ 4 1 ] 
~ = 3 2+(r-1)M + 1 +(r-1)(1-M) ' 

(6a) 

(6b) 

where r =Kr/KS' and M is a geometric parameter that for oblate spheroids is given by 

(28-sin28) 
M = , where 8=arcos(a), 

2tan8 sin28 
(7) 
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and for prolate spheroids is given by 

1 cos
2
e [ 1+ sine] 

M = sin2e - 2sin3e In 1-sine ' where 8=arcos(l/a). (8) 

When the inclusions are spherical, a= 1 and M ~ 2/3, and it can be shown that eq. 

(6a) reduces to eq. (4). Fricke's expression (6) for the effective conductivity also has 

the interesting property (Zimmerman, 1989) that the entire range of values permitted 

by the Hashin-Shtrikman bounds is covered (monotonically) as the aspect ratio varies 

from 1 to 0. For small inclusion concentrations, K::: Ks (1- ~c), so ~ essentially 

represents the slope of the curve of normalized conductivity vs. rock volume fraction. 

The parameter ~ is plotted in Fig. 2 for a range of conductivity ratios and aspect 

ratios. For a fixed aspect ratio, ~ increases as r decreases, meaning that rock frag-

ments of lower conductivity will cause a more pronounced decrease in the overall con

ductivity, as would be expected. For a fixed conductivity ratio, ~ is a minimum for 

spheres, and approaches asymptotic values in the limiting cases of cylinders or disks. 

The parameter ~ is not very sensitive to aspect ratio when a> 1, and prolate spheroids 

therefore have essentially the same effect as spheres. For example, when the frag

ments are non-conductive, ~(spheres; a= 1) = 1.5, and ~(cylinders; a= oo) = 1.67. 

Because of this insensitivity, and in light of the fact that rock fragments are more com

monly disk-like than cylindrical (Bouwer and Rice, 1984), we will use only oblate 

spheroids in our modeling. Eq. (6) can also be used in the high-suction regime where 

we may have Kr > Ks: in which case ~ will be negative. As this regime is of less 

practical interest, we do not plot curves for r > 1 in Fig. 2. 

The effective conductivity is plotted in Fig. 3 as a function of rock volume frac

tion, for various aspect ratios. The conductivity ratio is taken to be 0, although the 

r = 0 curves essentially apply for all r < 0.01. For a given volume fraction, spherical 
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fragments cause the minimum decrease in the hydraulic conductivity, whereas flattened 

disk-like fragments will have the largest effect. Of course, rock fragments will in 

many cases be somewhat more angular than spheroids. However, there is computa

tional evidence from two-dimensional conductivity problems that the spheroid model 

can be used to predict effective conductivities, provided that one uses an "equivalent" 

aspect ratio (Zimmerman et al., 1992). 

Overall Water Retention Function 

Although in many cases the rock fragments may be essentially non-porous, some 

rock fragments may contain appreciable amounts of water (Coile, 1953; Hanson and 

Blevins, 1979; Magier and Ravina, 1984). Hence, a general model must account for 

the water retention properties of both the soil and the rock fragments. In developing 

our model, we assume again that the rock-filled soil can be treated as a mixture of two 

porous continua. We therefore ignore any disturbance to the pore structure of the soil 

that may occur near the interfaces with the rock fragments (cf., Berger, 1976). The 

water retention function is an equilibrium property, and so a water retention function 

can be defined for the soil/rock mixture only if the soil and rock fragments are in 

capillary equilibrium with each other. During transient infiltration processes, this may 

not always be the case, and it may be more appropriate to model the mixture as a 

dual-porosity medium (Gerke and van Genuchten, 1993). The characteristic time 

needed for the mixture to behave as an equivalent porous medium is roughly given by 

t* =arJl<Prd/lkr> where ar is the van Genuchten parameter of the rock material, <Pr is 

its porosity, and k = JlK lpg is its permeability. If the rock is described by, say, a 

Brooks-Corey water retention function (Brooks and Corey, 1966), then ar should be 

replaced by li'Jf~e, where 'l'~e is the air-entry pressure of the rock material. The time 

constant t* determines the time needed to reach equilibrium during a laboratory meas

urement of water retention in a soil/rock mixture. 
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The soil and rock materials are assumed to be governed by two water retention 

functions, as follows: 

(9a) 

(9b) 

where s is the saturation (volumetric water content e divided by porosity <j>), 'V is the 

matric potential, and Fs and Fr are two arbitrary water retention functions. At equili

brium, the matrix potentials must be equal in the two media, so we can put 

'Vs ='Jir ='JI. Now consider a region of the soil/rock mixture that occupies a total 

volume V, such as in a soil testing apparatus. The soil component occupies a volume 

( 1- c) V, which contains a total pore volume (1- c) V <1> s ; its water-filled volume will 

therefore be (1- c) V <l>s Ss. Likewise, the total water-filled volume in the rock frag-

ments is cV<J>rSr. The total water-filled volume in this region is 

(10) 

The mean porosity of this region is 

Vvoid (1-c)V<l>s +cV<l>r 
<I>= -y = V = (1-c)<l>s +c<l>r. (11) 

The mean saturation of the region in question is therefore given by 

(12) 
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It is often more convenient to work with the water content, which is given by 

(13) 

The water content es appearing in eq. (13) denotes the water content that would exist 

in a soil that contained no rock fragments, measured with respect to the total volume 

of the soil; similarly for er. The effective water content is therefore given by a simple 

volumetric average of the water contents of the components. Eq. (13) is equivalent to 

eq. (10) of Ravina and Magier (1984), except that they define the water content in 

terms of water volume per unit weight of soil, and therefore must include a density 

term in their equation. 

Application of Model to Experimental Data on Hydraulic Conductivity 

In order to test the models presented above, it would be necessary to have meas

urements of hydraulic conductivity and water retention on soils with and without rock 

fragments. An extensive literature search has unfortunately not revealed many suitable 

data sets. Two relevant data sets that have been found are the saturated hydraulic con

ductivity measurements of Dunn and Mehuys (1984), and the water retention measure

ments of Bouwer and Rice (1984). In the absence of data from soils collected at 

Yucca Mountain, we will use these two data sets to test our models. 

Dunn and Mehuys (1984) performed saturated hydraulic conductivity measure

ments on a suite of soils that contained varying volume fractions of either spherical 

glass beads or angular gravel fragments. The soil component of the rock/soil mixtures 

was in each case an Uplands sand (Typic Haplorthod) with a bulk density of . 

1.30 g/cm3, and particle diameters in the range of 0.05-1.0 mm. The length scale of 
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the soils can therefore be taken to be dP = 1 mm. One set of samples were mixed with 

glass spheres, the diameters of which were 4, 8, 16 or 25 mm. The other set was 

mixed with angular gravel made from crushed calcareous sandstone and dolomitic 

limestone. The gravel was sieved to size fractions of 2-5, 5-9, 9-19, or 19-32 mm. 

Although the rock fragment sizes were always larger than that of the largest soil parti

cles, they did not in all cases satisfy the condition d1 » dP, which would be needed to 

rigorously justify the assumption that the rock/soil system can be treated as a mixture 

of two continua. 

The volume fractions of the inclusions in the various samples were 0.0, 0.025, 

0.05, 0.10, and 0.20. The conductivity tests were performed on cylindrical samples 

having a length of 10 em and a diameter of 10 em. For each combination of inclusion 

type and inclusion size, Dunn and Mehuys (1984) made three conductivity measure

ments on four nominally identical samples, and then computed the arithmetic mean of 

the measured values. They also reported the conductivities that were obtained after 

calculating the geometric mean of the values obtained for the different inclusion sizes. 

In order to reduce the scatter in the results, and to focus on the effect of the volume 

fraction and shape of the inclusions, we will analyze this latter set of conductivities 

that were averaged over the various size fractions. This latter averaging should also 

tend to mitigate the fact that the rock fragments were not in all cases much larger than 

the largest soil particles. 

Fig. 4 shows the saturated hydraulic conductivity of the soil as a function of the 

volume fraction of glass spheres. As the inclusions are spherical, we use the original 

Maxwell equation to model the conductivity, which is equivalent to the Maxwell

Fricke eq. (6) with a= 1. If we assume that the rock conductivity is at least two ord

ers of magnitude less than that of the soil, i.e., r =Kr!Ks <0.01, then we can set r =0 

in eq. (4), which then leads to eq. (5). Using the measured value of Ks =63x10-6 rn!s, 

we arrive at the prediction that is shown as the solid line in Fig. 4. The predictions 
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are generally reasonably accurate. The maximum discrepancy between the measured 

and predicted values is 5.8%, and the mean error in the predictions is only 3.1 %. 

As pointed out by Dunn and Mehuys (1984), their data for the soil that contained 

the angular rock fragments fell below the predictions of the Maxwell model. We will 

therefore use the Maxwell-Fricke model for these cases, with an effective aspect ratio 

that is intended to account for the non-sphericity of the inclusions. No images of the 

angular gravel are shown in their paper, so it is not possible to estimate the effective 

aspect ratio a priori. Fig. 5 shows the measured average conductivities, along with the 

predictions of the Maxwell-Fricke model using aspect ratios of 1.0, 0.25, and 0.1. The 

curve corresponding to an aspect ratio of a= 0.25 seems to provide the best fit to the 

data, yielding a maximum error of 3.9%, and a mean error of 1.6%. Although we can

not compare this value to the actual fragments, an effective aspect ratio of 0.25 does 

not seem unreasonable for angular rock fragments. 

Application of Model to Experimental Data on Water Retention 

In order to test the equations presented above for relating the water retention 

curves with and without large inclusions, we can use the data collected by Bouwer and 

Rice (1984) on a sand/boulder mixture. Bouwer and Rice (1984) packed a cylindrical 

container with a mixture of clean cement sand that had a mean particle diameter of 

dP =0.27 mm, and Salt River boulders that had an average (equivalent sphere) diameter 

of d1 = 12.2cm. The volume fraction of boulders was c =0.475. The container had a 

diameter of 1.24 m, and a height of 2.35 m. This mixture satisfies the criterion that 

d1 »dp. Drainage curves were measured for this sand/boulder mixture, and for the 

pure sand, over a range of matric potentials from 0 to -104 Pa. No measurements 

were reported for the boulders themselves, but the reported densities of 

2.33-2.89 g/cm3 imply that the boulders were relatively non-porous. As the pores or 

cracks in the boulders were probably of very small diameter, it is not unreasonable to 
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assume that any water held in the boulders would be immobile ·over this range of 

matric potentials. Hence, we can use eq. (13) for these data, without the er term, in 

the form 

8(\jf, C)= (1- C )Ss ('If)· (14) 

Fig. 6 shows the (drainage) water retention curve for the pure sand, along with the 

curve for the sand/boulder mixture. The curves are replotted from those shown by 

Bouwer and Rice (1984), who did not report individual data points. On a log-log plot, 

eq. (14) predicts that these two curves should be displaced from each other by a factor 

of (1-c)=0.525. For comparison, we have also plotted the curve that is predicted by 

eq. (14) for the sand/boulder mixture, ·based on the curve for pure sand. The agree

ment is reasonably close, although the curves diverge somewhat in the high-suction 
' 

regime. Note that very long times are required to reach capillary equilibrium in a sys

tem whose characteristic length is on the order of one meter, particularly at high suc

tions where the hydraulic conductivity is low. If the rock/sand mixture did not reach 

full capillary equilibrium, The fact that the measured water contents were greater than 

those predicted by eq. (14) could therefore be due to the system not fully attaining 

capillary equilibrium before the measurements were made. 

Conclusions 

Two simple models have been presented to account for the presence of rock frag

ments on the hydrological properties of a soil. The rock/soil mixture is assumed to 

behave as a mixture of two continua, ignoring any possible surface effects that might 

be due to disturbance to the soil structure in the vicinity of the rock, for example. The 

effective water retention curve is essentially given by an appropriate weighted average 

of the water retention curves for the rock and soil. This model was tested against data 
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reported by Bouwer and Rice (1984) on a sand/boulder mixture, and allowed accurate 

predictions of the water retention for a sand containing 0.475 volume fraction of 

boulders, based on data from the same sand without the boulders. A model was pro

posed for predicting the hydraulic conductivity of a rock/soil mixture based on the 

assumption that the rock fragments can be treated as oblate spheroids, and then using 

the Maxwell-Fricke equation. The conductivity model was tested against two data sets 

on an Uplands sand from Dunn and Mehuys (1984), and again yielded reasonable 

predictions of the saturated hydraulic conductivity. Thus far, the results of both 

models seem promising, although the data sets on which they have been tested is lim

ited. In particular, the conductivity model has only been tested for fully-saturated 

soils. Future work will involve applying these models to data that is currently being 

collected on unsaturated Yucca Mountain soils by researchers from the U. S. Geologi

cal Survey. 
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Fig. 1. Schematic diagram of a soil containing rock fragments. The diameter of the 

largest soil particles is dP, the REV length of the soil (without fragments) is L 1, 

the characteristic diameter of the rock fragments is d1 , and the REV scale of the 

soil/rock mixture is L 2• 
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Fig. 2. The parameter ~ that appears in the Maxwell-Fricke conductivity model, as a 

function of the aspect ratio of the spheroidal inclusions, for different values of the 

rock/soil conductivity ratio. 
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Fig. 3. Normalized effective conductivity predicted by the Maxwell-Fricke conductivity 

model, as a function of inclusion concentration, for various aspect ratios. The 

conductivity of the inclusions is taken to be zero. 
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Fig. 4. Hydraulic conductivity of a soil containing spherical glass inclusions. Meas-

ured values are from Dunn and Mehuys (1984); predicted values are from eq. (5). 
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Fig. 5. Hydraulic conductivity of a soil containing angular gravel fragments. Measured 

values are from Dunn and Mehuys (1984); predicted values are from eq. (6). 
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Fig. 6. Water retention (drainage) cuf\'es for a sand with volume fractions of 0.0 and 

0.475 of boulders. Measured curves are from Bouwer and Rice (1984); predicted 

curves for c =0.475 are from eq. (14), based on the data for c =0.0. 
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