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Faulty Towers: A hypothetical simulation model of physical support

Tobias Gerstenberg, Liang Zhou, Kevin A. Smith & Joshua B. Tenenbaum
{tger, zhoul, k2smith, jbt} @mit.edu
Brain and Cognitive Sciences, Massachusetts Institute of Technology

Abstract

In this paper we introduce the hypothetical simulation model
(HSM) of physical support. The HSM predicts that people
judge physical support by mentally simulating what would
happen if the object of interest were removed. Two experi-
ments test the model by asking participants to evaluate the ex-
tent to which one brick in a tower is responsible for the rest
of the bricks staying on a table. The results of both experi-
ments show a very close correspondence between hypothetical
simulations and responsibility judgments. We compare three
versions of the HSM which differ in how they model people’s
uncertainty about what would happen. Participants’ selections
of which bricks would fall are best explained by assuming
that hypothetical interventions only lead to local changes while
leaving the rest of the scene unchanged.

Keywords: causality; counterfactual; hypothetical; mental
simulation; intuitive physics; physical support.
Introduction

When we look at a physical scene, such as the towers
shown in Figure 1, we don’t just see a pile of bricks. We also
have a sense for how stable the different towers are and what
is causing that stability (Battaglia, Hamrick, & Tenenbaum,
2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016). In
this paper, we look at how people judge the extent to which
different bricks carry the responsibility for a tower’s stability.
We argue that people judge responsibility by imagining what
would happen to the tower if the brick were removed, and
develop a hypothetical simulation model (HSM) of physical
support which captures this process.

We build on previous work in which we have shown how
a counterfactual simulation model (CSM) explains people’s
causal judgments about dynamic collision events (Gersten-
berg, Goodman, Lagnado, & Tenenbaum, 2012, 2014, 2015;
Gerstenberg & Tenenbaum, 2016). In these experiments, par-
ticipants saw collisions between billiard balls, and were asked
to evaluate to what extent one ball had caused another ball to
go through a gate in a wall (or prevented the ball from going
through). The CSM assumes that people reach this judgment
by comparing what actually happened with what would have
happened in a counterfactual situation in which the candidate
cause had been removed from the scene. As predicted by
the model, participants’ cause and prevention judgments in-
creased the more certain they were that the outcome would
have been different if the candidate cause had been removed
from the scene. The CSM also captures the cognitive pro-
cesses by which participants reach their judgments: partici-
pants’ eye movements reveal how they spontaneously antic-
ipate what would have happened in the relevant counterfac-
tual situation (Gerstenberg, Peterson, Goodman, Lagnado, &
Tenenbaum, in press).

The CSM makes the strong prediction that counterfactual
simulation forms a necessary part of how people make causal
judgments, and that no adequate account of people’s causal
judgments about particular events can be developed that does
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Figure 1: Experiment 1. Example stimuli. Note: Red bricks that
would fall off the table if the black brick were removed (according
to ground truth) are marked with a white dot at their center. The dots
were not displayed in the actual experiment.

not rely on counterfactuals (cf. Wolff, 2007). Thus far, how-
ever, the CSM has only been applied to modeling causal
judgments about dynamic collision events. Here, we demon-
strate the generality of the account by showing how a model
of hypothetical simulation naturally handles judgments about
physical support.

Judging physical support is different from judging causa-
tion in several ways. First, hypotheticals are different from
counterfactuals in that they are future-oriented and don’t re-
quire going back in time (Beck, 2015). When making causal
judgments about dynamic collisions, the observer needs to re-
member what actually happened, and contrast this with what
would have happened in the relevant counterfactual situa-
tion. However, when making judgments of physical support
in static scenes, like the tower configurations in Figure 1,
there is no need to go back in time. We merely need to sim-
ulate what a possible future would look like in which certain
aspects of the scene were changed.

Second, the mental simulations that are required to imag-
ine the relevant counterfactual or hypothetical are different
(cf. Freyd, Pantzer, & Cheng, 1988; Holmes & Wolff, 2010).
When simulating counterfactuals, we want to stay as close
as possible to what actually happened, and only modify the
world as little as possible to make the counterfactual true
(Gerstenberg, Bechlivanidis, & Lagnado, 2013; Lewis, 1973;
Pearl, 2000). But what do we keep constant in the causal
model of the situation, and what do we change? When judg-
ing whether a ball would have gone into the goal, we need to
simulate what the trajectory of the ball would have been if the
collision hadn’t taken place. To model people’s uncertainty,
we can add noise to the simulation of the ball’s trajectory (cf.
Smith & Vul, 2013) and keep everything else that we know
about the scene as it was (e.g. we wouldn’t change the size
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Figure 2: Schematic illustration of how different versions of the
hypothetical simulation model apply noise when considering what
would happen if the black brick were removed.

of the goal in the counterfactual simulation). However, when
judging responsibility for a tower’s stability, it is less clear
what aspects of the scene we should hold constant. We will
compare several implementations of the HSM that differ in
how they capture people’s uncertainty about what would hap-
pen.

The road map for the rest of the paper is as follows: We first
present in detail how the HSM predicts judgments of physi-
cal support. We will test the model in two experiments in
which we ask one group of participants to make hypothetical
judgments, and another to evaluate causal responsibility. As
predicted by the HSM, there is a very close correspondence
between hypothetical and responsibility judgments. Heuris-
tic strategies that focus on features of the scene (such as a
tower’s height, or the number of bricks on top of the brick
of interest) cannot explain people’s judgments as well. We
end by discussing limitations of the current approach and by
offering directions for future research.

Hypothetical simulation of physical support

In our experiments, we ask participants how responsible
the black brick is for the red bricks staying on the table. To
derive predictions from the HSM we need to determine (1)
what hypothetical situation to consider, and (2) how to sim-
ulate what would happen in that situation. We assume that
when judging responsibility, participants consider a hypo-
thetical situation in which the black brick is removed. Par-
ticipants then use their intuitive understanding of physics to
mentally simulate what would happen in that situation.

Recent work has argued that some aspects of people’s in-
tuitive understanding of physics are well-described by as-
suming we have an approximate simulation engine in our
mind that is akin to a physics engine (Battaglia et al., 2013;
Lake, Ullman, Tenenbaum, & Gershman, 2016). Part of what
makes these simulation engines “approximate” is that they
assume that people’s representation of a physical situation is
uncertain. This uncertainty can come in many forms, such
as perceptual uncertainty about the exact location of objects
(Battaglia et al., 2013), dynamic uncertainty about how ex-
actly an object will move (Smith & Vul, 2013), and uncer-
tainty about latent physical parameters such as friction and
mass (Sanborn, Mansinghka, & Griffiths, 2013).
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To investigate whether people’s mental simulations incor-
porate the assumption that only some aspects of the physical
scene would directly be affected by the hypothetical interven-
tion, we contrast three implementations of the HSM. These
implementations differ in how they capture people’s uncer-
tainty about what would happen if the black brick were re-
moved. All models apply noise in the same way: as a small
impulse to some of the red bricks immediately after the re-
moval of the black brick. The models differ, however, in
which bricks they apply noise to. Figure 2 illustrates how the
three different models work. The global noise model applies
a small impulse to all the bricks and thus captures a general
uncertainty about the scene (cf. Battaglia et al., 2013). The
local noise model applies the impulse only to the red bricks
that are directly in contact with the black brick. This model
captures the assumption that participants will be most uncer-
tain about what would happen in the area around the black
brick. The above noise model applies noise only to bricks
that are above the black brick and “connected” with it. Any
brick that directly contacts and has its center of mass above
that of the black brick counts as connected. This definition is
then applied recursively. For example, brick 2 in Figure 2c
is connected since brick 1 is in contact with and above the
black brick, and brick 2 is in contact and above brick 1. This
model captures that removing the black brick will affect the
other bricks in an asymmetric way. Similar to when we lift
a wooden block playing Jenga, this version of the model as-
sumes that we have uncertainty particularly about those parts
of the scene that would be affected by this kind of manipula-
tion.

Experiment 1

In the experiment, participants saw towers of bricks like
the ones shown in Figure 1. Depending on the experimen-
tal condition, participants were asked to consider what would
happen if the black brick weren’t there, or evaluate the ex-
tent to which the black brick is responsible for the red bricks
staying on the table. In line with the HSM, we predicted that
there would be a close relationship between hypothetical and
responsibility judgments.

Methods

Design & Procedure The experiment had three conditions
that differed only in terms of the dependent measure.! In the
selection condition, participants were asked to “Please click
on the red bricks that would fall off either side of the table
if the black brick wasn’t there.” In the prediction condition,
participants were asked to answer the question: “How many
of the red bricks would fall off the table, if the black brick
wasn’t there?” Participants provided their answer on a slid-
ing scale ranging from O to the number of red bricks present in
the scene in steps of 1. In the responsibility condition, partic-
ipants were asked to answer the question: “How responsible
IData, materials, figures, and code are available here: https://
github.com/tobiasgerstenberg/tower_counterfactual
An interface to view the stimuli and play around with the different

noise models may be accessed here: http://web.mit.edu/tger/
www/demos/towers/physics_interface.html
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Figure 3: Experiment 1. Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and (a) the ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

is the black brick for the red bricks staying on the table?”” Re-
sponses were provided on a sliding scale ranging from “not
at all” (0) to “very much” (100).

The procedure for all three conditions was identical. Par-
ticipants first received instructions about the task. They then
saw a number of warm-up animations that showed 20 bricks
being dropped on the table. These animations were shown
to familiarize participants with the relevant properties of the
physical scene such as gravity, the friction between the bricks,
as well as the table friction. Participants were only allowed to
proceed to the next stage once they had watched at least five
animations.

After the warm-up, participants saw 42 images of different
towers of bricks in randomized order (see Figure 1 for exam-
ples). The stimuli varied the number of bricks on the table
(range = 7 to 20, M = 13.7, SD = 3.3), as well as the num-
ber of red bricks that would fall off the table if the black brick
were removed (range =0 to 6, M =2, SD = 1.9). Participants’
tasks differed depending on the condition as described above.
Finally, participants were asked to provide open-ended feed-
back about the task, and provided demographic information.

On average, the experiment took 15.71 (SD = 6.49), 9.86
(SD = 6.49), and 8.88 minutes (SD = 8.90) in the selection,
prediction, and responsibility condition, respectively.

Table 1: Summary of model results for Experiments 1 and 2 as ap-
plied to the data in the selection condition.

Experiment 1 Experiment 2

model | r RMSE L 6 | r RMSE L o
truth | 055 3474 21374 0 | 064 3165 -22279 0
global | 0.75 2092 -9274 69 | 061 29.03 -14034 2.5
local | 070 2226 -9727 112 | 0.66 2535 -12617 72
above | 0.87 1534  -8435 143|073 2208 -11824 125

Note: r = Pearson correlation, RMSE = root mean squared error, L =
log-likelihood of the data, ¢ = SD of the Gaussian from which the noise
impulse is drawn that is applied to different bricks depending on the model.
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Figure 4: Relationship between the predicted number of red bricks
that would fall if the black brick weren’t there (prediction condition)
and number of selected bricks that would fall (selection condition).
Note: The letters refer to the examples shown in Figure 1 for Ex-
periment 1, and Figure 6 for Experiment 2. Error bars in all figures
denote bootstrapped 95% confidence intervals.

Participants 121 participants (Mage = 34, SDjge = 12, 47 fe-
male) were recruited via Amazon Mechanical Turk using psi-
Turk (Gureckis et al., 2016) with N = 38 in the selection con-
dition, N = 42 in the prediction condition, and N = 41 in the
responsibility condition. We excluded participants from fur-
ther analysis based on their responses to the catch trial shown
in Figure la. Eleven participants in the prediction condition
were excluded because they predicted that at least one red
brick would fall. Six participants in the responsibility condi-
tion were excluded because they gave a responsibility rating
greater than 15. No participants were excluded from the se-
lection condition because no participant selected any of the
bricks on the catch trial.

Results

We will discuss the results from the selection, prediction,
and responsibility conditions in turn.

Selection condition We tested how well the three differ-
ent noise models captured participants’ selections of which
bricks would fall off the table if the black brick weren’t there
(see Figure 2). For each model, we used maximum likelihood
fitting to find the noise parameter which predicts participants’
selections best. For each setting of the noise parameter, we
ran 100 simulations per stimulus and used the proportion of
samples that each brick fell off the table in the noisy sim-
ulations to predict the probability that a given brick will be
selected to fall by participants. (Figure 8 gives an example
for what these predictions look like for stimuli used in Exper-
iment 2.) Overall, the above noise model accounted best for
the data (cf. Table 1).

Prediction condition Figure 4a shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. Overall, the two ways of probing partici-
pants’ hypothetical simulations lead to very similar results.
However, participants in the prediction condition predicted
that more bricks would fall than participants in the selec-
tion condition selected (most of the data points are below
the diagonal). The noise model which best accounted for
participants’ selections, also accurately predicts participants’
average judgments about how many bricks would fall with
r= .88, RMSE = 0.84.
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Figure 5: Relationship between the predicted proportion of bricks
that would fall if the black brick weren’t there and responsibility
judgments. Note: The letters refer to the examples shown in Figure 1
for Experiment 1, and Figure 6 for Experiment 2.

Responsibility condition Figure 5a shows the relationship
between the proportion of bricks that participants in the pre-
diction condition believed would fall off the table if the black
brick weren’t present in the scene, and participants’ respon-
sibility judgments. As predicted by the HSM, there was a
very close relationship between prediction and responsibil-
ity judgments r = .84, RMSE = 6.55. This suggests that
participants evaluated a brick’s responsibility by considering
what proportion of bricks would fall off the table if the brick
weren’t there. When we use the proportion of bricks selected
in the selection condition to predict participants’ responsi-
bility judgments, we get a similarly good fit with r = .78,
RMSE = 7.65. A noise-free model that uses the propor-
tion of bricks that actually fall off the table does not ac-
count well for participants’ responsibility judgments r = .35,
RMSE = 11.42.

As an alternative to the HSM, we compared a heuristic
model which predicts participants’ responsibility judgments
based on features of the physical scene. Table 2 shows how
well the different features correlated with participants’ judg-
ments individually, as well as when combined via a linear re-
gression model. We included features about the whole scene
such as the number of bricks, the tower height, the average
distance of each brick to the nearest edge of the table, as well
as the average height and angle of each brick. We also in-
cluded features specific to the black brick such as its distance
to the nearest edge, its height and angle, as well as the num-
ber of bricks above it. To define the number of bricks above,
we used the same criterion as the above noise model (cf. Fig-
ure 2c). As Table 2 shows, the best individual predictor for
participants’ responsibility judgments is the average height
of each brick in the scene, followed by the number of bricks
above the black one. Neither individual feature describes par-
ticipants’ responsibility judgments as well as the predictions
Table 2: Correlation coefficients between features and participants’
responsibility judgments in Experiments 1 and 2. Note: The scene
features, brick features, and all features columns show how well

regressions that combine these features correlate with participants’
judgments.

black brick features
n bricks  brick
above features

scene features
n tower avgedge avg avg scene
bricks height distance height angle features

.16 .55 .39 73021 81
-05 21 -10 .07 .01 .26

all
features

.88
85

edge
distance

.02
12

height angle

Exp 1
Exp 2

-19
74

-.05
-.04

.61

.62
.69

79

Note: n = number, avg = average.
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Figure 6: Experiment 2. Example stimuli. Note: White dots indi-
cate which bricks would fall if the black brick weren’t there. There
were 6 different configurations of towers (I through VI), and 7 dif-
ferent positions for the black brick in each tower, see c), d), and h).

(and selections) that participants made in the other two condi-
tions of the experiment. A regression model that combines all
features correlates well with participants’ responsibility judg-
ments (r = .88, RMSE = 5.89), as does a model that only con-
siders the scene features (r = .81, RMSE = 7.14). A model
which only includes features about the black brick doesn’t
fare as well (r = .62, RMSE = 9.6). Even though a model
that includes all features explains slighlty more of the vari-
ance that the HSM, this is likely due to overfitting; using
model selection criteria, we find that the HSM performs bet-
ter (AIC = 276.52, BIC = 281.66) than the heuristic model
(AIC =283.72, BIC = 302.57).

Discussion

The results of Experiment 1 support the predictions of the
HSM. Most importantly, there was a very close relationship
between the responsibility judgments of one group of partic-
ipants, and the number of bricks that another group of partic-
ipants predicted would fall if the black brick weren’t there.
A heuristic model that does not rely on physical simulations
but uses features that can be directly extracted from the scene
fared worse when taking into account both variance explained
and model complexity. We contrasted three implementations
of the HSM which differ in the way in which they capture
people’s uncertainty about what would happen if the brick
were removed. The results show that the above noise model
correlates best with participants’ selections. This model as-
sumes that participants are particularly uncertain about what
would happen to the bricks that are located above the black
one.

Experiment 2

Experiment 1 elicited participants’ judgments for a wide
array of different situations. In Experiment 2, we chose a
more tightly controlled stimuli set, a selection of which is
shown in Figure 6. We generated six different tower configu-
rations. For each configuration, we chose seven positions for
the black brick such that removing it would result in O to 6 red
bricks falling off the table. While a heuristic model that used
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Figure 7: Experiment 2: Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and (a) the ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

global scene features explained responsibility judgments well
in Experiment 1, we expected this model to perform poorly
here since it doesn’t take into account where the black brick
is positioned.

In order to better tell apart the different implementations of
the HSM, we included tower configurations with disjointed
sets of bricks (Tower III and Tower IV). For example, con-
sider the configuration of bricks shown in Figure 6¢c. While a
global noise model predicts that some of the red bricks on the
right would fall off the table, the local versions of the model
predict that only the bricks on the left side will fall.

Methods

Design & Procedure The design, procedure, and questions
were identical to those of Experiment 1. Participants saw 43
trials in randomized order whereby one trial served as a catch
trial. On average, the experiment took 13.04 (SD = 6.87),
11.57 (SD = 5.24) and 7.86 minutes (SD = 3.48) in the selec-
tion, prediction, and responsibility condition, respectively.
Participants 129 participants (Mage = 36, SDyee = 11.3, 59
female) were recruited via Amazon Mechanical Turk with
N = 42 in the prediction condition, N = 44 in the selection
condition, and N = 43 in the responsibility condition. We
used the same exclusion criteria as in Experiment 1 based on
the same tower shown in Figure la. 1 participant was re-
moved in the selection condition, 3 participants in the predic-
tion condition, and 3 in the responsibility condition.

Results & Discussion

Selection condition Figure 7 shows the correspondence be-
tween participants’ brick selections and the predictions ac-
cording to the ground truth as well as our three noise models
as illustrated in Figure 2. Overall, the above noise model ac-
counted best for participants’ selections, as in Experiment 1
(cf. Table 1).

Let us look at the two situations shown in Figure 8 in some

global noise local noise above noise

empirical selection

Figure 8: Empirical selection percentages for two different stimuli
together with the predicted selection probabilities according to the
different noise models. The numbers (and color fill) indicate what
percentage predicted that a particular brick would fall off the table if
the black brick were removed. Red and black frames around a brick
indicate that the brick would fall or stay on the table, respectively.

more detail. For the example shown in the top row, partic-
ipants’ selections corresponded closely to the ground truth.
Since the global noise model applies an impulse to all the
bricks, it incorrectly predicted that participants would select
bricks on the right. The local noise model incorrectly pre-
dicted selections of bricks underneath the black one. The
above noise model best predicted participants’ selection in
this case. It only assigned a small probability that any of the
bricks on the right would be selected (because sometimes the
bricks on top of the black brick will fall towards the right), or
bricks that are underneath the black one.

The example in the bottom row shows a situation where
participants’ selections didn’t correspond to the ground truth.
Here, the majority of participants believed that none of the
bricks would fall if the black brick weren’t there. When the
black brick is removed, the two bricks directly underneath
it fall to the left and right, and the one falling to the right
pushes the stack of bricks on the right off the table. None of
our noise models was able to capture participants’ selections
in this case. The above noise model did a particularly poor
job for the simple reason that it doesn’t apply any noise in
this case. Since the black brick is on top, its predictions cor-
respond to the ground truth. What this clearly shows is that
our noise models don’t yet completely capture participants’
hypothetical simulations. We will discuss some ideas about
how the improve the models in the General Discussion below.

Prediction condition Figure 4b shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. As in Experiment 1, there was a very close
relationship between predictions and selections, and, again,
participants predicted that more bricks would fall on average
than they selected. The above noise model again best ex-
plained participants’ predictions with » = .76, RMSE = 1.41.

Responsibility condition Figure 5b shows the relationship
between participants’ predictions and responsibility judg-
ments. Like in Experiment 1, participants’ responsibility
judgments were well-accounted for by the proportion of
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bricks that would fall off the table if the black brick were
removed r = .91, RMSE = 8.66. Again, we can also account
for participants’ responsibility judgments based on the pro-
portion of bricks that were selected in the selection condi-
tion r = .91,RMSE = 8.67. A noise-free model again fails to
account well for participants’ responsibility judgments with
r=.36,RMSE = 19.99.

Table 2 shows how well different features of the physical
scene correlate with participants’ responsibility judgments in
Experiment 2. Expectedly, global scene features did not cor-
relate well with participants’ responsibility judgments this
time because these features do not capture the actual posi-
tion of the black brick. For example, they don’t distinguish
the configuration shown in Figure 6¢ from the one shown in
Figure 6h. However, a good predictor of participants’ respon-
sibility judgments was the height of the black brick. The
lower the black brick was located, the more responsible it
was. Unlike in Experiment 1, the average height of the bricks
in the tower did not correlate with responsibility judgments.
Unsurprisingly, the number of bricks above the black brick
was again a good predictor. However, there was no single
predictor that accounted as well for participants’ responsibil-
ity judgments as participants’ predictions or selections in the
other two conditions did. Even a regression that combines
both scene and black brick features (r = .85,RMSE = 11.17)
does not explain participants’ responsibility judgments as
well as the HSM does.

General Discussion

How do people judge physical support? In this paper, we
develop and test a hypothetical simulation model (HSM) of
physical support. Based on a model of counterfactual simu-
lation which was originally developed to explain causal judg-
ments about collision events (Gerstenberg et al., 2012, 2014,
2015; Gerstenberg & Tenenbaum, 2016), the HSM predicts
that we judge physical support by imagining what would hap-
pen if the object were removed. An individual brick is respon-
sible for other bricks staying on a table to the extent that these
bricks would fall off the table if that brick were removed. The
results of two experiments show that the greater the propor-
tion of bricks that participants predict would fall of the table,
the more responsible that brick is seen for the other bricks
staying on the table. Simple features of the physical scene
such as the height of the tower, or the position of the brick
of interest, as well as combinations of these features cannot
explain participants’ judgments as well.

The central claim of the HSM is that people judge phys-
ical support by simulating what would happen to the scene
if the object of interest were removed. We contrasted three
different implementations of the HSM which differ in how
they model participants’ uncertainty about what would hap-
pen in the relevant hypothetical situation. Similar to how
people spontaneously consider counterfactuals when judging
causation (Gerstenberg et al., in press), people naturally play
“mental Jenga” when judging responsibility for physical sup-
port. Participants’ selections of which bricks would fall were
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best explained by a model that adds noise to the bricks lo-
cated above the removed brick. While this model does a good
job overall, there remain situations that it cannot capture ade-
quately (cf. Figure 8).

We believe that there are at least three sources of uncer-
tainty that affect participants’ judgments: first, there is per-
ceptual uncertainty about the exact spatial location of the dif-
ferent bricks (cf. Battaglia et al., 2013). Second, there is un-
certainty about the hypothetical intervention itself: would the
black brick simply disappear, or would it be removed, thereby
affecting the bricks above it. Third, there is dynamic uncer-
tainty about what would happen once the brick is removed
(cf. Smith & Vul, 2013). While the current implementation
of the HSM uses a physics engine as a proxy for participants’
mental model, we are eager to explore how an approximate
simulation model (which doesn’t represent each brick indi-
vidually) might be able to capture participants’ judgments (cf.
Davis & Marcus, 2016). Ideally, such a model would help ex-
plain when it is that people’s physical intuitions are faulty and
deviate from the ground truth.
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