UCLA

UCLA Previously Published Works

Title

Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of B(9)-Bromo-meta-Carborane.

Permalink

https://escholarship.org/uc/item/0x57v855

Journal

Journal of the American Chemical Society, 139(23)

ISSN

0002-7863

Authors

Dziedzic, Rafal M
Martin, Joshua L
Axtell, Jonathan C
et al.

Publication Date

2017-06-01

DOI

10.1021/jacs.7b04080

Peer reviewed

Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of $\mathrm{B}(9)$-Bromo-meta-Carborane

Rafal M. Dziedzic, ${ }^{\dagger}$ Joshua L. Martin, ${ }^{\dagger}$ Jonathan C. Axtell, ${ }^{\dagger}$ Liban M. A. Saleh, ${ }^{\dagger}$ Ta-Chung Ong, ${ }^{\dagger}$ Yun-Fang Yang, ${ }^{\dagger}{ }^{\oplus}$ Marco S. Messina, ${ }^{\dagger}$ Arnold L. Rheingold, ${ }^{\dagger}$ K. N. Houk, ${ }^{\dagger}{ }^{\oplus}$ and Alexander M. Spokoyny ${ }^{*}, \ddagger, \mathcal{S}$ ©
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
${ }^{\ddagger}$ Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
${ }^{\text {§ }}$ California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States

(5) Supporting Information

Abstract

We report the first observed Pd-catalyzed isomerization ("cage-walking") of $\mathrm{B}(9)$-bromo-meta-carborane during Pd-catalyzed cross-coupling, which enables the formation of $\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{N}$ bonds at all boron vertices ($B(2), B(4), B(5)$, and $B(9))$ of meta-carborane. Experimental and theoretical studies suggest this isomerization mechanism is strongly influenced by the steric crowding at the Pd catalyst by either a biaryl phosphine ligand and/or substrate. Ultimately, this "cage-walking" process provides a unique pathway to preferentially introduce functional groups at the $\mathrm{B}(2)$ vertex using $\mathrm{B}(9)$-bromo-meta-carborane as the sole starting material through substrate control.

Isomerization mechanisms such as chain-walking via β hydride elimination/reinsertion and aryne-based rearrangements (Figure 1A) are ubiquitous in metal-catalyzed transformations of organic molecules. ${ }^{1,2}$ Through judicious choice of catalyst design, these mechanistic pathways can be biased to form specific regioisomers. Thus, metal-catalyzed isomerization
A

Figure 1. (A) Pd-catalyzed olefin isomerization through β-hydride elimination and arene regioisomer formation through a proposed benzyne intermediate. (B) Pd-catalyzed isomerization of metacarboranyl through "cage-walking".
control can provide a means of incorporating functional groups in molecules at positions remote from where initial bond activation occurs. ${ }^{1-3}$

Boron clusters are unique molecular scaffolds that feature three-dimensional (3D) electronic delocalization. ${ }^{4}$ Specifically, in the case of icosahedral carboranes $\left(\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{12}\right)$ this delocalization is nonuniform. ${ }^{5}$ This charge distribution makes carboranes an interesting alternative to classical carbon-based structural building blocks such as aryl and alkyl groups. ${ }^{6}$ Because of their inherent robustness, carboranes can be promising molecular building blocks for applications ranging from pharmacophores to photoactive materials. ${ }^{7}$ Ultimately, vertex-specific functionalization routes (vertex differentiation) are critical for constructing carborane-containing molecules and materials. ${ }^{7,8}$

Recent developments in carborane functionalization have relied on several metal-catalyzed routes, including B-H activation (either directed or undirected) and cross-coupling of halogenated carborane electrophiles at both C and B vertices. ${ }^{8,9}$ Even so, these approaches provide limited access to rational, vertex-specific $B-H$ functionalization. Surprisingly, metal-catalyzed isomerization reactivity commonly observed with classical organic substrates (vide supra) has never been reported for any boron cluster systems, including carboranes. Herein we disclose our discovery of a Pd-catalyzed activation of $B(9)$-bromo-meta-carborane ($\mathbf{B r}-\mathbf{B}(9)$), which can undergo subsequent "cage-walking", leading to the formation of $\mathrm{B}(2)$-, $B(4)-, B(5)$-, and $B(9)$-functionalized clusters in the presence of a suitable nucleophile (Figure 1B).

Recently we reported the Pd-catalyzed cross-coupling of $\mathbf{B r}-$ $B(9)$ to generate $B(9)-O$ and $B(9)-N$ bonds with a wide range of substrates. ${ }^{9}$ This cross-coupling relied on biaryl phosphine ligands to generate monoligated palladium(0) species ([LPd]) capable of undergoing oxidative addition into the $\mathrm{B}-\mathrm{Br}$ bond of $\mathrm{Br}-\mathbf{B}(9)$. To our surprise, during the course of subsequent investigations, when the DavePhos (L1) or SPhos (L2) ligand was replaced with the bulkier XPhos

[^0]

Figure 2. (A) Reaction conditions that result in the formation of R1-meta-carborane regioisomers. (B) ${ }^{11} \mathrm{~B}$ NMR spectra of the isolated regioisomers. Singlet resonances (no ${ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}$ coupling) corresponding to the $\mathrm{B}-\mathrm{O}$-bonded vertex are labeled; all other resonances correspond to doublet resonances arising from ${ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}$ couplings. (C) Single-crystal X-ray structures of $\mathbf{R 1} \mathbf{- B}(n), n=2,4,5,9$ (ellipsoids drawn at 50% probability and H atoms omitted for clarity).
congener (L3) in the presence of alcohol or amine substrates, we consistently observed not one but rather three distinct peaks with identical m / z by gas chromatography-mass spectrometry (GC-MS). For example, using 3,5-dimethylphenol (R1) as a cross-coupling partner with $\mathbf{B r}-\mathbf{B}(9)$, we observed several products with identical m / z (see the Supporting Information (SI)). Upon chromatographic separation of the reaction mixture on silica gel, we identified four distinct R1-carborane compounds by ${ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Figure 2).

The isolated carborane-containing molecules show a distinct downfield singlet in the ${ }^{11} \mathrm{~B}$ NMR spectrum corresponding to R1 bound at a $B(2), B(4), B(5)$, or $B(9)$ vertex of metacarborane ($\mathrm{R} 1-\mathrm{B}(2), \mathrm{R} 1-\mathrm{B}(4), \mathrm{R} 1-\mathrm{B}(5)$, and $\mathrm{R} 1-\mathrm{B}(9)$, respectively). Although we were unable to chromatographically separate $\mathrm{R1} \mathbf{- B}(5)$ and $\mathbf{R 1}-\mathbf{B}(4)$, we identified the isomer ratio as $15: 85$ by ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy: $\mathrm{R} 1-\mathrm{B}(4)$ is $\mathrm{C}_{1^{-}}$ symmetric, resulting in $10{ }^{11} \mathrm{~B}$ NMR resonances (one singlet and nine doublets), whereas $\mathbf{R 1} \mathbf{- B}(\mathbf{5})$ contains a mirror plane, resulting in six ${ }^{11} \mathrm{~B}$ NMR resonances (one singlet and five doublets). Thus, the more intense singlet at $\sim 3 \mathrm{ppm}$ (Figure $2 B$) is assigned to the dominant pattern of $\mathbf{R 1}-\mathbf{B}(4)$. Similarly, two sets of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances corresponding to R1$\mathbf{B}(5)$ and $\mathbf{R 1} \mathbf{- B}(4)$ were observed in a $15: 85$ signal ratio for the CH aromatic and aliphatic regions, respectively (see the SI). These structural assignments are further supported by singlecrystal X-ray diffraction studies of the four regioisomers (Figure $2 C$). Interestingly, $\mathrm{R} 1-\mathbf{B}(4)$ is the only monofunctionalized meta-carborane regioisomer that exhibits chirality. $\mathbf{R 1} \mathbf{- B}(4)$ crystallized as two distinct polymorphs, with both polymorphs containing equal amounts of the two enantiomers in the unit cell. Chiral HPLC analysis further supports the presence of two $\mathbf{R 1} \mathbf{- B}(4)$ enantiomers in the isolated mixture (Figure S12).

To further assess the generality of this isomerization process, we examined three biaryl phosphine ligands and several substrates to generate $\mathrm{B}-\mathrm{O}$ - and $\mathrm{B}-\mathrm{N}$-bound carborane regioisomers (Figure 3). Consistent with our previous report, [L1Pd] and [L2Pd] generate $B(9)$ isomers almost exclusively with O - and N -based nucleophiles. ${ }^{9}$ However, [L3Pd] generates appreciable amounts of regioisomers under the same conditions. Noteworthy was the presence of bromo-meta-carborane regioisomers when the cross-coupling reactions were stopped early, indicating that isomerization of $\mathbf{B r}-\mathbf{B}(\mathbf{9)}$ occurs in addition to the cross-coupling reaction. Furthermore, $\mathbf{B r}-\mathbf{B}(9)$ forms bromo-meta-carborane isomers in the presence

Figure 3. Reaction conditions for forming B-functionalized metacarborane isomers using different substrates (R1-R3) and biaryl phosphine ligands (L1-L3). Yields were obtained by GC-MS. See the SI for full experimental conditions.
of [L3Pd] precatalyst and triethylamine, implying that isomerization can occur prior to transmetalation of a crosscoupling partner and subsequent reductive elimination of the B-functionalized meta-carborane. Hence, this metal-catalyzed isomerization may provide a convenient pathway to $B(2)$-, $\mathrm{B}(4)$-, and $\mathrm{B}(5)$-functionalized meta-carborane species that circumvents laborious and often low-yielding protocols such as deboronation/capitation or thermal isomerization strategies. ${ }^{10,11}$

Since bromo-meta-carboranyl isomerization can occur before all of the carborane regioisomers are depleted by cross-coupling (vide supra), we hypothesized that the isomerization process might operate separately from the main cross-coupling cycle. To further explore the isomerization mechanics, we attempted

Figure 4. (A) Deuterium labeling experiments. The resonance at 2.7 ppm is present from polydeuterated $\mathbf{B r}-\mathbf{B}(9)$. See the SI for full experimental details. (B) Proposed metal-catalyzed isomerization of bromo-meta-carborane through a "cage-walking" mechanism: (I) oxidative addition; (II-a) bromide dissociation; (II-b, II-c) "cage-walking"; (II-d) bromide association; (III) transmetalation; (IV) reductive elimination.
to inhibit transmetalation by increasing the steric bulk of the cross-coupling partner, thereby allowing the active catalyst species to operate in the isomerization pathway for a longer time (Figure 4, step II). Indeed, cross-coupling reactions using bulky L3 and sterically congested 2,6-dimethylphenol (R3) yielded $\mathbf{R} 3-\mathbf{B}(2)$ as the major product (Figure 3). As a control experiment, equimolar amounts of 3,5-dimethylphenol (R1) and 2,4,6-trimethylphenol ($\mathbf{R} \mathbf{3}^{\prime}$, a variant of $\mathbf{R} 3$ to permit separation of the products by $\mathrm{GC}-\mathrm{MS}$) were reacted with $\mathrm{Br}-$ $\mathbf{B}(9)$ in the presence of [$\mathbf{L 3 P d}]$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in 1,4-dioxane at 80 ${ }^{\circ} \mathrm{C}$ (Figures S5 and S6). GC-MS analysis of the reaction mixture showed complete consumption of $\mathbf{B r}-\mathbf{B}(9)$ with R1-meta-carborane isomers as the major products, suggesting that the size of the nucleophile is linked to the rate of product formation. Since oxidative addition is likely rapid in this process, ${ }^{12}$ it appears that by decreasing the rate of transmetalation and/or reductive elimination one can increase the yield of the $B(2)$ regioisomer (Figure $4 B$). This type of Pdcatalyzed remote vertex functionalization is unprecedented and demonstrates the utility of a metal-catalyzed route to metacarborane vertex differentiation. Importantly, it contrasts with known thermal rearrangements that are limited to thermally resistant functional groups (above $300^{\circ} \mathrm{C}$) and produce isomer mixtures with $B(2)$ substituted meta-carboranes as the minor product. ${ }^{11}$

We attribute this difference in reactivity between "cagewalking" (when using L3) and cross-coupling exclusively at the $B(9)$ vertex (when using L1/L2) to steric crowding at the Pd center. The combination of a sterically demanding ligand and nucleophile appears to inhibit transmetalation, ${ }^{13}$ allowing the catalyst to operate through several "cage-walking" steps before re-entering the traditional cross-coupling cycle (vide supra). On the basis of these observations, we propose a Pd-catalyzed "cage-walking" mechanism for isomerization of $\mathbf{B r}-\mathbf{B}(9)$ (Figure 4B). Beginning with the oxidative addition complex $[\mathbf{L P d B r}-\mathbf{B}(9)]$, an open $\mathrm{Pd}(\mathrm{II})$ coordination site is generated by bromide dissociation ${ }^{2 \mathrm{~d}}$ (Figure 4, step II-a) to form [LPd$\mathbf{B}(9)]^{+}$. Consistent with this hypothesis, cross-coupling experiments between $\mathbf{B r}-\mathbf{B}(9)$ and $\mathbf{R 3}$ in the presence of tetrabutylammonium bromide show decreased $\mathbf{B r}-\mathbf{B}(\mathbf{9})$
consumption and decreased formation of R3-meta-carborane (Figure S7). These experiments suggest that bromide dissociation is an important step in the overall cross-coupling process. ${ }^{14}$ After bromide dissociation, two possible "cagewalking" pathways were envisioned for the formally cationic $[\mathbf{L P d}-\mathbf{B}(9)]^{+}$: (1) deprotonation of an adjacent $\mathrm{B}-\mathrm{H}$ vertex to form a $\mathrm{B}(4), \mathrm{B}(9)$-bound carborane species that isomerizes upon reprotonation to form $[\mathbf{L P d}-\mathbf{B}(4)]^{+}$(Figure S9) and (2) a Pd-mediated $\mathrm{B}-\mathrm{H}$ activation that leads to an intramolecular β-hydride shift (Figure S10). Deuterium labeling experiments in which $2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OD}$ was used as the nucleophile did not result in deuterium incorporation at any $\mathrm{B}-\mathrm{H}$ vertex, as judged by GC-MS and ${ }^{2} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy, likely ruling out isomerization pathway 1 . However, with the deuterated congener of $\mathrm{Br}-\mathrm{B}(9)$, 9-Br-10-D-meta- $\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$, and 2,6$\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ as the nucleophile, we observed five $\mathrm{B}-{ }^{2} \mathrm{H}$ resonances in the ${ }^{2} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR spectrum of $\mathbf{R} 3-\mathbf{B}(2)$, indicating deuterium scrambling across the carborane $\mathrm{B}-\mathrm{H}$ framework (Figure 4A). We postulate that this β-hydride shift exchanges the $\mathrm{B}(10)$ deuterium with an adjacent $\mathrm{B}(5)$ proton and enables "cage-walking" to form $[\mathbf{L P d}-\mathbf{B}(4)]^{+}$(Figure 4B, step II-b). The "cage-walking" process can occur again to generate $[\mathbf{L P d}-\mathbf{B}(2)]^{+}$(Figure 4B, step II-c). Similar reports of metal-catalyzed carborane $\mathrm{B}-\mathrm{H}$ activation processes have been reported; ${ }^{8,15,16}$ however, they are limited to $\mathrm{B}-\mathrm{H}$ vertices adjacent to carborane-bound directing groups, whereas the presently reported "cage-walking" accesses all of the metacarborane $\mathrm{B}-\mathrm{H}$ vertices from one starting point in a diversityoriented fashion.

Through the "cage-walking" process, the carboranyl fragment eventually binds the Pd center through the most electrondeficient boron vertex, $\mathrm{B}(2)$, resulting in a more electrophilic Pd center that can overcome the steric repulsion between the cationic $[\mathbf{L P d}-\mathbf{B}(2)]^{+}$and the anionic cross-coupling partner. Density functional theory (DFT) calculations (B3LYP/ LANL2DZ 6-31G* and M06/SDD/6-311++G**, $\operatorname{SMD}(1,4-$ dioxane)) on $[\mathbf{L P d}-\mathbf{B}(9)]^{+},[\mathbf{L P d}-\mathbf{B}(4)]^{+}$, and $[\mathbf{L P d}-\mathbf{B}(2)]^{+}$ indicate that $[\mathbf{L P d}-\mathbf{B}(\mathbf{2})]^{+}$has the most cationic Pd center, which likely results in a lower transmetalation barrier due to a stronger electrostatic attraction between the Pd center and the
phenoxide nucleophile (Figures S13-S16). Furthermore, the ΔG of $\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{N}$ bond formation decreases accordingly, $\mathrm{B}(9)>\mathrm{B}(5) \sim \mathrm{B}(4)>\mathrm{B}(2)$, for the cross-coupling between $\mathbf{B r}-\mathbf{B}(9)$ and $\mathbf{R 1} \mathbf{- R 3}$. Similar electronic effects of substrate and ligand were observed in Pd-catalyzed aryl halide crosscoupling. ${ }^{17}$

In summary, we have discovered the first example of metalcatalyzed isomerization ("cage-walking") of meta-carboranyl fragment. The isomerization process appears to operate in conjunction with a classical cross-coupling mechanism, leading to a distribution of carborane regioisomers. The rate of crosscoupling relative to "cage-walking" can be adjusted to achieve selective B-vertex functionalization. We have demonstrated this selectivity by controlling the steric crowding at the Pd center by appropriate choice of catalyst ligand and cross-coupling substrate. Preliminary studies have shown that this "cagewalking" strategy can be applied to carborane $\mathrm{B}(2)-\mathrm{C}_{\text {ary }}$ bond formation using an arylboronic acid (Figure S17). Overall, this approach provides a unique pathway to vertex differentiation of boron clusters.

ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b04080.

Full procedures and additional data (PDF)
Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*spokoyny@chem.ucla.edu

ORCID ${ }^{\circ}$

Yun-Fang Yang: 0000-0002-6287-1640
K. N. Houk: 0000-0002-8387-5261

Alexander M. Spokoyny: 0000-0002-5683-6240

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the donors of the American Chemical Society Petroleum Research Fund (56562-DNI3 to A.M.S.), UCLA (startup funds to A.M.S.), NSF (CHE-1048804 and CHE1361104), 3M (Non-Tenured Faculty Award to A.M.S.), and the National Defense Science and Engineering Graduate Fellowship Program (to R.M.D.) for support.

■ REFERENCES

(1) (a) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999, 283, 2059-2062. (b) Shultz, L. H.; Brookhart, M. Organometallics 2001, 20, 3975-3982. (c) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2000, 122, 66866700. (d) Curran, K.; Risse, W.; Hamill, M.; Saunders, P.; Muldoon, J.; Asensio de la Rosa, R.; Tritto, I. Organometallics 2012, 31, 882-889. (e) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788-802.
(2) (a) Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 10471058. (b) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc. 1991, 113, 3404-3418. (c) Jones, W. M.; Klosin, J. Adv. Organomet. Chem. 1998, 42, 147-221. (d) Milner, P. J.; Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15757-15766.
(3) (a) Grotjahn, D. B.; Larsen, C. R.; Gustafson, J. L.; Nair, R.; Sharma, A. J. Am. Chem. Soc. 2007, 129, 9592-9593. (b) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340-344.
(4) Grimes, R. N. Carboranes, 2nd ed.; Elsevier: Oxford, U.K., 2011.
(5) King, R. B. Chem. Rev. 2001, 101, 1119-1152.
(6) (a) Lugo, C. A.; Moore, C.; Rheingold, A.; Lavallo, V. Inorg. Chem. 2015, 54, 2094-2096. (b) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet-Ladeira; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 14654-14657. (c) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188-1190. (d) Böhling, L.; Brockhinke, A.; Kahlert, J.; Weber, L.; Harder, R. A.; Yufit, D. S.; Howard, J. A. K.; MacBride, J. A. H.; Fox, M. A. Eur. J. Inorg. Chem. 2016, 2016, 403412. (e) Puga, A. V.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. Chem. Commun. 2011, 47, 2252-2254.
(7) (a) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Norton, K. M.; Maguire, J. A.; Chug, N.; Hosmane, N. S. Inorg. Chem. 2011, 50, 5485-5493. (b) Nishino, K.; Yamamoto, H.; Tanaka, K.; Chujo, Y. Org. Lett. 2016, 18, 4064-4067. (c) Kim, T.; Kim, H.; Lee, K. M.; Lee, Y. S.; Lee, M. H. Inorg. Chem. 2013, 52, 160-168. (d) Valliant, J. F.; Guenther, K. J.; King, A. S.; Morel, P.; Schaffer, P.; Sogbein, O. O.; Stephenson, K. A. Coord. Chem. Rev. 2002, 232, 173-230. (e) Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701-5722. (f) Kennedy, R. D.; Krungleviciute, V.; Clingerman, D. J.; Mondloch, J. E.; Peng, Y.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Mirkin, C. A. Chem. Mater. 2013, 25, 35393543. (g) Axtell, J. C.; Kirlikovali, K. O.; Djurovich, P. I.; Jung, D.; Nguyen, V. T.; Munekiyo, B.; Royappa, A. T.; Rheingold, A. L.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 15758-15765.
(8) (a) Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 1295-1298. (b) Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 1272712730.
(9) Dziedzic, R. M.; Saleh, L. M. A.; Axtell, J. C.; Martin, J. L.; Stevens, S. L.; Royappa, A. T.; Rheingold, A. L.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 9081-9084 (and references within).
(10) (a) Safronov, A. V.; Kabytaev, K. Z.; Jalisatgi, S. S.; Hawthorne, M. F. Dalton Trans. 2014, 43, 12467-12469. (b) Bondarev, O.; Sevryugina, Y. V.; Jalisatgi, S. S.; Hawthorne, M. F. Inorg. Chem. 2012, 51, 9935-9942. (c) Ramachandran, B. M.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 2006, 45, 336-340.
(11) (a) Kaesz, H. D.; Bau, R.; Beall, H. A.; Lipscomb, W. N. J. Am. Chem. Soc. 1967, 89, 4218-4220. (b) Roscoe, J. S.; Kongpricha, S.; Papetti, S. Inorg. Chem. 1970, 9, 1561-1563. (c) Kalinin, V. N.; Kobel'kova, N. I.; Zakharkin, L. I. J. Organomet. Chem. 1979, 172, 391-395.
(12) (a) Marshall, W. J.; Young, R. J., Jr.; Grushin, V. V. Organometallics 2001, 20, 523-533. (b) Saleh, L. M. A.; Dziedzic, R. M.; Khan, S. I.; Spokoyny, A. M. Chem. - Eur. J. 2016, 22, 8466-8470.
(13) (a) Sergeev, A. G.; Artamkina, G. A.; Beletskaya, I. P. Tetrahedron Lett. 2003, 44, 4719-4723. (b) Shen, Q.; Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 6586-6596. (c) Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 16720-16734. (d) Park, N. H.; Vinogradova, E. V.; Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 8259-8262.
(14) Fors, B. P.; Davis, N. R.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 5766-5768.
(15) (a) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299-309 (and references within). (b) Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.
(16) (a) Behnken, P. E.; Marder, T. B.; Baker, R. T.; Knobler, C. B.; Thompson, M. R.; Hawthorne, M. F. J. Am. Chem. Soc. 1985, 107, 932-940. (b) Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. J. Am. Chem. Soc. 2016, 138, 10531-10538. (c) Eleazer, B. J.; Smith, M. D.; Peryshkov, D. V. J. Organomet. Chem. 2017, 829, 42-47.
(17) (a) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852-860. (b) Widenhoefer, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6504-6511.

[^0]: Received: April 25, 2017
 Published: May 25, 2017

