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Network Models of Epidemic Spread: Applications and Analysis

Abstract

Over the past century, mathematical epidemiology has grown to be one of the triumphs of

applied mathematics and mathematical biology. It has drawn influence and insight from a variety of

related fields, including mathematics, physics, chemistry, biology, ecology, and social science, among

others. With tools ranging from simple ordinary differential equation models to highly complex

stochastic simulations, mathematical models of epidemic spread have had significant theoretical

and practical impacts. In the past two decades, the development of network science as a discipline

has lead to a new modeling paradigm in mathematical epidemiology. Networks can capture aspects

of social structure that are critical to disease spread, allowing for models that balance parsimony

and complexity.

In this dissertation, I consider questions of model construction, analysis, and application that

are united under the framework of modeling epidemics on networks. In Chapter 2, we consider an

existing low-dimensional model of an SIS disease on a network. We perform a bifurcation analysis

of the model to determine the epidemic threshold and derive asymptotic approximations of the

endemic equilibrium under two parameter regimes. As well, we perform sensitivity analysis on the

results for the endemic equilibrium with respect to network parameters, and find implications for

public health interventions that are in line with previous studies.

Chapters 3 and 4 both model processes of social dynamics using adaptive networks, or net-

works whose edges change dynamically over time. In Chapter 3, we introduce an SEIR model

on a heterogeneous, clustered network with random link activation/deletion dynamics. With this

framework, we develop realistic mechanisms for social distancing policies using piecewise constant

activation/deletion rates for edges in the network. These mechanisms are able to produce rich qual-

itative behavior and provide insight into what makes for an effective social distancing intervention.

Chapter 4 extends this examination of changing social behavior. I introduce a novel dynamical

process where random link activation/deletion occurs on a bipartite network where individuals

connect to mixing locations and consider its implications for the corresponding unipartite contact

network. This new process is analyzed in conjunction with an SIS-type disease spreading on the
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contact network. Furthermore, I consider the implication for seasonal social dynamics, including

how separate sources of seasonality (transmission and social behavior) impact how disease dynamics

unfold.
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CHAPTER 1

Introduction

Mathematical epidemiology has been an extremely active and impactful branch of mathematical

biology in the past century. Rather than modeling biological systems for their own sake, epidemi-

ological models are invaluable for public health practitioners and have saved an untold number of

lives. Models have been applied to numerous infectious diseases; some examples include malaria

(Ross, 1915), measles (London and Yorke, 1973), influenza (Ferguson et al., 2006), and recently

COVID-19 (Ferguson et al., 2020). Mathematical models of epidemic spread have always sought

to balance realism with complexity and tractability. Early modeling approaches included simple

compartment models (e.g. Kermack and McKendrick (1927)) which continue to find use today,

while increasingly abundant computing power has led to complex agent-based simulation models

(e.g. Eubank et al. (2004)) in recent decades.

The trade-off between realism and complexity is underscored by the features that make each

modeling approach successful. Compartment models elucidate the fundamental mechanisms of dis-

ease spread, and their analysis has spawned many essential epidemiological indicators (see Section

1.1). However, these models often require strong simplifying assumptions that limit their effective-

ness in the face of real-world epidemics; one particularly notable assumption that a population is

well mixed. Conversely, agent-based simulations can describe individual behavior in great detail,

which leads to more accurate, data-driven predictive models which have become indispensable to

public health scientists and policymakers. However, the level of detail can obfuscate some of the

underlying mechanisms of a particular epidemic’s spread, and the computational requirements can

make exploring the parameter space of a given model prohibitively expensive.

With the development of network science in recent decades, a new and influential modeling

paradigm has emerged. Network-based models of epidemic spread offer something of a compromise

between compartment models and agent-based simulations (see Kiss et al. (2017) or Pastor-Satorras

et al. (2015) for an overview of network models of epidemics). Many network models can capture
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the complexity of social structure addressed explicitly by agent-based simulations in the framework

of dynamical systems (similar to compartment models). Studies on mixing patterns (Read et al.,

2008) and social networks (Christakis and Fowler, 2010; Salathe et al., 2010) reinforce that a central

aspect of social structure is heterogeneity in the number of contacts an individual has, and that

other network characteristics play a role as well. As such, the construction of a network under

consideration plays an integral role in how an epidemic unfolds. Gaining a deeper understanding

of the effects of this structure is the theme of this dissertation.

Chapters 2 through 4 of this dissertation cover three modeling projects that explore how het-

erogeneity in network structure and the dynamics of social behavior influence the trajectory of

an epidemic. Each chapter is intended to be published as a standalone academic paper. Chap-

ter 2 was published in the Bulletin of Mathematical Biology (Corcoran and Hastings, 2021) with

Alan Hastings. Chapter 3 began as a project with John Michael Clark at the American Institute

of Mathematics summer school “Dynamics and data in the COVID-19 pandemic,” and has been

submitted for review. Chapter 4 is currently in preparation for submission. As the topics of each

chapter share related foundations, in the remaining sections of this chapter I provide the necessary

background for the rest of this dissertation. In Section 1.1, I cover the basics of compartment

models; in Section 1.2, I present some essential features of networks that play a role in epidemic

spread; in Section 1.3, I introduce the pairwise model, which is the foundational network model on

which all three chapters rely.

1.1. Compartment Models

For much of the twentieth century, compartment models (introduced by Kermack and McK-

endrick (1927), see Diekmann and Heesterbeek (2000) for an overview of modern approaches) have

been the foundation of mathematical epidemiology. Compartment models track how an infec-

tious disease progresses through a population by categorizing individuals in terms of their con-

dition relative to the disease natural history. Compartment models exhibit some flexibility as a

framework—models can be stochastic or deterministic, and take place in discrete or continuous

time. In the remainder of this section, deterministic, continuous-time models are considered. Two

of the most common compartment models are the SIR (susceptible-infectious-recovered) and SIS
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(a)
(b)

Figure 1.1. Compartment diagrams for an (a) SIR and (b) SIS disease. Compart-
ments are labeled for susceptible (S), infectious (I), and recovered (R) subpopula-
tions, and arrows indicate the direction and rate of transfer between compartments.

(susceptible-infectious-susceptible) models. In both models, susceptible individuals may have a

disease transmitted to them, become infectious, and eventually recover. With the SIR model, in-

dividuals gain long-term immunity upon recovery and move to the recovered compartment. With

the SIS model, no long-term immunity is gained by recovery, and individuals become susceptible

to contracting the disease again. Compartment diagrams for the two models are shown in Figure

1.1, along with rates of transfer between compartments. The corresponding system of differential

equations for the SIS model (Fig. 1.1b) are

Ṡ = −τSI/N + γI,(1.1)

İ = τSI/N − γI,(1.2)

where τ is the transmission rate and γ is the recovery rate. Without vital dynamics (i.e. the total

population N is fixed), the system satisfies the conservation equation S + I = N, which allows

the SIS model to be written with a single equation. The system may have two steady states:

the disease-free equilibrium I = 0 and the endemic equilibrium I = N(1 − γ/τ). The endemic

equilibrium exists and is stable when the basic reproductive number R0 = τ/γ > 1. If R0 < 1, the

disease-free equilibrium is stable. Examples of solution trajectories of the SIS model can be found

in Figure 1.2b.

3



(a) (b)

Figure 1.2. Solution trajectories for the (a) SIR and (b) SIS models. Both pop-
ulations have N = 100 individuals, and are initialized with I(0) = 1 infectious
individuals. For both models, τ = 2.5 and γ = 1.

For the SIR model (Fig. 1.1a), the corresponding system of differential equations is

Ṡ = −τSI/N,(1.3)

İ = τSI/N − γI,(1.4)

Ṙ = γI.(1.5)

An epidemic occurs if R0 = τ/γ > 1, however as all infectious individuals eventually move to the

recovered compartment, as t → ∞, we have I → 0. Examples of solution trajectories of the SIR

model can be found in Figure 1.2a. A critical epidemiological quantity with the SIR model is the

final size of the epidemic R∞. Writing (1.3) as Ṡ + τSI/N = 0 and multiplying by exp
(
τR
Nγ

)
, it

follows that S exp
(
τR
Nγ

)
is constant with respect to time, with the constant being determined by

the initial number of susceptibles S(0). Assuming that there are no recovered individuals at the

beginning of the epidemic (R(0) = 0) and that there are no infections at the end of the epidemic

(S∞ +R∞ = N), the final size R∞ can be determined from the implicit equation

(1.6) N −R∞ = S(0) exp

(
−τR∞
Nγ

)
.

A critical assumption made by the simple SIR and SIS models is known as the homogeneous

mixing assumption: any individual can come into contact with another. This is reflected in the
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transmission term τSI/N in both models, where τI is the total rate at which infectious contacts are

formed and S/N is the proportion of those contacts which are made with a susceptible individual.

While the homogeneous mixing assumption can be useful for certain populations, it is clear that in

many cases social contacts are complex, varied, and structured. In rolling back this assumption to

improve epidemiological models, new mathematical tools have to be introduced.

1.2. Networks

With the removal of the homogeneous mixing assumption, network topology is required to

define the structure of individual contacts. Characterization of this structure reflects the distinct

lineages of network science; some concepts and metrics are derived from traditional graph theory in

mathematics, while others are born from modern applications in physics, computer science, ecology,

and social science (see Newman (2010) for an overview). Construction of the networks themselves is

a separate challenge, and many random graph creation algorithms have been proposed that satisfy

certain network properties. For network models of epidemics, both graph metrics and network

generation are crucial pieces of the field.

Graphs are the mathematical objects that underpin contemporary network science. A graph

is a collection of N nodes (or vertices) connected by E edges (or links). The exact connectivity

structure of a graph can be detailed by its adjacency matrix A: an N × N matrix with entries

aij = 1 if nodes i and j are connected by an edge and aij = 0 otherwise. Though this exact

characterization appears in some network models of epidemics (Van Mieghem (2011), for example),

for large networks it can be unavailable or of a prohibitive size for computational purposes. With

many network models, the vital quantification of structure is the degree distribution. The degree of

a node is the number of neighbors (or equivalently edges) to which it is connected, and the degree

distribution of a network details the proportion of nodes of a given degree: pk = Nk/N where

Nk is the number of nodes of degree k. In the context of epidemics on networks, many important

properties can be derived from the degree distribution. Perhaps the most critical is the average

degree of the network, defined as

(1.7) 〈k〉 =

N∑
k=0

kpk.

5



(a) (b)

Figure 1.3. Simple diagrams of (a) a connected triple and (b) a triangle that occur
in networks.

Higher moments of the degree distribution can be calculated similarly, as 〈kn〉 =
∑N

k=0 k
npk. These

higher moments are particularly relevant in Chapter 2, where network motifs are approximated in

terms of these moments. Perhaps the most concrete use of these moments is the average number

of connected triples (Fig. 1.3a) per node (counted twice), which is given by

(1.8) 〈k2 − k〉 =
N∑
k=0

k(k − 1)pk.

This formula can be made sense of from a combinatorial perspective by recognizing that each

degree i node is the center of 2
(
i
2

)
= i(i−1) triples (when counted twice). As Section 1.3 will show,

connected triples play an important role in disease transmission on networks.

From a computational perspective, a useful and elegant characterization of the degree distri-

bution can be made using probability generating functions (see Wilf (2006) for a comprehensive

treatment). The probability generating function (or PGF) is a power series whose coefficients

correspond to the proportion of nodes in a network with a given degree1:

(1.9) G(x) =
∞∑
k=0

pkx
k.

The machinery of generating functions are used in Chapter 3 and extensively in Chapter 4, in

particular the property that differentiating with respect to x and evaluating at x = 1 can retrieve

the moments of the degree distribution. In those chapters, networks that change dynamically

1Characterizing the PGF as an infinite series is standard notation; we consider pi = 0 when i is greater than the
maximum degree of the network.
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(a) (b) (c)

Figure 1.4. Examples of (a) Erdős-Rényi, (b) Watts-Strogatz, and (c) bipartite
networks. Examples of both the Erdős-Rényi and Watts-Strogatz networks have
N = 25 nodes. For the Erdős-Rényi network, p = 0.2 and for the Watts-Strogatz
network, c = 4 and p = 0.2.

through time are considered; thus pk is time-dependent, and the generating function takes a two

variable form

(1.10) G(x, t) =
∞∑
k=0

pk(t)x
k.

An advantage of this formulation is that the time evolution of the degree distribution can be

described with partial differential equations for the PGF.

The final network metric that warrants introduction is the clustering coefficient, which is defined

as three times the ratio of triangles (Fig. 1.3b) to connected triples:

(1.11) φ =
3 ·Number of Triangles

Number of Connected Triples
.

The clustering coefficient reflects the density of connections in a network, and clustering can have a

significant effect on epidemic spread. Moreover, the propensity for social contacts to form triangles

(i.e. high clustering coefficient) has been an observed phenomenon in real-world networks (Read

et al., 2008).

A challenge with network models of real-world systems is the difficulty of determining the exact

structure of real-world contact networks. Nonetheless, a number of algorithms for generating graphs

with given statistical properties are well-known. Two common random graphs that are used in this

dissertation are Erdős-Rényi random graphs (Erdös and Rényi, 1959; Gilbert, 1959) and Watts-

Strogatz (“small-world”) networks (Watts and Strogatz, 1998). Erdős-Rényi random graphs are
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formed by taking N nodes and considering all possible pairs and connecting them independently

with probability p (Fig. 1.4a). The degree distribution for Erdős-Rényi random graphs tends to the

Poisson distribution for large N. Watts-Strogatz networks are formed by placing N nodes in a ring

and connecting each node to its c nearest neighbors (with c being even), and then independently

rewiring each edge with probability p (Fig. 1.4b). If an edge is rewired, the “first” node of the

pair is randomly connected to another node in the network. Notable features of Watts-Strogatz

networks are short average path lengths and relatively high clustering for suitable values of p.

Another common method for generating networks is the configuration model (Molloy and Reed,

1995). With configuration model networks, the degree distribution and number of nodes is specified

in advance. Nodes are randomly assigned a degree from the distribution and given the corresponding

number of half-edges. Half-edges are then connected at random (forming the edges of the network)

until no half edges remain. While configuration models offer great flexibility in the ability to fit an

observed degree distribution, they lack some features of empirical social networks, as the clustering

coefficient vanishes in the large N limit (Newman, 2010). Nonetheless, they are some of the most

widely-used random graphs, and play an important role in constructing networks in Chapters 2

through 4.

Finally, two other network concepts play an important role in this dissertation. First, bipartite

networks are used in Chapters 3 and 4 to generate contact networks on which the epidemic spreads.

Bipartite networks (Fig. 1.4c) consist of two disjoint sets of nodes A and B, and every edge connects

a node in A to a node in B. Bipartite networks find a natural application in representing a social

mixing network. One set of nodes represents individuals, and the other set of nodes represents

mixing locations or social groups. A contact network where the epidemic unfolds can be formed by

connecting two individuals if they both have an edge to the same mixing location—the resulting

contact network between individuals is the unipartite projection of the bipartite network onto

the set of individuals. The unipartite contact networks formed this way can exhibit significant

heterogeneity and clustering (see Newman et al. (2001) for properties that can be derived with

probability generating functions). Second, adaptive networks are the central focus of Chapters 3

and 4. Up until this point, only networks whose edges do not change over time (static networks)

have been addressed. Adaptive networks (see Gross and Blasius (2008) for an overview) allow
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for the edge structure of the network to evolve through time. In particular, the dynamics of the

network structure and the disease transmission dynamics unfold on comparable timescales, and

can lead to rich qualitative dynamics. Adaptive network models allow us to study phenomena not

captured by static networks, and as such network dynamic processes are applied in Chapters 3 and

4 to model changing social dynamics resulting from public health interventions.

1.3. Pairwise Models

With the concepts of networks established, combining network topology and disease dynamics

is the final step in constructing models for epidemics on networks. Chapters 2 through 4 all rely on

pairwise models, which are mean-field models for a stochastic transmission (and recovery) process

unfolding on a network. As one might expect, individuals are represented by nodes and potential

disease-transmitting contacts are represented by edges. At any point in time, each individual

has a status determined by the disease natural history. For example, with an SIR model, each

individual can be in one of the three states, while with an SIS model, each individual can be in

one of two states. In a network with N nodes, this means that there are a total of 3N possible

states for the entire network with an SIR disease, and there are 2N possible states for an SIS

disease. If transmission and recovery are modeled as Poisson processes, the disease dynamics form

a continuous-time Markov chain with mN− dimensional state space where m is the number of

possible states for each individual node.

By solving the Kolmogorov equations of the system, the probabilities of the network being in

each state at a given time can be found. Through a process known as “lumping” (Simon et al., 2011;

Taylor et al., 2012), these equations can be arranged and combined to yield differential equations

for the expected number of nodes in each state. Bracket notation is used to denote the expected

number of nodes in each state, i.e. [S] for the expected number of susceptible nodes, [I] for the

expected number of infectious nodes, and [R] for the expected number of recovered nodes. The

transmission process depends on the expected number of susceptible-infectious pairs [SI], which

necessitates equations for the expected number of pairs in each possible state. These equations

depend on the expected number of triples in each state, the equations for which depend on higher-

order motifs. For an SIS disease on a static network, the system is as follows (Eames and Keeling,
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2002):

[Ṡ] = −β[SI] + γ[I],(1.12)

[İ] = β[SI]− γ[I],(1.13)

[ ˙SS] = −2β[SSI] + 2γ[SI],(1.14)

[ṠI] = β([SSI]− [ISI]− [SI]) + γ([II]− [SI]),(1.15)

[ ˙II] = 2β([ISI] + [SI])− 2γ[II],(1.16)

where β is the rate at which SI pairs transmit the infection2 and γ is the recovery rate. The

full system requires evolution equations for the expected number of triples [SSI] and [ISI], and

higher-order motifs, though the equations are rarely written. The number of nodes N being fixed

leads to the conservation equation [S] + [I] = N. Furthermore, for a static network the pairs obey

the conservation equation [SS] + 2[SI] + [II] = N〈k〉, where 〈k〉 is the average degree, and N〈k〉

is twice the number of edges in the network. The equations for SIR dynamics on a network are

similar:

[Ṡ] = −β[SI],(1.17)

[İ] = β[SI]− γ[I],(1.18)

[ ˙SS] = −2β[SSI],(1.19)

[ṠI] = β([SSI]− [ISI]− [SI])− γ[SI],(1.20)

[ ˙II] = 2β([ISI] + [SI])− 2γ[II].(1.21)

Equations for the expected number of recovered nodes [R] and pairs involving them [SR], [IR], [RR]

are not necessary, as [R] can be determined from the conservation equation [S] + [I] + [R] = N.

Useful heuristics for understanding the derivation of the SIS model (1.12)-(1.16) and the SIR

model (1.17)-(1.21) are compartment diagrams for the expected number of nodes and pairs in each

state (Fig. 1.5). Like the diagrams for simple compartment models in Figure 1.1, the transfer

2The transmission rate τ in the simple compartment models and the transmission rate β in the pairwise models are
slightly different characterizations, but are related by τ = βN.
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(a)
(b)

(c)

(d)

Figure 1.5. Compartment diagrams for the pairwise models of (a),(c) SIR and
(b),(d) SIS diseases. Diagrams for the expected number of nodes in each state are
shown in (a) and (b). Diagrams for the expected number of pairs of nodes in each
state are shown in (c) and (d). Note that when connecting the pairwise models
to these diagrams, the order of the pairs does not matter (e.g. the [SI] and [IS]
compartments are modeled by the [SI] equation).

from the [S] to [I] compartments depends on the (expected) number of susceptible-infectious pairs.

In simple compartment models, this is the product SI, while in the pairwise models, it defined

explicitly in network terms as [SI] (Figs. 1.5), which requires tracking the expected number of

pairs and necessitates compartments for the pairs of all states. The rates of transfer between

pair compartments can be determined from the transmission and recovery processes, yielding the

diagrams in Figures 1.5c and 1.5d. Again, transmission between pairs depends on triples, which

necessitates further compartment diagrams to arrive at the full pairwise SIR and SIS models.

At this point, the dependence of the pairwise models on triples and higher-order motifs war-

rants comment. Though further equations are omitted in (1.12)-(1.16) and (1.17)-(1.21), for the

exact dynamics (in terms of expectation) they are required. This makes the full pairwise models

prohibitively large for any sort of analysis. The most common approach to overcome this limita-

tion is to approximate the expected number of triples in terms of lower-order state variables and
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network metrics. Known as triple approximations (Keeling, 1999), these assumptions close the full

pairwise models forming dynamical systems of manageable size. Chapter 2 analyzes a system that

is closed by a triple approximation developed in House and Keeling (2011) and Simon and Kiss

(2016), while Chapters 3 and 4 use a novel closure based on one introduced in Keeling (1999).

1.4. Description of Chapters

The remaining three chapters of this dissertation are united by their consideration of pairwise

models of epidemics on networks. A low-dimensional model of an SIS disease on a network was

introduced by Simon and Kiss (2016), termed the “super compact pairwise model.” In their article,

Simon and Kiss derived a well-performing triple closure but did not analyze the epidemic threshold

or the endemic equilibrium of the model (though they noted that both presented fruitful future

directions). In Chapter 2, bifurcation analysis is done to find the epidemic threshold, and asymp-

totic techniques are employed to find accurate approximations of the endemic equilibrium in two

regimes of transmission and recovery rates. Moreover, a sensitivity analysis of the approximations

of the endemic equilibrium suggests public health conclusions related to screening versus contact

tracing in line with existing work, though from a network structure perspective.

Chapters 3 and 4 both concern adaptive network models and are strongly influenced by the

COVID-19 pandemic. Chapter 3 uses a simple process of network dynamics known as random link

activation/deletion (Kiss et al., 2012) to model the effects of social distancing and lockdown policies

in conjunction with an SEIR (susceptible-exposed-infectious-recovered) disease on a network. Two

mechanisms for social distancing are introduced using piecewise constant activation and deletion

rates, and effects on the overall outcome of the epidemic are measured. Significantly, the severity

of an intervention and the threshold prevalence to trigger it are found to have a greater impact on

the outcome than the length of time over which the intervention occurs. Chapter 4 develops a novel

process for network dynamics which occur on a bipartite mixing network, while disease dynamics

occur on the corresponding unipartite contact network. Leveraging probability generating functions

to determine the effects of the process on the contact network, this chapter introduces a realistic

adaptive network process inspired by now-ubiquitous mobile phone mobility data. This process is
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also used to analyze seasonality in disease patterns, separating periodicity in transmission dynamics

from social contact dynamics.
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CHAPTER 2

A Low-Dimensional Network Model for an SIS Epidemic:

Analysis of the Super Compact Pairwise Model

2.1. Introduction

In the past few decades, network-based models of epidemic spread have become a central topic

(Kiss et al., 2017; Pastor-Satorras et al., 2015) in epidemiology. Their ability to capture mathe-

matically the complex structure of transmission interactions makes them an invaluable theoretical

paradigm. Mathematically, a network is modeled as a graph consisting of a set of nodes that are

connected by a set of links (called edges). In the context of epidemiology, typically nodes represent

individuals, and edges represent interactions that can transmit the infection. Used in conjunction

with compartment models, the disease natural history determines the number of possible states an

individual node might be in at any point in time. When disease spread is modeled as a continuous

time Markov chain, the network size and disease natural history can lead to high dimensional state

spaces. For example, in a network with N nodes where individual nodes can be in m possible

states, the size of the state space for the network is mN . Efforts to describe this process with a sys-

tem of ordinary differential equations are similarly hampered by size—the Kolmogorov equations

governing this system are exact, but prohibitively large. Thus, an important goal in network-based

modeling has been to find a (relatively) low-dimensional system that accurately approximates the

underlying high-dimensional system.

Many approaches (Barnard et al., 2019; Karrer and Newman, 2010; Miller et al., 2012; Pastor-

Satorras and Vespignani, 2001; Pastor-Satorras et al., 2015) in recent years have sought to introduce

models with systems of a manageable size. Pairwise models (Eames and Keeling, 2002; House and

Keeling, 2011; Keeling, 1999) have been a popular and fruitful approach to this question. Derived

from the Kolmogorov equations and exact in their unclosed form (Taylor et al., 2012), pairwise
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models consider the evolution of not just the expected number of nodes in a given state, but also

pairs and triples of nodes. The dynamical variables are of the form [A] (the expected number of

nodes in state A), [AB] (the expected number of pairs in state A− B), and [ABC] (the expected

number of triples in state A − B − C). Higher-order groupings of nodes are also considered but

rarely written, as dimension-reduction efforts often focus on approximating the expected number of

triples in terms of pairs and individual nodes. Pairwise models have been successful with a variety

of different network types, with models developed for networks with heterogeneous degree (Eames

and Keeling, 2002), weighted networks (Rattana et al., 2013), directed networks (Sharkey et al.,

2006), and networks with motifs (House et al., 2009; Keeling et al., 2016) to name a few. Moreover,

pairwise models have been developed for a variety of disease natural histories, with particular focus

on SIR (susceptible-infectious-recovered) and SIS (susceptible-infectious-susceptible) models.

In this chapter, we consider an SIS pairwise model for networks with heterogeneous degree.

SIS dynamics are used to model diseases where no long term immunity is conferred upon recovery,

leading to their frequent application to sexually transmitted infections such as chlamydia or gon-

orrhea (Eames and Keeling, 2002). Contact networks for diseases of this type frequently involve

heterogeneity in the number of contacts for individuals, and thus node degree becomes an essential

concept. The degree of a node in a network is the number of edges to which the node is con-

nected, and thus the number of potential infectious contacts. In this way, heterogeneous networks

can capture complex disease dynamics. An essential tool when working with such networks is the

degree distribution, defined by pk which is the probability a randomly selected node has degree k.

The degree distribution has played an important role in dimension reduction approximations for

pairwise models.

For the SIR-type diseases, accurate low-dimensional models have been derived from the pairwise

family using probability generating functions (Miller et al., 2012), complete with conditions for

finding the final size of the epidemic. Despite the successes of the SIR case, the dimension reduction

techniques in Miller et al. (2012) do not apply to the SIS case. Instead, the development of

low-dimensional models of SIS-type disease spread on networks have relied on moment closure

approximations. Under the assumption of a heterogeneous network with no clustering, House and

Keeling (2011) introduced an approximation reducing the system size from O(N2) to O(N), where
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N is the number of nodes in the network. Termed the compact pairwise model (CPW), it has

shown good agreement with stochastic simulations despite its considerably smaller size. However,

the number of model equations still grows as the maximum degree of the network, making its

application challenging for large networks with significant degree heterogeneity. Perhaps the most

successful model in reducing the number of equations of the CPW for SIS-type diseases is the

super compact pairwise model (SCPW) (Simon and Kiss, 2016). The system consists of only four

equations, with network structure being encoded to the model through the first three moments

of the degree distribution. While Simon and Kiss demonstrated excellent agreement between the

CPW and the SCPW, bifurcation analysis of the model and an explicit formula for the endemic

steady state remain to be done.

This chapter sets out on that analysis of the SCPW model. A common point of investigation

among models of SIS-type diseases is the disease-free equilibrium (DFE) that loses stability as a

relevant parameter passes a critical value known as the epidemic threshold (Boguñá and Pastor-

Satorras, 2002; Pastor-Satorras and Vespignani, 2001, 2002). The epidemic threshold serves as a

dividing point between two qualitatively different types of outbreaks. Below the epidemic threshold,

any outbreak will die out; above the epidemic threshold, the system converges asymptotically to

a stable equilibrium where the disease remains endemic in the population. Many studies follow

the “next generation matrix” approach for the basic reproduction number R0 (van den Driessche

and Watmough, 2002) to characterize the epidemic threshold. We follow a more conventional

bifurcation analysis to derive the epidemic threshold and offer a proof that the system undergoes a

transcritical bifurcation, as one might expect. Perhaps more importantly, the SCPW’s small fixed

number of equations presents an excellent opportunity to investigate the endemic equilibrium for

SIS models on heterogeneous networks, which has been heretofore inhibited by large system size.

We present a novel asymptotic approach to approximating the endemic equilibrium, leveraging the

low-dimensionality of the model. Furthermore, the approximations allow us to perform a sensitivity

analysis, investigating how the endemic equilibrium responds to changes in network parameters.

The results presented further our understanding of the SCPW model specifically, and suggest

potential new avenues in the challenging problem of analytically determining the nontrivial steady

state of pairwise models of SIS-type diseases.
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The chapter is structured as follows: in Section 2.2, we nondimensionalize the model and reduce

the number of equations to 3 to facilitate computations. In Section 2.3, we derive the epidemic

threshold and show that the system undergoes a forward transcritical bifurcation. In Section 2.4,

we tackle the endemic steady state that emerges through the bifurcation. We use asymptotic

methods to approximate the size of the endemic steady state under two regimes—the system near

the epidemic threshold and the system far away from the epidemic threshold—and give examples of

the efficacy of these approximations on prototypical networks. Finally, we examine the implications

of these two approximations. In line with existing studies (Eames and Keeling, 2002), we find that

control measures for reducing the prevalence at the endemic equilibrium may require different

tactics depending on the regime.

2.2. Model

Pairwise models of SIS-type diseases provide a network-based analog of the classical SIS model

(Diekmann and Heesterbeek, 2000).The essential characteristics of pairwise models of SIS epidemics

are dynamical equations for not just the expected number of nodes in each state, but also pairs

and triples of nodes. At the node level, [S] and [I] are the expected number of susceptible and

infectious nodes respectively. At the pair level, [SI] is the expected number of connected pairs

of susceptible and infectious nodes, while [SS] and [II] are the expected numbers of connected

susceptible-susceptible and infectious-infectious pairs respectively. The full pairwise model (Eames

and Keeling, 2002) further requires equations for the expected number of triples ([SSI] and [ISI])

and higher motifs as well:

˙[S] = γ[I]− β[SI],

˙[I] = β[SI]− γ[I],

˙[SI] = γ([II]− [SI]) + β([SSI]− [ISI]− [SI]),

˙[SS] = 2γ[SI]− 2β[SSI],

˙[II] = −2γ[II] + 2β([ISI] + [SI]).
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The CPW closes the system by approximating the expected number of triples as

[ASI] ≈ [AS][SI]
S2 − S1
S2
1

,

where A ∈ {S, I} and S1 and S2 are the first and second moments of the distribution of susceptible

nodes; that is

S1 =
∑
k

k[Sk] = [SS] + [SI], S2 =
∑
k

k2[Sk],

where [Sk] is the expected number of susceptible nodes with degree k. Unfortunately S2 cannot

be expressed exactly in terms of [S], [I], [SI], [SS], and [II] only, so the SCPW model offers an

approximation that depends on these variables and moments of the degree distribution.

The SCPW model derived in Simon and Kiss (2016) is given as

˙[S] = γ[I]− β[SI],(2.1)

˙[I] = β[SI]− γ[I](2.2)

˙[SI] = γ([II]− [SI])− β[SI] + β[SI]([SS]− [SI])Q,(2.3)

˙[SS] = 2γ[SI]− 2β[SI][SS]Q,(2.4)

˙[II] = −2γ[II] + 2β[SI] + 2β[SI]2Q,(2.5)

where

Q =
1

nS [S]

(
〈k2〉(〈k2〉 − 〈k〉nS) + 〈k3〉(nS − 〈k〉)

nS(〈k2〉 − 〈k〉2)
− 1

)
, nS =

[SI] + [SS]

[S]
,

〈kn〉 is the nth moment of the degree distribution, β is the transmission rate, and γ is the recovery

rate. Here, the quantity Q serves as an approximation of (S2 − S1)/S2
1 . As well, the quantities

[S], [I], [SI], [SS], [II] satisfy conservation equations

[S] + [I] = N,(2.6)

2[SI] + [SS] + [II] = 〈k〉N.(2.7)

We note that 〈k〉N is twice the number of edges, and in (2.7) the term 2[SI] accounts for

both S − I and I − S pairs. With the goal of performing bifurcation and asymptotic analyses in

mind, nondimensionalizing the SCPW model is a natural first step. To do so, we will rearrange

18



the equations (2.3)-(2.5) so that the network parameters 〈k〉, 〈k2〉, 〈k3〉 are consolidated into more

workable constants. First, we rewrite Q as

(2.8) Q =
α[S]

([SI] + [SS])2
+

β̃

[SI] + [SS]
,

where

(2.9) α =
〈k2〉2 − 〈k〉〈k3〉
〈k2〉 − 〈k〉2

, β̃ =
〈k3〉 − 〈k2〉〈k〉
〈k2〉 − 〈k〉2

− 1.

A natural nondimensionalization of this system is to scale the number of nodes and links in each

state to the proportion of nodes and pairs in each state: v = [S]/N,w = [I]/N, x = [SI]/(〈k〉N), y =

[SS]/(〈k〉N), z = [II]/(〈k〉N). As well, a natural rescaling of time is T = t/γ, which prompts the

defining of the transmission-recovery rate ratio δ = β/γ. The introduction of δ consolidates the

two epidemiological parameters β and γ into a single nondimensional parameter, so any changes

to epidemiology of the disease will be captured in δ alone. With these substitutions, the system

(2.1)-(2.5) becomes

v̇ = w − 〈k〉δx,(2.10)

ẇ = 〈k〉δx− w,(2.11)

ẋ = z − (δ + 1)x+
αδ

〈k〉
· vx(y − x)

(x+ y)2
+ β̃δ · x(y − x)

x+ y
,(2.12)

ẏ = 2x− 2αδ

〈k〉
· vxy

(x+ y)2
− 2β̃δ · xy

x+ y
,(2.13)

ż = −2z + 2δx+
2αδ

〈k〉
· vx2

(x+ y)2
+ 2β̃δ · x2

x+ y
,(2.14)

where the dot notation is defined to represent the derivative with respect to the nondimensional

time variable d
dT . The conservation equations (2.6) and (2.7) become

v + w = 1,(2.15)

2x+ y + z = 1,(2.16)

respectively.
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At this point, the conservation equations can be used to reduce the system to 3 equations.

However, the elimination of different equations for different analyses will be convenient. For char-

acterizing the bifurcation undergone by the disease-free equilibrium (DFE), it is convenient to work

with variables that are 0 at the DFE. For approximating the endemic steady state using asymptotic

methods, the most parsimonious equations will make the algebraic manipulation required easier.

Thus, we will work with slightly different (but equivalent) characterizations of (2.10)-(2.14) in the

sections that follow.

2.3. Epidemic Threshold

To derive the epidemic threshold, we consider the stability of the DFE in terms of the epi-

demiological parameter δ. We will show that as δ increases through a critical value δc, the DFE

loses stability. Typically as the DFE loses stability, an asymptotically stable endemic equilibrium

emerges. The SCPW is no exception, and here we derive the epidemic threshold, with a proof that

the system undergoes a transcritical bifurcation (and thus an endemic equilibrium emerges) when

δ = δc included in Appendix Section 2.5.1.

First, we use the conservation equations (2.15) and (2.16) to eliminate equations (2.10) and

(2.13). The resulting system is

ẇ = 〈k〉δx− w,(2.17)

ẋ = z − (δ + 1)x+
αδ

〈k〉
· (1− w)x(1− 3x− z)

(1− x− z)2
+ β̃δ · x(1− 3x− z)

1− x− z
,(2.18)

ż = −2z + 2δx+
2αδ

〈k〉
· (1− w)x2

(1− x− z)2
+ 2β̃δ · x2

1− x− z
.(2.19)

Though ostensibly a messier choice of equation reduction, we note that at the DFE, [I] = [SI] =

[II] = 0, so w = x = z = 0. The notation

(2.20) ẋ =


ẇ

ẋ

ż

 =


F1(w, x, z)

F2(w, x, z)

F3(w, x, z)

 = F(x)
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will be convenient moving forward. To determine the stability of the DFE, we compute the Jacobian

at x = ~0 :

(2.21) DF =


−1 〈k〉δ 0

0

(
α

〈k〉
+ β̃

)
δ − (δ + 1) 1

0 2δ −2

 .

A straightforward computation shows that

(2.22)
α

〈k〉
+ β̃ =

〈k2〉 − 〈k〉
〈k〉

= k̄.

We can write DF as a block triangular matrix as

DF =

−1 A

0 B

 ,
where the dimensions A and B respectively are 1 × 2 and 2 × 2. The properties of determinants

of block matrices tell us that the eigenvalues of DF are −1 and the eigenvalues of B, which will

determine the stability of the DFE.

We appeal here to the trace-determinant theorem, which tells us the eigenvalues ξ of the 2× 2

matrix B are given by

ξ =
Tr(B)

2
±
√

(Tr(B))2 − 4 Det(B)

2
.

First, we observe that these eigenvalues are real, as

(2.23) Tr(B)2 − 4 Det(B) = (δ(k̄ − 1) + 1)2 + 8δ,

which is clearly positive. As a consequence, for the DFE to be stable we must have Tr(B) < 0 and

Det(B) > 0. The determinant can be written

(2.24) Det(B) = 2(1− δk̄),

and is thus positive if and only if δ < 1/k̄. Moreover, if δ < 1/k̄, then

Tr(B) < (k̄ − 1)/k̄ − 3 = −2− 1/k̄ < 0.
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Therefore, we conclude that the DFE is stable for δ < 1/k̄ and unstable for δ > 1/k̄. Thus, the

epidemic threshold is the critical value of the bifurcation parameter δ :

(2.25) δc =
1

k̄
=

〈k〉
〈k2〉 − 〈k〉

.

Notably, this threshold value is identical to that of the CPW as shown in Kiss et al. (2017). However

the type of bifurcation that occurs here remains to be shown, and also that an asymptotically stable

endemic steady state emerges. To prove this, we apply a theorem of Castillo-Chavez et al. (2004)

in Appendix Section 2.5.1. We note that both the CPW and SCPW models are approximations to

the true SIS dynamics on a network, so while (2.25) is a good approximation of the true epidemic

threshold, it may not be appropriate in some cases. For instance, (2.25) is greater than zero for

networks with a power law degree distribution (pk ∼ k−d) with d > 3 in the large network limit

(N →∞). However, exact results show that the true epidemic threshold is zero in the large network

limit (Chatterjee and Durrett, 2009).

2.4. The Endemic Equilibrium

With the existence of an endemic steady state established, we turn to the question of finding

an approximate analytic expression. In general, this is a difficult proposition with epidemic models

on networks owing to the frequently high-dimensional nature of the dynamical systems. An exact

closed-form expression for the endemic equilibrium of the SCPW model requires solving a system

of polynomial equations in multiple variables, which we do not attempt here. However, with

asymptotic techniques, a workable approximation can be derived for two cases of δ: near the

epidemic threshold (δ ≈ δc), and far away from it (δ >> δc). We do not have a good approximation

in the intermediate case. Two challenges are apparent. First, how to eliminate equations to

facilitate asymptotic expansions of the equilibrium and second, the choice of small nondimensional

parameter in each case.

Unlike in Section 2.3, the most parsimonious characterization of (2.10)-(2.14) is desirable. So

we eliminate (2.11) and (2.14) with the conservation equations. To promote the finding of a small

nondimensional parameter, we rewrite the resulting system using δ = δc · δδc and incorporate the
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constants σ = 〈k〉δc, λ = αδc/〈k〉, µ = β̃δc. With these substitutions, the system becomes

v̇ = 1− v − σ δ
δc
x,(2.26)

ẋ = 1− y −
(

3 + δc
δ

δc

)
x+ λ

δ

δc

vx(y − x)

(x+ y)2
+ µ

δ

δc

x(y − x)

x+ y
,(2.27)

ẏ = 2x− 2λ
δ

δc

vxy

(x+ y)2
− 2µ

δ

δc

xy

x+ y
.(2.28)

At the endemic equilibrium, v̇ = ẋ = ẏ = 0. We can solve (2.26) for v and substitute into (2.27)

and (2.28). With some rearrangement of terms and a little algebra (and adding (2.28) to (2.27))

we arrive at the system of polynomial equations that determines the endemic steady state:

0 =

(
δc
δ

)2

(1− y − 2x)(x+ y)2 − δc
δ

(
δcx(x+ y)2 + λx2 + µx(x+ y)

)
+ λσx3 = P (x, y),(2.29)

0 =

(
δc
δ

)2

(x+ y)2 − δc
δ

(λy + µy(x+ y)) + λσxy = Q(x, y).(2.30)

Note that in (2.30), we have dropped a factor of x that corresponds to the DFE. For the endemic

steady state, we are interested in knowing the prevalence when the system is at equilibrium: w∗.

We use the following procedure to approximate the solution:

(1) Express δc/δ in terms of a small parameter.

(2) Use the Implicit Function Theorem to linearize P (x, y) = 0 as

y ≈ ỹ − Px(x̃, ỹ)

Py(x̃, ỹ)
(x− x̃)

around a point (x̃, ỹ) that is mathematically and/or biologically justified for the given

regime.

(3) Expand x, y, and other relevant quantities in terms of the small parameter.

(4) Substitute the expansions into Q(x, y) = 0 and obtain a regular perturbation problem and

find an asymptotic solution for the equilibrium value x, which approximates x∗.

(5) Apply the relation w∗ = (δc/δ)
−1σx∗ to obtain an asymptotic series for the prevalence at

the endemic equilibrium.
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We describe the results of this procedure for each case in the remainder of this section—the details

of the computations are included in Appendix Section 2.5.2.

2.4.1. Case 1: Near the epidemic threshold (δ ≈ δc). When δ ≈ δc, an endemic steady

state has just emerged, so we can view this equilibrium as a small perturbation to the steady state

x = 0, y = 1. Therefore we set η = 1− δc/δ as a small parameter. In terms of this small parameter,

(2.29) and (2.30) become

0 = (1− η)2(1− y − 2x)(x+ y)2

− (1− η)
(
δcx(x+ y)2 + λx2 + µx2(x+ y)

)
+ λσx3,(2.31)

0 = (1− η)2(x+ y)2 − (1− η) (λy + µy(x+ y)) + λσxy.(2.32)

Linearizing P (x, y) = 0 about this point gives

(2.33) y ≈ 1−
(

2 +
δc

1− η

)
x.

Expanding

2 +
δc

1− η
= 2 + δc(1 + η + η2 +O(η3)),(2.34)

x∗ = x0 + x1η + x2η
2 +O(η3),(2.35)

we have

y ≈ (1− (2 + δc)x0)− (δcx0 + (2 + δc)x1)η

− (δcx0 + (2 + δc)x2 + δcx1)η
2 +O(η3).(2.36)

Substituting into (2.32) and equating coefficients to 0, we find an η-order expansion of the approx-

imate equilibrium value x∗ as

(2.37) x∗ ≈ 1

λσ + µδc + µ− δc
η +O(η2).
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Figure 2.1. Exact (numerical) and approximate endemic equilibrium prevalence
in the δ ≈ δc regime for (a) a bimodal (two degree) network with 5000 degree
3 nodes and 5000 degree 5 nodes and (b) a configuration-model network with a
Poisson degree distribution with 10, 000 nodes and 〈k〉 = 10. Moments of the degree
distribution for the bimodal network (a) are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76, with
δc = 0.31, and higher moments of the degree distribution for the Poisson network
(b) are 〈k2〉 ≈ 110, 〈k3〉 ≈ 1309, with δc = 0.1. Solid lines denote stable equilibria,
while dashed lines denote unstable. The equilibrium with w∗ = 0 is the DFE.

Using the relation w∗ = σ
1−ηx

∗ = σx∗ +O(η), we have

(2.38) w∗ ≈ σ

λσ + µδc + µ− δc
η +O(η2).

To demonstrate the efficacy of this approximation, we compare the approximation (2.38) to

the actual endemic equilibrium using bifurcation diagrams (Fig. 2.1). We consider two example

configuration model random networks (Molloy and Reed, 1995) with N = 10, 000. In Figure 2.1a,
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a bimodal (two degree) network is considered with 5000 degree 3 nodes and 5000 degree 5 nodes.

In Figure 2.1b, a network with a Poisson degree distribution (with average degree 〈k〉 = 10) is

considered. As is clear in both examples, the agreement between the actual and approximate

endemic equilibrium is quite good near the epidemic threshold. Interestingly, the approximate

value of w∗ is greater than the exact value for the bimodal network and less than the exact value

for the Poisson network. We suspect that this is due to network structure and higher order terms

in the asymptotic expansion, which we have not computed. An analogous situation is found in the

δ >> δc case.

2.4.2. Case 2: Far away from the epidemic threshold (δ >> δc). For δ >> δc, when

the system is far from the epidemic threshold, our small parameter of choice is ε = δc/δ. We can

rewrite (2.29) and (2.30) in terms of this parameter:

0 = ε2(1− y − 2x)(x+ y)2

− ε
(
δcx(x+ y)2 + λx2 + µx2(x+ y)

)
+ λσx3,(2.39)

0 = ε2(x+ y)2 − ε (λy + µy(x+ y)) + λσxy.(2.40)

When δ >> δc, the transmission rate β is large relative to the recovery rate γ. Thus, we expect the

disease to affect much of the population, and consequently there will be very few remaining [SS]

links, and therefore y ≈ 0.

Solving P (φ, 0) = 0 for φ yields

(2.41) φ(ε) =
ε2 − λε

2ε2 + (δc + µ)ε− λσ
,

and slope of the linearization is then

(2.42) ψ(ε) = −Px(φ, 0)

Py(φ, 0)
= − (ε− λ)(2ε2 + (δc + µ)ε− λσ)

ε(ε2 − (µ+ 5λ)ε− λ(2δc + µ− 2σ))
,

so

(2.43) y ≈ ψ(x− φ).
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Next, we seek to expand y in terms of ε only. The relevant expansions for φ, ψ, and x are

φ(ε) =
1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3),(2.44)

ψ(ε) =
λσ

2δc + µ− 2σ
ε−1 − 2δ2c + 3δcµ+ σ(5λ+ 2σ) + µ2

(2δc + µ− 2σ)2
+O(ε),(2.45)

x(ε) = x0 + x1ε+ x2ε
2 +O(ε2).(2.46)

To ease the writing of coefficients, we let φα and ψα refer to the coefficients on εα for the

respective series. From this, it follows that

y ≈ (ψ−1x0)ε
−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ1x0 + ψ0x1 − ψ−1φ2 − ψ0φ1)ε+O(ε2).(2.47)

Substituting into (2.40), and equating the coefficients to 0, we find that we need the coefficients up

to order ε4 in order to find a ε2 order expansion of the approximate equilibrium value of x∗. The

result is

(2.48) x∗ ≈ 1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3).

Finally, as w∗ = σε−1x∗, we arrive at an ε−order approximation for size of the endemic steady

state as

(2.49) w∗ ≈ 1 +
δc + µ− σ

λσ
ε+O(ε2).

As with the δ ≈ δc case, we compare the approximation (2.49) to the actual endemic equilibrium

in Figure 2.2 for the same networks as previously described. Again, the agreement is quite good,

even for relatively small values of δ. In this case, the approximation for the endemic equilibrium

also provides an approximation to the epidemic threshold. Whether this approximation is an

overestimate or underestimate of the exact threshold depends on network structure. If 〈k2〉 ≥

〈k〉2 + 〈k〉, the approximation is an overestimate. On the other hand, if 〈k2〉 < 〈k〉2 + 〈k〉, the

approximation being an overestimate or underestimate depends on the relationship between 〈k3〉

and the other two moments.
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Figure 2.2. Exact (numerical) and approximate endemic equilibrium prevalence
in the δ >> δc regime for (a) a bimodal (two degree) network with 5000 degree
3 nodes and 5000 degree 5 nodes and (b) a configuration-model network with a
Poisson degree distribution with 10, 000 nodes and 〈k〉 = 10. Moments of the degree
distribution for the bimodal network (a) are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76, with
δc = 0.31, and higher moments of the degree distribution for the Poisson network
(b) are 〈k2〉 ≈ 110, 〈k3〉 ≈ 1309, with δc = 0.1. Solid lines denote stable equilibria,
while dashed lines denote unstable. The equilibrium with w∗ = 0 is the DFE.

2.4.3. Sensitivity Analysis. With any model of infectious disease, its implications in pre-

venting or mitigating spread should be considered. For network models, some pharmaceutical and

non-pharmaceutical interventions can alter the contact network structure in the effort to contain

or mitigate outbreaks (Salathé and Jones, 2010). For an SIS-type disease, particularly when con-

tainment is impossible, one such goal may be to decrease the size of the endemic equilibrium. To

that end, we examine the sensitivity of our approximations of w∗ to network parameters in the
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Table 2.1. Partial Derivatives for δ ≈ δc

∂w∗

∂〈k〉

∣∣∣∣
δ=δc

= − 〈k2〉
〈k〉 − 2〈k2〉+ 〈k3〉

∂w∗

∂〈k2〉

∣∣∣∣
δ=δc

=
〈k〉

〈k〉 − 2〈k2〉+ 〈k3〉

∂w∗

∂〈k3〉

∣∣∣∣
δ=δc

= 0

SCPW model. One benefit of explicit asymptotic expressions for the endemic equilibrium is that

sensitivity analyses are straightforward to implement.

For a fixed δ, we have a three-dimensional parameter space. To visualize these parameter

combinations, we use two-dimensional heat maps taken at slices of the third network parameter. In

this case, we have decided to look at several fixed values of 〈k3〉, and draw sensitivity heat maps in

the variables (〈k〉, 〈k2〉). Further complicating matters is the fact that moments of a distribution are

subject to many inequalities which restrict the domain of the sensitivity heat maps. Two natural

restrictions to include are the results of Jensen’s Inequality and the Cauchy-Schwarz Inequality

respectively:

〈k2〉 ≥ 〈k〉2,

〈k2〉2 ≤ 〈k3〉〈k〉.

For a fixed value of 〈k3〉, these restrictions give a wedge-shaped feasible region of (〈k〉, 〈k2〉). We plot

the sensitivities for 〈k3〉 = 20, 100, and 400 to display a range of possible parameter combinations.

In the δ ≈ δc case, calculating the partial derivatives is straightforward. To compute the

sensitivities, we evaluate the partial derivatives at the epidemic threshold: δ = δc. Table 2.1 shows

the expressions for these sensitivities, and Figure 2.3 shows corresponding plots. Clearly ∂w∗

∂〈k〉 ≤ 0

and ∂w∗

∂〈k2〉 ≥ 0, with more extreme values near the upper-right corner of the feasible region.

For the δ >> δc case, the partial derivatives (Table 2.2) all depend on a factor of 1/δ, so

the choice of δ for computing sensitivities does not affect the relative magnitudes of the partial
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Figure 2.3. Sensitivities (a) ∂w∗

∂〈k〉 and (b) ∂w∗

∂〈k2〉 for the δ ≈ δc approximation. White

denotes regions of the (〈k〉, 〈k2〉) plane outside of the feasible region. Sensitivities
are evaluated at δ = δc.

Table 2.2. Partial Derivatives for δ >> δc

∂w∗

∂〈k〉
=
〈k3〉2 + 3〈k〉2〈k2〉2 − 2(〈k〉3〈k3〉+ 〈k2〉3)

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

∂w∗

∂〈k2〉
= −2(〈k〉2 − 〈k2〉)(〈k〉〈k2〉 − 〈k3〉)

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

∂w∗

∂〈k3〉
=

(〈k〉2 − 〈k2〉)2

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

derivatives. For convenience, we select δ = 1.5. The sensitivity plots in Figure 2.4 show that

∂w∗

∂〈k〉 ≥ 0, ∂w
∗

∂〈k2〉 ≤ 0, and ∂w∗

∂〈k3〉 ≥ 0, with the greatest sensitivity near the curve 〈k2〉2 = 〈k3〉〈k〉,

though the large magnitude appears to be due to the partial derivatives being undefined there.
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Figure 2.4. Sensitivities (a) ∂w∗

∂〈k〉 , (b) ∂w∗

∂〈k2〉 , and (c) ∂w∗

∂〈k3〉 for the δ >> δc approxi-

mation. White denotes regions of the (〈k〉, 〈k2〉) plane outside of the feasible region.
Sensitivities are evaluated at δ = 5δc.

A significant observation from these sensitivities is that ∂w∗

∂〈k〉 and ∂w∗

∂〈k2〉 change signs depending

on the regime considered. If the goal of an intervention is to reduce the size of the endemic

equilibrium, near the epidemic threshold, this can be accomplished in principle by increasing 〈k〉

or decreasing 〈k2〉, which will in effect increase δc as well. This is intuitive, as an effort to push

the system below the epidemic threshold would also decrease the endemic equilibrium for a fixed
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δ. However, in the δ >> δc regime, the system is far from the epidemic threshold, and reducing

the size of the endemic equilibrium can be accomplished by decreasing 〈k〉 or increasing 〈k2〉. This

suggests that containment and mitigation strategies that depend on altering the structure of the

contact network may require different goals in terms of the moments of the degree distribution.

2.5. Discussion

In this chapter, we have analyzed the super compact pairwise model presented in Simon and

Kiss (2016). A non-dimensional version of the model was considered, and a bifurcation analysis

was performed demonstrating that the SCPW and CPW models share an epidemic threshold.

Moreover, we derived approximate formulas for the endemic equilibrium in two regimes: when

the transmission/recovery ratio is near the epidemic threshold, and far away from it. While the

asymptotic techniques used here are ad hoc, similar techniques may prove fruitful in other low-

dimensional models of infectious disease spread on networks. However, an exact expression for the

endemic equilibrium remains elusive.

Before explaining the advantages of our approach, we acknowledge two limitations of our ap-

proximation. First, approximations of the endemic equilibrium for diseases between the two regimes

is lacking. Second, while the examples of simulated networks show good agreement between the

exact and approximate prevalence, we have not quantified the approximation error generally. As

such, there may be types of networks for which our approximation of the endemic equilibrium is

less accurate or inappropriate.

Our approximation of the endemic equilibrium is very useful in providing a more detailed look

into the interactions of the moments of the degree distribution as they relate to the size of an

outbreak. This has implications for disease control measures, particularly those that work by

altering the contact network structure. Our results suggest that for SIS-type diseases, strategies

to contain (near the epidemic threshold) or mitigate (far away from the epidemic threshold) an

outbreak may require different goals. In the mitigation scenario where the prevalence is high,

measures might be employed that decrease the first moment 〈k〉 of the degree distribution. In effect,

this may mean initiatives aimed at reducing the number of contacts of individuals alone. On the

other hand, in the containment scenario where the prevalence is low, decreasing the second moment
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〈k2〉 may be efficient. When couched in degree distribution terms this goal is hard to conceptualize,

but using probability generating functions (Newman et al., 2001) one can show that 〈k2〉 is the

average number of first and second neighbors of nodes in the network. Thus, measures that reduce

both the contacts of individuals and their partners are effective in this scenario. This suggests the

importance of contact tracing. We note that the sensitivities also suggest that increasing 〈k2〉 in

the high prevalence case and increasing 〈k〉 in the low prevalence case may lead to a reduction of

the size of the endemic equilibrium, though it is not clear why from a biological perspective.

Our results complement the findings of Eames and Keeling (2002), who observed that the effec-

tiveness of two common control measures, screening and contact tracing, depend on the prevalence

at the endemic equilibrium. Screening, which targets and treats individuals, is efficient when the

prevalence is high. Contact tracing, which targets and treats individuals and their partners, if

efficient when the prevalence is low. Unlike this chapter, Eames and Keeling implement these mea-

sures through epidemiological parameters (rather than through changing network structure). In

this way, our results can be viewed as a network-structure analog for their conclusions and confirm

that control measures appropriate in a network setting can be found. Further work in this area

may include investigating this phenomenon with alternative models of SIS diseases on networks.

Appendix

2.5.1. Bifurcation Analysis. We begin with Theorem 4.1 from Castillo-Chavez et al. (2004),

referring to the specific conditions that will be relevant for this analysis. Consider a system of ODEs

with a parameter φ :

(2.50)
dx

dt
= F(x, φ), F : Rn × R→ Rn and F ∈ C2(Rn × R).

Assume that 0 is an equilibrium for all values of φ. Assume further that Dxf(0, 0) =
(
∂Fi
∂xj

(0, 0)
)

is the linearization matrix of (2.50) around the equilibrium 0 and with φ = 0, and zero is a simple

eigenvalue of this matrix with all other eigenvalues having negative real parts. Assume as well that

this matrix has a nonnegative right eigenvector w and left eigenvector v corresponding to the zero
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eigenvalue. Let Fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2Fk
∂xi∂xj

(0, 0),(2.51)

b =

n∑
k,i=1

vkwi
∂2Fk
∂xi∂φ

(0, 0).(2.52)

If a < 0 and b > 0, then when φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally

asymptotically stable.

We apply this theorem to (2.17) − (2.19), where the equilibrium occurs at w = x = z = 0.

Moreover, we define a bifurcation parameter φ = δ − δc, so φ = 0 corresponds to δ = δc, and

∂
∂φ = ∂

∂δ . For consistency with previously established notation, we will treat δ as our parameter,

with φ increasing through 0 as δ increases through δc. The Jacobian given in (2.21) when w =

0, x = 0, z = 0, and δ = δc is

(2.53) J =


−1 〈k〉δc 0

0 −δc 1

0 2δc −2

 .
and the characteristic polynomial is given by

(2.54) 0 = ξ(ξ + 1)(ξ − (−2− δc)).

The left and right eigenvectors (v and w respectively) corresponding to the eigenvalue ξ = 0 are

(2.55) v =
[
0 2 1

]
,w =

[
〈k〉 δ−1c 1

]T
.

To compute a and b, it is convenient to express (2.51) and (2.52) in matrix-vector form:

a = wT (2H2 +H3)w,(2.56)

b = v
∂J

∂δ
(0, δc)w,(2.57)
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where H2 and H3 are the Hessians of F2 and F3 respectively at ~0. These Hessians are

(2.58) H2 =


0 −αδc

〈k〉
0

−αδc
〈k〉

−2− 2β̃δc
αδc
〈k〉

0
αδc
〈k〉

0

 , H3 =


0 0 0

0 4 0

0 0 0

 .

Thus,

a =
[
〈k〉 δ−1c 1

]


0 −2αδc
〈k〉

0

−2αδc
〈k〉

−4β̃δc
2αδc
〈k〉

0
2αδc
〈k〉

0



〈k〉

δ−1c

1



=
[
〈k〉 δ−1c 1

]


− 2α

〈k〉
−2αδc − 4β̃ +

2αδc
〈k〉

2α

〈k〉


= −2α− 2α− 4β̃/δc + 2

α

〈k〉
+ 2

α

〈k〉

= −4

(
α

(
1

〈k〉
+ 1

)
+ β̃

(
〈k2〉
〈k〉

+ 1

))
= −4

(
〈k3〉
〈k〉
− 1

)
.(2.59)

As 〈k3〉 > 〈k〉, it follows that a < 0.

The computation for b is simpler. We note that

(2.60)
∂J

∂δ
(0, δc) =


0 〈k〉 0

0 δ−1c − 1 0

0 2 0

 .
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Thus

b =
[
0 2 1

]
0 〈k〉 0

0 δ−1c − 1 0

0 2 0



〈k〉

δ−1c

1



=
[
0 2 1

]
0 〈k〉δ−1c 0

0 δ−1c (δ−1c − 1) 0

0 2δ−1c 0


= 2δ−1c (δ−1c − 1) + 2δ−1c = 2δ−2c > 0.(2.61)

Finally, as a < 0 and b > 0, we conclude that as δ increases through δc, a positive, asymptotically

stable equilibrium emerges, which is the endemic equilibrium.

2.5.2. Asymptotic Approximations of the Endemic Equilibrium. The full derivations

of the approximations (2.38) and (2.49) are presented in this appendix.

2.5.2.1. Near the epidemic threshold (δ ≈ δc). We begin with (2.31) and (2.32) and seek the

linear approximation of P (x, y) = 0 at (0, 1). We compute

∂P

∂x
= 2(1− η)2

(
(1− y − 2x)(x+ y)− (x+ y)2

)
− (1− η) (δc(x+ y)(3x+ y) + 2λx+ µx(3x+ 2y)) + 3λσx2,(2.62)

∂P

∂y
= (1− η)

(
−2δcx(x+ y)− µx2 + (1− η)(x+ y)(2− 5x− 3y)

)
.(2.63)

The slope of the linear approximation is then

(2.64) −∂P/∂x
∂P/∂y

∣∣∣∣
(0,1)

= −−2(1− η)2 − δc(1− η)

−(1− η)2
= −2− δc

1− η
,

and thus we approximate

(2.65) y ≈ 1 +

(
−2− δc

1− η

)
x.
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We now expand x as x = x0 + x1η + . . . and δc
1−η = δc(1 + η + η2 + . . . ) as a geometric series.

Incorporating these with (2.65), we get the approximate expansion of y as

y ≈ 1−
(
2 + δc(1 + η + η2 + . . . )

)
(x0 + x1η + x2η

2 . . . )

= 1− (2 + δc)x0 − (δcx0 + (2 + δc)x1)η

− (δcx0 + δcx1 + (2 + δc)x2)η
2 + . . .(2.66)

For easier bookkeeping, define yα to be the coefficient of ηα in (2.66). As well, the following

expansions will prove useful:

x2 = x20 + 2x0x1η + (x21 + 2x0x2)η
2 + . . . ,(2.67)

y2 = y20 + 2y0y1η + (y21 + 2y0y2)η
2 + . . . ,(2.68)

xy = x0y0 + (x0y1 + x1y0)η + (x0y2 + x1y1 + x2y0)η
2 + . . .(2.69)

Now, we apply (2.66)-(2.69) to (2.32) yielding

0 = (1− 2η + η2)
(
x20 + 2x0y0 + y20 + 2(x0x1 + x0y1 + x1y0 + y0y1)η + . . .

)
− (1− η) (λy0 + µy0(x0 + y0) + (λy1 + µ(x0y1 + x1y0 + 2y0y1))η + . . . )

+ λσ (x0y0 + (x0y1 + x1y0)η + . . . ) .(2.70)
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Equating the O(1) terms to zero, we have

0 = x20 + 2x0y0 + y20 − λy0 − µy0(x0 + y0) + λσx0y0

= (1− (1 + δc)x0)
2 − λ(1− (2 + δc)x0)

− µ(1− (2 + δc)x0)(1− (1− δc)x0)

+ λσx0(1− (2 + δc)x0)

= 1− 2(1 + δc)x0 + x20 − λ+ λ(2 + δc)x0 − µ(1− (3 + 2δc)x0)

− µ(1 + δc)(2 + δc)x
2
0 + λσx0 − λσ(2 + δc)x

2
0

= (1− λ− µ) + (λσ + λ(2 + δc) + µ(3 + 2δc)− 2(1 + δc))x0

+ (1− µ(1 + δc)(2 + δc)− λσ(2 + δc))x
2
0

= x0 [λσ + λ(2 + δc) + µ(3 + 2δc)− 2(1 + δc)

+ (1− µ(1 + δc)(2 + δc)− λσ(2 + δc))x0] .(2.71)

where we avail ourselves of (2.22) for the last equality. For the solution were interested, we have

x0 = 0 and y0 = 1.

We rewrite (2.70) as

0 = (1− 2η + η2) (1 + (x1 + 2y1)η + . . . )

− (1− η) (λ+ µ+ (λy1 + µ(x1 + 2y1))η + . . . )

+ λσ (x1η + . . . ) .(2.72)
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Equating the coefficients of the O(η) terms to zero gives

0 = −2 + 2x1 + 2y1 + (λ+ µ)− (λy1 + µ(x1 + 2y1)) + λσx1

= −2 + 2x1 − 2(2 + δc)x1 + 1 + λ(2 + δc)x1

− µ(x1 − 2(2 + δc)x1) + λσx1

= −1 + x1 (2− 2(2 + δc) + λ(2 + δc)− µ(1− 2(2 + δc)) + λσ)

= −1 + x1 (λσ + µδc + µ− δc) .(2.73)

Thus,

(2.74) x1 =
1

λσ + µδc + µ− δc
.

Now that we have a first order approximation of x, we obtain an first order approximation of the

endemic equilibrium:

w∗ =
σ

1− η
x∗

= σ(1 + η + η2 + . . . )(x0 + x1η + . . . )

= σx1η +O(η2).(2.75)

and thus

(2.76) w∗ ≈ σ

λσ + µδc + µ− δc
η +O(η2).

2.5.2.2. Far away from the epidemic threshold (δ >> δc). We begin with (2.39) and (2.40) and

seek the linear approximation of P (x, y) = 0 at (φ, 0) where φ is given by (2.41). We compute

∂P

∂x
= −2ε2(x+ y)(3x+ 2y − 1)

− ε
(
δc(3x

2 + 4xy + y2) + 2λx+ µx(3x+ 2y)
)

+ 2λσx2,(2.77)

∂P

∂y
= ε

(
−2δcx(x+ y)− µx2 − ε(x+ y)(5x+ 3y − 2)

)
.(2.78)
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The slope of the linear approximation is then

−∂P/∂x
∂P/∂y

∣∣∣∣
(φ,0)

=
−2ε2φ(3φ− 1)− 3εδcφ

2 + 3λφ+ 3µφ2 + 2λσφ2

ε (−2δcφ2 − µφ2 − εφ(5φ− 2))

=
−(ε2 − ελ)φ

φ(−εφ(2δc + µ)− ε2(5φ− 2))

=
−(ε− λ)(2ε2 + ε(δc + µ)− λσ)

ε (ε2 − ε(µ+ 5λ) + 2λσ − λ(2δc + µ))
= ψ(ε).(2.79)

Thus, the linear approximation at (φ, 0) is

(2.80) y ≈ ψ(x− φ).

We now expand ψ and φ in powers of ε :

ψ(ε) = ψ−1ε
−1 + ψ0 +O(ε)

=
λσ

2δc + µ− 2σ
ε−1 − 2δ2c + 3δcµ+ σ(5λ+ 2σ) + µ2

(2δc + µ− 2σ)2
+O(ε),(2.81)

φ(ε) = φ1ε+ φ2ε+O(ε3)

=
1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3).(2.82)

Now, we expand x as well and reorganize to express y as a power series in ε :

y ≈
(
ψ−1ε

−1 + ψ0 + . . .
) ((

x0 + x1ε1 + x2ε
2 + . . .

)
−
(
φ1ε+ φ2ε

2 + . . .
))

= ψ−1x0ε
−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ0x1 + ψ1x0 − (ψ−1φ2 + ψ0φ1)) ε+O(ε2).(2.83)

For easier bookkeeping, we define yα to be the coefficient of εα in (2.83). Again, the following

expansions will prove useful:

x2 = x20 + 2x0x1ε+ (x21 + 2x0x2)ε
2 + . . . ,(2.84)

y2 = y−1ε
−2 + 2y−1y0ε

−1 + (y20 + 2y−1y1) + . . . ,(2.85)

xy = x0y−1ε
−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε+ . . . .(2.86)
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We now apply (2.83)-(2.86) to (2.40) and multiply by ε, yielding

0 = ε3
(
y2−1ε

−2 + (2y−1y0 + 2x0y−1)ε
−1

+
(
x20 + x0y0 + x1y−1 + y20 + 2y−1y1

)
+2 (x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1) ε+ . . . )

− ε2
(
µy2−1ε

−2 + (λy−1 + µ(x0y−1 + 2y−1y0))ε
−1

+ λy0 + µ(x0y0 + x1y−1 + y20 + 2y−1y1)

+ (λy1 + µ (x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1))ε

+(λy2 + µ
(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

)
)ε2

+ . . . )

+ ελσ
(
x0y−1ε

−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε

+ (x0y2 + x1y1 + x2y0 + x3y−1)ε
2

+ (x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)ε
3 . . .

)
.(2.87)

Equating the O(1) terms to zero, we have

(2.88) 0 = λσx0y−1 − µy2−1 = x20(λσψ−1 − µψ2
−1),

and thus x0 = y−1 = 0. Equating the O(ε) terms to zero, we have

(2.89) 0 = y2−1 + λy−1 + µ(x0y−1 + 2y−1y0) + λσ(x0y0 + x1y−1),

which is seen to be trivially satisfied as a result of (2.88). Therefore, we look to the O(ε2) terms

to determine x1. Equating those coefficients to zero leads to

0 = 2y−1y0 + 2x0y−1 − λy0 − µ(x0y0 + x1y−1 + y20 + 2y−1y1)

+ λσ(x0y1 + x1y0 + x2y−1)

= −λy0 − µy20 + λσx1y0

= −ψ−1(x1 − φ1)(λ− µψ−1φ1 + (µψ−1 − λσ)x1).(2.90)
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Of the two solutions to this equation, we are interested in x1 = φ1 = 1/σ, which in turn implies

that y1 = 0.

Looking now for x2, we equate the O(ε3) coefficients to zero:

0 = x20 + x0y0 + x1y−1 + y20 + 2y−1y1

− λy1 − µ(x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1)

+ (x0y2 + x1y1 + x2y0 + x3y−1).(2.91)

which is also trivially satisfied as all terms either cancel with another or contain a factor of x0, y−1,

or y0. Thus, we turn to O(ε4) to determine x2. Equating the coefficients to zero gives

0 = 2(x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1)− λy2

− µ
(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

)
+ λσ(x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)

= y1(−µ(x1 + y1) + λσx2).(2.92)

The solution we’re interested in for x2 comes from y1 = 0, which can be expressed in terms of x2 as

(2.93) 0 = ψ−1(x2 − φ2),

and thus

(2.94) x2 = φ2 =
δc + µ− σ

λσ2
.

At this point, we have a second order expansion of the approximate equilibrium x∗ :

(2.95) x∗ ≈ 1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3).

Now with the relation w∗ = σ
εx
∗, we conclude that

(2.96) w∗ ≈ 1 +
δc + µ− σ

λσ
ε+O(ε2).
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CHAPTER 3

Adaptive Network Modeling of Social Distancing Interventions

3.1. Introduction

The global COVID-19 pandemic has upended modern life an placed and enormous epidemio-

logical, economic, and social burden on the world’s resources. The gravity of events has brought

the need for epidemiological modeling into sharp focus. As the pandemic spread around the world

in the absence of a vaccine, non-pharmaceutical interventions including social distancing, quaran-

tine, and lockdown measures proliferated, and bringing these interventions into modeling efforts

has remained paramount.

In recent years, network-based models of epidemic spread have become an increasingly popular

paradigm (Kiss et al., 2017; Pastor-Satorras et al., 2015), and network science generally has been

recognized for its potential to contribute solutions to the current crisis (Eubank et al., 2020). Most

network models represent individuals as nodes in a network, and their contacts as edges connecting

the nodes. Moreover, many models assume that the network is static—that the edges between

nodes don’t change over time—and thus the epidemic spreads from node to node across these

edges. Among static network models, pairwise models (Eames and Keeling, 2002; Keeling, 1999)

are both frequently used and well-studied. Pairwise models track not only the number of nodes

in a given state, but pairs, triples, and higher order motifs as well (Fig. 3.1). An advantage of

pairwise models is that in their full form, they exactly model (in expectation) the continuous time

Markov chain formulation of epidemic spread on a network (Taylor et al., 2012).

Pairwise models have been successfully applied to a number of disease natural histories and

different network types. Two important network features that play a role in the theory of pairwise

models are degree heterogeneity and clustering. The degree of a node in a network is the number

of edges to which it is connected, and the degree distribution is the probability distribution of

selecting a random node with a given degree. The degree distribution plays a fundamental role
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in many network models, and is particularly powerful when described as a probability generating

function. The clustering coefficient is the ratio of triangles to connected triples in the network.

While clustering is an important component of network structure, it has not widely been incorpo-

rated to pairwise models. We acknowledge two major benefits of models that incorporate degree

heterogeneity and clustering. First, including degree heterogeneity and/or clustering as modeling

consideration affects epidemic dynamics in a nontrivial way (House and Keeling, 2011; Keeling,

1999) and second, both have been shown to be features of realistic contact networks (Read et al.,

2008).

(a) (b) (c)

Figure 3.1. Diagrams of network structures whose evolution is modeled by the
pairwise model: (a) node in state A, (b) pair in state A − B, (c) triple in state
A−B − C.

Although static networks model some forms of complexity well, an important aspect of real-

world contact networks is that some connections change in response to disease dynamics or public

health measures. By relaxing the static network assumption, dynamic or “adaptive” network

models (Gross and Blasius, 2008) can capture both the dynamics of the network and the epidemic

dynamics on the network. A number of models have been recently proposed that describe a variety

of network dynamic processes. Gross et al. (2006) introduced a model of edge rewiring, where

susceptible individuals break connections with infectious individuals and reconnect to susceptible

individuals at random. A related model of adaptive dynamics is “relational exchange” (Scarpino

et al., 2016), where an node in contact with an infectious node are rewired to a susceptible node.

Another model for network dynamics is random link addition/deletion (Kiss et al., 2012) where

individuals break and form new contacts at constant rates. Their approach is notable for its

intuitiveness as a simple dynamic model, and also its use of probability generating functions as a
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tool to describe network dynamics. A related model is link addition/deletion on a fixed network

(Shkarayev et al., 2014; Tunc et al., 2013), where individuals can temporarily deactivate contacts

with infectious individuals, and reactivate them when their contact is not infectious. While much of

the focus of the adaptive network literature has been involved in analyzing the resulting dynamical

systems, particularly for SIS-type diseases, some works have focused specifically on the role of

network dynamics in controlling or mitigating epidemic spread (Sélley et al., 2015; Youssef and

Scoglio, 2013).

Network models in general offer a compromise between two other common modeling techniques:

compartment models and agent-based simulations. They are able to capture more complex contact

structure than simple compartment models, while offering analytical tractability that many agent-

based simulations lack. Despite this, models of non-pharmaceutical interventions have tended to

favor simulation or compartment models (Ahmed et al., 2018; Davey et al., 2008). In the early

stages of the COVID-19 pandemic, complex individual-based simulations offered major insights

about the effectiveness of non-pharmaceutical interventions (Ferguson et al., 2020). However, the

high computational cost can make investigating the impacts of intervention policies with a large

number of parameters a challenging endeavor. Network models, especially those with a relatively

small number of equations, can offer broad insights at reduced cost. While some models of social

distancing have incorporated contact network structure as a major consideration (Glass et al., 2006;

Valdez et al., 2012), differential equation network models of such interventions are uncommon.

Adaptive network models in particular can offer a new perspective on questions surrounding social

distancing and other non-pharmaceutical interventions made pressing by the COVID-19 pandemic.

In this chapter, we develop simple, novel mechanisms to incorporate social distancing into

a network model of epidemic spread, using COVID-19 as the central case study to investigate

the impact of a range of interventions. First, we develop a pairwise SEIR model with random link

activation/deletion dynamics—that is edges are added and deleted at constant rates independent of

the epidemic dynamics on the network. Furthermore, the model incorporates degree heterogeneity

and clustering, which offers increased realism over simpler network or compartment models. To

apply the model, we use bipartite mixing networks to generate large heterogeneous, clustered

contact networks coupled with disease dynamics given by epidemiological parameters estimated
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for COVID-19. Next, we develop two mechanisms of social distancing using piecewise constant

link activation and deletion rates. The first is a single intervention event, where the average

number of contacts decreases, is held constant, and then recovers; the second allows for multiple

interventions which restart depending on the prevalence of the disease. While we investigate the

implications of these policies for COVID-19 on a specific type of heterogeneous, clustered network,

both the adaptive network model and the social distancing schemes are more generally applicable

to a variety of networks and epidemiological parameters. Finally, we consider the public health

implications of the latter model, finding that certain intervention parameters are more important

than others in achieving an effective reduction in overall infections.

3.2. Model

To begin construction of the full model, we consider SEIR dynamics on a static network.

Pairwise equations for an SEIR epidemic can be found in Keeling et al. (1997) and Rand (1999).

Model variables include the expected number of susceptible, exposed, infectious, and recovered

nodes ([S], [E], [I] and [R] respectively) as well as the expected number of pairs in each state. For

example, [SS] is the expected number of connected pairs of susceptible nodes, while [SI] is the

expected number of connected pairs of susceptible and infectious nodes. The expected number

of connected triples is also considered ([SSI], [ESI], [ISI]), though differential equations for these
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variables are not written. The full SEIR pairwise model is

˙[S] = −β[SI],(3.1)

˙[E] = β[SI]− η[E],(3.2)

˙[I] = η[E]− γ[I],(3.3)

˙[SS] = −2β[SSI],(3.4)

˙[SE] = β[SSI]− β[ESI]− η[SE],(3.5)

˙[SI] = η[SE]− β[SI]− β[ISI]− γ[SI],(3.6)

˙[EE] = 2β[ESI]− 2η[EE],(3.7)

˙[EI] = β[ISI] + β[SI] + η[EE]− (γ + η)[EI],(3.8)

˙[II] = 2η[EI]− 2γ[II],(3.9)

where β is the transmission rate, γ is the recovery rate, and η is the rate at which exposed individuals

become infectious. The nodes and edges also obey conservation equations

(3.10) N = [S] + [E] + [I] + [R]

and

〈k〉N = [SS] + [EE] + [II] + [RR]

+ 2 ([SE] + [SI] + [SR] + [EI] + [ER] + [IR])(3.11)

where N is the number of nodes and 〈k〉 is the average degree of the network. We note that with

the conservation equations, we do not need terms of the type [AR] to determine the evolution of

[S], [E], [I], and [R].

The full model requires dynamical equations for triples of the form [ASI] and higher order motifs

as well, leading to a system that is prohibitively large for analysis. To make the model tractable,

we approximate the expected number of triples [ASI] in terms of pairs and individual nodes, thus

closing the system (3.1)-(3.9). An approximation of this kind is referred to as a triple closure. For
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triples of the type A− S − I, House and Keeling (2011) give a triple closure approximation as

(3.12) [ASI] ≈ [AS][SI]

∑
k(k

2 − k)[Sk]

(
∑

k k[Sk])
2

(
1− φ+ φ

N〈k〉[AI]

(
∑

k k[Ak]) (
∑

k k[Ik])

)
where [Ak] is the expected number of nodes in state A with degree k and φ is the clustering

coefficient. Using the network degree distribution probability generating function and introducing

new dynamical variables, they develop an SIR model for heterogeneous, clustered networks. In

Appendix Section 3.4.1, we derive an analogous heterogeneous, clustered SEIR model complete with

link activation and deletion. However, the model complexity induced by (3.12) is not necessary to

accurately capture the combined epidemic and network dynamics, and thus a simpler triple closure

will suffice.

A simple yet useful assumption is that degree and state are independent, and thus [Ak] = pk[A]

where pk is the proportion of nodes with degree k. With this assumption, the resulting triple closure

becomes:

(3.13) [ASI] ≈ 〈k
2 − k〉
〈k〉2

[AS][SI]

[S]

(
1− φ+ φ

N

〈k〉
[AI]

[A][I]

)
,

where 〈k〉 =
∑N−1

k=0 kpk and 〈k2 − k〉 =
∑N−1

k=0 (k2 − k)pk. We note that if a homogeneous degree

distribution is assumed, the closure reduces to clustered closure from Keeling (1999).

With the static model closed, we now incorporate the effects of network dynamics. Kiss et al.

(2012) introduced a simple model of network dynamics, termed random link activation/deletion

(RLAD). In this model, independent of epidemic dynamics nonexistent edges are added to the

network (or activated) at a constant rate α and existing edges are removed from the network

(or deleted) at a constant rate ω. Ignoring epidemic spread and looking at the effects of activa-

tion/deletion only, the equation for edges of type [AA] is

(3.14) [ȦA] = α ([A]([A]− 1)− [AA])− ω[AA]

and for type [AB] we have

(3.15) [ ˙AB] = α ([A][B]− [AB])− ω[AB].
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Next, we have to consider the effect of activation/deletion on the now time-dependent network

quantities: degree distribution moment terms 〈k〉(t), 〈k2 − k〉(t) and the clustering coefficient φ(t).

Following the example of Kiss et al. (2012), dynamical equations for the first two can be easily

derived by finding the partial differential equation for the degree distribution generating function

(3.16) g(x, t) =

N−1∑
k=0

pk(t)x
k.

The Kolmogorov equations describe the evolution of pk(t), the proportion of degree k nodes at time

t :

(3.17) ṗk = α (N − k) pk−1 − (α(N − 1− k) + ωk) pk + ω(k + 1)pk+1.

With some straightforward algebra, we derive a partial differential equation for the degree distri-

bution generating function;

(3.18)
∂g

∂t
= (x− 1)

(
α(N − 1)g − (αx+ ω)

∂g

∂x

)
.

The network quantities 〈k〉 and 〈k2 − k〉 can be computed from the generating function as 〈k〉 =

gx(1, t) and 〈k2 − k〉 = gxx(1, t). Then, from (3.18) we derive the dynamical equations

〈k̇〉 = α(N − 1)− (α+ ω)〈k〉,(3.19)

〈 ˙k2 − k〉 = 2α(N − 2)〈k〉 − 2(α+ ω)〈k2 − k〉.(3.20)

The clustering coefficient is defined as the ratio of triangles to connected triples in the network.

To compute φ̇, we start with the Kolmogorov equations for qk(t), the probability that there are k

triangles in the network at time t;

(3.21) q̇k = α(L− 3(k − 1))qk−1 − (α(L− 3k) + 3ωk)qk + 3ω(k + 1)qk+1
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where L = N〈k2 − k〉/2 is the number of connected triples. From this we derive the differential

equation for the expected number of triangles 〈T 〉 as

(3.22) 〈Ṫ 〉 = αL− 3(α+ ω)〈T 〉,

and compute the equation for the clustering coefficient φ(t) :

(3.23) φ̇ = 3α−
(
α+ ω + 2α(N − 2)

〈k〉
〈k2 − k〉

)
φ.

Finally, we have a full set of equations for a pairwise SEIR for a heterogeneous, clustered network

with random link activation and deletion:

˙[S] = −β[SI],(3.24)

˙[E] = β[SI]− η[E],(3.25)

˙[I] = η[E]− γ[I],(3.26)

˙[SS] = −2β[SSI] + α[S]([S]− 1)− (α+ ω)[SS],(3.27)

˙[SE] = β[SSI]− β[ESI]− η[SE] + α[S][E]− (α+ ω)[SE],(3.28)

˙[SI] = η[SE]− β[SI]− β[ISI]− γ[SI] + α[S][I]− (α+ ω)[SI],(3.29)

˙[EE] = 2β[ESI]− 2η[EE] + α[E]([E]− 1)− (α+ ω)[EE],(3.30)

˙[EI] = β[ISI] + β[SI] + η[EE]− (γ + η)[EI]

+ α[E][S]− (α+ ω)[EI],(3.31)

˙[II] = 2η[EI]− 2γ[II] + α[I]([I]− 1)− (α+ ω)[II],(3.32)

〈k̇〉 = α(N − 1)− (α+ ω)〈k〉,(3.33)

〈 ˙k2 − k〉 = 2α(N − 2)〈k〉 − 2(α+ ω)〈k2 − k〉,(3.34)

φ̇ = 3α−
(
α+ ω + 2α(N − 2)

〈k〉
〈k2 − k〉

)
φ,(3.35)
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where

[SSI] =
〈k2 − k〉
〈k〉2

[SS][SI]

[S]

(
1− φ+ φ

N

〈k〉
[SI]

[S][I]

)
,(3.36)

[ESI] =
〈k2 − k〉
〈k〉2

[SE][SI]

[S]

(
1− φ+ φ

N

〈k〉
[EI]

[E][I]

)
,(3.37)

[ISI] =
〈k2 − k〉
〈k〉2

[SI]2

[S]

(
1− φ+ φ

N

〈k〉
[II]

[I]2

)
.(3.38)

To demonstrate the validity of this model, we test it against numerical simulations (Fig. 3.2) on a

(a) (b)

Figure 3.2. Comparison of the model to simulation. 100 trials were run on a
unipartite contact network generated from a bipartite network with Poisson degree
distributions and N = 500,M = 125, λ = 4. Initial conditions are [E]0 = [I]0 =
10, [S]0 = 480, [R]0 = 0. Epidemiological and network parameters are R0 = 2.4, η =
1/5, γ = 1/10, α ≈ 2.3 × 10−5, ω = 3.4 × 10−5. Individual simulations are shown
in light gray with the mean in black. Model results are (a) [I](t), red circles, (b)
[R](t), green circles.

heterogeneous, clustered network—the construction of which is described in Section 3.2.1. Clearly,

the model (3.24)-(3.35) is in excellent agreement with the simulations.
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(a)

(b) (c)

Figure 3.3. Example contact network (b) and its degree distribution (c) generated
from a bipartite mixing network (a). Degree distributions for the individuals and
mixing locations are Poisson (as described in Section 3.2.1) with N = 200,M = 50,
and λ = 2. For (c), the horizontal axis is node degree and the vertical axis is the
proportion of nodes.

3.2.1. Network and Epidemiological Parameters. The goal of this chapter is to investi-

gate social distancing policies through random link activation/deletion dynamics, which are con-

trolled by the activation and deletion rates α and ω. Moreover, in building intervention schemes

in Section 3.3 new parameters are introduced. In order to consistently compare the efficacy of

intervention schemes, network and epidemiological parameters are held the same across schemes.
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As such, we restrict our attention to a particular heterogeneous, clustered network and epidemi-

ological parameters that are plausible for COVID-19. For completeness, other network types and

epidemiological parameters are considered in Appendix Section 3.4.2.

A consistent challenge of network models is constructing realistic contact networks. In par-

ticular, degree heterogeneity and significant clustering are observed in real world social networks

(Read et al., 2008). To construct such a contact network, we consider a bipartite mixing network

(Eubank et al., 2004) with N individuals and M mixing locations (Fig. 3.3a). Two individuals

are in contact if they both connect to the same mixing location, so we form a contact network as

the unipartite projection of the bipartite mixing network (Fig. 3.3b). To introduce degree hetero-

geneity, we construct a bipartite mixing network where both individuals and mixing locations have

Poisson degree distributions (Newman et al., 2001). The average individual degree λ and average

mixing location degree µ are related by

(3.39) Nλ = Mµ,

so only N,M, and λ are needed to characterize this network. Using generating function techniques

(Newman et al., 2001), we compute

〈k〉 =
N

M
λ2,(3.40)

〈k2 − k〉 =

(
N

M

)2

λ3(λ+ 1),(3.41)

φ =
1

λ+ 1
,(3.42)

for the unipartite contact network, which exhibits both degree heterogeneity (Fig. 3.3c) and cluster-

ing. Unless otherwise specified, the networks in this chapter are generated using N = 10, 000,M =

2, 500, and λ = 4. We acknowledge that though we use a bipartite mixing network to generate a

heterogeneous, clustered unipartite contact network, our network dynamics are limited to the con-

tact network. Mobility networks (Chang et al., 2021) have been used to great effect for COVID-19,

and suggest a fruitful path forward for bipartite network dynamics.
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Numerous recent studies have estimated important epidemiological quantities for the spread of

Sars-CoV-2, including the length of the incubation period, the length of the infectious period, and

the basic reproduction number R0. We choose the plausible estimates in line with recent studies1:

average incubation period of 5 days (Linton et al., 2020; Zhang et al., 2020), average infectious

period of 10 days (You et al., 2020), and R0 = 2.4 (Anastassopoulou et al., 2020; Li et al., 2020).

To incorporate these into the model, we note that 1/η and 1/γ are the average lengths of the

incubation and infectious periods respectively, and thus η = 0.2, γ = 0.1. We do not derive R0 for

the model (3.24)-(3.35), but instead consider the basic reproduction number for a heterogeneous,

clustered population from Miller (2009), which is given as the series

(3.43) R0 =
〈k2 − k〉
〈k〉

β

β + γ
− φ〈k

2 − k〉
〈k〉

(
β

β + γ

)2

+ . . .

Ignoring higher order terms, we can compute β from (3.43) when R0 = 2.4 With these parameters,

we plausibly model the spread of COVID-19 through a moderately sized heterogeneous, clustered

population in the following sections, while introducing various social distancing interventions to

mitigate or control the epidemic.

3.3. Analysis of Interventions

Social distancing and lockdown measures have been used to curb the spread of infectious diseases

throughout history, and are some of the most ubiquitous non-pharmaceutical interventions in the

current COVID-19 pandemic. Many compartment-based models that incorporate social distancing

do so in a phenomenological manner through the transmission rate, but adaptive network models

present an opportunity to describe a social distancing mechanism in a fundamental way. A simple

model of such interventions can be naturally characterized by the link activation/deletion process.

During periods of social distancing and lockdown, individual contacts break; during periods of re-

laxation of the measures, individual contacts form. In this section, we develop two social distancing

schemes (Fig. 3.4). Both social distancing schemes begin when the prevalence [I](t) reaches some

specified threshold level. For the simple intervention scheme, contacts break as the intervention

is implemented, then contacts stay fixed as the intervention is in place, and finally contacts form

1It is worth noting that at the time this chapter was written, these represented the most recent estimates. Subsequent
studies and the emergence of variants of SARS-Cov-2 have altered some estimates of the epidemiological parameters.
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Figure 3.4. Schematic of the Simple and Prevalence-Dependent Interventions.
Both interventions are triggered by a threshold condition, and proceed through the
described intervention until the epidemic ends and the impacts of the interventions
can be evaluated.

until they reach their pre-intervention levels. The prevalence-dependent scheme unfolds similarly,

but with two notable differences. First, after the intervention, contacts do not start forming again

until the prevalence has dropped below the threshold. Second, any time the prevalence reaches

the threshold again, the intervention restarts. This allows for multiple implementations of a social

distancing intervention throughout the course of the epidemic.

Critically, we do not treat these schemes as a mere modeling exercise, but are interested in the

impact of each intervention scheme at the end of the epidemic. We develop two simple metrics to

evaluate the effectiveness of the simple and prevalence-dependent interventions. First, we consider

each intervention’s ability to reduce the cumulative number of infections, known as the final size

of the epidemic. Second, we also consider how many infections occur above the threshold value

for prevalence. These two measures reflect two different yet crucial public health goals, and do

not necessarily agree on which interventions are the most effective. Both must be considered to

get a complete picture of an intervention’s impact. In this section, we derive these two metrics
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mathematically, and describe the simple and prevalence-dependent interventions while assessing

their overall effects.

3.3.1. Evaluation Metrics. The first measure of intervention effectiveness we introduce is

the Relative Change in the Final Size (RCFS). The final size of an epidemic is the cumulative

number of infections that occur over the course of the epidemic. In terms of the model, the final

size can be found as the limiting value of the recovered individuals [R]:

lim
t→∞

[R](t) = R∞.

We compare the final size of the epidemic with no intervention R∞ to the final size where an

intervention has been implemented Rint
∞ . We then define the RCFS as

(3.44) RCFS =
Rint
∞ −R∞
R∞

.

An effective intervention will lead to a decrease in final size, so an RCFS near 0 is unsuccessful,

while an RCFS near −1 is extraordinarily successful. However, it is important to note that for

brief, intense intervention schemes, it is possible that the final size actually increases. In this case,

the network parameters change quickly, before significant disease spread, so the epidemic unfolds

on a fundamentally different static network.

While the relative change in the final size provides an overall measure of the effectiveness

of interventions, reducing cumulative infections alone is not the only public health goal that an

intervention scheme might seek to accomplish. In some schemes, a large number of infections

occur above the threshold despite a large reduction in the final size of the epidemic. This can be

particularly pernicious if the threshold represents some fixed resource such as healthcare capacity,

where a large number of infections above the threshold could lead to higher mortality and other

negative outcomes. To account for this, we compute the Cumulative Infections Above Threshold

(CIAT). Let t1, t2, ... be the sequence of times when [I] = qN. Assuming [İ] 6= 0 at any time in the

sequence2, the continuity of [I](t) implies that the prevalence is above the threshold on the intervals

2This assumption is made simply so that the times when I increases or decreases through the threshold alternate,
and the CIAT can be defined as a sum of integrals.
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[t2i−1, t2i] for i = 1, 2, 3, ... Thus, the CIAT may be defined as

(3.45) CIAT =
∑
i

∫ t2i

t2i−1

[I](t)− qNdt.

We note that the units of CIAT are person-time—for a metric with units of population, we compute

the Average Infections Above Threshold (AIAT):

(3.46) AIAT =
CIAT∑

i t2i − t2i−1

Using the relation [Ṙ] = γ[I], equation (3.46) becomes

(3.47) AIAT =

∑
i[R](t2i)− [R](t2i−1)

γ
∑

i t2i − t2i−1
− qN,

which is convenient for computations.

3.3.2. Simple Intervention. For a simple model of social distancing, we consider a scheme

that unfolds in three successive phases, each with variable length. The effects of the intervention

scheme on the contact network are characterized through the average number of contacts 〈k〉(t).

The intensity of the intervention can be thought of as how severely the average number of contacts

are reduced, so we introduce a severity parameter p ∈ [0, 1). The top panel of Figure 3.5 shows how

the 〈k〉 changes over time as the result of the intervention. In the first phase, as social distancing

measures are put into place, the average number of contacts decreases from its pre-intervention

level 〈k〉0 to p〈k〉0. In the second phase, with the measures fully in place, the average number of

contacts remains constant at p〈k〉. In the third phase, social distancing measures are relaxed and

the average number of contacts increases to its pre-intervention level 〈k〉0.

To achieve this effect in the evolution of the average number of contacts, we consider link acti-

vation rate α(t) and deletion rate ω(t) functions that are piecewise constant. These rate functions

can be seen in the bottom two panels of Figure 3.5. Since contacts are only broken in the first

phase, ω(t) = ω∗ in the first phase and 0 otherwise. Since contacts are only formed in the third

phase, α(t) = α∗ in the third phase and 0 otherwise. As the dynamical equation for 〈k〉 (3.33) is a

first-order linear ODE, the resulting curve for 〈k〉(t) will be piecewise exponential, and the values of

α∗ and ω∗ are easily computed for a given p. Other than p, four other parameters characterize the
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Figure 3.5. Simple Intervention. Once the intervention begins, edges are deleted
at rate ω∗ for LI days until the average number of contacts 〈k〉 drops to p〈k〉0. For
the next LH days, no changes are made to the nework. Then, edges are added at
rate α∗ for LR days, until the average number of contacts 〈k〉 increases to back to
〈k〉0

simple intervention: the lengths of the three phases LI , LH , and LR, and the threshold proportion

of the population q ∈ [0, 1) to initiate the intervention. The full simple intervention scheme can be

described as follows:

• No intervention: the epidemic spreads unabated until [I] increases through qN (α = ω =

0).

• Intervention Phase (length LI): intervention occurs, edges are removed at a constant rate

(α = 0, ω = ω∗).

• Holding Phase (length LH): intervention holds, edges are neither removed nor added

(α = ω = 0).
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• Relaxation Phase (length LR): interventions are relaxed, edges are added at a constant

rate (α = α∗, ω = 0).

As this scheme requires five “intervention” parameters, p, q, LI , LH , and LR, exploring the full

impact of the interventions is difficult. To better see the effects, we consider an example scheme

where we fix two parameter values in each and allow the other three to vary. To focus on the

impact of the severity parameter p and the lengths of the intervention and relaxation phases LI

and LR, we set LH = 15 and q = 0.01 for the remainder of this section. Thus, the intervention

begins when infections reach one percent of the population, and the holding phase is fixed at 15

days for all interventions. The other three parameters are allowed to vary. This allows for both

abrupt and gradual implementations of interventions and relaxation of measures, and different levels

of intervention intensity. Figure 3.6 shows the prevalence of some example intervention schemes,

showing rich qualitative behavior. To assess the effectiveness of the simple intervention we plot the

(a) (b) (c)

Figure 3.6. Example infection curves [I](t) for the simple intervention with q =
0.01. The other intervention parameters are (a) p = 0.125, LI = 30, LR = 90, (b)
p = 0.25, LI = 60, LR = 60, and (c) p = 0.5, LI = 15, LR = 150. Solid orange curves
are [I](t) under the intervention, while dashed orange curves are [I](t) without any
intervention. Gray dashed lines denote the starts of the intervention, holding, and
relaxation periods.

RCFS and the AIAT for a large number of parameter combinations. We allow the lengths of both

the intervention and relaxation periods LI and LR to vary from 2 to 180 days, and consider three

different intensities p = 0.125, 0.25, 0.5. The results are shown in Figure 3.7.

A significant common feature of the plots in Figure 3.7a is a qualitative boundary (solid white

curve) that divides (LI , LR) space into two distinct classes of the resulting infection curve (for

p = 0.125, this occurs outside the boundaries of the plot). To the right of the boundary, infection
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(a)

(b)

Figure 3.7. Plots of the RCFS (a) and AIAT (b) for the LH = 15 and q = 0.01.
For intensities p = 0.125, 0.25, and 0.5, the intervention period and relaxation period
lengths LI and LR vary from 2 to 180 days. In (a), the solid white curve denotes
the qualitative boundary, to the right of which uniform spikes occur. The dashed
white line in the third panel denotes the boundary of the region where two spikes
occur.

curves are characterized by a single “uniform spike,” defined by an prevalence curve [I](t) with two

inflection points and a single local maximum (Fig. 3.8a). To the left of the boundary, infection

curves take the form of either a single “non-uniform spike” (Fig. 3.8b), with more than two

inflection points but only one local maximum, or multiple spikes (Fig. 3.8c), with more than two

inflection points and multiple local maxima. For p = 0.125 and p = 0.25, only multiple spikes occur

to the left of the boundary. For small LI , the first spike is small and the second spike is large, and

occasionally the final size of the epidemic surpasses the static case due to network alterations. As

LI approaches the qualitative boundary, the second spike becomes shorter and occurs later until

negligible. This phenomenon can also be seen in Figure 3.7b: as LI increases, the AIAT decreases

until the second spike drops below the threshold qN, at which point the AIAT increases as the first

spike grows taller. For p = 0.5 on the other hand, both nonuniform spikes and multiple spikes are

possible to the left of the boundary. Multiple spikes occur in the region of (LI , LR) space enclosed

by the dashed white curve, while a single nonuniform spike occurs elsewhere left of the qualitative

boundary.
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(a) (b) (c)

Figure 3.8. Types of infection curves with the simple intervention: (a) uniform
spike, (b) non-uniform spike, (c) multiple spikes. Black dots denote inflection points.

A few other observations warrant comment. First, the length of the intervention LI appears

to be more important in determining epidemic’s final size compared to LR. This is intuitive, as

the most significant changes to network structure occur during the intervention phase. Second,

as p increases, the qualitative boundary shifts generally left. This means that for less severe

interventions, single uniform spikes will occur for smaller LI values. This observation carries weight

for repeated interventions, explored in Section 3.3.3, as single uniform spikes are heavily penalized

by the AIAT. Third, nonuniform spikes occur for p = 0.5, but not for p = 0.125 or p = 0.25. We

hypothesize that there may exist some threshold p∗ where nonuniform spikes don’t occur below p∗,

but do above p∗.

3.3.3. Prevalence-Dependent Intervention. While the simple intervention scheme pro-

vides a simple yet general model of social distancing, its implementation lacks a degree of realism.

Interventions are put into place only once, and the epidemic continues, often with infections spiking

after measures begin to relax. In reality, we would expect public health measures to be responsive

to rising prevalence. Moreover, continued interventions might be triggered by some indicator, such

as case numbers, deaths, hospital capacity, etc... In this section, we adapt the intervention scheme

from Section 3.3.2 so that it may be reimplemented when a prevalence-based condition is satis-

fied, forming the prevalence-dependent intervention. We begin with two more realistic assumptions

about how a public health response might unfold. First, interventions are reimplemented any time

the prevalence increases through some threshold. Second, the relaxation phase of an intervention
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Figure 3.9. Prevalence-Dependent Intervention. The intervention begins when
[I] = qN, and edges are deleted at a constant rate ω∗ until 〈k〉 decreases to p〈k〉0,
at which point there is no change to the network until [I] drops below the threshold
qN. Then, edges are added at a constant rate α∗ until 〈k〉 returns to 〈k〉0 or [I]
increases through the threshold qN , at which point the intervention begins again.

doesn’t begin until the prevalence has dropped below the threshold. We incorporate these assump-

tions into a new prevalence-dependent intervention scheme. The scheme is determined by four

parameters: q, p, LI , and LR. As before, interventions begin when [I] reaches qN , p is the severity

of the intervention, and LI and LR are now the maximum lengths of the intervention and relaxation

periods, which determine ω∗ and α∗ as in Section 3.3.2. We can define the new scheme as follows:

• As [I] increases through qN, a new intervention is implemented.

• Intervention Phase: Once an intervention is implemented, edges are deleted at rate ω = ω∗

until 〈k〉 = p〈k〉0.
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• Holding Phase: At the end of the intervention period, a holding period begins (α = ω = 0)

until the prevalence has dropped below the threshold qN. If the prevalence drops below

the threshold during the intervention period, the holding period has length 0.

• Relaxation Phase: Edges are added at rate α = α∗ until 〈k〉 = 〈k〉0, or a new intervention

is implemented.

It worth noting that compared to the simple intervention in Section 3.3.2, the intervention, holding,

and relaxation phases can all be of variable length. For instance, if the average number of contacts

〈k〉 has not rebounded to 〈k〉0 by the time a new implementation begins, the resulting relaxation

period is shorter than LR. Moreover, in the subsequent intervention phase, edges delete until

〈k〉 = p〈k〉0 and the phase is shorter than LI . In sum, while ω∗ and α∗ are fixed, the average

number of contacts is never less than p〈k〉0 and the effective lengths of different intervention and

relaxation phases may vary. An example implementation of the prevalence-dependent scheme is

shown in Figure 3.9, which shows both holding periods of nonzero length as well as intervention

and relaxation periods that are shorter than LI and LR respectively.

(a) (b) (c)

Figure 3.10. Example infection curves [I](t) for the prevalence-dependent inter-
vention. Parameters shown are (a) q = 0.005, p = 0.125, LI = 60, LR = 60, (b)
q = 0.01, p = 0.5, LI = 15, LR = 60, (c) q = 0.02, p = 0.25, LI = 30, LR = 120. Solid
orange curves are [I](t) under the intervention, while dashed orange curves are [I](t)
without any intervention. Dashed gray lines denote times when [I] = qN .

A notable feature of the prevalence-dependent intervention is its ability to generate infection

curves with multiple spikes as the epidemic progresses. Examples of this behavior are shown in

Figure 3.10. To fully explore the intervention, we again consider the RCFS for a variety of parameter
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Figure 3.11. Relative change in final size (RCFS) for the prevalence-dependent
intervention. Each plot represents a choice of p and q, with LI and LR on the axes,
ranging from 2 for 180.

combinations. Figure 3.11 shows the RCFS for different thresholds (q = 0.005, 0.01, 0.02) and

intensities (p = 0.125, 0.25, 0.5) as LI and LR both vary from 2 to 180 days. Though not shown, as

with the simple intervention each case has a qualitative boundary, to the right of which infection

curves are single, uniform spikes. The most significant departure from the simple intervention

though is to the left of the qualitative boundary. In the simple case, infection curves from this region

took the form of either two spikes or a single nonuniform spike. With the prevalence-dependent

intervention, the infection curve behavior is richer.
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(a) (b) (c)

Figure 3.12. Progression of the infection curve [I](t) as LI increases, showing the
shrinking of the final spike and the penultimate spike dropping below the threshold
qN . Parameters are q = 0.01, p = 0.25, LR = 90 and LI = 70 (a), 78 (b), 92 (c).
Solid orange curves are [I](t) under the intervention, while dashed orange curves are
[I](t) without any intervention. Dashed gray lines denote times when [I] = qN .

The region is characterized by “waves” in the RCFS, particularly for lower values of p. The

boundaries of these waves can be described by the number of spikes that occur over the course

of the epidemic. Holding LR fixed and increasing LI through one of these contours helps explain

the behavior of the infection curve in this region (Fig. 3.12). At the crest, the final spike peaks

just below the threshold qN (Fig. 3.12a). As LI increases, the final spike occurs later and peaks

lower (Fig. 3.12b) and the RCFS decreases until the spike vanishes. Then, the penultimate spike

becomes the new final spike, peaking just below the threshold (Fig. 3.12c) and the RCFS jumps up

as a new wave crests. This underscores a potential limitation of a threshold-based intervention: if a

spike does not reach the threshold and no intervention occurs, the spike occurs over a longer period

of time and more infections accumulate than if the spike had triggered an intervention. A practical

implication of this observation is that no spike in infections should go unaddressed by interventions

if the goal is only to reduce the number of cumulative infections. We also consider the AIAT

for the same parameter combinations (Fig. 3.13), though the conclusions by this metric are less

complex. For any combination of p and q, increasing LI leads to a larger AIAT. This suggests that

when considering interventions with the same RCFS, more abrupt interventions (smaller LI) are

preferable. However, an interesting observation is that the AIAT increases rapidly as the epidemic

changes from three to two spikes.
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Figure 3.13. Average infections above threshold (AIAT) for the prevalence-
dependent intervention. Each plot represents a choice of p and q, with LI and
LR on the axes, ranging from 2 for 180.

While Figs. 3.11 and 3.13 show the overall behavior of the prevalence-dependent intervention,

by considering fixed values of LI and LR and allowing p and q to vary, we get a more pointed

perspective on the effectiveness of this type of intervention. Figure 3.14 shows increasingly gradual

interventions from left to right with plots of the RCFS and AIAT as p and q vary on the axes.

Notably, regardless of LI , low values of p and q are able to produce interventions that both greatly

decrease the final size of the epidemic, and the average infections above threshold. An important

factor in this decrease in the final size is the time at which the measurements of the RCFS and AIAT

are taken. In Figure 3.14, the epidemic is allowed to run for three years before both are measured.
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(a)

(b)

Figure 3.14. Plots of the RCFS (a) and AIAT (b) for the prevalence-dependent
intervention with LI = 15, 30, 60 and LR = 90 as p varies from 0 to 1 and q varies
from 0 to 0.03. Both RCFS and AIAT are measured after the epidemic has run
for 3 years. Notably, both measures indicate highly-effective interventions for small
values of p and q.

Measuring earlier results in a larger portion of p, q space that greatly decreases the RCFS, while

measuring later results in a smaller portion. This may have important control impacts. For instance,

if a vaccine is expected to be designed, produced, and distributed, the estimated time frame for that

to occur can influence which levels of p and q can produce highly effective interventions. Regardless,

the region of highly effective interventions appears mostly the same for the different values of LI .

This suggests that for sufficiently low thresholds (q) and sufficiently severe decreases in contacts

(p), the length over which the decrease in contacts occurs (LI) does not play an important role in

the effectiveness of interventions. However, as q or p increases, LI has a more pronounced impact.

In particular, for low values of p and large values of q, a longer, more gradual intervention can
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lead to more average infections above threshold. Moreover, a stark change in both effectiveness

metrics occurs for large values of p, (around p = 0.5 for LI = 15 and LI = 30). This suggests that

if an intervention doesn’t reduce average contacts sufficiently, a highly effective intervention isn’t

possible, regardless of the other parameter values.

3.4. Discussion

In this chapter, we have developed a new SEIR model on a network with random link activa-

tion/deletion dynamics. Using piecewise constant activation and deletion rate functions, we propose

two simple mechanisms for social distancing interventions. The simple intervention models a single

intervention event, where contacts are decreased over a period of time, stay constant, and then

return to pre-intervention levels. The prevalence-dependent intervention expands the simple case

to more complex scenarios, where interventions can be reintroduced in the face of rising prevalence.

Using the unipartite projection of a bipartite network, and epidemiological parameters represen-

tative of COVID-19, we examine the effectiveness of a wide range of potential social distancing

policies on relatively large heterogeneous, clustered networks.

Both intervention schemes are shown to capture a wide variety of behaviors in the prevalence

“curve,” which has received considerable attention in both academic studies and public health

messaging. The simple intervention manifests curves with one or two spikes, while the curves for

prevalence-dependent intervention can (unsurprisingly) have many more. Moreover, the behavior of

the prevalence curve is consistent across a number of parameters and can be described qualitatively,

which has an impact on which metrics reward or punsish the intervention. This is despite the

simplicity of social distancing mechanism introduced by the piecewise constant activation and

deletion rates α(t) and ω(t), which take on values α∗ or ω∗ respectively, or zero. We have not

considered the cases where the values of α∗ and ω∗ may change over time, or where α(t) and ω(t)

are not piecewise constant. As such, our model has natural extensions that may capture an even

richer variety of qualitative behaviors.

Furthermore, the mechanisms proposed in this chapter offer insights into what makes for a

successful intervention. We have used two metrics as simplified public health goals to evaluate the

effectiveness of interventions: the relative change in final size (RCFS) and the average infections
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above threshold (AIAT). For the more realistic prevalence-dependent intervention scheme, we find

that the most effective interventions come when the threshold number of infections is low and the

intervention severely decreases average contacts. When these conditions are met, the relative change

in the final size is greatly decreased and the length over which the intervention is implemented has

little impact on the effectiveness. However, even small increases in the threshold value can greatly

impact the effectiveness of interventions over a fixed period of time. As well, if interventions do

not sufficiently reduce contacts (around fifty percent), they are rendered significantly less effective

by both measures.

While this is a first foray into the use of adaptive networks to model social distancing for an

SEIR disease, we acknowledge some limitations of our model. First, there is a trade-off between

complexity of the disease natural history model and the number of equations of the pairwise model;

age-structured models or other more complex compartmental models are popular for COVID-19,

but added compartments require tracking an increasing number of edge types. However, even

simple extensions (such as the inclusion of an asymptomatic infectious state) present interesting

opportunities. Second, while the random link activation/deletion process is simple to implement,

it has some unrealistic features. In particular, in the t → ∞ limit, one can show from the degree

distribution generating function that the resulting network approaches an Erdős-Rényi random

graph, with vanishing clustering and an approximately Poisson degree distribution. One manifes-

tation of this property is a rapidly declining clustering coefficient over time. While the piecewise

constant activation and deletion rates mitigate this to an extent, the network resulting from these

social distancing policies is fundamentally different than the initial network state. To overcome

this limitation, future investigations might involve new processes for network dynamics, such as

activation/deletion on a fixed network or network dynamics on an underlying bipartite mixing

network.
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Appendix

3.4.1. Adaptive SEIR model with Complex Closure. In this appendix, we develop an

adaptive network SEIR pairwise model for heterogeneous, clustered networks. The model is anal-

ogous to the SIR model for heterogeneous, clustered networks in House and Keeling (2011) with

random link activation/ deletion dynamics included.

The generic triple closure (12) from the main text, proposed by House and Keeling (2011), can

be further developed by introducing a new variable θ(t), the proportion of edges that have not

transmitted the infection. With the observation that [Sk] = Npkθ
k, the triple closure becomes

(3.48) [ASI] ≈ [AS][SI]
g′′(θ)

N(g′(θ))2

(
(1− φ) + φg′(1)N

[AI]

(
∑

k k[Ak]) (
∑

k k[Ik])

)
Moreover, we can express

∑
k k[Sk] = Nθg′(θ), and we introduce auxiliary variables Y =

∑
k k[Ek], Z =∑

k k[Ik], and θ. Observing that
∑

k k[Ak] = [AS]+[AE]+[AI]+[AR], it follows that the dynamical

equations for Y and Z (without network dynamics) are

Ẏ = β
θg′′(θ)

g′(θ)
[SI]− ηY(3.49)

Ż = ηY − γZ(3.50)

Now we incorporate the effects of link activation and deletion. Notably, the probability generating

function for the degree distribution is now time- dependent, taking the form

(3.51) g(x, t) =
N−1∑
k=0

pk(t)x
k.

As a consequence, the ordinary derivatives of g in (3.48)-(3.50) become partial derivatives with

respect to x. From (14) and (15) in the main text, we can derive network- dynamical versions of

(3.49) and (3.50):

Ẏ = β
θgxx(θ, t)

gx(θ, t)
[SI]− (η + α+ ω)Y + α(N − 1)[E](3.52)

Ż = ηY − (γ + α+ ω)Z + α(N − 1)[I](3.53)
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Next, the non-epidemiological network quantities in this model are entirely determined by the

degree distribution probability generating function g(x, t) and the clustering coefficient φ(t). We

can express (23) from the main text in terms of the generating function g(x, t) as

(3.54) φ̇ = 3α−
(
α+ ω + 2α(N − 2)

gx(1, t)

gxx(1, t)

)
φ.

Equations (3.48),(3.52), and (3.54) require g(x, t) and its derivatives explicitly, which can be found

by solving (18) from the main text using the method of characteristics:

g(x, t) = g0

(
ω + αx+ ω(x− 1)e−(α+ω)t

ω + αx− α(x− 1)e−(α+ω)t

)

·

(
ω + αx− α(x− 1)e−(α+ω)t

α+ ω

)N−1
(3.55)

where g0(x) = g(x, 0). Finally, we derive the evolution equation for θ(t) by differentiating ˙[S] =

Ng(θ(t), t) and solving for θ̇ :

(3.56) θ̇ = − β[SI]

Ngx(θ, t)
− (1− θ)

(
αθ + ω − α(N − 1)

g(θ, t)

gx(θ, t)

)
.
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Thus, we arrive at the pairwise SEIR for a heterogeneous, clustered network with random link

activation and deletion:

[S] = Ng(θ, t)(3.57)

˙[E] = β[SI]− η[E],(3.58)

˙[I] = η[E]− γ[I],(3.59)

˙[SS] = −2β[SSI] + α[S]([S]− 1)− (α+ ω)[SS],(3.60)

˙[SE] = β[SSI]− β[ESI]− η[SE] + α[S][E]− (α+ ω)[SE],(3.61)

˙[SI] = η[SE]− β[SI]− β[ISI]− γ[SI] + α[S][I]− (α+ ω)[SI],(3.62)

˙[EE] = 2β[ESI]− 2η[EE] + α[E]([E]− 1)− (α+ ω)[EE],(3.63)

˙[EI] = β[ISI] + β[SI] + η[EE]− (γ + η)[EI] + α[E][S]− (α+ ω)[EI],(3.64)

˙[II] = 2η[EI]− 2γ[II] + α[I]([I]− 1)− (α+ ω)[II],(3.65)

Ẏ = β
θgxx(θ, t)

gx(θ, t)
[SI]− (η + α+ ω)Y + α(N − 1)[E],(3.66)

Ż = ηY − (γ + α+ ω)Z + α(N − 1)[I],(3.67)

θ̇ = − β[SI]

Ngx(θ, t)
− (1− θ)

(
αθ + ω − α(N − 1)

g(θ, t)

gx(θ, t)

)
,(3.68)

φ̇ = 3α−
(
α+ ω + 2α(N − 2)

gx(1, t)

gxx(1, t)

)
, φ(3.69)

where

[SSI] = [SS][SI]
gxx(θ, t)

N(gx(θ))2

(
(1− φ) + φg′(1)

[SI]

θgx(θ, t)Z

)
,(3.70)

[ESI] = [SE][SI]
gxx(θ, t)

N(gx(θ, t))2

(
(1− φ) + φg′(1)N

[EI]

Y Z

)
,(3.71)

[ISI] = [SI]2
gxx(θ, t)

N(gx(θ, t))2

(
(1− φ) + φg′(1)

[II]

θgx(θ, t)Y

)
.(3.72)

3.4.2. Interventions with Additional Network and Epidemiological Parameters. In

this section, we consider the prevalence-dependent intervention on two alternative heterogeneous,

clustered networks with our COVID-19 parameters R0 = 2.4, η = 0.2 and γ = 0.1. We also consider
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(a)

(b)

Figure 3.15. Plots of the RCFS for the prevalence-dependent intervention on the
(a) small world network and (b) power law network with clustering for R0 = 2.4, η =
0.2, γ = 0.1 and a fixed LR = 90.

the case where R0 has increased to 5 on the same networks, as well as the original unipartite

projection contact network from the main text. The two networks considered are a Watts-Strogatz

“small world” network (Watts and Strogatz, 1998) and a power law network with clustering (Holme

and Kim, 2002). Both networks consist of N = 10, 000 nodes, as with the contact network in the

main text. For the small world network, 〈k〉 ≈ 30, 〈k2 − k〉 ≈ 900, φ ≈ 0.25; for the the power law

network with clustering, the relevant initial network parameters are 〈k〉 ≈ 30, 〈k2 − k〉 ≈ 2000, φ ≈

0.1. For all cases, the system is run for 3 years.

For each network, we report two sets of figures, analogous to Figure 3.14. We consider the the

relative change in final size (RCFS) and the average infections above threshold (AIAT) while fixing

LR = 90 and LI = 15, 30, 60 and allow p and q to vary on the axes, with p ranging from 0 to 1 and

q ranging from 0 to 0.03.
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(a)

(b)

Figure 3.16. Plots of the AIAT for the prevalence-dependent intervention on the
(a) small world network and (b) power law network with clustering for R0 = 2.4, η =
0.2, γ = 0.1 and a fixed LR = 90.
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(a)

(b)

(c)

Figure 3.17. Plots of the RCFS for the prevalence-dependent intervention on the
(a) unipartite projection network, (b) small world network and (c) power law net-
work with clustering for R0 = 5, η = 0.2, γ = 0.1 and a fixed LR = 90.
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(a)

(b)

(c)

Figure 3.18. Plots of the AIAT for the prevalence-dependent intervention on the
(a) unipartite projection network, (b) small world network and (c) power law net-
work with clustering for R0 = 5, η = 0.2, γ = 0.1 and a fixed LR = 90.
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CHAPTER 4

A Simple Dynamic Process on Bipartite Networks

4.1. Introduction

Network models have made a significant impact on the epidemiological modeling landscape in

the past two decades (Kiss et al., 2017; Pastor-Satorras et al., 2015). The network (a collection of

nodes and edges) considered is often a contact network, where individuals are represented by nodes

and potential disease-transmitting contacts are represented by edges. Pairwise models (Eames and

Keeling, 2002; Keeling, 1999) form a prominent family of models of epidemics on networks. The

models consider the number of individuals (nodes) in each state, but also the number of pairs,

triples, and higher-order motifs, leading to large systems of ordinary differential equations. A

common approach used to reduce the number of equations is to employ a triple closure—that is,

an approximation of the number of triples in a given state in terms of individuals, pairs, and non-

epidemic network quantities. The most fundamental pairwise models assume that the number of

nodes and the edges connecting them do not change over time, or that the network is “static”.

Intuitively, however, during an epidemic changing contacts can be just as dynamic as disease

spreading. In recent years, an effort has been made to integrate the effects of disease dynamics and

network dynamics into cohesive models.

Dynamic or “adaptive” network models (Gross and Blasius, 2008) consider disease dynamics

on the network, as well as the time-evolution of the network itself and crucially the interaction

between the two processes. A variety of network dynamic processes have been proposed. One

of the first adaptive network processes was an edge-rewiring model (Gross et al., 2006), where

susceptible-infectious edges were randomly rewired to create a new susceptible- susceptible edge

at a constant rate. This rewiring process was extended to occur with infectious-infectious edges

as well in Scarpino et al. (2016), a process known as “relational exchange.” Another intuitive

dynamic process is random link activation/deletion (Kiss et al., 2012), abbreviated RLAD, where
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edges in the network are randomly activated (added) or deleted (removed) at separate constant

rates. The RLAD process has been extended to the case of a fixed network (Shkarayev et al., 2014;

Tunc et al., 2013), where susceptible-infectious edges can temporarily deactivate and reactivate

when they are susceptible-susceptible. The fundamental network dynamic process in each of these

models takes place at the level of an individual edge in the contact network. Thus, the dynamic

process models individual behavior change in response to the condition of their contacts. In this

chapter, we present an alternative perspective on individual behavior change which relies on a

bipartite network structure underlying the contact network.

The use of a bipartite network to produce a contact network on which an epidemic spreads has

been used in both agent-based simulations (Eubank et al., 2004) and theoretical models (Newman,

2003). Here, the two bipartite sets represent individuals and either locations or groups where

individuals interact and contact each other. The bipartite network, which we refer to as the

bipartite mixing network, is then projected onto the set of nodes representing individuals resulting

in a unipartite network which we refer to as the contact network. Essential properties of the

contact network can be recovered from the bipartite network using probability generating functions

(Newman et al., 2001). The inherently dynamic nature of bipartite mixing networks has received

recent attention due to the availability of mobile phone mobility data (Chang et al., 2021), and

warrants further attention from a modeling perspective. While the contact network can evolve

through time due to changes in individual behavior, it can also change due to large-scale public

health interventions such as school or business closures, lockdowns, and social distancing policies,

or simply seasonal changes in mobility patterns. These changes are reflected at the bipartite level,

with the motivating concept being that rather than individuals ad or delete their connection to

mixing locations, rather than adding or deleting contacts with other individuals. To accommodate

this change, we extend the RLAD process to occur on the bipartite mixing network rather than the

unipartite contact network—a process we term bipartite random link activation deletion (BRLAD).

When coupled with disease dynamics, this results in a model where the epidemic dynamics occur

on the contact network, and the contact network dynamics are the result of a dynamic process in

the bipartite mixing network.
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Aside from more general questions of modeling epidemic spread, adaptive networks can be

naturally applied to questions of seasonally-forced diseases. The periodic time series of childhood

infectious diseases such as measles and mumps (London and Yorke, 1973) as well as respiratory

diseases such as influenza (Dushoff et al., 2004) have all been investigated using seasonally-forced

epidemic models. Changes to weather and social behavior (London and Yorke, 1973) or other

factors (Dushoff et al., 2004) have been proposed as drivers of the observed periodicity. From a

modeling perspective, the adoption of a time-varying transmission rate has been the predominant

mechanism of seasonal forcing. Such transmission rates often take on a sinusoidal (Dietz, 1976)

or piecewise-constant form (Earn, 2000). Adaptive network models offer the potential to treat

the seasonality of transmission and mobility separately, as social behavior processes are explicitly

described alongside disease transmission. To this end, we consider simple sinusoidal seasonal rate

functions for activation on top of the more traditional seasonal transmission rate, and investigate

the effects as the varying magnitudes of seasonality interact.

In this chapter, we introduce and analyze the BRLAD process coupled with SIS disease dynam-

ics on the contact network. We then apply the model to a seasonally-forced epidemic, examining

the interaction of multiple mechanisms for periodicity. In Section 2, we describe the BRLAD pro-

cess and derive evolution equations for important network quantities using a probability generating

function approach. These equations are coupled with a pairwise SIS model to create the full SIS

with BRLAD model, which is validated by simulations. In Section 3, we analyze the model, looking

at its bifurcation structure as well as the effects of differing timescales in the disease and network

dynamics. In Section 4, we consider seasonal activation, deletion, and transmission rates and their

effect on periodic epidemic dynamics. Finally, in Section 5 we discuss some implications of the

model and potential future directions of modeling bipartite-level network dynamics.

4.2. Model Construction

We begin construction of the SIS with BRLAD model by considering a bipartite mixing network

where the two sets of nodes represent individuals and mixing locations. Disease dynamics play out

on the unipartite projection of the bipartite network onto the set of individuals, which we call

the contact network. Our network dynamic process, however, plays out on the bipartite network:
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edges in the bipartite network are activated at rate α and deleted at rate ω. To understand the

effect of the network dynamics on disease dynamics, we have to understand the resulting process on

the contact network. Using probability generating functions, we can determine the how important

network parameters evolve over time. After the evolution equations for the network parameters

are derived, we follow the approach of Gross et al. (2006) and Kiss et al. (2012) to construct the

coupled model: we find equations for edges in the presence of static node labels, and finally combine

the network and disease dynamics into a single model.

4.2.1. Network Dynamics. Let A and B be the left and right sets of nodes in the time-

evolving bipartite mixing network, where |A| = N and |B| = M . Let the degree distribution

probability generating functions (PGFs) for A and B respectively be given by:

A(x, t) =

M∑
k=0

ak(t)x
k,(4.1)

B(x, t) =
N∑
k=0

bk(t)x
k.(4.2)

There are many important properties of PGFs. One of particular interest to the current question

is that the first moment can be recovered by differentiating and setting x = 1. In the succeeding

text, we will use the subscript notation (rather than Leibniz notation) for partial derivatives to

make the equations more readily readable. Let 〈kA〉 and 〈kB〉 denote the average degree of the

sets A and B respectively. Then, 〈kA〉(t) = Ax(1, t) and 〈kB〉(t) = Bx(1, t). Higher moments can

be obtained through a similar process using higher derivatives. Bipartite networks have the useful

property that both sets of nodes are connected to each other by the same number of edges. This

can be expressed in terms of average degree as

(4.3) N〈kA〉(t) = M〈kB〉(t).

Ultimately, we are interested in the moments of the degree distribution for the contact network,

as that is what will affect disease dynamics. From Newman et al. (2001), we get the PGF for the
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degree distribution of the unipartite contact network (modified for time-dependence):

(4.4) G(x, t) = A

(
Bx(x, t)

Bx(1, t)
, t

)
Two key network quantities can be recovered from this PGF: the average degree of the contact

network 〈k〉 and the average number of connected triples per node 〈k2 − k〉. In terms of the PGF,

we have

〈k〉(t) = Gx(1, t),(4.5)

〈k2 − k〉(t) = Gxx(1, t).(4.6)

To facilitate the derivation of evolution equations for 〈k〉 and 〈k2−k〉, it will be useful to characterize

Gx and Gxx in terms of A,B and their derivatives.

Gx(1, t) =
M

N
Bxx(1, t),(4.7)

Gxx(1, t) = Axx(1, t)

(
Gx(1, t)

Ax(1, t)

)2

+
M

N
Bxxx(1, t).(4.8)

Another crucial network quantity to consider for the contact network is the clustering coefficient

φ, which is defined as the ratio of triangles to connected triples in a network. In the case of a

unipartite projection from a bipartite network, Newman et al. (2001) give an expression for the

clustering coefficient, which can be modified for time dependence as

(4.9) φ(t) =
M

N

Bxxx(1, t)

Gxx(1, t)
.

One insight from the forms of (4.7),(4.8), and (4.9) is that the dynamical equations for 〈k〉, 〈k2−k〉,

and φ can be derived from dynamical equations for A,B and their derivatives (with respect to x).

For simplicity, we will often not write the dependence on t, as all terms depend on t. As well, we

also drop the dependence on x when x = 1; for instance, Bx(1, t) = Bx.

From Kiss et al. (2012), we know that under the RLAD process, the PGF of the degree distri-

bution of a network obeys a simple partial differential equation for activation rate α and deletion

rate ω. In our characterization of BRLAD (Fig. 4.1), the bipartite network is altered using RLAD,
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(a)

(b)

Figure 4.1. Schematic of the bipartite random link activation/deletion (BRLAD)
process. Link activation (a) is shown in green, while link deletion (b) is shown in
red.

so the equations for the PGFs A and B are readily found.

At(x, t) = (1− x) ((αx+ ω)Ax(x, t)− αMA(x, t)) ,(4.10)

Bt(x, t) = (1− x) ((αx+ ω)Bx(x, t)− αNB(x, t)) .(4.11)

From these we can derive equations for the higher derivatives of A and B. It can be shown through

induction that these equations are

∂kAt(x, t)

∂xk
= kα(M − (k − 1))

∂k−1A

∂xk−1
− k(αx+ ω)

∂kA

∂xk

− (1− x)

(
α(M − k)

∂kA

∂xk
− (αx+ ω)

∂k+1A

∂xk+1

)
,(4.12)

∂kBt(x, t)

∂xk
= kα(N − (k − 1))

∂k−1B

∂xk−1
− k(αx+ ω)

∂kB

∂xk

− (1− x)

(
α(N − k)

∂kB

∂xk
− (αx+ ω)

∂k+1B

∂xk+1

)
.(4.13)
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Evaluating at x = 1 yields

∂kAt
∂xk

= kα(M − (k − 1))
∂k−1A

∂xk−1
− k(α+ ω)

∂kA

∂xk
(4.14)

∂kBt
∂xk

= kα(N − (k − 1))
∂k−1B

∂xk−1
− k(α+ ω)

∂kB

∂xk
.(4.15)

Now, we differentiate (4.7) with respect to t and apply (4.15) and (4.3) to obtain

(4.16) Gxt = 2α(N − 1)Ax − 2(α+ ω)Gx.

Notably, this partial differential equation depends on Ax as well as Gx, and we will need an evolution

equation for Ax for the full system describing our network dynamics. We now differentiate (4.8)

with respect to t, and apply (4.14),(4.15),(4.16) and simplify to obtain

Gxxt =

(
4α(N − 1)

Ax
Gx
− 2α

M

Ax
− 4(α+ ω)

)(
Gxx −

M

N
Bxxx

)
− 3(α+ ω)

M

N
Bxxx

+ 2α(M − 1)
G2
x

Ax
+ 3α(N − 2)Gx.(4.17)

We note that though Bxxx is present in (4.17), we will not need an additional dynamical equation,

as Bxxx can be expressed in terms of Gxx and φ. Finally, we turn our attention to the dynamical

equation for φ. Differentiating (4.9) yields

φ̇ =

(
3α(N − 2)

Gx
Gxx

−
(

4α(N − 1)
Ax
Gx
− 2α

M

Ax
− (α+ ω)

)
φ

)
(1− φ)

− 2α(M − 1)
G2
x

AxGxx
φ.(4.18)

Substituting in the appropriate network parameters, equations (4.14), (4.16), (4.17), and (4.18),

we get the dynamical equations for the network parameters:
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˙〈kA〉 = αM − (α+ ω)〈kA〉,(4.19)

〈k̇〉 = 2α(N − 1)〈kA〉 − 2(α+ ω)〈k〉,(4.20)

〈 ˙k2 − k〉 =

(
4α(N − 1)

〈kA〉
〈k〉
− 2α

M

〈kA〉
− 4(α+ ω)

)
〈k2 − k〉(1− φ)

− 3(α+ ω)〈k2 − k〉φ+ 2α(M − 1)
〈k〉2

〈kA〉
+ 3α(N − 2)〈k〉,(4.21)

φ̇ =

(
3α(N − 2)

〈k〉
〈k2 − k〉

−
(

4α(N − 1)
〈kA〉
〈k〉
− 2α

M

〈kA〉
− (α+ ω)

)
φ

)
(1− φ)

− 2α(M − 1)
〈k〉2

〈kA〉〈k2 − k〉
φ.(4.22)

In the case of constant rates α and ω, the network quantities can be expressed explicitly as functions

of time. Perhaps the most straightforward way of doing this is to solve (4.14) and (4.15) successively

and substitute into (4.7), (4.8), and (4.9). Moreover, with constant α and ω, the steady-state values

of the network parameters can be easily found.

〈kA〉∗ =
αM

α+ ω
,(4.23)

〈k〉∗ =
α2M(N − 1)

(α+ ω)2
,(4.24)

〈k2 − k〉∗ =
α3M(N − 1)(N − 2)

(α+ ω)3

(
1 +

α

α+ ω

N − 1

N − 2
(M − 1)

)
,(4.25)

φ∗ =
1

1 + α
α+ω

N−1
N−2(M − 1)

.(4.26)

To demonstrate the validity of this model, we test it against numerical simulations (Fig. 4.2).

To construct a bipartite mixing network, we use a configuration model-like algorithm (Molloy and

Reed, 1995) to connect stubs from the left and right sets of nodes, both of which have Poisson degree

distributions. We take N = 100,M = 25 and 〈kA〉(0) = 3.62, which sufficiently determine both

degree distributions. The corresponding contact network shows considerable degree heterogeneity

and clustering, with 〈k〉(0) = 53.5, 〈k2 − k〉(0) = 3637.4, and φ(0) ≈ 0.22. The activation and

deletion rates considered are α = 0.005 and ω = 0.1. Clearly, the model equations (4.19)-(4.22) are

in excellent agreement with the simulations, even on a relatively small network.
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(a) (b)

(c) (d)

Figure 4.2. Comparison of the model against simulations. One hundred trials were
run on a bipartite network with Poisson degree distributions and N = 100,M = 25,
and 〈kA〉(0) = 3.62. The initial corresponding contact network parameters were
〈k〉(0) = 53.5, 〈k2 − k〉(0) = 3637.4, φ(0) ≈ 0.22. Activation and deletion rates are
α = 0.005, ω = 0.1. Individual simulations are shown in light gray, with the mean in
black. Model results (blue circles) are shown for (a) 〈kA〉(t), (b) 〈k〉(t), (c) 〈k2−k〉(t)
and (d) φ(t).

4.2.2. Disease Dynamics. With the network dynamics described for both the bipartite mix-

ing network and the unipartite contact network, we turn our attention to the disease dynamics

that unfold on the contact network. The interaction between the network and disease dynamics on

an epidemic can be challenging to describe. Our approach here differs slightly from that of Gross

et al. (2006) and Kiss et al. (2012). When describing the network dynamics in the presence of node

labeling, both allow for the network dynamics to differ for each edge type. This allows for a more

general model, as well as allowing for more feedback between the network and disease dynamics.

With BRLAD, this is more complicated: since the network dynamics fundamentally occur in the

bipartite mixing network, any status-dependent rates would have to depend on the node state of

the individual. The edge dynamics in the contact network would be more complicated, and thus

we do not attempt to consider that case here. Instead, we simply consider the effects of the rates

α and ω on the evolution of edge types in the contact network.
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(a) (b) (c)

Figure 4.3. Comparison of the model results (orange circles) for (a) [SS](t), (b)
[SI](t), and (c) [II](t) without disease dynamics against simulations. Initial condi-
tions are [SS](0) = 4044, [SI](0) = 485, and [II](0) = 58. One hundred trials were
run on a bipartite network with Poisson degree distributions and N = 100,M = 25,
and 〈kA〉(0) = 3.62. The initial corresponding contact network parameters were
〈k〉(0) = 53.5, 〈k2 − k〉(0) = 3637.4, φ(0) ≈ 0.22. Activation and deletion rates are
α = 0.005, ω = 0.1. Individual simulations are shown in light gray, with the mean
in black.

Looking forward to the epidemic model, we suppose the nodes in set A representing individuals

have labels S or I, so the resulting edge types in the contact network are SS, SI, and II. An exact

derivation of the evolution equations for the edge types would require complicated calculations

with the Kolmogorov equations. Instead, we heuristically write down the mean field edge evolution

equations:

[ ˙SS] = 2α[S]([S]− 1)〈kA〉 − 2(α+ ω)[SS],(4.27)

[ṠI] = 2α[S][I]〈kA〉 − 2(α+ ω)[SI],(4.28)

[ ˙II] = 2α[I]([I]− 1)〈kA〉 − 2(α+ ω)[II].(4.29)

Notably, (4.27)-(4.29) satisfy the desired edge conservation relation ˙[SS] + 2 ˙[SI] + ˙[II] = N ˙〈k〉.

For validation, we compare the model to numerical simulations (Fig. 4.3) on the same adaptive

network described in Section 4.2.1, and clearly the agreement is excellent.

Next, we turn our attention to the disease dynamics. Our starting point is the full pairwise

model for an SIS disease on a static network (Eames and Keeling, 2002):
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[Ṡ] = −β[SI] + γ[I](4.30)

[İ] = β[SI]− γ[I](4.31)

[ ˙SS] = −2β[SSI] + 2γ[SI](4.32)

[ṠI] = β([SSI]− [ISI]− [SI]) + γ([II]− [SI])(4.33)

[ ˙II] = 2β([ISI] + [SI])− 2γ[II](4.34)

As is typical of pairwise models, the full pairwise SIS model requires tracking the expected number

of susceptible and infectious nodes ([S], [I]) and the expected number of susceptible-susceptible,

susceptible-infectious, and infectious-infectious pairs ([SS], [SI], [II]). The equations for the pairs

depend on triples [SSI] and [ISI], and the evolution equations for triples in turn depend on higher-

order motifs. As such, the full model is prohibitively large, and we take the common approach of

closing the system at the triple level using an approximation. In this case, we use the heterogeneous,

clustered approximation introduced in Chapter 3:

(4.35) [ASI] =
〈k2 − k〉
〈k〉2

[AS][SI]

[S]

(
1− φ+ φ

N

〈k〉
[AI]

[A][I]

)
.

The incorporation of the clustering coefficient in the triple approximation here is influenced by the

nature of the unipartite projection—many choices of degree distribution for the bipartite mixing

network lead to nontrivial clustering in the contact network. Moreover, the BRLAD dynamics of

the three network parameters in this approximation (〈k〉, 〈k2 − k〉, φ) can be tracked by including

(4.19)-(4.22) in the full coupled model. Thus, by combining (4.30)-(4.34) with (4.19)-(4.22) and
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augmenting (4.32)-(4.34) with (4.27)-(4.29), we arrive at the SIS model with BRLAD dynamics1:

[Ṡ] = −β[SI] + γ[I](4.36)

[İ] = β[SI]− γ[I](4.37)

[ ˙SS] = −2β[SSI] + 2γ[SI] + 2α[S]([S]− 1)〈kA〉 − 2(α+ ω)[SS](4.38)

[ṠI] = β([SSI]− [ISI]− [SI]) + γ([II]− [SI]) + 2α[S][I]〈kA〉 − 2(α+ ω)[SI](4.39)

[ ˙II] = 2β([ISI] + [SI])− 2γ[II] + 2α[I]([I]− 1)〈kA〉 − 2(α+ ω)[II](4.40)

˙〈kA〉 = αM − (α+ ω)〈kA〉,(4.41)

〈k̇〉 = 2α(N − 1)〈kA〉 − 2(α+ ω)〈k〉,(4.42)

〈 ˙k2 − k〉 =

(
4α(N − 1)

〈kA〉
〈k〉
− 2α

M

〈kA〉
− 4(α+ ω)

)
〈k2 − k〉(1− φ)

− 3(α+ ω)〈k2 − k〉φ+ 2α(M − 1)
〈k〉2

〈kA〉
+ 3α(N − 2)〈k〉,(4.43)

φ̇ =

(
3α(N − 2)

〈k〉
〈k2 − k〉

−
(

4α(N − 1)
〈kA〉
〈k〉
− 2α

M

〈kA〉
− (α+ ω)

)
φ

)
(1− φ)

− 2α(M − 1)
〈k〉2

〈kA〉〈k2 − k〉
φ,(4.44)

where the triple approximation for [SSI] and [ISI] is given by (4.35). This model performs quite

well when compared to simulations, even for a relatively small network. Figure 4.4 shows a com-

parison of the model results for [I](t) against simulations on the adaptive network described in

Section 4.2.1 with the epidemiological parameters β = 0.05 and γ = 0.1. In the following section,

we will analyze the SIS with BRLAD model, exploring the effects of BRLAD on the qualitative

behavior of the prevalence curve and the nontrivial endemic equilibrium, when it exists. In Section

4.4, we turn our attention to investigating how periodic activation/deletion rates affect epidemic

dynamics, and how they interact with periodic (seasonal) transmission rates.

1The SIS with BRLAD model (4.36)-(4.44) can be easily altered to give the SIR dynamics. By eliminating the +γ[I]
term from (4.36), the +2γ[SI] term from (4.38), and the +γ[II] from (4.39), the SIR with BRLAD dynamics can be
recovered (along with the conservation relation [S] + [I] + [R] = N).
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Figure 4.4. Comparison of the model results (orange circles) for [I](t) against
simulations. Initial conditions are [S](0) = 90, [I](0) = 10, [SS](0) = 4044, [SI](0) =
485, and [II](0) = 58. Epidemiological parameters are β = 0.05 and γ = 0.1. One
hundred trials were run on a bipartite network with Poisson degree distributions and
N = 100,M = 25, and 〈kA〉(0) = 3.62. The initial corresponding contact network
parameters are 〈k〉(0) = 53.5, 〈k2 − k〉(0) = 3637.4, φ(0) ≈ 0.22. Activation and
deletion rates are α = 0.005, ω = 0.1. Individual simulations are shown in light gray,
with the mean in black.

4.3. Analysis of the SIS with BRLAD model

In this section, we analyze the SIS with BRLAD model (4.36)-(4.44) from a dynamical systems

perspective. Network models of SIS-type diseases on static networks are well understood (Kiss

et al., 2017), and many adaptive network SIS models have been thoroughly analyzed as well (Gross

et al., 2006; Kiss et al., 2012). With the adaptive network models, particular attention has been

paid to link-status-dependent network dynamic rates. The feedback in these models can produce

behavior such as bistability and limit cycles. However, the SIS with BRLAD model as introduced

in Section 4.2.2 exhibits bifurcation behavior much more akin to a static SIS model. Despite this,

the coupling of SIS dynamics and BRLAD dynamics introduces rich qualitative behavior with the

prevalence curve, which depends on the relative timescales of the disease dynamics and the network

dynamics.

Our numerical investigation of the system at steady state suggests the following classic SIS

model behavior: the existence of a disease-free steady state ([S] = N, [I] = 0, [SS] = N〈k〉, [SI] =

0, [II] = 0) which loses stability as β increases through a bifurcation point (known as the epidemic

threshold), at which point a stable equilibrium emerges (known as the endemic equilibrium). Figure
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(a) (b)

Figure 4.5. Bifurcation diagrams for the parameters (a) β and (b) ω with α = 0.01
and γ = 1 fixed. Stable branches of equilibria are solid, unstable branches not shown.
N = 100 and M = 25 for the underlying bipartite mixing network.

4.5a shows the stable branches of equilibria as β varies and for several values of ω, while α and γ are

fixed. As expected, β and ω have opposing effects on the progression of the disease. As the deletion

rate ω increases, a higher transmission rate β is required for the disease to persist, and the epidemic

threshold increases. On the other hand, as ω decreases the epidemic threshold vanishes, though we

note that for fixed α decreasing ω will lead to an increasingly connected network facilitating disease

spread. Figure 4.5b shows the stable equilibria as ω varies and for various values of β. Notably,

for the parameter combinations shown, even small changes to ω can lead to drastically different

endemic equilibria and even disease extinction—an observation that may have important public

health implications. However, it is important to note that while some parameter combinations may

lead to similar behavior at steady state, the varying timescales of the network and disease dynamic

processes may lead to outbreaks with qualitatively different prevalence.

Following Kiss et al. (2012), we consider three possible regimes of relative timescales: slow

network dynamics relative to disease dynamics, comparable timescales, and fast network dynamics

relative to disease dynamics. We will refer to these as the slow, comparable, and fast regimes

respectively. We also consider effects of starting network parameters by looking at the model under

two different bipartite mixing networks. In the first case, both individuals and mixing locations

have Poisson degree distributions (Fig. 4.6, solid), and in the second case, both individuals and

mixing locations have geometric degree distributions (Fig. 4.6, dashed). The distributions are
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(a) (b)

Figure 4.6. Plots of (a) the prevalence [I]/N and (b) the average contact network
degree 〈k〉 under the slow, comparable, and fast network dynamic regimes. The
epidemiological parameters in both cases are β = 0.4, γ = 1. The slow regime (blue)
parameters are α = 0.001, ω = 0.025. The comparable regime (gold) parameters are
α = 0.01, ω = 0.25. The fast regime (red) parameters are α = 0.1, ω = 2.5. Results
for two starting bipartite mixing networks are shown: A and B both with Poisson
degree distributions (solid) and A and B with geometric distributions (dashed). For
both, N = 100,M = 25, and 〈kA〉(0) = 2. The initial network parameters for the
Poisson-Poisson network are 〈k〉(0) = 16, 〈k2 − k〉(0) = 384, and φ(0) = 1/3 and for
the geometric-geometric network they are 〈k〉(0) = 28, 〈k2−k〉(0) = 1372, φ(0) = 0.6.

chosen so that 〈kA〉 is the same for both cases, which results in higher initial values for 〈k〉, 〈k2−k〉,

and φ for the geometric case. In the slow regime, network parameters converge to equilibrium

much more slowly than the prevalence reaches its static endemic equilibrium. The effect of this

is a slow correction, which for some values of α and ω can eventually drive an otherwise stable

epidemic to extinction in the long run. In the comparable regime, the initial epidemic spread

is more prominently affected, which can result in a qualitatively different prevalence curve. In

the fast regime, the equilibrium values of the network parameters are reached quickly—effectively

before the epidemic has a chance to spread. In effect, the epidemic essentially spreads on a static

network. These regimes capture essentially the same behavior as that of the RLAD dynamics in

Kiss et al. (2012). As such, a relevant question is whether or not “similar” BRLAD and RLAD

processes result in similar epidemics. To investigate, we consider two epidemics on the same contact

network generated from a bipartite mixing network. We note that the triple closure (4.35) is used

for a more direct comparison of both models, and the network evolution equations required for
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(a) (b)

Figure 4.7. Plots of (a) the prevalence [I]/N and (b) the average contact network
degree 〈k〉 for similar BRLAD (solid) and RLAD (dotted) processes under the slow
(blue), comparable (gold), and fast (red) network dynamic regimes. The epidemio-
logical parameters are β = 0.4, γ = 1. The BRLAD network dynamic parameters are
slow: α = 0.001, ω = 0.025; comparable: α = 0.01, ω = 0.25; fast: α = 0.1, ω = 2.5.
The RLAD network dynamic parameters are slow: α = 0.0012, ω = 0.03125;
comparable: α = 0.013, ω = 0.339; fast: α = 0.13, ω = 3.39. The initial net-
work parameters for the bipartite mixing network are N = 100,M = 25, and
〈kA〉(0) = 2, and the initial network parameters for both contact networks are
〈k〉(0) = 16, 〈k2 − k〉(0) = 384 and φ(0) = 1/3.

the RLAD model are found in Chapter 3. The two network dynamic processes we consider are

“similar” insofar as they result in almost identical dynamics for the average degree 〈k〉 (Fig. 4.7b).

As expected, with the fast regime, both processes result in similar epidemics as they unfold on

effectively static networks with similar network parameters. However, for the comparable and slow

regimes, the endemic equilibrium reached is quite different (Fig. 4.7a). For the parameters chosen,

the RLAD epidemic reaches a greater endemic equilibrium in both regimes. This may not always

be the case—as such a more complete look at such “similar” processes may be appropriate.

4.4. Seasonal Forcing in Activation/Deletion and Transmission

As an application of the SIS with BRLAD model, we investigate the effects of seasonal forcing

of an SIS disease. Explanations of observed periodicity in prevalence time series has historically

been attributed to weather and climatic factors, changing social behaviors, or other phenomena

including stochasticity. On the deterministic side, periodicity has been incorporated through a

time-varying transmission rate β(t), which takes on a sinusoidal, piecewise-constant, or other form.
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With the inclusion of separate network and disease dynamics, adaptive network models provide a

mechanism for modeling the seasonality in disease characteristics and seasonality in social behavior

separately. The BRLAD process is particularly well-suited to this question as it can more directly

model changing mobility patterns in the bipartite mixing network. To this end, we take the SIS

model with BRLAD and introduce simple sinusoidal forms of the activation and deletion rates α(t)

and ω(t) to model seasonal social behavior and examine their effect on the time-evolving network

parameters, as well as the disease dynamics. Moreover, we also introduce a simple sinusoidal

transmission rate β(t) (Dietz, 1976), exploring the interaction between differing mechanisms of

seasonal forcing and its effect on an SIS epidemic.

To define simple time-varying activation and deletion rate functions, we consider a periodic

perturbation to the constant rates α0 and ω0 :

α(t) = α0(1− εα cos(Tt)),(4.45)

ω(t) = ω0(1 + εω cos(Tt)).(4.46)

Here, εα and εω describe the magnitude of the seasonal perturbation of those rates with 0 ≤

εα, εω ≤ 1, and T is the frequency of oscillation, being T = 2π/365 for a period of one year

(seasonal dynamics). These forms are motivated by simple assumptions about seasonal mobility

patterns that occur at the scale of the whole population—that the activation and deletion of links

peak out of phase by half a period. Heuristically, this can be thought of as activation peaking in

summer, and deletion peaking in winter.

In terms of the network dynamics, the effect of these rates on the evolution of 〈kA〉 and 〈k〉

is important: how does the seasonality affect the average number of mixing locations visited, as

well as the average number of contacts per individual. As these may be observable quantities, the

choice of parameters α0, ω0, εα, and εω may be constrained by plausibility for a given scenario.

With (4.45) and (4.46) the evolution equations for 〈kA〉 and 〈k〉 can be written

˙〈kA〉 = α0(1− εα cos (Tt))M − (α0 + ω0 − (α0εα − ω0εω) cos(Tt))〈kA〉,(4.47)

〈k̇〉 = 2α0(1− εα cos (Tt))(N − 1)〈kA〉 − 2(α0 + ω0 − (α0εα − ω0εω) cos(Tt))〈k〉.(4.48)
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While both are still first-order linear ordinary differential equations, they no longer have constant

coefficients. Moreover, an exact solution cannot be found for either equation. However, we assume

that εα and εω to be small, insofar as we assume that there are likely small perturbations to large-

scale mobility behaviors seasonally rather than large swings. Thus, we approach solving (4.47) and

(4.48) as a regular perturbation problem. We expand 〈kA〉 and 〈k〉 in the two parameters:

〈kA〉(t) = 〈kA〉0(t) + εα〈kA〉1,α(t) + εω〈kA〉1,ω(t) + . . . ,(4.49)

〈k〉(t) = 〈k〉0(t) + εα〈k〉1,α(t) + εω〈k〉1,ω(t) + . . . .(4.50)

First we substitute (4.49) into (4.47). Solving to first order in εα and εω yields

〈kA〉(t) =
α0M

α0 + ω0
+ Ce−(α0+ω0)t

+

(
α0ω0M(εα + εω)

(α0 + ω0)2 + T 2
+
α0εα − ω0εω

T
C sin(Tt)

)
e−(α0+ω0)t

−α0ω0M(εα + εω)

(α0 + ω0)2 + T 2

(
cos(Tt) +

T

α0 + ω0
sin(Tt)

))
+ . . .(4.51)

where

C =

(
〈kA〉(0)− α0M

α0 + ω0

)
.

Next, we substitute (4.50) into (4.48). Solving to first order in εα and εω yields

〈k〉(t) =
α2
0M(N − 1)

(α0 + ω0)2
+

2α0(N − 1)

α0 + ω0
Ce−(α0+ω0)t +De−2(α0+ω0)t

+

(
2α0ω0(N − 1)C

T 2 + (α0 + ω0)2
(εα + εω) +

2(αεα − ωεω)

T
D sin(Tt)

)
e−2(α0+ω0)t

+

((
α0ω0M

α0 + ω0)
− Cω0

(
cos(Tt)− T

α0 + ω0
sin(Tt)

))
(εα + εω)

−C(T 2 + (α0 + ω0)
2)(α0εα − ω0εω)

T (α0 + ω0)
sin(Tt)

)
e−(α0+ω0)t

− 2α2
0ω0M(N − 1)(εα + εω)

(α0 + ω0)(T 2 + (α0 + ω0)2)

(
cos(Tt) +

T

α0 + ω0
sin(Tt)

)
+ . . .(4.52)

where

D = 〈k〉(0)− 2α0(N − 1)

α0 + ω0
C − (α0)

2M(N − 1)

(α0 + ω0)2
.

The asymptotic approximations perform quite well (Fig. 4.8), but even to first order in εα and εω
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(a) (b)

Figure 4.8. Exact (solid) and approximate (dashed) solutions to the dynamical
equations for (a) kA〉(t) and (b) 〈k〉 with periodic activation and deletion rates.
Initial conditions are 〈kA〉(0) = 1.2 and 〈k〉(0) = 5.6, while activation/deletion rate
parameters are α0 = 0.001, ω0 = 0.02, εα = εω = 0.1.

the expressions for 〈kA〉 and 〈k〉 are quite complicated, owing to the combination of exponential

and periodic change over time. However, we are more interested in the long-term effects of seasonal

activation and deletion. For this, we consider a large t approximation, where the network is

relatively stable and the network quantities are fluctuating about the equilibrium of the unperturbed

case. Then, the exponential terms vanish and we have the approximations

〈kA〉(t) ≈
α0M

α0 + ω0
− (εα + εω)

α0ω0M

T 2 + (α0 + ω0)2

(
cos(Tt) +

T

α0 + ω0
sin(Tt)

)
,(4.53)

〈k〉(t) ≈ α2
0M(N − 1)

(α0 + ω0)2
− 2α2

0ω0M(N − 1)(εα + εω)

(α0 + ω0)(T 2 + (α0 + ω0)2)

(
cos(Tt) +

T

α0 + ω0
sin(Tt)

)
.(4.54)

The amplitude of these oscillations is easily found:

Amplitude of 〈kA〉 ≈ (εα + εω)
α0ω0M

(α0 + ω0)
√

(T 2 + (α0 + ω0)2)
,(4.55)

Amplitude of 〈k〉 ≈ (εα + εω)
2α2

0ω0M(N − 1)

(α0 + ω0)2
√
T 2 + (α0 + ω0)2

.(4.56)

From (4.55) and (4.56), it is clear that the amplitude of 〈kA〉 and 〈k〉 will depend on the

relationship between T and α0 and ω0. If the period is one year (i.e. T = 2π/365) and the

dynamics are slow, the amplitude of oscillations will be relatively small. In this case, an epidemic

spreading under the slow regime will not deviate much from the nonseasonal dynamics. On the other
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Figure 4.9. Plots of prevalence for an SIS with BRLAD epidemic (black) with
seasonal transmission and seasonal activation/deletion. The top row shows a com-
parable regime with α0 = 0.001, ω0 = 0.032 and the bottom shows a fast regime
with α0 = 0.01, ω0 = 0.25. Seasonality parameters for network dynamics are
εα = εω = ε, varying ε as 0 (solid), 0.05 (dashed), 0.01 (dash-dotted), and 0.25
(dotted); the static network case is shown in red. Epidemiological parameters are
γ = 0.1 with β0 = 0.0005, with transmission seasonality parameters εβ = 0 (left),
εβ = 0.25 (center), and εβ = 0.5 (right). Underlying bipartite network parame-
ters are N = 1000,M = 250 and initial values of 〈kA〉, 〈k〉, 〈k2 − k〉, and φ are all
taken from the BRLAD equilibria with the respective α0 and ω0. All model runs are
initialized with I0 = 100, and time is shifted so the epidemic begins at t0 = 365/2.

hand, if the dynamics are fast enough that α0 + ω0 >> T (as often happens in the comparable

and fast regimes), the oscillations are relatively large and will have a significant impact on the

epidemic spread. This is shown in the left panels of Figure 4.9, where increasingly large periodic

perturbations to the activation and deletion rates result in oscillating epidemics with increasingly

large peaks.
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While seasonal dynamics in activation and deletion are sufficient to induce an oscillatory epi-

demic on their own, we can further unpack the role of seasonal forcing by considering a time-

dependent transmission rate β(t). Following Dietz (1976), we introduce a simple sinusoidal trans-

mission function

(4.57) β(t) = β0(1 + εβ cos(Tt)),

where εβ is the magnitude of the periodic perturbation to the constant transmission rate β0. This

formulation of the transmission rate peaks at the same time as the deletion rate, which corresponds

to a disease such as a respiratory infection that is more transmissible in the winter, when individual

mobility decreases.

The center and right panels of Figure 4.9 show the effects of low (εβ = 0.25) and high (εβ = 0.5)

levels of seasonality in transmission. In both the comparable and fast regimes, seasonality in

transmission has a tempering effect on the scale of the epidemic when activation and deletion are

also seasonal, decreasing peak prevalence. Perhaps more interesting is to take the perspective of

an epidemic with seasonal transmission and then increasing the magnitude of the perturbations

to activation and deletion. In both regimes and for both εβ = 0.25 and εβ = 0.5, as εα and εω

increase, the epidemic dynamics undergo two notable changes. First, the peak prevalence decreases

initially and then increases beyond that of the unperturbed case. Second, the oscillations undergo

a phase shift, reaching nearly half a period for εα = εω = 0.25. These observations underscore the

importance understanding the dynamics and variation of individual mobility, rather than simply

looking at seasonal forcing through transmission alone.

4.5. Discussion

In this chapter, we have developed a novel process of contact network dynamics known as

bipartite random link activation/deletion (BRLAD), where edges are randomly added and removed

from a bipartite mixing network at specified rates, leading to a time-evolving unipartite contact

network. The derivation of evolution equations for critical network parameters was done using

probability generating function techniques, and full model encompassing both BRLAD network

dynamics and SIS disease dynamics was presented. We followed with an investigation of the SIS
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with BRLAD model, including its equilibria and bifurcations, as well as the effect of varying

timescales between network and disease dynamics. Finally, we applied the SIS with BRLAD model

to a seasonally-forced epidemic, where we defined periodic activation and deletion rates α and ω, as

well as a periodic transmission rate β. We found that by treating transmission and social behavior

as separate periodic processes, more complex behavior can be captured than in the case of periodic

transmission alone.

As BRLAD is one of the simplest adaptive processes that can occur at the bipartite level,

it inherently has its limitations. The assumption of constant (or even periodic) activation and

deletion rates may not realistically model real-world social behavior, which may depend on an

individual’s status, or may involve another process entirely, such as rewiring. Another drawback

is that for constant rates, the network properties tend to equilibrium values as t → ∞, leading to

a fundamentally different network that the initial conditions (in most cases), regardless of what

those initial conditions are.

However, there are numerous future directions to describe more complex bipartite-level dy-

namics. Bipartite-level dynamics based on existing processes may be particularly fruitful, such

as allowing differing activation and deletion rates depending on node status or RLAD on a fixed

bipartite network. New lines of inquiry may be warranted as well. One such potential modifica-

tion is to define differing activation and deletion rates for groups of mixing locations, which would

allow modelers and public health scientists to consider the effects of closure or limited capacity of

mixing locations such as schools, restaurants, religious organizations, etc... A more thorough look

at seasonality is another potential extension of the BRLAD process. First, other periodic forms of

transmission, activation, and deletion rates may be considered, such as piecewise constant. Second,

though we have considered an SIS disease here, many childhood infectious diseases are modeled

using an SIR or SEIR model with vital dynamics (see Dietz (1976)). The combination of vital

dynamics and adaptive processes has intriguing potential. Perhaps the most exciting application

of BRLAD and similar processes is to incorporate the now-abundant cell phone mobility data that

helps characterize the real-world bipartite mixing network. When combined with prevalence data,

this mobility data could be used to fit realistic dynamic network models without resorting to com-

putationally expensive simulations. There may be great benefits to public health officials of being
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able to test the effects of non-pharmaceutical interventions such as lockdowns, business closures,

and social distancing in a flexible yet relatively parsimonious modeling framework.
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Péter L. Simon and Istvan Z. Kiss. Super compact pairwise model for SIS epidemic on heterogeneous

networks. Journal of Complex Networks, 4(2):187–200, June 2016.
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