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ABSTRACT OF THE DISSERTATION

Regression with complex data: regularization, prediction and bootstrap

by

Yunyi Zhang

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2022

Professor Dimitris N. Politis, Chair

Analyzing a linear model is a fundamental topic in statistical inference and has been

well-studied. However, the complex nature of modern data brings new challenges to statisticians,

i.e., the existing theories and methods may fail to provide consistent results. Focusing on a

high dimensional linear model with i.i.d. errors or heteroskedastic and dependent errors, this

dissertation introduces a new ridge regression method called ‘the debiased and thresholded ridge

regression’; then adopts this method to fit the linear model. After that, it introduces new bootstrap

algorithms and applies them to generate consistent simultaneous confidence intervals/performs

hypothesis testing for linear combinations of parameters in the linear model. In addition, this

paper applies bootstrap algorithm to construct the simultaneous prediction intervals for future

xii



observations. Numerical algorithms show that the new ridge regression method has a good

performance compared to other complex methods like Lasso or the threshold Lasso.

This thesis also studies the properties of a residual-based bootstrap prediction interval. It

derives the asymptotic distribution of the difference between the conditional coverage probability

of a nominal prediction interval and the conditional coverage probability of a prediction interval

obtained via a residual-based bootstrap. This result shows that the residual-based bootstrap

prediction interval has about 50% possibility of yielding conditional under-coverage. Moreover,

it introduces a new bootstrap prediction interval that has the desired asymptotic conditional

coverage probability and the possibility of conditional under-coverage.
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Chapter 1

Linear regression with complex data

Analyzing a linear model

y = Xβ + ε

X is an n× p design matrix

and ε = (ε1, ...,εn)
T are the errors

(1.1)

is a fundamental topic in statistical inference, and there has been extensive research on this topic;

see Wu [1986] for constructing confidence intervals, Stine [1985] for constructing prediction

intervals and Seber and Lee [2003] for a complete introduction. However, in the modern era,

data always exhibit complex nature, which brings new challenges to the existing methods and

theories; see Tibshirani [2011] and the reference therein. Our research considers the following

properties:

• High-dimensionality The dimension p can have a comparable size to or even larger than

the number of observations n. Classical linear regression theories and methods rely on the

assumption that p is significantly smaller than n. If this assumption is violated, then those

methods may fail to provide a consistent result, see, e.g., Mammen [1993, 1996].

• Heteroskedasticity and dependency In the linear regression literature, this property

means that the variance Eε2
i 6= Eε2

j and the covariance Eεiε j 6= 0 for i 6= j. In practice, the

1



dependent variables y (e.g., daily stock price of a company or PM 2.5 concentration in Los

Angeles) may come from a stochastic process. If this happens, we cannot simply assume

the errors ε are i.i.d. (i.e., independent and identically distributed).

Our research focuses on providing consistent confidence intervals/making hypothesis testing

for a high dimensional linear model with i.i.d. or heteroskedastic and dependent errors. Specif-

ically, chapter 2 adopts a high dimensional linear model with i.i.d. errors, introduces a new

ridge regression method called ‘the debiased and thresholded ridge regression’, and provides a

(bootstrapped) simultaneous consistent confidence interval for linear combinations of parameters

β . In addition, it constructs the simultaneous prediction interval for future observations; see

Politis [2015] for a detailed introduction to prediction intervals. Chapter 3 considers a high

dimensional linear model with heteroskedastic and dependent(correlated) errors and applies

the debiased and thresholded ridge regression method to fit the linear model. After that, it

constructs a consistent simultaneous confidence interval/performs hypothesis testing for linear

combinations of parameters β . This chapter also provides some theoretical results for a new

class of heteroskedastic, dependent(non-stationary) random variables. These results should be

useful not only in linear regression but also in other statistics aspects.

In chapter 4, we study the properties of a bootstrapped prediction interval. Suppose

we have a linear model (1.1) and a new regressor x f , then we may apply the residual-based

bootstrap(e.g., Stine [1985]) and make a prediction interval for the new dependent variable

y f . However, the bootstrapped prediction interval always manifests under-coverage(i.e., the

conditional coverage probability of the prediction interval is smaller than the nominal coverage

probability) in practice, see Politis [2013]. Our work derives the asymptotic distribution of the

difference between the conditional coverage probability of a nominal prediction interval and the

conditional coverage probability of a prediction interval obtained via a residual-based bootstrap.

A corollary of this result is that the residual-based bootstrapped prediction interval has 50%

possibility of yielding under-coverage. We also develop a new bootstrap prediction interval

2



that has the desired asymptotic conditional coverage probability and the desired possibility of

yielding under-coverage.

We postpone the detailed proofs of the theorems in chapter 2 to 4 to appendices A to C.

3



Chapter 2

Ridge Regression Revisited: Debiasing,
Thresholding and Bootstrap

2.1 Abstract

The success of the Lasso in the era of high-dimensional data can be attributed to its

conducting an implicit model selection, i.e., zeroing out regression coefficients that are not

significant. By contrast, classical ridge regression can not reveal a potential sparsity of parameters,

and may also introduce a large bias under the high-dimensional setting. Nevertheless, recent

work on the Lasso involves debiasing and thresholding, the latter in order to further enhance the

model selection. As a consequence, ridge regression may be worth another look since –after

debiasing and thresholding– it may offer some advantages over the Lasso, e.g., it can be easily

computed using a closed-form expression. In this paper, we define a debiased and thresholded

ridge regression method, and prove a consistency result and a Gaussian approximation theorem.

We further introduce a wild bootstrap algorithm to construct confidence regions and perform

hypothesis testing for a linear combination of parameters. In addition to estimation, we consider

the problem of prediction, and present a novel, hybrid bootstrap algorithm tailored for prediction

intervals. Extensive numerical simulations further show that the debiased and thresholded ridge

regression has favorable finite sample performance and may be preferable in some settings.
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2.2 Introduction

Linear regression is a fundamental topic in statistical inference. The classical setting

assumes the dimension of parameters in a linear model is constant. However, in the modern

era, observations may have a comparable or even larger dimension than the number of samples.

To perform a consistent estimation with high-dimensional data, statisticians often assume the

underlying parameters are sparse (i.e., the parameter vector contains lots of zeros), and proceed

with statistical inference based on this assumption.

The success of the Lasso in the setting of high-dimensional data can be attributed to

its conducting an implicit model selection, i.e., zeroing out regression coefficients that are not

significant; see Tibshirani [1996]. More recent work includes: Meinshausen and Bühlmann

[2006], Meinshausen and Yu [2009], and van de Geer [2008] for the Lasso estimator’s (model-

selection) consistency and applications; Chatterjee and Lahiri [2010, 2011], Zhang and Cheng

[2017], and Dezeure et al. [2017] for confidence interval construction and hypothesis testing;

and Javanmard and Montanari, Fan and Li [2001], and Chen and Zhou [2020] for improvements

of the Lasso estimator. Although the Lasso has the desirable property of zeroing out some

regression coefficients, van de Geer et al. [2011] proposed to further threshold the estimated

coefficients, leading to a sparser fitted model. Furthermore, Bühlmann and van de Geer [2011],

and Dezeure et al. [2017], proposed to debias the Lasso in constructing confidence intervals; see

van de Geer [2019] and Javanmard and Javadi [2019] for recent works on debiased Lasso.

An alternative approach providing consistent estimators for a high dimensional linear

model is the so-called post-selection inference. It first applies Lasso to select influential param-

eters, then fits an ordinary least squares regression on the selected parameters; see Lee et al.

[2016], Liu and Yu [2013], and Tibshirani et al. [2018]. We refer to Bühlmann and van de Geer

[2011] for a comprehensive overview of the Lasso method for high dimensional data.

Ridge regression is a classical method, and its estimator has a closed-form expression,

making statistical inference easier than Lasso. However, there is relatively little research on the
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ridge regression under the high-dimensional setting. Shao and Deng [2012] proposed a threshold

ridge regression method and proved its consistency. Dai et al. [2018] introduced a broken

adaptive ridge estimator to approximate L0 penalized regression. Dobriban and Wager [2018]

derived the limit of high dimensional ridge regression’s expected predictive risk. Bühlmann

[2013] used Lasso to correct the bias in a ridge regression estimator, while Lopes [2014] applied

a residual-based bootstrap to construct confidence intervals.

Three issues have prevented ridge regression from being suitable for a high dimensional

linear model:

1. The ridge regression cannot preserve/recover sparsity. Typically, a ridge regression

estimator of the parameter vector will not contain any zeros, even though the parameters may be

sparse.

2. Bias in the ridge regression estimator can be large. To illustrate this, suppose

the parameter of interest is aT β in a linear model y = Xβ + ε; here, the dimension p < n

(the sample size), X has rank p, and a is a known vector. The ridge estimator is aT θ̃ ? with

θ̃ ? = (XT X +ρnIp)
−1XT y, for some ρn > 0, with Ip denoting the p-dimensional identity matrix.

Performing a thin singular value decomposition X = PΛQT (as in Theorem 7.3.2 in Horn and

Johnson [2013]), and assuming the error vector ε consists of independent identically distributed

(i.i.d.) components, the bias and the standard deviation can be calculated (and controlled) as

follows:
EaT

θ̃
?−aT

β =−ρnaT Q(Λ2 +ρnIp)
−1QT

β

which implies |EaT
θ̃
?−aT

β | ≤ ρn‖a‖2×‖β‖2

λ 2
p +ρn

and
√

Var(aT θ̃ ?) =
√

Var(ε1)×aT Q(Λ2 +ρnIp)−2Λ2QT a

≤
√

Var(ε1)×‖a‖2

λp
.

(2.1)

In the above, λp is the smallest singular value of X , and ‖ · ‖2 is the Euclidean norm

of a vector. If ‖β‖2 does not have a bounded order, the bias may tend to infinity. Another

critical problem is that the absolute value of the bias can be significantly larger than the standard
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deviation, which makes constructing confidence intervals difficult.

3. When the dimension of parameters is larger than the sample size, ridge regression

estimates the projection of parameters on the linear space spanned by rows of X (Shao and Deng

[2012]). The projection (which can now be considered to be the ‘parameters’ of the linear model)

is not sparse, bringing extra burdens for statistical inference.

The third issue comes from the nature of ridge regression, and it is not necessarily bad;

our section 2.7 provides an example to illustrate this. The first two issues can be solved by

thresholding and debiasing respectively, yielding an improved ridge regression that will be the

focus of this paper. If the Lasso is in need of thresholding and debiasing –as van de Geer et al.

[2011], Dezeure et al. [2017], and Bühlmann and van de Geer [2011] seem to suggest– then it

loses some of its attractiveness, in which case (improved) ridge regression may be worth another

look. If (improved) ridge regression turns out to have comparable performance to threshold

Lasso, then the former would be preferable since it can be easily computed using a closed-form

expression. Indeed, numerical simulations in section 2.7 indicate that improved ridge regression

has favorable finite-sample performance, and has a further advantage over the Lasso: it is robust

against a non-optimal choice of the hyperparameters.

Apart from point estimation using improved ridge regression, this paper presents a

Gaussian approximation theorem for the improved ridge regression estimator. Applying this

result, we propose a wild bootstrap algorithm to construct a confidence region for γ = Mβ with

M a known matrix and/or test the null hypothesis γ = γ0 with γ0 a known vector, versus the

alternative hypothesis γ 6= γ0. The wild bootstrap was developed in the 1980s by Wu [1986] and

Liu [1988]; its applicability to high-dimensional problems was recognized early on by Mammen

[1993]. Here we will use the wild bootstrap in its Gaussian residuals version that has been found

useful in high-dimensional regression; see Chernozhukov et al. [2013]. Estimating and testing γ

are important problems in econometrics, e.g., Dolado and Lütkepohl [1996], Sun [2011], Sun,

and Gonçalves and Vogelsang [2011]. Besides, estimating γ directly contributes to prediction,

which is an important topic in modern age statistics.
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Finally, we consider statistical prediction based on the improved ridge regression esti-

mator for a high-dimensional linear model. For a regression problem, quantifying a predictor’s

accuracy can be as important as predicting accurately. To do that, it is useful to be able to

construct a prediction interval to accompany the point prediction; this is usually done by some

form of bootstrap; see Stine [1985] for a classical result, and Politis [2015] for a comprehen-

sive treatment of both model-based and model-free prediction intervals in regression. As an

alternative to the bootstrap, conformal prediction may be a tool to yield prediction intervals; see

e.g. Romano et al. and Romano et al. [2020]. In our point of view, however, the bootstrap is

preferable as it captures the underlying variability of estimated quantities; Section 2.6 in what

follows gives the details.

The remainder of this paper is organized as follows: Section 2.3 introduces frequently

used notations and assumptions. Section 2.4 presents the consistency result and the Gaussian

approximation theorem for the improved ridge regression estimator. Section 2.5 constructs

a confidence region for γ = Mβ , and tests the null hypothesis γ = γ0 versus the alternative

hypothesis γ 6= γ0 via a bootstrap algorithm. Section 2.6 constructs bootstrap prediction intervals

in our ridge regression setting using a novel, hybrid resampling procedure. Finally, Section 2.7

provides extensive simulations to illustrate the finite sample performance, while Section 2.8

gives some concluding remarks; technical proofs are deferred to chapter A.

2.3 Preliminaries

Our work focuses on the fixed design linear model

y = Xβ + ε (2.2)

where the (unknown) parameter vector β is p-dimensional, and the n× p fixed (nonrandom)

design matrix X is assumed to have rank r. The error vector ε has mean zero and satisfies

assumptions to be specified later.

8



Define the known matrix of linear combination coefficients as M = (mi j)i=1,...,p1, j=1,...,p

so that M has p1 rows. The linear combination of interest are γ = (γ1, ...,γp1)
T = Mβ .

Perform a thin singular value decomposition X = PΛQT as in Theorem 7.3.2 in Horn and

Johnson [2013]; here, P and Q respectively is n× r and p× r orthonormal matrices that satisfy

PT P = QT Q = Ir, where Ir denotes the r× r identity matrix. Furthermore, Λ = diag(λ1, ...,λr),

and λ1 ≥ λ2 ≥ ...≥ λr > 0 are positive singular values of X .

Denote Q⊥ as the p× (p− r) orthonormal complement of Q; then we have

QT
⊥Q⊥ = Ip−r, QT Q⊥ = 0, and QQT +Q⊥QT

⊥ = Ip; (2.3)

in the above, 0 is the r× (p− r) matrix having all elements 0. Define ζ = QT β and θ =

(θ1, ...,θp)
T = Qζ = QQT β , then Xβ = Xθ , θ T θ = ζ T QT Qζ = ζ T ζ . According to Shao and

Deng [2012], the ridge regression estimates θ rather than β .

Define θ⊥ = Q⊥QT
⊥β , so β = θ +θ⊥. If the design matrix X has rank p≤ n, then Q⊥

does not exist. In this situation, we define θ⊥ = 0, the p dimensional vector with all elements 0.

For a threshold bn, define the set Nbn = {i ||θi|> bn}. After selecting a suitable bn, define

cik = ∑
j∈Nbn

mi jq jk, ∀ i = 1,2, ..., p1, k = 1,2, ...,r, and M = {i |
r

∑
k=1

c2
ik > 0} (2.4)

Define τi, i = 1,2, ..., p1 as

τi =

√√√√ r

∑
k=1

c2
ik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2

+
1
n

(2.5)

In section 2.4 and (A.2.14) to (A.2.16), we show that the estimation error γ̂− γ (see (2.17) for
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the definition of γ̂) asymptotically can be approximated by the random vector

(
n

∑
l=1

r

∑
k=1

c1k plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
εl,

...,
n

∑
l=1

r

∑
k=1

cp1k plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
εl)

T
(2.6)

here P = (plk)l=1,...,n,k=1,...,r and ε = (ε1, ...,εn)
T . Moreover, if we assume that εi, i = 1, ...,n are

i.i.d. with mean 0 and variance 1, then

Var

(
n

∑
l=1

r

∑
k=1

cik plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
εl

)

=
n

∑
l=1

(
r

∑
k=1

cik plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

))2

=
r

∑
k=1

c2
ik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2
(2.7)

In section 2.4, we will estimate τi by τ̂i(defined in (2.25)) and use τ̂i to normalize the estimation

error. The extra 1/n in (2.5) is introduced to assure τi > 0.

We will use the standard order notations O(·), o(·), Op(·), and op(·). For two numerical

sequences an,bn,n = 1,2, ..., we say an = O(bn) if ∃ a constant C > 0 such that |an| ≤ C|bn|

for all n, and an = o(bn) if limn→∞
an
bn

= 0. For two random variable sequences Xn,Yn, we say

Xn = Op(Yn) if for any 0 < ε < 1, ∃ a constant Cε > 0 such that supn Prob(|Xn| ≥Cε |Yn|)≤ ε;

and Xn = op(Yn) if Xn
Yn
→p 0; see e.g. Definition 1.9 and Chapter 1.5.1 of Shao [2003]. All order

notations and convergences in this paper will be understood to hold as the sample size n→ ∞.

For a vector a = (a1, ...,an)
T and a fixed number q ≥ 1, define ‖a‖q = (∑n

i=1 |ai|q)1/q. For a

finite set A, |A| denotes the number of elements in A. Notations ∃ and ∀ denote “there exists”

and “for all” respectively. Prob∗ (·) and E∗· respectively represent probability and expectation in

the “bootstrap world”, i.e., they are the conditional probability Prob(·|y) and the conditional

expectation E(·|y).

Suppose H(x) is a cumulative distribution function and 0<α < 1; then the 1−α quantile
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of H is defined as

c1−α = inf{x ∈ R|H(x)≥ 1−α}. (2.8)

In particular, given some order statistics X1 ≤ X2 ≤ ...≤ XB, the 1−α sample quantile C1−α is

defined as

C1−α = Xi∗ such that i∗ = min

{
i
∣∣∣ 1

B

B

∑
j=1

1X j≤Xi ≥ 1−α

}
. (2.9)

Other notations will be defined before being used. Without being explicitly specified, the

convergence results in this paper assume the sample size n→ ∞.

The high dimensionality in this paper comes from two aspects: the number of parameters

p may increase with the sample size n, and (for statistical inference/hypothesis testing) the

number of simultaneous linear combinations p1 and |M | can also increase with n.

Our work adopts the following assumptions:

Assumptions

1. Assume a fixed design, i.e., the design matrix X is deterministic. Also assume that

there exists constants cλ ,Cλ > 0, 0 < η ≤ 1/2, such that the positive singular values of X satisfy

Cλ n1/2 ≥ λ1 ≥ λ2 ≥ ...≥ λr ≥ cλ nη . (2.10)

Furthermore, the Euclidean norm of θ is assumed to satisfy ‖θ‖2 =
√

∑
p
i=1 θ 2

i = O(nαθ ) with

0 < αθ < 3η .

2. The ridge parameter satisfies ρn = O(n2η−δ ) with a positive constant δ such that

η+αθ

2 < δ < 2η

3. The errors ε = (ε1, ...,εn)
T driving regression (2.2) are assumed to be i.i.d., with

Eε1 = 0, and E|ε1|m < ∞ for some m > 4.

4. The dimension of the parameter vector β satisfies p = O(nαp) for some constant

αp ∈ [0,mη) where m,η are as defined in Assumptions 1–3. Furthermore, the threshold bn
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is chosen as bn = Cb× n−νb with constants Cb,νb > 0 and νb +
αp
m −η < 0. We assume ∃ a

constant 0 < cb < 1 such that maxi6∈Nbn
|θi| ≤ cb×bn, and mini∈Nbn

|θi| ≥ bn
cb

.

The intuitive meaning of assumption 4 is that the θis that are not being truncated should

be significantly larger than the θi being truncated.

5. M (defined in (2.4)) is not empty and |M | = O(nαM ) with αM < mη where m,η

are as defined in Assumptions 1–3. Besides, assume ∃ constants cM ,CM such that 0 < cM <

∑
r
k=1 c2

ik ≤CM for all i ∈M . Also assume

max
i=1,2,...,p1

| ∑
j 6∈Nbn

mi jθ j|= o

(
1√

n log(n)

)

and max
i=1,2,...,p1

|
p

∑
j=1

mi jθ⊥, j|= o

(
1√

n log(n)

) (2.11)

We assume (2.11) to maintain the sparsity of θ and assure that the projection bias β −θ

is negligible compared to the stochastic errors. It allows an inexact sparsity, i.e., some θi may not

equal 0 even if i 6∈Nbn . Theoretical results for other linear regression estimators (e.g., Lasso)

need an exact sparse assumption (θi = 0 for all i 6∈Nbn), see Zhao and Yu [2006] and Basu and

Michailidis [2015] for a further introduction.

6. ∃ a constant ασ satisfying η ≥ ασ > 0 such that

n−νb ∑
j 6∈Nbn

|θ j|= O(n−ασ ),

√
|Nbn |
nη

= O(n−ασ ) (2.12)

7. |M | ≤ r, the matrix T = (cik)i∈M ,k=1,2,...,r has rank |M |, and one of the two following

conditions holds true:

7.1.

max
i∈M ,l=1,2,...,n

| 1
τi
×

r

∑
k=1

cik plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
|

= o(min(n(ασ−1)/2× log−3/2(n), n−1/3× log−3/2(n)))

(2.13)
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7.2. ασ < 1/2 and

|M |= o(nασ × log−3(n))

max
i∈M ,l=1,2,...,n

| 1
τi
×

r

∑
k=1

cik plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
|= O(n−ασ × log−3/2(n))

(2.14)

According to (2.6), the normalized estimation error γ̂i−γi
τ̂i

asymptotically will be ap-

proximated by ∑
n
l=1

(
1
τi

∑
r
k=1 cik plk

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

))
εl . Therefore, the intuitive meaning of

assumption 7 is that all terms 1
τi

∑
r
k=1 cik plk

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

)
εl in the summation are negligible

and the number of simultaneous linear combinations |M | cannot be too large.

Recall that the paper at hand focuses on fixed design regression, i.e., no randomness

involves in the design matrix X . However, all results of this paper still hold true in the case of

random design after conditioning on X , as long as X can be assumed independent of the error

vector ε . In this case, to intrepret the results we would need to replace Prob(·) by Prob(·|X), E·

by E · |X , Prob∗(·) by Prob(·|X ,y) and E∗· by E · |X ,y.

Remark 1. We do not require that the design matrix has rank min(n, p) or that p < n. However,

when these conditions are not satisfied, the sparsity of θ , i.e., assumption 5 and 6, can be violated.

Section 2.7 uses a numerical simulation to illustrate this problem.

Example 1 below provides an instance in which assumption 1 is satisfied.

Example 1. Suppose n > p and limn→∞ p/n = c ∈ (0,1). Choose X = (xi j)i=1,...,n, j=1,...,p such

that the xi j are a realization of i.i.d. random variables with mean 0, variance 1, and finite fourth

order moment. According to Bai and Yin [1993], the smallest eigenvalue of 1
nXT X would then

converge to (1−
√

c)2 almost surely as n→ ∞. So the smallest singular value of X (which is the

smallest eigenvalue of the square root of XT X) is greater than 1−
√

c
2
√

n for sufficiently large n,

almost surely. On the other hand, the largest eigenvalue of 1
nXT X converges to (1+

√
c)2 as

n→ ∞. Hence, the largest singular value of X also has order O(
√

n) almost surely.
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2.4 Consistency and the Gaussian approximation theorem

Throughout, we will use the notations developed in section 2.3. For a chosen ridge

parameter ρn > 0, define the classical ridge regression estimator θ̃ ? and the de-biased estimator

θ̃ as
θ̃
? = (XT X +ρnIp)

−1XT y

θ̃ = (θ̃1, ..., θ̃p)
T = θ̃

?+ρn×Q(Λ2 +ρnIr)
−1QT

θ̃
?

(2.15)

Then we have

θ̃ −θ =−ρ
2
n Q(Λ2 +ρnIr)

−2
ζ +Q

(
(Λ2 +ρnIr)

−1
Λ+ρn(Λ

2 +ρnIr)
−2

Λ
)

PT
ε (2.16)

Similar to Nbn , define the set N̂bn , the estimator θ̂ = (θ̂1, ..., θ̂p)
T and γ̂ as

N̂bn =
{

i
∣∣∣|θ̃i|> bn

}
, θ̂i = θ̃i×1i∈N̂bn

, γ̂ = Mθ̂ (2.17)

Then, θ̂ and γ̂ constitute the improved, i.e., debiased and thresholded, ridge regression estimator

for the parameter vector θ and γ = Mβ respectively. Apart from parameter estimation, we need

to estimate the error variance σ2 = Eε2
1 . The estimator for σ2 is

σ̂
2 =

1
n

n

∑
i=1

(yi−
p

∑
j=1

xi jθ̂ j)
2 (2.18)

Here X = (xi j)i=1,...,n, j=1,...,p.

Remark 2. According to (2.16), the estimation error θ̃ − θ is decomposed into a bias term

−ρ2
n Q(Λ2 +ρnIr)

−2ζ and a variance term Q
(
(Λ2 +ρnIr)

−1Λ+ρn(Λ
2 +ρnIr)

−2Λ
)

PT ε . For

‖ρ2
n Q(Λ2 +ρnIr)

−2ζ‖2 ≤ ρ2
n‖β‖2

(λ 2
r +ρn)2 . In order to control the bias term, ‖β‖2 cannot be too large

(which is achievable if β is sparse); in addition, ρn/λ 2
r must be small.

We can now explain why debiasing helps decrease the estimation error; we will use the
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notation of section 2.3. According to (2.1), for a fixed vector a ∈ Rp,

aT
θ̃
?−aT

β = aT
θ̃
?−aT

θ −aT Q⊥QT
⊥β

= aT Q(Λ2 +ρnIr)
−1

ΛPT
ε−ρnaT Q(Λ2 +ρnIr)

−1
ζ −aT Q⊥QT

⊥β

(2.19)

Assume aT Q⊥QT
⊥β = 0. Then the bias term of aT θ̃ ? will be −ρnaT Q(Λ2 +ρnIr)

−1ζ . We can

estimate this by−ρnaT Q(Λ2+ρnIr)
−1QT θ̃ ? and subtract the estimated bias from aT θ̃ ?, yielding

the debiased estimator.

Compared to (2.16), the debiased estimator θ̃ changes the bias term from −ρnaT Q(Λ2 +

ρnIr)
−1ζ (having order O

(
ρn‖a‖2×‖β‖2

λ 2
r +ρn

)
) to −ρ2

n Q(Λ2 +ρnIr)
−2ζ

(having order O
(

ρ2
n‖a‖2×‖β‖2
(λ 2

r +ρn)2

)
). At the same time, θ̃ will enlarge the variance from Var(ε1)×

aT Q(Λ2 +ρnIr)
−2Λ2QT a to

Var(ε1)×aT Q
(
(Λ2 +ρnIr)

−1
Λ+ρn(Λ

2 +ρnIr)
−2

Λ
)2

QT a. (2.20)

Assume ρn/λ 2
r = o(1); then, θ̃ ’s variance enlargement is asymptotically negligible but its

decrease in bias is significant.

Even when ρn > λ 2
r , numerical simulations in figure 2.1 show that debiasing still may

help decrease the estimation error.

Remark 3 (Further discussion on the debiased estimator). Apart from our work, there are other

procedures that help decrease the bias of an estimator. For example, Bühlmann [2013] proposed

a bias-corrected ridge regression estimator, and Zhang and Zhang [2014] considered correcting

bias for a general linear regression estimator. However, the purpose of our work and those

procedures are different. The bias-corrected ridge regression estimator focuses on eliminating

Q⊥QT
⊥β (i.e., the projection bias in Bühlmann [2013]). Therefore, if p < n and X has rank p,

then the bias-corrected ridge regression estimator equals the classical ridge regression estimator

θ̃ ?. Our work does not focus on the projection bias but wants to diminish the estimation bias
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Figure 2.1. Estimation errors of the ridge regression estimator aT θ̃ ?, the debiased estima-
tor(Debiased) aT θ̃ , the debiased and threshold ridge regression estimator(Debiased with thresh-
old bn = 0.1) aT θ̂ and the threshold ridge regression estimator(Ridge regression with threshold
bn = 0.1 as in section 4 in Shao and Deng [2012]) with respect to different ρn. The threshold bn
is chosen to be 0.1, a is a fixed linear combination vector with ‖a‖2 = 1, and λr = 12.684.

−ρnQ(Λ2 +ρnIr)
−1ζ . Thus, even if p < n and X has rank p, the debiased estimator θ̃ is still

different from θ̃ ?(which is demonstrated in figure 2.1).

Theorem 1. (i). Suppose assumptions 1 to 5 hold true. Then

Prob
(
N̂bn 6= Nbn

)
= O(nαp+mνb−mη) (2.21)

Nbn is defined in section 2.3. In other words, the variable selection consistency holds true

asymptotically. Besides,

max
i=1,2,...,p1

|γ̂i− γi|= Op(|M |1/m×n−η) (2.22)

where γi, i = 1, ..., p1 are defined in section 2.3.

(ii). Suppose assumptions 1 to 6 hold true. Then

|σ̂2−σ
2|= Op(n−ασ ). (2.23)
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An advantage of using θ̂ is that it can be computed by a closed-form formula, making

it simpler to practically calculate as well as derive its theoretical guarantees. As an example,

define θ̂ ’s prediction loss 1
n‖X θ̂ −Xθ‖2

2 =
1
n‖X θ̂ −Xβ‖2

2. If N̂bn = Nbn , then from (A.2.8) and

(A.2.9) in section A.2,

1
n
‖X θ̂ −Xθ‖2

2 ≤
2
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)2

+
2
n

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

⇒ 1
n
‖X θ̂ −Xθ‖2

2 = Op
(
n−ασ

)
.

(2.24)

On the other hand, the prediction loss of other estimators (e.g., Lasso) can be hard to

derive. Dalalyan et al. [2017], Bickel et al. [2009] and Sun and Zhang [2012] provided oracle

inequalities for the Lasso estimator. However, those inequalities depend on terms that are hard

to bound. Numerical experiments in section 2.7 show that θ̂ has comparable performance with

complex estimators like the threshold Lasso or post-selection estimators. In this case, it is

beneficial to choose an estimator that has clear theoretical guarantees.

Define τ̂i, i = 1,2, ..., p1 and H(x),x ∈ R as

τ̂i =

√√√√√ r

∑
k=1

 ∑
j∈N̂bn

mi jq jk

2

×
(

λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2

+
1
n

H(x) = Prob

(
max
i∈M

1
τi
|

r

∑
k=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
ξk| ≤ x

) (2.25)

Here ξk, k = 1,2, ...,r are independent normal random variables with mean 0 and variance

σ2 = Eε2
1 . |M | (defined in (2.4)) and p1 may grow as the sample size increases. In this case, the

estimator maxi=1,2,...,p1
|γ̂i−γi|

τ̂i
does not have an asymptotic distribution. However, the cumulative

distribution function of maxi=1,2,...,p1
|γ̂i−γi|

τ̂i
still can be approximated by H(x) (whose expression

changes as the sample size increases as well). Define c1−α as the 1−α quantile of H; theorem 2
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implies that the set {
γ = (γ1, ...,γp1)

∣∣∣ max
i=1,...,p1

|γ̂i− γi|
τ̂i

≤ c1−α

}
(2.26)

is an asymptotically valid (1−α)×100% confidence region for the parameter of interest γ .

Theorem 2. Suppose assumptions 1 to 7 hold true. Then

lim
n→∞

sup
x≥0
|Prob

(
max

i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ x
)
−H(x)|= 0 (2.27)

where γi, i = 1, ..., p1 are defined in section 2.3.

Gaussian approximation theorems like theorem 2 are useful tools not only in linear

models but also in other high dimensional statistics; e.g., Chernozhukov et al. [2013] and Zhang

and Wu [2017].

2.5 Bootstrap inference and hypothesis testing

An obstacle for constructing a practical confidence region or testing a hypothesis via

theorem 2 are the unknown M , Nbn , and σ . Besides, H is too complicated to have a closed-form

formula. Fortunately, statisticians can simulate normal random variables on a computer, so they

may use Monte-Carlo simulations to find the 1−α quantile of H. Based on this idea, this section

develops a wild bootstrap algorithm similar to Mammen [1993] and Chernozhukov et al. [2013]

for the following tasks: constructing the confidence region for the parameter of interest γ = Mβ ;

and testing the null hypothesis γ = γ0 (for a known γ0) versus the alternative hypothesis γ 6= γ0.

Similar to Zhang and Cheng [2017], Chernozhukov et al. [2013], and Zhang and Wu [2017], we

use the maximum statistic maxi=1,2,...,p1
|γ̂i−γi|

τ̂i
to construct a simultaneous confidence region.

Algorithm 1 (Wild bootstrap inference and hypothesis testing). Input: Design matrix X,

dependent variables y = Xβ + ε , linear combination matrix M, ridge parameter ρn, threshold

bn, nominal coverage probability 1−α , number of bootstrap replicates B
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Additional input for testing: γ0 = (γ0,1, ...,γ0,p1)
T

1. Calculate θ̂ , γ̂ = (γ̂1, ..., γ̂p1)
T defined in (2.17), τ̂i, i = 1,2, ..., p1 defined in (2.25), and σ̂

defined in (2.18).

2. Generate i.i.d. errors ε∗ = (ε∗1 , ...,ε
∗
n )

T with ε∗i , i = 1, ...,n having normal distribution with

mean 0 and variance σ̂2, then calculate y∗ = X θ̂ + ε∗ and θ̂⊥ = Q⊥QT
⊥θ̂ (Q⊥ is defined in

section 2.3).

3. Calculate θ̃ ?∗ = (XT X +ρnIp)
−1XT y∗ and

θ̃
∗ = (θ̃ ∗1 , ..., θ̃

∗
p)

T = θ̃
?∗+ρn×Q(Λ2 +ρnIr)

−1QT
θ̃
?∗+ θ̂⊥

4. Calculate N̂ ∗
bn

=
{

i
∣∣∣|θ̃ ∗i |> bn

}
and θ̂ ∗ = (θ̂ ∗1 , ..., θ̂

∗
p)

T with θ̂ ∗i = θ̃ ∗i × 1i∈N̂ ∗
bn

for i =

1,2, ..., p.

5. Calculate γ̂∗ = Mθ̂ ∗, τ̂∗i , i = 1,2, ..., p1, and E∗b such that

τ̂
∗
i =

√√√√√√ r

∑
k=1

 ∑
j∈N̂ ∗

bn

mi jq jk


2

×
(

λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2

+
1
n
,

E∗b = max
i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

(2.28)

6.a (For constructing a confidence region) Repeat steps 2 to 5 for B times to generate E∗b , b =

1,2, ...,B; then calculate the 1−α sample quantile C∗1−α
of E∗b . The 1−α confidence region for

the parameter of interest γ = Mβ is given by the set

{
γ = (γ1, ...,γp1)

T
∣∣∣ max

i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤C∗1−α

}
(2.29)

6.b (For hypothesis testing) Repeat steps 2 to 5 for B times to generate E∗b , b = 1,2, ...,B; then
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calculate the 1−α sample quantile C∗1−α
of E∗b . Reject the null hypothesis γ = γ0 when

max
i=1,2,...,p1

|γ̂i− γ0,i|
τ̂i

>C∗1−α . (2.30)

As in section 2.3, if X has rank p ≤ n, we define θ̂⊥ = 0, the p dimensional vector with all

elements 0.

According to theorem 1.2.1 in Politis et al. [1999], the consistency of algorithm 1 –either

for asymptotic validity of confidence regions or consistency of the hypothesis test– is ensured if

Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c∗1−α

)
→ 1−α (2.31)

where c∗1−α
is the 1−α quantile of the conditional distribution

Prob∗
(

maxi=1,2,...,p1
|γ̂∗i −γ̂i|

τ̂∗i
≤ x
)

; we prove this in theorem 3 below.

Theorem 3. Suppose assumptions 1 to 7 hold true. Then

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)|= oP(1). (2.32)

In addition, for any given 0 < α < 1, (2.31) holds true.

Theorem 3 has two implications. On the one hand, the confidence region introduced

in step 6.a of algorithm 1 is asymptotically valid, i.e., its coverage tends to 1−α . On the

other hand, consider the hypothesis test of step 6.b of algorithm 1; Theorem 3 implies that, if

the null hypothesis is true, then the probability for incorrectly rejecting the null hypothesis is

asymptotically α , i.e., the test is consistent.
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2.6 Bootstrap interval prediction

Given our data from the linear model y = Xβ + ε , consider a new p1× p regressor

matrix X f , i.e., a collection of regressor (column) vectors that happen to be of interest; as

with X itself, X f is assumed given, i.e., deterministic. The prediction problem involves (a)

finding a predictor for the future (still unobserved) vector y f = X f β + ε f , and (b) finding a 1−α

prediction region A ⊂ Rp1 so that Prob(y f ∈ A)→ 1−α as the (original) sample size n→ ∞.

Here ε f = (ε f ,1, ...,ε f ,p1)
T are i.i.d. errors with the same marginal distribution as ε1, and ε f is

independent with ε .

Finding a good predictor based on different criteria is a big topic. For example, Green-

shtein and Ritov [2004] applied Lasso in constructing predictors and their predictor’s mean

square error is minimal asymptotically. We construct an intuitive predictor based on the following

idea: if β were known, the predictor of y f that is optimal with respect to total mean squared error

is X f β ; since β is typically unknown, we can estimate it by θ̂ as in (2.17), yielding the practical

predictor ŷ f = X f θ̂ . In what follows, we would like to derive a 1−α prediction region for y f

based on the intuitive predictor ŷ f .

We adopt definition 2.4.1 of Politis [2015], and define a consistent prediction region in

terms of conditional coverage as follows.

Definition 1 (Consistent prediction region). A set Γ = Γ(X ,y,X f ) is called a 1−α consistent

prediction region for the future observation y f = X f β + ε f if

Prob
(
y f ∈ Γ|y

)
→p 1−α as n→ ∞. (2.33)

Note that the convergence in (2.33) is ”in probability” since Prob
(
y f ∈ Γ|y

)
is a function of y,

and therefore random; see also Lei and Wasserman [2014] for more on the notion of conditional

validity.
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Other authors, including Stine [1985], Romano et al., and Chernozhukov et al. [2021],

considered another definition of prediction interval consistency focusing on unconditional

coverage, i.e., insisting that

Prob(y f ∈ Γ)→ 1−α. (2.34)

However, the conditional coverage of definition 1 is a stronger property. To see why,

define the random variables Un = Prob
(
y f ∈ Γ|y

)
, noting that y has dimension n. Then, the

boundedness of Un can be invoked to show that if Un →p 1−α , then EUn → 1−α as well.

Hence, (2.33) implies (2.34); see Zhang and Politis [2021a] for a further discussion on conditional

vs. unconditional coverage.

Consider the prediction error y f −X f θ̂ = ε f −X f (θ̂ − β ). If we can put bounds on

the prediction error that are valid with conditional probability 1−α (asymptotically), then

a consistent prediction region ensues. Note that the prediction error has two parts: ε f and

−X f (θ̂ −β ). Although the latter may be asymptotically negligible, it is important in practice

to not approximate it by zero as it would yield finite-sample undercoverage; see e.g. Ch. 3 of

Politis [2015] for an extensive discussion.

Theorem 2 indicates that the asymptotically negligible estimation error can be approxi-

mated by normal random variables. On the other hand, the non-negligible error ε f may not have

a normal distribution; so in order to approximate the distribution of ε f −X f (θ̂ −β ), we need to

estimate the errors’ marginal distribution as well.

This section requires some additional assumptions.

Additional assumptions

8. The cumulative distribution function of errors F(x) = Prob(ε1 ≤ x) is continuous

9. The number of regressors of interest is bounded, i.e., p1 = O(1)

Since F is increasing and bounded, if F(x) is continuous, then F is uniformly continuous on R.
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this property is useful in the proof of lemma 1.

Lemma 1. Suppose assumption 1 to 6 and 8 hold true. Define the residuals ε̂
′
= (ε̂

′
1, ..., ε̂

′
n)

T =

y−X θ̂ , as well as the centered residuals ε̂ = (ε̂1, ..., ε̂n)
T with ε̂i = ε̂

′
i − 1

n ∑
n
i=1 ε̂

′
i . If we let

F̂(x) = 1
n ∑

n
i=1 1ε̂i≤x, then

sup
x∈R
|F̂(x)−F(x)| →p 0 as n→ ∞. (2.35)

We emphasize that the dimension of parameters p in lemma 1 can grow to infinity as long as

assumption 4 is satisfied. Furthermore, the validity of lemma 1 –as well as that of theorem 4 that

follows– does not require assumption 7.

We will resample the centered residuals ε̂i, i = 1,2, ...,n (in other words, generate random

variables with distribution F̂) in algorithm 2. Lemma 1 will ensure that the centered residuals

can capture the distribution of the non-negligible errors.

For a high dimensional linear model, lemma 1 is not an obvious result; see Mammen

[1996] for a detailed explanation. Lemma 1 is the foundation for a new resampling procedure as

follows; this is a hybrid bootstrap as it combines the residual-based bootstrap to replicate the

new error ε f with the normal approximation to the estimation error −X f (θ̂ −β ).

Algorithm 2 (Hybrid bootstrap for prediction region). Input: Design matrix X, dependent

variables y = Xβ +ε , a new p1× p linear combination matrix X f , ridge parameter ρn, threshold

bn, nominal coverage probability 0 < 1−α < 1, the number of bootstrap replicates B

1. Calculate θ̂ defined in (2.17), σ̂ defined in (2.18), ε̂ defined in lemma 1, ŷ f =

(ŷ f ,1, ..., ŷ f ,p1)
T = X f θ̂ , and θ̂⊥ = Q⊥QT

⊥θ̂ .

2. Generate i.i.d. errors ε∗ = (ε∗1 , ...,ε
∗
n )

T with ε∗i , i = 1, ...,n having normal distribution

with mean 0 and variance σ̂2. Then generate i.i.d. errors ε∗f = (ε∗f ,1, ...,ε
∗
f ,p1

)T with ε∗f ,i, i =

1, ..., p1 having cumulative distribution function F̂ defined in lemma 1. Calculate y∗ = X θ̂ + ε∗.
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3. Calculate θ̃ ?∗ = (XT X +ρnIp)
−1XT y∗ and θ̃ ∗ = θ̃ ?∗+ρn×Q(Λ2 +ρnIr)

−1QT θ̃ ?∗+

θ̂⊥. Then derive N̂ ∗
bn

=
{

i
∣∣∣|θ̃ ∗i |> bn

}
, θ̂ ∗ = (θ̂ ∗1 , ..., θ̂

∗
p)

T with θ̂ ∗i = θ̃ ∗i × 1i∈N̂ ∗
bn

for i =

1,2, ..., p.

4. Calculate y∗f = (y∗f ,1, ...,y
∗
f ,p1

)T = X f θ̂ +ε∗f and ŷ∗f = (ŷ∗f ,1, ..., ŷ
∗
f ,p1

)T = X f θ̂ ∗. Define

E∗b = maxi=1,2,...,p1 |y∗f ,i− ŷ∗f ,i|.

5. Repeat steps 2 to 4 for B times, and generate E∗b , b = 1,2, ...,B. Calculate the 1−α

sample quantile C∗1−α
of E∗b . Then, the 1−α prediction region for y f = X f β + ε f is given by

{
y f = (y f ,1, ...,y f ,p1)

T
∣∣∣ max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤C∗1−α

}
. (2.36)

If the design matrix X has rank p, then θ̂⊥ is defined to be 0.

Similar to section 2.5, here we define c∗1−α
as the 1−α quantile of the conditional

distribution Prob∗
(

maxi=1,...,p1 |y∗f ,i− ŷ∗f ,i| ≤ x
)

, which can be approximated by C∗1−α
by letting

B→∞. Theorem 4 below proves Prob
(
maxi=1,2,...,p1 |y f ,i− ŷ f ,i| ≤ c∗1−α

)
→ 1−α as the sample

size n→ ∞, which justifies the consistency of the prediction region (2.36).

Theorem 4. Suppose assumptions 1 to 6 and 8 to 9 hold true (here consider

M = (mi j)i=1,...,p1, j=1,...,p in assumption 5 as X f ). Then

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y∗f ,i− ŷ∗f ,i| ≤ x

)
−Prob∗

(
max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤ x

)
|= op(1). (2.37)

For any fixed 0 < α < 1, it follows that

Prob∗
(

max
i=1,2,...,p1

|y f ,i− ŷ f ,i| ≤ c∗1−α

)
→p 1−α as n→ ∞. (2.38)

Note that the bootstrap probability Prob∗(·) is probability conditional on the data y, thus justifying

the notion of conditional validity of our definition 1.
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A version of the algorithm 2 can be constructed where the residual-based bootstrap

part is conducted by resampling from the empirical distribution of the (centered) predictive,

i.e., leave-one-out, residuals instead of the fitted residuals ε̂i; see Ch. 3 of Politis [2015] for a

discussion.

2.7 Numerical Simulations

Define kn =
√

n log(n) and the following four terms

K1 = max
i=1,2,...,p1

kn| ∑
j 6∈Nbn

mi jθ j|, K2 = max
i=1,2,...,p1

kn|
r

∑
j=1

mi jθ⊥, j|,

K3 = bn ∑
j 6∈Nbn

|θ j|, K4 =

√
|Nbn |
λr

;
(2.39)

see section 2.3 for the meaning of notations in the above. Assumptions 5 and 6 imply that these

terms converge to 0 as the sample size n→ ∞. Indeed, if one of the Ki is large, the debiased and

threshold ridge regression estimator may have a large bias, which affects the performance of the

bootstrap algorithms.

In this section, we generate the design matrix X , the linear combination matrix M, and

the parameters β through the following strategies:

Design matrix X: define X = [x1, ...,xn]
T with xi = (xi1, ...,xip)

T ∈ Rp, i = 1, ...,n. Generate

x1,x2, . . . as i.i.d. normal random vectors with mean 0 and covariance matrix Σ ∈ Rp×p. We
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choose Σ with diagonal elements equal to 2.0 and off-diagonal elements equal to 0.5.

M =



m11 m12 ... m1τ m1τ+1 ... m1p

m21 m22 ... m2τ m2τ+1 ... m2p

...
... ...

...
... ...

...

m|M |1 m|M |2 ... m|M |τ m|M |τ+1 ... m|M |p

0 0 ... 0 m|M |+1τ+1 ... m|M |+1p

...
... ...

...
... ...

...

0 0 ... 0 mp1τ+1 ... mp1 p



(2.40)

M and β when p < n: choose τ = 50 in (2.40). Generate m
′
i j, i = 1,2, ..., |M |, j = 1,2, ...,τ

as i.i.d. normal with mean 0.5 and variance 1.0, and generate m
′
i j, i = 1,2, ..., p1, j = τ +

1, ..., p as i.i.d. normal with mean 1.0 and variance 4.0. Use mi j = 2.0×m
′
i j/
√

∑
τ
j=1 m′2i j

for i = 1,2, ..., |M |, j = 1,2, ...,τ; mi j = 4.0×m
′
i j/
√

∑
p
j=τ+1 m′2i j for i = 1,2, ..., |M |, j =

τ +1, ..., p; and mi j = 6.0×m
′
i j/
√

∑
p
j=τ+1 m′2i j for i = |M |+1, ..., p1, j = τ +1, ..., p. Choose

β = (β1, ...,βp)
T with βi = 2.0, i = 1,2,3, βi = −2.0, i = 4,5,6, βi = 1.0, i = 7,8,9, βi =

−1.0, i = 10,11,12, βi = 0.01, i = 13,14,15,16, and 0 otherwise.

M and β when p > n: choose τ = 6 in (2.40). Generate m
′
i j, i = 1,2, ..., |M |, j = 1,2, ...,τ as

i.i.d. normal with mean 0.5 and variance 1.0, and generate m
′
i j, i = 1,2, ..., p1, j = τ +1, ..., p

as i.i.d. normal with mean 1.0 and variance 4.0. Use mi j = 2.0×m
′
i j/
√

∑
τ
j=1 m′2i j for i =

1,2, ..., |M |, j = 1,2, ...,τ; and mi j = m
′
i j/
√

∑
p
j=τ+1 m′2i j for i = 1,2, ..., p1, j = τ + 1, ..., p.

Choose βi = 1.0, i = 1,2,3, βi =−1.0, i = 4,5,6, and 0 otherwise. When p > n, β may not be

identifiable (Shao and Deng [2012]), and β may not equal θ (defined in section 2.3) despite

Xβ = Xθ . We consider both situations and evaluate the performance of proposed methods on

the linear model y = Xβ + ε and y = Xθ + ε . We fix X and M in each simulation.

The different regression algorithms considered are the debiased and threshold ridge

regression(Deb Thr), ridge regression, Lasso, threshold ridge regression (Thr Ridge), threshold
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Lasso (Thr Lasso), and the post-selection algorithms, i.e., Lasso + OLS (Post OLS), and Lasso

+ Ridge (Post Ridge). We consider 6 cases for simulation involving a different p/n ratio,

and Normal vs. Laplace (2-sided exponential) errors; we present detailed information about

each simulation case in table 2.1, compare the performance of different regression algorithms

in Figure 2.2 to 2.4 and Table 2.2, and record the performance of bootstrap algorithms on

estimation/hypothesis testing and interval-prediction in Table 2.3 and Figure 2.5. The optimal

ridge parameter ρn and threshold bn are chosen by 5-fold cross validation. To adapt to assumption

9, we choose X f as the first 100 lines of M for prediction.

Table 2.1. Information about X , M and ε in each simulation case. For the normal distribution
we choose variance 4, for the Laplace distribution we choose the scale

√
2. By doing this, the

variance of residuals is 4. When p > n, β 6= θ . The left(right) side of the slashes represent
K2 calculated by the linear model y = Xβ + ε (y = Xθ + ε). The difference between β and θ

does not change other terms in case 5 and 6.

Case p p1 |M | λr ρn bn K1 K2 K3 K4
1 500 800 300 12.978 56.453 0.343 1.370 0.0 0.013 1.712
2 500 800 300 12.561 36.728 0.354 1.636 0.0 0.014 1.769
3 650 800 300 8.226 56.432 0.396 1.553 0.0 0.016 3.085
4 500 800 700 12.847 55.317 0.346 1.510 0.0 0.014 1.730
5 1500 800 300 9.766 1.201 0.228 6.938 129 / 0.0 8.214 3.962
6 1500 800 300 9.766 1.201 0.228 6.938 129 / 0.0 8.214 3.962

Case 5 and 6 consider both the linear model y = Xβ + ε and y = Xθ + ε , here β 6= θ = QQT β .

The difference in β and θ affects the value of K2(but does not affect others), so we have two

values in table 2.1.

Figure 2.2 plots the Euclidean norm ‖γ̂− γ‖2, with γ̂ defined in (2.17), and γ defined in

Section 2.3, for various linear regression methods. When the underlying linear model is sparse,

thresholding decreases the ridge regression estimator’s error(from around 10 to around 2 in our

experiment). However, the performance of the threshold ridge regression method is sensitive to

the ridge parameter ρn, i.e., ‖γ̂− γ‖2 can be significantly larger than its minimum despite ρn is

close to the minimizer of ‖γ̂− γ‖2.

In reality, cross validation does not necessarily guarantee selection of the optimal ρn and

bn, so it is risky to use the threshold ridge regression method. Debiasing helps decrease the

27



(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 3

Figure 2.2. Estimation performance of various linear regression methods over case 1 to 4. ’Deb’
abbreviates ’Debiased’, ’Thr’ abbreviates ’Threshold’, ’Post’ abbreviates ’Post-selection’, and
’OLS’ abbreviates ’ordinary least square’. Red dots represent the parameters selected by 5-fold
cross validation. The vertical axis represents the Euclidean norm of γ̂− γ(see (2.17) and section
2.3). The little graphs in the middle of each of the four graphs show a zoomed-in part of the
graph above it. The little graphs below each of the four graphs show the estimation performance
of the debiased and threshold ridge regression method with respect to different thresholds.
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(a) Case 5(use β ) (b) Case 5(use θ )

(c) Case 6(use β ) (d) Case 6(use θ )

Figure 2.3. Estimation performance of various linear regression methods over case 5 to 6. The
meaning of symbols coincides with figure 2.2.
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(a) Case 1 (b) Case 5

Figure 2.4. Prediction loss(see section 2.4) of various linear regression methods. The meaning
of symbols coincides with figure 2.2.

ridge regression estimator’s error; more importantly, it is robust to changes in the choice of ρn.

Even if a cross validation selects a sub-optimal ρn, the error of the debiased and threshold ridge

regression estimator does not surge, and the estimator’s performance does not notably deteriorate.

On the other hand, in Figure 2.2 and 2.3, ‖γ̂− γ‖2 reaches its minimum and does not increase for

a wide range of bn. For example, in case 3 the cross validation chooses bn = 0.395, but any value

between 0.30 and 0.75 can be the optimal threshold(the threshold having the smallest ‖γ̂− γ‖2).

Since there is a wide interval of thresholds bn that have small ‖γ̂− γ‖2, the regression algorithm

has robustness regarding the choice of bn. Because of these good properties, we consider the

debiased and threshold ridge regression as a practical method to handle real-life data.

Thresholding also helps improve the performance of Lasso, especially when the Lasso

parameter is small. However, when the Lasso parameter becomes large, Lasso method already

recovers the underlying sparsity of the linear model, and thresholding becomes unnecessary (but

large Lasso parameters tend to introduce large bias).
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When the dimension of parameters p is greater than the sample size n, both parameters

β and θ (see section 2.3) could be considered as the ‘parameters’ for the linear model. Lasso

methods estimate linear combinations of β , while ridge regression methods estimate linear

combinations of θ . Under this situation, the difference between β and θ is the main factor for

the estimators’ error. In reality, statisticians cannot distinguish between β and θ based on data.

So they need to design which parameters to estimate a priori and select a suitable regression

method (e.g., Lasso, ridge regression, or their variations) reflecting their preferences.

The optimal prediction loss of the debiased and threshold ridge regression method is

comparable to the threshold Lasso and the post-selection algorithms. Furthermore, the prediction

loss is robust to changes in the choice of ρn,bn. When p > n, the sparsity of θ is violated and

a large bias is introduced to the estimator(see table 2.1). As a result the prediction loss will be

enlarged.

As a summary of Figure 2.2 to 2.4, apart from having a closed-form formula, the

debiased and threshold ridge regression has the smallest estimation error and prediction loss

among all ridge regression variations, and has comparable performance to the threshold Lasso.

Furthermore, it is not overly sensitive on changes in the ridge parameter ρn as well as the

threshold bn. Therefore, even when a sub-optimal ρn or bn are selected, the performance of the

debiased and threshold ridge regression is not severely affected. When p > n, this method (and

other ridge regression methods) considers θ rather than β to be the parameter of the linear model.

So, in this case, ridge regression methods are suitable if the underlying linear model is indeed

y = Xθ + ε(in other words, the projection does not have effect on the parameters of the linear

model).

Table 2.2 demonstrates the model selection performance of various linear regression

algorithms. Following Fithian et al. [2017], we evaluate the algorithms through the frequency

of model misspecification(i.e., N̂bn 6= Nbn), P(N̂bn 6= Nbn); the average size of model misspec-

ification |N̂bn∆Nbn| (here ∆ denotes the symmetric difference, i.e. A∆B = (A−B)∪ (B−A));

and the average false discovery rate |N̂bn−Nbn|/max(|N̂bn|,1). Notice that Lasso and the ridge
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regression do not have thresholds. For these algorithms we say i∈ N̂bn if the estimated parameter

|β̂i| > 0.001. When the sparsity assumption is not violated, the debiased and threshold ridge

regression can perfectly recover the model sparsity, and thresholding is also an essential tool that

improves Lasso’s model selection performance. On the other hand, if the sparsity assumption is

violated, then |θi| can be close to bn even if i 6∈Nbn . Despite the stochastic errors are still small,

the summation of θi and the stochastic error can exceed bn, which results in selecting a false

model.

Table 2.2. Model selection performance of various linear regression methods over case 1 and 5.
The hyper-parameters are chosen by 5-fold cross validation. The overscore represents calculating
the sample mean among 1000 simulations.

Case Algorithm P(N̂bn 6= Nbn ) |N̂bn ∆Nbn | False discovery rate
1 Deb Thr 0.0 0.0 0.0

Lasso 1.0 9.674 0.463
Ridge 1.0 240.53 0.967
Thr Lasso 0.009 0.009 0.001
Thr Ridge 0.0 0.0 0.0

5(use θ ) Deb Thr 0.132 0.140 0.034
Lasso 1.0 761.59 0.308
Ridge 1.0 452.69 0.283
Thr Lasso 0.004 0.004 0.001
Thr Ridge 0.508 0.729 0.157

Table 2.3 records the average errors of the proposed statistics γ̂(defined in (2.17)),

σ̂2(defined in (2.18)), and the coverage probability of the confidence region (2.29) as well as

the coverage probability of the prediction region (2.36), in 1000 numerical simulations. We

also record the frequency of model misspecification P(N̂bn 6= Nbn). When the sample size n

is greater than the dimension of parameters p, thresholding is likely to recover the sparsity of

the parameters. In all these cases, i.e., Case 1–4, our confidence intervals achieve near-perfect

coverage. The slight under-coverage in prediction intervals is a well-known phenomenon; see

e.g. Ch. 3.7 of Politis [2015].

However, in cases 5 and 6 where p > n, θ is not necessarily sparse, and model mis-

specification may happen. Notably, γ̂’s error in estimating linear combinations of θ does not

surge even when p > n. However, the difference between β and θ introduces a large bias to γ̂ .
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Besides, when p > n, assumption 6 can be violated. Correspondingly the variance estimator

σ̂2 may have a large error. The difference between β and θ invalidates the confidence region

(2.29). For prediction region (2.36), this problem still exists. However, the prediction region

catches non-negligible errors apart from the asymptotically negligible errors and it is wider than

the confidence region. Consequently, as long as the absolute values of difference are small, the

prediction interval’s performance will not be severely affected.

Table 2.3. Frequency of model misspecification; average errors of γ̂ and σ̂2; and the coverage
probability for the confidence region (2.29) and the prediction region (2.36). The nominal
coverage probability is 1−α = 95%. The overscore represents calculating the sample mean
among 1000 simulations. We choose the number of bootstrap replicates B = 500.

Estimation and Confidence region construction Prediction
Case # P(N̂bn 6= Nbn ) maxi=1,2,...,p1 |γ̂i− γi| |σ̂2−σ2| coverage coverage
1 0.0 0.185 0.144 95.4% 91.5%
2 0.0 0.183 0.228 93.6% 90.4%
3 0.0 0.209 0.232 95.9% 92.6%
4 0.0 0.191 0.224 95.3% 90.6%
5(use β ) 0.129 1.578 1.341 0.0% 97.2%
5(use θ ) 0.122 0.258 1.354 97.6% 98.2%
6(use β ) 0.126 1.579 1.342 0.0% 94.6%
6(use θ ) 0.137 0.258 1.364 97.3% 92.8%

Figure 2.5 plots the power curve of the hypothesis test of γ = γ0 versus γ 6= γ0; here, we

use γ0 = γ +δ × (1,1, ...,1)T and δ > 0.

Figure 2.5. Power of the test for cases 1 and 2; the x-axis represents maxi=1,...,p1 |γ0,i− γi|.
Nominal size for the test is 5%; see algorithm 1 for the meaning of notations.
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2.8 Conclusion

The paper at hand proposes an improved, i.e., debiased and thresholded, ridge regression

method that recovers the sparsity of parameters and avoids introducing a large bias. Besides, it

derives a consistency result and the Gaussian approximation theorem for the improved ridge

estimator. An asymptotically valid confidence region for γ = Mβ and a hypothesis test of γ = γ0

are also constructed based on a wild bootstrap algorithm. In addition, a novel, hybrid resampling

procedure was proposed that can be used to perform interval prediction based on the improved

ridge regression. When the dimension of parameters p is larger than the sample size n, the

proposed method estimates linear combinations of θ = QQT β instead of linear combinations of

β . If the underlying parameter is indeed β and the projection bias θ −β is not negligible, then

the proposed methods may fail to provide a consistent result.

Numerical simulations indicate that improved ridge regression has comparable perfor-

mance to the threshold Lasso while having at least two major advantages: (a) Ridge regression is

easily computed using a closed-form expression, and (b) it appears to be quite robust against

a non-optimal choice of the ridge parameter ρn as well as the threshold bn. Therefore, ridge

regression may be found useful again in applied work using high-dimensional data as long as

practitioners make sure to include debiasing and thresholding.
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Chapter 3

Debiased and thresholded ridge regression
for linear models with heteroskedastic and
correlated errors

3.1 Abstract

High-dimensional linear models with independent errors have been well-studied. How-

ever, statistical inference on a high-dimensional linear model with heteroskedastic, dependent

(and possibly non-stationary) errors is still a novel topic. Under such complex assumptions, the

paper at hand introduces a debiased and thresholded ridge regression estimator that is consistent,

and is able to recover the model sparsity. Moreover, we derive a Gaussian approximation theorem

for the estimator, and apply a dependent wild bootstrap algorithm to construct simultaneous

confidence interval and hypothesis tests for linear combinations of parameters. Numerical experi-

ments with both real and simulated data show that the proposed estimator has good finite sample

performance. Of independent interest is the development of a new class of heteroscedastic,

(weakly) dependent, and non-stationary random variables that can be used as a general model for

regression errors.

Keywords: Linear regression, High dimensional data, Regularization, Dependent errors,

Bootstrap.
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3.2 Introduction

Linear regression is a fundamental topic in statistical inference. The classical setting

assumes the dimension of parameters in a linear model is constant, and the errors are in-

dependent and identically distributed (i.i.d.). Recently, researchers have been working with

high-dimensional linear models, i.e., the case where the dimension is allowed to diverge, but

typically with i.i.d. errors. Under such a setting, research has been carried our on parameter esti-

mation, e.g., Zou and Hastie [2005] and Zou [2006]; confidence interval construction/hypothesis

testing, e.g., Chatterjee and Lahiri [2010, 2011]; and prediction, e.g., Stine [1985] and Zhang

and Politis [2021a]. We also refer to Seber and Lee [2003], Hastie et al. [2009] and Fan et al.

[2020] for a comprehensive introduction.

In practice, however, errors in a linear model can be dependent, and may have differ-

ent distributions. As suggested by Vogelsang [2012] and Petersen [2008], heteroscedasticity,

autocorrelation and spatial correlation can be present in panel data. If the errors are not i.i.d.,

then confidence intervals developed under the i.i.d. assumption may fail to capture the correct

coverage probability. Several tools are developed to adapt to non-i.i.d. errors. 10. and Kim

and Sun [2011] considered estimating the ordinary least square estimator’s covariance matrix;

Kelejian and Prucha [2007] and Vogelsang [2012] proposed the consistent test statistics for

parameters; Sun and Wang [2021] and Conley et al. [2019] worked on statistical inference and

hypothesis testing, etc. Resampling methods can also be used with dependent errors; see e.g.

Politis et al. [1999] and Shao [2010]. Despite such accomplishments, the aforementioned works

assumed that the dimension of parameters is fixed.

In the Big Data era, a practical situation to be handled via linear model may require

many parameters, sometimes even more than the sample size. If this happens, statisticians

cannot assume that the number of parameters is fixed, and the theoretical results, including the

consistency and central limit theorem (CLT) of the estimators, are no longer obvious. In order

to perform statistical inference, statisticians need to impose restrictions on the parameters. A
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typical restriction is that the underlying parameter vector is sparse, i.e., containing many zeros.

For a sparse linear model, Lasso is a suitable algorithm since it conducts an implicit model

selection, i.e., zeroing out parameters that are not significant, see Tibshirani [2011]. More recent

work includes Zhao and Yu [2006], Meinshausen and Bühlmann [2006] and Meinshausen and Yu

[2009] for model selection; Zhang and Zhang [2014], Zhang and Cheng [2017] and Chatterjee

and Lahiri [2010, 2011] for statistical inference and hypothesis testing; Greenshtein and Ritov

[2004] for prediction and Zou [2006] for algorithm improvement. We refer to Bühlmann and

van de Geer [2011] for a comprehensive overview of the Lasso method on high dimensional data

sets.

Lasso is not the unique choice for regularizing a high-dimensional linear model. Fan and

Li [2001] introduced a new penalty function, called SCAD, that is continuously differentiable

and maintains the sparsity of the underlying model. Lee et al. [2016], Liu and Yu [2013] and

Tibshirani et al. [2018] introduced Post-selection inference, i.e., performing model selection

with Lasso, then fitting ordinary least square regression on the selected model. Shao and Deng

[2012] applied threshold on the ridge regression estimator to recover the sparsity of a linear

model. Zhang and Politis [2020] recently showed that, after debiasing and thresholding, the

ridge regression estimator had a comparable performance to threshold Lasso and post-selection

inference.

All the above works operate under the assumption of i.i.d. errors. The paper at hand

focuses on statistical inference, i.e., point estimation, construction of confidence intervals

and hypothesis tests, in a high dimensional linear model with the presence of dependent and

heteroskedastic errors. Non-i.i.d. errors have been studied in fixed dimensional linear models.

However, performing statistical inference for a high dimensional linear model with dependent

errors is challenging. Wu and Wu [2016] proposed an oracle inequality; Han and Tsay [2020]

proved the consistency of the Lasso estimator; Yuan and Guo derived the central limit theorem

for the desparsified Lasso estimator. All these works rely on the assumption that the errors

are stationary—see e.g., definition 1.3.3 in Brockwell and Davis [1991]. In order to address
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the general problem with possibly non-stationary errors, we chose to work with the (debiased

and thresholded) ridge estimator as it admits a closed-form formula, making it easier to derive

theoretical guarantees. Moreover, it has good performance in the i.i.d. error case as Zhang and

Politis [2020] showed.

To define our setup, consider a high dimensional, sparse linear model y = Xβ + ε where

ε = (ε1, ...,εn)
T . X is the fixed design matrix, β = (β1, ...,βp)

T are the unknown parameters,

and y = (y1, ...,yn)
T are the response variables. The vector ε is a finite stretch of the stochastic

process εt , t = 1,2, . . . which is not assumed to be stationary or linear. We focus on estimating

linear combinations of parameters, say γ = Mβ with M a given matrix. Our work includes

proving the consistency of the (debiased and thresholded) ridge estimator for γ . We will also

derive a Gaussian approximation theorem and construct simultaneous confidence intervals for

the coordinates of γ . We are also interested in testing the statistical hypothesis

null: Mβ = ζ versus the alternative: Mβ 6= ζ (3.1)

with ζ a given vector. To achieve this goal, we adapt the dependent wild bootstrap of Shao

[2010], and provide its theoretical guarantee in our context .

The novelty of the paper at hand comes from the following aspects:

• It constructs consistent simultaneous confidence interval for γ under the situation that the

errors ε have a complex covariance matrix. Notably, the high dimensional linear regression

literature —see e.g., Zhang and Zhang [2014]— has invariably assumed that the errors

were independent.

• The existing literature has focused on hypothesis testing for elements of β , while our work

allows statisticians to test the linear combinations Mβ .

• A new class of heteroscedastic, (weakly) dependent, and non-stationary random variables

is developed that can be used as a general model for regression errors in many contexts.
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• In comparison to the paper by Zhang and Politis [2020], the current work not only allows

dependent and heteroskedastic errors; it further identifies realistic assumptions on the

parameters that allow for consistent estimation when the parameter dimension is larger

than the sample size.

Since there is little research on statistical inference for a high dimensional linear model with

non-i.i.d. errors, this paper at hand should shed some light on this field.

The remainder of this paper is organized as follows: section 3.3 introduces a new class of

non-stationary random variables, called (m,α)−short range dependent random variables. Section

3.4 introduces the debiased and threshold ridge regression estimator. Moreover, it presents the

consistency results and the Gaussian approximation theorem for the proposed estimator. Section

3.5 constructs simultaneous confidence intervals for γ = Mβ , and tests the null hypothesis

γ = ζ versus the alternative hypothesis γ 6= ζ via the dependent wild bootstrap. Section 3.6

presents numerical experiments with both real and simulated data to demonstrate the finite

sample performance of the proposed estimator and the bootstrap algorithm. Section 3.7 contains

our conclusions; technical proofs are deferred to the online appendix .

Notations: This paper applies the standard order notation O(·),o(·),Op(·),op(·): for

two numerical sequences an,bn, we say an = O(bn) if there exists a constant C > 0 such that

|an| ≤ C|bn| for n = 1,2, ...; and an = o(bn) if limn→∞ an/bn = 0. For two random variable

sequences Xn,Yn, we say Xn = Op(Yn) if for any 0 < ε < 1, there exists a constant Cε > 0 such

that Prob(|Xn| ≤Cε |Yn|) ≥ 1− ε for any n; and Xn = op(Yn) if Xn/Yn →p 0 where the latter

denotes convergence in probability; see definition 1.9 and chapter 1.5.1 in Shao [2003] for further

details. All order notations and convergence results are understood to hold true as the sample

size n→ ∞.

The symbol ∃ and ∀ respectively means ‘there exists’ and ‘for all’. For a vector a =

(a1, ...,ap)
T ∈ Rp, define its norm |a|q = (∑

p
i=1 |ai|q)1/q, here q ≥ 1. Moreover, define |a|∞ =

maxi=1,...,p |ai| and |a|0 = ∑
p
i=1 1ai 6=0, i.e., the number of non-zero elements presenting in a. For
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a matrix T , define the operator norm |T |2 = max|a|2=1 |Ta|2. For a random variable X , define

its m norm ‖X‖m = (E|X |m)1/m. Define a∨ b = max(a,b) and a∧ b = min(a,b). We use the

notation C to represent a generic constant, i.e., the value of C may change in different locations.

3.3 (m,α)−short range dependent random variables

In order to derive theoretical results, statisticians need to assume that the random variables

satisfy some conditions. In the time series literature, random variables are often assumed to be

stationary; see definition 1.3.3 in Brockwell and Davis [1991]. If this assumption holds true, then

the covariance matrix of a finite stretch of these random variables will be a Toeplitz matrix, see

section 2 in McElroy and Politis [2020] and section 0.9.7 in Horn and Johnson [2013]. However,

the Toeplitz structure is often too restrictive to model the covariance matrix of regression errors.

In other words, we may need to assume that the errors in the linear model are not stationary.

To perform time series analysis, going beyond stationarity often entails some form

of local stationarity, a concept that was pioneered by Priestley [1988] and Dahlhaus [1997].

Examples include the time-varying coefficient models, e.g. Giraitis et al. [2014], and Dahlhaus

and Subba Rao [2006], as well as nonparametric locally stationary setups, e.g. Das and Politis

[2021], Dahlhaus et al. [2019], Zhou [2014], and Dette and Wu [2022]. Zhang and Wu [2021]

introduced a special form of nonparametric locally stationary process and Dahlhaus et al. [2019]

derived the law of large number and the central limit theorem for that process. Besides, Wu

and Zhou [2011] introduced a Gaussian approximation theorem for the partial sum process of

another type of non-stationary process.

In this section, we would like to introduce a new class of non-stationary random variables,

called (m,α)−short range dependent random variables that are not (necessarily) locally station-

ary. Specifically, this section provides a Gaussian approximation theorem for linear combinations

of those random variables. Analyzing linear combinations of random variables is important in

many statistical application, such as linear regression, non-linear regression, time series, etc.
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Therefore, this section should be helpful to readers with different backgrounds.

Suppose ei, i ∈ Z are independent (non necessarily identically distributed) random vari-

ables. Using these, we may define a new set of random variables εi, i = 1,2, ...,n by the relation

εi = gi(...,ei−2,ei−1,ei) (3.2)

where gi is a measurable function for each i; note that gi can vary with respect to different i.

Define Fi as the σ−field generated by ...,ei−2,ei−1,ei; hence, εi is Fi measurable. Consider

independent random variables e†
i , i ∈ Z such that e†

i has the same distribution as ei for any i. Also

assume that the sequence e†
i , i ∈ Z is independent to the sequence ei, i ∈ Z.

Define

εi, j =


gi(...,ei− j−2,ei− j−1,e

†
i− j,ei− j+1, ...,ei−1,ei) for j ≥ 0

εi for j < 0
(3.3)

and note that εi, j has the same marginal distribution as εi. For any j ≥ 0, define Fi, j as the

σ−field generated by ei− j,ei− j+1, ...,ei. Let δi, j,m = ‖εi− εi, j‖m; clearly, δi, j,m = 0 for j < 0.

We are now ready to define a new class of non-stationary random variables that are not

(necessarily) locally stationary and may be helpful in general regression settings.

Definition 2 ((m,α)−short range dependent random variables). Consider two constants m≥ 2

and α > 1. We say the sequence {εi}i=1,...,n is (m,α)−short range dependent if εi satisfies (3.2),

Eεi = 0 for any i = 1,2, ...,n, and ∀n ∈ N

sup
k=0,1,...

(k+1)α
∞

∑
j=k

max
i=1,2,...,n

δi, j,m = O(1)

and max
i=1,2,...,n

‖εi‖m = O(1)

(3.4)

In definition 2, the sequence {εi}i=1,...,n should be recognized as the nth row of a triangular array
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of random variables, i.e., εi may depend on n; for conciseness, the dependence of εi on n will not

be explicitly denoted.

Example 2 shows that definition 2 is not a special case of the locally stationary process

of Zhang and Wu [2021].

Example 2. Suppose ei, i ∈ Z are i.i.d. standard normal random variables. Set ε2i = e2i and

ε2i−1 = e2i−2e2i−1 for i ∈ Z. Then δi, j,m = 0 for j > 2, so εi is (m,α)−short range dependent

for any m, α . On the other hand, ‖e2i− e2ie2i−1‖m = ‖e2i‖m×‖1− e2i−1‖m, which does not

shrink to 0 as the sample size n→ ∞. In other words, eq. (1.2) in Zhang and Wu [2021] is not

satisfied.

Remark 4. In time series literature (e.g., section 1.2 in Reinsel [1993]), εi is considered to be

causal, i.e., εi does not depend on the future innovations e j with j > i. Wu [2005] introduced the

form (3.2), but assumed that the ei in (3.2) were i.i.d. and gi did not depend on the index i, which

made εi stationary. The assumptions used in Wu and Zhou [2011] was similar to definition 2.

However, they assumed that gi in (3.2) was fixed, while we allow gi to change with respect to the

sample size n. On the other hand, the locally stationary condition(e.g., eq.(1.2) in Zhang and Wu

[2021]) assumed that

εi = g
(

i
n
, ...,ei−1,ei

)
where g(t, ·) is a continuous function in t (3.5)

but our work does not require this continuity.

From corollary C.9 in Øksendal [2003], it follows that

εi = lim
j→∞

Eεi|Fi, j = Eεi|Fi,0 +
∞

∑
j=1

(
Eεi|Fi, j−Eεi|Fi, j−1

)
(3.6)

almost surely. Moreover, lim j→∞ ‖εi−Eεi|Fi, j‖m = 0. Besides,

‖Eεi|Fi, j−Eεi|Fi, j−1‖m = ‖E(εi− εi, j)|Fi, j‖m ≤ ‖εi− εi, j‖m ≤ max
i=1,...,n

δi, j,m (3.7)
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so definition 2 implies

sup
i=1,...,n,k≥1

(k+1)α
∞

∑
j=k
‖Eεi|Fi, j−Eεi|Fi, j−1‖m = O(1) (3.8)

The first lemma is similar to Whittle [1960], which bounds the moments of linear forms of εi.

Lemma 2. Suppose εi, i = 1, ...,n are (m,α)−short range dependent random variables with

constants m≥ 2 and α > 1.

(i). There exists a constant C only depending on m such that

‖
n

∑
i=1

aiεi‖m ≤C

√
n

∑
i=1

a2
i for ∀ai ∈ R (3.9)

(ii). In particular, we have

‖ max
i=1,...,p

|
p

∑
j=1

ai jε j| ‖m ≤Cp1/m max
i=1,...,p

√
n

∑
j=1

a2
i j for ∀ai j ∈ R (3.10)

Define Σ = {σi j}i, j=1,...,n such that σi j = Eεiε j. If m≥ 2, then lemma 2 implies

|
n

∑
i=1

n

∑
j=1

aia jσi j|= ‖
n

∑
i=1

aiεi‖2
2 ≤ ‖

n

∑
i=1

aiεi‖2
m ≤C

n

∑
i=1

a2
i (3.11)

with a constant C; recall that the value of the constant C may be different in different places. So

the largest eigenvalue of Σ has order O(1). Besides, for i > j

|Eεiε j|= |Eε j
(
εi−Eεi|Fi,i− j−1

)
| ≤ ‖ε j‖2×‖εi−Eεi|Fi,i− j−1‖2

≤ ‖ε j‖m×
∞

∑
s=i− j

‖Eεi|Fi,s−Eεi|Fi,s−1‖m ≤
C

(1+ i− j)α

(3.12)

for another constant C. Therefore, definition 2 implies that the covariance of εi exhibits a

polynomial decay with respect to the lag |i− j|.
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We will now derive a Gaussian approximation theorem for linear combinations of εi,

i.e., ∑
n
j=1 ai jε j with ai j ∈ R, i = 1, ..., p1, j = 1, ...,n. In a classical central limit theorem (e.g.,

theorem 1.15 in Shao [2003]), each term ai jε j in the summation is assumed to be negligible. Our

work also requires this condition.

Lemma 3 (Gaussian approximation theorem). Suppose ε1, ...,εn are (m,α)−short range depen-

dent random variables with m > 6 and α > 1. Define Σ = {Eεiε j}i, j=1,...,n, suppose ∃ a constant

cΣ > 0 such that Σ’s smallest eigenvalue is greater than cΣ for any n. Let ai j, i = 1, ..., p1, j =

1, ...,n be real numbers with p1 = O(1). Suppose ∃ two constants 0 < c ≤ C < ∞ such that

c ≤ ∑
n
j=1 a2

i j ≤ C for i = 1, ..., p1; and a∗ = maxi=1,...,p1, j=1,...,n |ai j| = o(n−1/4 log−z(n)) with

z = max
(9

2 ,
3α

2α−2

)
. Then

sup
x∈R
|Prob

(
max

i=1,...,p1
|

n

∑
j=1

ai jε j| ≤ x

)
−Prob

(
max

i=1,...,p1
|

n

∑
j=1

ai jξ j| ≤ x

)
|= o(1) (3.13)

where ξ1, ...,ξn have joint normal distribution with Eξi = 0 and Eξiξ j = Eεiε j for i, j = 1, ...,n.

Notably, 1/
√

n = O(a∗). Otherwise the condition ∑
n
j=1 a2

i j ≥ c cannot be satisfied.

Finally, we would like to present a method that estimates the variances and covariances

of linear combinations ∑
n
j=1 ai jε j. If εi are i.i.d., this problem is quite simple. For example, we

can estimate the variance of εi through σ̂2 = 1
n ∑

n
i=1 ε2

i and the estimator for Var(∑n
j=1 ai jε j) is

given by σ̂2
∑

n
j=1 a2

i j. However, εi may have different variances and covariances. In this case

Var(∑n
j=1 ai jε j) has a complex expression and we need a new method to estimate Var(∑n

j=1 ai jε j).

We will use a kernel-based method; a kernel function K(·) is defined as follows:

Definition 3 (kernel function). Let a function K(·) : R→ [0,∞) be symmetric, continuously

differentiable, K(0) = 1,
∫

R K(x)dx < ∞ and K(x) is decreasing on [0,∞). Define the Fourier

transformation of K as FK(x) =
∫

R K(t)exp(−2πi×tx)dt; here, i =
√
−1. Assume FK(x)≥ 0

for all x ∈ R and
∫

R FK(x)dx < ∞.

Following Shao [2010], we will call K(·) the kernel function. In the time series literature (e.g.,
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Politis [2003] or Politis and White [2004]), K(·) might alternatively be called a ‘covariance taper’

or a ‘lag-window’.

Remark 5. Definition 3 is a bit different than the usual definition of a kernel function (see e.g.,

Hall and Huang [2001]) but yields some desirable properties. According to Shao [2010] and

the Fourier inversion theorem (e.g. theorem 8.26 in Folland [1999]), ∀x = (x1, ...,xn)
T ∈ Rn and

any positive number k,

n

∑
s=1

n

∑
j=1

xsx jK
(

s− j
k

)
=
∫

R

n

∑
s=1

n

∑
j=1

xsx jFK(z)exp
(

2πiz
s− j

k

)
dz

=
∫

R
FK(z)|

n

∑
s=1

xs exp
(

2πizs
k

)
|2dz≥ 0

(3.14)

so the matrix
{

K
(

s− j
k

)}
s, j=1,2,...,n

is positive semi-definite. One possible kernel function is

K(x) = exp(−x2/2), whose Fourier transform is FK(x) =
√

2π exp(−2π2x2).

Lemma 4 (estimated covariance matrix). Suppose random variables εi, i = 1, ...,n are (m,α) -

short range dependent random variables with m > 6 and α > 1. Suppose {ai j}i=1,...,p1, j=1,...,n

satisfy assumptions in lemma 3. Suppose K(·) is a kernel function (i.e., satisfies definition 3) and

kn is a positive number such that kn→ ∞ as n→ ∞. Then

max
i1,i2=1,...,p1

|
n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2K
(

j1− j2
kn

)
ε j1ε j2−

n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2σ j1 j2|

= op(kn×n−1/4 log−z(n))+Op(vn)

(3.15)

where σ j1 j2 = Eε j1ε j2 and z = max
(9

2 ,
3α

2α−2

)
.

vn =


k1−α

n if 1 < α < 2

log(kn)/kn if α = 2

1/kn if α > 2

(3.16)
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Notice that

Cov(
n

∑
j=1

ai1 jε j,
n

∑
j=1

ai2 jε j) =
n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2σ j1 j2; (3.17)

so lemma 4 gives us a way to consistently estimate the covariances of the linear combinations

∑
n
j=1 ai jε j, i = 1,2, ..., p1 using the estimator

n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2K
(

j1− j2
kn

)
ε j1ε j2.

According to lemma 4, the above estimator will be consistent as long as we choose kn in such a

way that kn×n−1/4 log−z(n) = O(1).

We also want to stress that the factor kn is related to the notion of the bandwidth in

kernel methods like Fan and Gijbels [1995] and Paparoditis and Politis [2000]. However, the

usual notion is that the bandwidth converges to 0 whereas lemma 4 requires kn→ ∞ so that the

estimator will not ignore the long-term covariances (i.e., σ j1 j2 with large | j1− j2|). In this sense,

the factor kn can be understood as the inverse of the usual bandwidth; see also Politis [2003] for

an analogous construction.

3.4 Consistency and Gaussian approximation

This section goes back to the original problem: suppose the n× p fixed design matrix

X = {Xi j}i=1,...,n, j=1,...,p and the dependent variables y = (y1, ...,yn)
T satisfy a linear model

y = Xβ + ε, or equivalently yi =
p

∑
j=1

Xi jβ j + εi (3.18)

here β = (β1, ...,βp)
T is the parameter vector and ε = (ε1, ...,εn)

T are the errors. Classical linear

regression theory assumes that p is significantly smaller than the sample size n. However, in
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many situations p may have a comparable size to n, or even p > n. Meanwhile, we suppose the

errors are not i.i.d., i.e., Eε2
i may vary with i, Eεiε j may not equal 0 for i 6= j and Eεiε j may not

be a function of just the lag |i− j| indicating nonstationarity.

Suppose X has full rank, i.e., the rank r = min(p,n). Apply the thin singular value

decomposition(theorem 7.3.2 in Horn and Johnson [2013]) on X , i.e., X = PΛQT , P,Q is

respectively n× r, p× r orthonormal matrix, i.e., PT P = QT Q = Ir, the r−th identity matrix. If

p> r, define Q⊥ ∈Rp×(p−r) as the orthonormal counterpart of Q, so we have QQT +Q⊥QT
⊥= Ip,

the p−th identity matrix; QT
⊥Q= 0 and QT

⊥Q⊥= Ip−r. Λ= diag(λ1, ...,λr)
T is the r×r diagonal

matrix, λi > 0 for any i. Define θ = QQT β and θ⊥ = (θ⊥,1, ...,θ⊥,p)
T = Q⊥QT

⊥β . If p ≤ n,

Q⊥ does not exist and we define θ⊥ = 0, the p−dimensional vector with elements 0. With this

definition we have β = θ +θ⊥.

In order to estimate β , first consider a ridge regression method

β̃
† = (XT X +ρn,rIp)

−1XT y

implying β̃
†−β =−ρn,rQ(Λ2 +ρn,rIr)

−1QT
θ −θ⊥+Q(Λ2 +ρn,rIr)

−1
ΛPT

ε.

(3.19)

Following Bühlmann [2013] and Zhang and Politis [2020], we call the term −ρn,rQ(Λ2 +

ρnIr)
−1QT θ the ‘estimation bias’ and −θ⊥ the ‘projection bias’. Notably, when p ≤ n, the

projection bias vanishes. If p is large, then both estimation bias and projection bias will affect the

performance of the ridge regression estimator; see remark 2 and 3 in Zhang and Politis [2020]

and section 2.3 in Bühlmann [2013]. Worse still, the biases can have a larger order than the

stochastic error, making it hard to construct a confidence interval.

To avoid these problems, this section proposes the debiased estimator β̃ that diminishes

the biases; first define the Lasso estimator

β̃
lasso = (β̃ lasso

1 , ..., β̃ lasso
p )T = argmin

z∈Rp

1
2n
|y−Xz|22 +ρn,l|z|1. (3.20)
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Define θ̃
†
⊥= (θ̃ †

⊥,1, ..., θ̃
†
⊥,p)

T =Q⊥QT
⊥β̃ lasso if p > n and θ̃

†
⊥= 0 if p≤ n, and s = (s1, ...,sr)

T =

QT β (= QT θ). Then, define the debiased estimator β̃ = (β̃1, ..., β̃p)
T as

β̃ = β̃
† +ρn,rQ(Λ2 +ρn,rIr)

−1QT
β̃

† + θ̃
†
⊥

implying β̃ −β =−ρ
2
n,rQ(Λ2 +ρn,rIr)

−2QT
θ

+Q
(
(Λ2 +ρn,rIr)

−1 +ρn,r(Λ
2 +ρn,rIr)

−2)
ΛPT

ε + θ̃
†
⊥−θ⊥

or equivalently β̃i−βi =−ρ
2
n,r

r

∑
j=1

qi js j

(λ 2
j +ρn,r)2

+
r

∑
j=1

n

∑
l=1

qi j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
εl +(θ̃ †

⊥,i−θ⊥,i);

(3.21)

here P = {pi j}i=1,...,n, j=1,...,r and Q = {qi j}i=1,...,p, j=1,...,r. For a threshold bn > 0, define

β̂ = (β̂1, ..., β̂p)
T such that β̂i = β̃i×1|β̃i|>bn

(3.22)

In this paper, we call β̂ ‘the debiased and thresholded ridge regression estimator’. The assump-

tions for this section are presented below.

Assumptions

1. The fixed design matrix X has rank r = n∧ p. There exist constants cλ ,Cλ > 0 and

η ∈ (0,1/2] such that

Cλ n1/2 ≥ λ1 ≥ λ2 ≥ ...≥ λr ≥ cλ nη for sufficiently large n; (3.23)

here λ1, ...,λr are the singular values of X . In addition, maxi=1,...,n, j=1,...,p |Xi j|= O(1).

2. ε = (ε1, ...,εn)
T are (m,αε)− short range dependent random variables, i.e., ε sat-

isfies definition 2. Here m and αε are constants such that m > 3/η and αε > 1. Define

Σ = {σi j}i, j=1,...,n = EεεT , and assume ∃ a constant cΣ > 0 such that the smallest eigenvalue of

Σ is greater than or equal to cΣ.
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3. p = O(nαp) where αp is a constant such that αp > 0 and αp +3 < mη .

4. Define Nbn = {i = 1,2, ..., p : |βi|> bn}, assume |Nbn|= O(nαN ). αN is a constant

such that αN < 1
3 −

2αp
3m , αN < η− αp+1

m and αN ≥ 0. ρn,r =Cρ,r×nαr ; here αr is a constant

satisfying 0 < αr <
3η

2 −
αN

4 . Meanwhile, ρn,l = Cρ,l×n−αl ; here αl is a constant satisfying

3αN
2 ∨

3
m < αl <

1
2 −

αp
m . Cρ,r and Cρ,l are two constants such that 0 <Cρ,r,Cρ,l < ∞.

5. (Restricted eigenvalue condition) The restricted eigenvalue condition holds true, i.e.,

|Xz|2 ≥ cλ n
1
2 |z|2 for all z ∈A =

{
z = (z1, ...,zp)

T ∈ Rp : ∑
i 6∈Nbn

|zi| ≤ 3 ∑
i∈Nbn

|zi|

}
(3.24)

Moreover, assume |β |∞ = O(1) and bn =Cb×n−αb . Here Cb is a constant such that 0 <Cb < ∞

and 0 < αb < (η− αp+1
m )∧ (αl− αN

2 ). Assume that there exists a constant 0 < cb < 1 such that

mini∈Nbn
|βi|> bn/cb and |βi|= 0 for i 6∈Nbn .

We will call ρn,r,ρn,l and bn the ‘hyperparameters’ for β̂ . We will introduce a method to fine-tune

these hyperparameters in section 3.6.1.

Intuitively, we require that the design matrix X is well-behaved, the parameter vector

β is sparse and the errors ε have a finite high order moment. Our work assumes fixed design,

i.e., no randomness involved in the design matrix X . However, in the case of random design,

we would need to assume that the design matrix is independent of the errors ε; in that case, the

results in our paper would still hold true after conditioning on X .

Remark 6. To show that Assumption 1 is achievable, suppose Xi j are generated by i.i.d. random

variables with mean 0, variance 1 and finite 4th moment. Assume limn→∞ p/n = z ∈ (0,∞) exists.

Bai and Yin [1993] proved that the smallest non-zero eigenvalue of 1
nXT X tends to (1−√z)2

and the largest eigenvalue of 1
nXT X tends to (1+

√
z)2 almost surely. For the singular values of

X are the square roots of the eigenvalues of XT X. Then, Assumption 1 is achieved with η = 1/2

for sufficiently large n.
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Remark 7. If |β |∞ = O(1)(see section 3.2 for the definition of | · |∞), we have

|β |2 =
√

∑
i∈Nbn

β 2
i = O

(
n

1
2 αN

)
(3.25)

which allows us to discuss assumption 5, i.e., the restricted eigenvalue condition. This condition

was presented in section 6.8 of Bühlmann and van de Geer [2011] and also in Raskutti et al.

[2010] as a sufficient condition to prove the consistency of the Lasso estimator. As we use the

Lasso to diminish the projection bias, we also need this condition to maintain the consistency

of Lasso. Notably, eq.(3.24) is not the only form of the restricted eigenvalue condition; see e.g.,

theorem 1 in Raskutti et al. [2010].

Note that Bühlmann [2013], Shao and Deng [2012], and Zhang and Politis [2020], all

applied ridge regression to fit a high dimensional linear model. However, Bühlmann [2013] only

fixed the projection bias while Zhang and Politis [2020] mainly handled the estimation bias.

Besides, those works supposed the errors in the linear model were independent. Our paper takes

both projection and estimation bias into consideration, and also allows the errors to be correlated.

We present the (model-selection) consistency result in theorem 5.

Theorem 5. Suppose assumptions 1 to 5 hold true. Define N̂bn = {i = 1,2, ..., p : |β̃i| > bn},

then we have

|β̃ −β |∞ = Op

(
n

αp
m −η +n

αN
2 −αl

)
and Prob

(
N̂bn 6= Nbn

)
→ 1 (3.26)

as the sample size n→ ∞.

Remark 8. In the online supplement (lemma B.3.1), we prove the consistency of the Lasso

estimator, i.e.,

|β̃ lasso−β |2 = Op(n
αN

2 −αl) and |β̃ lasso−β |1 = Op(nαN −αl) (3.27)
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If p≤ n and X has rank p, then |θ̃ †
⊥−θ⊥|∞ = 0 and eq.(3.26) can be improved to

|β̃ −β |∞ = Op

(
n

αp
m −η

)
(3.28)

We now turn to estimating the linear combinations of β , i.e.,

ζ = Mβ , where M is a given p1× p linear combination matrix. (3.29)

An intuitive estimator for ζ is ζ̃ † = (ζ̃ †
1 , ..., ζ̃

†
p1
)T = Mβ̂ . Define c†

i j = ∑k∈Nbn
mikqk j. Assume

N̂bn = Nbn; then the difference between ζ̃ † and ζ becomes

ζ̃
†
i −ζi = ∑

j∈Nbn

mi j(β̃ j−β j) =−ρ
2
n,r

r

∑
k=1

c†
iksk

(λ 2
k +ρn,r)2

+
r

∑
k=1

n

∑
l=1

c†
ik plk

(
λk

λ 2
k +ρn,r

+
ρn,rλk

(λ 2
k +ρn,r)2

)
εl + ∑

j∈Nbn

mi j(θ̃
†
⊥, j−θ⊥, j)

(3.30)

If assumption 2 holds true and ∑
r
k=1 c†2

ik 6= 0, then

CΣ ≥
Var

(
∑

r
k=1 ∑

n
l=1 c†

ik plk

(
λk

λ 2
k +ρn,r

+
ρn,rλk

(λ 2
k +ρn,r)2

)
εl

)
∑

r
k=1 c†2

ik

(
λk

λ 2
k +ρn,r

+
ρn,rλk

λ 2
k +ρn,r

)2 ≥ cΣ (3.31)

while from Cauchy inequality

|
r

∑
k=1

c†
iksk

(λ 2
k +ρn,r)2 | ≤

√√√√ r

∑
k=1

c†2
ik λ 2

k

(λ 2
k +ρn,r)2 ×

√
r

∑
k=1

s2
k

λ 2
k × (λ 2

k +ρn,r)2 (3.32)

Eq.(3.31) and (3.32) ensure that the estimation bias ρ2
n,r ∑

r
k=1

c†
iksk

(λ 2
k +ρn,r)2 can have a smaller order

than the stochastic error ∑
r
k=1 ∑

n
l=1 c†

ik plk

(
λk

λ 2
k +ρn,r

+
ρn,rλk

(λ 2
k +ρn,r)2

)
εl under some conditions. But

the order of the projection error ∑ j∈Nbn
mi j(θ̃

†
⊥, j−θ⊥, j) is difficult to control, and can be larger

than the order of the stochastic error.
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Constructing a consistent confidence interval for the Lasso estimator is difficult; see e.g.,

Zhang and Zhang [2014] and Celentano et al. [2020]. So we aim to find an estimator of ζ whose

projection error has smaller order than the stochastic error. Define V = {Vi j}i, j=1,...,p = Q⊥QT
⊥ if

p> n and 0 if p≤ n. Define the estimator ζ̂i =∑
p
j=1 mi jν j× β̂ j+∑ j∈N̂bn

mi j×(1−ν j)β̃
lasso
j and

the term ci j = ∑k∈Nbn
mikνkqk j. Here ν j ∈R, j = 1, ..., p are parameters to derive. If N̂bn =Nbn ,

ζ̂i−ζi = ∑
j∈Nbn

mi jν j× (β̃ j−β j)+ ∑
j∈Nbn

mi j(1−ν j)× (β̃ lasso
j −β j)

=−ρ
2
n,r

r

∑
j=1

ci js j

(λ 2
j +ρn,r)2 +

r

∑
j=1

n

∑
l=1

ci j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
εl

+ ∑
j∈Nbn

mi j(ν jVj j +1−ν j)× (β̃ lasso
j −β j)+ ∑

j∈Nbn

∑
k 6= j

mi jν jVjk(β̃
lasso
k −βk)

(3.33)

In practice, |Vjk|, j 6= k are always small but Vj j can be significantly larger than 0. We choose ν j

such that ν j×Vj j +1−ν j = 0, which implies ν j =
1

1−V j j
. Correspondingly

ci j = ∑
k∈Nbn

mik

1−Vkk
qk j and ζ̂i =

p

∑
j=1

mi j

1−Vj j
× β̂ j− ∑

j∈N̂bn

mi jVj j

1−Vj j
β̃

lasso
j (3.34)

Notably, if p ≤ n and the design matrix X has rank p, then ν j = 1 and ζ̂i = ζ̃
†
i . We introduce

extra assumptions needed to derive the asymptotic distribution of ζ̂i.

Additional assumptions I:

6. Define

ci j = ∑
k∈Nbn

mikqk j

1−Vkk
, M = {i = 1,2, ..., p1 :

r

∑
j=1

c2
i j > 0}

wil =
r

∑
j=1

ci j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)

and τi =

√√√√ r

∑
k=1

c2
i j

(
λk

λ 2
k +ρn,r

+
ρn,kλk

(λ 2
k +ρn,r)2

)2

+
1
n

(3.35)
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Assume M is not empty, p1 = O(1) and

max
i∈M ,l=1,...,n

|wil

τi
|= o(n−1/4 log−z(n)) with z =

9
2
∨ 3αε

2αε −2
(3.36)

Besides, assume ∃ constants 0 < cM <CM < ∞ such that

cM ≤
r

∑
k=1

c2
ik ≤CM for all i ∈M (3.37)

7. Recall V = {Vi j}i, j=1,...,p = Q⊥QT
⊥. Assume Vj j < 1 for all j and

max
k=1,...,p,i=1,...,p1

| 1
τi

∑
j∈Nbn , j 6=k

mi jVjk

1−Vj j
|= o(nαl−αN ) (3.38)

Remark 9. Notably, if p≤ n and X has full rank, then Vjk = 0 and assumption 7 is automatically

satisfied. To explain assumption 6, adopt notations as in assumption 5; we then have

n

∑
l=1

w2
il =

r

∑
k=1

c2
i j

(
λk

λ 2
k +ρn,r

+
ρn,kλk

(λ 2
k +ρn,r)2

)2

< τ
2
i (3.39)

Intuitively, eq. (3.36) requires all terms in the summation ∑
n
l=1

wil
τi

εl to be negligible.

Theorem 6. Suppose assumptions 1 to 7 hold true. Define

ĉi j = ∑
k∈N̂bn

mikqk j

1−Vkk
and τ̂i =

√√√√ r

∑
k=1

ĉ2
i j

(
λk

λ 2
k +ρn,r

+
ρn,rλk

(λ 2
k +ρn,r)2

)2

+
1
n

(3.40)

Then

sup
x∈R
|Prob

(
max

i=1,...,p1

|ζ̂i−ζi|
τ̂i

≤ x

)
−Prob

(
max
i∈M
|ξi| ≤ x

)
|= o(1); (3.41)

here ξi, i ∈M are joint normal random variables such that Eξi = 0 and

Eξi1ξi2 =
1

τi1τi2

n

∑
l1=1

n

∑
l2=1

σl1l2×wi1l1wi2l2, i1, i2 ∈M . (3.42)
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The added term 1/n in τ̂i is introduced just to ensure τ̂i > 0. If we can calculate C1−α , the 1−α

quantile of maxi∈M |ξi|, then the set

{
x = (x1, ...,xp1)

T ∈ R : max
i=1,...,p1

|xi− ζ̂i|
τ̂i

≤C1−α

}
(3.43)

will be a consistent confidence region for ζ = Mβ . Despite the fact that the distribution

of maxi∈M |ξi| does not have a closed-form formula, the ξi, i ∈M are joint normal random

variables. Therefore, we can use a computer to generate pseudo-random numbers, simulate ξi

many times, and calculate C1−α through Monte Carlo simulation. The remaining problem is that

the covariance matrix of ξi is unknown.

Since εi, i = 1,2, ...,n do not have identical distribution, estimating a specific σi j = Eεiε j,

i.e., for some given values of i, j, is hopeless. Fortunately, lemma 4 tells us that estimating the

covariances of the linear combinations ∑
n
l=1

wilεl
τi

is still possible; this idea is what drives the

well-known heteroscedastic standard errors of White [1980].

In the next section, we adopt the idea of lemma 4 and present a consistent estimator

for the covariance matrix of ξi, i ∈M . Moreover, we will provide a bootstrap algorithm that

automatically generates the desired confidence intervals without analytical calculations.

3.5 Bootstrap confidence intervals

This section focuses on constructing a simultaneous bootstrap confidence interval for the

entries of ζ = Mβ . Before presenting our work, we introduce an additional assumption.

Additional assumptions II:

8. Suppose K(·) : R→ [0,∞) is a given kernel function, i.e., K(·) satisfies definition 3,
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and kn > 0 is a given bandwidth sequence satisfying

kn→ ∞,
kn

n1/4 = O(1), nαb+
αp+1

m −η
√

kn→ 0

kn×n
2
m+

αN
2 −η → 0, kn×n

1
m+αN −αl → 0 as n→ ∞

(3.44)

where αb is defined in assumption 5 and αN ,αl are defined in assumption 4.

Eq. (3.44) omits the logz(n) in eq. (3.15) for convenience. However, logz(n) is negligible

compared to na(here a > 0), so assumption 8 is not very restrictive. We define the conditional

probability and expectation

Prob∗ (·) = Prob(·|y) and E∗·= E(·|y). (3.45)

In the bootstrap literature, these are recognized as ‘the probability and the expectation in the

bootstrap world’; see e.g., Cheng and Huang [2010]. Theorem 7 provides a consistent estimator

for the covariance matrix {Eξiξ j}i, j∈M .

Theorem 7. Suppose assumptions 1 to 8 hold true. Define ε̂ = (ε̂1, ..., ε̂n)
T such that ε̂i =

yi−∑
p
j=1 Xi jβ̂ j. Define the matrix Γ̂ = {Γ̂i j}i, j=1,...,p1 by

Γ̂i j =
1

τ̂iτ̂ j

n

∑
l1=1

n

∑
l2=1

K
(

l1− l2
kn

)
ε̂l1 ε̂l2× ŵil1ŵ jl2 (3.46)

where

ŵil =
r

∑
j=1

ĉi j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
(3.47)

and ĉi j, τ̂i are defined in (3.40). Then we have

max
i, j=1,...,p1

|Γ̂i j−
1

τiτ j

n

∑
l1=1

n

∑
l2=1

σl1l2×wil1w jl2|= op(1). (3.48)
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Theorem 7 adopts the idea of lemma 4, i.e., estimates the covariances of the linear

combinations ∑
n
l=1

wilεl
τi

with a kernel estimator. However, it is more complex than lemma 4 since

wil needs to be estimated, and the estimated errors ε̂i does not equal the real errors εi.

Although we have the consistent estimator Γ̂ for {Eξiξ j}i, j∈M , computing Γ̂ is still a

tedious undertaking in practice. Therefore, we hope to find an algorithm that is easy to implement

and can automatically generate the desired simultaneous confidence intervals and/or perform

hypothesis testing for ζ . Some form of resampling may be the way out; see e.g., Politis et al.

[1999] and Zhang and Zhang [2014]. For example, the dependent wild bootstrap algorithm

introduced by Shao [2010] has wide applicability in dependent data settings. Conley et al. [2019]

applied the dependent wild bootstrap on linear regression while Zhang and Politis [2021b] used

this algorithm for statistical inference on autoregressive models. We will focus on testing

null: Mβ = ψ versus alternative: Mβ 6= ψ

where M is a given p1× p matrix and ψ is a given vector.
(3.49)

Algorithm 3 (Dependent wild bootstrap). Input: Design matrix X, dependent variable vector y,

the new linear combination matrix M, the ridge regression parameter ρn,r, the Lasso parameter

ρn,l , threshold bn > 0, the nominal coverage probability 1−α,0 < α < 1, the kernel function

K(·), the bandwidth kn > 0 and the number of bootstrap replicates B.

Additional input for testing: ψ ∈ Rp1 , the expected value of ζ = Mβ under the null.

Algorithm steps:

1. Calculate β̂ in (3.22), ζ̂ in (3.34) and τ̂i in (3.40). Then derive ε̂ = (ε̂1, ..., ε̂n)
T such

that ε̂i = yi−∑
p
j=1 Xi jβ̂ j. Define V = {Vi j}i, j=1,...,p = Q⊥QT

⊥ if p > n and 0 if p≤ n. Calculate

β̂⊥ =V β̂ .

2. Generate jointly normal random variables ε1, ...,εn such that Eεi = 0 and Eεiε j =
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K
(

i− j
kn

)
. Define ε∗ = (ε∗1 , ...,ε

∗
n )

T such that ε∗i = ε̂i× εi. Set y∗ = X β̂ + ε∗. Then calculate

β̃
†∗ = (XT X +ρn,rIp)

−1XT y∗

β̃
∗ = (β̃ ∗1 , ..., β̃

∗
p)

T = β̃
†∗+ρn,rQ(Λ2 +ρn,rIr)

−1QT
β̃

†∗+ β̂⊥

N̂ ∗
bn
= {i = 1,2, ..., p : |β̃ ∗i |> bn}

β̂
∗ = (β̂ ∗1 , ..., β̂

∗
p)

T such that β̂
∗
i = β̃

∗
i ×1i∈N̂ ∗

bn

ζ̂
∗ = (ζ̂ ∗1 , ..., ζ̂

∗
p1
)T such that ζ̂

∗
i =

p

∑
j=1

mi j

1−Vj j
× β̂

∗
j − ∑

j∈N̂ ∗
bn

mi jVj j

1−Vj j
β̂ j

(3.50)

3. Define

ĉ∗i j = ∑
k∈N̂ ∗

bn

mikqk j

1−Vkk
and τ̂

∗
i =

√√√√ r

∑
k=1

ĉ∗2i j

(
λk

λ 2
k +ρn,r

+
ρn,kλk

(λ 2
k +ρn,r)2

)2

+
1
n

(3.51)

then calculate

δ
∗
b = max

i=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

(3.52)

4. Repeat step 2 to 3 for b = 1,2, ...,B. Compute δ ∗1 , ...δ
∗
B from (3.52), and let C∗1−α

denote the empirical 1−α quantile of the values δ ∗1 , ...δ
∗
B .

5.a (constructing confidence interval) The 1−α simultaneous confidence intervals for

ζ = (ζ1, ...,ζp1)
T are given by

{
x = (x1, ...,xp1)

T ∈ Rp1 : max
i=1,2,...,p1

|xi− ζ̂i|
τ̂i

≤C∗1−α

}
(3.53)

5.b (hypothesis testing) Reject the null hypothesis at level α if

max
i=1,2,...,p1

|ψi− ζ̂i|
τ̂i

>C∗1−α . (3.54)
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Remark 10. Although in practice the bootstrap is carried out with B being a large —but finite—

number, the theoretical analysis assumes B→ ∞. If B→ ∞, theorem 1.2.1 in Politis et al.

[1999] shows that C∗1−α
converges to c∗1−α

, the 1−α quantile of the conditional distribution

Prob∗
(

maxi=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

≤ x
)

, i.e.,

c∗1−α = inf

x ∈ R : Prob∗

 max
i=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

≤ x

≥ 1−α

 (3.55)

Therefore, in order to prove the consistency of algorithm 3, it suffices to show

sup
x∈R
|Prob∗

 max
i=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

≤ x

−Prob
(

max
i∈M
|ξi| ≤ x

)
|= op(1); (3.56)

see theorem 6 for the meaning of ξi.

Theorem 8 proves the consistency of algorithm 3.

Theorem 8. Suppose assumptions 1 to 8 hold true. Then eq. (3.56) holds, where M and ξi

are defined in theorem 6. Consequently, as both n and B tend to ∞, the confidence intervals

and hypothesis test of algorithm 3 have asymptotically correct coverage and significance level

respectively.

3.6 Numerical experiment

This section presents several numerical experiments to illustrate the finite sample perfor-

mance of the debiased and thresholded ridge regression estimator as well as the wild bootstrap

algorithm 3. In addition, we apply the estimator and the algorithm to a real-life data set.

3.6.1 Selection of hyper-parameters

In order to use the debiased and thresholded ridge regression method (3.22) and the

bootstrap algorithm 3, statisticians need to fine-tune the ridge regression parameter ρn,r, the
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Lasso parameter ρn,l , the threshold bn and the bandwidth kn. E.g., ρn,r,ρn,l and bn can be chosen

by cross-validation, i.e., separate the design matrix X and the dependent variables y into disjoint

training set (Xtrain,ytrain) and validation set (Xvalid,yvalid); for each choice of parameters, use

(Xtrain,ytrain) to fit β̂ ; then calculate
∣∣∣yvalid−Xvalidβ̂

∣∣∣
2
. The optimal parameters should minimize∣∣∣yvalid−Xvalidβ̂

∣∣∣
2
. See Arlot and Celisse [2010] for a further introduction on the cross validation

methods.

Grid search on the parameter tuple (ρn,r,ρn,l,bn) is time-consuming, so we adopt a

two-stage search, i.e., first fit the Lasso regression (3.20) and choose ρ∗n,l that minimizes |yvalid−

Xvalidβ̃ lasso|2. Fixing ρn,l at the value ρ∗n,l , perform grid search on the parameter tuple (ρn,r,bn)

to find ρ∗n,r and b∗n that minimize |yvalid−Xvalidβ̂ |2. According to the simulations, this method

selects suitable parameters.

Fine-tuning kn is more challenging. Politis and White [2004] introduced an automatic

bandwidth selection algorithm; Shao [2010] applied this algorithm for the dependent wild

bootstrap. 10. and Kim and Sun [2011] considered selecting bandwidth in the HAC estimation

setting. Following Shao [2010], this paper applies Politis and White’s algorithm Politis and

White [2004] on the fitted residuals ε̂ = (ε̂1, ..., ε̂n)
T = y−X β̂ to select kn; to do this, we use

R-Package ‘np’ Hayfield and Racine [2008] that implements the selection algorithm. However,

ε is not assumed to be stationary in our setting; so this algorithm may result in a suboptimal

bandwidth.

3.6.2 Simulated Data

The numerical experiment fits the linear model y = Xβ + ε . Here, X is generated by i.i.d.

standard normal random variables, and is fixed in each experiment. Parameter β = (β1, ...,βp)
T

is generated by the following scheme

βi = 0.1× (i+5) for i = 1,2, ...,15 and 0 otherwise. (3.57)
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(a) (b)

Figure 3.1. Figure 3.1a plots an observation of the errors ε and figure 3.1b plots the heatmap
for the first 10× 10 elements of ε’s covariance matrix. Values in each grid represent the
corresponding covariance. The covariance matrix is calculated by simulating 40000 samples of
the random vector ε = (ε1, ...,εn)

T .

Define ei, i ∈ Z as i.i.d. standard normal random variables. Choose a = (a1,a2, ...,an)
T such

that ai = e2
i e2

i−1− 1. Then define ε = (ε1, ...,εn)
T = (1/4)×Ha(the factor 1/4 avoids ε’s

variances from being too large). Here H = (hi j)i, j=1,...,n, hi j = 0 for j > i, hii = 1, hi j is

generated by uniform distribution in [0.6,0.9] for i− 10 ≤ j < i and hi j = si j/(i− j)3 for

j < i−10. si j is generated by uniform distribution on [−1,1]. H is fixed in each experiment. For

Eai = Ee2
i ×Ee2

i−1−1 = 0, we have Eε = 0.

Note that the ais are not white noise since Eaiai−1 = 2. Moreover, the εi are not a stretch

of a linear process with independent increments because of the nonlinearity of the ais, and are

not stationary because of H. Figure 3.1 plots an observation of the errors ε , and the first 10×10

elements of ε’s covariance matrix. In figure 3.1a, the errors demonstrate strong dependence,

i.e., εi+1 is likely to be large if εi is large. Figure 3.1b shows that ε’s covariance matrix is not a

Toeplitz matrix, so the distribution of ε is not stationary.

The linear combination matrix M is generated by i.i.d. normal random variables with

mean 0.5 and variance 0.25, and is fixed in each experiment. The hyper-parameters ρn,r,ρn,l,

bn,kn are tuned by the methods described in section 3.6.1. The sample size n and the dimension

p vary in each experiment. We present the information on our experiments in table 3.1.

Simulation result The performance of the debiased and thresholded ridge regression
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Table 3.1. Experiment parameters. ‘No.’ abbreviates ‘the experiment number’. Denote
ρn,r,ρn,l,bn,kn the selected ridge parameter, the selected Lasso parameter, the selected threshold
and the selected bandwidth respectively as defined in section 3.4. Denote λr the smallest singular
value of the design matrix X . The number of linear combinations p1 is 15.

No. sample size dimension ρn,r ρn,l bn kn λr
1 300 400 26.908 0.104 0.353 13.720 2.694
2 600 800 18.288 0.118 0.422 16.994 3.614
3 1200 1600 19.859 0.184 0.470 28.704 5.208
4 300 200 5.305 0.202 0.288 14.943 3.299
5 600 400 11.544 0.095 0.408 12.182 4.667
6 1200 800 69.568 0.109 0.360 21.602 6.317

estimator (thsDeb, defined in (3.22)) and the bootstrap method is presented in figure 3.2, 3.3

and table 3.2 .The alternative methods are Lasso, Ridge regression, the ElasticNet, the threshold

Lasso (thsLas) and the threshold ridge regression (thsRid); see Tibshirani [2011] and Zou and

Hastie [2005]. We refer to Chatterjee and Lahiri [2011] and Meinshausen and Yu [2009] for the

threshold Lasso, and Shao and Deng [2012] for the threshold ridge regression.

Apart from ζ̂i (defined in (3.34)), we are also interested in ζ̃
†
i = ∑

p
j=1 mi jβ̂ j, named

‘thsRaw’ in this section. Compared to ζ̂i, ζ̃
†
i is a natural predictor for the linear combination

ζi = ∑
p
j=1 mi jβ j. However, figure 3.2 shows that ζ̃

†
i has a larger error than ζ̂i.

This section uses the following indices to evaluate the performance of linear regression

methods: the probability of model misspecification Prob(N̂bn 6= Nbn); the average size of model

misspecification |N̂bn∆Nbn |(∆ represents the symmetric difference, i.e., A∆B = (A−B)∪ (B−

A)); the average false discovery rate |N̂bn−Nbn |
max(1,|N̂bn |)

and the average prediction loss |X β̂ −Xβ |2; see

Shao and Deng [2012]. These terms are calculated over 1000 simulations.

The numerical experiments focus on two situations, i.e, p > n (experiment 1 - 3) and

p < n (experiment 4 - 6). When p > n, the threshold Lasso has good performance. However,

statistical inference (i.e., constructing confidence intervals or performing hypothesis testing)

based on the threshold Lasso estimator is quite difficult. Chatterjee and Lahiri [2011] proposed

a bootstrap algorithm to generate a consistent confidence interval when the dimension of the

linear model is fixed. However, to the best of our knowledge, there has not been a discussion of

this problem under the high dimensional setting. On the other hand, statisticians can generate
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consistent confidence intervals for the ridge regression (e.g., Bühlmann [2013]) and the Lasso

estimator(e.g., Zhang and Zhang [2014], Zhang and Cheng [2017]). However, the performance

of these methods is significantly worse compared to the threshold Lasso and the debiased and

thresholded ridge regression that is the subject of this paper.

The debiased and thresholded ridge regression estimator has moderate probability of

model misspecification. Even if the estimator selects a wrong model, table 3.2 shows that the

deviation between N̂bn and Nbn is small on average. Moreover, in figure 3.2 we see that the

proposed method has a smaller estimation error than the threshold Lasso, which makes this

method competitive. Besides, the modification (3.34) can further decrease the estimation error.

Similar things happen when p < n, i.e., the threshold Lasso and the debiased and threshold ridge

regression have small estimation errors. Notably, when p < n, the modified estimator (3.34)

equals ζ̃ † = Mβ̂ . This observation coincides with section 3.4.

We also test algorithm 3 and present the results in table 3.2 . Simulations show that the

bootstrap algorithm 3 can generate a simultaneous confidence interval with desired coverage

probability.

3.6.3 Real-life data

We analyze the ‘Market data’ that can be downloaded from Fan [Accessed: 2022]; see

section 8.8 in Fan et al. [2020] and Chen et al. [2018] for a description. The response y represents

the daily number of customers, and each column of the design matrix X records the sale amount

of a product. The dataset has 464 observations and 6398 features (products). The response y and

the design matrix X are standardized so that y and each column of X have (sample) mean 0 and

variance 1.

For computational reasons, we explore the relation between y and just the first 2000

features. The first 450 observations will be used to train the model and the last 14 observations

will serve as the test set. We select hyperparameters as described in Section 3.6.1, and present

the selected values in table 3.3 . We evaluate the estimator’s performance through the prediction
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 3.2. The estimation errors of various linear regression algorithms. The upper figure
plots the estimation error |Mβ̂ −Mβ |2 with respect to different ridge(Lasso) parameter ρn,r(for
the Lasso (3.20) and the threshold Lasso, we recognize the x-axis as 2n×ρn,l , n is the sample
size. Otherwise, ρn,l will be too small to be plotted on the figure.). The lower figure plots
the estimation error of the proposed linear regression method (3.22) with respect to different
threshold bn. The dots represent the optimal parameters selected by ten-fold cross validation.
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Table 3.2. Performance of various linear regression algorithms. The terms are calculated
through 1000 simulations.‘Prob’ represents Prob(N̂bn 6= Nbn), ‘FDR’ abbreviates ‘the false
discovery rate’ and ‘coverage’ abbreviates ‘the coverage probability of the confidence interval
(3.53)’. ‘length’ represents the average length of the confidence interval (3.53), which equals
2C∗1−α

. We select the nominal coverage probability 1−α = 90%.

No Algorithm Prob |N̂bn ∆Nbn | FDR Prd-loss coverage length
1 thsDeb 71.4% 6.80 0.21 23.70 91.2% 9.678

Lasso 100% 39.16 0.70 19.39
thsLas 54.6% 4.22 0.13 19.17
Ridge 100% 174.86 0.92 31.10
thsRid 92.1% 6.67 0.20 38.46
ElasticNet 100% 69.70 0.82 23.96

2 thsDeb 53% 3.20 0.11 22.98 92.8% 20.843
Lasso 100% 27.95 0.59 22.28
thsLas 36.9% 1.35 0.04 17.70
Ridge 100% 354.15 0.96 44.77
thsRid 98.2% 3.69 0.08 44.64
ElasticNet 100% 93.39 0.85 28.76

3 thsDeb 21.7% 0.29 0.0037 16.38 85.7% 8.850
Lasso 100% 56.71 0.75 23.16
thsLas 5.2% 0.08 0.0010 13.16
Ridge 100% 690.44 0.98 63.83
thsRid 78.5% 1.04 0.0100 56.43
ElasticNet 100% 179.17 0.92 38.20

4 thsDeb 98.0% 13.51 0.40 27.91 90.6% 7.725
Lasso 95.8% 7.57 0.29 17.67
thsLas 81.7% 1.32 0.009 19.16
Ridge 100% 89.33 0.86 27.43
thsRid 81.8% 1.49 0.02 21.93
ElasticNet 100% 27.36 0.62 20.61

5 thsDeb 53.2% 2.54 0.10 23.08 96.9% 9.399
Lasso 100% 32.71 0.65 18.65
thsLas 47.4% 2.40 0.10 15.58
Ridge 100% 170.31 0.92 38.39
thsRid 42.0% 1.10 0.04 18.76
ElasticNet 100% 81.71 0.84 26.74

6 thsDeb 20.2% 0.46 0.024 16.62 96.9% 9.486
Lasso 99.9% 21.03 0.52 19.50
thsLas 7.5% 0.15 0.008 11.51
Ridge 100% 356.76 0.96 54.89
thsRid 11.6% 0.15 0.003 15.72
ElasticNet 100% 79.58 0.83 29.18
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(a) Experiment 5 (b) Experiment 6

Figure 3.3. The estimation errors of various linear regression algorithms for experiment 5 and 6.
The meaning of figures coincides with that of figure 3.2.

error (i.e., the test set 2-norm |ytest−Xtest β̂ |2, where the subscript ‘test’ represents the test set)

and the number of non-zero elements |N̂bn|(see theorem 5). Ideally, a good estimator should

have small prediction error and small |N̂bn |. Figure 3.4 plots the predicted responses on the test

set and the estimated autocorrelation function (ACF) of the fitted errors (i.e., y−X β̂ ). Since the

errors have non-trivial ACF, they should be considered dependent.

According to table 3.3 , the debiased and thresholded ridge regression estimator has the

smallest prediction error. Meanwhile, it maintains the model sparsity, i.e., it has small |N̂bn|. On

the other hand, despite the Lasso and the elasticnet having small prediction errors as well, they

tend to select a more complex model than the debiased and threshold ridge regression estimator.

Furthermore, as an illustration, we construct a simultaneous confidence interval for the

first 8 parameters, i.e., choose M = [I8,0]. Here I8 is the 8×8 identity matrix and 0 represents

the 8× (2000−8) matrix with elements 0. The result is demonstrated in table 3.4 . In algorithm

3, we estimate the parameters through (3.34), i.e., 1
1−Vii

β̂i− Vii
1−Vii

β̃ lasso
i ×1i∈N̂bn

instead of β̂i. So

β̂ does not lie in the center of the confidence interval in table 3.4.
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Table 3.3. Selected hyper-parameters(HP) of thsDeb and the test set performance of various
linear regression methods. The meaning of symbols and abbreviations coincide with table 3.1
and 3.2. Lasso, ridge regression and elastic net do not have well-defined N̂bn . For those methods,
we consider i ∈ N̂bn if |β̂i| > 0.0001. ‘samp’ represents the number of samples; while ‘dim’
represents the dimension of parameters.

The selected hyper-parameters(HP) of thsDeb
samp dim ρn,r ρn,l bn kn λr

HP of thsDeb 450 2000 39.934 0.044 0.013 28.488 15.497
Performance of various linear regression methods

thsDeb thsLas thsRid Lasso Ridge ElasticNet
|ytest −Xtest β̂ |2 1.09 1.31 2.94 1.15 1.56 1.13
|N̂bn | 46 36 15 88 1938 141

Table 3.4. The 95% simultaneous confidence interval for thsDeb’s first 8 parameters. The 95%
simultaneous confidence interval will be given by {x = (x1, ...,x8) : Conf.low≤ xi ≤ Conf.high}

i = 1 2 3 4 5 6 7 8
β̂i 0.0 0.0 0.019 0.0 0.0 0.072 0.098 0.037
Conf.low -0.046 -0.046 -0.057 -0.046 -0.046 -0.059 0.025 -0.064
Conf.high 0.046 0.046 0.122 0.046 0.046 0.213 0.228 0.146

(a) Test set performance, blue
dots represent real values (b) ACF of Residuals

Figure 3.4. The predicted responses on the test set for various linear regression methods and the
ACF of residuals (y−X β̂ ).
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3.7 Conclusion

Focusing on a high dimensional, sparse linear regression model y = Xβ + ε with het-

eroscedastic, dependent (correlated) and non-stationary errors ε , the paper at hand proposes a

debiased and thresholded ridge regression estimator that is consistent and able to recover the

model sparsity. We also develop a Gaussian approximation theorem for the estimator. More-

over, we construct a dependent wild bootstrap algorithm that automatically yields consistent

simultaneous confidence intervals and/or hypothesis tests for ζ = Mβ , where M is a given linear

combination matrix. Numerical simulations and real-life data analysis show that the proposed

estimator has good finite sample performance, complementing our theoretical (asymptotic)

results.

To the best of our knowledge, there is little research on the high dimensional linear model

with non-stationary errors. Compared to the state-of-the-art of the literature, the paper at hand:

• introduces a set of theoretical tools to analyze non-stationary random variables as potential

regression errors;

• enables consistent statistical inference even when the errors in the linear model are het-

eroscedastic, with an arbitrarily complex covariance matrix;

• allows practitioners to construct simultaneous confidence intervals for linear combinations

of β ;

• and allows for consistent debiased and thresholded ridge regression with parameter dimen-

sion larger than sample size — a result that is novel even in the context of i.i.d. errors.
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Chapter 4

Bootstrap prediction intervals with asymp-
totic conditional validity and uncondi-
tional guarantees

4.1 Abstract

It can be argued that optimal prediction should take into account all available data. There-

fore, to evaluate a prediction interval’s performance one should employ conditional coverage

probability, conditioning on all available observations. Focusing on a linear model, we derive

the asymptotic distribution of the difference between the conditional coverage probability of

a nominal prediction interval and the conditional coverage probability of a prediction interval

obtained via a residual-based bootstrap. Applying this result, we show that a prediction interval

generated by the residual-based bootstrap has approximately 50% probability to yield conditional

under-coverage. We then develop a new bootstrap algorithm that generates a prediction interval

that asymptotically controls both the conditional coverage probability as well as the possibility

of conditional under-coverage. We complement the asymptotic results with several finite-sample

simulations.

Keywords: Prediction, regression, bootstrap, conditional validity
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4.2 Introduction

Statistical inference comes in two flavors: explaining the world and predicting the future

state of the world. To explain the world based on data, statisticians create models like linear

regression and use data to fit the models. After doing that, they will gauge the goodness-of-fit,

and assess the accuracy of estimation, e.g., via confidence intervals of the fitted model. Focusing

on regression, the literature is huge; to pick 3-4 papers, see Shao [1996] on model selection, Xie

and Huang [2009] or Liu and Yu [2013] on model fitting, and Freedman [1981] on statistical

analysis.

Prediction is not a new topic in statistical inference; we refer to Geisser [1993] for a

comprehensive introduction, or Politis [2015] for a more recent exposition. Notably, prediction

has seen a resurgence in the 21st century with the advent of statistical learning; see Hastie et al.

[2009] for an introduction. Similarly to the aforementioned linear model procedure, statisticians

use data to fit a model that can yield a predictor for future observations, and use prediction

intervals to quantify uncertainty in the prediction; see e.g. Romano et al. and Wang and Politis

[2021]. Under a regression setting, there are several ways to construct a prediction interval. The

classical prediction interval was typically obtained under a Gaussian assumption on the errors;

see Section 4.3 in that follows. One of the earliest methods foregoing the restrictive normality

assumption employed the residual-based bootstrap; see Stine [1985] and the references therein.

More recent methods include the Model-free (MF) bootstrap and the hybrid Model-free/Model-

based (MF/MB) bootstrap of Politis [2015].

For all bootstrap methods, the aim is to provide an asymptotically valid prediction interval.

Suppose Γ is a prediction interval for the future observation Y f . If Prob(Y f ∈ Γ)≈ 1−α (where

≈ indicates an asymptotic approximation), then Γ is an asymptotically valid 1−α prediction

interval for Y f . On the other hand, if we wish to ensure that Prob(Y f ∈ Γ) ≥ 1−α , i.e., an

unconditional lower-bound guarantee, then we may apply the conformal prediction idea of

Shafer and Vovk [2008] and Vovk et al. [2005], which has been applied to several complex
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models, including non-parametric regression; see Lei and Wasserman [2014], Lei et al. [2018],

Romano et al., and Sesia and Candès.

In the paper at hand, we assume a linear model and discuss how to construct an asymp-

totically valid prediction interval in the context of conditional coverage that also possesses some

unconditional guarantees as discussed above. To be more concrete, suppose we have an n× p

design matrix X , independent and identically distributed residuals ε = (ε1, ...,εn)
T , dependent

variables Y = (Y1, ...,Yn)
T where Y = X β + ε and a fixed new regressor(a vector) X f that is

of interest. We would like to provide a 1−α prediction interval Γ = Γ(X ,Y ,X f ) for the future

observation Y f = X T
f β +ξ ; here ξ is independent of X ,Y and has the same distribution as

ε1. The aforementioned bootstrap methods will ensure that Prob
(
Y f ∈ Γ

)
≈ 1−α , but without

a lower-bound guarantee. On the other hand, the conformal prediction(e.g., Chernozhukov

et al. [2021]) method yields an interval Γ such that Prob
(
Y f ∈ Γ

)
≥ 1−α , i.e., an uncondi-

tional lower-bound guarantee. However, we are more interested in quantifying the performance

of a prediction interval in terms of its conditional coverage probability Prob
(
Y f ∈ Γ|Y

)
(or

Prob
(
Y f ∈ Γ|Y ,X f ,X

)
under random design).

The reason for our interest comes from two aspects. On one hand, the conditional

probability precisely describes how statisticians make prediction in practice. By using the

unconditional probability

Prob
(
Y f ∈ Γ

)
= E

(
Prob

(
Y f ∈ Γ|Y

))
(4.1)

it is as if we assume that the statistician has not observed Y before making the prediction.

Realistically, however, statisticians have observed Y and have fitted the model before

they make predictions. Therefore, it is informative to understand what happens to Y f given our

knowledge of all data (including Y ) rather than “on average” among all possible Y .

On the other hand, according to eq. (4.1), analysis of the conditional probability is a

more fundamental topic than the unconditional one. For example, if for any given δ > 0,
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Prob
(
{|Prob

(
Y f ∈ Γ|Y

)
− (1−α)|> δ}

)
→ 0 as n→ ∞, then we can take the conditional

expectation and have

|Prob
(
Y f ∈ Γ

)
− (1−α)| ≤ E

(
|Prob

(
Y f ∈ Γ|Y

)
− (1−α)|

)
≤ δ +Prob

(
{|Prob

(
Y f ∈ Γ|Y

)
− (1−α)|> δ}

) (4.2)

which implies Prob
(
Y f ∈ Γ

)
→ 1−α .

Consequently, the aforementioned performance goals of asymptotic validity and lower

bound guarantee should be recast in terms of conditional coverage. Note, however, that

Prob
(
Y f ∈ Γ|Y

)
is a random variable itself – see e.g. definition 1.3 in Çinlar [2011]. Hence, the

performance goals are now stochastic, i.e., Prob
(
Y f ∈ Γ|Y

)
→p 1−α and Prob

(
Y f ∈ Γ|Y

)
≥

1−α with a specific probability. Surprisingly, we can achieve these goals simultaneously through

a careful re-design of our prediction intervals. Definition 5 in what follows describes our new

performance aim. Before stating it, however, we need to clarify our notation since our results

hold true for both fixed and random design. In the latter case, however, all probabilities and

expectations will be understood as being conditional on X ; see Definition 4 below.

Definition 4. Consider the two cases:

(a) Fixed design, i.e., there is no randomness involved in the design matrix X and the new

regressor X f . In this case, we define P(·) = Prob(·), P∗(·) = Prob(·|Y ), E· = E·, and E∗· =

E(·|Y ).

(b) Random design, i.e., there is randomness involved in the design matrix X (and possibly

in the new regressor X f as well). In this case, we define P(·) = Prob(·|X ,X f ), P∗(·) =

Prob(·|Y ,X ,X f ), E·= E(·|X ,X f ), and E∗·= E(·|Y ,X ,X f ). Furthermore, convergences

and probability statements will be understood to hold almost surely in X and X f .

We can now state our new performance aims in general.

Definition 5 (Prediction interval with unconditional guarantee). Assume an n× p design matrix

X , independent and identically distributed (i.i.d.) residuals ε = (ε1, ...,εn)
T ∈ Rn, and that the
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dependent variables Y satisfy a linear model Y = X β + ε . For a new regressor X f ∈ Rp and

a potential future observation Y f , we say that Γ = Γ(X ,Y ,X f ) is the 1−α prediction interval

with 1− γ unconditional guarantee if the following conditions hold true:

1. For any given δ > 0,

P
(
{|P∗

(
Y f ∈ Γ

)
− (1−α)|> δ}

)
→ 0 (4.3)

2.

P
(
{P∗(Y f ∈ Γ)≥ 1−α}

)
→ 1− γ (4.4)

as n→ ∞; here, α,γ are constants in (0,1). We call 1−α the nominal (conditional) coverage

probability and 1− γ the guarantee level.

Intuitively, Definition 5 requires the prediction interval Γ to have an asymptotically

correct conditional coverage probability 1−α . Meanwhile, the hope is that Γ’s conditional

coverage probability is greater than 1−α with a specific (unconditional) probability.

Remark 11. In Definition 5, the validity condition (eq.(4.3)) is ubiquitous and easily understood,

but the second condition (eq.(4.4)) needs some clarifications. This remark aims to stress that the

second condition is not redundant.

Suppose a prediction interval Γ satisfies (4.3) with 1−α = 95%. If the sample size n is

very large, then Γ’s conditional coverage probability is close to 95%. In this situation, whether

or not the conditional coverage probability is greater than 95% is not important. However, if the

sample size is merely moderate, then Γ’s conditional coverage probability can be significantly

smaller than 95%. Indeed, in table 4.2 and 4.3(in section 4.7), a nominal 95% prediction interval

may have a conditional coverage probability less than 91%.

In addition suppose Γ satisfies (4.4) with 1−γ = 85%. When the sample size is moderate,

the guarantee level may also be smaller than 85%. However, this condition still gives us an extra

assurance that Γ is ‘not likely’ to have an under-coverage issue. Moreover, it is even unlikely for
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Γ’s conditional coverage probability to be far less than 95%.

Notably, statisticians have already noticed a gap between theoretical validity and finite

sample performance. That is, an asymptotic valid prediction interval(e.g., Stine [1985]) will

often manifest under-coverage in practice; see Politis [2013] for a discussion. In order to fill

this gap, Politis [2015] proposed the definition of a ‘pertinent prediction interval’, which is a

notion stronger than (4.3). Definition 5 provides a new perspective on this problem.

Remark 12 (Further discussion on eq. (4.4)). A drawback of eq. (4.3) is that it takes place

asymptotically (as the sample size n→ ∞). Hence, a prediction interval may satisfy (4.3) with a

given δ > 0, but for a given sample size n, the probability of the event {|P∗
(
Y f ∈ Γ

)
−(1−α)|>

δ} may not be negligible. If the event {|P∗
(
Y f ∈ Γ

)
−(1−α)|> δ} is to happen, we may prefer

P∗
(
Y f ∈ Γ

)
> 1−α +δ (i.e., overcoverage) to P∗

(
Y f ∈ Γ

)
< 1−α−δ (i.e., undercoverage).

Eq.(4.4) reflects the intensity of this preference, i.e., overcoverage is more likely to happen if we

choose large 1− γ . Notably, we require (4.3) and (4.4) to happen simultaneously. Therefore,

(4.4) calibrates the usual prediction interval—e.g., the prediction interval generated by the

residual-based bootstrap (Stine [1985])—instead of creating a new one.

Remark 13. This remark compares definition 5 with classical bootstrap methods and conformal

predictions. Recall bootstrap methods always require P(Y f ∈ Γ)→ 1−α like Stine [1985], or

P∗(Y f ∈ Γ)→p 1−α like Politis [2015]. On the other hand, conformal prediction is considered

a model-free, non-asymptotic method to generate a prediction interval. But its guarantee is

on average over the observations and over the future random regressor X f . In table 4.1, it

appears that the guarantee level of a conformal prediction is only 10.2% even when the sample

size is 1600, implying that in 89.8% of the samples we have conditional coverage probability

less than 1−α . The new regressor X f is fixed (or conditioned upon) in our paper, so a complete

model-free procedure (i.e., a procedure that constructs a consistent prediction interval for any

models) is impossible; see Barber et al. [2021].

In order to increase the guarantee level, Vovk [2012] introduced the idea of a tolerance
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region; Vovk’s tolerance region is constructed as follows. First, perform the split-conformal

prediction introduced in Lei et al. [2018] to make the 1−α prediction interval C1−α(X f ) for

Y f . Denote ncalib the size of the calibration set (i.e., I2 in algorithm 2 of Lei et al. [2018]). Then

choose α ′ such that

γ ≥ binomncalib,α(bα
′(ncalib +1)−1c) (4.5)

where binomn,α denotes the cumulative distribution function of a binominal distribution with

size n and probability α , and bxc denotes the largest integer that is smaller than or equal to

x. Then Vovk’s tolerance region is defined as C1−α ′(X f ). According to proposition 2b in Vovk

[2012], this prediction interval satisfies

P(P∗(Y f ∈C1−α ′(X f ))≥ 1−α)≥ 1− γ (4.6)

which is similar to condition (4.4). However, Vovk’s tolerance region might not satisfy (4.3);

that is why (4.5) is an inequality rather than an equality. In section 4.7, we compare several

prediction methods via finite-sample simulations; it looks like Vovk’s tolerance region is typically

wider than other prediction intervals.

Table 4.1 shows that this tolerance region has high guarantee levels among various

linear models.

Definition 5 still follows a bootstrap framework but additionally requires P∗(Y f ∈ Γ)≥

1−α for a specific proportion of observations. This definition is useful for understanding an

existing bootstrap algorithm, like corollary 1. It also maintains the balance between Γ’s length

and its possibility of under-coverage.

Definition 5 is not easy to achieve; to see why, we present a simulation in table 4.1. The

guarantee level(i.e., proportion of observations having conditional coverage probability ≥ 1−α)

of the aforementioned methods are not very high.

Our paper has two main contributions. On the one hand, it derives the Gaussian approxi-
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Table 4.1. Quantiles of conditional coverage probabilities and guarantee levels of prediction
intervals on the Experiment model (see section 4.7). The errors are generated by i.i.d. normal
random variables with mean 0 and variance 1. The nominal coverage probability is 95%. We
use the R-package maintained by Tibshirani et al. [2021] to perform conformal predictions.
For Vovk’s tolerance region, we chose γ = 15% in (4.5). The notation ‘Quantiles’ denotes the
quantiles of conditional coverage probabilities and ‘Guarantee’ denotes the guarantee level(see
definition 5).

Sample size Algorithm Quantiles Guarantee
15% 30% 50%

100 Residual bootstrap 91.0% 92.5% 93.9% 31.3%
MF/MB bootstrap 93.5% 94.7% 95.8% 66.7%
Conformal prediction 90.0% 91.8% 93.5% 27.9%
Split conformal prediction 95.2% 96.7% 97.8% 87.0%
Jackknife conformal prediction 92.7% 95.3% 97.2% 56.5%
Vovk’s tolerance region 97.3% 98.4% 99.2% 95.5%

400 Residual bootstrap 93.3% 94.0% 94.7% 40.8%
MF/MB bootstrap 93.8% 94.6% 95.2% 56.3%
Conformal prediction 91.9% 92.7% 93.6% 15.5%
Split conformal prediction 93.9% 94.8% 95.6% 66.4%
Jackknife conformal prediction 93.8% 95.0% 96.2% 52.6%
Vovk’s tolerance region 96.1% 96.8% 97.5% 95.2%

1600 Residual bootstrap 94.0% 94.5% 95.0% 48.0%
MF/MB bootstrap 94.2% 94.6% 95.0% 52.8%
Conformal prediction 92.0% 92.7% 93.4% 10.2%
Split conformal prediction 94.0% 94.6% 95.2% 57.7%
Jackknife conformal prediction 93.0% 93.6% 94.3% 25.5%
Vovk’s tolerance region 94.8% 95.3% 95.9% 81.3%

mation for the difference between the conditional probability of a nominal prediction interval

and the conditional probability of a prediction interval based on residual-based bootstrap. In

practice, bootstrap approximates the former by the latter, and the non-zero difference will make

the former deviate from 1−α . This leads to the fact that the residual-based bootstrap algorithm

asymptotically has guarantee level of 50%. On the other hand, we develop a new method to

construct a prediction interval satisfying definition 5 with arbitrarily chosen α,γ .

We employ a simple example to illustrate why a classical prediction interval becomes

problematic under the conditional coverage context in section 4.3. After that, we introduce the

frequently used notations and assumptions in section 4.4. In section 4.5, we derive the Gaussian

approximation result. In section 4.6, we develop the algorithm to construct the newly proposed

prediction interval. We perform some simulations to illustrate the proposed algorithm’s finite

sample performance in section 4.7, and provide some conclusions in section 4.8. The proofs of

the theoretical results will be deferred to chapter C.
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4.3 An intuitive illustration in the Gaussian case

For the sake of illustration, in this section only we suppose the residual ε1 has a normal

distribution with mean 0 and known variance σ2. Assume X T X is invertible. Denote Φ(x) as

the cumulative distribution function of the standard normal distribution and Φ−1(α),α ∈ (0,1) as

its α−quantile, i.e., Φ(Φ−1(α)) = α . Adopt the notations P,P∗ in definition 4. If we do not care

about the conditional coverage, we can define β̂ = (X T X )−1X T Y and use the normal distri-

bution 1−α prediction interval P1 = [X T
f β̂ +σΦ−1(α

2 )
√

1+X T
f (X T X )−1X f , X T

f β̂ +

σΦ−1(1− α

2 )
√

1+X T
f (X T X )−1X f ] for the future response Y f . Since the random variable

Y f −X T
f β̂ has normal distribution with mean 0 and variance σ2(1+X T

f (X T X )−1X f ), it

follows that

P
(
Y f ∈P1

)
= P

Φ
−1(

α

2
)≤

Y f −X T
f β̂

σ

√
1+X T

f (X T X )−1X f

≤Φ
−1(1− α

2
)

= 1−α. (4.7)

In other words, P1 has precise unconditional coverage probability. However, if we take

the conditional coverage into consideration, the random variable Y f −X T
f β̂ |Y (or Y f −

X T
f β̂ |Y ,X f ,X under random design) has normal distribution with mean

X T
f β −X T

f (X T X )−1X T Y and variance σ2. According to Taylor’s theorem,

P∗
(
Y f ∈P1

)
= P∗

Φ
−1(

α

2
)≤

Y f −X T
f β̂

σ ×
√

1+X T
f (X T X )−1X f

≤Φ
−1(1− α

2
)


= Φ

(√
1+X T

f (X T X )−1X f ×Φ
−1(1− α

2
)+

X T
f (X T X )−1X T ε

σ

)

−Φ

(√
1+X T

f (X T X )−1X f ×Φ
−1(

α

2
)+

X T
f (X T X )−1X T ε

σ

)

≈ 1−α +Φ
′
(Φ−1(1− α

2
))×X T

f (X T X )−1X f ×Φ
−1(1− α

2
)

+Φ
′′
(Φ−1(1− α

2
))× (

X T
f (X T X )−1X T ε

σ
)2

(4.8)
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The last line of (4.8) is derived by expanding the second line on Φ−1(1− α

2 ), and expanding the

third line on Φ−1(α

2 ). Since Φ
′′
(Φ−1(1− α

2 ))< 0,
(X T

f (X T X )−1X T ε)2

σ2(X T
f (X T X )−1X f )

has χ2
1 distribution and

Φ
′′
(x) =−xΦ

′
(x) for any x,

P
(
{P∗

(
Y f ∈P1

)
≥ 1−α}

)
≈ P

(
(X T

f (X T X )−1X T ε)2

σ2X T
f (X T X )−1X f

≤
Φ
′
(Φ−1(1− α

2 ))×Φ−1(1− α

2 )

−Φ
′′
(Φ−1(1− α

2 ))

) (4.9)

which approximately equals 0.683. Therefore, the prediction interval P1 has about 68% guaran-

tee level.

However, it is possible to find a prediction interval with a desired guarantee level, say

1− γ . Wallis [1951], Lieberman and Miller [1963] and De Gryze et al. [2007] considered

this problem and defined the ‘tolerance interval’ that controlled the guarantee level. However,

their work assumed that the residuals ε1 had normal distribution. Moreover, an 1− γ tolerance

interval does not ensure having asymptotic coverage probability 1−α . We define C1−γ as

the 1− γ quantile of a χ2
1 distribution, and let c1−γ =−Φ

′′
(Φ−1(1− α

2 ))X
T
f (X T X )−1X f ×

C1−γ / (2Φ
′
(Φ−1(1− α

2 ))) > 0. We construct the prediction interval P2 = [X T
f β̂ + σ ×
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(Φ−1(α

2 )− c1−γ), X T
f β̂ +σ × (Φ−1(1− α

2 )+ c1−γ)]. We can now compute

P∗
(
Y f ∈P2

)
= P∗

(
Φ
−1
(

α

2

)
− c1−γ ≤

Y f −X T
f β̂

σ
≤Φ

−1
(

1− α

2

)
+ c1−γ

)

= Φ

(
Φ
−1
(

1− α

2

)
+ c1−γ +

X T
f (X T X )−1X T ε

σ

)

−Φ

(
Φ
−1
(

α

2

)
− c1−γ +

X T
f (X T X )−1X T ε

σ

)

≈ 1−α +2Φ
′
(

Φ
−1
(

1− α

2

))
× c1−γ

+Φ
′′
(

Φ
−1
(

1− α

2

))
× (

X T
f (X T X )−1X T ε

σ
)2

which implies that P
(
{P∗

(
Y f ∈P2

)
≥ 1−α}

)
≈ P(−Φ

′′
(

Φ
−1
(

1− α

2

)) (X T
f (X T X )−1X T ε)2

σ2×X T
f (X T X )−1X f

≤−Φ
′′
(Φ−1(1− α

2
))×C1−γ)

= 1− γ

(4.10)

Hence, prediction interval P2 has guarantee level about 1− γ . Note that since c1−γ has order

O(1/n), this correction does not significantly enlarge the width of the prediction interval. In

other words, if the dimension of the parameter vector is fixed, then the uncorrected and the

corrected prediction intervals coincide with each other asymptotically.

In the end of this section, we would like to briefly discuss the prediction problem under

the high dimensional setting, i.e., p/n→ s ∈ (0,1). Bates et al. [2021] and Dobriban and

Wager [2018] also considered this problem but they focused on estimating the prediction error.

Steinberger and Leeb [2016] and Zhang and Politis [2020] constructed asymptotically valid

prediction intervals for a (sparse) high dimensional linear model. Suppose ∃ 0 < c ≤C < ∞

such that all eigenvalues of 1
nX T X is greater than c and smaller than C. This assumption is

achievable according to Bai and Yin [1993]. If p is large and the new regressor X f is not sparse,

then the term X T
f (X T X )−1X f ≥

X T
f X f

Cn , which does not tend to 0 as n→ ∞. Therefore,
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despite that
Y f−X T

f β̂

σ

√
1+X T

f (X T X )−1X f
has normal distribution(so (4.7) is satisfied), we cannot use

Taylor expansion in (4.8) and (4.10). So we need a new method to construct a prediction interval

in order to satisfy Definition 5. Moreover, c1−γ will not converge to 0 as n→ ∞, and

Φ
−1(1− α

2
)+ c1−γ −Φ

−1(1− α

2
)
√

1+X T
f (X T X )−1X f

= Φ
−1(1− α

2
)X T

f (X T X )−1X f ×

C1−γ

2
− 1

1+
√

1+X T
f (X T X )−1X f

 (4.11)

which does not converge to 0 as the sample size n→ ∞. So modification (4.10) will not be

negligible asymptotically, and the prediction intervals (4.8) and (4.10) will not be close to each

other even when n is large. In other words, constructing a ‘good’ prediction interval(e.g., a

prediction interval satisfying definition 5) can be a challenging problem if the dimension of

parameters is large. This paper will focus on the finite dimensional situation. However, our work

should lay a good foundation for the high dimensional prediction problem.

Another limitation in this section is that the marginal distribution of the errors is assumed

to be normal with known variance σ2, which is always not true. In the general situation, the

marginal distribution of the errors is not normal and is unknown. As a consequence, the correction

can be significantly larger than 1/n. Besides, we need to use resampling to find a satisfactory

correction; this will be the subject of the following sections.

4.4 Preliminary notions

For the remainder of the paper, we revert to the general setup: an n× p design matrix

X (assumed to have full-rank), the dependent variable Y satisfying the linear model Y =

(Y1, ...,Yn)
T = X β + ε with respect to the i.i.d. errors ε = (ε1, ...,εn)

T ; here, ε1 has mean

zero, unknown variance σ2, and cumulative distribution function denoted by F . We denote

X T = (X1, ...,Xn), Xi = (Xi1, ...,Xip)
T ∈ Rp, i = 1,2, ...,n, the new regressor X f ∈ Rp and

the new dependent variable Y f (the subscript ‘ f ’ will only be used for future observations).
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Define

β̂ = (β̂1, ..., β̂p)
T = (X T X )−1X T Y (4.12)

as the least squares estimator of the parameter vector β . Then, define the centered estimated

residual ε̂ = (ε̂1, ..., ε̂n)
T and the residual empirical process F̂(x) for any x ∈ R respectively as

ε̃i = Yi−X T
i β̂ = εi−X T

i (β̂ −β )

ε̂i = ε̃i−
1
n

n

∑
j=1

ε̃ j

F̂(x) =
1
n

n

∑
i=1

1ε̂i≤x.

(4.13)

We also define X n =
1
n ∑

n
i=1 Xi ∈ Rp. From (4.13),

∫
xdF̂ =

1
n

n

∑
i=1

ε̂i = 0, σ̂
2 =

∫
x2dF̂ =

1
n

n

∑
i=1

ε̂
2
i . (4.14)

Here and in the rest of this paper, the lower case letters x,y,z will be used to represent a scalar.

For a function g : R→ R, define g
′

as its derivative. Denote D = D[0,1] the space of càdlàg

functions on [0,1] with Skorohod topology–see chapter 3 of Billingsley [1999].

To derive our results, we need the following assumptions.

Assumptions:

1. ε1’s distribution is absolutely continuous with respect to Lebesgue measure. F is second

order continuous differentiable and supx∈R |F
′′
(x)| < ∞, Eε1 = 0, E|ε1|4 < ∞. The new

regressor X f ∈ Rp and the new dependent variable Y f satisfy Y f = X T
f β + ξ . ξ is

independent of ε and has the same distribution as ε1.

2. One of the two following conditions holds true:

2.1. Fixed design: X and X f are fixed, i.e., non-random.

2.2. Random design: X and X f are random. However, X f is independent of ε,ξ ;
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and X is independent of ε,ξ ,X f .

3. X T X is invertible for ∀n ≥ p and limn→∞
X T X

n = A, limn→∞ X n = b; here A is an

invertible matrix and b ∈ Rp. Besides, there exists a constant M > 0 such that ‖Xi‖2 ≤M

for i = 1,2, ...,n and ‖X f ‖2 ≤M. ‖.‖2 denotes the Euclidean norm in Rp.

4. Define H(x) = Eε11ε1≤x and for ∀x,z ∈ R.

V (x,z) = σ
2F
′
(x)F

′
(z)
(
X T

f A−1X f +1−2X T
f A−1b

)
−(F

′
(x)H(z)+F

′
(z)H(x))(X T

f A−1b−1)+F(min(x,z))−F(x)F(z)

We also define U (x) = V (x,x)+V (−x,−x)−2V (x,−x)

(4.15)

Assume F
′
(x)> 0,∀x ∈ R, and U (x)> 0 for ∀ 0 < x < ∞.

For a function g : R→ R and a point x ∈ R, we define the limit from the left as

g−(x) = lim
y→x,y<x

g(y) (4.16)

if this limit exists. Note that g ∈ D implies that g−(x) exists for ∀x ∈ (0,1). As in section 1.1.4

of Politis et al. [1999], for any 0 < α < 1, we define the α quantile of a cumulative distribution

function g as

cα = inf{x ∈ R : g(x)≥ α}. (4.17)

The meaning of notations P,P∗,E,E∗ is presented in definition 4. The symbol→ repre-

sents convergence in R, and→L represents convergence in distribution. Without being specified,

the convergence assumes the sample size n→ ∞. Φ(·) and Φ−1(·) respectively represents the

cumulative distribution function and the quantile of the standard normal distribution. In the case

of random design, the convergence results hold true for almost sure X and X f .

Remark 14. (a) We centered ε̃i in eq. (4.13), but if the design matrix X has a column of ones,

then summation of the estimated residuals will be 0 exactly, and re-centering is superfluous.
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(b) In the case of random design, we assume assumption 3 and 4 happen for almost sure X and

X f .

(c) There are various linear model settings, e.g., presence of outliers, errors being dependent,

errors being being heteroskedastic, etc. This paper cannot discuss all situations simultaneously.

So we focus on the classical setting, i.e., without outliers and errors are i.i.d., to present our

work.

4.5 Gaussian approximation in bootstrap prediction

Residual-based bootstrap has been widely used in interval prediction for various models,

such as Thombs and Schucany [1990], and Pan and Politis [2016b]. Stine [1985] introduced a

residual-based bootstrap algorithm for prediction, but this algorithm is typically characterized

by finite sample undercoverage; see Pan and Politis [2016a]. To alleviate the finite-sample

undercoverage, Politis [2015] proposed the Model-free/Model-Based (MF/MB) bootstrap, that

resamples the predictive residuals r̂ = (r̂1, ..., r̂n)
T instead of the usual fitted residuals. The

predictive residuals are sometimes called the ‘leave-one-out’ residuals, and are defined as:

r̃i = Yi−X T
i (X T

−iX−i)
−1X T

−iY−i, r̂i = r̃i−
1
n

n

∑
j=1

r̃ j, i = 1,2, ...,n (4.18)

here X−i and Y−i are the design matrix X and the dependent variable vector Y respectively,

having left out the ith row. For a least squares estimator, the predictive residuals can be efficiently

computed using the hat matrix; see theorem 10.1 in Seber and Lee Seber and Lee [2003].

For concreteness, the algorithms are as follows:

Algorithm 4 (Residual-based bootstrap). Input: Design matrix X and dependent variable

data vector Y satisfying Y = X β + ε , the new regression vector X f of interest, number of

bootstrap replicates B, nominal coverage probability 1−α

1. Calculate statistics β̂ = (X T X )−1X T Y and ε̂ = (ε̂1, ..., ε̂n)
T as in eq. (4.13).
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2. Generate i.i.d. residuals ε∗ = (ε∗1 , ...,ε
∗
n )

T and ξ ∗ by drawing from ε̂1, ..., ε̂n with

replacement. Then calculate Y ∗ = X β̂ + ε∗ and Y ∗f = X T
f β̂ + ξ ∗. Re-estimate β̂ ∗ =

(X T X )−1X T Y ∗ and calculate the prediction root δ ∗b = Y ∗f −X T
f β̂ ∗

3. Repeat step 2 for b = 1,2, ...,B, and calculate the 1−α (unadjusted) sample quantile

ĉ∗1−α
of |δ ∗b |, b = 1,2, ...,B.

4. The prediction interval of Y f is given by
{

Y f : |Y f −X T
f β̂ | ≤ ĉ∗1−α

}
Remark 15. If we replace ε̂ by r̂ in algorithm 4, we then obtain the MF/MB bootstrap algorithm.

The Glivenko - Cantelli theorem ensures that the empirical process of the bootstrapped

prediction root Y ∗f −X T
f β̂ ∗ converges to P∗

(
Y ∗f −X T

f β̂ ∗ ≤ x
)

for any x∈R P∗ almost surely

as B→∞. Therefore, the residual-based bootstrap approximates the unobservable conditional cu-

mulative distribution function P∗(|Y f −X T
f β̂ | ≤ x) by P∗

(
|Y ∗f −X T

f β̂ ∗| ≤ x
)

, and estimates

the latter distribution by the bootstrapped prediction root’s empirical process; see Politis et al.

[1999].

Notably, the notation P∗ and E∗ are used for the conditional probability and expectation

conditioning on all observed data in this paper. Note that this definition coincides with ‘the

probability and expectation in the bootstrap world’ which is typical in the bootstrap literature;

see e.g., Cheng and Huang [2010]. The bootstrap approximation inevitably introduces errors.

This section focuses on understanding the asymptotic behavior of the error process.

S (x) =
√

n
(

P∗(|Y f −X T
f β̂ | ≤ x)−P∗(|Y ∗f −X T

f β̂
∗| ≤ x)

)
(4.19)

here Y ∗f and β̂ ∗ are defined in algorithm 4. We refer to Bickel and Freedman [1981] and Politis

et al. [1999] for the related researches.

The asymptotic behavior of S is summarized in theorem 9.

Theorem 9. Suppose assumption 1 to 4 hold true. Then for any given real numbers 0< r < s<∞,
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sup
x∈[r,s]

sup
y∈R
|P(S (x)≤ y)−Φ

(
y√

U (x)

)
| → 0 (4.20)

here U is defined in (4.15).

Hence, if a prediction interval Γ has the form
{

y ∈ R : |y−X T
f β̂ | ≤ x

}
(where x is a

given positive number), then the conditional probability P∗
(
Y f ∈ Γ

)
and Γ’s coverage probability

estimated by the residual-based bootstrap algorithm (i.e., P∗(|Y ∗f −X T
f β̂ ∗| ≤ x), where Y ∗f and

β̂ ∗ are defined in algorithm 4) has an error. Moreover,
√

n× this error has an asymptotic normal

distribution with mean 0 and a specific variance U (x)(depending on x).

In the conditional coverage context, an application of theorem 9 is to calculate a prediction

interval’s guarantee level. For example, by choosing y = 0, and x = c∗1−α
which denotes the

1−α quantile of the distribution P∗(|Y ∗f −X T
f β̂ ∗| ≤ x), we have the following corollary

Corollary 1. Under assumptions 1 to 4, the prediction interval generated by residual-based

bootstrap has an asymptotically 50% guarantee level.

Alternatively, for a given γ ∈ (0,1), we could choose y = Φ−1(γ), the γ quantile of

the standard normal distribution, and x = c∗
1−α−Φ−1(γ)×

√
U (c∗1−α

)/
√

n
. Since U is continuous,

theorem 9 implies the event {P∗(|Y f −X T
f β̂ | ≤ c∗

1−α−Φ−1(γ)×
√

U (c∗1−α
)/
√

n
)− (1−α) ≥ 0},

which is equivalent to the event

√
n(P∗(|Y f −X T

f β̂ | ≤ c∗
1−α−Φ−1(γ)×

√
U (c∗1−α

)/
√

n
)

−(1−α−
Φ−1(γ)×

√
U (c∗1−α

)
√

n
))

≥Φ
−1(γ)×

√
U (c∗1−α

)

(4.21)

asymptotically has unconditional probability 1− γ . In other words, the prediction interval

{y ∈ R : |y−X T
f β̂ | ≤ c∗

1−α−Φ−1(γ)×
√

U (c∗1−α
)/
√

n
} has an asymptotic guarantee level 1− γ .

Section 4.6 adopts this idea. However, in order to estimate U , statisticians need to estimate
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F(x) = Prob(ε1 ≤ x), the derivative F
′
(x) and H(x) = Eε11ε1≤x, which is complex. To make

our work practical, section 4.6 presents a resampling algorithm that automatically generates the

desired prediction interval without estimating U .

4.6 Bootstrap prediction interval with unconditional guar-
antee

For a fixed dimensional linear model, bootstrap algorithms like the residual-based boot-

strap and the MF/MB bootstrap generate asymptotically valid prediction intervals. Besides,

Steinberger and Leeb [2016] and Zhang and Politis [2020] constructed asymptotically valid

prediction intervals for high dimensional linear models. However, the statistician cannot adjust

those prediction intervals’ guarantee level; for example, corollary 1 says that the residual-based

bootstrap has asymptotic guarantee level 50%. Therefore, in practice, the statistician cannot

expect the possibility for a prediction interval to have a conditional coverage probability less than

the nominal coverage probability. Ideally, we would wish for an algorithm that can generate an

asymptotic valid prediction interval with a suitable guarantee level which is useful for both fixed

and high dimensional regression. However, if the dimension is large, eq.(4.11) shows that the

prediction intervals satisfying different purposes may not coincide with each other asymptotically.

Therefore, finding a ‘good’ prediction interval can be a subtle problem for a high dimensional

regression.

Focus on the fixed dimensional linear regression, this section proposes two new variations

on these bootstrap methods, namely the Residual bootstrap with unconditional guarantee (RBUG)

and the Predictive residual bootstrap with unconditional guarantee (PRBUG), that maintain the

asymptotic validity but also allows us to choose the prediction interval’s guarantee level. These

algorithms involve two steps: generating a valid prediction interval by residual-based bootstrap

or MF/MB bootstrap; then calibrating the length of the prediction interval. Calibration of a

confidence/prediction interval is not a new idea; see Loh [1991, 1987], Politis et al. [1999] and
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Beran [1990]. Their work calibrated a confidence interval based on the Edgeworth expansion.

Our method does not use Edgeworth expansion. Instead, our method calibrates the prediction

interval based on theorem 9 and the idea of eq. (4.21).

In order to use eq.(4.21), we need to estimate U . In section C.1.2, we show that the

error process S (x)(defined in (4.19)) can be approximated by a special stochastic process

M̃m
(x+m

2m

)
− M̃−m

(−x+m
2m

)
, here

M̃m(x) =
√

nF
′
(xm)

(
X T

f (X T X )−1X T
ε− 1

n

n

∑
j=1

ε j

)
− 1√

n

n

∑
j=1

(
1ε j≤xm−F(xm)

)
(4.22)

m is a sufficiently large positive integer and xm = 2mx−m. As long as m is large, changing m

does not affect the value of M̃m
(x+m

2m

)
−M̃−m

(−x+m
2m

)
. Fortunately, simulating M̃m in the bootstrap

world is not difficult. So we can implicitly estimate U by simulating M̃m. Algorithm 5 adopts

this idea, i.e., first estimate c∗1−α
, the 1−α (unadjusted) quantile of the conditional distribution

P∗(|Y ∗f −X T
f β̂ ∗| ≤ x). Then estimate the coverage probability adjustment −Φ−1(γ)×

√
U (c∗1−α

)√
n

in eq.(4.21) by simulating M̃m. Finally, calibrate the prediction interval based on the adjustment.

Algorithm 5 (RBUG/PRBUG). Input: Design matrix X and dependent variable data vector

Y satisfying Y = X β + ε , the new regression vector X f of interest, and number of bootstrap

replicates B, number of replicates to find quantile’s adjustment B1, nominal coverage probability

1−α , and nominal guarantee level 1− γ

Note: For RBUG, we define τ̂ = (τ̂1, ..., τ̂n)
T = ε̂ as in (4.13), while for PRBUG, we

define τ̂ = r̂ as in (4.18).

Calculate an unadjusted sample quantile

1. Calculate the statistics β̂ = (X T X )−1X T Y and τ̂ .

2. Generate i.i.d. residuals ε∗ = (ε∗1 , ...,ε
∗
n )

T and ξ ∗ by drawing from τ̂1, ..., τ̂n with

replacement; calculate Y ∗=X β̂ +ε∗, Y ∗f =X T
f β̂ +ξ ∗ and β̂ ∗= (X T X )−1X T Y ∗; derive

the prediction root δ ∗b = Y ∗f −X T
f β̂ ∗.

3. Repeat 2 for b = 1,2, ...,B, and calculate the 1−α unadjusted sample quantile
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(denoted as ĉ∗1−α
) of |δ ∗b |, b = 1,2, ...,B.

Find the quantile adjustment

4. Generate i.i.d. e∗ = (e∗1, ...,e
∗
n)

T by drawing from τ̂1, ..., τ̂n with replacement, then

derive Y † = X β̂ + e∗, β̂ † = (X T X )−1X T Y †. Then define ζ̂ ∗i = X T
f β̂ + τ̂i−X T

f β̂ † +

1
n ∑

n
j=1 e∗j for i = 1,2, ...,n. Calculate

p∗b1
=

1√
n

n

∑
i=1

1|ζ̂ ∗i |≤ĉ∗1−α

− 1√
n

n

∑
i=1

1|e∗i |≤ĉ∗1−α
(4.23)

5. Repeat step 4 for b1 = 1,2, ...,B1, then calculate the 1− γ sample quantile (denoted

as d̂∗1−γ
) of p∗b1

,b1 = 1,2, ...,B1.

Calibrate the prediction interval

6. Calculate ĉ∗
1−α+d̂∗1−γ

/
√

n
, the 1−α + d̂∗1−γ

/
√

n sample quantile of |δ ∗b |, b = 1,2, ...,B

7. The prediction interval with 1−α coverage probability and 1− γ guarantee level is

given by the set {
x ∈ R : |x−X T

f β̂ | ≤ ĉ∗
1−α+d̂∗1−γ

/
√

n

}
. (4.24)

Remark 16. This remark explains why step 4 and 5 in RBUG/PRBUG simulates M̃m. Suppose

we use RBUG. Then

1√
n

n

∑
i=1

1|ζ̂ ∗i |≤x =
1√
n

n

∑
i=1

1−x+X T
f (β̂ †−β̂ )− 1

n ∑
n
j=1 e∗j≤τ̂i≤x+X T

f (β̂ †−β̂ )− 1
n ∑

n
j=1 e∗j

=
√

n

(
F̂

(
x+X T

f (β̂ †− β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂−

(
−x+X T

f (β̂ †− β̂ )− 1
n

n

∑
j=1

e∗j

)) (4.25)
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so p∗b1
equals

√
n

(
F̂

(
ĉ∗1−α +X T

f (β̂ †− β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂(ĉ∗1−α)

)

− 1√
n

n

∑
j=1

(
1e∗j≤ĉ∗1−α

− F̂(ĉ∗1−α)
)

−
√

n

(
F̂−
(
−ĉ∗1−α +X T

f (β̂ †− β̂ )− 1
n

n

∑
j=1

e∗j

)
− F̂−(−ĉ∗1−α)

)

+
1√
n

n

∑
j=1

(
1e∗j<−ĉ∗1−α

− F̂−(−ĉ∗1−α)
)

(4.26)

which simulates M̃m
(x+m

2m

)
− M̃−m

(−x+m
2m

)
in the bootstrap world. The same discussion applies

to PRBUG as well.

We focus on proving RBUG’s validity, i.e., that prediction interval (4.24) satisfies defini-

tion 5. Define the simulated stochastic process

M̂ (x) =
√

nF̂

(
x+X T

f (X T X )−1X T e∗− 1
n

n

∑
j=1

e∗j

)
− 1√

n

n

∑
j=1

1e∗j≤x

and Ŝ (x) = M̂ (x)−M̂−(−x)

(4.27)

and the quantiles

c∗1−α = inf
{

x ∈ R : P∗
(
|Y ∗f −X T

f β̂
∗| ≤ x

)
≥ 1−α

}
and d∗1−γ(x) = inf

{
z ∈ R : P∗

(
Ŝ (x)≤ z

)
≥ 1− γ

} (4.28)

See algorithm 5 for the meaning of the notations. Denote

c∗(1−α,1− γ) = c∗1−α+d∗1−γ
(c∗1−α

)/
√

n (4.29)

From theorem 1.2.1 of Politis et al. [1999], ĉ∗
1−α+d̂∗1−γ

/
√

n
converges to c∗(1−α,1− γ) almost

surely as B,B1→ ∞. Therefore, the theoretical justification only focuses on c∗(1−α,1− γ).
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Theorem 10. Consider the RBUG algorithm, i.e, algorithm 5 with τ̂ = ε̂ as in (4.13). Suppose

assumption 1 to 4 hold true. Then, for any given 0 < α,γ < 1,δ > 0,

P
(
|P∗
(
|Y f −X T

f β̂ | ≤ c∗(1−α,1− γ)
)
− (1−α)| ≤ δ

)
→ 1

P
(
{P∗

(
|Y f −X T

f β̂ | ≤ c∗(1−α,1− γ)
)
≥ 1−α}

)
→ 1− γ

(4.30)

In other words, RBUG is able to generate a prediction interval with desired asymptotic

coverage probability and guarantee level.

Corollary 2 proves the validity of PRBUG. In corollary 2, we choose τ̂ = r̂ in algorithm

5 and define C∗1−α
= inf

{
x ∈ R : P∗(|Y ∗f −X T

f β̂ ∗| ≤ x)≥ 1−α

}
;

D∗1−γ
(x) = inf

{
z ∈ R : P∗

(
Ŝ (x)≤ z

)
≥ 1− γ

}
. We define

C∗(1−α,1− γ) =C∗1−α+D∗1−γ
(C∗1−α

)/
√

n. That is, C∗1−α
, D∗1−γ

(x) and C∗(1−α,1− γ) play the

same roles as c∗1−α
, d∗1−γ

and c∗(1−α,1−γ). The only reason for using another set of notations

is that we change the sampling mechanism (i.e., replace ε̂ in algorithm 5 by r̂).

Corollary 2. Consider the PRBUG algorithm, i.e, algorithm 5 with τ̂ = r̂. Suppose assumptions

1 to 4 hold true. Then, for any given 0 < α,γ < 1,δ > 0,

P
(
|P∗
(
|Y f −X T

f β̂ | ≤C∗(1−α,1− γ)
)
− (1−α)| ≤ δ

)
→ 1

P
(
{P∗

(
|Y f −X T

f β̂ | ≤C∗(1−α,1− γ)
)
≥ 1−α}

)
→ 1− γ.

(4.31)

Remark 17. Similar to residual-based bootstrap and MF / MB bootstrap, section 4.7 shows that

PRBUG tends to generate a wider, and of higher guarantee level, prediction interval than RBUG.

4.7 Numerical justification

This section applies numerical simulations to demonstrate the finite sample performance

of RBUG/PRBUG. The alternatives are the residual-based bootstrap(RB), the MF/MB boot-
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strap(MF/MB), the split conformal prediction defined in Lei et al. [2018] and Vovk’s tolerance

region (Vovk [2012]). The classical conformal prediction algorithm (e.g., Vovk et al. [2005])

assumed X f is random, which is unsuitable for our setting. Vovk’s tolerance region yields a

prediction interval satisfying eq. (4.4) but not condition (4.3). Lei et al. [2018] showed that the

split conformal prediction could generate an asymptotic valid prediction interval when X f is

fixed, which coincides with our setting.

Figure 4.1 plots point-wise prediction intervals for the linear model Yi = 0.8+0.5Xi+εi.

I.i.d. residuals are generated by normal distribution with mean 0 and variance 1. When the

sample size is small, the prediction intervals generated by RBUG / PRBUG is significantly wider

than the prediction intervals generated by classical bootstrap methods. On the other hand, when

the sample size is large, the prediction intervals generated by different algorithms coincide with

each other.

(a) Sample size = 80 (b) Sample size = 400

Figure 4.1. Predictors and point-wise prediction intervals for the linear model Yi = 0.8+
0.5Xi + εi, i = 1,2, .... The prediction intervals are generated by the following methods: RB
for the residual-based bootstrap(Stine [1985]); MF/MB for the model-free / model-based boot-
strap(Politis [2015]); RBUG and PRBUG for algorithm 5. We choose the nominal coverage
probability 1−α = 95% and the nominal guarantee level(in RBUG / PRBUG) 1− γ = 90%.

Our linear model of choice is denoted as the Experiment model and defined as follows:

Y = X β + ε , and β ’s dimension is 8. β = (β0,β1, ...,β7)
T with β0 = 1.0, β1 = 0.5, β2 =

−1.0, β3 =−0.5, β4 = 1.5, β5 =−1.5 and βi = 0 for i≥ 6. The design matrix X is generated

by i.i.d. standard normal random variables, and is fixed in each experiment. The new regressor

X f = (X f ,0, ...,X f ,7)
T is given by X f ,i = 0.1× i, i = 0,1, ...,7. The i.i.d. error vector ε is
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generated by various distributions. We choose the sample size n = 50,100,200,400,1200. The

result is demonstrated in table 4.2, table 4.3, figure 4.2 and figure 4.3.

When the sample size is small (e.g. 50 or 100 in the example), the MF/MB bootstrap

alleviates the residual-based bootstrap’s under-coverage nature. Therefore, it has a higher

guarantee level than the residual-based bootstrap. Yet this modification does not change the

asymptotic guarantee level (in other words, the MF/MB bootstrap still has 50% asymptotic

guarantee level). The split conformal prediction also has a high guarantee level when the sample

size is small and a low guarantee level when the sample size is moderate or large. Vovk’s

tolerance region has the desired guarantee level when the sample size is large. However, when

the sample size is small (e.g., 50 or 100), the tolerance region is always too wide. On the other

hand, the RBUG and the PRBUG algorithms improve the residual-based bootstrap’s performance

by controlling the asymptotic guarantee level. PRBUG reaches the desired guarantee levels when

the sample size is moderate, while RBUG needs a large number of data in order to achieve the

desired guarantee level. So we recommend using PRBUG in practice. When the sample size

is large, the bootstrap algorithms’ conditional coverage probabilities are close to 95%, and the

adjustments made by RBUG / PRBUG are not significant.

In practice, our work can be particularly useful when the sample size n is not very large.

Suppose we use the residual-based bootstrap. In table 4.2 we see that the 15% quantile of

conditional coverage probabilities is 91.0% when the sample size is 100, which means 15% of

the nominal 95% prediction intervals’ conditional coverage probabilities are less than 91%. On

the other hand, the RBUG’s 15% quantile is 93.5% and the PRBUG’s 15% quantile is 95.5%,

which is significantly larger than the residual-based bootstrap’s quantile.

4.8 Conclusion

Focusing on the fixed dimensional linear model, in this paper we derive the asymptotic

distribution of the difference between the conditional coverage probability of a nominal prediction
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Table 4.2. Performance of different algorithms on the Experiment model. The nominal
coverage probability is 95% and the nominal guarantee level is 85% (we also choose γ = 15%
in (4.5)). The residuals are generated by normal random variables with mean 0 and variance
1. In the ‘Algorithm’ column, ‘RB’ means residual-based bootstrap; ‘MF/MB’ means MF/MB
bootstrap; ‘split-conformal’ means the split conformal prediction(defined in Lei et al. [2018]),
Vovk’s tolerance region was defined in remark 13, and RBUG / PRBUG mean algorithm 5.
We use the R package maintained by Tibshirani et al. [2021] to perform the split conformal
prediction. ‘Length’ represents the average length of the prediction interval. The number
of bootstrap replicates is B = 3000, the number of replicates to find quantile’s adjustment is
B1 = 3000. The result is generated by 1500 simulations. In table 4.2, ‘Quantiles’ represents the
quantiles of conditional coverage probabilities, and ‘Guarantee’ represents the guarantee level.

Sample size Algorithm Quantiles Guarantee Length
15% 30% 50%

50 RB 87.8% 90.2% 92.4% 21.1% 3.63
MF / MB 93.8% 95.5% 96.9% 75.6% 4.40
split-conformal 95.9% 97.8% 99.0% 89.2% 5.65
Vovk’s region 95.9% 98.0% 99.1% 89.2% 5.69
RBUG 91.2% 93.7% 95.7% 57.9% 4.19
PRBUG 95.8% 97.3% 98.5% 90.3% 5.02

100 RB 91.0% 92.6% 93.9% 29.0% 3.78
MF / MB 93.7% 94.9% 95.9% 69.3% 4.14
split-conformal 95.1% 96.7% 98.0% 86.0% 4.78
Vovk’s region 97.3% 98.5% 99.2% 96.5% 5.55
RBUG 93.5% 94.9% 96.1% 68.1% 4.22
PRBUG 95.5% 96.6% 97.6% 89.1% 4.58

200 RB 92.5% 93.4% 94.3% 34.7% 3.83
MF / MB 93.7% 94.5% 95.3% 58.9% 4.00
split-conformal 93.6% 94.9% 96.0% 69.8% 4.19
Vovk’s region 95.9% 97.0% 97.9% 92.7% 4.69
RBUG 94.2% 95.0% 95.8% 71.0% 4.12
PRBUG 95.1% 95.9% 96.7% 87.5% 4.29

400 RB 93.5% 94.1% 94.7% 41.3% 3.88
MF / MB 94.0% 94.6% 95.2% 58.3% 3.96
split-conformal 93.7% 94.7% 95.5% 65.2% 4.05
Vovk’s region 96.1% 96.8% 97.5% 95.5% 4.50
RBUG 94.6% 95.3% 95.9% 75.5% 4.08
PRBUG 95.1% 95.7% 96.2% 87.5% 4.16

1200 RB 94.0% 94.5% 94.9% 47.9% 3.91
MF / MB 94.2% 94.7% 95.1% 55.8% 3.94
split-conformal 94.1% 94.6% 95.2% 60.5% 3.97
Vovk’s region 95.1% 95.6% 96.2% 88.1% 4.15
RBUG 94.7% 95.1% 95.6% 76.7% 4.03
PRBUG 94.9% 95.3% 95.7% 81.0% 4.05

93



(a) Residual-based bootstrap (b) MF / MB bootstrap

(c) RBUG (d) PRBUG

Figure 4.2. Histograms for the conditional coverage probabilities. Here we use the Experiment
model with sample size 400. The residuals are generated by i.i.d. normal random variables with
mean 0 and variance 1. The solid red line is the nominal coverage probability(95%); the green,
black and red dashed lines respectively represents the 13%, 15%, 17% quantile of conditional
coverage probabilities. In order to have a 1− γ = 85% guarantee level, the solid red line should
be close to the black dashed line.
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Table 4.3. Performance of different algorithms on the Experiment model. The nominal
coverage probability is 95%, and the nominal guarantee level is 85%. The residuals are generated
by the Laplace distribution with mean 0 and scale 1/

√
2; which makes the residuals’ variance 1.

Sample size Algorithm Quantiles Guarantee Length
15% 30% 50%

50 RB 87.7% 90.4% 92.4% 23.3% 3.83
MF / MB 92.2% 94.1% 95.5% 58.7% 4.60
split-conformal 94.4% 96.6% 98.1% 82.1% 6.14
Vovk’s region 94.6% 96.6% 98.2% 82.7% 6.15
RBUG 91.1% 93.6% 95.7% 57.3% 4.75
PRBUG 94.5% 96.1% 97.6% 81.4% 5.67

100 RB 91.0% 92.6% 93.9% 33.9% 4.03
MF / MB 92.9% 94.2% 95.3% 57.1% 4.41
split-conformal 94.5% 96.1% 97.3% 81.5% 5.30
Vovk’s region 96.8% 98.0% 98.9% 94.6% 6.68
RBUG 93.6% 95.1% 96.4% 72.1% 4.80
PRBUG 94.9% 96.2% 97.3% 84.7% 5.21

200 RB 92.6% 93.6% 94.5% 37.7% 4.13
MF / MB 93.4% 94.4% 95.2% 54.7% 4.32
split-conformal 93.3% 94.6% 95.6% 63.9% 4.54
Vovk’s region 95.6% 96.7% 97.6% 91.0% 5.37
RBUG 94.5% 95.3% 96.1% 76.7% 4.64
PRBUG 95.1% 95.8% 96.6% 86.0% 4.83

400 RB 93.4% 94.1% 94.8% 42.6% 4.18
MF / MB 93.8% 94.5% 95.1% 53.7% 4.28
split-conformal 93.5% 94.5% 95.4% 60.4% 4.40
Vovk’s region 95.9% 96.6% 97.3% 94.5% 5.16
RBUG 94.7% 95.3% 95.9% 78.6% 4.53
PRBUG 95.0% 95.6% 96.2% 84.5% 4.63

1200 RB 94.1% 94.5% 94.9% 47.9% 4.23
MF / MB 94.2% 94.6% 95.0% 52.5% 4.26
split-conformal 93.9% 94.5% 95.2% 57.1% 4.28
Vovk’s region 95.1% 95.6% 96.1% 86.4% 4.61
RBUG 94.8% 95.2% 95.6% 77.6% 4.42
PRBUG 94.9% 95.3% 95.7% 81.8% 4.45
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(a) Residual-based bootstrap (b) MF / MB bootstrap

(c) RBUG (d) PRBUG

Figure 4.3. Histograms for the conditional coverage probabilities of the Experiment model.
The sample size is 400 and the residuals are generated by i.i.d. Laplace random variables with
mean 0 and the scale parameter 1/

√
2, which makes the variance 1. The meaning of lines

coincide with figure 4.2.

interval P∗
(
|Y f −X T

f β̂ | ≤ x
)

and the conditional coverage probability of a prediction interval

for residual-based bootstrapped observations P∗
(
|Y ∗f −X T

f β̂ ∗| ≤ x
)

. According to this result,

the prediction interval generated by residual-based bootstrap has approximately 50% probability

to yield conditional under-coverage.

We then develop a new bootstrap algorithm that generates prediction intervals with

arbitrarily assigned conditional coverage probability and guarantee level, and prove its asymptotic

validity. Our theoretical results are corroborated by several finite-sample simulations.

Residual-based and the MF/MB bootstrap are widely used for prediction in numerous

settings like nonparametric/nonlinear regression, quantile regression, time series analysis (re-

gression with dependent errors, autoregression, etc.), and others. We expect our ideas to be

applicable in those settings as well; future work will address the details. Furthermore, the case

of high-dimensional linear regression is of current interest, i.e., where p is allowed to diverge as

n→ ∞; this can also be the subject of future work.
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Appendix A

Proofs of theorems in chapter 2

In this chapter, ‘assumption 1’ to ‘assumption 9’ represent assumption 1 to 9 in section

2.3 and section 2.6.

A.1 Some important lemmas

This section introduces three useful lemmas. Lemma A.1.1 comes from Whittle [1960],

which directly contributes to the model selection consistency. Lemma A.1.2 and A.1.3 are

similar to Chernozhukov et al. [2013], they used a joint normal distribution to approximate the

distribution of linear combinations of independent random variables.

Lemma A.1.1. Suppose random variables ε1, ...,εn are i.i.d., Eε1 = 0, and ∃ a constant m > 0

such that E|ε1|m < ∞. In addition suppose the matrix Γ = (γi j)i=1,2,...,k, j=1,2,...,n satisfies

max
i=1,2,...,k

n

∑
j=1

γ
2
i j ≤ D, D > 0 (A.1.1)

Then ∃ a constant E which only depends on m and E|ε1|m such that for ∀δ > 0,

Prob

(
max

i=1,2,...,k
|

n

∑
j=1

γi jε j|> δ

)
≤ kEDm/2

δ m (A.1.2)
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Proof. From theorem 2 in Whittle [1960], for any i = 1,2, ...,k,

Prob

(
|

n

∑
j=1

γi jε j|> δ

)
≤

E|∑n
j=1 γi jε j|m

δ m

≤
2mC(m)E|ε1|m(∑n

j=1 γ2
i j)

m/2

δ m ≤ 2mC(m)E|ε1|mDm/2

δ m

(A.1.3)

Here C(m) is a constant depending on m. Choose E = 2mC(m)E|ε1|m,

Prob

(
max

i=1,2,...,k
|

n

∑
j=1

γi jε j|> δ

)
≤

k

∑
i=1

Prob

(
|

n

∑
j=1

γi jε j|> δ

)
≤ kEDm/2

δ m (A.1.4)

Lemma A.1.2. Suppose ε = (ε1, ...,εn)
T are joint normal random variables with mean Eε = 0,

non-singular covariance matrix EεεT , and positive marginal variance σ2
i = Eε2

i > 0, i =

1,2, ...,n. In addition, suppose ∃ two constants 0 < c0 ≤ C0 < ∞ such that c0 ≤ σi ≤ C0 for

i = 1,2, ...,n. Then for any given δ > 0,

sup
x∈R

(
Prob( max

i=1,2,...,n
|εi| ≤ x+δ )−Prob( max

i=1,2,...,n
|εi| ≤ x)

)
≤Cδ (

√
log(n)+

√
| log(δ )|+1)

(A.1.5)

C only depends on c0 and C0.

Proof of lemma A.1.2. First for any i = 1,2, ...,n,

|εi|= max(εi,−εi)⇒ max
i=1,...,n

|εi|= max( max
i=1,...,n

εi, max
i=1,...,n

−εi) (A.1.6)
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Therefore, for any x ∈ R,

Prob( max
i=1,2,...,n

|εi| ≤ x+δ )−Prob( max
i=1,2,...,n

|εi| ≤ x)

= Prob(0 < max( max
i=1,...,n

εi, max
i=1,...,n

−εi)− x≤ δ )

≤ Prob(0 < max
i=1,...,n

εi− x≤ δ )+Prob(0 < max
i=1,...,n

−εi− x≤ δ )

≤ Prob(| max
i=1,...,n

εi− x| ≤ δ )+Prob(| max
i=1,...,n

−εi− x| ≤ δ )

(A.1.7)

−ε is also joint normal with mean 0 and marginal variance E(−ε j)
2 = σ2

j . From theorem 3 and

(18), (19) in Chernozhukov et al. [2015], by defining σ = mini=1,2,...,n σi ≤maxi=1,2,...,n σi = σ ,

we have

sup
x∈R

Prob
(
| max

i=1,2,...,n
εi− x| ≤ δ

)
≤
√

2δ

σ

(√
log(n)+

√
max(1, log(σ)− log(δ ))

)
+

4
√

2δ

σ
×
(

σ

σ

√
log(n)+2+

σ

σ

√
max(0, log(σ)− log(δ ))

)
≤
√

2δ

c0

(√
log(n)+

√
1+ | log(c0)|+ | log(C0)|+

√
| log(δ )|

)
+

4
√

2δC0

c2
0

(√
log(n)+2+

√
| log(c0)|+ | log(C0)|+

√
| log(δ )|

)
≤

(√
2× (1+ | log(c0)|+ | log(C0)|)

c0
+

4
√

2C0

c2
0

(2+
√
| log(c0)|+ | log(C0)|)

)

×δ

(√
log(n)+1+

√
| log(δ )|

)

(A.1.8)

Choose C =

√
2×(1+| log(c0)|+| log(C0)|)

c0
+ 4
√

2C0
c2

0
(2+

√
| log(c0)|+ | log(C0)|), which only depends

on c0, C0. Then

sup
x∈R

(Prob( max
i=1,2,...,n

|εi| ≤ x+δ )−Prob( max
i=1,2,...,n

|εi| ≤ x))

≤ 2Cδ (1+
√

log(n)+
√
| log(δ )|)

(A.1.9)
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Lemma A.1.3. Suppose ε = (ε1, ...εn)
T are i.i.d. random variables with Eε1 = 0, Eε2

1 = σ2 and

E|ε1|3 < ∞. Γ = (γi j)i=1,2,...,n, j=1,2,...,k is an n× k (1 ≤ k ≤ n) rank k matrix. And ∃ constants

0 < cΓ ≤CΓ < ∞ such that c2
Γ
≤ ∑

n
j=1 γ2

ji ≤C2
Γ

for i = 1,2, ...,k. σ̂2 = σ̂2(ε) is an estimator of

σ2 and random variables ε∗|ε = (ε∗1 , ...,ε
∗
n )

T |ε are i.i.d. with ε∗1 having normal distribution

N (0, σ̂2). ε∗i
σ̂

is independent of ε for i = 1,2, ...,n. In addition, suppose one of the following

conditions:

C1. ∃ a constant 0 < ασ ≤ 1/2 such that

|σ2− σ̂
2|= Op(n−ασ ) and

max
j=1,2,...,n, i=1,2,...,k

|γ ji|= o(min(n(ασ−1)/2× log−3/2(n), n−1/3× log−3/2(n))
(A.1.10)

C2. ∃ a constant 0 < ασ < 1/2 such that

|σ2− σ̂
2|= Op(n−ασ ), k = o(nασ × log−3(n)),

max
j=1,...,n,i=1,...,k

|γ ji|= O(n−ασ × log−3/2(n))
(A.1.11)

Then we have

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε j| ≤ x)−Prob∗( max
i=1,2,...,k

|
n

∑
j=1

γ jiε
∗
j | ≤ x)|= oP(1) (A.1.12)

In particular, if σ̂ = σ , by assuming one of the following conditions,

C
′
1.

max
j=1,2,...,n,i=1,2,...,k

|γ ji|= o(n−1/3× log−3/2(n)) (A.1.13)

C
′
2.

k× max
j=1,2,...,n,i=1,2,...,k

|γ ji|= o(log−9/2(n)) (A.1.14)
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Then we have

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε j| ≤ x)−Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε
∗
j | ≤ x)|= o(1) (A.1.15)

Proof of lemma A.1.3. In this proof we define Γ = (γ1, ...,γk) with γi = (γ1i,γ2i, ...,γni)
T ∈ Rn.

For i = 1,2, ...,k, γT
i ε = ∑

n
j=1 γ jiε j. From lemma A.2 and (8) in Chernozhukov et al. [2013], and

(S1) to (S5) in Xu et al. [2019], for x = (x1, ...,xn) and y,z ∈ R, define

Fβ (x) =
1
β

log

(
n

∑
i=1

exp(βxi)

)
, g0(y) = (1−min(1,max(y,0))4)4,

gψ,z(y) = g0(ψ(y− z))

(A.1.16)

Here β ,ψ > 0. Then gψ,z ∈ C3 is nonincreasing function. g0 = 1 with y≤ 0, 0 with y≥ 1, and

g∗ = max
y∈R

(|g
′
0(y)|+ |g

′′
0(y)|+ |g

′′′
0 (y)|)< ∞, 1y≤z ≤ gψ,z(y)≤ 1y≤z+ψ−1

sup
y,z∈R
|g
′
ψ,z(y)| ≤ g∗ψ, sup

y,z∈R
|g
′′
ψ,z(y)| ≤ g∗ψ2, sup

y,z∈R
|g
′′′
ψ,z(y)| ≤ g∗ψ3

∂Fβ

∂xi
=

exp(βxi)

∑
n
j=1 exp(βx j)

⇒
∂Fβ

∂xi
≥ 0,

n

∑
i=1

∂Fβ

∂xi
= 1

n

∑
i=1

n

∑
j=1
|

∂ 2Fβ

∂xi∂x j
| ≤ 2β ,

n

∑
i=1

n

∑
j=1

n

∑
k=1
|

∂ 3Fβ

∂xi∂x j∂xk
| ≤ 6β

2

Fβ (x1, ...,xn)−
log(n)

β
≤ max

i=1,...,n
xi ≤ Fβ (x1, ...,xn)

(A.1.17)

For any given x = (x1, ...,xn) ∈ Rn, define function

Gβ (x) =
1
β

log(∑n
i=1 exp(βxi)+∑

n
i=1 exp(−βxi)) = Fβ (x1, ...,xn,−x1, ...,−xn). From (A.1.17)
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and (A.1.6), for i, j,k = 1, ...,n

Gβ (x)−
log(2n)

β
≤ max

i=1,...,n
|xi| ≤ Gβ (x)

∂Gβ

∂xi
=

∂Fβ

∂xi
−

∂Fβ

∂xi+n
⇒

n

∑
i=1
|
∂Gβ

∂xi
| ≤

n

∑
i=1

∂Fβ

∂xi
+

∂Fβ

∂xi+n
= 1

∂ 2Gβ

∂xi∂x j
=

∂ 2Fβ

∂xi∂x j
−

∂ 2Fβ

∂xi∂x j+n
−

∂ 2Fβ

∂xi+n∂x j
+

∂ 2Fβ

∂xi+n∂x j+n

⇒
n

∑
i=1

n

∑
j=1
|

∂ 2Gβ

∂xi∂x j
| ≤

2n

∑
i=1

2n

∑
j=1
|

∂ 2Fβ

∂xi∂x j
| ≤ 2β

∂ 3Gβ

∂xi∂x j∂xk
=

∂ 3Fβ

∂xi∂x j∂xk
−

∂ 3Fβ

∂xi∂x j∂xk+n
−

∂ 3Fβ

∂xi∂x j+n∂xk

+
∂ 3Fβ

∂xi∂x j+n∂xk+n
−

∂ 3Fβ

∂xi+n∂x j∂xk
+

∂ 3Fβ

∂xi+n∂x j∂xk+n

+
∂ 3Fβ

∂xi+n∂x j+n∂xk
−

∂ 3Fβ

∂xi+n∂x j+n∂xk+n

⇒
n

∑
i=1

n

∑
j=1

n

∑
k=1
|

∂ 3Gβ

∂xi∂x j∂xk
| ≤

2n

∑
i=1

2n

∑
j=1

2n

∑
k=1
|

∂ 3Fβ

∂xi∂x j∂xk
| ≤ 6β

2

(A.1.18)

Define hβ ,ψ,x(x1, ...,xn) = gψ,x(Gβ (x1, ...,xn)). Direct calculation shows
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∂hβ ,ψ,x(x1,...,xn)

∂xi
= g

′
ψ,x(Gβ (x1, ...,xn))

∂Gβ

∂xi
⇒ ∑

n
i=1 |

∂hβ ,ψ,x(x1,...,xn)

∂xi
| ≤ g∗ψ;

∂ 2hβ ,ψ,x(x1, ...,xn)

∂xi∂x j
= g

′′
ψ,x(Gβ (x1, ...,xn))

∂Gβ

∂xi

∂Gβ

∂x j

+g
′
ψ,x(Gβ (x1, ...,xn))

∂ 2Gβ

∂xi∂x j

⇒
n

∑
i=1

n

∑
j=1
|
∂ 2hβ ,ψ,x(x1, ...,xn)

∂xi∂x j
| ≤ g∗ψ2

(
n

∑
i=1
|
∂Gβ

∂xi
|

)2

+g∗ψ
n

∑
i=1

n

∑
j=1
|

∂ 2Gβ

∂xi∂x j
| ≤ g∗ψ2 +2g∗ψβ

and
∂ 3hβ ,ψ,x(x1, ...,xn)

∂xi∂x j∂xk
= g

′′′
ψ,x(Gβ (x1, ...,xn))

∂Gβ

∂xi

∂Gβ

∂x j

∂Gβ

∂xk

+g
′′
ψ,x(Gβ (x1, ...,xn))

∂ 2Gβ

∂xi∂xk

∂Gβ

∂x j

+g
′′
ψ,x(Gβ (x1, ...,xn))

∂Gβ

∂xi

∂ 2Gβ

∂x j∂xk
+g

′′
ψ,x(Gβ (x1, ...,xn))

∂ 2Gβ

∂xi∂x j

∂Gβ

∂xk

+g
′
ψ,x(Gβ (x1, ...,xn))

∂ 3Gβ

∂xi∂x j∂xk

⇒
n

∑
i=1

n

∑
j=1

n

∑
k=1
|
∂ 3hβ ,ψ,x(x1, ...,xn)

∂xi∂x j∂xk
| ≤ g∗ψ3

(
n

∑
i=1
|
∂Gβ

∂xi
|

)3

+3g∗ψ2

(
n

∑
i=1

n

∑
j=1
|

∂ 2Gβ

∂xi∂x j
|

)
×

(
n

∑
k=1
|
∂Gβ

∂xk
|

)

+g∗ψ
n

∑
i=1

n

∑
j=1

n

∑
k=1
|

∂ 3Gβ

∂xi∂x j∂xk
| ≤ g∗ψ3 +6g∗ψ2

β +6g∗ψβ
2

(A.1.19)

Define ξ = (ξ1, ...,ξn) as i.i.d. random variables with the same marginal distribution as ε1, and is

independent of ε,ε∗. Therefore, Prob(maxi=1,2,...,k |γT
i ε| ≤ x) = Prob∗(maxi=1,2,...,k |γT

i ξ | ≤ x)

for any x. Since c2
Γ
≤ E∗

(
∑

n
l=1

γilε
∗
l

σ̂

)2
= ∑

n
l=1 γ2

il ≤C2
Γ

for i = 1,2, ...,k. According to (A.1.6),

(A.1.18) and lemma A.1.2, ∃ a constant C which only depends on cΓ and CΓ such that for any
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given ψ,β , σ̂ > 0,

sup
x∈R

(
Prob∗

(
max

i=1,2,...,k
|γT

i ε
∗| ≤ x+

1
ψ

+
log(2k)

β

)
−Prob∗

(
max

i=1,2,...,k
|γT

i ε
∗| ≤ x

))
= sup

x∈R
(Prob∗

(
max

i=1,2,...,k
|γ

T
i ε∗

σ̂
| ≤ x

σ̂
+

1
ψσ̂

+
log(2k)

βσ̂

)
−Prob∗

(
max

i=1,2,...,k
|γ

T
i ε∗

σ̂
| ≤ x

σ̂

)
)

≤C×
(

1
ψσ̂

+
log(2k)

βσ̂

)
×

(
1+
√

log(k)+

√
| log

(
1

ψσ̂
+

log(2k)
βσ̂

)
|

)
(A.1.20)

Define z =C×
(

1
ψσ̂

+ log(2k)
βσ̂

)
×
(

1+
√

log(k)+
√
| log

(
1

ψσ̂
+ log(2k)

βσ̂

)
|
)

. For any x≥ 0,

Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)

≤ Prob∗( max
i=1,2,...,k

|γT
i ξ | ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x+

1
ψ

+
log(2k)

β
)+ z

≤ Prob∗(Gβ (γ
T
1 ξ , ...,γT

k ξ )≤ x+
log(2k)

β
)

−Prob∗(Gβ (γ
T
1 ε
∗, ...,γT

k ε
∗)≤ x+

1
ψ

+
log(2k)

β
)+ z

≤ E∗h
β ,ψ,x+ log(2k)

β

(γT
1 ξ , ...,γT

k ξ )−E∗h
β ,ψ,x+ log(2k)

β

(γT
1 ε
∗, ...,γT

k ε
∗)+ z

Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)

≥ Prob∗( max
i=1,2,...,k

|γT
i ξ | ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x− 1

ψ
− log(2k)

β
)− z

≥ Prob∗(Gβ (γ
T
1 ξ , ...,γT

k ξ )≤ x)−Prob∗(Gβ (γ
T
1 ε
∗, ...,γT

k ε
∗)≤ x− 1

ψ
)− z

≥ E∗h
β ,ψ,x− 1

ψ

(γT
1 ξ , ...,γT

k ξ )−E∗h
β ,ψ,x− 1

ψ

(γT
1 ε
∗, ...,γT

k ε
∗)− z

(A.1.21)
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Therefore, we have

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)|

≤ z+ sup
x∈R
|E∗hβ ,ψ,x(γ

T
1 ξ , ...,γT

k ξ )−E∗hβ ,ψ,x(γ
T
1 ε
∗, ...,γT

k ε
∗)|

(A.1.22)

For any i = 1,2, ...,k, j = 1,2, ...,n, define Hi j = ∑
j−1
s=1 γsiξs + ∑

n
s= j+1 γsiε

∗
s , mi j = γ jiξ j and

m∗i j = γ jiε
∗
j , we have Hi j +mi j = Hi j+1 +m∗i j+1, and

sup
x∈R
|E∗hβ ,ψ,x(γ

T
1 ξ , ...,γT

k ξ )−E∗hβ ,ψ,x(γ
T
1 ε
∗, ...,γT

k ε
∗)|

= sup
x∈R
|

n

∑
s=1

E∗hβ ,ψ,x(H1s +m1s, ...,Hks +mks)−E∗hβ ,ψ,x(H1s +m∗1s, ...,Hks +m∗ks)|

≤
n

∑
s=1

sup
x∈R
|E∗hβ ,ψ,x(H1s +m1s, ...,Hks +mks)−E∗hβ ,ψ,x(H1s +m∗1s, ...,Hks +m∗ks)|

(A.1.23)

Since E(ξs|ε,ξb,ε
∗
b ,b 6= s) = E(ε∗s |ε,ξb,ε

∗
b ,b 6= s) = 0, E(ξ 2

s − ε∗2s |ε,ξb,ε
∗
b ,b 6= s) = σ2− σ̂2,
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from multivariate Taylor’s theorem and (A.1.19), for any s = 1,2, ...,n and x ∈ R,

|E
(
hβ ,ψ,x(H1s +m1s, ...,Hks +mks)−hβ ,ψ,x(H1s +m∗1s, ...,Hks +m∗ks)

)
∣∣∣ε,ξb,ε

∗
b ,b 6= s|

≤ |
k

∑
i=1

∂hβ ,ψ,x(H1s, ...,Hks)

∂xi
γsiE(ξs− ε

∗
s |ε,ξb,ε

∗
b ,b 6= s)|

+
1
2
|

k

∑
i=1

k

∑
j=1

∂ 2hβ ,ψ,x(H1s, ...,Hks)

∂xi∂x j
γsiγs jE(ξ 2

s − ε
∗2
s |ε,ξb,ε

∗
b ,b 6= s)|

+(g∗ψ3 +g∗ψ2
β +g∗ψβ

2) max
i=1,2,...,k

|γsi|3× (E|ε1|3 + σ̂
3D)

⇒ sup
x∈R
|Ehβ ,ψ,x(H1s +m1s, ...,Hks +mks)

−hβ ,ψ,x(H1s +m∗1s, ...,Hks +m∗ks)|ε,ξb,ε
∗
b ,b 6= s|

≤ g∗(ψ2 +ψβ )|σ2− σ̂
2|× max

i=1,...,k
γ

2
si +(E|ε1|3 + σ̂

3D)

×g∗(ψ3 +ψ
2
β +ψβ

2)× max
i=1,...,k

|γsi|3

(A.1.24)

Here D = E|Y |3 with Y having normal distribution with mean 0 and variance 1. Then

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)|

≤ z+(g∗ψ2 +g∗ψβ )|σ2− σ̂
2|×

n

∑
s=1

max
i=1,...,k

γ
2
si

+(E|ε1|3 + σ̂
3D)×g∗(ψ3 +ψ

2
β +ψβ

2)×
n

∑
s=1

max
i=1,...,k

|γsi|3

(A.1.25)

In particular, for any given δ > 0, choose ψ = β = log3/2(n)/δ 1/4 and suppose 3σ

2 > σ̂ > σ

2 .
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For sufficiently large n we have 1
ψσ̂

+ log(2k)
βσ̂
≤ 4log(n)

ψσ
≤ 4δ 1/4

σ
√

log(n)
< 1 and

z≤ 4C log(n)
ψσ

×
(

2
√

log(n)+
√

log(ψσ̂)

)

≤ 4Cδ 1/4

σ

2+

√
3
2 log(log(n))+ log(3σ/2δ 1/4)

log(n)

≤C
′
δ

1/4
(A.1.26)

Here C
′
= 12C

σ
.

Suppose condition C1. For any 1 > δ > 0, ∃Dδ > 0 such that for sufficiently large n,

Prob
(
|σ2− σ̂

2| ≤ Dδ ×n−ασ
)
> 1−δ

max
j=1,2,...,n,i=1,2,...,k

|γ ji|< δ ×n(ασ−1)/2× log−3/2(n),

and max
j=1,2,...,n,i=1,2,...,k

|γ ji|< δ ×n−1/3× log−3/2(n)

(A.1.27)

Choose ψ = β = log3/2(n)/δ 1/4. According to (A.1.25), for sufficiently large n, (A.1.27)

happens and 1
2σ < σ̂ < 3

2σ with probability 1−δ . If (A.1.27) happens,

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)|

≤C
′
δ

1/4 +2g∗ψ2×Dδ ×n−ασ × δ 2×nασ

log3(n)

+(E|ε1|3 +
27D

8
σ

3)×3g∗ψ3×δ
3×n× 1

n log9/2(n)

=C
′
δ

1/4 +2g∗Dδ δ
3/2 +3g∗(E|ε1|3 +

27D
8

σ
3)×δ

9/4

(A.1.28)

For δ > 0 can be arbitrarily small, we prove (A.1.12).

Suppose condition C2. For any δ > 0, there exists Dδ > 0 such that for sufficiently large
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n

Prob
(
|σ2− σ̂

2| ≤ Dδ ×n−ασ
)
≥ 1−δ , k ≤ δnασ

log3(n)
,

max
i=1,2,...,k

n

∑
j=1

γ
2
ji ≤ Dδ

and max
j=1,2,...,n,i=1,2,...,k

|γ ji| ≤
Dδ ×n−ασ

log3/2(n)

(A.1.29)

Since
n

∑
j=1

max
i=1,...,k

γ
2
ji ≤

n

∑
j=1

k

∑
i=1

γ
2
ji ≤ kDδ

n

∑
j=1

max
i=1,...,k

γ
3
ji ≤ max

j=1,2,...,n,i=1,2,...,k
|γ ji|×

n

∑
j=1

max
i=1,...,k

γ
2
ji

≤ kDδ × max
j=1,2,...,n,i=1,2,...,k

|γ ji|

(A.1.30)

If (A.1.29) happens, by choosing ψ = β = log3/2(n)/δ 1/4

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob∗( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)|

≤C
′
δ

1/4 +2g∗ψ2Dδ n−ασ × kDδ

+(E|ε1|3 +
27D

8
σ

3)×3g∗ψ3× kDδ max
j=1,2,...,n,i=1,2,...,k

|γ ji|

≤C
′
δ

1/4 +2g∗D2
δ
× log3(n)

δ 1/2 ×
δnασ

log3(n)
×n−ασ

+3(E|ε1|3 +
27D

8
σ

3)g∗D2
δ
× log9/2(n)

δ 3/4 × δnασ

log3(n)
× n−ασ

log3/2(n)

=C
′
δ

1/4 +2g∗D2
δ

δ
1/2 +3(E|ε1|3 +

27D
8

σ
3)g∗D2

δ
×δ

1/4

(A.1.31)

and we prove (A.1.12).

If σ̂ = σ . We choose ψ = β = log3/2(n)/δ 1/4, (A.1.25) can be modified to

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|γT
i ε| ≤ x)−Prob( max

i=1,2,...,k
|γT

i ε
∗| ≤ x)|

≤C
′
δ

1/4 +(E|ε1|3 +Dσ
3)g∗ψ(ψ2 +ψβ +β

2)
n

∑
s=1

max
i=1,...,k

|γsi|3
(A.1.32)
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Suppose condition C1
′
. For any δ > 0 and sufficiently large n,

max j=1,2,...,n,i=1,2,...,k |γ ji| ≤ δ ×n−1/3 log−3/2(n),

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε j| ≤ x)−Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε
∗
j | ≤ x)|

≤C
′
δ

1/4 +3(E|ε1|3 +Dσ
3)g∗×δ

9/4

(A.1.33)

and we prove (A.1.15).

Suppose condition C2
′
. For any δ > 0 and sufficiently large n,

k×max j=1,2,...,n,i=1,2,...,k |γ ji| ≤ δ log−9/2(n). According to (A.1.30), for sufficiently large n we

have

sup
x∈[0,∞)

|Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε j| ≤ x)−Prob( max
i=1,2,...,k

|
n

∑
j=1

γ jiε
∗
j | ≤ x)|

≤C
′
δ

1/4 +3(E|ε1|3 +Dσ
3)g∗Dδ ×δ

1/4

(A.1.34)

and we prove (A.1.15).

Condition C1 implies C1
′
, and condition C2 implies C2

′
. The additional proportions in

C1 and C2 accommodate the error introduced in estimating errors’ variance σ2. Condition C1 is

designed for the situation when the number of linear combinations k is as large as the sample

size n; and condition C2 can be used when k is significantly smaller than n.

The difference between lemma A.1.3 and the classical central limit theorem is that k can

grow as n increases. The maximum maxi=1,2,...,k |∑n
j=1 γ jiε j| does not have an asymptotic distri-

bution if k→∞. However, if the random variables are mixed well, approximating the distribution

of maxi=1,2,...,k |∑n
j=1 γ jiε j| by the distribution of the maximum of normal random variables is

still applicable. With the help of lemma A.1.3, we can establish the normal approximation

theorem and construct the simultaneous confidence region for γ̂(defined in (2.17)).
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A.2 Proofs of theorems in section 2.4

This section applies notations in section 2.3.

Proof of theorem 1. From (2.16),

Prob
(
N̂bn 6= Nbn

)
≤ Prob

(
min

i∈Nbn

|θ̃i| ≤ bn

)
+Prob

(
max
i6∈Nbn

|θ̃i|> bn

)
≤ Prob( min

i∈Nbn

|θi|− max
i∈Nbn

ρ
2
n |

r

∑
j=1

qi jζ j

(λ 2
j +ρn)2 |

− max
i∈Nbn

|
r

∑
j=1

qi j

(
λ j

λ 2
j +ρn

+
ρnλ j

(λ 2
j +ρn)2

)
n

∑
l=1

pl jεl| ≤ bn)

+Prob(max
i6∈Nbn

|θi|+ max
i6∈Nbn

ρ
2
n |

r

∑
j=1

qi jζ j

(λ 2
j +ρn)2 |

+ max
i 6∈Nbn

|
r

∑
j=1

qi j

(
λ j

λ 2
j +ρn

+
ρnλ j

(λ 2
j +ρn)2

)
n

∑
l=1

pl jεl|> bn)

(A.2.1)

From Cauchy inequality,

max
i=1,2,...,p

ρ
2
n |

r

∑
j=1

qi jζ j

(λ 2
j +ρn)2 | ≤ max

i=1,2,...,p
ρ

2
n

√
r

∑
j=1

q2
i j×

√√√√ r

∑
j=1

ζ 2
j

(λ 2
j +ρn)4

= O(nαθ−2δ )

max
i=1,2,...,p

n

∑
l=1

(
r

∑
j=1

qi j

(
λ j

λ 2
j +ρn

+
ρnλ j

(λ 2
j +ρn)2

)
pl j

)2

= max
i=1,2,...,p

r

∑
j=1

q2
i j

(
λ j

λ 2
j +ρn

+
ρnλ j

(λ 2
j +ρn)2

)2

≤ max
i=1,2,...,p

4∑
r
j=1 q2

i j

λ 2
r

(A.2.2)
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Therefore, for sufficiently large n, from assumption 4 and lemma A.1.1

min
i∈Nbn

|θi|− max
i∈Nbn

ρ
2
n |

r

∑
j=1

qi jζ j

(λ 2
j +ρn)2 |−bn >

1
2
(

1
cb
−1)bn

bn− max
i6∈Nbn

|θi|− max
i∈Nbn

ρ
2
n |

r

∑
j=1

qi jζ j

(λ 2
j +ρn)2 |>

1
2
(1− cb)bn

⇒ Prob
(
N̂bn 6= Nbn

)
≤ |Nbn|×E×2m

λ m
r × (1

2(
1
cb
−1)bn)m

+
(p−|Nbn |)×E×2m

λ m
r × (1

2(1− cb)bn)m

= O(nαp+mνb−mη)

(A.2.3)

and we prove (2.21).

Define γ̂ = Mθ̂ = (γ̂1, ..., γ̂p1)
T and γ = Mβ = (γ1, ...,γp1)

T . For β = θ +θ⊥, if N̂bn =

Nbn , (2.16) and (2.4) imply

max
i=1,2,...,p1

|γ̂i− γi|= max
i=1,2,...,p1

| ∑
j∈Nbn

mi jθ̃ j− ∑
j∈Nbn

mi jθ j− ∑
j 6∈Nbn

mi jθ j−
p

∑
j=1

mi jθ⊥, j|

≤ max
i=1,2,...,p1

ρ
2
n |

r

∑
k=1

cikζk

(λ 2
k +ρn)2 |+ max

i=1,2,...,p1
|

r

∑
k=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2 +ρn)2

) n

∑
l=1

plkεl|

+ max
i=1,2,...,p1

| ∑
j 6∈Nbn

mi jθ j|+ max
i=1,2,...,p1

|
p

∑
j=1

mi jθ⊥, j|

(A.2.4)

From (2.4) and assumption 5, if i 6∈M , then cik = 0 for k = 1,2, ...,r, so from Cauchy inequality
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and lemma A.1.1,

max
i=1,2,...,p1

ρ
2
n |

r

∑
k=1

cikζk

(λ 2
k +ρn)2 | ≤max

i∈M
ρ

2
n

√
r

∑
k=1

c2
ik×

√
r

∑
k=1

ζ 2
k

(λ 2
k +ρn)4

≤
√

CM ρ
2
n ×
‖θ‖2

λ 4
r

= O(nαθ−2δ )

max
i∈M

n

∑
l=1

(
r

∑
k=1

cik plk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

))2

= max
i∈M

r

∑
k=1

c2
ik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2

≤ 4CM

λ 2
r

⇒ Prob

(
max

i=1,2,...,p1
|

r

∑
k=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2 +ρn)2

) n

∑
l=1

plkεl|> δ

)

≤
|M |×E×2mCm/2

M

λ m
r δ m for ∀δ > 0

⇒ max
i=1,2,...,p1

|
r

∑
k=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2 +ρn)2

) n

∑
l=1

plkεl|= Op(|M |1/m×n−η)

(A.2.5)

Here E is the constant defined in lemma A.1.1. Combine with assumption 2, assumption 5, and

(A.2.3), we prove (2.22).

If N̂bn = Nbn , since Xβ = Xθ , we have

σ̂
2−σ

2 =
1
n

n

∑
i=1

(
εi− ∑

j∈Nbn

xi j(θ̃ j−θ j)+ ∑
j 6∈Nbn

xi jθ j

)2

−σ
2

=
1
n

n

∑
i=1

ε
2
i −σ

2 +
1
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)2

+
1
n

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

−2
n

n

∑
i=1

∑
j∈Nbn

εixi j(θ̃ j−θ j)

+
2
n

n

∑
i=1

∑
j 6∈Nbn

εixi jθ j−
2
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)
×

(
∑

j 6∈Nbn

xi jθ j

)
(A.2.6)

From assumption 3,

E
(1

n ∑
n
i=1 ε2

i −σ2)2 ≤ 2
n(Eε4

1 +σ4) = O(1/n)⇒ 1
n ∑

n
i=1 ε2

i −σ2 = Op(1/
√

n). For the second
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term, from assumption 1 and (A.2.2),

1
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)2

≤C2
λ ∑

j∈Nbn

(θ̃ j−θ j)
2

≤ 2C2
λ ∑

j∈Nbn

(ρ4
n

(
r

∑
k=1

q jkζk

(λ 2
k +ρn)2

)2

+

(
r

∑
k=1

q jk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

) n

∑
l=1

plkεl

)2

)

= O(|Nbn|×n2αθ−4δ )+2C2
λ ∑

j∈Nbn

(
r

∑
k=1

q jk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

) n

∑
l=1

plkεl

)2

(A.2.7)

Since

E ∑
j∈Nbn

(
r

∑
k=1

q jk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

) n

∑
l=1

plkεl

)2

= σ
2

∑
j∈Nbn

n

∑
l=1

(
r

∑
k=1

q jk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
plk

)2

= σ
2

∑
j∈Nbn

r

∑
k=1

q2
jk

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)2

≤ 4σ2|Nbn|
λ 2

r

(A.2.8)

We have 1
n ∑

n
i=1

(
∑ j∈Nbn

xi j(θ̃ j−θ j)
)2

= Op(|Nbn| × n2αθ−4δ + |Nbn| × n−2η). For the third

term, from assumption 6 we have

1
n

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

≤C2
λ ∑

j 6∈Nbn

θ
2
j ≤C2

λ
×bn ∑

j 6∈Nbn

|θ j|= O(n−ασ ) (A.2.9)
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For the fourth term, from Cauchy inequality and (A.2.7),

E
1
n
|

n

∑
i=1

∑
j∈Nbn

εixi j(θ̃ j−θ j)| ≤
1
n

E

√
n

∑
i=1

ε2
i ×

√√√√ n

∑
i=1

( ∑
j∈Nbn

xi j(θ̃ j−θ j))2

≤

√
E∑

n
i=1 ε2

i
n

×

√√√√1
n

E
n

∑
i=1

( ∑
j∈Nbn

xi j(θ̃ j−θ j))2

= σ ×O(
√
|Nbn|×n2αθ−4δ + |Nbn|×n−2η)

⇒ 1
n
|

n

∑
i=1

∑
j∈Nbn

εixi j(θ̃ j−θ j)|= Op(
√
|Nbn|×nαθ−2δ +

√
|Nbn|×n−η)

(A.2.10)

For the fifth term,

E|1
n

n

∑
i=1

∑
j 6∈Nbn

εixi jθ j|2 =
σ2

n2

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

≤
σ2C2

λ

n ∑
j 6∈Nbn

θ
2
j

⇒ 1
n

n

∑
i=1

∑
j 6∈Nbn

εixi jθ j = Op(n−(1+ασ )/2)

(A.2.11)

For the last term,

1
n
|

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)
×

(
∑

j 6∈Nbn

xi jθ j

)
|

≤C2
λ

√
∑

j∈Nbn

(θ̃ j−θ j)2×
√

∑
j 6∈Nbn

θ 2
j

= Op(
√
|Nbn|×nαθ−2δ−ασ/2 +

√
|Nbn|×n−η−ασ/2)

(A.2.12)

From (2.21), Prob(N̂bn 6= Nbn)→ 0. So we have

|σ̂2−σ
2|= Op

(
1√
n
+
√
|Nbn |×nαθ−2δ +

√
|Nbn|×n−η +n−ασ

)
(A.2.13)

From assumption 2 and 6, we prove the second result.

Define T = (cik)i∈M ,k=1,2,...,r. From assumption 7, since the matrix
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(
1
τi

cik

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

))
i∈M , j=1,2,...,r

= D1T D2 with D1 = diag(1/τi, i ∈M ) and

D2 = diag
(

λ1
λ 2

1 +ρn
+ ρnλ1

(λ 2
1 +ρn)2 , ...,

λr
λ 2

r +ρn
+ ρnλr

(λ 2
r +ρn)2

)
, the matrix(

1
τi

cik

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

))
i∈M , j=1,2,...,r

also has rank |M |. The proof of theorem 2 uses this

result.

Proof of theorem 2. From Cauchy inequality and assumption 2, suppose δ = η+αθ+δ1
2 with

δ1 > 0. For i ∈M ,

|
r

∑
k=1

cikζk

(λ 2
k +ρn)2 | ≤

√
r

∑
k=1

c2
ikλ 2

k

(λ 2
k +ρn)2 ×

√
r

∑
k=1
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k

λ 2
k (λ

2
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‖θ‖2

λ 3
r
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i∈M
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n

τi
|

r

∑
k=1

cikζk

(λ 2
k +ρn)2 |= O(n−δ1)

(A.2.14)

Define til = 1
τi
×∑

r
k=1 cik plk

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

)
for i ∈M and l = 1,2, ...,n. From (2.16), (2.5),

(A.2.4) and assumption 5, if N̂bn = Nbn , we have τ̂i = τi ≥ 1/
√

n and ∃ a constant C > 0, for

any a > 0 and sufficiently large n,

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i
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i∈M

ρ2
n

τi
|

r
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k=1

cikζk
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n

∑
l=1
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mi jθ j|

τi
+ max

i=1,2,...,p1
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τi
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i∈M
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log(n)
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i∈M
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n

τi
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r

∑
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(λ 2
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i=1,2,...,p1
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τi
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i∈M
|

n

∑
l=1

tilεl|−Cn−δ1− a√
log(n)

(A.2.15)

According to theorem 1, ∃ a constant C and for any given a > 0, for sufficiently large n
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and any x≥ 0, define V =Cn−δ1 + a√
log(n)

,
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i=1,2,...,p1
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≤ x
)
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≤ x∩ N̂bn = Nbn

)
+Prob

(
N̂bn 6= Nbn

)
≤ Prob

(
max
i∈M
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From assumption 1, 2, 5 and 7, for sufficiently large n we have
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(A.2.17)

and (til)i∈M ,l=1,2,...,n = D1T D2PT , here T = (cik)i∈M ,k=1,2,...,r, D1 = diag(1/τi, i ∈M ), and

D2 = diag
(

λ1
λ 2

1 +ρn
+ ρnλ1

(λ 2
1 +ρn)2 , ...,

λr
λ 2

r +ρn
+ ρnλr

(λ 2
r +ρn)2

)
. So (til)i∈M ,l=1,2,...,n has full rank(rank

|M |). From lemma A.1.2, ∃ a constant C
′
which only depends on σ ,cM ,Cλ such that
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(A.2.18)

For sufficiently large n, we have Cn−δ1 + a√
log(n)

< 1 and
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)| ≤ log(
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From assumption 7, (A.2.17) and lemma A.1.3, we have
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i∈M
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|< a (A.2.20)

for sufficiently large n. If x <Cn−δ1 + a√
log(n)

, then
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(

maxi∈M |∑n
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)
= 0 and
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)
= 0. Combine with (A.2.16) to (A.2.20),
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(A.2.21)

and we prove (2.27).

Define c1−α as the 1−α quantile of H. The density of a multivariate normal random

variable with a full rank covariance matrix is positive for ∀x ∈R|M |. And ∀x≥ 0, δ > 0, the

set {t = (ti, i ∈M )| x < maxi∈M |ti| ≤ x+δ} has positive Lebesgue measure. Therefore, H(x)

is strictly increasing, and for any 0 < α < 1, H(c1−α) = 1−α . From theorem 2, for any given

0 < α0 < α1 < 1,

sup
α0≤α≤α1

|Prob
(
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≤ x
)
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(A.2.22)

as n→ ∞.
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A.3 Proofs of theorems in section 2.5

Proof of theorem 3. According to theorem 1, Prob
(
N̂bn 6= Nbn

)
= O(nαp+mνb−mη). If N̂bn =

Nbn , from (2.16)
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From assumption 2, ∑i∈Nbn
|θi|2 ≤ ‖θ‖2

2 = O(n2αθ ). Similarly
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From assumption 6,
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(A.3.3)
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Since αθ ,ασ ≥ 0, ‖θ̂‖2 = Op(nαθ ). According to (2.15) and (2.16), define ζ̂ = QT θ̂ ,

θ̃
∗− θ̂ =

(
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(A.3.4)

Similar to (A.2.5), rewrite δ in assumption 2 as δ = η+αθ+δ1
2 with δ1 > 0, we have
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ε∗i |ε, i = 1,2, ...,n are normal random variables with mean 0 and variance σ̂2. Therefore

E∗|ε∗1 |m = σ̂mD, D = E|Y |m, Y is a normal random variable with mean 0 and variance 1. If

σ̂ > 0, from (A.2.2) and lemma A.1.1, ∃ a constant E which depends on m and D such that for

any a > 0,
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Suppose N̂bn = Nbn , σ

2 < σ̂ < 3σ

2 , and maxi=1,2,...,p |ρ2
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r
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constant C. Since θ̂i = 0 if i 6∈ N̂bn ,
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(A.3.7)

From assumption 4, for sufficiently large n,
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From (A.2.2), lemma A.1.1, assumption 1 and 4, we have
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(A.3.9)

Suppose a constant C such that
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Correspondingly
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(A.3.11)

which has order Op(nαp+mνb−mη). If N̂ ∗
bn

= Nbn , then τ̂∗i = τi for i = 1,2, ..., p1. Similar to

(A.2.14),
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From theorem 1, for any a > 0 and sufficiently large n, ∃ constant Da such that |σ̂2−

σ2| ≤ Dan−ασ and 1
2σ < σ̂ < 3

2σ with probability 1−a,

|σ − σ̂ |= |σ
2− σ̂2|

σ + σ̂
≤ Dan−ασ

σ
(A.3.13)

If 0 < x≤ nασ/2, according to lemma A.1.2, assumption 7 and (A.2.17), ∃ a constant C
′
which

only depends on σ ,cM ,Cλ such that
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(A.3.14)

Function x log(x) is continuous when x > 0, x log(x)→ 0 as x→ 0, and x|σ−σ̂ |
σ̂
≤ 2Dan−ασ /2

σ2 → 0

as n→ ∞. So
√

x|σ−σ̂ |
σ̂
| log(x|σ−σ̂ |

σ̂
)| ≤ supx∈(0,1]

√
|x log(x)|< ∞ for sufficiently large n.

On the other hand, if x > nασ/2, then xσ

σ̂
> 2nασ /2

3 . From lemma A.1.1, we may choose

sufficiently large m1 such that m1ασ/2 > 2, since E|ξ1|m1 < ∞(Here ξ1 is a normal random

variable with mean 0 and variance σ2) is a constant for given m1 and
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Since H(0) = 0, from (A.3.14) and (A.3.15), for any given a > 0 and sufficiently large n,
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As a summary, for any given a > 0, ∃ a constant Da such that for sufficiently large n, the

event |σ̂2−σ2| ≤Dan−ασ , 1
2σ < σ̂ < 3

2σ , N̂bn =Nbn , ‖θ̂‖2≤Da×nαθ ⇒ ρ2
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λ 3
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an−δ1 for
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j +ρn)2 | ≤ Da×n−η−δ1 happen with probability 1−a.

From (A.3.12), assumption 5 and lemma A.1.2, we have for any x≥ 0, there exists a constant C
′
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such that
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|γ̂∗i − γ̂i|
τ̂∗i

≤ x∩ N̂ ∗
bn
= Nbn

)
−H(x)

≥ Prob∗

max
i∈M

|∑n
l=1 ∑

r
k=1 cik

(
λk

λ 2
k +ρn

+ ρnλk
(λ 2

k +ρn)2

)
plkε∗l |

τi
≤ x− ρ2

n‖θ̂‖2

λ 3
r


−H(x− ρ2

n‖θ̂‖2

λ 3
r

)

−Prob∗
(
N̂ ∗

bn
6= Nbn

)
−C

′
D
′
a(1+

√
log(n))n−δ1−C

′
√

D′an−δ1/2

√
| log(

ρ2
n‖θ̂‖2

λ 3
r

)× ρ2
n‖θ̂‖2

λ 3
r
|

(A.3.17)

If 0≤ x≤ ρ2
n‖θ̂‖2
λ 3

r
, then

Prob∗

maxi∈M
|∑n

l=1 ∑
r
k=1 cik

(
λk

λ2
k +ρn

+
ρnλk

(λ2
k +ρn)2

)
plkε∗l |

τi
≤ x− ρ2

n‖θ̂‖2
λ 3

r

 = H(x− ρ2
n‖θ̂‖2
λ 3

r
) = 0. There-
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fore, for sufficiently large n, from (A.3.16) and (A.3.11), ∃ a constant C such that

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)|

≤ pEσ̂m

cm
λ

nmηbm
n
×
(

2m +
2m

(1/cb−1)m

)
+a

+C
′
D
′
a(1+

√
log(n))n−δ1 +C

′
√

D′an−δ1/2
√

sup
x∈(0,1]

|x log(x)|

≤Cnm(νb+αp/m−η)+2a

(A.3.18)

and we prove (2.32).

For any given a > 0, from the first result, for sufficiently large n, we have

Prob

(
sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)| ≤ a

)
> 1−a (A.3.19)

Choose sufficiently small a such that 0 < 1−α−2a < 1−α +2a < 1. If (A.3.19) happens, for

any 1 > α > 0, define c1−α as the 1−α quantile of H(x),

Prob∗
(

max
i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ c1−α+2a

)
− (1−α +2a)≥−a

⇒ c∗1−α ≤ c1−α+2a

Prob∗
(

max
i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ c1−α−2a

)
− (1−α−2a)≤ a

⇒ c∗1−α > c1−α−2a

(A.3.20)
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From theorem 2, we have for sufficiently large n,

Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c∗1−α

)
≤ Prob

(
sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)|> a

)

+Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c1−α+2a

)
≤ a+(H(c1−α+2a)+a) = 1−α +4a

Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c∗1−α

)
≥ Prob( max

i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c∗1−α

∩sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)| ≤ a)

≥ Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c1−α−2a

)
−Prob

(
sup
x≥0
|Prob∗

(
max

i=1,2,...,p1

|γ̂∗i − γ̂i|
τ̂∗i

≤ x
)
−H(x)|> a

)

≥ (H(c1−α−2a)−a)−a = 1−α−4a

⇒ |Prob
(

max
i=1,2,...,p1

|γ̂i− γi|
τ̂i

≤ c∗1−α

)
− (1−α)| ≤ 4a

(A.3.21)

For a > 0 can be arbitrarily small, we prove (2.31).

A.4 Proofs of theorems in section 5

Proof of lemma 1. Define the design matrix X = (xi j)i=1,...,n, j=1,...,p, x j =
1
n ∑

n
i=1 xi j, and x

′
i j =

xi j− x j. If N̂bn = Nbn , for i = 1,2, ...,n,

ε̂
′
i = εi + ∑

j 6∈Nbn

xi jθ j− ∑
j∈Nbn

xi j(θ̃ j−θ j)

⇒ ε̂i = εi−
1
n

n

∑
i=1

εi + ∑
j 6∈Nbn

x
′
i jθ j− ∑

j∈Nbn

x
′
i j(θ̃ j−θ j)

(A.4.1)
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Define F̃(x) = 1
n ∑

n
i=1 1εi≤x, x ∈ R. From (A.1.17), for any given ψ > 0,

F̂(x)−F(x) =
(

F̂(x)− F̃(x+1/ψ)
)
+
(

F̃(x+1/ψ)−F(x+1/ψ)
)

+(F(x+1/ψ)−F(x))

≤ 1
n

n

∑
i=1

(gψ,x(ε̂i)−gψ,x(εi))+ sup
x∈R
|F̃(x)−F(x)|+(F(x+1/ψ)−F(x))

≤ g∗ψ

√
1
n

n

∑
i=1

(ε̂i− εi)2 + sup
x∈R
|F̃(x)−F(x)|+(F(x+1/ψ)−F(x))

F̂(x)−F(x) =
(

F̂(x)− F̃(x−1/ψ)
)
+
(

F̃(x−1/ψ)−F(x−1/ψ)
)

−(F(x)−F(x−1/ψ))

≥ 1
n

n

∑
i=1

(gψ,x−1/ψ(ε̂i)−gψ,x−1/ψ(εi))− sup
x∈R
|F̃(x)−F(x)|− (F(x)−F(x−1/ψ))

≥−g∗ψ

√
1
n

n

∑
i=1

(ε̂i− εi)2− sup
x∈R
|F̃(x)−F(x)|− (F(x)−F(x−1/ψ))

⇒ sup
x∈R
|F̂(x)−F(x)| ≤ g∗ψ

√
1
n

n

∑
i=1

(ε̂i− εi)2 + sup
x∈R
|F̃(x)−F(x)|

+sup
x∈R
|F(x+1/ψ)−F(x)|

(A.4.2)
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Suppose assumption 1 to 6. From (A.2.7), (A.2.8), (A.2.9) and 1
n ∑

n
i=1 εi = Op(1/

√
n), for any

0 < a < 1, ∃ a constant Ca such that with probability at least 1−a

1
n

n

∑
i=1

(ε̂i− εi)
2 =

1
n

n

∑
i=1

(
∑

j 6∈Nbn

x
′
i jθ j− ∑

j∈Nbn

x
′
i j(θ̃ j−θ j)−

1
n

n

∑
j=1

ε j

)2

≤ 3
n

n

∑
i=1

(
∑

j 6∈Nbn

x
′
i jθ j

)2

+
3
n

n

∑
i=1

(
∑

j∈Nbn

x
′
i j(θ̃ j−θ j)

)2

+3

(
1
n

n

∑
j=1

ε j

)2

≤ 6
n

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

+6

(
∑

j 6∈Nbn

x jθ j

)2

+
6
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)2

+6

(
∑

j∈Nbn

x j(θ̃ j−θ j)

)2

+3

(
1
n

n

∑
j=1

ε j

)2

≤Can−ασ +
6
n2

(
n

∑
i=1

∑
j 6∈Nbn

xi jθ j

)2

+Ca|Nbn |(n
2αθ−4δ +n−2η)

+
6
n2

(
n

∑
i=1

∑
j∈Nbn

xi j(θ̃ j−θ j)

)2

+
Ca

n

≤Can−ασ +
6
n

n

∑
i=1

(
∑

j 6∈Nbn

xi jθ j

)2

+Ca|Nbn |(n
2αθ−4δ +n−2η)

+
6
n

n

∑
i=1

(
∑

j∈Nbn

xi j(θ̃ j−θ j)

)2

+
Ca

n

⇒

√
1
n

n

∑
i=1

(ε̂i− εi)2 = Op(n−ασ/2)

(A.4.3)

According to Gilvenko-Cantelli lemma, supx∈R |F̃(x)−F(x)| → 0 almost surely. Therefore, for

any a > 0 and sufficiently large n, Prob
(

supx∈R |F̃(x)−F(x)| ≤ a
)
> 1−a. Choose sufficiently

small a and ψ = 1/a, from assumption 8 and (C.2.40), we prove (2.35).

Proof of theorem 4. Define X f = (x f ,i j)i=1,...,p1, j=1,...,p. From theorem 1, since p1 = O(1),

max
i=1,2,...,p1

|
p

∑
j=1

x f ,i jθ̂ j−
p

∑
j=1

x f ,i jβ j|= Op(n−η) (A.4.4)
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For any given 0 < a < 1, choose a constant Ca such that

Prob
(

maxi=1,2,...,p1 |∑
p
j=1 x f ,i jθ̂ j−∑

p
j=1 x f ,i jβ j| ≤Can−η

)
≥ 1−a for any n = 1,2, .... Define

F−(x) = limy<x,y→x F(y) for any x ∈ R, and

G(x) = Prob
(
maxi=1,2,...,p1 |ε f ,i| ≤ x

)
= (F(x)−F−(−x))p1 for x≥ 0. G is continuous accord-

ing to assumption 8. With probability at least 1−a

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y f ,i−

p

∑
j=1

x f ,i jθ̂ j| ≤ x

)
−G(x)|

≤ sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|ε f ,i| ≤ x+ max

i=1,2,...,p1
|

p

∑
j=1

x f ,i j(β j− θ̂ j)|

)
−G(x)|

+sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|ε f ,i| ≤ x− max

i=1,2,...,p1
|

p

∑
j=1

x f ,i j(β j− θ̂ j)|

)
−G(x)|

≤ sup
x≥0
|G(x+Can−η)−G(x)|+ sup

x≥0
|G(x)−G(max(0,x−Can−η))|

(A.4.5)

For any δ > 0 and any x≥ 0

G(x+δ )−G(x)

=
p1

∑
i=1

(F(x+δ )−F(−x−δ ))i−1× (F(x)−F(−x))p1−i

×(F(x+δ )−F(−x−δ )−F(x)+F(−x))

≤ 2p1× sup
x∈R

(F(x+δ )−F(x))⇒ sup
x≥0

(G(x+δ )−G(x))

≤ 2p1× sup
x∈R

(F(x+δ )−F(x))

(A.4.6)

From (A.4.5) and assumption 8

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y f ,i−

p

∑
j=1

x f ,i jθ̂ j| ≤ x

)
−G(x)|= op(1) (A.4.7)
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If N̂bn = Nbn , σ

2 < σ̂ < 3σ

2 , and ‖θ̂‖2 ≤C×nαθ (see (A.3.1) to (A.3.3)), then

max
i=1,2,...,p

|ρ2
n

r

∑
j=1

qi jζ̂ j

(λ 2
j +ρn)2 | ≤Cn−η−δ1

max
i=1,2,...,p

|
r

∑
j=1

qi j

(
λ j

λ 2
j +ρn

+
ρnλ j

(λ 2
j +ρn)2

)
n

∑
l=1

pl jεl| ≤Cnαp/m−η

(A.4.8)

for some constant C with probability at least 1−a. Here 2δ = η +αθ +δ1. From (A.3.11), ∃ a

constant E such that

Prob∗
(
N̂ ∗

bn
6= Nbn

)
≤ E p

nmηbm
n

(A.4.9)

If N̂ ∗
bn
= Nbn ,

|
p

∑
j=1

x f ,i jθ̂
∗
j −

p

∑
j=1

x f ,i jθ̂ j|= | ∑
j∈Nbn

x f ,i j(θ̃
∗
j − θ̂ j)|

≤ ρ
2
n |

r

∑
k=1

cikζ̃k

(λ 2
k +ρn)2 |+ |

r

∑
k=1

n

∑
l=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
plkε

∗
l |

≤ ρ
2
n

√
CM ‖θ̂‖2

λ 4
r

+ |
r

∑
k=1

n

∑
l=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
plkε

∗
l |

(A.4.10)

Form (A.2.5) and lemma A.1.1, ∃ a constant E which only depends on m, and for any 1 > a > 0

with a sufficiently large Ca > 0

Prob∗
(

max
i=1,2,...,p1

|
r

∑
k=1

n

∑
l=1

cik

(
λk

λ 2
k +ρn

+
ρnλk

(λ 2
k +ρn)2

)
plk

ε∗l
σ̂
|> Can−η

σ̂

)

≤ p1Eσ̂m

nmηCm
a n−mη

< a

(A.4.11)

132



Combine with (A.4.9), there exists a constant Ca, with conditional probability at least 1−a

max
i=1,2,...,p1

|
p

∑
j=1

x f ,i jθ̂
∗
j −

p

∑
j=1

x f ,i jθ̂ j| ≤Can−η

⇒ Prob∗
(

max
i=1,2,...,p1

|y∗f ,i− ŷ∗f ,i| ≤ x
)
−G(x)

≤ a+Prob∗
(

max
i=1,2,...,p1

|ε∗f ,i| ≤ x+Can−η

)
−G(x)

≤ a+ sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|ε∗f ,i| ≤ x

)
−G(x)|

+2p1 sup
x∈R

(F(x+Can−η)−F(x))

Prob∗
(

max
i=1,2,...,p1

|y∗f ,i− ŷ∗f ,i| ≤ x
)
−G(x)

≥−a+Prob∗
(

max
i=1,2,...,p1

|ε∗f ,i| ≤ x−Can−η

)
−G(x)

≥−a+Prob∗
(

max
i=1,2,...,p1

|ε∗f ,i| ≤ x−Can−η

)
−G(x−Can−η)−2p1 sup

x∈R
(F(x+Can−η)−F(x))

(A.4.12)

Since G(x) = 0 and Prob∗
(

maxi=1,2,...,p1 |ε∗f ,i| ≤ x
)
= 0 if x < 0, we have

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y∗f ,i− ŷ∗f ,i| ≤ x

)
−G(x)|

≤ a+ sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|ε∗f ,i| ≤ x

)
−G(x)|

+2p1 sup
x∈R

(F(x+Can−η)−F(x))

(A.4.13)
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From lemma 1, for any x≥ 0,

|Prob∗
(

max
i=1,2,...,p1

|ε∗f ,i| ≤ x
)
−G(x)|

= |
(

F̂(x)− F̂−(−x)
)p1
− (F(x)−F(−x))p1 |

≤
p1

∑
i=1
|F̂(x)− F̂−(−x)|i−1×|F(x)−F(−x)|p1−i

×
(
|F̂(x)−F(x)|+ |F̂−(−x)−F−(−x)|

)
≤ 2p1 sup

x∈R
|F̂(x)−F(x)| →p 0

(A.4.14)

as n→ ∞. From theorem 1 and (A.3.1) to (A.3.3), for any 1 > a > 0, with probability at least

1− a ∃ a constant Ca > 0 such that for sufficiently large n, (A.4.8) happens with C = Ca and

supx≥0 |Prob∗
(

maxi=1,2,...,p1 |ε∗f ,i| ≤ x
)
−G(x)| < a. Correspondingly for sufficiently large n,

with probability at least 1−a,

sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y∗f ,i− ŷ∗f ,i| ≤ x

)
−Prob∗

(
max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤ x

)
|

≤ sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y∗f ,i− ŷ∗f ,i| ≤ x

)
−G(x)|

+sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤ x

)
−G(x)|

≤ a+ sup
x≥0
|Prob∗

(
max

i=1,2,...,p1
|ε∗f ,i| ≤ x

)
−G(x)|

+2p1 sup
x∈R

(F(x+Can−η)−F(x))+a≤ 4a

(A.4.15)

and we prove (2.37).

For given 0 < α < 1 and sufficiently small a > 0 such that 0 < 1−α − a < 1−α +

a < 1, define c1−α as the 1−α quantile of G(x). For G(x) is continuous, G(c1−α) = 1−α .

With probability at least 1− a, supx≥0 |Prob∗
(

maxi=1,2,...,p1 |y∗f ,i− ŷ∗f ,i| ≤ x
)
−G(x)| < a/2.
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Correspondingly with probability at least 1−a

Prob∗
(

max
i=1,2,...,p1

|y∗f ,i− ŷ∗f ,i| ≤ c1−α+a

)
≥ 1−α +a/2⇒ c∗1−α ≤ c1−α+a

Prob∗
(

max
i=1,2,...,p1

|y∗f ,i− ŷ∗f ,i| ≤ c1−α−a

)
≤ 1−α−a/2⇒ c∗1−α ≥ c1−α−a

(A.4.16)

From (A.4.7), for sufficiently large n, with probability at least 1−a

Prob∗
(

max
i=1,2,...,p1

|y f ,i− ŷ f ,i| ≤ c∗1−α

)
≤ Prob∗

(
max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤ c1−α+a

)
≤ 1−α +2a

Prob∗
(

max
i=1,2,...,p1

|y f ,i− ŷ f ,i| ≤ c∗1−α

)
≥ Prob∗

(
max

i=1,2,...,p1
|y f ,i− ŷ f ,i| ≤ c1−α−a

)
≥ 1−α−2a

(A.4.17)

For a > 0 can be arbitrarily small, we prove (2.38).
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Appendix B

Proof of theorems in chapter 3

This chapter adopts assumption 1 to 7 in section 3.4.

B.1 Appendix: Preliminary Results

This section introduces some special functions that are helpful in the following proofs.

For any τ,ψ > 0, z ∈ R, define Fτ(x1, ...,xs) =
1
τ

log(∑s
i=1 exp(τxs));

Gτ(x1, ...,xs) =
1
τ

log

(
s

∑
i=1

exp(τxi)+
s

∑
i=1

exp(−τxi)

)

= Fτ(x1, ...,xs,−x1, ...,−xs)

(B.1.1)

Define g0(x) = (1−min(1,max(x,0))4)4 and gψ,z(x) = g0(ψ(x− z)). Then define

hτ,ψ,z(x1, ...,xn) = gψ,z(Gτ(x1, ...,xn)). From lemma A.2 and (8) in Chernozhukov et al. [2013]

and (S1) to (S5) in Xu et al. [2019], g∗ = supx∈R(|g′0(x)|+ |g′′0(x)|+ |g′′′0 (x)|) < ∞; 1x≤z ≤

gψ,z(x)≤ 1x≤z+1/ψ ; supx,z∈R |g′ψ,z(x)| ≤ g∗ψ , supx,z∈R |g′′ψ,z(x)| ≤ g∗ψ2 and supx,z∈R |g′′′ψ,z(x)| ≤

g∗ψ3. Define the operator ∂i f = ∂ f
∂xi

. Then ∂iFτ ≥ 0; ∑
s
i=1 ∂iFτ = 1; ∑

s
i=1 ∑

s
j=1 |∂i∂ jFτ | ≤ 2τ;

∑
s
i=1 ∑

s
j=1 ∑

s
k=1 |∂i∂ j∂kFτ | ≤ 6τ2. Moreover,

Fτ(x1, ...,xs)−
log(s)

τ
≤ max

i=1,...,s
xi ≤ Fτ(x1, ...,xs)

⇒ Gτ(x1, ...,xs)−
log(2s)

τ
≤ max

i=1,...,s
|xi| ≤ Gτ(x1, ...,xs)

(B.1.2)
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Since ∂iGτ = ∂iFτ−∂s+iFτ , we get ∑
s
i=1 |∂iGτ | ≤ 1. For ∂i∂ jGτ = ∂i∂ jFτ−∂i∂ j+sFτ−∂i+s∂ jFτ +

∂i+s∂ j+sFτ , we have ∑
s
i=1 ∑

s
j=1 |∂i∂ jGτ | ≤ 2τ . Since

∂i∂ j∂kGτ = ∂i∂ j∂kFτ − ∂i+s∂ j∂kFτ − ∂i∂ j+s∂kFτ − ∂i∂ j∂k+sFτ + ∂i+s∂ j+s∂kFτ + ∂i∂ j+s∂k+sFτ +

∂i+s∂ j∂k+sFτ −∂i+s∂ j+s∂k+sFτ , ∑
s
i=1 ∑

s
j=1 ∑

s
k=1 |∂i∂ j∂kGτ | ≤ 6τ2. For

∂ihτ,ψ,z = g′ψ,z(Gτ(x1, ...,xs))×∂iGτ , we get ∑
s
i=1 |∂ihτ,ψ,z| ≤ g∗ψ . Moreover,

∂i∂ jhτ,ψ,z = g′′ψ,z(Gτ(x1, ...,xs))×∂iGτ∂ jGτ +g′ψ,z(Gτ(x1, ...,xs))×∂i∂ jGτ

⇒
s

∑
i=1

s

∑
j=1
|∂i∂ jhτ,ψ,z| ≤ g∗ψ2 +2g∗ψτ

∂i∂ j∂khτ,ψ,z = g′′′ψ,z(Gτ(x1, ...,xs))×∂iGτ∂ jGτ∂kGτ

+g′′ψ,z(Gτ(x1, ...,xs))×
(
∂i∂ jGτ ×∂kGτ +∂i∂kGτ ×∂ jGτ +∂ j∂kGτ ×∂iGτ

)
+g′(Gτ(x1, ...,xs))×∂i∂ j∂kGτ

⇒
s

∑
i=1

s

∑
j=1

s

∑
k=1
|∂i∂ j∂khτ,ψ,z| ≤ g∗ψ3 +6g∗τψ

2 +6g∗ψτ
2

(B.1.3)

B.2 Proof of theorems in section 3.3

proof of lemma 2. For any i = 1,2, ...,n and s = 1,2, ..., define Mi,s = ∑
n
j=n+1−i a j(Eε j|F j,s−

Eε j|F j,s−1). Then Mi,s is Fn,i+s−1 measurable. Besides,

Mi+1,s−Mi,s = an−i(Eεn−i|Fn−i,s−Eεn−i|Fn−i,s−1) (B.2.1)

Apply π−λ theorem to the λ (Dynkin) system

{
A ∈Fn,i+s−1 : E(Eεn−i|Fn−i,s)×1A = E(Eεn−i|Fn−i,s−1)×1A

}
(B.2.2)

and the π system {An×An−1× ...×An−i−s+1}, Ai is generated by ei. Then

E(Eεn−i|Fn−i,s−Eεn−i|Fn−i,s−1) |Fn,i+s−1 = 0 almost surely, which implies that
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{Mi,s}i=1,2,...,n form a martingale. From Burkholder’s inequality(theorem 1.1 in Burkholder et al.

[1972]), there exists a constant C depending only on m such that

‖
n

∑
j=1

a j(Eε j|F j,s−Eε j|F j,s−1)‖m ≤C

√
‖

n

∑
j=1

a2
j(Eε j|F j,s−Eε j|F j,s−1)2‖m/2

≤C

√
n

∑
j=1

a2
j‖Eε j|F j,s−Eε j|F j,s−1‖2

m

≤C

√
n

∑
j=1

a2
j × max

i=1,...,n
δi,s,m

(B.2.3)

Therefore, from theorem 2 in Whittle [1960], there exists a constant C depending only on m such

that

‖
n

∑
j=1

a jε j‖ ≤ ‖
n

∑
j=1

a j(Eε j|F j,0)‖m +
∞

∑
s=1
‖

n

∑
j=1

a j(Eε j|F j,s−Eε j|F j,s−1)‖m

≤C

√
n

∑
i=1

a2
i ‖εi‖2

m +C

√
n

∑
i=1

a2
i ×

∞

∑
s=1

max
i=1,...,n

δi,s,m

(B.2.4)

and we prove (3.9).

For

‖ max
i=1,...,p

|
p

∑
j=1

ai jε j| ‖m ≤ p1/m max
i=1,...,p

‖
p

∑
j=1

ai jε j‖m (B.2.5)

we prove (3.10).

Before proving lemma 3, we derive a lemma which is a corollary of Chernozhukov et al.

[2015]. It introduces some properties of joint Gaussian random variables.

Lemma B.2.1. (i). Suppose ξ1, ...,ξs are joint normal random variables with Eξi = 0. Besides,

∃ two constants 0 < c0 ≤C0 < ∞ such that c0 ≤ Eξ 2
i ≤C0 for i = 1, ...,s. Then

sup
x∈R
|Prob

(
max

i=1,...,s
|ξi| ≤ x+δ

)
−Prob

(
max

i=1,...,s
|ξi| ≤ x

)
|

≤Cδ (1+
√

log(s)+
√
| log(δ )|)

(B.2.6)
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for any δ > 0. Here C is a constant only depending on c0,C0.

(ii). Define Σ = {σi j}i, j=1,...,s such that σi j = Eξiξ j. Suppose ξ
†
1 , ...,ξ

†
s are joint normal

random variables with Eξ
†
i = 0. Define Σ† = {σ†

i j}i, j=1,...,s such that σ
†
i j = Eξ

†
i ξ

†
j . Define

∆ = maxi, j=1,...,s |σi j−σ
†
i j| and suppose ∆ < 1. Then

sup
x∈R
|Prob

(
max

i=1,...,s
|ξi| ≤ x

)
−Prob

(
max

i=1,...,s
|ξ †

i | ≤ x
)
|

≤C∗
(

∆
1/3(1+ log3(s))+

∆1/6

1+ log1/4(s)

) (B.2.7)

here C∗ only depends on c0,C0.

Notably, we do not impose any assumptions on Σ†, the covariance matrix of ε
†
i .

proof of lemma B.2.1. For |ξi|= max(ξi,−ξi),

maxi=1,...,s |ξi|= max(maxi=1,...,s ξi,maxi=1,...,s(−ξi)), so

sup
x∈R

(
Prob

(
max

i=1,...,s
|ξi| ≤ x+δ

)
−Prob

(
max

i=1,...,s
|ξi| ≤ x

))
≤ sup

x∈R
Prob

(
x < max

i=1,...,s
ξi ≤ x+δ

)
+ sup

x∈R
Prob

(
x < max

i=1,...,s
(−ξi)≤ x+δ

)
≤ 2sup

x∈R
Prob

(
| max

i=1,...,s
ξi− x| ≤ δ

) (B.2.8)

here −ξ1, ...,−ξs has the same joint distribution as ξ1, ...,ξs. From theorem 3 and (18), (19) in
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Chernozhukov et al. [2015], define σ = mini=1,...,s σii and σ = maxi=1,...,s σii,

sup
x∈R

Prob
(
| max

i=1,...,s
ξi− x| ≤ δ

)
≤
√

2δ

σ

(√
log(s)+

√
max(1, log(σ)− log(δ ))

)
+

4
√

2δ

σ
×
(

σ

σ

√
log(s)+2+

σ

σ

√
max(0, log(σ)− log(δ ))

)
≤
√

2δ

c0

(√
log(s)+

√
1+ | log(c0)|+ | log(C0)|+

√
| log(δ )|

)
+

4
√

2C0δ

c2
0

(√
log(s)+2+

√
| log(c0)|+ | log(C0)|+

√
| log(δ )|

)
≤Cδ (1+

√
log(s)+

√
| log(δ )|)

(B.2.9)

here C =

√
2×(1+| log(c0)|+| log(C0)|)

c0
+ 4
√

2C0
c2

0
×(2+

√
| log(c0)|+ | log(C0)|), and we prove (B.2.6).

Without loss of generality, assume ξi is independent of ξ
†
j for any i, j. Similar to

Chernozhukov et al. [2015], for any 0≤ t ≤ 1, define random variables Zi(t) =
√

tξi+
√

1− tξ †
i .

According to theorem 2.27 in Folland [1999] and lemma 2 in Chernozhukov et al. [2015]

Ehτ,ψ,x(ξ1, ...,ξs)−Ehτ,ψ,x(ξ
†
1 , ...,ξ

†
s )

=
1
2

s

∑
i=1

∫ 1

0
t−1/2E

(
ξi∂ihτ,ψ,x(Z1(t), ...,Zs(t))

)
dt

−1
2

s

∑
i=1

∫ 1

0
(1− t)−1/2E

(
ξ

†
i ∂ihτ,ψ,x(Z1(t), ...,Zs(t))

)
dt

=
1
2

s

∑
i=1

s

∑
j=1

(
σi j−σ

†
i j

)
×
∫ 1

0
E
(
∂i∂ jhτ,ψ,x(Z1(t), ...,Zs(t))

)
dt

⇒ sup
x∈R
|Ehτ,ψ,x(ξ1, ...,ξs)−Ehτ,ψ,x(ξ

†
1 , ...,ξ

†
s )|

≤ ∆

2
×
∫ 1

0

s

∑
i=1

s

∑
j=1

E|∂i∂ jhτ,ψ,x(Z1(t), ...,Zs(t))|dt

≤ g∗∆× (ψ2 +ψτ)

(B.2.10)
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Define t = 1
ψ
+ log(2s)

τ
, then

Prob
(

max
i=1,...,s

|ξi| ≤ x
)
−Prob

(
max

i=1,...,s
|ξ †

i | ≤ x
)

≤ Prob
(

max
i=1,...,s

|ξi| ≤ x− t
)
+Ct(1+

√
log(s)+

√
| log(t)|)

−Prob
(

max
i=1,...,s

|ξ †
i | ≤ x

)
≤ Eh

τ,ψ,x− 1
ψ

(ξ1, ...,ξs)−Eh
τ,ψ,x− 1

ψ

(ξ †
1 , ...,ξ

†
s )+Ct(1+

√
log(s)+

√
| log(t)|)

Prob
(

max
i=1,...,s

|ξi| ≤ x
)
−Prob

(
max

i=1,...,s
|ξ †

i | ≤ x
)

≥ Prob
(

max
i=1,...,s

|ξi| ≤ x+ t
)
−Prob

(
max

i=1,...,s
|ξ †

i | ≤ x
)

−Ct(1+
√

log(s)+
√
| log(t)|)

≥ Eh
τ,ψ,x+ log(2s)

τ

(ξ1, ...,ξs)−Eh
τ,ψ,x+ log(2s)

τ

(ξ †
1 , ...,ξ

†
s )

−Ct(1+
√

log(s)+
√
| log(t)|)

⇒ sup
x∈R
|Prob

(
max

i=1,...,s
|ξi| ≤ x

)
−Prob

(
max

i=1,...,s
|ξ †

i | ≤ x
)
|

≤ sup
x∈R
|Ehτ,ψ,x(ξ1, ...,ξs)−Ehτ,ψ,x(ξ

†
1 , ...,ξ

†
s )|+Ct(1+

√
log(s)+

√
| log(t)|)

(B.2.11)

Choose τ = ψ =
(

1+ log3/2(s)
)
/∆1/3, then ∃ a constant C1 > 0 such that 1

C1
∆1/3

1+log1/2(s)
≤ t =

∆1/3
(

1+log(2)
1+log3/2(s)

)
+ ∆1/3 log(s)

1+log3/2(s)
≤ C1∆1/3

1+log1/2(s)
for s = 1,2, ...; and we prove (B.2.7).

proof of lemma 3. For any given ψ > 0, define t = 1
ψ
+ log(2p1)

ψ
. Notice that

c× cΣ ≤ E(∑n
j=1 ai jξ j)

2 = O(1). From lemma B.2.1 and (B.2.11)

sup
x∈R
|Prob

(
max

i=1,...,p1
|

n

∑
j=1

ai jε j| ≤ x

)
−Prob

(
max

i=1,...,p1
|

n

∑
j=1

ai jξ j| ≤ x

)
|

≤ sup
x∈R
|Ehψ,ψ,x

(
n

∑
j=1

a1 jε j, ...,
n

∑
j=1

ap1 jε j

)
−Ehψ,ψ,x

(
n

∑
j=1

a1 jξ j, ...,
n

∑
j=1

ap1 jξ j

)
|

+Ct(1+
√

log(p1)+
√
| log(t)|)

(B.2.12)
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here C is a constant. For any integer s > 0, (B.2.3) implies

max
i=1,...,p1

‖
n

∑
j=1

ai jε j−

(
n

∑
j=1

ai jEε j|F j,s

)
‖m

≤ max
i=1,...,p1

∞

∑
k=s+1

‖
n

∑
j=1

ai j
(
Eε j|F j,k−Eε j|F j,k−1

)
‖m

≤C max
i=1,...,p1

√
n

∑
j=1

a2
i j

∞

∑
k=s+1

max
i=1,...,n

δi,k,m ≤
C1

(1+ s)α

(B.2.13)

here C1 is a constant. Therefore

sup
x∈R
|Ehψ,ψ,x

(
n

∑
j=1

a1 jε j, ...,
n

∑
j=1

ap1 jε j

)

−Ehψ,ψ,x

(
n

∑
j=1

a1 jEε j|F j,s, ...,
n

∑
j=1

ap1 jEε j|F j,s

)
|

≤ g∗ψE max
i=1,...,p1

|
n

∑
j=1

ai j(ε j−Eε j|F j,s)|

≤ g∗ψ p1/m
1 × max

i=1,...,p1
‖

n

∑
j=1

ai j(ε j−Eε j|F j,s) ‖m = O
(

ψ

(1+ s)α

)
(B.2.14)

For any integer k > s, define the big block Sil and the small block sil as

Sil =
((l−1)×(k+s)+k)∧n

∑
j=(l−1)×(k+s)+1

ai jEε j|F j,s and sil =
(l×(k+s))∧n

∑
j=(l−1)×(k+s)+k+1

ai jEε j|F j,s (B.2.15)

here l = 1,2, ..., l0, l0 = d n
k+se, i.e., the smallest integer that is larger than or equal to n

k+s . Then

the vector (S1l, ...,Sp1l), l = 1,2, ..., l0 are mutually independent, and the vector (s1l, ...,sp1l), l =

1,2, ..., l0 are mutually independent. Moreover,

n

∑
j=1

ai jEε j|F j,s =
l0

∑
l=1

Sil +
l0

∑
l=1

sil (B.2.16)
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Besides,

sup
x∈R
|Ehψ,ψ,x

(
l0

∑
j=1

S1 j +
l0

∑
j=1

s1 j, ...,
l0

∑
j=1

Sp1 j +
l0

∑
j=1

sp1 j

)

−Ehψ,ψ,x

(
l0

∑
j=1

S1 j, ...,
l0

∑
j=1

Sp1 j

)
|

≤ g∗ψ p1/m
1 × max

i=1,...,p1
‖

l0

∑
j=1

si j‖m

≤ g∗ψ p1/m
1 × max

i=1,...,p1
‖

l0

∑
l=1

(l×(k+s))∧n

∑
j=(l−1)×(k+s)+k+1

ai jEε j|F j,0‖m

+g∗ψ p1/m
1 × max

i=1,...,p1

s

∑
k=1
‖

l0

∑
l=1

(l×(k+s))∧n

∑
j=(l−1)×(k+s)+k+1

ai j(Eε j|F j,k−Eε j|F j,k−1)‖m

≤Cψ max
i=1,...,p1

√√√√ l0

∑
l=1

(l×(k+s))∧n

∑
j=(l−1)×(k+s)+k+1

a2
i j = O

(
ψa∗

√
ns
k

)

(B.2.17)

Define ξi,s, i = 1,2, ...,n as joint normal random variables such that Eξi,s = 0 and Eξi,sξ j,s =

E
(
(Eεi|Fi,s)×

(
Eε j|F j,s

))
for any i, j = 1,2, ...,n, and is independent with ek for any k ∈ Z.

Define the corresponding big block S∗il and the small block s∗il as

S∗il =
((l−1)×(k+s)+k)∧n

∑
j=(l−1)×(k+s)+1

ai jξ j,s and s∗il =
(l×(k+s))∧n

∑
j=(l−1)×(k+s)+k+1

ai jξ j,s (B.2.18)

For any i1, i2 and any l1 6= l2,

ES∗i1l1S∗i2l2

=
((l1−1)×(k+s)+k)∧n

∑
j1=(l1−1)×(k+s)+1

((l2−1)×(k+s)+k)∧n

∑
j2=(l2−1)×(k+s)+1

ai1 j1ai2 j2E
((

Eε j1|F j1,s
)
×
(
Eε j2|F j2,s

))
= 0

(B.2.19)

So the random vectors (S∗1l,S
∗
2l, ...,S

∗
p1l)

T are mutually independent for l = 1,2, ..., l0. Define
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Hi j = ∑
j−1
l=1 Sil +∑

l0
l= j+1 S∗il , then Hi j +Si j = Hi j+1 +S∗i j+1. From Taylor’s theorem

|E[hψ,ψ,x(H1 j +S1 j, ...,Hp1 j +Sp1 j)

−hψ,ψ,x(H1 j +S∗1 j, ...,Hp1 j +S∗p1 j)]|H1 j, ...,Hp1 j|

≤ |
p1

∑
i=1

∂ihψ,ψ,x(H1 j, ...,Hp1 j)E(Si j−S∗i j)|

+|1
2

p1

∑
i1=1

p1

∑
i2=1

∂i1∂i2hψ,ψ,x(H1 j, ...,Hp1 j)E(Si1 jSi2 j−S∗i1 jS
∗
i2 j)|

+3g∗ψ3E max
i=1,...,p1

|Si j|3 +3g∗ψ3E max
i=1,...,p1

|S∗i j|3

≤ 3g∗ψ3 p3/m
1 max

i=1,...,p1
‖Si j‖3

m +3g∗ψ3 p3/m
1 max

i=1,...,p1
‖S∗i j‖3

m

≤Cψ
3 max

i=1,...,p1
‖Si j‖3

m

(B.2.20)

here C is a constant. The last inequality holds since S∗k j has normal distribution(therefore

‖S∗i j‖m ≤C‖Si j‖2 ≤C‖Si j‖m for a constant C). For

‖Si j‖m = ‖
(( j−1)×(k+s)+k)∧n

∑
l=( j−1)×(k+s)+1

ailEεl|Fl,s‖m

≤ ‖
(( j−1)×(k+s)+k)∧n

∑
l=( j−1)×(k+s)+1

ailEεl|Fl,0‖m

+
s

∑
v=1
‖
(( j−1)×(k+s)+k)∧n

∑
l=( j−1)×(k+s)+1

ail(Eεl|Fl,v−Eεl|Fl,v−1)‖m

≤C

√√√√(( j−1)×(k+s)+k)∧n

∑
l=( j−1)×(k+s)+1

a2
il ≤Ca∗

√
k

(B.2.21)
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with a constant C. We have

sup
x∈R
|Ehψ,ψ,x

(
l0

∑
j=1

S1 j, ...,
l0

∑
j=1

Sp1 j

)
−Ehψ,ψ,x

(
l0

∑
j=1

S∗1 j, ...,
l0

∑
j=1

S∗p1 j

)
|

≤
l0

∑
j=1

sup
x∈R
|Ehψ,ψ,x(H1 j +S1 j, ...,Hp1 j +Sp1 j)−Ehψ,ψ,x(H1 j +S∗1 j, ...,Hp1 j +S∗p1 j)|

≤Cψ
3

l0

∑
l=1

p1

∑
i=1
‖Si j‖3

m ≤C′ψ3
p1

∑
i=1

l0

∑
j=1

(
(( j−1)×(k+s)+k)∧n

∑
l=( j−1)×(k+s)+1

a2
il

)3/2

≤C′′ψ3a∗
√

k

(B.2.22)

here C,C′,C′′ are constants. The last inequality comes from ∑
l0
j=1 ∑

(( j−1)×(k+s)+k)∧n
l=( j−1)×(k+s)+1 a2

il ≤

∑
n
j=1 a2

i j = O(1). Since

|Ehψ,ψ,x(
l0

∑
j=1

S∗1 j, ...,
l0

∑
j=1

S∗p1 j)−Ehψ,ψ,x(
n

∑
j=1

a1 jξ j,s, ...,
n

∑
j=1

ap1 jξ j,s)|

≤ g∗ψE max
i=1,...,p1

|
l0

∑
l=1

s∗il|

≤ g∗ψ p1/m
1 × max

i=1,2,...,p1
‖

l0

∑
l=1

s∗il‖m ≤Cψ max
i=1,...,p1

‖
l0

∑
l=1

sil‖2

(B.2.23)

with a constant C. From (B.2.17), this has order O
(
ψa∗

√ns
k

)
. From section 0.9.7 in Horn and
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Johnson [2013] and (B.2.10),

|Ehψ,ψ,x(
n

∑
j=1

a1 jξ j,s, ...,
n

∑
j=1

ap1 jξ j,s)−Ehψ,ψ,x(
n

∑
j=1

a1 jξ j, ...,
n

∑
j=1

ap1 jξ j)|

≤ 2g∗ψ2

× max
i1,i2=1,...,p1

|
n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2
(
E
((

Eε j1|F j1,s
)
×
(
Eε j2|F j2,s

))
−Eε j1ε j2

)
|

≤ 2g∗ψ2

× max
i1,i2=1,...,p1

∑
| j1− j2|≤s, j1, j2=1,...,n

|ai1 j1ai2 j2|×‖Eε j1|F j1,s‖2×‖Eε j2|F j2,s− ε j2‖2

+2g∗ψ2 max
i1,i2=1,...,p1

∑
| j1− j2|≤s, j1, j2=1,...,n

|ai1 j1ai2 j2|×‖ε2‖2×‖Eε j1|F j1,s− ε j1‖2

+2g∗ψ2 max
i1,i2=1,...,p1

∑
| j1− j2|>s, j1, j2=1,...,n

|ai1 j1ai2 j2 |× |Eε j1ε j2|

≤ Cψ2s
(s+1)α

√
n

∑
j=1

a2
i1 j

√
n

∑
j=1

a2
i2 j +Cψ

2

√
n

∑
j=1

a2
i1 j

√
n

∑
j=1

a2
i2 j×

∞

∑
l=s

1
(l +1)α

= O
(

ψ2

sα−1

)

(B.2.24)

Define V such that 1/V = a∗× n1/4× logz(n)→ 0 as n→ ∞. Then choose k = b
√

nc, ψ =

V (α−1)/(3α+3), s = bV 2/(α+1) log3/(α−1)(n)c → ∞. Here bxc denotes the largest integer that is

smaller than or equal to x. From (B.2.12), (B.2.14), (B.2.17), (B.2.22) and (B.2.24), we prove

(3.13).

proof of lemma 4. From section 0.9.7 in Horn and Johnson [2013]

|
n

∑
j1=1

n

∑
j2=1

(
1−K

(
j1− j2

kn

))
ai1 j1ai2 j2σ j1 j2|

≤C
n

∑
j1=1

n

∑
j2=1
|ai1 j1ai2 j2|×

1−K
(

j1− j2
kn

)
(1+ | j1− j2|)α

≤ 2C

√
n

∑
j=1

a2
i1 j×

√
n

∑
j=1

a2
i2 j×

∞

∑
s=0

1−K(s/kn)

1+ sα

(B.2.25)
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K is continuous differentiable, so

∞

∑
s=0

1−K(s/kn)

1+ sα
≤

maxx∈[0,1] |K′(x)|
kn

kn

∑
s=0

s
1+ sα

+
∞

∑
s=kn+1

1
1+ sα

= O
(

1
kn

+
1
kn

∫
[1,kn]

x1−αdx+
∫
[kn,∞)

x−αdx
) (B.2.26)

which implies

|
n

∑
j1=1

n

∑
j2=1

(
1−K

(
j1− j2

kn

))
ai1 j1ai2 j2σ j1 j2|= O(vn) (B.2.27)

On the other hand, define ξi,k = εiεi+k−σii+k = hi,i+k(...,ei+k−1,ei+k) for i = 1,2, ...,n− k and

k ≥ 0(in other words, ξi,k is Fi+k measurable), then Eξi,k = 0. Define

ξi,k,t = hi,i+k(...,ei+k−t−2,ei+k−t−1,e
†
i+k−t ,ei+k−t+1, ...,ei+k). Here t ≥ 0. We have

ψi,k,t,m/2 = ‖ξi,k−ξi,k,t‖m/2 = ‖εiεi+k− εi+k,tεi,t−k‖m/2

≤ ‖εi‖m×‖εi+k− εi+k,t‖m +‖εi+k,t‖m×‖εi− εi,t−k‖m

≤C max
i=1,...,n

δi,t,m +C max
i=1,...,n

δi,t−k,m

(B.2.28)

Here C is a constant and δi, j,m = 0 if j < 0. For a given i1, i2 = 1, ..., p1, define the term

Ns,k,t = ∑
n−k
j=n−k+1−s ai1 jai2 j+k

(
Eζ j,k|F j+k,t−Eζ j,k|F j+k,t−1

)
. Ns,k,t is Fn,s+t−1 measurable.

Moreover, Ns+1,k,t−Ns,k,t = ai1n−k−sai2n−s(Eζn−k−s,k|Fn−s,t−Eζn−k−s,k|Fn−s,t−1). Apply π−

λ theorem to the λ−system

{
A ∈Fn,s+t−1 : E(Eζn−k−s,k|Fn−s,t)×1A = E(Eζn−k−s,k|Fn−s,t−1)×1A

}
(B.2.29)

and the π−system {An×An−1× ...×An−s−t+1}, Ai is generated by ei. We know that {Ns,k,t :
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s = 1, ...,n− k} form a martingale. From (B.2.3) and theorem 2 in Whittle [1960]

‖
n−k

∑
j=1

ai1 jai2 j+kζ j,k‖m/2 ≤ ‖
n−k

∑
j=1

ai1 jai2 j+k(Eζ j,k|F j+k,0)‖m/2 +
∞

∑
t=1
‖Nn−k,k,t‖m/2

≤C

√√√√n−k

∑
j=1

a2
i1 ja

2
i2 j+k +C

√√√√n−k

∑
j=1

a2
i1 ja

2
i2 j+k

∞

∑
t=1

max
i=1,...,n−k

ψi,k,t,m/2

≤C′× max
i=1,...,p1, j=1,...,n

|ai j|

(B.2.30)

here C,C′ are constants. Therefore from (B.2.28)

‖
n

∑
j1=1

n

∑
j2=1

ai1 j1ai2 j2K
(

j1− j2
kn

)
(ε j1ε j2−σ j1 j2)‖m/2

≤
n−1

∑
l=0

K
(

l
kn

)
‖

n−l

∑
j=1

ai1 jai2 j+lζ j,l‖m/2 +
n−1

∑
l=1

K
(

l
kn

)
‖

n−l

∑
j=1

ai1 j+lai2 jζ j,l‖m/2

≤C× max
i=1,...,p1, j=1,...,n

|ai j|
∞

∑
l=0

K
(

l
kn

) (B.2.31)

with a constant C. Since

∞

∑
l=0

K
(

l
kn

)
≤ 1+

∫
[0,∞)

K(x/kn)dx = O(kn) (B.2.32)

(B.2.27), (B.2.31) and p1 = O(1) imply (3.15).

B.3 Proof of theorems in section 3.4

This section starts with the consistency of the Lasso estimator.

Lemma B.3.1. Suppose assumption 1 to 5 hold true. Then

|β̃ lasso−β |2 = Op(n
αN

2 −αl) and |β̃ lasso−β |1 = Op(nαN −αl) (B.3.1)

the Lasso estimator is defined in (3.20).

148



In particular, if p> n, define V = {Vi j}i, j=1,...,p =Q⊥QT
⊥ (see section 3.4 for the definition

of Q⊥),

|θ̃ †
⊥−θ⊥|∞ = |V (β̃ lasso−β )|∞ ≤ max

i=1,...,p

√√√√ p

∑
j=1

V 2
i j×|β̃

lasso−β |2

≤ |β̃ lasso−β |2 = Op(n
αN

2 −αl)

and |θ̃ †
⊥−θ⊥|2 ≤ |β̃ lasso−β |2 = Op(n

αN
2 −αl)

(B.3.2)

We follow the proofs from Bühlmann and van de Geer [2011] to show the consistency of

the Lasso estimator.

proof of lemma B.3.1. Define ωi = β̃ lasso
i −βi and ω = (ω1, ...,ωp)

T , then

1
2n

n

∑
i=1

(
εi−

p

∑
j=1

Xi j(β̃
lasso
j −β j)

)2

+ρn,l

p

∑
j=1
|β̃ lasso

j | ≤ 1
2n

n

∑
i=1

ε
2
i +ρn,l

p

∑
j=1
|β j|

⇒ 1
2n
|Xω|22 ≤

1
n

ε
T Xω +ρn,l ∑

j∈Nbn

(|β j|− |β̃ lasso
j |)−ρn,l ∑

j 6∈Nbn

|ω j|
(B.3.3)

Since max j=1,...,p ∑
n
i=1 X2

i j ≤Cn for a constant C, form lemma 2

max
j=1,...,p

‖
n

∑
i=1

Xi jεi‖m = O(
√

n)⇒ |εT Xω| ≤ |XT
ε|∞×|ω|1 = Op(n(αp/m)+1/2×|ω|1) (B.3.4)

Therefore, for sufficiently large n, with probability tending to 1

0≤−
ρn,l

2 ∑
j 6∈Nbn

|ω j|+
3ρn,l

2 ∑
j∈Nbn

|ω j| ⇒ ω ∈A (defined in (3.24)) (B.3.5)

Therefore, with probability tending to 1

c2
λ
|ω|22
2
≤

3ρn,l

2 ∑
j∈Nbn

|ω j| ≤
3ρn,l

2

√
|Nbn|× |ω|2

⇒ |β̃ lasso−β |2 = Op(n
αN

2 −αl)

(B.3.6)
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Meanwhile, from (B.3.5)

|β̃ lasso−β |1 ≤ 4 ∑
j∈Nbn

|ω j| ≤ 4
√
|Nbn|× |ω|2 = Op(nαN −αl) (B.3.7)

proof of theorem 5. From (3.21), lemma 2 and lemma B.3.1, since

ρ
2
n,r|

r

∑
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qi js j

(λ 2
j +ρn,r)2 | ≤
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λ 4
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√
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λ 4
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‖
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∑
j=1

n

∑
l=1
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λ 2
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+
ρn,rλ j

(λ 2
j +ρn,r)2
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λr
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|
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qi j pl j
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λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
εl|= Op(nαp/m−η)

|θ̃ †
⊥−θ⊥|∞ = Op(n

αN
2 −αl)

(B.3.8)

we have

|β̃ −β |∞ = Op

(
n2αr+

αN
2 −4η +nαp/m−η +n

αN
2 −αl

)
(B.3.9)

From assumption 4, 2αr +
αN

2 −4η <−η , so |β̃ −β |∞ = Op(nαp/m−η +n
αN

2 −αl)

In particular

Prob
(
N̂bn 6= Nbn

)
≤ Prob

(
min

i∈Nbn

|β̃i| ≤ bn

)
+Prob

(
max
i6∈Nbn

|β̃i|> bn

)
≤ Prob

(
|β̃ −β |∞ ≥ (

1
cb
−1)bn

)
+Prob

(
|β̃ −β |∞ > bn

) (B.3.10)

and we prove (3.26).
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proof of theorem 6. Suppose N̂bn = Nbn , then ĉi j = ci j and τ̂i = τi. If i ∈M , from Cauchy

inequality

ρ2
n,r

τi
|

r
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j=1

ci js j

(λ 2
j +ρn,r)2 | ≤

ρ2
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λ 2
j (λ

2
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ρ2
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λ 3

r
(B.3.11)

which has order o(1). Besides,

1
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+
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(B.3.12)

From lemma 3

sup
x∈R
|Prob

(
max

i=1,...,p1
| 1
τi

n

∑
l=1

wilεl| ≤ x

)
−Prob

(
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i∈M
|ξi| ≤ x

)
|= o(1) (B.3.13)

From assumption 7 and lemma B.3.1
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(B.3.14)
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Define
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λ 3

r
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1
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then for sufficiently large n

max
i∈M
| 1
τi

m

∑
l=1

wilεl|−L≤ max
i=1,...,p1

|ζ̂i−ζi|
τi

≤ L+max
i∈M
| 1
τi

m

∑
l=1

wilεl|

⇒ Prob

(
max

i=1,...,p1

|ζ̂i−ζi|
τ̂i

≤ x

)
−Prob

(
max
i∈M
|ξi| ≤ x

)

≤ Prob(N̂bn 6= Nbn)+Prob

(
max
i∈M
| 1
τi

m

∑
l=1

wilεl| ≤ x+L

)

−Prob
(

max
i∈M
|ξi| ≤ x

)
and Prob

(
max

i=1,...,p1

|ζ̂i−ζi|
τ̂i

≤ x

)
−Prob

(
max
i∈M
|ξi| ≤ x

)

≥−Prob
(
N̂bn 6= Nbn

)
+Prob

(
max
i∈M
| 1
τi

m

∑
l=1

wilεl| ≤ x−L

)

−Prob
(

max
i∈M
|ξi| ≤ x

)

(B.3.16)

Apply lemma B.2.1, we prove (3.41).

B.4 Proof of theorems in section 3.5

proof of theorem 7. From theorem 5, we have Prob
(
N̂bn 6= Nbn

)
→ 0 as the sample size n→∞.

If N̂bn = Nbn , then ĉi j = ci j, τ̂i = τi, ŵil = wil and Γ̂i j =
1

τiτ j
∑

n
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n
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)
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Besides, if N̂bn = Nbn , define δi = ∑
p
j=1 Xi j(β̂ j−β j), from section 0.9.7 in Horn and Johnson

[2013]
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(B.4.2)

here C is a constant. Define Ui j = ∑k∈Nbn
Xikqk j. Then
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i=1,...,n
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U2
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If N̂bn = Nbn , then from (3.21)
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(B.4.5)

Form assumption 4, 2αr−4η +αN <−η + 1
2αN , so

max
i=1,...,n

|δi|= Op

(
n1/m+αN /2−η +nαN −αl

)
(B.4.6)

For maxi=1,...,n |εi|= Op(n1/m), from assumption 8
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l=1,...,n

|εl|× max
l=1,...,n

|δl|= Op(knn
2
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αN
2 −η + knn

1
m+αN −αl) = op(1) (B.4.7)

and we prove (3.48).
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proof of theorem 8. Suppose N̂bn = Nbn . Define ŝ = (ŝ1, ..., ŝr)
T = QT β̂ .
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Define the conditional norm ‖ · ‖∗m = (E∗| · |m)1/m ,m≥ 1 and
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r
j=1 qi j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
. For ε∗l has joint normal distribution,

‖
r

∑
j=1

n

∑
l=1

qi j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
ε
∗
l ‖∗m =C‖

n

∑
l=1

tilε∗l ‖∗2

=C

√
n

∑
l1=1

n

∑
l2=1

til1til2 ε̂l1 ε̂l2K
(

l1− l2
kn

)
≤C

√√√√(2
∞

∑
i=0

K(i/kn)

)
×

(
n

∑
l=1

t2
il ε̂

2
l

)

≤ C′
√

kn

λr
× max

i=1,...,n
|ε̂i|

⇒ ‖ max
i=1,2,...,p

|
r

∑
j=1

n

∑
l=1

qi j pl j

(
λ j

λ 2
j +ρn,r

+
ρn,rλ j

(λ 2
j +ρn,r)2

)
ε
∗
l | ‖∗m

≤ C′p1/m√kn

λr
× max

i=1,...,n
|ε̂i|

(B.4.9)

here C and C′ are constants. From (B.4.6), maxi=1,...,n |ε̂i| ≤ maxi=1,...,n |εi|+maxi=1,...,n |ε̂i−

εi|= Op(n1/m).

On the other hand,

max
i=1,...,p

|ρ2
n,r

r

∑
j=1

qi j ŝ j

(λ 2
j +ρn,r)2 | ≤ max

i=1,2,...,p

ρ2
n,r

λ 4
r
×
√

r

∑
j=1

q2
i j×|β̂ |2

≤
ρ2

n,r

λ 4
r
× (|β |2 + |β̂ −β |2)

(B.4.10)

For

|β̂ −β |2 =
√

∑
j∈Nbn

|β̃ j−β j|2 ≤
√
|Nbn |× |β̃ −β |∞ = op(

√
|Nbn|) (B.4.11)
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we have for sufficiently large n,

Prob∗
(
N̂ ∗

bn
6= Nbn

)
≤ Prob∗

(
min

i∈Nbn

|β̃ ∗i | ≤ bn

)
+Prob∗

(
max
i 6∈Nbn

|β̃ ∗i |> bn

)
≤ Prob∗

(
|β̃ ∗− β̂ |∞ ≥ (1/cb−1)bn−|β̂ −β |∞

)
+Prob∗

(
|β̃ ∗− β̂ |∞ ≥ bn−|β̂ −β |∞

)
≤ ‖ |β̃ ∗− β̂ |∞ ‖∗mm

((1/cb−1)bn−|β̂ −β |∞)m
+
‖ |β̃ ∗− β̂ |∞ ‖∗mm

(bn−|β̂ −β |∞)m

(B.4.12)

which tends to 0 with probability tending to 1. If N̂ ∗
bn
= N̂bn = Nbn , then ĉ∗i j = ci j and τ̂∗i = τi.

Moreover,
ζ̂ ∗i −∑

p
j=1 mi jβ̂ j

τ̂∗i
=−

ρ2
n,r

τi

r

∑
k=1

cikŝk

(λ 2
k +ρn,r)2

+
1
τi

r

∑
k=1

n

∑
l=1

cik plk

(
λk

λ 2
k +ρn,r

+
ρn,rλk

(λ 2
k +ρn,r)2

)
ε
∗
l

(B.4.13)

From Cauchy inequality,

|
ρ2

n,r

τi

r

∑
k=1

cikŝk

(λ 2
k +ρn,r)2 | ≤

ρ2
n,r

τi

√
r

∑
k=1

c2
ikλ 2

k

(λ 2
k +ρn,r)2 ×

√
r

∑
k=1

ŝ2
k

λ 2
k × (λ 2

k +ρn,r)2

≤
ρ2

n,r×|β̂ |2
λ 3

r

(B.4.14)

which has order Op(n2αr+αN /2−3η). Define wil as in (3.35), we have

E∗
1
τi

1
τ j

n

∑
l1=1

n

∑
l2=1

wil1w jl2ε
∗
l1ε
∗
l2 =

1
τi

1
τ j

n

∑
l1=1

n

∑
l2=1

wil1w jl2 ε̂l1 ε̂l2K
(

l1− l2
kn

)
(B.4.15)

From lemma B.2.1 and theorem 7, we have

sup
x∈R
|Prob∗

(
max
i∈M
| 1
τi

n

∑
l=1

wilε
∗
l | ≤ x

)
−Prob

(
max
i∈M
|ξi| ≤ x

)
|= op(1) (B.4.16)
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For

Prob∗

 max
i=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

≤ x

≤ Prob∗
(
N̂ ∗

bn
6= Nbn

)

+Prob∗
(

max
i∈M
| 1
τi

n

∑
l=1

wilε
∗
l | ≤ x+

ρ2
n,r×|β̂ |2

λ 3
r

)

Prob∗

 max
i=1,...,p1

|ζ̂ ∗i −∑
p
j=1 mi jβ̂ j|
τ̂∗i

≤ x

≥−Prob∗
(
N̂ ∗

bn
6= Nbn

)

+Prob∗
(

max
i∈M
| 1
τi

n

∑
l=1

wilε
∗
l | ≤ x−

ρ2
n,r×|β̂ |2

λ 3
r

)
(B.4.17)

and (3.56) is proven.
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Appendix C

Proofs of theorems in chapter 4

C.1 Proof of theorem 9 in section 4.5

Adopt the notations in section 4.4 and 4.5 of the paper. Suppose assumption 1 to 4 in

section 4.4 hold true. For any given positive integer 0 < m < ∞, define xm = 2mx−m and the

stochastic process

M̃m(x) =
√

nF
′
(xm)

(
X T

f (X T X )−1X T
ε− 1

n

n

∑
j=1

ε j

)
− 1√

n

n

∑
j=1

(
1ε j≤xm−F(xm)

)
(C.1.1)

Then EM̃m(x) = 0 for any given x.

Define the Gaussian process Mm(x) ∈ D,x ∈ [0,1] such that

EMm(x) = 0, EMm(x)Mm(z) = V (xm,zm) for ∀x,z ∈ [0,1] (C.1.2)

here zm = 2mz−m and Mm has continuous sample paths almost surely. V is defined in (4.15)

of the paper. The proof of theorem 9 has 4 steps:

1. Show the existence of Mm for any m

2. Prove that M̃m→L Mm (i.e., converges in distribution) under the Skohord topology. Then

lemma C.1.1 below implies that M̃m(x)’s sample paths will be similar to a continuous

function, i.e., |M̃m(x)− M̃m(z)| can be arbitrarily small as |x− z| → 0 with probability
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tending to 1.

3. Prove that the random variable M̃m
(x+m

2m

)
− M̃−m (−x+m

2m )’s asymptotic distribution will be a

normal distribution with mean 0 and variance U (x) for any x ∈ (0,m]. See (4.16) in the

paper for the definition of the superscript −.

4. Approximate S (x)(see (4.19)) by M̃m
(x+m

2m

)
− M̃−m (−x+m

2m ).

But before presenting the proof, we would like to introduce some useful lemmas.

C.1.1 Useful lemmas

Suppose random variables A,B satisfy |A−B| ≤ δ ,δ > 0. Then ∀x ∈ R, −1x−δ<B≤x ≤

1A≤x−1B≤x ≤ 1x<B≤x+δ , which implies

E|1A≤x−1B≤x| ≤ E|1A≤x−1B≤x|×1|A−B|≤δ +Prob(|A−B|> δ )

≤ Prob(|A−B|> δ )+Prob(x−δ < B≤ x+δ )

(C.1.3)

For any given positive integer r and ∀ti ∈ [0,1],si ∈R, i= 1,2, ...,r, define ti,m = 2mti−m,

then

0≤ lim
n→∞

E

(
r

∑
i=1

siM̃m(ti)

)2

= lim
n→∞

σ
2

r

∑
i=1

r

∑
j=1

sis jF
′
(ti,m)F

′
(t j,m)

×

(
X T

f

(
X T X

n

)−1

X f +1−2X T
f

(
X T X

n

)−1

X n

)

− lim
n→∞

r

∑
i=1

r

∑
j=1

sis j

(
X T

f

(
X T X

n

)−1

X n−1

)
× (F

′
(ti,m)H(t j,m)+F

′
(t j,m)H(ti,m))

+ lim
n→∞

r

∑
i=1

r

∑
j=1

sis j
(
F(min(ti,m, t j,m))−F(ti,m)F(t j,m)

)
=

r

∑
i=1

r

∑
j=1

sis jV (ti,m, t j,m)

(C.1.4)
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Eq.(C.1.4) implies that V (2m · −m,2m · −m) will be the asymptotic covariance function of

the stochastic process M̃m(·). Moreover, for any real number sequence {zi}i=1,...,r, the matrix

{V (zi,z j)}i, j=1,...,r is positive semi-definite. From assumption 3, define σ̂2 as in section (4.14)

of the paper

Eσ̂
2 ≤ 2

n

n

∑
i=1

E
(

εi−
∑

n
j=1 ε j

n

)2

+
2
n

n

∑
i=1

E((Xi−X n)
T (X T X )−1X T

ε)2

≤ 2σ
2 +

8M2σ2

n
‖
(

X T X

n

)−1

‖2

(C.1.5)

so Eσ̂2 = O(1). Here ‖
(

X T X
n

)−1
‖2 is the matrix 2-norm of

(
X T X

n

)−1
. (C.1.3), (C.1.4) and

(C.1.5) will be frequently used in the following sections. Then we introduce some lemmas.

Lemma C.1.1 focuses on showing the existence of Mm and deriving its properties.

Lemma C.1.1. Suppose assumption 1 to 4 hold true.

1. For ∀0 < m ∈ N, ∃ a Gaussian process Mm in D satisfying (C.1.2) and having

continuous sample paths almost surely.

2. For any given ξ > 0,

lim
δ→0,δ>0

P

(
sup

y,z∈[0,1],|y−z|<δ

|Mm(y)−Mm(z)|> ξ

)
= 0 (C.1.6)

In addition, suppose a sequence of stochastic processes Ñm,n ∈ D,n = 1,2, ... satisfy Ñm,n→L

Mm under Skohord topology as n→ ∞. Then ∃ δ > 0 such that

limsup
n→∞

P

(
sup

y,z∈[0,1],|y−z|<δ

|Ñm,n(y)− Ñm,n(z)| ≥ ξ

)
≤ ξ (C.1.7)

proof of lemma C.1.1. From (C.1.4), for any ti ∈ [0,1], i = 1,2, ...,r, the random vector

(Mm(t1), ...,Mm(tr))T has joint normal distribution with mean 0 and covariance matrix
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{V (2mti−m,2mt j −m)}i, j=1,2,...,r, so the consistency conditions in Kolmogorov extension

theorem are satisfied. ∀0≤ t1 ≤ t ≤ t2 ≤ 1,

E|Mm(t)−Mm(t1)|2|Mm(t)−Mm(t2)|2

≤ 1
2
(
E|Mm(t)−Mm(t1)|4 +E|Mm(t)−Mm(t2)|4

)
≤ 3

2
(
E(Mm(t)−Mm(t1))2 +E(Mm(t)−Mm(t2))2)2

(C.1.8)

The last inequality comes from the fact that Mm(t)−Mm(t1) and Mm(t)−Mm(t2) have normal

distribution. Define ti,m = 2mti−m for i = 1,2. Form assumption 1, ∃ a constant C > 0 with

E(Mm(t)−Mm(t1))2

= σ
2(X T

f A−1X f +1−2X T
f A−1b)(F

′
(2mt−m)−F

′
(t1,m))2

+F(2mt−m)−F(t1,m)− (F(2mt−m)−F(t1,m))2

−2(X T
f A−1b−1)(F

′
(2mt−m)−F

′
(t1,m))(H(2mt−m)−H(t1,m))

≤C(t− t1)

(C.1.9)

Similarly, E(Mm(t2)−Mm(t))2 ≤C(t2− t). Then (C.1.8) implies

E|Mm(t)−Mm(t1)|2|Mm(t)−Mm(t2)|2 ≤ 3
2C2(t2− t1)2. Set α = β = 1 and choose the non-

decreasing, continuous function F(x) =
√

3√
2
Cx in eq.(13.15) of Billingsley [1999]. (C.1.9) also

implies (13.16) in Billingsley [1999]. From theorem 13.6 in Billingsley [1999], ∃Mm ∈ D

satisfying (C.1.2). According to (C.1.9),

E(Mm(t)−Mm(t1))4 ≤ 3C2(t− t1)2 (C.1.10)

so theorem 2.3 in Hahn [1977] is satisfied by choosing r = 4 and the function

f (x) = 3C2x2⇒
∫
[0,1]

x−(r+1)/r f 1/r(x)dx = 4(3C2)1/4 < ∞ (C.1.11)
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In particular, we can choose Mm ∈ D such that |Mm(t)−Mm(t1)| ≤ AH(|t− t1|) almost surely,

A is a random variable with EA4 < ∞, H is a continuous nondecreasing function on [0,1] such

that H(0) = 0. This implies Mm has continuous sample paths almost surely.

We prove (C.1.6) by

P

(
sup

y,z∈[0,1],|y−z|<δ

|Mm(y)−Mm(z)|> ξ

)
≤ EA4

ξ 4 ×H4(δ ) (C.1.12)

.

For any given δ > 0, define a function

hδ ( f ) = sup
x,y∈[0,1],|x−y|<δ

| f (x)− f (y)|, here f ∈ D (C.1.13)

From section 12, Billingsley [1999], if fn,n = 1, ... converges to f in D, then ∃ strictly increasing

mappings λn : [0,1]→ [0,1],n = 1,2, ... such that

limn→∞ supx∈[0,1] |λn(x)− x|= 0 and limn→∞ supx∈[0,1] | fn(λn(x))− f (x)|= 0; so

|hδ ( fn)−hδ ( f )| ≤ sup
x,y∈[0,1],|x−y|<δ

| fn(x)− fn(y)− f (x)+ f (y)|

≤ sup
x∈[0,1]

| fn(x)− f (x)|+ sup
y∈[0,1]

| fn(y)− f (y)|

≤ 2( sup
x∈[0,1]

| fn(x)− f (λ−1
n (x))|+ sup

x∈[0,1]
| f (λ−1

n (x))− f (x)|)

(C.1.14)

If f is continuous on [0,1], then limn→∞ |hδ ( fn)− hδ ( f )| = 0. For Mm is continuous almost

surely, and R,D are Polish spaces(theorem 12.2 in Billingsley [1999]), 3.8, page 348 in Jacod

and Shiryaev [2003] implies hδ (Ñm,n)→L hδ (Mm), and theorem 1.9 in Shao [2003] implies

limsup
n→∞

P

(
sup

x,y∈[0,1],|x−y|<δ

|Ñm,n(x)− Ñm,n(y)| ≥ ξ

)

≤ P

(
sup

x,y∈[0,1],|x−y|<δ

|Mm(x)−Mm(y)| ≥ ξ

)
< ξ

(C.1.15)
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for sufficiently small δ > 0.

Notably, Ñm,n may not be continuous for finite n. However, if Ñm,n→L Mm, lemma

C.1.1 implies that the discontinuity in Ñm,n should vanish asymptotically. Combine lemma C.1.1

with (C.1.3), we derive the following corollary:

Corollary 3. Suppose assumption 1 to 4 hold true. Then for any given 0 < c < 1/4,

lim
δ→0

sup
|x−y|+|z−w|<δ

|P(Mm(x)−Mm(1− x)≤ z)−P(Mm(y)−Mm(1− y)≤ w)|= 0 (C.1.16)

and if Ñm,n→L Mm, then

lim
n→∞

sup
x∈[ 1

2+c,1−c],z∈R
|P(Ñm,n(x)−Ñ −

m,n(1−x)≤ z)−P(Mm(x)−Mm(1−x)≤ z)|= 0 (C.1.17)

Here (x,z),(y,w) ∈ [1
2 +c,1−c]×R. See (4.16) in the paper for the definition of the superscript

−.

proof of corollary 3. Without loss of generality, assume z≤ w. From (C.1.3), for ∀ ξ > 0,

|P(Mm(x)−Mm(1− x)≤ z)−P(Mm(y)−Mm(1− y)≤ w)|

≤ P(|Mm(x)−Mm(y)|> ξ/2)+P(|Mm(1− x)−Mm(1− y)|> ξ/2)

+P(z−ξ < Mm(y)−Mm(1− y)≤ z+ξ )+P(z < Mm(y)−Mm(1− y)≤ w)

(C.1.18)

Define ym = 2my−m. From assumption 4, miny∈[ 1
2+c,1−c]U (ym)> 0 so

P(z < Mm(y)−Mm(1− y)≤ w) = Φ

(
w√

U (ym)

)
−Φ

(
z√

U (ym)

)

≤ δ

miny∈[ 1
2+c,1−c]

√
U (ym)

(C.1.19)

Similarly P(z−ξ <Mm(y)−Mm(1−y)≤ z+ξ )≤ 2ξ

min
y∈[ 1

2+c,1−c]

√
U (ym)

. (C.1.16) is proved by
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applying lemma C.1.1 to (C.1.18).

For ∀x ∈ [1
2 + c,1− c], define gx : D→ R : gx( f ) = f (x)− f−(1− x). We use the same

notation as (C.1.14). If fn converges to f in D and f is continuous,

|gx( fn)−gx( f )| ≤ | fn(x)− f (λ−1
n (x))|+ | f (λ−1

n (x))− f (x)|

+ limsup
t→1−x,t<1−x

| fn(t)− f (λ−1
n (t))|+ limsup

t→1−x,t<1−x
| f (λ−1

n (t))− f (t)|
(C.1.20)

which tends to 0 as n→ ∞. Therefore, 3.8, page 348 in Jacod and Shiryaev [2003] implies

gx(Ñm,n)→L gx(Mm). ∀ψ > 0, t ∈R, define G0(x) = (1−min(1,max(x,0))4)4, and Gψ,t(x) =

G0(ψx−ψt). From Xu et al. [2019], ∃ a constant C > 0 with

1x≤t ≤ Gψ,t(x)≤ 1x≤t+1/ψ , sup
x,t
|G
′
ψ,t(x)| ≤Cψ

sup
x,t
|G
′′
ψ,t(x)| ≤Cψ

2, sup
x,t
|G
′′′
ψ,t(x)| ≤Cψ

3
(C.1.21)

For ∀ψ > 0, define the set Aψ = {Gψ,t : t ∈ R}. ∀δ > 0, choose γ = δ/(Cψ), then ∀Gψ,t ∈

Aψ ,x,y ∈ R with |x− y| < γ , |Gψ,t(x)−Gψ,t(y)| ≤ Cψ|x− y| < δ ⇒ Aψ is equi-continuous

and uniformly bounded by 1. From theorem 3.1 in Ranga Rao [1962],

lim
n→∞

sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |= 0 (C.1.22)
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for any fixed x ∈ [1
2 + c,1− c]. From (C.1.21),

P(Ñm,n(x)− Ñ −
m,n(1− x)≤ z)−P(Mm(x)−Mm(1− x)≤ z)

≤ EGψ,z

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,z−1/ψ(Mm(x)−Mm(1− x))

≤ sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |

+P
(

z− 1
ψ

< Mm(x)−Mm(1− x)≤ z+
1
ψ

)
P(Ñm,n(x)− Ñ −

m,n(1− x)≤ z)−P(Mm(x)−Mm(1− x)≤ z)

≥ EGψ,z−1/ψ

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,z (Mm(x)−Mm(1− x))

≥− sup
Gψ,t∈Aψ

|EGψ,t

(
Ñm,n(x)− Ñ −

m,n(1− x)
)
−EGψ,t (Mm(x)−Mm(1− x)) |

−P
(

z− 1
ψ

< Mm(x)−Mm(1− x)≤ z+
1
ψ

)

(C.1.23)

Choose y = x,z = z+ 1
ψ
,w = z− 1

ψ
in (C.1.16) and let ψ → ∞,

lim
n→∞

sup
z∈R
|P(Ñm,n(x)− Ñ −

m,n(1− x)≤ z)−P(Mm(x)−Mm(1− x)≤ z)|= 0 (C.1.24)

Finally, for any given ξ > 0, we choose 1
2 + c = x0 < x1 < ... < xM = 1− c and xi− xi−1 <

δ , i = 1,2, ...,M with sufficiently small δ > 0. For ∀x ∈ [1
2 + c,1− c], ∃ I ∈ {0,1, ...,M} such

that |x− xI|< δ , and

sup
z∈R
|P(Ñm,n(x)− Ñ −

m,n(1− x)≤ z)−P(Mm(x)−Mm(1− x)≤ z)|

≤ sup
z∈R
|P(Ñm,n(x)− Ñ −

m,n(1− x)≤ z)−P(Ñm,n(xI)− Ñ −
m,n(1− xI)≤ z)|

+ max
I=1,2,...,M

sup
z∈R
|P(Ñm,n(xI)− Ñ −

m,n(1− xI)≤ z)−P(Mm(xI)−Mm(1− xI)≤ z)|

+sup
z∈R
|P(Mm(xI)−Mm(1− xI)≤ z)−P(Mm(x)−Mm(1− x)≤ z)|

(C.1.25)
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From (C.1.3), ∀ ξ > 0,

sup
z∈R
|P(Ñm,n(x)− Ñ −

m,n(1− x)≤ z)−P(Ñm,n(xI)− Ñ −
m,n(1− xI)≤ z)|

≤ P
(
|Ñ −

m,n(1− x)− Ñ −
m,n(1− xI)|>

ξ

2

)
+P

(
|Ñm,n(x)− Ñm,n(xI)|>

ξ

2

)
+2 max

I=1,2,...,M
sup
z∈R
|P(Ñm,n(xI)− Ñ −

m,n(1− xI)≤ z)−P(Mm(xI)−Mm(1− xI)≤ z)|

+sup
z∈R

P(z−ξ < Mm(xI)−Mm(1− xI)≤ z+ξ )

(C.1.26)

Since supx∈[ 1
2+c,1−c]P

(
|Ñm,n(x)− Ñm,n(xI)|> ξ

2

)
and

supx∈[ 1
2+c,1−c]P

(
|Ñ −

m,n(1− x)− Ñ −
m,n(1− xI)|> ξ

2

)
are less or equal to

P
(

supy,z∈[0,1],|y−z|<δ |Ñm,n(y)− Ñm,n(z)|> ξ

2

)
, (C.1.7), (C.1.16) and (C.1.24) imply (C.1.17).

The second lemma focuses on showing the asymptotic continuity of the residuals’ em-

pirical process in the real world and in the bootstrap world. Define the stochastic processes

α̂(x) =
1√
n

n

∑
i=1

(1ε̂i≤x−F(x)) and α̃
∗(x) =

1√
n

n

∑
i=1

(1ε∗i ≤x− F̂(x)) (C.1.27)

Here ε̂i and F̂ are defined in (4.13). ε∗i , i = 1,2, ...,n are i.i.d. random variables generated from

F̂ . In algorithm 4, ε∗i serves as the bootstrapped residuals. Define two assistant processes

F̃(x) =
1
n

n

∑
i=1

1εi≤x and α̃(x) =
1√
n

n

∑
i=1

(1εi≤x−F(x)), here ∀x ∈ R (C.1.28)

The notation Op and op have the same meaning as definition 1.9 in Shao [2003], i.e., two

random variable sequences Xn,Yn,n = 1,2, ... satisfy Xn = Op(Yn) if for ∀t > 0, ∃ a constant Ct

such that Prob(|Xn| ≥Ct |Yn|)≤ t for n = 1,2, .... Xn = op(Yn) if Xn/Yn→p 0 as n→ ∞.

Lemma C.1.2. Suppose assumption 1 to 4 hold true. Then for any given ξ > 0 and −∞ < r ≤
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s < ∞, ∃ δ > 0 such that

limsup
n→∞

P

(
sup

x,y∈[r,s],|x−y|<δ

|α̂(x)− α̂(y)|> ξ

)
< ξ (C.1.29)

Besides, ∃δ > 0 and N > 0 such that ∀n≥ N,

P

({
P∗
(

sup
x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)|> ξ

)
> ξ

})
< ξ (C.1.30)

proof of lemma C.1.2. From assumption 4, F is strictly increasing in R. From lemma 4.1 and

4.2, Bickel and Freedman [1981], ∃ independent random variables Ui, i = 1,2, ... with uniform

distribution on [0,1], a Brownian bridge B and a constant C such that

P

(
sup

x∈[0,1]
| 1√

n

n

∑
i=1

(1Ui≤x− x)−B(x)| ≥C log(n)/
√

n

)
≤C log(n)/

√
n (C.1.31)

and ∀0 < δ < 1/2, ξ > 0,

E sup
x,y∈[0,1],|x−y|<δ

|B(x)−B(y)| ≤C(−δ log(δ ))1/2

⇒ P

(
sup

x,y∈[0,1],|x−y|<δ

|B(x)−B(y)|> ξ

)
≤ C(−δ log(δ ))1/2

ξ

(C.1.32)

We choose εi = F−1(Ui), i = 1,2, ...,n (εi has distribution F according to page 150, Billingsley

[1999]),

α̃(x) =
1√
n

n

∑
i=1

(1Ui≤F(x)−F(x))

⇒ P
(

sup
x∈R
|α̃(x)−B(F(x))| ≥C log(n)/

√
n
)
≤C log(n)/

√
n

(C.1.33)
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From assumption 3,

max
i=1,...,n

1
n
X T

i (
X T X

n
)−1Xi ≤

1
n

M2‖(X
T X

n
)−1‖2 = O(1/n) (C.1.34)

and E‖(X T X )1/2(β̂ −β )‖2
2 = pσ2 implies ‖(X T X )1/2(β̂ −β )‖2 = Op(1). Define

λ̂ =
1
n

n

∑
j=1

ε̃ j =
1
n

n

∑
j=1

ε j−X
T
n (β̂ −β ) (C.1.35)

here ε̃i and X n are defined in (4.13). With this definition we have ε̂i = ε̃i− λ̂ . Besides,

Eλ̂
2 ≤ 2E

(
1
n

n

∑
j=1

ε j

)2

+2E
(
X

T
n (β̂ −β )

)2
=

2σ2

n
+

2σ2X n(X T X /n)−1X n

n

⇒ λ̂ = Op(1/
√

n)

(C.1.36)

Define

α̃
†(x) =

1√
n

n

∑
i=1

(
1ε̃i≤x−F(x)

)
⇒ α̂(x) = α̃

†(x+ λ̂ )+
√

n(F(x+ λ̂ )−F(x)) (C.1.37)

From theorem 6.2.1 in Koul [2002],

sup
x∈R
|α̃†(x)− α̃(x)−

√
nF

′
(x)X

T
n (β̂ −β )|= op(1) (C.1.38)

Therefore,

sup
x∈R
|α̂(x)− α̃(x)−

√
nF

′
(x)X

T
n (β̂ −β )−

√
nF

′
(x)λ̂ |

≤ sup
x∈R
|α̃†(x)− α̃(x)−

√
nF

′
(x)X

T
n (β̂ −β )|+ sup

x∈R
|α̃(x+ λ̂ )− α̃(x)|

+sup
x∈R

√
n|(F

′
(x+ λ̂ )−F

′
(x))X

T
n (β̂ −β )|+ sup

x∈R

√
n|F(x+ λ̂ )−F(x)−F

′
(x)λ̂ |

(C.1.39)
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From assumption 1 and 3 and Taylor’s theorem, supx∈R
√

n|(F ′(x+ λ̂ )−F
′
(x))X

T
n (β̂ −β )| and

supx∈R
√

n|F(x+ λ̂ )−F(x)−F
′
(x)λ̂ | have order Op(1/

√
n). From (C.1.33), with probability

tending to 1,

sup
x∈R
|α̃(x+ λ̂ )− α̃(x)| ≤ 2C log(n)√

n
+ sup

x∈R
|B(F(x+ λ̂ ))−B(F(x))| (C.1.40)

F is uniform continuous according to assumption 1, so

sup
x∈R
|α̃(x+ λ̂ )− α̃(x)|= op(1)

⇒ sup
x∈R
|α̂(x)− α̃(x)−

√
nF

′
(x)X

T
n (β̂ −β )−

√
nF

′
(x)λ̂ |= op(1)

(C.1.41)

For any given −∞ < r ≤ s < ∞ and sufficiently small δ > 0,

sup
x,y∈[r,s],|x−y|<δ

|α̂(x)− α̂(y)| ≤ sup
x,y∈[r,s],|x−y|<δ

|α̃(x)− α̃(y)|

+ sup
x,y∈[r,s],|x−y|<δ

√
n|(F

′
(x)−F

′
(y))× (X

T
n (β̂ −β )+ λ̂ )|+op(1)

(C.1.42)

From assumption 1, (C.1.33) and (C.1.32), we prove (C.1.29).

Define the function φ̂(x) = inf{t|x ≤ F̂(t)},x ∈ [0,1]. Page 150, Billingsley [1999]

implies φ̂(x)≤ t⇔ x≤ F̂(t). If U has uniform distribution on [0,1], then φ̂(U) has distribution

F̂ . Without loss of generality, we choose ε∗i = φ̂(Ui), i = 1,2, ...,n; (C.1.31) implies

α̃
∗(x) =

1√
n

n

∑
i=1

(1Ui≤F̂(x)− F̂(x))

⇒ P∗
(

sup
x∈R
|α̃∗(x)−B(F̂(x))| ≥C log(n)/

√
n
)
≤C log(n)/

√
n

(C.1.43)
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From assumption 3

F̂(x) =
1
n

n

∑
i=1

1
εi≤x+X T

i (β̂−β )+λ̂
≤ 1

n

n

∑
i=1

1
εi≤x+M‖β̂−β‖2+|λ̂ |

= F̃(x+M‖β̂ −β‖2 + |λ̂ |)
(C.1.44)

Similarly, F̂(x) ≥ F̃(x−M‖β̂ −β‖2− |λ̂ |). For any given ω > 0, we can find Cω > 0 with

P(‖β̂ −β‖2 >
Cω

2
√

n)< ω and P(|λ̂ |> MCω

2
√

n )< ω for any n. From Glivenko - Cantelli theorem

and dominated convergence theorem, limn→∞ P(supx∈R |F̃(x)−F(x)|> ω) = 0. If ‖β̂ −β‖2 ≤
Cω

2
√

n , |λ̂ | ≤ MCω

2
√

n and supx∈R |F̃(x)−F(x)| ≤ ω , then for any given −∞ < r ≤ s < ∞, δ > 0,

−ω +F(x− MCω√
n )≤ F̂(x)≤ ω +F(x+ MCω√

n ), and

sup
r≤x≤y≤s,y−x<δ

F̂(y)− F̂(x)≤ 2ω + sup
r≤x≤y≤s,y−x<δ

F(y+
MCω√

n
)−F(x−MCω√

n
) (C.1.45)

For any given −∞ < r ≤ s < ∞ and ξ > 0, we choose sufficiently small ω,δ > 0 and define

ζ = 2ω + supr≤x≤y≤s,y−x<δ F(y+ MCω√
n )−F(x− MCω√

n ),

sup
x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)| ≤ 2sup

x∈R
|α̃∗(x)−B(F̂(x))|

+ sup
x,y∈[r,s],|x−y|<δ

|B(F̂(x))−B(F̂(y))|

≤ 2sup
x∈R
|α̃∗(x)−B(F̂(x))|+ sup

x,y∈[−ω+F(r−MCω√
n ),ω+F(s+MCω√

n )],|x−y|≤ζ

|B(x)−B(y)|

⇒ P∗
(

sup
x,y∈[r,s],|x−y|<δ

|α̃∗(x)− α̃
∗(y)|> ξ

)

≤ P∗
(

sup
x∈R
|α̃∗(x)−B(F̂(x))|> ξ

4

)
+P∗

(
sup

x,y∈[0,1],|x−y|≤ζ

|B(x)−B(y)|> ξ

2

)
(C.1.46)

For F is uniform continuous, (C.1.32) and (C.1.43) imply (C.1.30).
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C.1.2 Proof of theorem 9

The existence of Mm has been shown in lemma C.1.1, and this section will complete the

remaining steps.

proof of theorem 9. Prove M̃m→L Mm. Here M̃m is defined in (C.1.1).

According to theorem 13.5 in Billingsley [1999], it suffices to verify the following

conditions:

1. ∀z1, ...,zk ∈ [0,1], (M̃m(z1), ...,M̃m(zk))→L (Mm(z1), ...,Mm(zk)) in Rk. According

to Cramér-Wold device(theorem 1.9 in Shao [2003]), this condition can be proved by showing

k

∑
j=1

s jM̃m(z j)→L

k

∑
j=1

s jMm(z j) (C.1.47)

here s1, ...,sk ∈ R are any given real numbers.

2. Mm(1)−Mm(1−δ )→L 0 in R as δ → 0,δ > 0

3. ∃b≥ 0,a > 1/2, and a non-decreasing, continuous function G on [0,1] such that

E|M̃m(t)− M̃m(s)|2b|M̃m(s)− M̃m(r)|2b ≤ (G(t)−G(r))2a for

∀1≥ t > s > r ≥ 0
(C.1.48)

For the first condition: define

cT = (c1, ...,cn) = X T
f (X T X )−1X T − 1

neT ⇒ ci = X T
f (X T X )−1Xi− 1

n . Here

e = (1,1, ...,1)T . Define z j,m = 2mz j−m, j = 1,2, ...,k. For any given s1, ...,sk ∈ R

k

∑
j=1

s jM̃m(z j) =
n

∑
i=1

(
(

k

∑
j=1

√
ns jF

′
(z j,m))ciεi−

1√
n
(

k

∑
j=1

s j(1εi≤z j,m−F(z j,m)))

)

⇒ E
k

∑
j=1

s jM̃m(z j) = 0 (C.1.49)
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Form assumption 3 and (5.8.4) in Horn and Johnson [2013], we define

Yi = (∑k
j=1
√

ns jF
′
(z j,m))ciεi− 1√

n(∑
k
j=1 s j(1εi≤z j,m−F(z j,m))),

EY 2
i = nσ

2c2
i

k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m)

+
1
n

k

∑
j=1

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))

−2ci

k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)

⇒ lim
n→∞

n

∑
i=1

EY 2
i

= lim
n→∞

σ
2

k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m)

×
(

X T
f (

X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

)
+

k

∑
j=1

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))

− lim
n→∞

2
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)× (X T

f (
X T X

n
)−1X n−1)

= σ
2K× (X T

f A−1X f +1−2X T
f A−1b)+N−2R× (X T

f A−1b−1)

(C.1.50)

here we define

K =
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)F

′
(zl,m), N =

k

∑
l=1

s jsl(F(min(z j,m,zl,m))−F(z j,m)F(zl,m))

and R =
k

∑
j=1

k

∑
l=1

s jslF
′
(z j,m)H(zl,m)

(C.1.51)
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From mean value inequality,

n

∑
i=1

E|Yi|3 ≤ 4k2E|ε1|3
k

∑
j=1
|s jF

′
(z j,m)|3×n

√
n

n

∑
i=1
|ci|3

+4k2
k

∑
j=1
|s j|3×

1
n
√

n

n

∑
i=1

E|1εi≤z j,m−F(z j,m)|3
(C.1.52)

From assumption 3,

n
√

n
n

∑
i=1
|ci|3 ≤ n

√
n max

i=1,2,...,n
|ci|×

n

∑
i=1

c2
i

≤ 1+M2‖(X T X /n)−1‖2√
n

×
(

X T
f (

X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

) (C.1.53)

which has order O(1/
√

n). ‖(X T X /n)−1‖2 is the matrix 2 norm of the matrix (X T X /n)−1.

If σ2K× (X T
f A−1X f +1−2X T

f A−1b)+N−2R× (X T
f A−1b−1) 6= 0, from Theorem 1.15,

Theorem 1.11, and (1.97) in Shao [2003],

k

∑
j=1

s jM̃m(z j) =
∑

k
j=1 s jM̃m(z j)√

∑
n
i=1 EY 2

i

×

√
n

∑
i=1

EY 2
i

→L N(0,σ2K× (X T
f A−1X f +1−2X T

f A−1b)+N−2R× (X T
f A−1b−1))

(C.1.54)

On the other hand, if σ2K× (X T
f A−1X f + 1− 2X T

f A−1b)+N− 2R× (X T
f A−1b− 1) = 0,

then ∀δ > 0, from (C.1.50), limn→∞ P(|∑k
j=1 s jM̃m(z j)| ≥ δ )≤ limn→∞

E|∑k
j=1 s jM̃m(z j)|2

δ 2 = 0⇒

∑
k
j=1 s jM̃m(z j)→L 0. From theorem 1.9, Shao [2003], we prove (C.1.47) and the first condition.
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The second condition: ∀ξ > 0,

P(|Mm(1)−Mm(1−δ )| ≥ ξ )≤ E|Mm(1)−Mm(1−δ )|2

ξ 2

≤
σ2(X T

f A−1X f −2X T
f A−1b+1)(F

′
(m)−F

′
(m−2mδ ))2

ξ 2

+
2|X T

f A−1b−1|× |F ′(m)−F
′
(m−2mδ )|× |H(m)−H(m−2mδ )|

ξ 2

+
|F(m)−F(m−2mδ )|+ |F(m)−F(m−2mδ )|2

ξ 2

(C.1.55)

From assumption 1, limδ→0,δ>0 Prob(|Mm(1)−Mm(1−δ )| ≥ ξ ) = 0, and we prove the sec-

ond condition.

The third condition: we choose b = a = 1 in (C.1.48) and define tm = 2mt−m,∀t. For

∀t,s ∈ [0,1], we define

A (t,s) =
√

n
(

F
′
(tm)−F

′
(sm)

)
×

(
X T

f (X T X )−1X T
ε− 1

n

n

∑
j=1

ε j

)

and B(t,s) =
1√
n

n

∑
i=1

(1sm<εi≤tm−F(tm)+F(sm))

(C.1.56)

From mean value inequality,

E|M̃m(t)− M̃m(s)|2|M̃m(s)− M̃m(r)|2

≤ 4E
(
A (t,s)2A (s,r)2 +B(t,s)2A (s,r)2 +A (t,s)2B(s,r)2 +B(t,s)2B(s,r)2) (C.1.57)

From assumption 3, X T
f (X T X /n)−1X f →X T

f A−1X f and

X T
f (X T X /n)−1X n → X T

f A−1b. Therefore, ∃C > 0 such that |X T
f (X T X

n )−1X f + 1−

2X T
f (X T X

n )−1X n| ≤C for ∀n. Define c = (c1, ...,cn)
T , ci = X T

f (X T X )−1Xi−1/n, ∀1≥
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t > s > r ≥ 0

EA (t,s)2A (s,r)2 = n2
(

F
′
(tm)−F

′
(sm)

)2(
F
′
(sm)−F

′
(rm)

)2
E(cT

ε)4

= n2
(

F
′
(tm)−F

′
(sm)

)2(
F
′
(sm)−F

′
(rm)

)2

×

(
Eε

4
1 ×

n

∑
i=1

c4
i +3σ

4
n

∑
i=1

n

∑
j=1, j 6=i

c2
i c2

j

)

≤ 16m4(Eε
4
1 +3σ

4)(t− s)2(s− r)2× sup
x∈R
|F
′′
(x)|4

×
(

X T
f (

X T X

n
)−1X f +1−2X T

f (
X T X

n
)−1X n

)2

≤ 16C2m4(Eε
4
1 +3σ

4)(t− r)2× sup
x∈R
|F
′′
(x)|4

(C.1.58)

EB(t,s)2B(s,r)2

≤ 1
n

E(1sm<ε1≤tm−F(tm)+F(sm))
2(1rm<ε1≤sm−F(sm)+F(rm))

2

+E(1sm<ε1≤tm−F(tm)+F(sm))
2×E(1rm<ε1≤sm−F(sm)+F(rm))

2

+2(E(1sm<ε1≤tm−F(tm)+F(sm))(1rm<ε1≤sm−F(sm)+F(rm)))
2

≤ 3
n
(F(tm)−F(sm))(F(sm)−F(rm))+(F(tm)−F(sm))(F(sm)−F(rm))

+2(F(tm)−F(sm))
2(F(sm)−F(rm))

2 ≤ 6(F(tm)−F(rm))
2

(C.1.59)

EA (t,s)2B(s,r)2 =
(

F
′
(tm)−F

′
(sm)

)2

×(
n

∑
i=1

c2
i Eε

2
i (1rm<εi≤sm−F(sm)+F(rm))

2

+σ
2(n−1)

n

∑
i=1

c2
i E(1rm<ε1≤sm−F(sm)+F(rm))

2

+2
n

∑
i=1

n

∑
j=1, j 6=i

cic j× (Eε11rm<ε1≤sm)
2)

≤ σ
2
(

F
′
(tm)−F

′
(sm)

)2
× (n

n

∑
i=1

c2
i +2((

n

∑
i=1

ci)
2 +

n

∑
i=1

c2
i ))

(C.1.60)
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Notice that n∑
n
i=1 c2

i = X T
f (X T X

n )−1X f +1−2X T
f (X T X

n )−1X n and

∑
n
i=1 ci = X T

f (X T X /n)−1X n−1, (C.1.48) is satisfied by choosing G(x) =C′x with a suffi-

ciently large constant C′. Then we prove M̃m→L Mm. In particular, for any given 0 < r < s < ∞,

choose sufficiently large integer m > s+1, from corollary 3

sup
x∈[r,s],z∈R

|P
(

M̃m

(
x+m

2m

)
− M̃−m

(
−x+m

2m

)
≤ z
)

−P
(

Mm

(
x+m

2m

)
−Mm

(
−x+m

2m

)
≤ z
)
|= o(1)

(C.1.61)

see(4.16) for the definition of the superscript −. Since the random variable Mm
(x+m

2m

)
−

Mm
(−x+m

2m

)
has normal distribution with mean 0 and variance U (x) (see (4.15)), the proof

remains showing that S (x) approximately equals M̃m
(x+m

2m

)
− M̃−m

(−x+m
2m

)
.

Prove S (x) approximately equals M̃m
(x+m

2m

)
− M̃−m

(−x+m
2m

)
Recall the definition

S (x) =
√

n
(

P∗(|Y f −X T
f β̂ | ≤ x)−P∗(|Y ∗f −X T

f β̂
∗| ≤ x)

)
(C.1.62)

here the condtional probability P∗ is defined in definition 4. Since

Y f −X T
f β̂ = ξ −X T

f
(
X T X

)−1
X T ε , here ξ is a random variable being independent of ε

and having the same distribution as ε1. We have

P∗
(
|Y f −X T

f β̂ | ≤ x
)

= P∗
(
−x+X T

f
(
X T X

)−1
X T

ε ≤ ξ ≤ x+X T
f
(
X T X

)−1
X T

ε

)
= F

(
x+X T

f
(
X T X

)−1
X T

ε

)
−F(−x+X T

f
(
X T X

)−1
X T

ε)

(C.1.63)

On the other hand, we have Y ∗f −X T
f β̂ ∗= ξ ∗−X T

f
(
X T X

)−1
X T ε∗, here ε∗= (ε∗1 , ...,ε

∗
n )

T

and ξ ∗,ε∗ are independent with distribution F̂(see algorithm 4). Take the conditional distribution,

176



we have

P∗(|Y ∗f −X T
f β̂
∗| ≤ x)

=


E∗Prob

(
|Y ∗f −X T

f β̂ ∗| ≤ x |Y ,ε∗
)

for fixed design

E∗Prob
(
|Y ∗f −X T

f β̂ ∗| ≤ x |Y ,X ,X f ,ε
∗
)

for random design

= E∗F̂
(

x+X T
f
(
X T X

)−1
X T

ε
∗
)
−E∗F̂−

(
−x+X T

f
(
X T X

)−1
X T

ε
∗
)

(C.1.64)

Choose m > s+1 and define α̂(x) =
√

n(F̂(x)−F(x)) (the same as in (C.1.27)). ∀x ∈

[r,s], from Taylor’s theorem

S (x) =
√

n(F(x+X T
f (X T X )−1X T

ε)−F(−x+X T
f (X T X )−1X T

ε))

−
√

n
(

E∗
(

F̂(x+X T
f (X T X )−1X T

ε
∗)− F̂−(−x+X T

f (X T X )−1X T
ε
∗)
))

=
(

F
′
(x)−F

′
(−x)

)
×
√

nX T
f (X T X )−1X T

ε

+
F
′′
(η1)−F

′′
(η2)

2
×
√

n(X T
f (X T X )−1X T

ε)2

−E∗
(
α̂(x+X T

f (X T X )−1X T
ε
∗)− α̂(x)

)
+E∗

(
α̂
−(−x+X T

f (X T X )−1X T
ε
∗)− α̂

−(−x)
)

−α̂(x)+ α̂
−(−x)−

√
nE∗

(
F(x+X T

f (X T X )−1X T
ε
∗)−F(x)

)
+
√

nE∗(F(−x+X T
f (X T X )−1X T

ε
∗)−F(−x))

(C.1.65)
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which implies

sup
x∈[r,s]

|S (x)−
(

M̃m(
x+m

2m
)− M̃−m (

−x+m
2m

)

)
|

≤
√

n(X T
f (X T X )−1X T

ε)2× sup
x∈R
|F
′′
(x)|

+ sup
x∈[r,s]

|E∗(α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x))|

+ sup
x∈[r,s]

|E∗(α̂−(−x+X T
f (X T X )−1X T

ε
∗)− α̂

−(−x))|

+ sup
x∈[r,s]

|α̂(x)− α̃(x)− F
′
(x)√
n

n

∑
i=1

εi|+ sup
x∈[r,s]

|α̂−(−x)− α̃
−(−x)− F

′
(−x)√

n

n

∑
i=1

εi|

+
√

nE∗(X T
f (X T X )−1X T

ε
∗)2× sup

x∈R
|F
′′
(x)|

(C.1.66)

here η1,η2 are two arbitrary real numbers. From lemma C.1.2, for any given ξ > 0, ∃1/2 >

δ > 0 such that for sufficiently large n, P
(

supx,y∈[−m,m],|x−y|<δ |α̂(x)− α̂(y)| ≤ ξ

)
> 1−ξ . If

supx,y∈[−m,m],|x−y|<δ |α̂(x)− α̂(y)| ≤ ξ , then ∀x ∈ [r,s],

|E∗(α̂−(−x+X T
f (X T X )−1X T

ε
∗)− α̂

−(−x))|

and |E∗(α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x))|

≤
√

nP∗(|X T
f (X T X )−1X T

ε
∗|> δ )+ξ ≤ ξ +

σ̂2
√

nδ 2 X T
f

(
X T X

n

)−1

X f

(C.1.67)

σ̂2 is defined in(4.14). Also notice that

√
nE∗(X T

f (X T X )−1X T
ε
∗)2 =

σ̂2
√

n
X T

f

(
X T X

n

)−1

X f (C.1.68)

Since Eσ̂2 ≤ 4σ2 + 4σ2M2

n ‖(X T X
n )−1‖2 + 2Eλ̂ 2 = O(1), combine with (C.1.39) we

have ∀ξ > 0,

P

(
sup

x∈[r,s]
|S (x)−

(
M̃m(

x+m
2m

)− M̃−m (
−x+m

2m
)

)
|> ξ

)
→ 0 (C.1.69)
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Finally, from (C.1.3) and corollary 3, ∀δ > 0,

sup
x∈[r,s],y∈R

|P(S (x)≤ y)−Φ

(
y√

U (x)

)
|

≤ sup
x∈[r,s]

P
(
|S (x)−M̃m(

x+m
2m

)−M̃−
m (
−x+m

2m
)|> δ

)

+3 sup
x∈[r,s],y∈R

|P
(

M̃m(
x+m

2m
)−M̃−

m (
−x+m

2m
)≤ y

)
−Φ

(
y√

U (x)

)
|

+ sup
x∈[r,s],y∈R

(
Φ

(
y+δ√
U (x)

)
−Φ

(
y−δ√
U (x)

))
(C.1.70)

From assumption 4, we prove (4.20).

C.2 Proofs of theorems in section 4.6

The Wasserstein distance can be used to quantify the difference between two probability

distributions. We refer chapter 6, Villani [2009] for a detail introduction. Lemma C.2.1 below

bounds the Wasserstein distance between the distribution T (x) = 1
n ∑

n
i=1 1εi−ε≤x and F(x) =

P(ε1 ≤ x), x ∈ R. Here ε = 1
n ∑

n
i=1 εi.

Lemma C.2.1. Suppose assumption 1 and 2, then

lim
n→∞

inf
X ,Y

E∗|X−Y |2 = 0 almost surely (C.2.1)

The infimum is taken over all random variables (X ,Y ) ∈ R2 such that P∗(X ≤ x) = T (x) and

P∗(Y ≤ x) = F(x).

Proof. From assumption 1, Gilvenko-Cantelli theorem, and the strong law of large number(e.g.,
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theorem 1.13 in Shao [2003]),

lim
n→∞

sup
x∈R
|T (x)−F(x)| ≤ lim

n→∞
sup
x∈R
|1
n

n

∑
i=1

1εi≤x−F(x)|

+ lim
n→∞

sup
x∈R
|F(x+ ε)−F(x)|= 0 almost surely

(C.2.2)

From the strong law of large number, limn→∞

∫
R x2dT = limn→∞

1
n ∑

n
i=1 ε2

i − limn→∞ ε
2 = σ2

almost surely. Choose x0 = 0 in definition 6.8, Villani [2009]. From proposition 5.7, page 112 in

Çinlar [2011] and theorem 6.9, Villani [2009], we prove (C.2.1).

Recall (4.27) of the paper, the stochastic process Ŝ (x) is defined as

M̂ (x) =
√

nF̂

(
x+X T

f (X T X )−1X T e∗− 1
n

n

∑
j=1

e∗j

)
− 1√

n

n

∑
j=1

1e∗j≤x

and Ŝ (x) = M̂ (x)−M̂−(−x)

(C.2.3)

Lemma C.2.2 ensures that Ŝ (defined in (4.27) of the paper) has the same asymptotic

distribution as S (defined in (4.19), also see theorem 9).

Lemma C.2.2. Suppose assumption 1 to 4 hold true. Then for any given 0 < r < s < ∞,ξ > 0,

lim
n→∞

P

(
sup

x∈[r,s]
sup
y∈R
|P∗
(
Ŝ (x)≤ y

)
−Φ

(
y√

U (x)

)
|> ξ

)
= 0 (C.2.4)

here Φ is the cumulative distribution function of a standard normal random variable

Recall that Φ−1(α) is the α−th quantile of Φ. For any given 0 < r < s < ∞ and ξ > 0,
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lemma C.2.2 implies with probability tending to 1, ∀2ξ < 1− γ < 1−ξ ,r ≤ x≤ s,

P∗
(
Ŝ (x)≤

√
U (x)×Φ

−1(1− γ−2ξ )
)
− (1− γ−2ξ )≤ ξ

⇒ d∗1−γ(x)≥
√

U (x)×Φ
−1(1− γ−2ξ )

P∗
(
Ŝ (x)≤

√
U (x)×Φ

−1(1− γ +ξ )
)
− (1− γ +ξ )≥−ξ

⇒ d∗1−γ(x)≤
√

U (x)×Φ
−1(1− γ +ξ )

(C.2.5)

see (4.28) for the definition of d∗1−γ
(x).

Suppose the integer m > s+1. In (C.1.61) we show the stochastic process M̃m
(x+m

2m

)
−

M̃−m
(−x+m

2m

)
(defined in (C.1.1)) has an asymptotic distribution Φ

(
·/
√

U (x)
)

. So the remaining

problem involves approximating the distribution of Ŝ (x) by the distribution of M̃m
(x+m

2m

)
−

M̃−m
(−x+m

2m

)
.

Proof of lemma C.2.2. From lemma C.2.1, almost surely for ∀ 1/4 > δ > 0, ∃ N > 0 such

that ∀ n≥ N, there exists a random vector (e†
1,ε

†
1 ) ∈ R2 such that P∗(e†

1 ≤ x) = T (x) (defined

in lemma C.2.1) and P∗(ε†
1 ≤ x) = F(x). Moreover, E∗(ε†

1 − e†
1)

2 < δ 9. We generate n i.i.d.

observations (e†
i ,ε

†
i ), i = 1,2, ...,n and define e† = (e†

1, ...,e
†
n)

T as well as ε† = (ε†
1 , ...,ε

†
n )

T .

Suppose m > s+1 and define

M̃ †
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T e†− 1
n

n

∑
j=1

e†
j

)

− 1√
n

n

∑
j=1

(1e†
j≤xm
−T (xm))

M̃†
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T
ε

†− 1
n

n

∑
j=1

ε
†
j

)

− 1√
n

n

∑
j=1

(1
ε

†
j≤xm
−F(xm))

(C.2.6)

here x ∈ [0,1], xm = 2mx−m. With this definition we have P∗(M̃†
m(x)≤ y) = P(M̃m(x)≤ y) for
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any x,y. For any given 1/4 > ξ > 0 and x ∈ (1
2 ,1],

P∗
(
|(M̃ †

m(x)−M̃ †−
m (1− x))− (M̃†

m(x)− M̃†−
m (1− x))|> 3ξ

)
≤ P∗

(√
n|F

′
(xm)−F

′
(−xm)|× |X T

f (X T X )−1X T (ε†− e†)|> ξ

)
+P∗

(
|F
′
(xm)−F

′
(−xm)|× |

1√
n

n

∑
i=1

(ε†
i − e†

i )|> ξ

)

+P∗(
1√
n
|

n

∑
i=1

1−xm≤e†
i≤xm
−T (xm)+T−(−xm)−1−xm≤ε

†
i ≤xm

+F(xm)−F(−xm)|> ξ )

≤
(F
′
(xm)−F

′
(−xm))

2E∗(ε†
1 − e†

1)
2

ξ 2 ×

(
X T

f

(
X T X

n

)−1

X f +1

)

+
4

ξ 2 E∗(1e†
1≤xm
−T (xm)−1

ε
†
1≤xm

+F(xm))
2

+
4

ξ 2 E∗(1e†
1<−xm

−T−(−xm)−1
ε

†
1<−xm

+F(−xm))
2

(C.2.7)

Notice that

E∗(1e†
1≤xm
−T (xm)−1

ε
†
1≤xm

+F(xm))
2 ≤ 2E∗(1e†

1≤xm
−1

ε
†
1≤xm

)2

+2sup
x∈R
|T (x)−F(x)|2

(C.2.8)

from (C.1.3),

E∗|1e†
1≤xm
−1

ε
†
1≤xm
| ≤ P∗(|e†

1− ε
†
1 |> ξ )+F(xm +ξ )−F(xm−ξ )

≤ δ 9

ξ 2 + sup
x∈R

(F(x)−F(x−2ξ ))
(C.2.9)
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From dominated convergence theorem

E∗(1e†
1<−xm

−T−(−xm)−1
ε

†
1<−xm

+F(−xm))
2

= lim
h→∞

E∗(1e†
1≤−xm− 1

h
−T (−xm−

1
h
)−1

ε
†
1≤−xm− 1

h
+F(−xm−

1
h
))2

≤ 2δ 9

ξ 2 +2sup
x∈R

(F(x)−F(x−2ξ ))+2sup
x∈R
|T (x)−F(x)|2

(C.2.10)

therefore, from (C.1.3), assumption 4 and (C.1.61)

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|

≤ sup
x∈[ r+m

2m , s+m
2m ],y∈R

P∗
(
|(M̃ †

m(x)−M̃ †−
m (1− x))− (M̃†

m(x)− M̃†−
m (1− x))|> 3ξ

)
+3 sup

x∈[ r+m
2m , s+m

2m ],y∈R
|P∗
(

M̃†
m(x)− M̃†−

m (1− x)≤ y
)
−Φ

(
y√

U (xm)

)
|

+ sup
x∈[ r+m

2m , s+m
2m ],y∈R

(
Φ

(
y+3ξ√
U (xm)

)
−Φ

(
y−3ξ√
U (xm)

))

⇒ lim
n→∞

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|

= 0 almost surely

(C.2.11)

Define a random variable (e∗1,e
†
1) ∈ R2 which has probability mass 1/n on (ε̂i,εi− ε), i =

1,2, ...,n. We generate independent random variables (e∗i ,e
†
i ), i = 1,2, ...,n having the same

distribution as (e∗1,e
†
1). Define e∗ = (e∗1, ...,e

∗
n)

T ,e† = (e†
1, ...,e

†
n)

T . With this definition e†
1 still

has the cumulative distribution function T (x). Define the stochastic process

M̃ ∗
m(x) =

√
nF

′
(xm)

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)
− 1√

n

n

∑
i=1

(1e∗i≤xm− F̂(xm)) (C.2.12)

here xm = 2mx−m. This process uses the same mechanism for generating residuals e∗ as in
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RBUG(defined in algorithm 5). We have

P∗
(
|M̃ ∗

m(x)−M̃ ∗−
m (1− x)−M̃ †

m(x)+M̃ †−
m (1− x)|> 3ξ

)
≤
|F ′(xm)−F

′
(−xm)|2E∗(e∗1− e†

1)
2

ξ 2 ×

(
X T

f

(
X T X

n

)−1

X f +1

)

+
4

ξ 2 E∗(1e∗1≤xm− F̂(xm)−1e†
1≤xm

+T (xm))
2

+
4

ξ 2 E∗(1e∗1<−xm− F̂−(−xm)−1e†
1<−xm

+T−(−xm))
2

(C.2.13)

Recall X n =
1
n ∑

n
i=1 Xi,

E∗(e∗1− e†
1)

2 =
1
n

n

∑
i=1

(ε̂i− εi + ε)2 =
1
n

n

∑
i=1

(
(Xi−X n)

T (β̂ −β )
)2

E
(
(Xi−X n)

T (β̂ −β )
)2

= σ
2(Xi−X n)

T (X T X )−1(Xi−X n)

(C.2.14)

Assumption 3 implies E∗(e∗1− e†
1)

2 = Op(1/n). From assumption 3 and Cauchy inequality

F̂(x) =
1
n

n

∑
i=1

1
εi−ε≤x+(Xi−X n)T (β̂−β )

≤ T (x+2M‖β̂ −β‖2)

and F̂(x)≥ T (x−2M‖β̂ −β‖2)

(C.2.15)

therefore
sup
x∈R
|F̂(x)−T (x)| ≤ sup

x∈R
|T (x+2M‖β̂ −β‖2)−T (x)|

+sup
x∈R
|T (x−2M‖β̂ −β‖2)−T (x)|

≤ 4sup
x∈R
|F(x)−T (x)|+2sup

x∈R
|F(x+2M‖β̂ −β‖2)−F(x)|

+2sup
x∈R
|F(x−2M‖β̂ −β‖2)−F(x)|

(C.2.16)
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Since

E∗(1e∗1≤xm− F̂(xm)−1e†
1≤xm

+T (xm))
2

≤
2E∗(e∗1− e†

1)
2

ξ 2 +2sup
x∈R

(T (x+ξ )−T (x−ξ ))+2sup
x∈R
|F̂(x)−T (x)|2

(C.2.17)

The dominated convergence theorem implies

E∗(1e∗1<−xm− F̂−(−xm)−1e†
1<−xm

+T−(−xm))
2

= lim
h→∞

E∗(1e∗1≤−xm− 1
h
− F̂(−xm−

1
h
)−1e†

1≤−xm− 1
h
+T (−xm−

1
h
))2

≤
2E∗(e∗1− e†

1)
2

ξ 2 +2sup
x∈R

(T (x+ξ )−T (x−ξ ))+2sup
x∈R
|F̂(x)−T (x)|2

(C.2.18)

and

sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|

≤ sup
x∈[ r+m

2m , s+m
2m ],y∈R

P∗
(
|(M̃ ∗

m(x)−M̃ ∗−
m (1− x))− (M̃ †

m(x)−M̃ †−
m (1− x))|> 3ξ

)
+3 sup

x∈[ r+m
2m , s+m

2m ],y∈R
|P∗
(
M̃ †

m(x)−M̃ †−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|

+ sup
x∈[ r+m

2m , s+m
2m ],y∈R

(
Φ

(
y+3ξ√
U (xm)

)
−Φ

(
y−3ξ√
U (xm)

))
(C.2.19)

(C.2.2), (C.2.11), and (C.2.16) imply for ∀ξ > 0

lim
n→∞

P( sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|> ξ ) = 0

(C.2.20)

Finally, we adopt the notations in lemma C.1.2. Recall (4.27) (or (C.2.3) in this section), define
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xm = 2mx−m

sup
x∈[0,1]

|M̂ (xm)−M̃ ∗
m(x)| ≤

√
nsupx∈R |F

′′
(x)|

2

×

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)2

+ sup
x∈[0,1]

|α̂(xm +X T
f (X T X )−1X T e∗− 1

n

n

∑
i=1

e∗i )− α̂(xm)|

(C.2.21)

and

sup
x∈[r,s]

|Ŝ (x)−
(

M̃ ∗
m(

x+m
2m

)−M̃ ∗−
m (
−x+m

2m
)

)
| ≤ sup

x∈[r,s]
|M̂ (x)−M̃ ∗

m(
x+m

2m
)|

+ sup
x∈[r,s]

lim
h→∞
|M̂ (−x− 1

h
)− M̃∗m(

−x+m
2m

− 1
2hm

)| ≤ 2 sup
x∈[0,1]

|M̂ (xm)−M̃ ∗
m(x)|

(C.2.22)

∀ξ > 0, (C.1.3) implies

sup
x∈[r,s],y∈R

|P∗
(
Ŝ (x)≤ y

)
−Φ

(
y√

U (x)

)
| ≤ P∗

(
sup

x∈[0,1]
|M̂ (xm)−M̃ ∗

m(x)|> ξ

)

+ sup
x∈[r,s],y∈R

(
Φ

(
y+2ξ√

U (x)

)
−Φ

(
y−2ξ√

U (x)

))

+3 sup
x∈[ r+m

2m , s+m
2m ],y∈R

|P∗
(
M̃ ∗

m(x)−M̃ ∗−
m (1− x)≤ y

)
−Φ

(
y√

U (xm)

)
|

(C.2.23)

From lemma C.1.2, for any given ξ > 0, ∃1
4 > ξ2 > 0,N > 0 such that for any n≥ N,

P
(

supx,y∈[−m−1,m+1],|x−y|<ξ2
|α̂(x)− α̂(y)|> ξ

4

)
< ξ . If
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supx,y∈[−m−1,m+1],|x−y|<ξ2
|α̂(x)− α̂(y)| ≤ ξ

4 , then

P∗
(

sup
x∈[0,1]

|M̂ (xm)−M̃ ∗
m(x)|> ξ

)

≤ P∗
√nsupx∈R |F

′′
(x)|

2
×

(
X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i

)2

>
ξ

2


+P∗

(
|X T

f (X T X )−1X T e∗− 1
n

n

∑
i=1

e∗i | ≥ ξ2

)

≤

(√
nsupx∈R |F

′′
(x)|

ξ
+

1
ξ 2

2

)
E∗
(

X T
f (X T X )−1X T e∗− 1

n

n

∑
i=1

e∗i

)2

(C.2.24)

Since E∗
(
X T

f (X T X )−1X T e∗− 1
n ∑

n
i=1 e∗i

)2
≤ 2σ̂2

n

(
X T

f (X T X /n)−1X f +1
)

.

From (C.2.19) we prove (C.2.4).

In lemma C.2.3, we define

G∗(x) = P∗
(
|Y ∗f −X T

f β̂
∗| ≤ x

)
, x ∈ R (C.2.25)

See algorithm 5 for the meaning of Y ∗f and β̂ ∗

Lemma C.2.3. Suppose assumption 1 to 4. Then ∀−∞ < r < s < ∞,ζ > 0, ∃δ > 0 such that

limsup
n→∞

P

(
sup

x∈[r,s]

√
n
(

G∗(x)−G∗(x− δ√
n
)

)
≥ ζ

)
< ζ (C.2.26)

Proof. We adopt the notations in lemma C.1.2 and recall Y ∗f = X T
f β̂ +ξ ∗. By conditioning on
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ε∗,

G∗(x) = E∗P∗
(
|ξ ∗−X T

f (X T X )−1X T
ε
∗| ≤ x

∣∣∣ε∗)
= E∗F̂(x+X T

f (X T X )−1X T
ε
∗)−E∗F̂−(−x+X T

f (X T X )−1X T
ε
∗)

= (F(x)−F(−x))+E∗
(
F(x+X T

f (X T X )−1X T
ε
∗)−F(x)

)
−E∗

(
F(−x+X T

f (X T X )−1X T
ε
∗)−F(−x)

)
+

(α̂(x)− α̂−(−x))√
n

+
1√
n

E∗
(
α̂(x+X T

f (X T X )−1X T
ε
∗)− α̂(x)

)
− 1√

n
E∗
(
α̂
−(−x+X T

f (X T X )−1X T
ε
∗)− α̂

−(−x)
)

(C.2.27)

Therefore, for ∀1
4 > δ > 0,

sup
x∈[r,s]

√
n
(

G∗(x)−G∗(x− δ√
n
)

)
≤ 2δ sup

x∈[−s−1,s+1]
|F
′
(x)|

+
2supx∈R |F

′′
(x)|σ̂2

√
n

(
X T

f

(
X T X

n

)−1

X f

)

+2 sup
x,y∈[−s−1,s+1],|x−y|≤ δ√

n

|α̂(x)− α̂(y)|

+4 sup
x∈[−s−1,s+1]

E∗|α̂(x+X T
f (X T X )−1X T

ε
∗)− α̂(x)|

(C.2.28)

From lemma C.1.2 and (C.1.67), we prove (C.2.26).

Suppose assumption 1 to 4, from (C.2.27), (C.2.28), (C.2.16), and (C.2.2),

sup
x>0
|G∗(x)− (F(x)−F(−x))| ≤ 2sup

x∈R
|F̂(x)−F(x)|

+
supx∈R |F

′′
(x)|σ̂2

n

(
X T

f

(
X T X

n

)−1

X f

) (C.2.29)

which implies ∀ξ > 0, limn→∞ P(supx>0 |G∗(x)− (F(x)−F(−x))|> ξ )= 0. If supx>0 |G∗(x)−
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(F(x)−F(−x))| ≤ ξ , by defining c1−α such that F(c1−α)−F(−c1−α) = 1−α ,

G∗(c1−α+2ξ )≥ 1−α +ξ , G∗(c1−α−2ξ )≤ 1−α−ξ

⇒ c1−α−2ξ ≤ c∗1−α ≤ c1−α+2ξ , ∀2ξ < α < 1−2ξ

(C.2.30)

proof of theorem 10. Recall Φ−1(α) is the α−th quantile of the standard normal distribution.

We choose r,s in lemma C.2.2 as c(1−α)/4,c1−α/4, here F(cz)−F(−cz) = z, ∀z ∈ (0,1). From

(C.2.5), (C.2.29) and (C.2.30), for sufficiently small ξ > 0, with probability tending to 1,

d∗1−γ(c
∗
1−α)≤ sup

x∈[c1−α−2ξ ,c1−α+2ξ ]

d∗1−γ(x)

≤ sup
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ +ξ )

and d∗1−γ(c
∗
1−α)

≥ inf
x∈[c1−α−2ξ ,c1−α+2ξ ]

d∗1−γ(x)≥ inf
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ−2ξ )

(C.2.31)

Define
d = sup

x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ +ξ )

and d = inf
x∈[c1−α−2ξ ,c1−α+2ξ ]

√
U (x)×Φ

−1(1− γ−2ξ )

(C.2.32)

From (C.2.29), with probability tending to 1,

c∗(1−α,1− γ)≤ c∗
1−α+ d√

n

≤ c
1−α+ d√

n+2ξ
and c∗(1−α,1− γ)≥ c∗

1−α+ d√
n

≥ c1−α+ d√
n−2ξ

(C.2.33)

Define c = c
1−α+ d√

n+2ξ
, and c = c1−α+ d√

n−2ξ
. From assumption 1 and 4, cα is continuous in
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α ∈ (0,1); and U (x) is continuous in R. Define S as in (4.19). Then

√
n
(

P∗
(
|Y f −X T

f β̂ | ≤ c∗(1−α,1− γ)
)
− (1−α)

)
= S (c1−α)+(S (c∗(1−α,1− γ))−S (c1−α))

+
√

n

(
G∗(c∗(1−α,1− γ))− (1−α +

d∗1−γ
(c∗1−α

)
√

n
)

)

+
√

U (c1−α)×Φ
−1(1− γ)+

(
d∗1−γ(c

∗
1−α)−

√
U (c1−α)×Φ

−1(1− γ)
)

(C.2.34)

we choose r = c and s = c in lemma C.2.3. With probability tending to 1

|
√

n

(
G∗(c∗(1−α,1− γ))− (1−α +

d∗1−γ
(c∗1−α

)
√

n
)

)
|

≤
√

n
(

G∗(c∗(1−α,1− γ))−G∗
(

c∗(1−α,1− γ)− 1
n

))
< ξ

(C.2.35)

We choose a positive integer m> c+1. From (C.1.69) and lemma C.1.1, with probability tending

to 1,

|S (c∗(1−α,1− γ))−S (c1−α)| ≤ sup
x∈[c,c]

|S (x)−S (c1−α)|

≤ 2 sup
x∈[c,c]

|S (x)−
(

M̃m(
x+m

2m
)− M̃−m (

−x+m
2m

)

)
|

+2 sup
y,z∈[0,1],|y−z|≤ c−c

2m

|M̃m(y)− M̃m(z)|

⇒ for ∀ξ > 0, limsup
n→∞

P(|S (c∗(1−α,1− γ))−S (c1−α)|> ξ )< ξ

(C.2.36)

For U is continuous and

|d∗1−γ(c
∗
1−α)−

√
U (c1−α)×Φ

−1(1− γ)|

≤ |d−
√

U (c1−α)Φ
−1(1− γ)|+ |d−

√
U (c1−α)Φ

−1(1− γ)|
(C.2.37)
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with probability tending to 1, we have for ∀ξ > 0,

lim
n→∞

P(|
√

n
(

P∗
(
|Y f −X T

f β̂ | ≤ c∗(1−α,1− γ)
)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ

)
|> ξ ) = 0

(C.2.38)

On one hand, from theorem 9, ∀ξ > 0, we choose Z > 0 such that

Φ

(
Z√

U (c1−α )

)
−Φ

(
− Z√

U (c1−α )

)
> 1−ξ , we have limn→∞ P(|S (c1−α)| ≤ Z)> 1−ξ . On

the other hand, for any given ξ ∈ R,

lim
n→∞

P
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)+ξ ≥ 0
)

= 1−Φ

(
−Φ

−1(1− γ)− ξ√
U (c1−α)

) (C.2.39)

Combine with (C.2.38), we prove theorem 10.

Proof of corollary 2. From theorem 10.1 in Seber and Lee [2003] and assumption 3, define ε̃i

and r̃i as in (4.13) and (4.18), r̃i = ε̃i/(1−hi) with hi = X T
i (X T X )−1Xi, and ∃C > 0 such

that hi ≤C/n for i = 1,2, ...,n. From Cauchy inequality, for sufficiently large n

r̂i =
ε̂i

1−hi
+

1
n

n

∑
j=1

(hi−h j)ε̃ j

(1−hi)(1−h j)

⇒
n

∑
i=1

(r̂i− ε̂i)
2 ≤

n

∑
i=1

2h2
i ε̂2

i
(1−hi)2 +

2
n2

n

∑
i=1

n

∑
j=1

(hi−h j)
2

(1−hi)2(1−h j)2

n

∑
j=1

ε̃
2
j

≤ 4C2

n2

n

∑
i=1

ε̂
2
i +

16C2

n2

n

∑
j=1

ε̃
2
j

⇒ E
n

∑
i=1

(r̂i− ε̂i)
2 ≤ 4C2

n2

n

∑
i=1

Eε̂
2
i +

16C2

n2

n

∑
j=1

Eε̃
2
j

≤ 20C2

n2 × (2nσ
2 +2σ

2
n

∑
i=1

X T
i (X T X )−1Xi)

(C.2.40)

We define a random vector (ε∗1 ,r
∗
1)∈R2 having probability mass 1/n on (ε̂i, r̂i), i= 1,2, ...,n. We

generate i.i.d. random variables (ε∗i ,r
∗
i ), i = 1,2, ...,n and (ε∗f ,ξ

∗) with the same distribution as

191



(ε∗1 ,r
∗
1). We denote ε∗ = (ε∗1 , ...,ε

∗
n )

T and r∗ = (r∗1, ...,r
∗
n)

T . For any given 0 < r < s < ∞,ξ > 0,

we choose δ =C/n3/4 in (C.1.3) with C a constant. Then define

G ∗(x) = P∗
(
|Y ∗f −X T

f β̂
∗| ≤ x

)
, x ∈ R (C.2.41)

here we choose τ̂ = r̂ in algorithm 5. In other words, G ∗ plays the same role as G∗, and the only

difference is the mechanism for generating bootstrapped random variables.

sup
x∈[r,s]

|G∗(x)−G ∗(x)|

≤ P∗
(
| |ε∗f −X T

f (X T X )−1X T
ε
∗|− |r∗f −X T

f (X T X )−1X T r∗| |> C
n3/4

)
+ sup

x∈[r,s]
P∗
(

x− C
n3/4 < |ε∗f −X T

f (X T X )−1X T
ε
∗| ≤ x+

C
n3/4

)
≤ 4
√

n
C2

n

∑
i=1

(ε̂i− r̂i)
2

+
4X T

f (X T X /n)−1X f

C2√n
×

n

∑
i=1

(ε̂i− r̂i)
2 + sup

x∈[r,s]

(
G∗(x+

C
n3/4 )−G∗(x− C

n3/4 )

)
(C.2.42)

and for sufficiently large n,

sup
x≥r
|G ∗(x)− (F(x)−F(−x))|

≤ 4
√

n
C2

n

∑
i=1

(ε̂i− r̂i)
2 +

4X T
f (X T X /n)−1X f

C2√n
×

n

∑
i=1

(ε̂i− r̂i)
2

+3sup
x>0
|G∗(x)− (F(x)−F(−x))|+ sup

x≥r

(
F(x+

C
n3/4 )−F(x− C

n3/4 )

)
+sup

x≥r

(
F
(
−x+

C
n3/4

)
−F

(
−x− C

n3/4

))
(C.2.43)

Lemma C.2.3 and (C.2.29) imply limn→∞ P
(√

nsupx∈[r,s] |G∗(x)−G ∗(x)|> ξ

)
= 0; and

limn→∞ P
(
supx≥r |G ∗(x)− (F(x)−F(−x))|> ξ

)
= 0.
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We define F̂ (x) = 1
n ∑

n
i=1 1r̂i≤x, and α̂(x) as in lemma C.1.2. For any given −∞ < r <

s < ∞,ξ > 0, and sufficiently large n, lemma C.1.2 implies

sup
x∈[r,s]

|F̂ (x)− F̂(x)| ≤ 1
n

n

∑
i=1

1|r̂i−ε̂i|> C
n3/4

+ sup
x∈[r,s]

1
n

n

∑
i=1

1x− C
n3/4 <ε̂i≤x+ C

n3/4

⇒ P

(
√

n sup
x∈[r,s]

|F̂ (x)− F̂(x)|> ξ

)
≤ 2√

nξ

n

∑
i=1

P
(
|ε̂i− r̂i|>

C
n3/4

)

+P

(
sup

x∈[r−1,s+1]
|α̂(x)− α̂(x− 2C

n3/4 )|>
ξ

4

)

+P

(
sup

x∈[r−1,s+1]
F
′
(x)× 2C

n1/4 >
ξ

4

)
⇒ lim

n→∞
P

(
√

n sup
x∈[r,s]

|F̂ (x)− F̂(x)|> ξ

)
= 0

(C.2.44)

Here C is an arbitrary large positive constant.

We define M̂ and Ŝ as in (4.27); define Λ(z) = X T
f (X T X )−1X T z− 1

n ∑
n
i=1 zi,∀z =

(z1, ...,zn)
T ∈ Rn; and define

N̂ (x) =
√

nF̂ (x+Λ(u∗))− 1√
n

n

∑
i=1

1u∗i≤x, T̂ (x) = N̂ (x)− N̂ −(−x) (C.2.45)

Here u∗ = (u∗1, ...,u
∗
n)

T are i.i.d. random variables generated by drawing from r̂ with replacement.
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For any given 0 < r < s < ∞ and ξ > 0,

P∗
(

sup
x∈[r,s]

|Ŝ (x)− T̂ (x)|> 4ξ

)
≤ P∗

(
sup

x∈[r,s]
|M̂ (x)− N̂ (x)|> 2ξ

)

+P∗
(

sup
x∈[r,s]

|M̂−(−x)− N̂ −(−x)|> 2ξ

)

≤ P∗
(

sup
x∈[r,s]

√
n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)

+P∗
(

sup
x∈[r,s]

| 1√
n

n

∑
i=1

1e∗i≤x−
1√
n

n

∑
i=1

1u∗i≤x|> ξ

)

+P∗
(

sup
x∈[r/2,s+1]

√
n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)

+P∗
(

sup
x∈[r/2,s+1]

| 1√
n

n

∑
i=1

1e∗i≤−x−
1√
n

n

∑
i=1

1u∗i≤−x|> ξ

)

(C.2.46)

If supx∈[−s−2,s+2]
√

n|F̂ (x)− F̂(x)| < ξ/4 and supx,y∈[−s−2,s+2],|x−y|<δ |α̂(x)− α̂(y)| ≤ ξ/8
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with 0 < δ < 1/8,

P∗
(

sup
x∈[r,s]

√
n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)
,

P∗
(

sup
x∈[r/2,s+1]

√
n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)

≤ P∗
(

sup
x∈[−s−1,s+1]

√
n|F̂(x+Λ(ε∗))− F̂(x+Λ(u∗))|> ξ/2

)

+P∗
(

sup
x∈[−s−1,s+1]

√
n|F̂(x+Λ(u∗))− F̂ (x+Λ(u∗))|> ξ/2

)

≤ P∗
(

sup
x∈[−s−1,s+1]

|α̂(x+Λ(ε∗))− α̂(x+Λ(u∗))|> ξ/4

)

+P∗
(

sup
x∈[−s−1,s+1]

√
n|F(x+Λ(ε∗))−F(x+Λ(u∗))|> ξ/4

)

+P∗ (|Λ(u∗)|> 1)≤ 2P∗(|Λ(ε∗)|> δ/4)+3P∗(|Λ(u∗)|> δ/4)

+P∗
(

sup
x∈[−s−2,s+2]

√
n|F

′
(x)|× |Λ(ε∗)−Λ(u∗)|> ξ/4

)

(C.2.47)

For

E∗Λ(ε∗)2 ≤ 2σ̂2

n

(
X T

f

(
X T X

n

)−1

X f +1

)

and E∗(Λ(u∗)−Λ(ε∗))2 ≤ 2
n

(
X T

f

(
X T X

n

)−1

X f +1

)
× 1

n

n

∑
i=1

(ε̂i− r̂i)
2

(C.2.48)

(C.1.5), (C.2.40), (C.2.44) and lemma C.1.2 imply

limn→∞ P
(

P∗
(

supx∈[r,s]
√

n|F̂(x+Λ(ε∗))− F̂ (x+Λ(u∗))|> ξ

)
> ξ

)
= 0;

and limn→∞ P
(

P∗
(

supx∈[r/2,s+1]
√

n|F̂(−x+Λ(ε∗))− F̂ (−x+Λ(u∗))|> ξ

)
> ξ

)
= 0. On
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the other hand, we define α̃∗ as in lemma C.1.2; from (C.1.3), for any 0 < δ < 1/4,

P∗
(

sup
x∈[r,s]

| 1√
n

n

∑
i=1

1e∗i≤x−
1√
n

n

∑
i=1

1u∗i≤x|> ξ

)
,

P∗
(

sup
x∈[r/2,s+1]

| 1√
n

n

∑
i=1

1e∗i≤−x−
1√
n

n

∑
i=1

1u∗i≤−x|> ξ

)

≤ P∗
(

1√
n

n

∑
i=1

1|e∗i−u∗i |>
δ√
n
> ξ/2

)

+P∗
(

sup
x∈[−s−1,s+1]

1√
n

n

∑
i=1

1x− δ√
n<e∗i≤x+ δ√

n
> ξ/2

)

≤ 2
√

n
ξ

P∗
(
|e∗1−u∗1|>

δ√
n

)
+P∗

(
sup

x∈[−s−2,s+2]
|α̃∗(x)− α̃

∗(x− 2δ√
n
)|> ξ/4

)

+P∗
(

sup
x∈[−s−1,s+1]

√
n|F̂(x)− F̂(x− 2δ√

n
)|> ξ/4

)

(C.2.49)

Since P∗
(
|e∗1−u∗1|>

δ√
n

)
≤ ∑

n
i=1(ε̂i−r̂i)

2

δ 2 , (C.2.40) and lemma C.1.2 imply

limn→∞ P
(

P∗
(

supx∈[r,s] | 1√
n ∑

n
i=1 1e∗i≤x− 1√

n ∑
n
i=1 1u∗i≤x|> ξ

)
> ξ

)
= 0;

and limn→∞ P
(

P∗
(

supx∈[r/2,s+1] | 1√
n ∑

n
i=1 1e∗i≤−x− 1√

n ∑
n
i=1 1u∗i≤−x|> ξ

)
> ξ

)
= 0. In partic-

ular, ∀ξ > 0,

lim
n→∞

P

(
P∗
(

sup
x∈[r,s]

|Ŝ (x)− T̂ (x)|> ξ

)
> ξ

)
= 0 (C.2.50)

For ∀ξ > 0,

sup
x∈[r,s],y∈R

|P∗
(
T̂ (x)≤ y

)
−Φ

(
y√

U (x)

)
| ≤ P∗

(
sup

x∈[r,s]
|Ŝ (x)− T̂ (x)|> ξ

)

+3 sup
x∈[r,s],y∈R

|P∗
(
Ŝ (x)≤ y

)
−Φ

(
y√

U (x)

)
|

+ sup
x∈[r,s],y∈R

(
Φ

(
y+ξ√
U (x)

)
−Φ

(
y−ξ√
U (x)

)) (C.2.51)

Lemma C.2.2 implies limn→∞ P
(

supx∈[r,s],y∈R |P∗
(
T̂ (x)≤ y

)
−Φ

(
y√

U (x)

)
|> ξ

)
= 0.
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Suppose 1
8 min(α,1−α)> ξ > 0. From (C.2.5) and (C.2.51), with probability tending to

1, ∀2ξ < 1−γ < 1−ξ ,r≤ x≤ s,
√

U (x)×Φ−1(1−γ−2ξ )≤D∗1−γ
(x)≤

√
U (x)×Φ−1(1−

γ+ξ ). We define cz,z∈ (0,1) and d,d as in the proof of theorem 10. We choose r = c(1−α)/8 > 0

in (C.2.43), with probability tending to 1, cτ−2ξ ≤C∗τ ≤ cτ+ξ ,∀(1−α)/8+2ξ < τ < 1−2ξ .

In particular, this implies c1−α−2ξ ≤C∗1−α
≤ c1−α+ξ , and d ≤ D∗1−γ

(C∗1−α
) ≤ d. We choose

r = c(1−α)/8 and s = c1−α+4ξ in (C.2.42) and lemma C.2.3, C∗(1−α,1− γ) ≤ C∗
1−α+ d√

n

≤

c∗
1−α+ d+2ξ√

n

; and C∗(1−α,1− γ) ≥ C∗
1−α+ d√

n

≥ c∗
1−α+ d−3ξ√

n

. We define S and U as in (4.19)

and (4.15), since

|
√

n
(

P∗
(
|Y f −X T

f β̂ | ≤C∗(1−α,1− γ)
)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

≤ |
√

n

(
P∗
(
|Y f −X T

f β̂ | ≤ c∗
1−α+ d+2ξ√

n

)
− (1−α)

)

−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

+|
√

n
(

P∗
(
|Y f −X T

f β̂ | ≤ c∗
1−α+ d−3ξ√

n

)
− (1−α)

)
−
(
S (c1−α)+

√
U (c1−α)×Φ

−1(1− γ)
)
|

(C.2.52)

Replace c∗(1−α,1− γ) in (C.2.34) to (C.2.36) by c∗
1−α+ d+2ξ√

n

and c∗
1−α+ d−3ξ√

n

, and set

ξ → 0, we prove (4.31).

C.3 Results used in the paper

This paper uses many results from the stochastic process and some results from the

optimal transport. Statisticians may not be familiar with them. To make the paper self-contained,

this section quotes the frequently used theorems from textbooks and papers. However, we cannot

explain the background of each theorem in detail. So we encourage the readers to look through

those materials if possible.
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Lemma C.3.1 (theorem 13.5, Billingsley [1999]). Suppose that

(Xn
t1, ...,X

n
tk)→L (Xt1, ...,Xtk) (C.3.1)

for any points ti; that

X1−X1−δ →L 0 as δ → 0,δ > 0 (C.3.2)

and that for any r ≤ s≤ t, n≥ 1, λ > 0,

P[|Xn
s −Xn

r |∧ |Xn
t −Xn

s | ≥ λ ]≤ 1
λ 4β

[F(t)−F(r)]2α (C.3.3)

where β ≥ 0, α > 1/2 and F is a non-decreasing, continuous function on [0,1]. Then Xn→L X

Lemma C.3.2 (theorem 13.6, Billingsley [1999]). There exists in D(see section 4.4) a random

element with finite-dimensional distributions µt1...tk , provided these distributions are consis-

tent(i.e., satisfy the consistency conditions of Kolmogorov’s existence theorem); provided that,

for t1 ≤ t ≤ t2,

µt1tt2[(u1,u,u2) : |u−u1|∧ |u2−u| ≥ λ ]≤ 1
λ 4β

(F(t2)−F(t1))2α (C.3.4)

where β ≥ 0, α > 1/2, and F is a non-decreasing, continuous function on [0,1]; and provided

that

lim
h→0,h>0

µt,t+h[(u1,u2) : |u2−u1| ≥ ε] = 0, 0≤ t ≤ 1 (C.3.5)

Lemma C.3.3 (theorem 2.3 in Hahn [1977]). Let f be a nonnegative function on [0,1] which is

nondecreasing in a neighborhood of 0. Let X(t) be a stochastic process such that for some r ≥ 1,

E|X(t)−X(s)|r ≤ f (|t− s|). If

∫
0

y−(r+1)/r f 1/r(y)dy < ∞ (C.3.6)
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then there exists a nondecreasing functin φ on [0,1] with φ(0) = 0, which depends only on f ,

and a random variable A such that E|A|r < ∞ and

|X̃(s)− X̃(t)| ≤ Aφ(|t− s|) (C.3.7)

Moreover, ‖A‖r is bounded above by a constant depending only on f and φ . Here X̃ is a

separable version of X.

Lemma C.3.4 (3.8, page 348 in Jacod and Shiryaev [2003]). Assume that Xn→L X and that

P(X ∈C) = 1, where C is the continuity set of the function h : E→ E
′
. Then

i. If E
′
= R and h is bounded, then Eh(Xn)→ Eh(X);

ii. If E
′
is Polish, then h(Xn)→L h(X).

Lemma C.3.5 (theorem 3.1 in Ranga Rao [1962]). Let A be a class of continuous functions

possessing the following properties: 1. A is uniformly bounded, i.e., ∃ a constant M > 0 such

that | f (x)| ≤M for all f ∈A and all x; 2. A is equi-continuous. If µn,µ satisfies µn→L µ ,

then

lim
n→∞

sup
f∈A
|
∫

f dµn−
∫

f dµ|= 0 (C.3.8)

Lemma C.3.6 (theorem 6.2.1 in Koul [2002]). Suppose that the model Y = X β + ε holds

true. In addition suppose (X T X )−1 exists, maxi=1,...,n X T
i (X T X )−1Xi = o(1) and F has

uniform continuous density f . Suppose β̂ is an estimator of β satisfying

|A−1(β̂ −β )|2 = Op(1) (C.3.9)

then

sup
t∈[0,1]

|W1(t, β̂ )−W1(t,β )−q0(t)
√

n×X
T
n AA−1(β̂ −β )|= op(1) (C.3.10)

here q0(t) = f (F−1(t)), W1(t,s) =
√

n(Hn(F−1(t),s)− t), Hn(y,s) = 1
n ∑

n
i=1 1Yi≤y+X T

i s and

A = (X T X )−1/2. | · |2 is the vector 2 norm in the Euclidean space.
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Lemma C.3.7 (theorem 6.9, Villani [2009]). Let (X ,d) be a Polish space, and p ∈ [1,∞).

Define Pp(X ) as the Borel probability measure on X with finite moments of order p. Then the

Wasserstein distance Wp metrizes the weak convergence. In other words, if (µk)k∈N ⊂ Pp(X )

is a sequence of measures and µ ∈ P(X ) is another Borel probability measure on X , then

the statement µk converges weakly in Pp(X ) to µ and Wp(µk,µ)→ 0 are equivalent. Here

Wp(µk,µ) is the Wasserstein distance(see lemma C.2.1). The weakly convergence in Pp(X )

means ∃x0 ∈X such that

µk→L µ and
∫

d(x0,x)pdµk→
∫

d(x0,x)pdµ (C.3.11)
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