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Abstract 

 

Background:  Determining the complete repertoire of protein structures for all soluble, 

globular proteins in a single organism has been one of the major goals of several structural 

genomics projects in recent years. 

Results:  We report that this goal has nearly been reached for several “minimal organisms”--

parasites or symbionts with reduced genomes--for which over 95% of the soluble, globular 

proteins may now be assigned folds, overall 3-D backbone structures.  We analyze the 

structures of these proteins as they relate to cellular functions, and compare conservation of 

fold usage between functional categories.  We also compare patterns in the conservation of 

folds among minimal organisms and those observed between minimal organisms and other 

bacteria. 

Conclusion:  We find that proteins performing essential cellular functions closely related to 

transcription and translation exhibit a higher degree of conservation in fold usage than 

proteins in other functional categories.  Folds related to transcription and translation 

functional categories were also overrepresented in minimal organisms compared to other 

bacteria.
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Background 

 

 The availability of complete genome sequences opened up a new era in biology, 

providing a global and systems view of the range of genome sizes in different organisms, the 

presence or absence of genes involved in various cellular functions, the genes involved in 

particular cellular functions, and the relative abundance of different gene families.  This new 

global view is creating major new areas of research such as functional genomics [1].  At the 

time of this writing, over 224 prokaryotic genomes and over 22 complete eukaryotic 

genomes have been sequenced [2].  Just as the field of sequence genomics has yielded 

complete genome sequences for a variety of organisms, the field of structural genomics aims 

to provide structures for the complete array of biological macromolecules found in nature, 

[3-7].  The first phase of structural genomics focused only on proteins (not RNAs), and has 

proven to be an efficient means of providing structural information for new protein families 

[8-10]. 

 

 After the first sequencing of a complete genome of Haemophilus influenzae [11], some 

of the earliest subsequent genomes sequenced were from the “minimal organisms” 

Mycoplasma genitalium and M. pneumoniae  [12, 13].  Minimal organisms have been the subject 

of numerous experimental and computational genomic studies because of the possibility of 

identifying the minimal complement of genes necessary for sustaining life [14-16].  Because 

of their small size, organisms with minimal genomes have also been popular for structure 

and function prediction [13, 17-24].  The minimal organisms M. genitalium (~486 protein-

encoding genes) and M. pneumoniae (~690 genes) have also been the focus of structural 

genomics research at the Berkeley Structural Genomics Center [25, 26]. 
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 Other minimal organisms that have been sequenced more recently include 

the aphid symbiont Buchnera aphidicola (~572 genes) [27], the ant symbiont Candidatus 

Blochmannia floridanus (~583 genes) [28], the tsetse fly symbiont Wigglesworthia glossinidia 

brevipalpis (~612 genes) [29], and the Whipple’s disease parasite Tropheryma whipplei (~781 

genes) [30].  Comparative analysis of the first three symbiont genomes and M. genitalium has 

demonstrated that the symbionts are closely related, sharing 313 orthologous genes (51-55% 

of each genome), and that they share 179 genes with M. genitalium [31].  However, a broader 

comparison of all five species, including T. whipplei, indicated significant variability in the 

functional repertoire of proteins in these organisms, suggesting that minimal genomes are 

not the result of a unique reductive evolutionary pathway, but the products of reductive 

evolution in specific environments [32]. 

 

 A recent survey of proteins from 238 complete genomes revealed that fold 

assignments (approximate 3-D backbone structures) can be made for the majority of non-

membrane proteins of minimal organisms [33].  Statistically significant sequence similarity to 

a protein of known structure allows homology (evolutionary relatedness) to be inferred, thus 

enabling the fold of the homologous proteins to be assigned even in cases where the degree 

of sequence similarity is insufficiently high to allow accurate modeling [34].   

  

 Fold assignment of a protein has implications for functional annotation, because the 

link between molecular function and structure is well known.  Todd and colleagues showed 

that while the majority of superfamilies display variation in enzyme function (i.e., molecular 

function), the biochemical mechanisms (as represented by the Enzyme Commission [EC] 
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number) are almost always conserved between proteins with 40% sequence identity or above 

[35].  More recent work has shown that conserved domain combinations, or supradomains, 

are more likely to maintain a conserved molecular function even at lower sequence identity 

[36].  A study in two proteomes (yeast and Escherichia coli) found clear tendencies for fold-

function association across a broad range of molecular functions [37].  The latter study also 

found the fold distributions in the two proteomes surveyed did not vary significantly from 

the average across all sequenced proteomes, although the study was based on fold 

assignments for less than 10% of the total number of proteins. 

 

 We now report that recent efforts in structural biology and structural genomics have 

succeeded in enabling fold assignments for over ~90% of soluble, globular proteins in the 

five minimal organisms described above.  In this report, we survey the classes of protein 

folds found in each organism, and examine the conservation in fold usage of proteins in 

several broad categories of cellular function.  We find that the degree of conservation of fold 

usage varies among cellular functional categories, with the most conserved categories of 

proteins performing essential cellular functions closely related to transcription and 

translation.  Finally, we compare the degree of conservation in cellular functions and fold 

usage among the five minimal organisms and E. coli, a non-minimal organism. 
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Results and Discussion 

 

Near-complete coverage of soluble, globular proteomes of “minimal” organisms 

 

 In Table 1, we show the percentage of proteomes that may be assigned folds for five 

minimal organisms and for E. coli, an example of a well-studied organism that is not 

“minimal.”  For the minimal organisms considered in this study, nearly all proteins 

annotated as soluble and globular may be assigned to a known fold.  The aphid symbiont B. 

floridanus has the highest coverage, at 96% of soluble, globular proteins (431 of 451 proteins).  

58 of the remaining proteins in the proteome (10% of the proteome) have unknown 

structure, but are predicted to have at least one transmembrane helix.  3 additional proteins 

have unknown structure and no predicted transmembrane helices, but 20% or more of their 

residues are in predicted low complexity or coiled coil regions, and thus not easily tractable 

in experimental structural studies.  Overall, the folds of 502 of 583 B. floridanus proteins (86%) 

may be annotated by sequence similarity to a protein of known structure.  Other minimal 

organisms also have high structural coverage:  95% of soluble, globular W. glossinidia proteins, 

94% of soluble, globular B. aphidicola proteins, 87% of soluble, globular M. genitalium proteins, 

and 87% of soluble, globular T. whipplei proteins can reliably be assigned folds.  In contrast, 

only 78% of soluble, globular E. coli proteins can reliably be assigned folds.  The low 

numbers of predicted transmembrane proteins in several of the minimal organisms (e.g., 

only 87 of 572 B. aphidicola proteins) is also notable; previous analyses suggest that some 

transmembrane proteins (e.g., proteins with a role in cell defense or transporters of diverse 

nutritional sources) are less important to intracellular symbiotes than to free-living bacteria 

[27]. 

 6



α/β fold class is the most common category of fold 

 

  For the proteins that could be reliably assigned folds, we examined their structural 

classification in the SCOP database [38].  SCOP is a widely used, manually curated database 

in which protein structures are divided into domains, which are classified in a hierarchy 

indicating different types of structural and evolutionary relationships between the domains.  

Domains classified together in a single “family” or “superfamily” are hypothesized to have a 

common evolutionary origin on the basis of sequence or structural evidence.  Superfamilies 

that share similar secondary structural features and topology, but for which there is little or 

no evidence to suggest a common evolutionary origin, are classified together at the “fold” 

level.  SCOP folds are grouped together in seven major “classes” (all-α, all-β, 

α/β, α+β, multi-domain, membrane, and small), based on common physical characteristics 

such as the predominant type of secondary structure or the order of connection of the 

different secondary structures (Figure 1).  Note that the SCOP “multi-domain” class 

encompasses folds that are comprised of multiple domains that individually would belong to 

different classes; individual domains from multi-domain proteins are not classified in the 

“multi-domain” class.  Although we use the term “fold” to refer to a protein’s overall 3D 

backbone structure, we use the term “SCOP fold” to refer to a specific fold classification 

within the SCOP database. 

 

 The fraction of proteins found in each organism belonging to each of these SCOP 

classes is shown in Figure 2.  Those proteins that could not reliably be assigned folds, and 

those that were assigned a fold based on homology to a protein not yet classified in SCOP, 

are described as “Unsolved” and “Unclassified,” respectively.  For all organisms, the highest 
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proportion of SCOP folds are in the α/β class, and those in the α/β and α+β classes 

together comprise over half of the assigned SCOP folds.  This reflects the observation that 

the α/β class contains some of the most functionally diverse “superfolds” that act as 

scaffolds for a wide array of molecular or chemical functions [39]. 

 

Usage of protein fold classes are conserved for key cellular processes 

 

 In order to analyze how the annotated cellular function of each protein correlates 

with its structure, we examined the “functional role” annotation for each protein as provided 

in the TIGR database [40].  We found that the distribution of proteins among SCOP fold 

classes was highly conserved within some roles and showed much more variability in others. 

 

 Figure 3 shows the fold class distribution of proteins in the “Protein Synthesis” 

functional category across all 6 proteomes.  The fraction of these proteins in each structural 

class shows little variability, with no more than a 4% difference between proteomes.  

Furthermore, the proteins in this functional category comprise a relatively large fraction of 

the proteins in each proteome (99 proteins on average, or 8% of the proteome).   The 

extremely low variability is consistent with the idea that these proteins have been 

fundamental part of cellular biochemistry since early evolution, and are thus essential to any 

organism regardless of its environment. 

 

 In contrast, Figure 4 shows the fold class distribution of proteins in the “Cell 

Envelope” functional category across all 6 proteomes.  This functional category is also highly  

represented in each proteome (73.8 proteins on average), but the proteins show a much 
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higher degree of variation in fold usage.  This category contains the highest proportion of 

unassigned folds, as well as a diverse array of assigned SCOP folds:  for example, 6% and 

4% of domains from W. glossinidia and E. coli cell envelope proteins belong to the all-α 

structural class, while cell envelope proteins from the other proteomes contain few or no all-

α structures.  E. coli also contains a number of solved transmembrane structures, while other 

proteomes contain significant numbers of proteins predicted to be transmembrane proteins 

not detectably homologous to any protein with a known 3D structure.  M. genitalium and T. 

whipplei contain the largest fractions of cell envelope proteins that could not be reliably 

assigned a fold at this time, although most of these M. genitalium proteins are expected to be 

soluble and globular, while the majority of such proteins from T. whipplei are predicted to 

contain at least one transmembrane helix.  The high amount of variability suggests that 

proteins in the “Cell Envelope” category evolve rapidly in response to specific pressures in 

an organism’s environment, and different sets of these proteins remain after reductive 

evolution in the different environments occupied by the different species of minimal 

organisms. 

 

Cellular functions with most conserved SCOP fold usage 

 

 Previous comparative sequence genomic analyses of symbionts have shown that the 

number of proteins in most cellular function categories varies little between symbiont 

proteomes, and that many of the most highly conserved proteins have cellular functions 

related to information storage and processing, particularly translation and ribosomal 

structure [31].  We calculated the coefficient of variation (CV) in the number of proteins in 
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each functional role category (N1 for the first species, N2 for the second species, etc.), as 

shown in Equation 1. 

)...(
)...(

61

61

NNMean
NNStdevCV sequence

=    (1) 

Results are shown in Table 2.  As expected, the category with the lowest variation in the 

number of proteins is “Protein synthesis,” and the top three categories are all closely related 

to transcription or translation. 

 

 We also calculated the coefficient of variation in the number of protein domains 

assigned to each SCOP class (N1,all-α for the first species in the all-α class, N2,all-α for the 

second species in the all-α class, etc), then averaged that data across all 7 structural classes, as 

shown in Equation 2. 
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CVstructure was calculated separately for each functional role category, and these data are 

shown in Table 2 and Figure 5A.  The functional category with the lowest variation in the 

number of domains in each structural class is “Protein Synthesis,” as would be expected 

from Figure 3.  However, there are some interesting differences between the rankings based 

only on the CVsequence, and the rankings based on CVstructure.  For example, fold usage of 

proteins involved in biosynthesis of cofactors, carriers, and prosthetic groups varies to a 

higher degree than the variation in total numbers of these proteins in each proteome.  This 

implies that the repertoire of specific functions in this broad category is specialized to the 

particular needs of each organism, even though the overall number of such proteins varies 
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little.  As expected, the distribution of structures in “catch-all” classes such as hypothetical 

and unclassified proteins are more varied than the distribution of structures found in more 

well-defined functional categories. 

 

 We also analyzed the degree of variation using data from only the five near-complete 

minimal organisms, excluding data from E. coli.  Results are shown in Table 3 and Figure 5B.  

As before, fold usage of proteins in the “protein synthesis” category shows the least variance 

of all functional categories.  The total genome size also slows relatively little variation among 

minimal organisms, as has been observed previously [31].  However, some functional 

categories show relatively more variation between minimal organisms than between minimal 

organisms and E. coli.  For example, the cellular function categories “Cell envelope,” 

“Central intermediary metabolism,” and “Amino Acid Biosynthesis” all drop in rank (the 

relative degree of conservation in fold usage among functional categories) by 7 positions 

relative to Table 2, indicating higher diversity of folds in these functional categories among 

minimal organisms.  In contrast, fold usage of proteins in the “Regulatory functions” 

category shows relatively less variation among minimal organisms than between minimal 

organisms and E. coli.  This suggests that although the minimal organisms have lost many of 

the regulatory pathways unnecessary for survival in their relatively unchanging environments, 

they maintain a relatively conserved set of proteins responsible for common regulatory 

functions.  A more thorough phylogenetic analysis of these proteins would be necessary to 

test this hypothesis. 
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Common and overrepresented folds in minimal organisms 

 

 We examined the most common protein folds (as defined in SCOP 1.67) in minimal 

organisms.  Results are shown in Table 4.  Four of the eleven most common SCOP folds 

(TIM barrel, nucleoside triphosphate hydrolase, flavodoxin-like, and ferredoxin-like) are 

among the nine superfolds originally described by Orengo and colleagues as scaffolds that 

can support a wide array of molecular functions [39].  However, all have fewer copies in 

minimal organisms than are found in E. coli. 

 

 Table 5 shows SCOP folds that are found in both minimal organisms and in E. coli, 

which are represented at equal or greater levels in the minimal organisms.  Proteins with 

these folds are presumably important for the survival of the organisms, and were not 

eliminated during reductive evolution.  Five SCOP folds are present in slightly greater 

numbers in minimal organisms than in E. coli.  For example, the DNA primase core fold 

(e.13) has 3 representatives in M. genitalium:  the DNA primase protein itself (dnaE) and two 

conserved hypothetical proteins (NP_072670 and NP_072719).  All five folds are involved 

in the critical functions of transcription, translation, or DNA replication.  Forty-two other 

SCOP folds are present in the same numbers in each minimal genome as in E. coli.  The five 

with the largest number of copies per genome are shown in Table 5.  Some appear to be key 

metabolic enzymes, while others are involved in transcription, translation, or DNA 

replication. 

 

 Interestingly, all 47 SCOP folds present in equal or greater numbers in all minimal 

organisms as in E. coli are also folds for which only a single superfamily is characterized in 
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SCOP; i.e., all proteins sharing the fold are also annotated as evolutionarily related to each 

other.  The case of multiple superfamilies sharing one fold may arise from two alternative 

causes:  convergent evolution of two or more families to one fold, or a single family that has 

diverged enough that homology between different branches of the family are no longer 

evident even from structure (in this case, each branch would be classified as a different 

superfamily in SCOP).  These data imply that proteins that play sufficiently important roles 

to avoid elimination during reductive evolution have also not diverged as much as other 

protein families due to this same evolutionary pressure. 

 

 An additional set of SCOP folds found only in minimal organisms and not in E. coli 

is given in Table 6.  None of these folds are found in all five minimal organisms, and the 

proteins are not generally related to essential cellular functions such as transcription, 

translation, or replication.  Some are presumably adaptations to the specific environment of 

the organism, and several (e.g., viral coat and capsid proteins, and the MHC antigen-

recognition domain) are not typically found in bacteria.  These may represent lateral gene 

transfers or erroneous annotations. 

 

Conclusions 

 

 After five years of progress in structural genomics, near-complete structural 

complements of the soluble proteins of several “minimal organisms” are now known.  A 

complete set of fold assignments for nearly all soluble, globular proteins in a proteome is 

providing a global view of how minimal organisms are using various protein fold classes for 

different cellular functions and how the fold usage in each class is conserved. 
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 Data from near-complete structural proteomes can yield hypotheses on protein 

evolution at a global level.  Simple statistical analyses of the variation in numbers of 

structures in each structural and functional category can shed light on which functional 

categories are more or less conserved in minimal organisms.  For example, the functional 

categories that showed the least variability in both sequence- and structure-based analyses 

were involved in essential cellular functions such as transcription and translation.  

Furthermore, every SCOP fold identified in equal or greater numbers in minimal organisms 

as in E. coli was the product of a single protein family, indicating that the proteins retained 

during reductive evolution of minimal organisms also tend to be from slow-evolving families.  

The latter observation was expected, as essential genes in other species have previously been 

shown to evolve more slowly than non-essential genes [41, 42]. 

 

 Such observations may be followed up with more detailed studies based on 

phylogenetic modeling of protein families [43] or the construction of atomic models of 

proteins in those categories.  Detailed atomic modeling of all proteins in a biochemical 

pathway will be useful to study the plasticity of these pathways in response to evolutionary 

pressures imposed by different organisms’ environments [44]. 
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Methods 

 

Databases 

 

 Our database of known protein structures, knownstr, was created on 22 Feb 2005.  

This database contained sequences of every protein chain released by the PDB [45], including 

those of obsolete entries, sequences of proteins deposited in the PDB and made available 

while the structures were still on hold, and sequences from TargetDB [46], for which a 

structure had been solved by a participating structural genomics center.  

 

 Pfam [47] classification of known structures was evaluated using Pfam version 16.0.  

The HMMER tool (version 2.3.2) [48] was used to compare the Pfam_ls library of hidden 

Markov models to the knownstr database, using the family-specific “trusted cutoff” score as 

a cutoff for assigning significance. 

 

 INTEGR8 version 12 [2] was used for sequence data.  The Integr8 database contains 

data for 238 complete proteomes, including 19 eukaryotes.  The proteome for each organism 

is composed of proteins curated from the Swiss-Prot and TrEMBL databases.  All proteins 

were annotated with hidden Markov models [48, 49] from the InterPro [50] database.  Since 

InterPro includes models from Pfam, we used the supplied InterPro annotations to map 

Pfam domains onto each protein.  The version of InterPro used to annotate Integr8 version 

12 includes Pfam 16.0 
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 SUPERFAMILY [51] version 1.67 contains hidden Markov models based on 

superfamilies from the SCOP database [38, 52], also version 1.67.  Recent versions of 

SUPERFAMILY [53] provide pre-calculated annotations of genomes downloaded from NCBI 

with all the superfamily models.  We used these precalculated annotations to assign SCOP 

domains to sequences from minimal organisms and E. coli, as described below.  The false 

positive rate for SUPERFAMILY annotations is estimated to be less than 1% [54]. 

 

 The Comprehensive Microbial Resource [40] contains annotations of TIGR role 

categories in its OMNIOME database.  We obtained TIGR role annotations from the version of 

OMNIOME downloaded on 12 May 2005.  Of 19 TIGR role categories, two (“signal 

transduction” and “other categories”) were found in low average abundance in the 

proteomes we analyzed (averaging 0.7 and 9.0 proteins per proteome, respectively), and 

these categories were excluded from our analysis.  The remaining 17 categories are listed in 

Table 2. 

 

Mapping annotations 

 

 To use annotations from the SUPERFAMILY and OMNIOME databases, we mapped 

proteins from the Integr8 database onto corresponding proteins in the NCBI and CMR 

Locus databases, respectively.  In most cases, this was done by mapping identical sequences 

from the corresponding genome.  However, in some cases, the gene or ORF annotations of 

the same genomes varied between the databases, resulting in different protein sequences.  In 

these cases, we used BLAST [55] version 2.2.9 to map each Integr8 sequence to the most 

similar sequence in the other databases.  We mapped each protein in Integr8 that could not 
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be mapped by direct sequence match to the most significant BLAST hit in the other database, 

provided the BLAST E-value of the hit at least as significant as an empirically chosen 

threshold of 10-10.  An average of 16.3 proteins in each proteome could not be mapped to 

any of the functional categories in OMNIOME, and were not included in this analysis. 

 

Predicting tractability in high-throughput experiments 

 

 We identified all proteins with a predicted transmembrane helix, or with 20% or 

more residues in low complexity regions, or with 20% or more residues in coiled coil regions, 

as likely to be intractable in high-throughput experiments.  Other proteins were annotated as 

soluble, globular proteins.  The 20% threshold were used in more recent target selection 

rounds at the Berkeley Structural Genomics Center [25].  Similar thresholds have also been 

justified by recent comprehensive crystallization trials on the Thermotoga maritima proteome 

[56]. 

 

 The “seg” program [57] (version dated 5/24/2000) was run on all sequences in 

Integr8 to identify putative low complexity regions.  The “ccp” program [58] (version dated 

6/14/1998) was used to predict coiled coil regions in all sequences, and TMHMM 2.0a [59] 

was used to predict the locations of transmembrane  helices.  TMHMM can distinguish 

between soluble and membrane proteins with both specificity and sensitivity greater than 

99%, but frequently produces false positive predictions when signal peptides are present.  

Default options were used for all programs. 
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Figure Legends 

Figure 1:  Four major SCOP classes. 

The predominant form of secondary structure in each of the first four SCOP classes is 
shown.  Alpha helices are shown as red cylinders, and beta strands as yellow ribbons. 

Figure 2:  SCOP class distribution in near-complete proteomes 

The fraction of domains in each proteome belonging to each of the first 7 SCOP classes is 
shown.  “Unclassified” domains are from proteins annotated as homologous to a known 
structure using Pfam, but not classified in one of the first 7 classes of SCOP (e.g., due to 
being in a superfamily solved since the SCOP cutoff date of 15 May 2004).  “Unsolved” 
domains are from proteins not annotated as homologous to a known structure.  For 
statistical analysis, each ORF in the latter two categories was treated as containing exactly 
one domain.  “Unsolved” domains are further divided into three categories based on 
predicted tractability in high-throughput experiments:  “Unsolved, TM” are predicted to 
contain at least one transmembrane helix, “Unsolved, LCCC” have no predicted 
transmembrane helices but at least 20% of the sequence in low complexity or coiled coil 
regions, and “Unsolved, Soluble Globular” are predicted to be tractable in high-throughput 
experiments due to having neither of these features. 

Figure 3:  SCOP class distribution of proteins with “Protein Synthesis” function 

The fraction of domains in each proteome from the TIGR role category “Protein Synthesis” 
belonging to each of the first 7 SCOP classes is shown.  “Unclassified” and “Unsolved” 
domains were counted as described in Figure 1. 

Figure 4:  SCOP class distribution of proteins with “Cell Envelope” function 

The fraction of domains in each proteome from the TIGR role category “Cell Envelope” 
belonging to each of the first 7 SCOP classes is shown.  “Unclassified” and “Unsolved” 
domains were counted as described in Figure 1. 

Figure 5:  Variation in fold usage between organisms differs between functional 
categories 

A) Variation in fold usage (CVstructure) between organisms within each TIGR role category is 
shown for each category that represents a cellular function.  The data are also given in the 
“fold-based variation” column in Table 2.  B) Variation in fold usage between minimal 
organisms only, excluding E. coli data as per Table 3. 

 23



 
Table 1:  Status of near-complete structural proteomes as of 22 February 2005 

How many proteins may be assigned folds in near-complete proteomes?  The status for five 
near-complete prokaryotes are shown.  E. coli, a well-studied bacteria that is not considered a 
minimal organism, is included for comparison. 
 
Organism Total # of 

proteins  
# of 

soluble, 
globular 
proteins  

#of  
soluble, 

non-
globular  
proteins 

# of 
membrane 

proteins 

# of folds 
assigned 

% folds 
assigned 
(of total)  

 

% folds 
assigned 

(of 
soluble, 

globular) 

# of 
remaining  

soluble, 
globular 
proteins  

# of 
remaining 

soluble, 
non-

globular 
proteins 

# of 
remaining 
membrane 

proteins 

Candidatus 
Blochmannia 
floridanus 

583 451 12 120 502 86.1% 95.6% 20 3 58

Wigglesworthia 
glossinidia brevipalpis 

612 536 28 217 508 83.0% 94.8% 28 7 69

Buchnera aphidicola 
(subsp. Acyrthosiphon 
pisum)  

572 446 39 87 495 86.5% 94.4% 25 9 43

Mycoplasma 
genitalium 

486 341 34 111 350 72.0% 87.1% 44 10 82

Tropheryma whipplei 
(strain TW08/27) 

781 430 55 127 556 71.2% 87.0% 56 15 154

Escherichia coli 4338 3130 146 1062 2945 67.9% 78.0% 688 76 629
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Table 2:  Variation within functional categories based on sequence and structure 

Which functional categories show the most variation in fold usage between organisms?  The 
first column lists 17 TIGR cellular function categories, and an additional category composed 
of all proteins in each proteome.  The “fold-based variation” column is based on a 
calculation of the coefficient of variation in the number of structurally characterized domains 
in each functional role in each of the first 7 SCOP classes (all-α, all-β, α/β, α+β, multi-
domain, membrane, small).  As described in Equation 2, the coefficient of variation is 
calculated separately for each of the 7 classes, and then averaged across all 7 classes to 
produce CVstructure.  The “sequence-based variation” column gives the coefficient of variation 
in the number of proteins in each category (CVsequence, Equation 1).  The “fold-based rank” 
and “sequenced-based rank” show the ranking of functional categories based on the amount 
of fold-based and sequence-based variation, from lowest amount of variation to the highest.  
Cellular function categories are ordered in the table according to their fold-based rank. 
 
Category Average # of 

Proteins 
Fold-based 

variation 
(CVstructure) 

Sequence-based 
variation 

(CVsequence) 

Fold-based 
Rank / 

Sequence-based 
Rank 

Protein synthesis 99.0 0.141 0.100 1 / 1 
Transcription 20.8 0.286 0.409 2 / 2 
Purines, pyrimidines, 
nucleosides, and 
nucleotides 

36.8 0.462 0.570 3 / 3 

DNA metabolism 46.8 0.586 0.753 4 / 6 
Protein fate 48.3 0.731 0.723 5 / 4 
Amino acid biosynthesis 44.7 0.935 0.972 6 / 8 
All Proteins 1228.7 1.061 1.242 7 / 12 
Cell envelope 73.8 1.099 0.971 8 / 7 
Central intermediary 
metabolism 

27.5 1.228 1.113 9 / 10 

Energy metabolism 116.7 1.276 1.220 10 / 11 
Fatty acid and 
phospholipid metabolism 

20.0 1.328 1.014 11 / 9 

Biosynthesis of cofactors, 
prosthetic groups, and 
carriers 

50.3 1.332 0.731 12 / 5 

Cellular processes 62.0 1.364 1.301 13 / 13 
Regulatory functions 34.5 1.427 1.940 14 / 18 
Unknown function 115.6 1.659 1.865 15 / 17 
Transport and binding 
proteins 

81.8 1.809 1.638 16 / 15 

Hypothetical proteins 205.8 1.984 1.631 17 / 14 
Unclassified 118.0 2.020 1.835 18 / 16 
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Table 3:  Variation within functional categories in minimal organisms 

Which functional categories show the most variation in fold usage between minimal 
organisms?  The data are calculated as in Table 2, but ignore data from E. coli.  The 
structure-based variation when E coli data are included (from Table 2) is provided for 
comparison. 
 
Category Average # of 

Proteins 
Fold-based 

variation 
(CVstructure) 

Fold-based 
variation, 
including    

E. coli 

Sequence-
based 

variation 
(CVsequence) 

Fold-based 
Rank / 

Sequence-
based Rank 

Protein synthesis 95.2 0.108 0.141 0.039 1 / 1 
Transcription 17.6 0.200 0.286 0.199 2 / 3 
All Proteins 606.8 0.210 1.061 0.178 3 / 2 
DNA metabolism 33.0 0.314 0.586 0.328 4 / 6 
Fatty acid and 
phospholipid metabolism 

12.0 0.358 1.328 0.486 5 / 9 

Regulatory functions 7.2 0.402 1.427 0.465 6 / 8 
Purines, pyrimidines, 
nucleosides, and 
nucleotides 

28.8 0.405 0.462 0.284 7 / 4 

Protein fate 34.6 0.560 0.731 0.303 8 / 5 
Unknown function 27.8 0.776 1.659 0.555 9 / 12 
Transport and binding 
proteins 

27.4 0.796 1.809 0.574 10 / 13 

Energy metabolism 59.4 0.799 1.276 0.454 11 / 7 
Biosynthesis of cofactors, 
prosthetic groups, and 
carriers 

38.6 0.816 1.332 0.666 12 / 15 

Amino acid biosynthesis 29.0 0.844 0.935 0.782 13 / 17 
Cellular processes 29.8 0.853 1.364 0.636 14 / 14 
Cell envelope 45.8 0.893 1.099 0.506 15 / 10 
Central intermediary 
metabolism 

15.4 0.952 1.228 0.552 16 / 11 

Unclassified 30.0 1.006 2.020 0.749 17 / 16 
Hypothetical proteins 70.6 1.125 1.984 0.871 18 / 18 
 
  

 26



 

Table 4:  Most common SCOP folds in minimal organisms 

Which SCOP folds are most common in minimal organisms?  The first column gives the 
name and SCOP sccs identifier for folds classified in SCOP 1.67.  The second column gives 
the total number of domains assigned to each fold among the five minimal organisms. The 
third column is calculated as the average number of domains among the five minimal 
organisms studied that were assigned to each fold, divided by the number of domains in E. 
coli assigned to the same fold.
 
Fold Name Number Ratio 
P-loop containing nucleoside triphosphate hydrolases (c.37) 319 0.23 
TIM beta/alpha-barrel (c.1) 115 0.14 
OB (Oligonucleotide/oligosaccharide-binding) fold (b.40) 108 0.34 
Ferredoxin-like (d.58) 95 0.15 
Adenine nucleotide alpha hydrolase-like (c.26) 92 0.40 
Ribonuclease H-like motif (c.55) 79 0.16 
NAD(P)-binding Rossmann-fold domains (c.2) 75 0.12 
Class II aaRS and biotin synthetases (d.104) 56 0.75 
DNA/RNA-binding 3-helical bundle (a.4) 53 0.04 
Reductase/isomerase/elongation factor common domain 
(b.43) 

51 0.43 

Flavodoxin-like (c.23) 51 0.11 
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Table 5:  Over-represented SCOP folds in minimal organisms 

Which SCOP folds are most over-represented in minimal organisms, relative to E. coli?  The 
first column gives the name and SCOP sccs identifier for folds from SCOP 1.67.    The 
second  column gives the total number of domains with each fold among the five organisms.
The third column is calculated as the average number of domains among the five minimal 
organisms studied that were assigned to each fold, divided by the number of domains in E. 
coli assigned to the same fold.   37 other folds also have a ratio of 1.0 and 1 representative in 
each minimal organism. 
Fold Name Number Ratio 
DNA primase core (e.13) 7 1.4 
An anticodon-binding domain of class I aminoacyl-tRNA 
synthetases (a.97) 

6 1.2 

Head domain of nucleotide exchange factor GrpE (b.73) 6 1.2 
Ribosomal proteins L23 and L15e (d.12) 6 1.2 
DNA clamp (d.131) 16 1.1 
ValRS/IleRS/LeuRS editing domain (b.51) 15 1.0 
S-adenosylmethionine synthetase (d.130) 15 1.0 
Dihydrofolate reductases (c.71) 10 1.0 
Ribosomal protein L6 (d.141) 10 1.0 
beta and beta-prime subunits of DNA dependent RNA-
polymerase (e.29) 

10 1.0 
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Table 6:  SCOP folds in minimal organisms but not E. coli 

Which SCOP folds are found in minimal organisms, but not E. coli?  The total number of 
domains from all five minimal organisms that were assigned to each fold is given in the 
second column.
  
Fold Name Number 
alpha-2-Macroglobulin receptor associated protein (RAP) domain (a.13) 1 
STAT-like      (a.47) 1 
Annexin      (a.65) 1 
DBL homology domain (DH-domain)   (a.87) 1 
Non-globular all-alpha subunits of globular proteins (a.137) 1 
GatB/YqeY domain     (a.182) 2 
gamma-Crystallin-like      (b.11) 1 
SMAD/FHA domain     (b.26) 3 
Sortase      (b.100) 1 
C-terminal autoproteolytic domain of nucleoporin nup98 (b.119) 1 
Nucleoplasmin-like/VP (viral coat and capsid proteins) (b.121) 2 
Hypothetical protein TM1070    (b.123) 1 
Hypothetical protein YojF    (b.128) 1 
Amidase signature (AS) enzymes   (c.117) 2 
DegV-like      (c.119) 2 
Urease, gamma-subunit     (d.8) 1 
Penicillin-binding protein 2x (pbp-2x), c-terminal domain (d.11) 2 
MHC antigen-recognition domain    (d.19) 1 
Thymidylate synthase-complementing protein Thy1   (d.207) 1 
Smc hinge domain    (d.215) 1 
Polo-box domain     (d.223) 1 
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Four Major SCOP Fold Classes
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