
Lawrence Berkeley National Laboratory
LBL Publications

Title
Unmatched: 50 Years of Supercomputing, A Personal Journey Accompanying the Evolution
of a Powerful Tool

Permalink
https://escholarship.org/uc/item/0x7138n5

Author
Barkai, David

Publication Date
2023-07-12

DOI
10.1201/9781003038054

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0x7138n5
https://escholarship.org
http://www.cdlib.org/

David Barkai

Unmatched:
50-Year Supercomputing

A Personal Journey of Accompanying the Evolution of

a Powerful Tool

Here comes the dedication:
To be entered later.

Contents

Preface xii

Short Introduction to Scientific Computing 1

Part I The Epoch of Big Iron

Chapter 1 � In the Old Days ... 19

Chapter 2 � Vector Processors 25

Chapter 3 � Vectorizing Applications 33

Chapter 4 � Numerical Weather Prediction 41

Chapter 5 � The Battle for the Premier Weather Centers 53

Part II The Epoch of Multiprocessors

Chapter 6 � Macro Parallelism 63

Chapter 7 � Making Use of Multi-Processors 71

Chapter 8 � Attached Processors, Microprocessors, and Mini-Supers 79

Chapter 9 � Studying the Standard Model 91

Chapter 10 � HPC for the Automotive Design - Early Days 97

Chapter 11 � End of an Era 101

v

vi � Contents

Part III The Epoch of Microprocessors

Chapter 12 � Towards Massive Parallelism 111

Chapter 13 � Engineering with HPC 117

Chapter 14 � HPC for the Aero Industry 121

Chapter 15 � The WRF Story 131

Chapter 16 � Planning Ahead 137

Part IV The Epoch of Clusters

Chapter 17 � Standardization 147

Chapter 18 � HPC at Intel 155

Chapter 19 � High Productivity in HPC 167

Chapter 20 � Weather Models’ Impact on Our Lives 177

Chapter 21 � Computational Life Sciences 185

Chapter 22 � Genomics and Beyond 193

Part V The Epoch of Accelerators and Cloud

Chapter 23 � Codesign 207

Chapter 24 � The Changing Face of HPC 221

Chapter 25 � HPC in the Cloud 229

Chapter 26 � The NCAR Models 237

Chapter 27 � Modeling the Earth System 243

Chapter 28 � HPC, Cloud and AI for Engineering 257

Chapter 29 � Two Scientific Anecdotes: LIGO, Fusion 263

Contents � vii

Chapter 30 � The COVID-19 Campaign 267

Part VI Wrap Up and Outlook

Chapter 31 � P is for Performance 271

Chapter 32 � Fortran: The Coarrays Story 287

Chapter 33 � Fortran Today 303

Chapter 34 � Thoughts from the Guardians of Fortran 309

Chapter 35 � Measure of HPC Impact 327

Chapter 36 � Looking Forward 329

Bibliography 335

Index 349

List of Figures

1.1 CDC 7600 20

1.2 Early Supercomputers 21

1.3 Punchcard Machine 22

1.4 Printout 23

2.1 CDC STAR-100 28

2.2 Cray-1 29

4.1 Atmospheric Model Schematic 42

4.2 Operational Weather Forecasting Workflow 45

4.3 Nested Grids 49

6.1 Cray-XMP 66

6.2 Cray-2 66

14.1 Airplane Design Factors 125

16.1 PetaFLOPS Workshop Architecture Group 139

18.1 Itanium Sales Forecast History 158

21.1 Kibbutz100 190

23.1 Frontier 214

26.1 MPAS Mesh Options 240

ix

x � LIST OF FIGURES

27.1 Grid Resolution vs Compute Power 249

27.2 Earth System Digital Twin 252

29.1 Gravitational Waves 264

31.1 Performance Improvement Over Time 280

Foreword

Place-holder for a Foreword.
Wait until we’re close to the completion of the book;
Then ask a well-known HPC personality to write one.

Preface

No other application of technology has advanced at the rate high-end scientific
computing, or supercomputing, has done steadily for over 50 years now.

This is best illustrated by comparing the advances of supercomputers’ perfor-
mance to that predicted by Moore’s Law. [1] To remind you: Moore’s Law is a
prediction, based on past observations, dated back to 1965, and revised in 1975. In
its revised form the “law” predicts that the number of transistors that can be put
in a given area of an integrated circuit doubles every two years. Yes, the original
meaning of Moore’s Law was about the density of transistors made out of silicon.
However, people interpreted it, not without reason, also to mean that we can ex-
pect the performance of the processor(s) inside our computing devices to double
every couple of years, approximately. Moore’s prediction was realized, pretty closely,
throughout the last 50+ years. The density of silicon components in processor and
memory chips increased exponentially at a steady rate. Take a period of 12 years.
The doubling would occur six times during that period. This means that from the
beginning of any 12-year period till its end we would have observed an amazing
increase of roughly 64 times in terms of density and performance. I have a reason
for choosing a 12-year period, as will be clear momentarily. Of course, we will return
to the accumulated impact over the last 50 years (an easy exercise for the reader).

Now, let’s consider supercomputers: We’re going to look at the rate of advance
in terms of the total system, which is comprised of many chip-level parts. And in
order to compare this rate to that of Moore’s Law we will look at the system’s peak
performance - how many calculations per second it can perform. Here are some
data points and milestones: In the early 70s there was the CDC 7600 rated at 36
Million-floating-point-operations-per-second (MFLOPS, or megaflops). In the 80s
we had several systems (to be presented in this book) that peaked at the range
of little under 1 Billion-FLOPS (GFLOPS, or gigaflops) to 2.5 GFLOPS. Then, in
1996, we saw the first system to reach Tera-FLOPS - 1012 operations per second
(teraflops). In 2008 another system achieved a peak of 1015 FLOPS, or Peta-FLOPS
(petaflops). It took longer, 14 years, for the first (official) exasflops (1018 FLOPS,
or exaflops) to be launched in 2022. In the book I will discuss how these advances
were made possible and describe how they were utilized. Here I’m simply making

xiii

xiv � Preface

the point that since the 80s, supercomputers peak computational speed increased
a thousand-fold every 12 years!1

Every 12 years or so supercomputers’ power advanced at 15 times higher rate
than the technology rate of progress according to Moore’s Law. That’s my justifica-
tion for the claim made in the opening sentence. To be clear, the peak performance
figures above are those for the single top system of its time. Is this rate of advance
true for the collective of High-Performance Computing (HPC) systems? - well, we
have historical data of the top 500 HPC systems in the world, as measured by a
linear-algebra test, since 1992 ([2]). Turns out the graph showing system #1 in the
world is parallel to that of the cumulative performance of all 500 top systems. This
provides a pretty solid indication that the whole HPC benefitted from an approxi-
mately 1,000-fold increase in potential performance approximately every 12 years.
In fact, working through the arithmetic of compound annual growth rate (CAGR),
this means that over the last 40 years HPC has outpaced technology advances a la
Moore’s Law by over 9,500 times! - an incredible achievement by the HPC commu-
nity and the industry, considering that technology itself (per Moore’s Law) moved
us ahead by a factor of over 1,000,000 during the same period.

What is the ‘secret sauce’, or what are the ingredients that enable the capabil-
ities of HPC systems to grow so much faster than even the exponential rate at the
processor chip level? - in a word: Complexity. Advances in processor architecture;
ever more processors working in tandem; use of accelerators; hierarchical memory
systems; high performance interconnect; and, commensurate integrated software
components as foundation to increasingly sophisticated applications.

The extent to which the community of supercomputing users took advantage of
this amazing rate of increase in capability, due to technology, is the subject of this
book.

As is often the case, the stories we tell represent a continuation to work done be-
fore. Several themes in this book both run parallel and move forward past works by
others. Notable examples are a 90’s book by the founder-director of NCSA (National
Canter for Supercomputing Applications) Larry Smarr and William Kaufmann, ti-
tled “Supercomputing and the Transformation of Science”[3], and several chapters
in a book commissioned by the National Research Council in 2005 titled “Getting
Up to Speed: The Future of Supercomputing” [4].

On a personal note: Like many other practitioners of HPC I arrived here, and
then stayed, from the world of theoretical physics. That was in the early 70s. Coming
up on 50 years of involvement in this field, and slouching into retirement, it seems
natural to look back at the journey my career has taken me through. I was fortunate,
some would say unlucky, to have worked at quite a few of the companies and
organizations that built and used supercomputing2. During much of my 15 years at
Intel (1996-2011) I worked closely with most all of the major players in the Industry.

1The step from 1 MFLOPS systems (for example, CDC 3600, 1963) to a 1 GFLOPS system
(e.g., Cray XMP, 1982), took almost 20 years.

2I worked for, in that order: Control Data Corporation, Floating Point Systems, Cray Research,

Preface � xv

In the more distant past I worked at supercomputing companies that don’t exist
anymore - at least not in their original form. They will be remembered in the pages
of this book. Coming into the HPC community as an applications user, but working
closely with engineers and computer architects, has given me a great appreciation
of the interdependence between the hardware and how the application is presented
to the computer.

It is this passage of time, and the opportunities I had to observe and participate,
that give me the platform from which to tell a story. Living much of my profes-
sional life at the intersection of the HPC user community and the system houses
that build the computers allows me to examine HPC from both perspectives. More
importantly, along the way I have met many wonderful, smart, and creative people.
Their recollections and observations bring to life the saga of scientific supercom-
puting.

The story I wish to tell is a tribute to the people who used supercomputing
to solve real-life important problems and to gain deeper understanding of basic
science. It is as much a story of the evolution of ‘applications’ (the codes that run
on the computers) as it is about the progress in technology and transformations of
computer systems architecture that made it possible. The many people I have had
the fortune to know, and who created the HPC community, come from academia,
research lab, and the computer industry.

The chronological bookends of this story are separated by 50 years. And what a
journey it was! At one end is the user laboring with punched cards, handing over the
box of early Fortran cards to a computer operator, returning hours or days later to
pick up reams of printed results (in the event all went well, for which there was no
guarantee). The computer was a monolithic “big iron” system with one processor,
the power of which was about one thousandth of our present mobile phones. At
the other end of the story we usually find a multidisciplinary team working online
and remotely, using interactive languages and modern programming languages, on
problems that run on hundred of thousands of processors (we now call “cores”).

My goal for this book is to cover the, sometimes twisted, journey that brought
us to where we are today in HPC. In the telling we will encounter both evolution
and revolutions in the computer architectures themselves; how the interface and
interaction with the systems changed over time; and, mostly, the people who de-
veloped the applications and pushed the boundaries of what can be done with any
period’s HPC systems. A most relevant part of the story is the transition of HPC
from that of numerical simulations and modeling to encompassing data analytics
and a start at what we ambitiously refer to as artificial intelligence, but is more
correctly termed machine learning.

The technical challenges and achievements of HPC practitioners were, and are,
impressive. But, what good did they do? - Well, in the following pages, when de-
scribing how supercomputers are applied, the recurring theme will be how it all

Supercomputer Systems Inc., NASA Ames Research Center, Intel, Appro, Cray, SGI, and about 6
weeks at HPE.

xvi � Preface

benefits society and humankind. Yes, scientific computing is instrumental in gain-
ing deeper understanding in several science disciplines, and the book will touch on
a few topics in physics and chemistry. But the emphasis is on computer use that
affects our daily lives. The areas chosen are: Predicting weather and climate, En-
gineering design, and the variety of activities that fall under the umbrella of Life
Sciences.

I wish to emphasize that the book’s narrative is not that of an objective his-
torian, but influenced and biased by my personal encounters and experiences. My
apologies for the significant events and perspectives that are missing. They are not
less important than what is included. Only that I thread my story without them.

Let the journey begin.

Acknowledgements

Here will be the acknowledgements and thanks to all who helped.

xvii

Short Introduction to
Scientific Computing

The Third Pillar of Science and how it works

B efore delving into the world of high performance computing (HPC), it may be
useful to visit, or revisit, several concepts and practices that are foundational

to this domain of computing.

The terms supercomputers or supercomputing are used almost interchangeably
with the term HPC. Almost, but not quite. In early chapters supercomputers is
in more common use, because these most powerful computers of the time were
the platforms on which scientific computing was done. HPC is a more appropriate
designation now since scientific computing is often done on systems that are not
among the top few hundreds systems in the world, such as workstations in the
80s and 90s and a single server today. Nevertheless, such processing is best done
on platforms that have high performance features. These may include high end
floating-point arithmetic performance, high memory bandwidth, high performance
interconnect, and large storage - all scaled to the size of the system.

The Third Pillar

Scientific computing, or Computational Science, can justifiably be thought of as
the third pillar of science. The other two being theory and experiment. First, a few
remarks about the interaction between Experiment and Theory.

Scientists design experiments to observe what happens under controlled set of
conditions. The outcome is sometimes what they would intuitively expect. Many
times it isn’t so. In either case, science is about coming up with a theory that ex-
plains the observed outcome. Scientific theory is fundamentally different from the
everyday, or non-scientific, use of the word. It is not meant as ‘a guess’ or ‘specu-
lation’. Scientific theory is an explanation based on principles or ’laws’ that apply
beyond the specific experiment. It needs to explain other, related, phenomena as
well. That is, and this is most important, the theory has predictive power. It enables
the calculation (prediction) of the outcome to an experiment that has not been per-
formed yet. And it has to be repeatedly correct. Which begs the question: What if an

1

2 � Short Introduction to Scientific Computing

experiment’s outcome contradicts the prediction of the theory? - This can happen
when an experiment is designed in an environment or subject to conditions that
were not tested before. When this happens, it means the theory was incomplete
or even flawed. Science’s task is, then, to come up with a more complete or brand
new theory. What is even more exciting is when the theory is applied to conditions
that have not been tested experimentally - perhaps because these conditions were
too difficult to find or create. Later, sometimes many years later, a way to test
this unobserved prediction is found. And the theory earns another validation. A
wonderful example of this is the prediction of General Relativity of the existence of
Black Holes. A prediction that was confirmed 55 years later - predicted by Einstein
in 1916. Existence of a black hole was observed in 1971. And for the first actual
image of such an object we had to wait until 2019.

History presented us with an example of how experiment brought about an
overturn of a theory: Galileo Galilei, in late 16th century, climbed to the top of
the leaning tower of Pisa and dropped two objects of different weight. He observed
that the objects hit the ground at the same time3. Until that time the prevailing
theory was the one conjectured by Aristotle almost 2,000 years earlier. He theorized
that a heavier object falls faster than the lighter one. It took almost a century after
Galilei’s experiment before Isaac Newton expressed gravitation mathematically, and
as a universal law. Newton’s Second Law, as it is known, applies to any two objects
in our universe (not just to objects falling to Earth). And, of course, Newton’s laws
were superseded in 1915 by Einstein’s General Relativity.

So goes the journey of scientific discovery, into which computational simulation
was added in the mid 20th century as the Third Pillar of science. Before there were
computers, scientists still had to calculate to derive predictions from the theory so
it can be compared to experimental results. What computers enabled is not just to
calculate much faster, but to compute problems that were far more complex and
of much larger scale than was possible by humans. This is, though very useful in
advancing science and making it practical to everyday life, a quantitative progress.
Think of calculating tomorrow’s weather from the weather model equations. Well,
if it takes more than 24 hours to compute tomorrow’s weather, it is of no good.

But by no means this is all that the third pillar of science affords us. It allows
us to ‘see’ the very small and the very large, the very slow and the very fast.
Once a theory, expressed mathematically, is validated, we can ‘watch’ the simulated
behavior of sub-atomic interactions, as well as the formation of galaxies and black
holes. We can ‘watch’ in slow motion steps in a process that takes a fraction of a
nanosecond. We can watch processes that go for hundreds of years, such as climate
change. Computer simulations allow us to design experiments that cannot be done
in the lab. For example, measure what would happen if the Earth warmed at this
pace or another. Or, what would happen if a celestial object’s trajectory tilts a

3Or so the story goes. Some say it was a ‘thought experiment’. In any event, the outcome turned
out to be correct.

Short Introduction to Scientific Computing � 3

little. And if parameters are chosen right, and a simulated event happens, it will
validate or contradict a current theory.

Computer modeling allows us to perform “experiments” digitally. Think of crash
analysis of a car visualized on a computer screen; instead of physically running a
car into a wall. More than that, computer modeling allows us to very quickly repeat
the experiment with modified input parameters, so we can figure out the correct
shape or material for an engineering product, for example.

In the area of medical care, computational chemistry is applied to study protein
binding which tells us the degree to which a proposed medication attaches to protein
in our blood. This determines the efficacy of the drug. The simulations allow to
quickly examine hundreds of variations. They eliminate in advance many human
clinical tests that would have failed. This will be a recurring theme throughout this
book.

In summary, computational science enables us to make new uses of scientific
knowledge. It allows us to examine the very small and very large, the very fast and
the very slow. And it opens up opportunities to ‘experiments’ we cannot do in real
life.

Numerical Simulation

For the uninitiated, or a little ‘rusty’, this chapter provides an overview of what
is involved in scientific computing. We cannot say that all scientific, or numerical,
computation requires supercomputers, but it was certainly true that until recently
supercomputers were used almost exclusively for what falls under the umbrella of
simulation and modeling of scientific phenomena. The notable, mostly classified,
exception to this statement is a class of applications used for intelligence purposes,
such as code breaking, electronic surveillance, etc. The latter, which will not be
discussed in this book for obvious reasons, nevertheless influenced design aspects
of supercomputers at various times. HPC today includes types of processing be-
yond number crunching, but this overview is about computational simulation of a
physical process.

Physical phenomena are modeled using a set of mathematical equations. The
mathematical formulation has to be adapted so it can be performed on a computer.
That is, written in a way that can be coded as a computer program. When executed
it simulates a real world phenomenon. What we mean by that is that the output of
the program is a set of numbers that represent values of certain physical quantities
or attributes over space and over time.

The following is an overview of the process for creating a computer model of a
real-world environment. This is a significant computational field, but by no means
the only type of scientific computing. There are statistical models for many in-
quiries, data and graph analysis problems, and more. For the purposes of this
introduction we will stay with the concept of simulation set in the physical space
and evolving in time.

4 � Short Introduction to Scientific Computing

The process starts with the subject-matter-expert, a scientist or engineers, who
provide the mathematical formulation. This will be, typically, a set of equations
that describe the evolution of a phenomena. Think of a model for the atmosphere,
or airflow over an aircraft, or a car crash. These is likely to be a set of differential
equations that prescribe how physical entities change in space and over time.

Let us consider a simple example to illustrate the process that turns the mathe-
matical formulation into a form that can be programmed for execution on a digital
computer. It should be emphasized that this is the process for constructing what is
referred to as the solver part of the program. And a drastically simplified case at
that. A complete scientific application is much more complex. A few words on that
later on in this chapter.

The example illustrated here is the simplest form two-dimensional wave equation
(there is an analytic solution to this form of the equation, but the goal here is to
show how to solve it numerically):

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
It says that the amplitude of the wave function u changes in time, in every

point inside the region defined by end values of the x−y plane, such that its second
derivative with respect to time is proportional to the sum of the second derivative
in the x and y directions of the plane. The proportionality constant is the square
of the wave’s propagation velocity c (not necessarily the speed of light). To picture
the math, think of the first derivative as a measure of how the function changes
when moving on the plane or in time. The second derivative amounts to taken the
derivative of the function resulting from the first derivative. What it measures is
the curvature of the graph we get from the original function’s value when tracking
the x, y, or t directions.

Again, a typical simulation problem is described by a set of equations that are
more complex than the wave equation. They would cover aspects such as motion,
pressure, thermal exchange, convection, and more. Here we follow a single simple
equation so we can focus on the process that starts with a mathematical representa-
tion and ends with a procedure that can be submitted to a computer for execution.

The math is expressed as a continuum. There are infinite number of values over
any interval. This is required for the correct formulations of derivates (and the
consistency of mathematical theory).

However, computers don’t have an infinite memory or storage. More important
for the process, they don’t have an infinite accuracy. Another way of saying this is
that computers work on a set of discrete values. Therefore, the space over which
the problem is defined has to be drawn as a collection of points. In our example it
would be a grid, a two dimensional mesh. The natural way to set it up is to draw the
points with equal distances between them. It greatly simplifies the programming.
In real life applications it sometimes becomes useful, or necessary, to have regions
with different density of points for reasons of numerical stability that are beyond

Short Introduction to Scientific Computing � 5

the scope of this overview. In other problems the sparsity of points is a function
of where more physics occurs - think of simulating a galaxy, for example. The grid
can take a shape different than a rectangular or a cube. Defining the geometry of
the problem to be solved is a major step in constructing the code.

The figure below shows a small region of a two-dimensional plane on which the
wave equation can be solved.

x axis

y
ax

is

Discretization over a Plane

The program assigns or computes values for nodes, or points, on the grid. This
is what we will assume here. However, the location of the values does not have to
be at the points. For numerical reasons, they can be defined to be midway on the
line connecting two points. Or, at the center of the cell. Often the problem involved
several physical attributes simulated over the same grid, where values for different
attributes use different location schemes on the grid.

The wave equation written above has to be transformed to a form that expresses
values on grid points. Getting there is the process of discretization. For the wave
equation we need to transform the continuous second order derivative. We are asking
what is the second order rate of change of the wave function when we make small
incremental spatial moves in the x, y, or in time, t. We will use ∆x, ∆y, and ∆t,
to indicate small displacements in the x, y, and t variables, respectively.

First, we write an expression that is an approximation to a second derivative,
and that can be calculated. This can be done as a Taylor series power expansion
over the displacement value. Consider the definition of a (first) derivative (or dif-
ferential):

∂u(x, y, t)

∂x
= lim

∆x→0

u(x + ∆x, y, t) − u(x, y, t)

∆x

6 � Short Introduction to Scientific Computing

For the purpose of computations ∆x is not infinitesimal. It is the relatively small,
but finite, interval between the grid points. We will skip some math manipulations,
but assert that the right-hand-side represents the accurate first derivative to within
an error that is proportional to ∆x2. The smaller ∆x is the smaller the error. Think
of the distance units scaled so that the dimensions of the plane are 1 unit by 1 unit,
and with many more grid points than drawn above. Then ∆x << 1 and the error
is relatively small. The reader can easily construct the equivalent expressions for y
and t, using ∆y and ∆t. The expression below states that the right-hand-side is an
approximation of the derivative of the function u with respect to x.

∂u(x, y, t)

∂x
≈ u(x + ∆x, y, t) − u(x, y, t)

∆x

Now we use the expression of the first derivative to get an approximation for
the second derivative with the same order of accuracy. In the following we make
use of a similar expression to the above where we displace x in the other direction
by substituting −∆x for an expression that contain u(x, y, t)−u(x−∆x, y, t). The
same process that was applied to u is now applied to its (approximate) derivative:

∂2u(x, y, t)

∂2x
≈

u(x+∆x,y,t)−u(x,y,t)
∆x − u(x,y,t)−u(x−∆x,y,t)

∆x

∆x

=
u(x + ∆x, y, t) − 2u(x, y, t) + u(x− ∆x, y, t)

∆x2

Just a little more math. The finite-differences form of the second derivative of
x can be replicated for y and t. The wave equation is now represented as:

u(x, y, t + ∆t) − 2u(x, y, t) + u(x, y, t− ∆t)

∆t2
≈

c2

(
u(x + ∆x, y, t) − 2u(x, y, t) + u(x− ∆x, y, t)

∆x2

+
u(x, y + ∆y, t) − 2u(x, y, t) + u(x, y − ∆y, t)

∆y2

)
The form above allows us to switch to a notation that will be suitable for map-

ping to the grid with discretized values. This requires the following transformations:
Assume ∆x = ∆y = h for the distance between grid points. Use the discrete value
i for the continuum of x, and j for the y direction. Then, x + ∆x becomes i + 1,
y − ∆y is assigned the index j − 1, etc.

Instead of u(x, y) for the value of u at the spatial coordinates x and y, we write
ui,j for its value at the (i, j) node on the grid. The illustration below shows all the
grid points, or nodes, that participate in the calculation involving an inner node
(i, j).

Short Introduction to Scientific Computing � 7

Note that this is not the only mapping possible. Here we used what is termed
central finite differences scheme, with a second-order error size. There are schemes,
with the same order size of error, that use just forward or just backward differences.
In fact, such schemes are necessary for the nodes on the boundaries of the grid. And
it is possible to construct difference scheme that have employ higher order expansion
of terms for a smaller error size. The nature of the problem, the relative scales of
values, and the desired or necessary accuracy dictate these details.

ui,jui−1,j ui+1,j

ui,j−1

ui,j+1

i direction

j
d
ir

ec
ti

on

h

Mapping program indices onto the grid

There is one more matter of notation to deal with. The simulation is done over
time, as evident from the differential equation, the wave equation we started with.
The computation starts with initial values over the spatial grid. This corresponds
to t = 0 in the simulation process. When computing we set a time step, what we
marked as ∆t. To complete the discretization process we set the variable n to denote
the time step. The denote the value of the wave function u at a grid point (i, j) and
at time step n is un

i,j .

In what follows the approximated relationship in the expression above is re-
placed with an equality. The ≈ becomes =. We can now write down the discretized
form of the wave equation (with the choice of the simple finite-differences scheme
we took):

un+1
i,j − 2un

i,j + un−1
i,j

∆t2
=

c2

h2

[(
un
i+1,j − 2un

i,j + un
i−1,j

)
+

(
un
i,j+1 − 2un

i,j + un
i,j−1

)]

8 � Short Introduction to Scientific Computing

The expression above involves the 4 immediate neighbors of an internal grid
point (i, j), as drawn in the figure further above. It also contains 3 time steps,
marked as n− 1, n, n + 1.

The computation simulates the progression in time of the wave, in our example.
The start values are given. These are all the u values for every (i, j) point. These
initial state corresponds to n = 0 of the time direction. The computation produces
subsequent time steps. Note that there is one term that belongs to the n = 1 time
step. It can be kept at the left-hand-side, to be calculated by the known values at
the right-hand-side of the resulting expression:

un+1
i,j = 2un

i,j − un−1
i,j

+

(
c∆t

h

)2 (
un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1 − 4un
i,j

)
This works for time n = 2 onward, and for all the internal, non-boundary, grid

points, since we need time steps n and n− 1 in order to compute the values for the
next time step, marked n+ 1. A special procedure is needed for the first time step,
and there are finite differences schemes that are tailored for that (but not discussed
here). In addition, the expression above cannot be used for the boundaries of the
grid, since each point requires of its neighbors’ values in all directions. There are
ways to handle these grid points that are equivalent to the methods available for
the first time step. However, often the edges of the grid are kept fixed. That is,
their initial values stay constant - typically, zero. This corresponds, for example,
to a membrane that is kept in place and allowed to vibrate. In this case, all the
computed (i, j) points are internal; they have near neighbors in all directions.

The last expression above can be transformed to code quite easily. Here is a
walk-through in words, rather than code, to both explain the algorithmic procedure
and to be independent of the programming language.

The solution at each step of the simulation is the value of the wave function at
each grid point. In the code these can be presented in a two-dimensional array. Call
it U . It is a square or a rectangle with the size of the x dimension equal the number
of i points (along a fixed j), and the y direction spans the number of j points (along
a fixed i). U gets refreshed every time step. For real application, an array such as
U can be quite large, and if a copy of the array will be kept in memory for every
step, it will overflow very quickly. Also, past copies are not needed anymore for the
simulation. The programmer decides to write the array out to storage every time
step, every fixed number of steps, or just keep the end result. Think of U for a given
time step as Un. The formula above uses Un−1 and Un to compute Un+1. For the
next time step we drop Un−1 (it may be saved in a storage file), and Un and Un+1

are used to compute Un+2. And so the process proceeds with three copies of U .

The computation kernel is embedded in nested loops over the indices i and j,
or expressed with the language’s array notation. The RHS of the formula above is

Short Introduction to Scientific Computing � 9

computed to give the (i, j) element of the n+1 time step. Start with twice the latest
value minus the value from the previous time step. Then the 4 nearest neighbors
of (i, j) are added up, and 4 times the latest (i, j) value subtracted from the sum.
This latest result is multiplied by the constant (c∆t

h)2. It is computed once, and
used as a simple multiplier throughout the computation. The result is added to
subtraction done at the beginning, and this concludes the calculation of the latest
value for element (i, j).

The pseudocode below sketches the computation of the main kernel. The arrays
used are P , C, and N , to indicate previous, current, and next time steps instantia-
tions of the U array.

Pseudocode for the 2D Wave equation

: Initialization
Read L , h , c , dt , amp, T, k

: L is the no. of grid points in each direction
: T is the no. of timesteps/iterations
: Save results every k iterations
: Set P to all zeros; but for the center grid point

for i = 1, ... ,L and j = 1, ... ,L do
Pi,j = 0

end for
PN/2,N/2 = amp : Pebble thrown to center of square pool
Const = (c ∗ dt/h)2

: Skipping the first time step
: (modified diff scheme for first step N values)

: Main computational kernel
for t = 2, ... , T do : Count timesteps

for i = 2, ... , L-1 do : Edges are held fixed at 0
for j = 2, ... , L-1 do : Interior point are computed

Ni,j = 2 ∗ Ci,j −Pi,j
Ni,j = Ni,j +Const ∗ (Ci+1,j +Ci−1, j + Ci,j+1 +Ci,j−1 −4 ∗ Ci,j)

end for
end for

: Save results if t is a multiple of k
if t mod k = 0 then Write N
end if

: Prepare for the next timestep
P = C : ’Current’ state becomes ’Previous’ state
C = N : New state, ’Next’, becomes ’Current’ state

end for

The example described above should not be confused with a real-life scientific
application. It is a very simple example of a one-equation solver core of an appli-
cation. Applications of interest involve a set of equations for a number of physical
quantities that describe a complex natural phenomenon. These problems deal with
multiple sets of data with possibly different grids for different variables that require
clever numerics to map the results and produce smooth and accurate simulation.
There are many problems that are not amenable to regular grids; think of simulat-
ing the air flow over an airplane, for example. Not only is the shape irregular, but

10 � Short Introduction to Scientific Computing

also the spacing between points are not equal. Creating the grids and the datasets
for each variable, and managing the data between steps in the simulation process
is a much greater effort than programming the solver. Especially when the users
can resort to a rich set of general numerical routines simply by calling on external
libraries. More on such issues in the introduction of weather models in Ch. 4.

It should also be clearly stated that not every numerical simulation problem
can be stated by partial differential equations, though many can.

A note about precision: The accuracy of numerical computations is clearly an
important consideration. One factor is the limited precision inherent in the finite
number of bits that hold the values. And then there is the additional approxima-
tion introduced by discretizing continuous equations. Numerical analysis and error
analysis coexist and ever present in numerical HPC. The intersection of perfor-
mance, algorithms, accuracy, and numerical stability is a matter of both science
and “marketing” (by computer vendors who are in performance bragging rights).

There are ways to reduce the numerical error that arise from stating its sources:

A wider word size will capture more digits of real numbers. Typically, in current
computer architectures, the use of double-precision 64-bit words over the 32-bit
single-precision word. There are cases where even higher precision is warranted,
where, with the help of compiler or library software, 128-bit words can be used.
Floating-point numbers, as defined by the IEEE-754 standard, are represented by
an exponent, a fraction, and a sign bit. For 64-bit word 11-bit field is for the
exponent, leaving, with 1-bit sign, 52 bits for the fraction part. This translates to
15 to 17 significant decimal digits that can be carried for the number. This is a
pretty high precision by everyday standard, say, for measurements of temperature
or wind speed. However, in simulating a phenomenon over time, there are important
cases where a tiny numerical error can quickly amplify and lead to inaccurate or
unstable solution. This happens when we are dealing with non-linear equations.
This is the case for weather modeling, for example.

Loss of precision due to discretization can be mitigated by developing more
complex finite differences schemes (refers to as stencil). For example, using terms
that involve more grid points than the immediate neighbors, and higher-order dif-
ferences.

Employing one or both of the remedies above come at the cost of more com-
putations, and longer time to solution. More on the subject in the chapter about
performance - Chap. 31.

There is (much) More to Scientific Computing

Let us move beyond the generalities of the Third Pillar and a simple digital simu-
lation into the wider space of scientific computing. Gene Golub and James Ortega
define scientific computing in their seminal book on numerical analysis[5]:

“Scientific Computing is the collection of tools, techniques, and theories

Short Introduction to Scientific Computing � 11

required to solve on a computer mathematical models of problems in
Science and Engineering.”

This introductory chapter doesn’t do justice to the depth of what is involved in
scientific computing. The modeling and simulation aspect alone is supported by a
vast reservoir of inquiry under the heading of Numerical Analysis, of which we saw
one simple example. The field is a major branch of mathematics that started well
before computers existed.

To this we should add that the discussion so far, and including the “definition”
of scientific computing above, refers to the “classic” (that is, of the past) notion of
the field. In the last decade or so, two other major domains of investigation were
added to what we still call computational science and the world of HPC. These are
data analytics and artificial intelligence, mostly in the form of machine learning .
These areas of inquiry are now an integral part of high-performance computing,
when digital processing is involved, not only because they require capabilities and
features developed for scientific computing. Perhaps more significant than adding
non-numeric applications and workloads to HPC systems is the fact that both data
analytic and AI methods are in a fast-growing use in modern science and engineering
research. More on that in a later chapter - the one about the changing face of HPC
(Chap. 24).

To better comprehend the scope of scientific computing it is helpful to think in
terms of a multi-dimensional taxonomy of application domains, problem types, and
solution methods. The result is far from a one-to-one mapping. A given problem
type has, typically, a multitude of approaches for solving it. A particular solution
method may apply to several problem types. A problem type or a solution method
may be applicable to more than one application domain.

Application domains contain more than fields of science and engineering. Several
industries rely on some of the same kinds of problem types as do scientists in
academia. Of course, there is much research being done in the private sector, even
when we limit our attention only to where high-performance computing is involved.

A high level view of the main HPC areas of research in science and engineering
- that is, in academia, arranged by four disciplines:

Physics Life Sciences Earth Sciences Engineering

Astrophysics Comp Chemistry Weather Modeling Mechanical
Condensed Matter Comp Biology Climate Modeling Aerospace

Plasma Physics Evolutionary Biology Oceanography Civil
Particle Physics Molecular Biology Geophysics Earthquake

Ecology
Neuroscience

In reality, we find other domains resorting to HPC-class systems in academia,
even if to a lesser extent. Examples are economic modeling and statistical analy-
sis for social studies. Going beyond simulation and modeling, we now include data

12 � Short Introduction to Scientific Computing

sciences as a discipline of scientific computing that relies on high end computing sys-
tems. The work done by researchers propagated and applied in many ways outside
the sphere of academia to the benefit of all, as will be seen below and throughout
the book.

As we drill down on the contents of scientific computing, consider the types of
real-world problems that are encountered in simulation and modeling of the physical
world. A partial list includes these (see below for associated industries):

� Weather forecasting, Climate modeling

� Flow (fluid dynamics)

� Drug Discovery, Genomics

� Vehicle design, Crash analysis

� Seismic processing, reservoir modeling

� Currency trading, Risk modeling

� Rendering, Visual Simulation, Content streaming

� Material analysis, discovery

� Pattern recognition, Code breaking

� Structural analysis

� Product design - consumer products, mechanical, electronic, renewable energy

There are various ways to classify the mathematical sub-fields of numerical
analysis. I find the comprehensive list compiled in a Wikipedia article (see [6])
useful in that it covers the classes of problems as well as solution methods. A
helpful aspect of this reference is the links it provides for a deeper explanation of
the items listed there. From the broad categories of problem types it is worth noting
-

� Linear algebra - systems of linear equations, eigenvalues

� Partial differential equations

� Ordinary differential equations

� Optimization

� Nonlinear equations

� Interpolation, Approximation

� Integration

� Graph analytics

For each of the mathematical areas listed above there is a whole host of numer-
ical algorithms that can be programmed for digital computations. Typically, there

Short Introduction to Scientific Computing � 13

is no “best” algorithm for a given problem type. The choice of one depends on the
specific problem to be solved. The form of the equations, the size of the dataset,
shape of the grid, the variability of data items - all factor in the choice of a method
for solution. The subject is too voluminous to attempt even a summary of it here.
For a taste of what is involved, let us pick partial differential equations (PDEs),
since it is so central for much of the simulation and modeling enterprise.

The problem to solve is finding a function when given equations with the un-
known function’s partial derivatives (example of which is the wave function equation
examined above). Typically, there is no known explicit solution that can be written
as a closed form expression. This resulted in having to resort to numerical represen-
tation of the function over some domain of interest. A large repertoire of methods
was developed over the years for PDEs (for a brief overview, and further reference,
see [7]). Among the more popular and widely used approaches are the finite dif-
ference method, the finite element method, and the finite volume method. Within
each of these overarching approaches there are many specific algorithms designed
for particular forms of equations and and solution domain.

In addition to the methods above there are quite a few that don’t fall into
one of those three. A couple are worth mentioning. The spectral method - where
the solution is expressed as a sum of frequencies (via Fourier transform, typically),
solved for the coefficients of the series, then transformed back to spatial values on
the physical grid. Another example is the Monte Carlo method that uses weighted
random sampling repeatedly as a way to arrive at solution where other methods
would fail or be slower. See Chap. 9 for a use case.

The topic of Iterative methods deserves further elaboration. This cuts across
the algorithm classification above. A set of PDEs over a grid can, frequently, be
expressed as a system of linear equations in matrix form, when using any of the
main methods above. Iterative methods were developed for when a direct solution
to the equations is not known or when it is not practical to perform a known
procedure due to the time it would take to get at a solution. There are quite a few
such algorithms. What they have in common is that after a discretization scheme
defines the relationships between grid points, the procedure begins with a guess
or an estimate of initial values on the grid. New values are computed according
to the above relationships. Knowing the equations means the numerical error can
be computed at each point and averaged over the grid. The new values are used
for the next iteration of the procedure and new average error computed. So it
continues until the error falls below a pre-defined tolerance value. Or, as might
happen, the convergence stalls and solution cannot be reached. In which case the
researcher may resort to a higher precision (wider word) implementation and/or
a better starting state; or a different algorithm. More often, a priori numerical
analysis would have determined the appropriate algorithm for the set of equations
and the physical problem it applies to. Describing the various iterative methods
is beyond the scope of this introduction (an application of one such method is
described, without numerical analysis, in the chapter on QCD - Chap. 9).

14 � Short Introduction to Scientific Computing

There is an element of art to computing with iterative methods. The goal is to
arrive at converged solution fast. The first element is a good starting point - the
initial values on which to iterate. For that people developed various preconditioners.
These are transformation of the original problem into a form that allows a faster
solution by the method chosen. There are also methods used to accelerate the
convergence during the iterations phase. A notable example of that is the Multigrid
method. Its basic principle is that coarsening the grid (which reduces the iteration
compute time) eliminates lower frequency components of the error. In this method
the computation cycles through coarser and finer grid.

A few words on the two additional areas of inquiry, beyond simulation and
modeling, that make up today’s HPC:

High Performance Data Analytics (HPDA) refers to the use of high-performance
computing for big data analytics. HPC systems allow performing tasks - such as pat-
tern recognition, graph analytics, streaming analytics, support of decision making,
and generally gaining insights - on very large datasets. Known processes and algo-
rithms deliver more effective and accurate results when applied to larger datasets.
The availability of vast amounts of data, made possible by the digitizing of data,
triggered new applications and new methods of data analysis. The data processed
may be the output of simulation - climate modeling output, for example. It may be
financial, medical records, electronic communications, population data, and more.

The other field that is now associated with HPC systems and with science and
commerce is artificial intelligence (AI) in the areas of Machine Learning (ML)
and Deep Learning (DL). These go beyond data analytics in that the application
is digitally “trained” to find an answer or a pattern given a dataset (ML), or
even identify relationships within the data elements without any guidance from the
human programmer.

More on applications and methods of these two topics in later chapters of this
book.

The HPC Ecosystem

Scientific Computing, supplemented recently with data analytics and AI, exists
within an HPC ecosystem. We can think of the HPC world as made up of three
groups: The users are the scientists, researchers, and engineers who do the pro-
cessing on the systems. The second group, no less critical, is made of the people
who make running the applications possible. They are responsible for the software
stack - the operating system, the compilers, and system utilities, the interconnect
protocols, middleware, etc. The group also include the writers and developers of all
the numerical software, data analysis procedures, machine learning algorithms, and
more. And, lastly, we have the vendors and technology providers who put together
the systems capable of high performance. This is the group, much of it in the private
sector, that is credited with the unmatched advances made in computing these last
50 years.

Short Introduction to Scientific Computing � 15

While it is true that most of the initial work and innovation in scientific com-
puting and supercomputing originated in research labs and universities, the HPC
user community includes a significant participation of users from the private sector,
or Industry. Notable industry sectors include:

� Automotive - structural, crash simulation, fluid dynamics, noise reduction

� Aerospace - fluid dynamics, structural, materials

� Chemical - molecular dynamics, electronic structure

� Pharmaceutical - drug discovery

� Oil & Gas - seismic processing, reservoir modeling

� Financial - fast trading (Monte Carlo), risk modeling

� Entertainment - rendering, visual simulation

Early HPC, or supercomputing, use was almost exclusively in government and
academic funded institutes - national research labs, government agencies, and uni-
versities. From there, HPC use propagated to the private sector (often referred to
as “Industry”). This process of adoption of new compute technologies and novel
applications first by researchers in the public sector, then in Industry, continues to
this day. This is true about where the largest systems are initially placed, where
new components (GPUs, for example) are first tried, or where new applications and
methods are first created (think of numerical algorithms, ML, etc.).

The “public-to-private” relationship is similarly true for the second group of
the HPC community. The “enablers” of HPC use, who write the system software,
user utilities, and libraries. are a mix of public and private sector individuals and
companies. There is more publicly, open-source, HPC software available than com-
mercial. In the past, though, computer companies relied almost entirely on propriety
software.

The third group, the providers of HPC systems, all come from the private sector
in the U.S. and most other countries; though they enjoy basic technologies developed
by government-funded labs and researchers. Stories related to these companies are
scattered throughout this book.

A concluding reminder to the reader: This chapter is meant to provider some
context for the world of scientific computing and HPC for the uninitiated. It cer-
tainly isn’t a replacement for a text book on the subject. The remainder of the
book will not contain any math, but will touch on concepts described here.

I
The Epoch of Big Iron

Vector Processors of the 70’s

17

C H A P T E R 1

In the Old Days ...
This was supercomputing 50 years ago

U sing supercomputers in the 70s was very different than it is today. Their speed
and capacity may be laughable to Millennials. The programming model and

languages antiquated. The process of creating, submitting, and getting results, of
compute jobs was tedious and cumbersome. Here is what life of a scientific computer
user was like.

But first, consider the computers of the 70s.

The scientific supercomputers were about the size of the commercial mainframes
of the day, perhaps a little smaller. For a comparison to today’s equipment in the
datacenter, think of a row of 4-6 server racks, maybe 2-3 deep. only that was, in the
late 60’s - early 70’s, a single processor with its memory. The magnetic disc units
storage and tape units occupied separate space nearby (Figure 1.1, for example).
The compute power of the system was measured by tens of millions operations
per second. The amount of memory was of order of a million bytes (though we
always counted in “words” in those days). See Figure 1.2. To set the scale right,
consider that our smart phones today (smartphones!, not supercomputers) measure
their performance and memory in the billions of both operations per second and
memory capacity. Yes, our small hand-held device have, in terms of operations rate
and memory capacity, three orders of magnitude greater capability than the most
powerful supercomputers of 50 years ago.

At the start of the decade of the 70’s there were several companies that devel-
oped scientific computers commercially. They were designed to perform complex
numerical calculations well.1 As opposed to what was referred to as commercial
computer systems - the more powerful of which were known as mainframes. These
’commercial’ computers were good a character manipulations and accounting-type

1IBM was so much larger than the other main players in the mainframe and scientific computing
market, that these companies were sometimes referred to as “Snow White and the Seven Dwarfs”,
with IBM being Snow White. The ”dwarfs” were Control Data Corporation, UNIVAC, Honeywell,
General Electric, RCA, Burroughs, and NCR.

19

20 � Unmatched: 50 Years of Supercomputing

Figure 1.1: CDC 7600. Source: IT History Society (ithistory.org).

calculations. The next chapter gets into the nature of numerical simulations and
modeling of physical phenomena. For now, keep in mind that good floating-point
arithmetic performance is not the only important feature separating the scientific
supercomputer from the mainframe. Just as important was its high performance
memory system - both in terms of latency (how fast to get a data element), and in
terms of bandwidth (how much data can be fetched or delivered in a unit of time).

Supercomputing was about to undergo dramatic changes mid-decade, but not
so much in terms of the mechanics of accessing and using the computers. The
supercomputer resided in a closed and chilled room, with no access from outside.
It was monitored and managed by operators in the computer room using a console
terminal. One had to be physically at a window or counter of the computer room
in order to submit a job or collect a printout. Yes, this was years before there was
Internet, WiFi, or even PCs (the latter would appear by the end of the 70s).

The high-level programming language for scientific computing was Fortran,
though it was quite common to resort to assembly language coding for better per-
formance or calls to system functions. It was much more rudimentary than today’s
Fortran, with none of the object-oriented feature and data structure definitions in
use today. We will return to this topic. The program to be executed was punched
onto thick paper cards via a specially designed punch card machine (See Figure
1.3). Each card was coded to represent one line of code; up to 80 characters. Each

In the Old Days ... � 21

Figure 1.2: Early best-performing computers.
SOURCE: Kenneth Flamm. 1988. Creating the Computer: Government, Industry,

and High Technology. Washington, D.C.: Brookings Institution Press.

character was represented by a vertical set of punched holes. Of course, any changes
to any line of the Fortran program requires new cards to be punched out.

The ‘dumb’ terminal used in conjunction with the card-punch device was also
used to print the source code. That was the program’s ’listing’. The printer did
not have a choice of fonts. It was noisy and large, and had large wide perforated
paper with perforation between pages and along the side margins of the paper
roll. This paper listing of the code was actually considered a form of “permanent
storage”.(Figure 1.4).

The user of the 70’s ends up with a deck of punched cards. We had long sided
tray boxes to place the cards in. Even so, this is a volatile situation. Placing and
replacing cards and carrying the box all too often resulted in dropping the tray-box
or a bunch of cards. It was frustrating and time consuming to place them in order.
Some machines had the ability to number the cards when they got punched. This
was probably the most valued ’feature’ of a punchcard machine.

Until the days when it was common to have a terminal at the user’s desk,
sometime into the 70’s in most organizations, the user would go to an area adjacent
to the computer room to get the source code punched onto cards. Once the deck
was ready, it would be ‘read’ into a card-reader that would create an electronic
version of the source code. It would possibly include input parameters that specify

22 � Unmatched: 50 Years of Supercomputing

Figure 1.3: Punchcard Machine.
Source: blog.iqsdirectory.com.

execution options and/or file names where input data resides. A front section of
the deck set the load, compile, and execute (“go”) sequence with its parameters -
optimization level of the compiler, libraries, etc. The job would enter a batch queue.
Interactive processing was very limited in those days and required access to console
terminal in the computer room. Depending on the system and the organization,
the job wold wait execution from hours to days. The user would call or stop by to
find out if the job was run. Assuming no compilation or load errors (which would
kick off corrections and repeat of the process), there would be an output printout
of key results. Most simulations runs would have an electronic output file beyond
the summary figures printed out.

Yes, the process was time consuming and tedious. Then again, the computers
were so much less capable than todays. Which meant the codes were less complex, to
allow for tolerable execution time, and had to be designed to use only the limited
amount of memory available in those days. The top supercomputer in 1970, the
Control Data Corporation’s CDC 7600, had 65K words of memory and a peak
performance of just over 30 MFLOPS.

Much was about to change in the mid 70’s.

In the Old Days ... � 23

Figure 1.4: Computer Printout.
Source: Wikipedia; https://en.wikipedia.org/wiki/Listing (computer)

C H A P T E R 2

Vector Processors
The ear ly workhorses of HPC and going beyond mainframes

The story in this book begins in the 70’s. That is not when electronic computing
started. Digital computers existed since the late 40’s. From the start they were

designed for arithmetic calculations, and other forms of data manipulations. At the
beginning they were build with vacuum tubes, and later with transistors. By the
time our story begins computers are made with integrated circuits, and computer
chip made of silicon less than a decade away. The miniaturization of the basic
components that took place was in the millions even for that period of late 40’s to
early 70’s. And the pace continues to these days.

The traditional approach to designing a computer processor for numerical com-
putations workloads took a major turn by the mid-70’s. Up until then, performing
arithmetics on a computer was sequential. For example, to perform addition on a
set of numbers with another set, the following would occur, in order: load operand
1 from memory into a register 1 on the one of the computer chips 2, load operand
2, do the addition of the two operands and place the result into another register,
and finally store the result to a location in memory. The load and store operations
took many more clock cycles than the add operations. When this first result was
stored, the second pair of operands will be loaded, and the sequence repeated. And
so it went until the two set of numbers were added and a set of results stored.

Then vector processing was invented. It was a departure from past thinking of
how to process and compute, and particularly suited to numerical calculations. The
vector processing design afforded considerable higher efficiency of computations.
”Efficiency” here means the fraction of the theoretical peak performance that the
application actually achieves. Lest the reader thinks this is only of historical interest
- it is not. The concept explained below has been resurrected in today’s processors,

1A register is simply a memory location the size of a ’word’ serving as temporary storage close
to the arithmetic units (the use of caches has not arrived yet).

2Yes, a processor in the 70’s occupied multiple chips. In fact, multiple boards. More like today’s
chassis in a rack of servers.

25

26 � Unmatched: 50 Years of Supercomputing

even if the implementations are quite different. We find it both on modern server
chips and as a central theme of the GPGPU.

There are several ideas behind vector processing:

� In sequential processing, also known as scalar processing (to contrast it with
vector), much of the time is spent waiting on operands to load, store, and
an operation to complete. This wait time, or latency, is wasted time and
resources. It would be good to be able to have the computer do something
useful during this ’dead’ time.

� There are multiple functional units in the processor: Load/Store, Add/Multiply,
Logical .. There is no intrinsic reason why one unit cannot operate in service
of one instruction, while another operates on a different datum on behalf of
another instruction.

� As we saw in the introductory chapter, much of the simulation model involves
operations over sets of numbers. A pair, or sometimes a triplet, of operands
is loaded from memory, operated over, and the result stored back to memory.
One such sequence of operations is followed by another. The two sequences
are independent of each other, so there’s no reason for the second not to start
before the first one finishes.

� The sets of numbers, or arrays, operated upon are stored in consecutive loca-
tions in memory. Each of the array’s elements is operated on in an identical
manner. Then, perhaps, it is possible to design a single instruction to per-
form a series of identical operations on each element of the participating sets
of numbers. Take adding elements of two arrays pair-wise and storing to an
output array. The instruction will need as parameters the starting addresses
of the input and output arrays, the lengths of the arrays (which, of course has
to be the same for all participating arrays), and the type of operation to be
performed. Then, in principle, this ”array operation” can be streamlined.

� To make it all work the architecture of the processor has to be pipelined.
Whether in the process of loading, addition or multiply, or storing - stages that
take multiple clock cycles, the operands have to move forward each clock and
make room for the operands behind them. The high level logical operations
have to be broken down to one-clock series of stages. The system has to provide
holding places for each operand at each stage. It is similar to an assembly line.

The arrays discussed above are one-dimensional; hence, they are called vectors.

In the literature we find that, at times, vector processor and array processor are
used interchangeably. They shouldn’t be. True, from the user’s point of view, both
have in common an important property: one instruction applies to multiple variables
and produces multiple results. This architectural feature is referred to as SIMD -

Vector Processors � 27

Single Instruction Multiple Data. However, the very different approach to hardware
implementations of vector and array processors has far reaching implications. The
discussion of array processors belongs in Part II, as part of the multi-processor era.
When an array processor responds to an instruction, all of its processing elements
execute simultaneously. When a vector processor executes the same instruction,
the operation is pipelined. After some startup time, a result pops out every cycle3.
Perhaps the most significant difference, for the user, between the two types of
architecture is an array processor is attached to a host processor that controls
it and is the gateway to it; a vector processor is a stand-alone system, directly
connected to the outside world. The evolution of the vector processor’s approach
led to vector instructions on today’s server chips. The array processor concept is the
predecessor to the GPU and the GPGPU. The presence of an array of processing
elements allows an important capability: The array can be divided so that different
regions perform different tasks. We will return to these topics in Parts II and IV.

The ideas behind vector processing were implemented differently by the several
companies and computer architects who created the early vector systems. The first
ones to develop and market vector processor systems were Control Data (CDC) and
Texas Instruments (TI). Both developed their designs in the late 60’s and brought
to market in 1973. The architectural feature that distinguished these early systems
from the better known Cray design was the way they accessed the operands of the
vector instructions. Both the Advanced Scientific Computer (ASC) from TI and
the STAR-100 from CDC streamed operands directly from memory to the func-
tional units, and back to memory. This design decision meant that the advantage
of vector streaming was realized only in cases where the vector were long - of sev-
eral hundreds or thousands of elements. Due to the smaller capacities memories in
those days, this meant that the actual performance of many real applications was
disappointing. Unless the programmer found ways to string together arrays into
long one-dimensional vectors. I’m entitled to say this about the STAR-100 since I
was one of its early application programmers. More on my experiences with this
system and its successors at a later chapter. It is interesting to look at an image of
the STAR-100 (Figure 2.1) to just get an idea of how technology advanced since the
mid 70’s. The two front wings in this artist rendition hold a mere 4MB of memory
.. less than 1/1000th of what we carry in our hand held devices today.

The STAR-100, and its CDC successors, were unique in another interesting
aspect that was not just of interest to computer scientists and architects, but to
application programmers and algorithm designers. “A Programming Language”,
or APL, is a name of a programming language developed in the 60s by Kenneth
Iverson[8]. The language’s main datatype was arrays. The feature that attracted
the STAR-100 architects, Jim Thornton and Neil Lincoln, was its application-level
operators. The STAR-100 contained, beyond the basic arithmetic operations, such
functions as Scatter, Gather, Compress, Merge, Mask and more. The application

3Some vector processors had 2 or 4 pipes that executed simultaneously. This can be seen as a
hybrid vector-array, with a very small scale array component

28 � Unmatched: 50 Years of Supercomputing

Figure 2.1: CDC STAR-100. Source:
https://en.wikipedia.org/wiki/CDC STAR-100.

programmer, who used only Fortran at that time, accessed these operations through
special function calls. Where appropriate they provided a real boost to performance.
The STAR-100 and the Cyber 200 line are dead now, and this anecdote is only worth
mentioning because some of these operations are making a comeback. For example,
the Gather/Scatter instructions are included in the repertoire of vector instructions
in today’s Intel processors.

These two pioneering vector designs did not exactly shake the market. There
were seven TI ASC systems built, and that was it. Five STAR-100 systems were
built, with only three delivered to customers. However, CDC did not abandoned
the product line, and went on to produce improved versions - the CDC Cyber 203
(short product life time of a couple of years and production of two systems), and the
CDC Cyber 205 by 1980. The latter had the option of two or four vector pipelines.
Control Data then spun out the vector product line and formed ETA Systems, who
produced the Cyber 205 successor the ETA10. By the late 80’s CDC were out the
vector processor business.

We will return to the events of the 80’s in Part II.

Now, to the most dramatic event related to vector processing in the 70’s: Enter
the Cray-1 from Cray Research, architected and designed by the legendary Seymour
Cray. Debuted in 1976, the Cray-1 was not the first vector processor in the market.
It was, by general consensus, the first commercially successful vector processor. It
is the best known and has been mentioned numerous times in pop culture since. It
is not uncommon to say “a Cray” as a shortcut to “supercomputer” or “a very fast
computing system”. In the past this was a reference to the Cray-1. As time went
by this applied to later products from Cray Research, and then to those from Cray
Inc. Of course, the use of “Cray” is driven by the company’s name and the strength
of its brand. But it is also a tribute to the genius of Seymour Cray. Cray was
foremost an engineer with a large dose of creative imagination. One of the reasons
for the media popularity of the Cray-1 was its appearance. In his efforts to maximize

Vector Processors � 29

performance Cray focused on, among other things, minimizing the lengths of the
wires and cables connecting the system’s components. He achieved that by literally
and figuratively thinking “outside the box”. In a departure form the conventional
square boxes, Cray found that a circle shape allows for shorter connections. The
circle is not completely closed. This was necessary to allow maintenance of the
system. Engineers had to get inside the circle to reach the boards and cables4 (see
Figure 2.2). An added nice touch was the ’bench’ around the system. Well, the
padding was really the added touch: The ’seat’ sections housed the power supply
units for the Cray-1.

Figure 2.2: Seymour Cray next to a Cray-1. Source:Computer History Museum
(computerhistory.org).

Aesthetics alone did not account for the Cray-1’s success - though it was a big
contributor to the pop culture trending. The single most significant architectural
innovation was the concept of vector registers.

The earlier vector processors - the CDC STAR-100 and the TI ASC - streamed

4Actually, Cray started the use of non-conventional shapes for his designs with the CDC 7600,
as we saw earlier.

30 � Unmatched: 50 Years of Supercomputing

vector operands directly from memory to the functional units, and stored the re-
sults directly into memory. On the face of it, this approach looks efficient; a very
streamlined operation. A single fluid sequence that pipelined streaming of operands
(typically, two streams) from memory to a pipelined functional unit in the CPU,
and the stream of results back to consecutive (typically, but not always) locations in
memory. However, the latency of getting the first operands to the CPU meant that
for short vectors, executing non-vector operations from the CPU’s scalar registers5

was faster. It took some 40 cycles to get the vector operation started; then another
40 cycles to shut it down after the last result was processed. Operands, pre-loaded
to scalar registers were accessed in one cycle. What all this means is that vectors
had to be some 200-300 elements long before there was a benefit from vector pro-
cessing. In reality, such long vectors rarely appear ‘naturally’ in applications in the
70s. It took efforts to string together long vectors. Hiding the latency - the waiting
time to get the first operands to the functional unit, by doing some other useful
operations, was next to impossible with the compiler technologies of that period.

Then came the Cray-1.

The idea Seymour Cray had was to expand the concept of registers in the CPU.
Scalar instruction, one that performs a single operation, requires a register for each
input operand and for the output result. Then a vector instruction would require
a set of such scalar registers for each of the input and output vectors. That is, a
vector register. Of course, vectors come in all lengths, and though this was still
a multi-chip CPU, there were serious limitations on chip real estate - dictated
mostly by distance between components. Cray settled on eight vector registers that
had sixty-four 64-bit words. The compiler had to deal with the varying lengths
of vectors. It would create code for chunks of the original vector that are exactly
64-elements long, plus a remainder shorter vector when the length was not divisible
by 64. The user did not have to worry about managing the ‘vector chunks’. But,
for performance reasons, was well advised to take advantage of matching lengths
to 64-divisible numbers when possible.

This approach implied that instead of the single memory-to-memory vector
instruction of the STAR-100 (and its CDC successors), on the Cray system there
would Vector Load instructions for the inout vectors, followed by an arithmetic
operation, and finished with a Vector Store of the result vector. Seems like an added
complexity. However, this sequence of operations, combined with the existence of
eight vector registers, allowed hiding the latency of kicking off a vector operation.
While a previous vector operation sequence is still advancing, the loading of input
vectors for the next vector sequence can proceed. This overlap means the wait time
on memory access is hidden. The user sees (almost) continuous stream of results
coming out. An almost non-stop operation of the arithmetic functional units.

5Registers, in this context, are word-wide memory locations in the CPU. Load and Store oper-
ations will have them as destinations or sources. Functional units, Add or Multiply, for example,
would fetch input operands and place results from and into them.

Vector Processors � 31

Throughout the late 70s and into the 80s the “vector processing wars” - the
battle for customers - was mainly between Control Data Corp. (CDC) and Cray
Research. For fairness sake, and as an explanation of what occurred in the mar-
ket, we should look at other features of both the Cray and STAR/Cyber designs.
Supercomputing was all about higher performance of numerical applications6. The
overarching theme was vectorization - feeding the vector arithmetic units. And the
challenge was how to expand the space of data and compute structures that can be
vectorized. Algorithmic innovation was a major driver in achieving this goal, and
we’ll get to it in later chapters. The computer architects, however, were able to
place some hardware tools that were very helpful to the application programmers.

In addition to its vector registers, that helped getting good performance for
short vectors, two other features are worth mentioning. The first one is referred to
as “chaining”. Often, one operation follows another and takes an input vector the
result of the previous operation. The most common, and useful, example of this is a
vector-multiply followed by a vector-add. It occurs, most frequently, in a vectorized
version of matrix multiplication. What happens is this: Vector A and vector B
get multiplied with each other. As soon as the first result element comes out of
the multiply unit, it is used an an input with the first element of another vector,
C, for the ‘add’ operation. The two operations are ‘chained’. Storing the multiply
vector result is avoided. And since the functional units (Add and Multiply) are
pipelined, the processor performs two operation per cycle, effectively doubling its
performance. This is a feature that increases performance once the vector registers
are loaded.

Another very useful feature helps loading the vector registers. When dealing
with multi-dimensional arrays it is not possible that vectors in every dimension will
be stored consecutively. To this end, The Cray-1 and later versions, were given the
ability to load and store in a non-unit stride fashion7. There was another, more
controversial, feature on the Cray-1 that simplified the chip design and added to
performance. Instead of including a divide unit, there was a hardware reciprocal.
Instead of performing a true floating-point division, a reciprocal of the denominator
was calculated, to be then multiplied by the numerator. Theoretically equivalent,
the latter was less accurate at times due to having to round the last bits twice.
Computing a reciprocal has a faster algorithm than a divide operation.

To summarize: Chaining of vector operation increases the result rate. Allowing
streaming data in non-unit stride manner opens up many more opportunities to
vectorize and to chain operations.

The STAR-100, and its successors, also had architectural features that enabled
higher performance and expanded the universe of what was vectorizable. The arith-
metic units were designed so they can each act as two units when served with

6Today the target application space goes well beyond just numerics, as we will see later.
7One had to watch so as not to have a stride size that is a multiple of the number of bank in

memory, since this would cause a serious slow-down of the load or store operations

32 � Unmatched: 50 Years of Supercomputing

single-precision (32-bit) operands. Turns out there are important applications where
single-precision was sufficient, notable weather models and seismic processing. In
this cases the performance - the results rate, was doubled. In addition, on the Cyber-
205 it was possible to do what can be called a conditional chaining. True vector
chaining requires streaming of three input vectors. There were only two load pipes.
However, if one of the inputs was scalar, then this form of chaining was possible.
This was referred to as linked triad. For example: V ector = V ector+Scalar∗V ector
is central to vectorized matrix multiplication.

As for expanding the applications space amenable to vectorization, the STAR-
100 and the Cyber 205 had even more robust set of features than the Cray. Not
only was it possible to operate on non-unit stride vectors, vectors could be loaded
that were composed of any combination of elements of the array. The stride did
not need be constant, the list of vector members needn’t be advancing in one
direction - members could be fetched up and down the array, and elements could
be selected more than once. This was achieved by constructing an index list of
integers pointing to locations in the target vector. These index lists were used for
the Gather and Scatter operations mentioned above. In fact, when the desired list
was one-directional and any element can be called upon just once, then a list made
of zeros and ones - a bit list, would do. Such a bit string would be used in Compress
operations to create a shorter vector of elements for a part of the computation. The
reverse operation was an operation called Expand that would seed elements into a
longer array. And there was the Merge instruction to create a single vector out of
two separate ones. All three operations were guided by a bit string.

By the end of the 80s it was the Cray approach that survived and won the
”vector war”. Though, by that time there was a more formidable challenge - the
micro processor.

The above overview of vector processors was not meant to be a complete archi-
tectural description of the systems mentioned. For that there are other references
more oriented to engineers and computer scientists8. My goal here was to highlight
some aspects of the two main US competitors in the 70s. Especially those that
the users felt the most impact of. The discussion above is more than a historical
footnote. The features that stood the test of time survived the demise of the pro-
prietary big-iron vector processors. Vector instructions, and registers, show up on
resent day commodity microprocessor servers. Even such esoteric operation as the
gather. Programming techniques from the 70s and 80s have been re-learnt in the
last 20 years. We will return to this theme later in the book.

Other players in the vector processors era deserving of mention are IBM with its
3090 vector processor, and three Japanese companies that built vector processors.
More on both in Part II. For a quick overview and brief history of vector processors
see [10].

8For example, there is concise and neat description of the Cray-1 as a 2002 writing project from
SJSU. Check [9].

C H A P T E R 3

Vectorizing Applications
Chal lenges in Real iz ing Potent ia l Performance

V ector processors get their high performance potential from the hardware
features described in the previous chapter. To realize this potential the man-

ufacturers provided vectorizing compilers and mathematical libraries that took ad-
vantage of vector instructions. However, for any scientific numerical application,
but the very simple ones, this was not enough.

Today the subject of vectorization may seem a minor one. At least, not one of the
main concerns for an application developer. But in the era of vector processors this
was central and unique for HPC. Vector features were used in scientific computing,
but not in enterprise applications (even when IBM added vectors to its mainframes
in the 3090 product line). Conferences and workshops on HPC topics in those days
were consumed with the challenges of vectorizing applications. See, for example,
several chapters in [11].

The importance of revisiting the topic of vectorization lies in the fact that was a
precursor to parallelization. Code that is correctly vectorized can also be executed
in parallel. The reverse isn’t true: non-vector and non-vectorizable code may still
be amenable to parallelization. The methods and techniques for vectorization that
were found, invented, and developed in the 70s and the 80s still apply and serve
us well in today’s massively distributed-processing clusters. They directly apply to
intrinsic vector instruction in modern cores and GPUs.

For me personally, adapting applications to vector processors was a full-time
occupation for several very fulfilling years during the period of mid-70s to early
90s.

Vectorization, a fine-level expression of parallelism, plays a minor role in HPC
programming today relative to concurrency of execution across multiple servers
and accelerators. After all, vector code in its best produces one result each clock
cycle, for each vector pipe. A cluster today can deliver many thousands results
simultaneously each cycle. But vectorizing codes was a big deal in its day - up to

33

34 � Unmatched: 50 Years of Supercomputing

about 30 years ago. The work, experimentation, and innovation that went into this
activity laid significant part of the foundations upon which HPC codes are designed
and developed today.

It was out of necessity that codes were modified to expose opportunities for
invoking vector instructions. The Fortran compilers of this era could not be relied
on to detect vector operations in most but the simplest of cases. The work done
by the high-level language programmers was important not only for the modified
application, but, even more importantly, as a guide for compiler writers of what
transformations can be accomplished by the compiler. The ”holy grail” was, and
still is, automatic vectorization.

The following is not a tutorial, but, rather, a brief discussion of the challenges
and general principles related to vectorization.

Effective use of vector-capable hardware forced the programmer to structure
and organize both Data and Code. As was explained in the previous chapter, vector
operation is one where the operands are being streamed in a pipeline fashion. In its
simplest form, a vector instruction takes two variables to define a vector: a starting
address, and a length (number of elements). This means that the all the vector
elements have to be presented consecutively for processing. That was in-memory
for systems where vector operations were memory-to-memory, such as these from
Control Data and ETA, and some Japanese models. Or, the vector would occupy
a vector register (Cray systems, for example), and the vector load and store would
address consecutive locations in memory. Today’s architectures use cachelines, but
the principle is the same.

Most numerical computations involve multi-dimensional arrays. Only one di-
mension allows consecutive storage of elements. In the other dimensions (or indices,
in terms of the programming language) sequential elements are separated by a fixed
number of bytes or words in the physical memory. This means that the programmer
better organize the code to offer the compiler a clear view of a vector operation
opportunity. It was in the form of loops over indices in those early days (today the
same idea would apply to array syntax), and the vectorizable index would be the
one of the innermost loop in a nested loops code.

Vectorizing one-dimensional vectors or the column dimension of a dense matrix
is the easy part. But doing just that would leave out most of the computation
non-vectorized (or serial, or scalar). Consider matrix-multiply: It involves a series
of multiplications of a row by a column. That is, multiplying consecutive pairs
of elements - one from a row, the other from a column - and adding them up to
construct one element of the matrix product. The first challenge is creating vectors
that are rows; that is, not consecutive in memory. The programming solution was
to transpose the relevant matrix, and then perform column-by-column multiply.
But there was an architectural solution too: It was referred to as non-unit stride.
The vector instruction was supplemented with another variable, an integer, that
specified how many locations apart were the elements of the matrix row. Of course,

Vectorizing Applications � 35

this number was determined by the length of the matrix’s column. Access to memory
is slow relative to computation speed, so to compensate, a range of addresses is
loaded (or stored) with a single instruction call. Therefore, there is an overhead
involved when using the non-unit-stride option.

The above exemplifies the challenge of choosing a strategy for vectorizing a
given code. In this case, choosing when to rearrange the data and when to use an
available hardware feature. Some refer to this, and other situations, as the art of
vectorization, but it is mostly a cost-analysis matter; albeit, not always an easy
one. The considerations would include whether the operation is to be repeated
many times; in which case transposing a matrix once and applying the transpose
many times, makes sense. The size of the arrays also comes into the calculation.
In fact, for small arrays, the vectorization overhead sometimes exceed its benefit.
A corollary of this is that a mathematical library routine should allow for different
paths of execution depending on the sizes of data structures in the calling program.

Most of the computational work in simulation and modeling is done on array
elements. The arrays’ dimensions range from one to three (and 4-dimension for
some relativistic physics applications). Exposing vector code is most straightforward
when the arrays are dense - that is, most of the elements are non-zero. The data is
well-structured, and vectors show themselves “naturally” in consecutive locations
or separated by a constant number of locations. The compiler can produce vector
code as long as the programmer sets up the (nested) loops constructs to match the
indices’ conventions for the arrays. Vectorizing dense linear algebra calculations
is the easy part in the process. This was the first type of code the compiler was
expected to discover as vectorizable.

Unfortunately, many important real-world problems don’t lend themselves to
dense arrays representation. A phenomenon described by a set of partial differen-
tial equations (PDEs) is solved by discretizing the equations over some grid (as
described in the introductory chapter). Each grid point is described by a math-
ematical expression that involves its neighbors, and, possibly, values from previ-
ous iterations. The form of the resulting expression is dependent on the numerical
method chosen for the solver. Lining up all the grid points as a solution vector (or
matrix or higher-dimension array), the problem often becomes one of multiplying a
sparse array of integers, known as the coefficient matrix, by a vector. The sparsity
level is very high. For each column or row there might be only a handful (maybe,
3 to 5) non-zero elements. The density level of the coefficient matrix is often well
under 1%. Obviously, it would be very wasteful to compute with vectors along rows
or columns.

However, not all is lost. The stencils, the forms created by the discretization
process, produce non-zero elements in the coefficient matrix along diagonals. That
is, instead of working with a very sparse matrix, the programmer can extract the
non-zero values and place them in a few diagonals. The computations have to be
modified to refer to indices of elements in those diagonal-vectors, and result in an

36 � Unmatched: 50 Years of Supercomputing

efficiently vectorized code. We cannot expect a compiler to produce this kind of
transformations in the data and the code. This is an example of where the compiler
needs more than a little help from the code developer.

The density of values to be processed within a large dataset will determine if
straightforward vectorization, even over zero values, is preferable to rearranging the
data for more efficient processing. PDE systems tend to produce very sparse arrays,
but the space of problems include many cases where this is not so. For example,
weather models includes processes such as cloud formation and precipitation that
are applicable over parts of the area modeled. The relevant points’ density is often
low, but there is no special regularity of where these points are within the grid. In
addition, their location changes over time as the simulation progresses. Vectorizing
this kind of situation is more challenging. The idea is to still somehow group together
the values that are to undergo the same computations in order to utilize vector
instructions. We would want to gather the relevant values into consecutive locations,
and thus form full-density vectors. And after performing some operations over these
vectors, the results would need to be placed back, or scattered into their location
in the grid.

As described in the previous chapter, the Control Data architecture for vector
processors, starting with the STAR-100, implemented APL operations as hardware
instructions. These include the gather and scatter operations. These are vector
instructions - a single instruction for processing multiple elements. Their inclusion
increased the range of vectorizable code, even when their result rate was less than
one element per clock (see page 32). The Cray systems of the 70s did not have the
generality of collecting any set of elements into a consecutive array, but allowed for
vector operations a fixed value non-unit stride (where it meant that values loaded
into the vector registers were skipped during the execution).

I come back to the issue of data structure because it is applicable to most of
the real-world applications. Highlighting this fact is that years after the “big iron”
vector processors were replaced by microprocessors and clusters, Gather and Scatter
instructions were added to the x86 server CPU repertoire.

Much of the vectorization process is, then, about arranging and rearranging
the data. It involves overhead, of course. Therefore, the effectiveness of vectorizing
segments of code is heavily dependent on the size of the datasets involved, and on
how many operations are to be performed on the rearranged data.

Somewhat mitigating the vector setup overhead is the time saving of instruction
decoding. Instead of decoding instructions for each pair of operands, a single vector
instructions initiates multiple operations.

Quite often, in those days when vectorization was central to higher performance,
both developers and customers were disappointed and frustrated by the final per-
formance of the application. Before expanding on this, it is worth noting that the
efforts to vectorize a code had the side benefit that even when eventually it was

Vectorizing Applications � 37

run in scalar mode, it did run faster than before. The code was better organized
and the data better laid out.

The best way to think of vectorization is as an answer to the common challenge
of the latency incurred having to wait on operands to be loaded from memory.
Vector code is faster not because the arithmetic is done faster, but because the
streaming hides memory latency.

Why has the concept of vector instructions been of limited success at the 70s
and 80s, discarded in the 90s, then adopted again in present-day microchips?

The early vector processors - first a single processor system, later multi-
processors (up to 8), had much smaller memories relative to today’s system. That
constrained the size of the problems that could be solved, which resulted in rela-
tively short vectors. Which meant that the accelerated execution of vector opera-
tions did not make up sufficiently for the overhead in setting up the vectorization
opportunities.

Vector processing has an upper limit for performance - one operation per func-
tional unit (whereas parallel processing can, in principle, be scaled to provide ever
increasing upper bound). Taking a perfectly vectorizable code, it could be sped up
relative to the serial (or, scalar) execution by a factor of O(10), being the number of
clocks it took to fetch a unit of data from the memory. In practice, getting a 10-fold
speedup for a computational kernel of the application was a good and satisfactory
result.

All the above is still not the major factor in limiting performance speedup due
to vectorization. The most significant factor is the portion of the code, in terms
of execution time (not lines of code), that can be vectorized. The non-vectorizable
part assumes a much bigger weight after vectorization. First, a simple illustration:

Take the serial execution speed to be 1, and the vector execution speed to be
10. Assume code that amounts to 50% of the serial execution time is vectorized.
The solution time is not the average speed of 5.5 (or 5.5x speedup). Far from it.
What took 50% of the time originally, now takes 5% (was sped up by a factor of
10). The serial part remains at 50% of the reference time. So, the execution time
after vectorization is 55% of the original. The speedup is only 1.8x! - you might
recognize the reasoning above as the argument for taking the geometric mean, not
the arithmetic mean, when timing mixed-speed events.

It is obvious that much higher fraction of the execution time has to be vectorized
in order to approach the full vector speed. On the plus side, in physical simulations
much of the time is spent in a solver that contains relatively small number of
lines of code employing nested loops, and that is iterated over many times. This
means that vectorizing small part of code at the right code segments will result
in substantial speed improvement. In some cases, the required solver can be called
from an external library, when it has been optimized for the system in use.

To illustrate a more favorable example, assume that code that amounts to 90% of

38 � Unmatched: 50 Years of Supercomputing

the execution time is vectorized. It is then reduced to 9% of the original time. With
the remaining 10% unchanged, we end up with 19% of the time pre-vectorization,
which is a speedup of about 5.2x. Still not close to the asymptotic 10x.

The matter of the overall speedup given that only a part of the execution can
be sped up was given precise formulation by Gene Amdahl back in the late 60s. It
is known as Amdahl’s Law , and can be written as:

Speedup =
1

(1 − f) + f
s

where Speedup = Speedup of the whole program,

f = Fraction of the execution time benefitting from

vectorization,

s = Speedup of the vectorized part of the code

We should note that the expression above can apply to parallelization too,
where f refers to the fraction that can be parallelized and s is simply the number
of processors applied to the job.

While Amdahl’s Law appears as a precise expression, this is misleading. It belies
the fact that f and s are not known exactly. One can mark the places in the code
that can be potentially vectorized, and then profile the execution in serial mode, to
get an approximation of f . The vector speedup, s, is even more difficult to nail down.
It requires looking at the generated binary code and figure out the savings that arise
from steaming. Ad hoc values are typically used, that often neglect vectorization
“side effects”. To get a handle on the true s value it is necessary to sample chunks
of code and measure beforeand after vectorization. In short, getting trusted values
of these variables amounts to almost do the vectorization itself. In practice, people
have been using fixed values for s (often too optimistic), and ballpark figures for f .

The predictive power of Amdahl’s Law is merely qualitative.

Real applications include code that cannot be vectorized - serial setup, IO oper-
ations, testing for specific conditions, and more. We saw that even small remnants
of serial code have a great negative impact on the overall performance. The mem-
ory sizes possible for the vector processors did not allow many large size problems,
where the portion of “fixed time” serial code becomes smaller, and much more of
the processing time is spent in vector mode.

That said, the work done by the application engineers of the day was valuable
and we rip its benefits to this day. Having to organize data and code for a better
flow of the execution became commonplace in applications design. Hand coding
and inventing techniques to expose independent sequences of operations provided
blueprints for compiler writers. The lessons learnt at that period were applied to
the parallel processing we now take for granted.

And of course, we have come a full circle with CPUs today being augmented

Vectorizing Applications � 39

with vector operations. Accelerators are based on performing many independent
operations all at once - on vectors and arrays.

Striving for ways to extract higher performance from compute systems is at the
heart of HPC. There is much more to be said about performance. See Chap. 31.

C H A P T E R 4

Numerical Weather
Prediction
The Basics of Weather Forecast ing and Cl imate Model ing

One of the most direct connections between supercomputing and everyday life
is the daily weather forecast we’re all expecting and receiving at our finger

tips. At the start there was the model of the atmosphere. That was sufficient for
short-term, a couple of days, forecasts. In later years it was necessary to add models
for the ocean (that is the whole ocean, not just surface data), land-ice and sea-ice.
Otherwise credible longer-term weather forecasts and climate studies could not be
done.

Weather forecasting use of supercomputers also provides us with the clearest
and most specific argument for the need for ever faster computers systems. The
prediction results are useless if not provided in time. Weather modeling turns out
to be the perfect application to follow as we track the evolution of HPC and the
accompanied scaling of applications. We will return to this topic.

Learning about weather forecasting models was my introduction to demand-
ing HPC applications (after a more modest start in supercomputing writing a few
physics programs for elementary particles studies as a graduate student). It re-
mained a focus area for me years later in my career. More on that in Chap. 5.

The purpose of this chapter is to lay out the basics of modeling the Earth’s
atmosphere and surface - without equations. This is also an opportunity to go over
the difference between Weather and Climate, and how it is reflected computation-
ally. Some concepts covered here will be useful in later chapters on weather and
climate.

41

42 � Unmatched: 50 Years of Supercomputing

The Grid

Before getting into the substance of the computations let us consider the space on
which the simulation is done. That space is the thin layer of atmosphere we inhabit.
We live on the surface of planet Earth. The atmosphere affecting our weather is
only 10-12km high, in the troposphere. That’s where we find clouds and vapor and
winds. The Earth’s radius is over 6,000km. Our lives are contained within a layer
that is a fraction of a percent of the Earth’s radius. A simulation of the weather in
our planet should be made over the two-dimensional surface, and a third, vertical,
dimension, that extends for a few kilometers upwards. The shape looks like the
space between a sphere and another sphere enclosing it. Of course, as described in
the introductory chapter, the space has to be discretized. It would look as in Fig.
4.1.

Figure 4.1: Atmospheric Model Schematic.
Source: Wikipedia.

Each dimension of the horizontal grid has many more points than the vertical
dimension, as should be clear from the discussion above. The spacing in the vertical
direction are not even, since there is much ‘action’ closer to the ground. The upper
vertical points can be spaced further apart without loss of precision. It is important
to note that the horizontal grid depicted here is built along latitude and longitude
lines, which creates a higher density of ‘cells’ near the poles. This presents numerical
stability issues which have to be mitigated by various numerical techniques. This

Numerical Weather Prediction � 43

was how early models were constructed. Modern models horizontal grids avoid this
pitfall, and will be mentioned in later chapters on weather and climate.

What is being Computed

The flow of air is governed by the physics of fluid flow. It is captured by a set of
equations known as the Navier-Stokes equations. We can think of it as, essentially,
the horizontal motion of air, or wind. The term used for its effect is advection - the
transfer of matter (air, moister) and energy (heat) as a result of the flow. This is
referred to as the dynamic core of the model. The energy that drives it is the physics
content of the model. As depicted in Fig. 4.1, it includes the radiation from the sun
and reflected radiation from the Earth’s surface (land and sea). The heat generated
by the solar radiation causes other physical processes that generate what we call
weather. These include heat transfer between the surface and the atmosphere, water
evaporation, cloud forming and rain, snow and ice. Computationally, the dynamics
part applies to the whole of the well-structured grid, and can be well optimized
(vectorized and parallelized). The physics part is less so. The processes don’t apply
uniformly over the grid. Think of precipitation and clouds; or, radiation during
daytime but not at night. Where the physical processes apply is a moving target
and changes during the simulation. The physics part is computationally intensive,
and it is harder to optimize it for performance.

A fine-scale model, almost always regional, allows computations of fine-scale
phenomena. These can include water droplets, condensation, evaporation, ice for-
mation and hail, convection in high resolution for sever storms and tornadoes, and
such. A fine enough grid, at the level of well under 1km grid spacing, also allows
to study turbulence, an important factor for aviation, using the actual governing
equations. At grid with spacing measured in multiple kilometers, turbulence is ap-
proximated through parametrization schemes.

The flow equations that govern how changes in the atmosphere propagate are
non-linear. They involve exponentials. There are two impactful consequences of the
non-linearity: First, there are no close-form solutions to the system of equations.
They have to be solved numerically. Second, because the values computed have
limited precision, any small deviation from the true value, fed into further compu-
tations (of the next time steps) may cause the error to grow exponentially. This
situation is an example of the mathematical field called Chaos Theory.

This is one reason why, mostly in the past, weather forecasts were sometimes
off. Inaccurate or insufficient initial values at the start of the simulation added un-
certainty that could not be mitigated by careful numerics during the computations.
That is because measured input data for the forecast does not exist for each grid
point. Satellite data today covers the globe pretty well, but in the past the fore-
casters had to rely on scattered weather stations, weather balloons, and input from
ships and planes. That input is extrapolated to the coordinates of the model’s grid
points, a process that adds further loss of precision.

44 � Unmatched: 50 Years of Supercomputing

Reducing such inherent uncertainties got much attention and the reliability of
the forecasts was greatly improved in recent decades, which allows to extend the
forecasts period. Much work has been put into mitigating the chaotic nature of the
governing equations, to a large extent enabled by the increased capabilities of HPC
computer systems. We will come back to this topic (below and in Chap. 27).

The introduction chapter introduces the finite differences approach to solving
differential equations, one that was used for weather models almost exclusively in
the early days of modeling weather. That chapter also mentions, in passing, the
spectral method (see page 13). Indeed, since the 90s, models of some of the major
weather centers use spectral, or frequency domain, algorithms to solve the model’s
equations.

Types of Weather Models

There is no “standard” weather model. They differ in resolution, of course. Some
are global models - simulating the whole of Earth’s atmosphere; some are regional -
a region may be covering a continent, sub-continent, a country, or a region within a
country. Some models simulate a few days of forecast, some only a few hours, while
others can forecast close to two weeks ahead.

There is a correlation between the model’s purpose and its computational con-
tent and resolution. We are most familiar with the models that tell us the local
weather for the next few days. It predicts temperature, cloud coverage, wind, pre-
cipitation. There are others that are concerned with air quality, or sever storms, or
floods, or avalanches, etc. They tend to be of high resolution, short-time span runs,
over limited area.

As noted above, models are applied for multitude of purposes, which dictate
the ‘physics’ content of the model. Chemistry models, used to study and predict
air quality, would include chemical interactions - between gases, mostly. They are
applied to regions, or even at the municipality level. Common applications would be
the impact of air pollution due to emissions from cars and industry, or smoke from
wild fires. As an extreme example, atmospheric chemistry model can be devised to
simulate the spread of poisonous gas in an urban settings.

More on applications of weather models to other than weather forecasting in
later chapters. In particular, see Chaps. 15 and 20.

As for the scope of weather models, there are two categories: Global models
whose grid encompasses the globe, and regional models, also called mesoscale mod-
els, that cover limited area to allow for higher resolution and local customization.

Operational Weather Centers

Most, if not all, countries in the world have their own weather agency. Some of
the smaller, or poor, countries may not have an HPC system dedicated to weather

Numerical Weather Prediction � 45

forecasting. A national weather agency’s mission is to provide forecasts to its res-
idents; that is, over a limited territory. However, any region’s weather is a part of
the global weather system. Therefore, someone has to run global weather models
operationally, but it would be wasteful to do so by every country.

This reality is reflected in a kind of two-tier weather centers. Several top centers
have the high-end HPC systems required for running daily global weather forecasts.
Most other countries consume the global forecast product and use it to run more
detailed and short-term local model, or just tailor the global output to their local
needs. These major centers are in USA, Great Britain, Germany, France, Japan,
China. Arguably the premier center in the world, also located in Britain, is a con-
sortium of some 26 European countries1. Other large facilities for forecasting are
in Australia, Italy, Russia, and a few other countries.

Producing the daily weather forecast is a process that involves a lot more than
running the computational model. The major steps are illustrated in Fig. 4.2.

Figure 4.2: Operational Weather Forecasting Workflow.
Source: Institute of Space Systems (IRS), University of Stuttgart.

Before the model can run its starting values have to be determined. This involves
access to the most recent observational data of all the dynamical and physical
variables in the model. The raw data comes in different formats, depending on its
source - from satellite to transport vehicles to weather stations to sea buoys. Each
piece of data has a location and time stamps. These are not the the locations of the
grid points of the model, nor taken at the exact time of the start of the simulation.

1Several of these centers are mentioned in later chapters.

46 � Unmatched: 50 Years of Supercomputing

Therefore, there is much extrapolation and projection to be done so the initial
values of the grid points are established, and the simulation can start. This stage
of mapping the observed data to the grid is called data assimilation. It turned out
to be one of the most critical factors for a high quality forecast.

The output of the model is a set of values for each grid point and for each time
step for which data was saved. It now has to be interpreted before a forecast can
be produced. The output is subjected to statistical models and methods, including
the use of Kalman filters for variables for which only indirect measurements or
values are available. The later may apply to quantities such as wind energy or the
common “temperature feels like” estimate. The graphics of forecasts for rain, winds,
and heat that we see when forecasts are broadcast are also created at this stage.
Finally, meteorologists add certain amount of subjective interpretation when they
deliver the forecast in a layman language.

We have come to expect weather forecasts to be presented regularly like a clock-
work. Industries such as travel, transportation, agriculture and others rely on it
for their operations. The top-tier centers take on the responsibility to provide the
results of global models simulations to all the other countries and to countless orga-
nizations and agencies. They have to have fail-safe systems in place, that not only
guarantee a forecast in a day, but several a day, to be run in specific time-windows.
To achieve that, these centers often acquire dual systems. One is designated the
prime operational system. The other, an identical system, is a standby in case a
failure occurs to the first one. They typically share a file system so the running job
can resume on the second system almost instantaneously. A dual system of this size
is an expensive proposition, and the standby is not left idle. It is sometimes called
the development system. Revisions and updates to the model are developed there,
as well as general research done at the center. In addition, it is now used for climate
modeling, which, of course, be paused, whenever the system needs to fill in for the
operational system.

Weather forecasting centers work to a tight schedule. To get a high quality
forecast, the model needs to start with high quality initial values. This means
acquiring the observational data as close as possible to the start of the run. And
that start time has to be as close as possible to when the forecast period start
is. The processing time for the data assimilation stage, the runtime of the model,
and then its post-processing has to be known with high degree of confidence. For
example, if the center is to deliver a fresh forecast for the 6 o’clock news, they will
count back the time needed and determine to stop consuming new data at, say, 3:00
pm. The operational run is designed to take a couple of hours. This allows for 2-4
runs per 24 hours, so that the weather is tracked anew every few hours. it is also
useful since the major centers provide their forecast to countries in different time
zones.

Numerical Weather Prediction � 47

Determining Parameters of the Model

Within the HPC world, weather and climate modeling is one of biggest consumers
of compute cycles and system resources among the classes of applications. Outside
of the operational weather centers, most of usage is for climate modeling. On the
face of it, weather and climate modelers can use any capacity available, and should
be subject only to their budget of compute resources.

A higher resolution model produces more accurate results. It is closer to the
continuum on which the equations are defined. However, the amount of computa-
tions goes up exponentially with the reduction of grid points spacing. When the grid
interval is halved - horizontally and vertically - 8 times more points were added. In
addition, for numerical stability the time step also needs to be about halved. Which
means that twice as many simulation steps are taken for the same forecast period.
Overall, the computation ‘cost’ has gone up by at least a factor of 10. Note that
whereas the added computations due to the spatial reduction of the grid interval
can be, in principle, mitigated by increasing concurrency (more nodes, for instance),
the additional time steps have to processed sequentially. Only faster processors can
help.

The other consideration is the ‘physics’ content. The basic entities, such as
temperatures, humidity, and precipitation, are always included. Longer forecast
periods are affected by small-scale phenomena such as cloud formation. So that
increasing the forecast span from, say, 3 days to 10 days, is not a linear increase.

Finding the right balance requires fine-tuning of financial and computational
factors. For a researcher it is relatively simple. The compute system is what it is.
The computer budget the researcher gets may be somewhat negotiated, but job
queue times are less flexible. Of course, there is the pressure of papers to publish.
All of that will dictate how to construct the model’s parameters that will optimize
the balance of runs’ wait time, the number of runs, and the quality of the model so
a timely meaningful research project is achieved.

For operational weather centers the decision-making tree is more complex and
more critical. They have to look ahead a few years - the time it takes to define
requirements, benchmark a future system in a competitive bid, having it installed,
and bring up operationally. Given the efforts and resources needed to replace a
supercomputer in an operational environment, combined with rate of technology
innovations, the typical time between two generations of systems is about 5 years.

The centers keep track of the model’s accuracy and present it as what is known
as a verification graph, that shows the percent accuracy of the totality of several
attributes, over some area and for a period of time, that constitute what we consume
as forecast. Their performance is judged by that metric, and their mission is to
increase the both the accuracy and the range of high quality forecasts.

It should be noted here that one of the consequences of the exponential growth
of errors for non-linear equations is that increasing the forecast period requires

48 � Unmatched: 50 Years of Supercomputing

increasing the accuracy of the initial values. Otherwise, the size of the computational
error is bound to become unacceptable unexpectedly.

As an exercise, let us assume that in 5 years, for the same budget, the center
procure a system 5 times more powerful than its present one. Perhaps a factor of
3 is due to increased parallelism (each processor chip performance is advancing at
a slower pace). The operational runtime has to be constant. The center may want
to increase the forecast range by a day or two. For that, it will need to allocate
more processing time to the data assimilation phase. The extra speed not due to
parallelism can be applied to extending the forecast range. What is left can be
applied to shorten the grid interval, and possibly add more physics content. It is
a calculation that needs to be done ahead of the available technology, based on
projections. A benchmark model is constructed and the competing vendors test it
and attempt to reach the performance target. Expectations have to be calibrated
as the evaluation process progresses.

Brushing over the many details, people have come up with rough rules of thumb,
or a simple constraint, for the model’s simulation time. If a center produces 10-day
forecast, and it is to do it in a 2-hour run, then the simulation has to run 120 times
faster than real time. So, if the model’s timestep corresponds to, say, 6 minutes in
real time, it needs to complete in one second. If this is not achieved, there may be
some leeway in the value of the timestep, and it can be made a little larger.

For climate models there are no daily constraints that dictate model resolution
and runtime. In practice, both for research and for policy planning, people found
they need to simulate at least 10 years per day of computing.

Regional Models and Downscaling

One way to afford high resolution without giving up physics content is to reduce
the area the model covers. As an example, consider that the Earth’s surface, about
200mi2, is 12, 500 times larger than the area of Switzerland. This easily allows
4x higher resolution, more physics (air quality, for instance) and topographical
details, all of which adds up to the ability to describe very localized weather, such
as separating the forecast of conditions in valley from those in higher elevation of
neighboring mountains. Similarly for any other region or country.

Figure 4.3 illustrates the nested grids scheme used by the UK Met Office. In
recent years they have run a global model with grid points separation of 17km, a
regional-European model at 4km intervals, and, finally, a fine-resolution grid over
the United Kingdom at just 1.5km between grid points.

The problem with this simplistic view is that any region on the globe is not
a closed box. The weather systems know no human-made boundaries. With fixed
boundary values a relatively short distance outside the region, a simulation can run
for just a short simulated period before it cannot be trusted, because by that time
affects from outside the grid would reach the inside.

Numerical Weather Prediction � 49

Figure 4.3: Nested Grids: Global-Europe-UK.
Source: UK Met Office.

For that reason a regional weather forecasting run has to rely on a global run
over the period in question. It takes the coarser grid values over the regional grid
and interpolates them onto the finer regional grid. The regional model then runs
for a short period, simulated a few minutes perhaps, before pausing to refresh with
the later values from the global model. This two-step process makes it possible to
extract local, and finer, forecast features from the global model’s output.

Climate Modeling

Weather forecasting and climate modeling simulate the same environment - our
atmosphere and land, ice, and oceans, though each measures different aspects of
that environment. Still, the underlying processes are the same, so the digital models
are similar. Some of the prominent models can serve both for weather and climate
runs.

Some would say “If the weather forecast is accurate enough only for next few
days, how can I trust climate predictions of 30 years from now?”. Well, the under-
lying premise of the question is wrong. A climate prediction is not that on January
1, 2051 the high temperature will be 55o and partly cloud, with 40% chance of rain.
That would be a weather prediction in the far future. A climate prediction might
be that the winter in question in the region of my state when my town is, is likely
to be 30% dryer and 5o warmer than the average winter of present time.

Climate simulation does not attempt to extend weather forecast into the future.
It predicts trends of averages over sizable areas of environmental variables such as
temperature and precipitation. Whereas a weather model simulates several days,
a climate model simulates (many) years. Understandably, because it deals with
averages and simulates long periods of time, climate models use low resolution
grids.

Climate modeling requires the addition of some guardrails and phenomena that
are not necessary in weather models, because they have no significant impact over
periods of several days. The simplest climate models add the constraint of conserva-

50 � Unmatched: 50 Years of Supercomputing

tion laws. These are called energy balance models, and track the solar radiation and
the reflected radiation from Earth. That’s how global warming is tracked. The more
complex models, known as General Circulation Models, or GCM, include ocean cir-
culation and its layer inversion and currents. These are processes whose impact over
a few days can be ignored.

Mathematically, one can think of weather forecasting model as an initial values
problem - given the values at the grid points of the quantities of interest, the
model proceeds according to the governing equations. Climate model is a boundary
conditions problem - certain conditions are specified and are imposed during the
computations. They include conservation of energy (solar radiation) and volcanic
aerosols (that can trap heat). They also include assumptions about human activities
such as deforestation and gas emissions that affect moisture, heat exchange, and
absorption of carbon dioxide etc.

Coming back to the question posed above: What gives us confidence in climate
models prediction? Weather forecasts can be verified within days. We observe the
real weather and, if mostly accurate, we gain trust in the model. Clearly, this is
not a practical approach for climate predictions of what our world will look like,
climate-wise, in 50 or 100 years. But, there is a way around this dilemma. There
is detailed data on climate in the last 50 years, at least. There is documented
information corresponding to the last several centuries, and geological clues that
go back thousands of years. This allows the modelers to take these future-facing
models and run them forward from some point in the past, say, the last 50 years or
so. The output can be compared to known observed findings. These tests confirmed,
for example, that the inclusion of human contribution, or anthropogenic change,
to gas emission into the atmosphere is necessary in order to explain the climate
changes we have experienced since the Industrial Revolution. While it is not a
direct validation, when the model can reproduce the known history, we are justified
in placing a reasonably high level of confidence in its prediction of the future.

The idea of looking for finer features at the region level, as described above for
weather models, exists in climate modeling too. Beyond the global features, there is
much interest and need to study climate aspects over, for example, large mountain
ranges such the Andes. Or large valleys and bodies of water. The aim is to get
more than what is provided by the statistical nature of output from global climate
models. This requires adding topographical details, and, of course, use of a finer
grid.

The process of zooming in for climate studies is referred to as downscaling . As
described by NCAR at [12], It is the procedure of taking large-scale, low-resolution,
statistical information to make predictions at local scales. There are two main
approaches to accomplishing downscaling. Dynamical downscaling is the process of
feeding the statistically-based output from the GCM to physically-based regional
model. The other approach is known as statistical downscaling. It involves using
statistical relationships between large-scale predictors (pressure fields, for example)

Numerical Weather Prediction � 51

and local climate variables such as temperature and precipitation, and applying
these relationships to the output of the global climate model.

Trusting climate models is much more important than just satisfying academic
interest. It allows modeling and measuring the effect of changes in human behav-
ior in terms of life style, food production, use of energy sources and technologies,
and more. It allows the impact of government policies and personal choices to be
quantified.

Reaching consensus among mainstream climate models about how to model
these effects would be of enormous benefit to humanity and the world in addressing
climate change.

A summary of the origins of the use of computers for weather and climate
modeling and the people who pioneered the field can be found in [13].

C H A P T E R 5

The Battle for the Premier
Weather Centers
Vector Processors for Weather

In some sense the late ’70s was the golden period for supercomputing and weather
prediction. It was the period when top weather centers acquired the most pow-

erful supercomputing of the time. We will see that some 30-40 year later, these
centers used systems that were no more than half the peak performance of the top
HPC system available.

This chapter is dedicated to the introduction of vector processors into two of
the most prominent weather centers, only a few miles apart geographically, in quick
succession. It is also a personal story of my early days in HPC.

ECMWF

The European Centre for Medium-Range Weather Forecasts (ECMWF) was created
in 1975 by 18 European countries - the “Founding States”. It would become the
top-ranking weather forecasting center in the world. There are now 23 member
states and another 11 countries with the status of Co-operating States (more about
its history and links to ECMWF’s progress over the years can be found in [14]).
The United Kingdom was chosen to host ECMWF. It was chosen, to a large extent,
because the proposed site was in the vicinity of the UK Met Office, the existing
premier weather center. Back in 1975, the UK Met was running its forecasts on an
IBM mainframe, and was already recognized for its quality of forecasts (relative
to other centers; not necessarily in absolute terms). ECMWF just opened their
offices in Bracknell, a small town west of Heathrow airport and Windsor, where the
UK Met also resided. ECMWF would soon establish their permanent facilities in
nearby Reading, while the UK Met would relocate years later, in 2003, to Exeter
in south-west England.

53

54 � Unmatched: 50 Years of Supercomputing

ECMWF’s founders were building up their organization, hiring top scientists
and technologists from the member states. They needed to develop the operational
model, and they needed a computer system. Some early vector processors were
already in existence - such as Control Data’s (CDC) STAR-100, and the Cray
Research’s Cray-1 was in its final stages of development. CDC was talking about
follow-on vector processors - what would come out as the CDC Cyber 203, fol-
lowed by CDC Cyber 205. It soon became clear that the two main competitors for
providing ECMWF with a supercomputer are Cray Research and CDC.

It would take a few months for ECMWF’s staff to come on board and put
together the Request for Proposal, or RFP, for their first computational system.
The time from the release of the RFP until the new system becomes operational
was expected, and did, take two to three years. But development work on the
model and supporting utilities had to start, so when the new system is installed
the Center will be ready to produce forecasts. Unlike Cray Research, CDC had
computers to offer immediately, and ECMWF leased an older system from CDC,
the CDC 6600 - an earlier Seymour Cray design (1965), and installed it at their
initial, and temporary, location at Bracknell. It may have looked as if this would
give CDC a leg up in the procurement process. It turned out not to be so.

The Cray-1 was the computer most talked about at that time (’75-’76), as a
revolutionary design by the venerated Seymour Cray. Its serial number 1 still to be
delivered to Los Alamos National Lab (for a trail period, and without an operating
system). CDC had the STAR-100 installed at Lawrence Livermore National Lab,
and customer satisfaction can be described generously as “low”. It was the system
on which early evaluations were done for ECMWF. The CDC Cyber 203, an interim
system between the STAR and the much improved Cyber 205, was still too far out
to be credible.

It soon became clear the ECWF team were leaning towards selecting the Cray-
1. Not for reasons of reputation, but for technical reasons. What was considered
a large memory for both Cray and CDC was 8 Mbytes. That, combined with a
processing speed in the 100s of megaflops range, meant the model’s grid had to be
coarse - leading to short vectors as defined by the horizontal dimensions, and much
shorter in the vertical dimension. And, as was explained previously, the Cray vector
architecture of utilizing vector registers performed better than CDC’s memory-to-
memory vector operations. In addition, the CDC architecture was inferior to Cray’s
in scalar performance.

Already in 1976 it became clear to the vendors involved that Cray Research
would be selected if early performance measurements of computational kernels were
to hold. They did. It would be later, in ’77-’78, when a full-scale application, such
as a weather model, cold be run on the Cray-1. But given the information at hand,
ECMWF acquired one of the early Cray-1 systems, and in August 1979 produced
its first operational weather forecast. True to the organization’s name that includes
“medium range”, it was a forecast for the next 10 days, the first operational forecast

The Battle for the Premier Weather Centers � 55

for that many days (while allowing for declining accuracy beyond the first few days).
Nevertheless, an historic milestone it was.

The UK Met Office

I was hired by Control Data Ltd., the CDC UK subsidiary, to start in January
1976. In fact, I found myself on a flight to CDC’s headquarters in Minneapolis the
day before my official start1. So was the sense of urgency on the part of CDC to
build vector programming expertise in Europe. My immediate task was to become
proficient with the STAR-100 vectorization style, and to evaluate what can be done
for the ECMWF procurement. However, soon after, when it became clear ECMWF
will procure from Cray Research, our attention turned to the expected Invitation
to Tender (ITT)2 from the UK Met Office.

The UK Met Office (often referred to just as the “Met Office”) is probably the
oldest weather forecasting organization in the world. It was established way back in
1854. Long before there was numerical modeling, and long before applying comput-
ers for forecasting. In the beginning it was for studying marine climate trends and
features. Its storm warning service, now called the shipping forecast, is considered
the longest running forecasting service. The Met Office produced forecasts for the
country’s defense towards the end of World War I. In fact, the organization was
under the Ministry of Defense until recently (2011). It was a Met Office scientist,
Lewis Richardson, who laid the foundations for NWP (see Chap. 4), which started
at the Met Office in 1922 - using hand calculations, of course. The first computer
arrived in 1959, but it took until 1965 to have the first computer-aided operational
weather forecast. For more on the history of the Met Office see [15].

Having the ECMWF choice for their supercomputer settled, both (leading) com-
peting vendors - Cray Research and CDC - focused on the Met Office’s plans. We,
at CDC, thought there are a few circumstances that should improved our chances
relative to the ECMWF procurement. In essence, the timing of the Met Office
procurement was more advantageous to CDC - just as the ECMWF procurement
timing was favorable for Cray. The Cray-1 would have been about 5 year-old design
by the time the Met Office was to install the new system (1980-81). The successor
Cray system, the Cray XMP, was due around 1982. And CDC’s system to bid, the
Cyber 205, could be demonstrated, in factory settings, from around 1978; with the
interim Cyber 203 serving to develop codes and model the Cyber 205 performance.

Being an operational weather center, performance was a crucial component of
future systems evaluation, and in that area the Met Office has made a decision (some
may call it a concession) that turned up to be very significant to the outcome of

1It was my first visit to the US. I had no appreciation of the Minnesota winter, and the first
thing we did upon my arrival was to purchase a warm coat.

2This is equivalent to Request for Proposal (RFP), as it is known in the US.

56 � Unmatched: 50 Years of Supercomputing

the procurement. It had to do with the rules of benchmarking the weather model
provided.

The benchmark rule was about accuracy, or, more precisely, how to determine
that the benchmark output is acceptable. It was common to require that all the
output bits match all the bits provided as reference - those produced by the current
system. The Met Office, instead, specified a margin of acceptable deviation from
the reference. I do not call it “acceptable error”, because there is no reason to call
a result that differs in the last bit or two any less “correct”. It is even likely that a
more modern system executes arithmetic more accurately.

A consequence of the above was that it opened the door to more robust vector-
ization and other optimizations of the code. For example, the vendors had to worry
less about the order in which computations were done (depending on the operands,
change of the order of operations could easily result in some of the last bits being
different). This aspect was helpful to both Cray and CDC, of course.

However, the CDC team had another architectural feature to exploit. One that
proved pivotal to the outcome. The CDC hardware - from the STAR-100 onwards,
could perform in single-precision (32-bit) floating point arithmetic. The Cyber 205
could address 32-bit words, though memory access would fetch a “super-word” of
516 bits3 . The kicker was that the compute rate of single-precision was double
that of 64-bit (double-precision) arithmetic4. The hardware included logic that
enabled a floating-point functional unit to act as two units when presented with
32-bit operands. The instruction set supported the designation of these half-size
variables. Another very significant benefit of working with the smaller data types
was that the memory footprint also halved, and every memory access affected twice
as many variables.

The Cray architecture supported only 64-bit arithmetic.

Our big break was that the Met Office agreed to consider looking at the bench-
marked model’s output using 32-bit arithmetic, and evaluate it with respect to how
the weather forecasts are delivered. Clearly, in 32-bit arithmetic there are only 24
bits for the mantissa (the part that holds the displayed digits of the number). They
cannot possibly be a close duplication of the 48-bit mantissa one gets in 64-bit
processing. The Met Office scientists concluded, though, that given the margin of
error in the initialization data from the observational input, the numerical error
due to grid spacing, and the granularity of delivered forecasts, that the 32-bit out-
put was adequate. They arrived at that conclusion by comparing 64-bit runs with
32-bit runs against the same initial conditions (which they could do on their IBM
mainframe).

3In technical documentation “super-word” was abbreviated to SWORD. Later models access
double that size - 1028 bits. This larger data item was called, somewhat whimsically, PEN. Why?
- because “the pen is mightier than the sword”..

4I am using here today’s terminology for single and double precision. At the time, 64-bit word
was the standard precision. 32-bit word was referred to as half-precision.

The Battle for the Premier Weather Centers � 57

That is not to say that we, at CDC benchmarking the Cyber 205, could just
run the model at the 32-bit mode. The code was, of course, written in Fortran. And
the Fortran compiler at that time did not support multiple floating point formats.
Some said at the time that working in 32-bit precision requires assembly language
coding. However, there was another way, and it was just a little easier than as-
sembly coding. The Cyber 205 compiler included a mechanism for calling hardware
instructions directly. It was presented as a subroutine call for each instruction and
was identified by a special naming convention. Each name started with “Q8” ap-
pended to a mnemonic of the instruction to be activated. The parameters in the
“subroutine” call were the fields of the instruction, such as pointers to input and
output operands. The first field of a vector instruction was 8-bit long for various
options of the instruction. One of these bits was to indicate if this was a 32-bit or
a 64-bit operation. In order to point to a vector (remember, this was in the 70s,
before C and pointers), the compiler had a data type called “descriptor”. It was
a 64-bit quantity with 16 bits assigned to the vector length (allowing for lengths
up to 64K elements), and the remaining 48 bits were the bit address of where the
vector starts5. The vector instructions took descriptors as the operands to operate
on. For example, the Fortran code for adding two 32-bit vectors into a third one
using a Q8 call would look like this:

Descriptor desa, desb, desc

Assign desa, a(1:n)
Assign desb, b(1:n)
Assign desc, c(1:n)

Call Q8ADDNV(X’80’, , desa, , desb, , desc)

Armed with these tools we, a small team from the UK offices of Control Data,
set out to vectorize the Met Office model, then convert it to a 32-bit version. In
those days we had to physically where the computer was. That meant weeks on
end spent in the Arden Hills facility where the Cyber 205 was built. Vectorizing the
dynamics part of the model was pretty straightforward. The original Fortran’s loops
easily translated to vector code. The physics part is more difficult. Vectors have to
be constructed since the physical processes occur only under certain conditions.
This part, accounting for about half the original processing time, required much
work. The availability of instructions such as gather, scatter, compress, mask etc.
made it possible to get much of the physics vectorized, albeit with the overhead of
moving data around.

Having the “CALL Q8” feature in Fortran meant that a high-level language
structure could be preserved. This applied to declarations of data types, data blocks,
IO operations, and even scalar operations on operands that were not declared to be

5The bit level addressing was necessary because the architecture allowed for bit-type vectors.
They were necessary for masking operations and logical instructions.

58 � Unmatched: 50 Years of Supercomputing

32-bit long. The resulting code still looked strange and unusual. The computational
segments of the code, mostly within nested loops constructs, were a series of lines
all starting with “CALL Q8”, each line for one low level operation. There were
several thousands of them in the model. The resulting program listing did not
look pretty, nor was it easily readable. But it allowed optimum performance of
the computationally intensive and most time-consuming part of an operational
applications suite.

Creating this 32-bit version of the code from the standard 64-bit Fortran was not
as tedious as writing assembly code. The process could be automated. And that is,
indeed, what the late Bob Carruthers, who went on to work for Cray Research and
ECMWF, contributed: A program to ‘translate’ floating point arithmetic to Q8 calls
of 32-bit operations. Running the ‘translator’ with the vectorized Fortran source
code as input, required only minor tweaks for some rare and end-cases to get the
error-free 32-bit source code. Another member of the team was George Mozdzynski,
who would go on to work for many years in senior positions at ECMWF.

As the reader might have expected by now, Control Data won that UK Met
procurement. Serial 1 of the Cyber 205 model was installed at the Met Office and
became operational in 1982. It served the center for the next 9 years.

Of course, by this time the implementation has given up any pretense and
any hope of portability, but for the possibility that someone could have written a
‘reverse translator’. Turned out, that did happen about 10 years later. I got the
story from Deborah Salmond who worked for Cray Research in the UK from the
mid 80s as benchmarking/performance engineer and at ECMWF from the late 90s
maintaining and optimizing the operational model. Cray bid for the replacement of
the Met Office’s Cyber 205 around 1989, and needed to run the model which was
written in the Q8 special calls style. To achieve that the cray engineers developed
a convertor utility they called Lifeline, which is believed to have started by Alan
Dickinson from the Met Office, who went to to become the institute’s director
of science and technology. They estimated the tool automated about 80% of the
conversion from Q8 calls to regular Fortran. This may have been the only major use
of the convertor, and it was not sufficient for Cray to win the bid. Though, as the
twisted story goes, when ETA Systems went out of business shortly after, Control
Data pulled out the ETA-10 at the Met Office and paid for the Cray Y-MP that
replaced it.

Given the short lifetime of the Cyber 200 and its successor ETA Systems, the
moral of the story is that having to resort to extraordinary efforts to win a bench-
mark may, to use a military analogy, win a battle, but not the war. More on per-
formance metrics and benchmarking in Chap. 31, which is dedicated to the topic.

The Battle for the Premier Weather Centers � 59

Fast Forward 40 years

The Cyber 205 was rated as having theoretical peak performance of 200 megaflops
(at 64-bit arithmetic; 400 megaflops at single-precision). Installing it at the Met
Office delivered a peak performance jump of 15x over its predecessor, an IBM
System/360 195. The UK global weather model’s grid spacing was only halved
(from 300 km to 150 km) and a 50% increase in number of vertical levers - to 15.
This matches well with the estimate of computational increase when halving the
horizontal grid, since more physics content was also added to the model. The Cyber
205 served the Met Office for 9 years. It was replaced by a series of systems from
Cray Research, NEC, and back to IBM, and Cray.

The latest (as of 2021) system at the Met Office, are three Cray XC40 installed
in 2015. Together they rate at 16 petaflops theoretical peak performance. This
figure is 80 million times the 1982 Cyber 205’s peak performance. The current Met
Office’s global model runs now at grid spacing of 10 km and 70 vertical levels.
That would account for about 10, 000 times more computations if the same 1982
model was used now. Of course, there are more computationally intensive physics
and chemistry processes now, more forecasts per day, more regional and local runs.
And only one of three is dedicated to operational runs. The other two are used for
research, development, and climate modeling. For more see the “High performance
computing” section in [16].

ECMWF stayed with Cray Research as their supercomputer provider through
six generation of Cray systems for close to 20 years, until 19966. Fujitsu was the
supplier of the next four system, followed by a long stretch of IBM systems from
2002 till 2014, when a dual Cray system (the Cray XC-30) became, again, the
flagship compute engine for the organization.

ECMWF documents the progress made over the years by the increase in the
number of the model’s grid points relative to the more relevant system’s sustained
performance. In 1979 the Cray-1 was rated at about 10 megaflops for the model
that had 200, 000 grid points. 35 years later, the ECMWF system performs at 300
teraflops on a model with over 200 million grid points. The sustained performance
went up by a factor of 30 million, while the grid’s resolution went up “only” by
a factor in the order of a couple of thousands. The difference can be explained
as a combination of factors: More feature-rich model, higher fidelity of forecasts,
more time spent on data assimilation, more operational runs per day. For a good
summary of ECMWF’s history of their supercomputers progression see [17].

At the time of this writing the future plans of both the Met Office and ECMWF
regarding their computer systems are known. ECMWF will switch their vendor
again. For the first time it would a European supplier - Atos is contracted for a
Bull system with a price tag of just a little under $100M . The organization is also

6Coincidentally (or not), in 1996 SGI acquired Cray Research.

60 � Unmatched: 50 Years of Supercomputing

moving its data center from Reading in the UK to Bologna in Italy. And it will
open an additional office facility in Bonn, Germany.

The UK Met Office went further with a larger departure from past norms for a
weather center. It signed an astonishing 10-year $1B deal with Microsoft to provide
its operational forecasts via multi-site, cloud-base computing using Cray systems.

Both these esteemed centers have come a long way since the late 70s when the
largest supercomputers available went for under $10M .

We will return to discuss the current state of weather and climate modeling in
Chap. 27.

II
The Epoch of Multiprocessors

Dawn of Parallel Programming

61

C H A P T E R 6

Macro Parallelism
Mult i -Vector Processors

A s vector processor technology was pushed to the limits possible at the late 70’s,
another approach is being superimposed. Now that is was established how to

stream, or pipeline, operations that are independent of each other, why not take a
large set of such variables and divide them among several processors. The idea is
that we can multiply the performance derived out of the system by placing multiple
processors within the system. They would run under a single control and a single
operating system. Thus we entered the age of coarse grain parallel processing.

Early Work

For the sake of historical accuracy, it should be pointed out that the idea of using
multiple processing units for high performance computing originated earlier. Here
are two cases:

The better known of the two is the ILLIAC IV1. Obviously, the ”IV” means there
were earlier versions. For HPC, however, the ILLIAC IV is the relevant reference.
It is the design that had 64-bit processing elements (previous designs were based
on 1-bit elements). This is a good place to describe this one-off design since it was
a stand-alone system (even if accessed through a front-end computer) like a vector
processor, and it had multiple processing elements like an array processor (see
Chap. 8). Even though the design line did not continue beyond the single machine
that was built, some of its architectural and programming concepts survived and
contributed to what would become mainstream HPC.

The development of the ILLIAC IV started in the mid 60’s by a group led by
Daniel Slotnick. The version that was eventually built, by Burroughs Corporation2,
had 64 processing elements (PEs) and was delivered to the University of Illinois at

1ILLIAC stands for Illinois Automatic Computer.
2Burroughs later merged with Sperry Univac to form the company we know today as Unisys.

63

64 � Unmatched: 50 Years of Supercomputing

Urbana-Champaign in 1970. It was later moved to NASA Ames Research Center
in Mountain View, California [18].

While visiting Lawrence Berkeley National Lab (LBL) in early 2020, a fews
weeks before the start of the COVID-19 lockdowns, I was fortunate to meet Kenichi
(Ken) Miura. Ken had a long career in HPC. He is Professor Emeritus of the
National Institute of Informatics in Tokyo, and was a Fellow at Fujitsu Laboratories
until a few years ago. I have known Ken since the early ’80s and during his many
years at Fujitsu America. What I found out at the Berkeley meeting is that Ken
was also a member of the team that developed the ILLIAC IV. He recalls the
reason the system was moved from the university campus in Urbana-Champaign to
California. These were the Vietnam era days of great upheaval and student unrest
on campuses. The ILLIAC project was funded by DARPA. It was felt the machine
was not safe on campus.

This one-off system was not considered a great success. It was plagued by mas-
sive cost overruns and delays. The result was a machine a quarter the size of what
was originally planned for. It was used by a small number of people. Nevertheless,
lessons learnt in those early days laid the ground of parallel processing as we know
it today. A small example: Red-Black ordering technique was mentioned as very
useful for vectorizing iterative solvers (more on that in the discussion of co-design
teams in Chap. 23). Well, Ken Miura tells me: ”This was first done on the ILLIAC
IV. I wrote a program with this scheme.”

Perhaps less known, an earlier multi-processor design was an actual product
(not a one-off) even before the ILLIAC IV. It was called the CDC 6500, and this is
how it came about: Several years after co-founding Control Data, Seymour Cray’s
designed the first of the “6000 Series” - the CDC 6600, launched in 1964. At 3
megaflops, it was the fastest computer of its time. The ‘6600’ was also a revolu-
tionary design in that it had 10 Peripheral Processors (PP) supporting the central
processor that had additional parallelism through its 10 functional units that could
execute concurrently. Cray, known for his lone, single-handed, later designs, collab-
orated very closely with Jim Thornton in those years3 Together, after finishing the
‘6600’, they engineered a variant, called the CDC 6400 that was completed in 1966.
It was a slower version of the ‘6600’, with a slower clock and a unified functional
unit for arithmetics (no parallel execution of instructions). Of course, this made the
’6400’ considerably cheaper.

Now comes the interesting part: It was mostly Thornton (Cray was already busy
designing the CDC 7600) who took the ’6400’ and architected a dual-CPU version
. This was the CDC 6500. With its 10 PP processors, it consisted of 12 processors,
and was liquid cooled, unlike the single CPU ‘6400’ that was air cooled. One of the
CDC 6500 systems was installed in 1967 at the U.S. Navy weather center, Fleet
Numerical Weather Central (FNWC), known today as Fleet Numerical Meteorology

3The Computer History Archive keeps an online version of a wonderful book by Thornton about
the design and applications of the 6600 ([19]).

Macro Parallelism � 65

and Oceanography Center (FNMOC). They added a second one, and we return to
the ‘6500’ story at FNWC in Chap. 7. An actual CDC 6500 can be viewed at the
Living Computers Museum in Seattle, Washington.

Cray and Thornton went further and created a dual-processor system with one
‘6600’ CPU and the second a ‘6400’ CPU. This was the CDC 6700 that came out
in the late ’60s and was the most powerful in the 6000 Series.

The Multiprocessors of the 80s

While the ILLIAC IV, the CDC 6500 and 6700 were still in operation away from
much public attention, the world of supercomputing turned to vector processors.
We had to wait till the 80’s for the return of multi-processors. This concept is with
us since.

The best known extension of vector processing to multi-processors is the Cray
X-MP. Computer architect Steve Chen, then at Cray Research, built on Seymour
Cray’s Cray-1 design to create the Cray-XMP. There were numerous improvements
to the vector processor itself and its memory system, but the more impactful inno-
vation was architecting two, and later on four, such vector processors into a single
system. A single operating system controlled all the processors. Each processor had
a (theoretical) peak performance of 200 MFLOPS. The maximum configuration of
4 processors got, at 800 megaflops, close to what we can call the gigaflops era4. The
Cray X-MP was the most powerful computer when it was launched. It was also
a great commercial success for Cray Research. In the tradition of both Cray and
Chen’s designs, and unlike the dreary square boxes of the past and most present
days designs, the Cray X-MP looked beautiful (Fig. 6.1).

The Cray X-MP was just the first of a series of systems made up of multiple
vector processors. A somewhat competing design came from Seymour Cray: It took
about 10 years from finishing the Cray-1, twice as long as the 5-year cadence of
Cray’s previous designs, for the launch of the Cray-2. This was not entirely due to
technical difficulties; though, there certainly were those too. In 1979 Cray resigned
his official position at Cray Research and became an independent consultant to the
company, and also moved his lab to Colorado. The Cray-2 can be seen as Seymour
Cray’s successful 4-CPU design years after his first attempt, while still at CDC,
at 4-CPU design to succeed the CDC 7600. It was dubbed the CDC 8600, but the
component technology at the time was not up to the packaging task necessary for
the job. It was then that Cray left CDC and founded Cray Research. The Cray-2
was launched in 1985, and at 1.9 gigaflops peak performance was the first truly
over-gigaflops system. It was a very compact design, necessary to achieve what was
the fastest cycle time of its time - 125 MHz (or 8 nanoseconds). And this required

4The CDC Cyber 205 with 4 vector pipes (not 4 processors) reached the level of 800 megaflops
earlier - but only at the reduced precision of 32-bit operands.

66 � Unmatched: 50 Years of Supercomputing

Figure 6.1: A Cray X-MP that was installed at NCAR. Source: NCAR.

a special liquid cooling of all modules to extract the heat generated in the sense
circuitry. The design was also esthetically pleasing as can be seen in Fig. 6.2.

Figure 6.2: A Cray-2 that was installed at NASA Ames Research Center. Source:
NASA.

The Cray-2 was not as successful commercially as the Cray X-MP. About 25
units were installed at customer sites. Its strength was having a huge memory for
its time. Its size was counted in ‘words’ as was the custom then: 256 megawords.
That is 2 gigabytes. The size made the latency of memory access longer, but for
applications with very large datasets it was still far superior than having to swap
data in and out of storage devices.

While Seymour Cray’s Cray-2 was a departure from the Cray-1 design, Steve
Chen continued to build on the Cray-1 when he designed the Cray X-MP. This
continued when Chen developed the Cray Y-MP after finishing with the X-MP.

Macro Parallelism � 67

The Y-MP had an improved processor, with faster clock. And it could be configured
with up to 8 vector processors. Thus, its peak performance, at 2.67 gigaflops, was
more than 3 times that of the X-MP. When the Y-MP came to market, in 1988,
Steve Chen was no longer with Cray Research. This part of the story will be told
in Chap. 11.

The trend of integrating ever more vector processors into a single system con-
tinued at a faster pace. The Cray C90, based on the Y-MP architecture, with a
35% faster clock, could be configured with up to 16 processors. It was put on the
market in 1991 - a mere 3 years after the Y-MP.

A less known example of multiple vector processors, but no less interesting,
is an IBM project. Enrico Clementi, an IBM Fellow at the time, needed more
compute power than was possible on a single IBM 3090 with vector facility for his
computational chemistry research. So, he found a way to connect together four such
systems to jointly work on a single computational job. The system was known as
“lCAP 3090” (lCAP or LCAP, for short), for Loosely Coupled Array of Processors.
This was a one-off project with no further product impact, but was a noteworthy
application of multi-processors. I tell its story in Chap. 7.

The focus here is on computers developed in the U.S. But, in parallel, there were
three Japanese companies that produced multiple generations of vector processors.
They are Fujitsu, NEC, and Hitachi. They produced competitive systems compared
to the ones from the U.S. In particular, the technological foundation they build,
and the culture of government-business collaboration in Japan, produced the top
world’s systems at least four times: The Numerical Wind Tunnel (1993, see also
page 122), the Earth Simulator (2002), the K computer (2011), and Fugaku (2020).
Amazingly, these top systems came out at the constant cadence of 9 years. All
these systems where developed in cooperation between government agencies and
labs and computer companies - Fujitsu for NWT, K, and Fugaku; NEC for the ES.
The scant mention of Japan’s considerable contribution in the HPC space is due to
prioritizing my experience in the U.S.

Macro Parallelism

The multi-processor design was the HPC computer architects’ way of adding perfor-
mance faster than what was enabled by component technology. Or, in other words,
much faster than the pace according to Moore’s Law. But that was the hardware’s
answer. To realize the new-found potential the system software needed to be re-
vamped so that the operating system can manage several processors simultaneously.
The application had to be provided with the tools for breaking it up across proces-
sors, if the performance gain was to apply to a single application, and not just for
increasing throughput.

The software techniques that were developed in that period of the 80s for run-
ning a single application across small number of processors are the foundation for

68 � Unmatched: 50 Years of Supercomputing

future software tools and techniques in use in today’s clusters on a much larger
scale. The ‘standard’ software tools were created in the 90s, and continue to evolve
to this day (see also Chap. 17). Beyond vectorization, the application had to be
spread over multiple CPUs that, generally, shared the memory system. That is,
each processor could access the whole memory directly (that was not the case for
the lCAP system). This required a new way of thinking about the parallelization
process.

Vectorization involves identifying independent identical operations that can be
performed on elements of arrays. This a process that examines the lowest-level
details of the program - the innermost loops, or the “bowls” of the code. When
considering how to divide an application between processors we need to think in
“big chunks”, taking a top-down look at the code. Now we don’t deal with a single
instructions stream. Each processor manages its own instructions stream. Another
significant change, and one that turned out to be troublesome at times, was the
addition of inter-processor communications.

Two main methodologies emerged: Task Parallelism and Data Parallelism.

Let us dispense with task parallelism first. Spoiler alert: It is rarely effective.
It is reasonable to think of this “divide and conquer” idea of multi-processing in
terms of assigning different parts of the program’s routines to different processors.
Basically, this is dividing the code into several parts. The pieces of code assigned
to different processors have to independent of each other in order to perform in
parallel. Think of a weather model where we can split the dynamics part from the
physical processes. It can be set up so the processor doing the dynamics computes
the state of the next time step, while the physics part of the current time step is
computed on another processor. This time-staggered procedure can be extended
when the model is coupled with an ocean model (that often has a longer duration
for the time step), and possibly land-ice and sea-ice components. It is also possible
to find some pieces of code that can be done simultaneously within a single step,
but likely with frequent stops for synchronization and passing on new values to be
used. It is a complex process to execute.

And there are other practical issues with task parallelism. For me, the top four
are:

� Identifying parallel sections. Even in codes organized by routines that reflect
separate aspects of what is simulated or computed, it is difficult to group
such routines such that all the routines in one group will be independent of
all the routines in all the other groups. After all, then, in the 80s, the tens or
hundreds of routines had to be grouped into small number of groups.

� Load balancing. Arguably the strongest objection to task parallelism is the
fact it is next to impossible to divide the amount of computational work
equally among the the processors. Every task, or part of the code, is doing
something different than the others. In a typical multi-step simulation much

Macro Parallelism � 69

of the resources available would be idle some (or much) of the time, waiting
for the longest-running task to complete its apportioned work.

� Tasks accessing the same data. All the program’s data is available to any of
the separate tasks, so tasks may compete for access, which would cause a
performance bottleneck.

� Scaling to more processors. Once the the segments of code are divided to a
fixed number of tasks - equal to the number of processors on which to run,
it is not possible to change that number without starting the parallelization
process from scratch. This makes for an inflexible implementation.

While in task-based parallelism the code is broken among the processors, in
data parallelism the data sets used by the code are divided. each processor gets the
entirety of the code, or at least all the code that can be parallelized, but only a
fraction of each of the data arrays. This approach overcomes the issues encountered
in the task-based method. The arrays on whose elements the same operations are
done are simply partitioned equally between the processors. The load on each pro-
cessor is perfectly balanced. Each processor touched only its own data - there is no
congestion. And the procedure for dividing the data scales naturally.

In both task and data methods there may be serial sequences that can be
run on one processor and communicated to the others or run on each proces-
sor(redundantly, but saving some communication overhead). Synchronization in-
stances occur in both methods, but less frequently for task-partitioned codes. A
perfect task-parallelized code will fork out after the starting setup, and join back
for the final output.

Synchronization is more complex for data parallelism. When an array is split
up among processors, the boundaries of each sub-array is determined by values at
the edges of other sub-arrays. This means the code in each processor has to ‘know’
which processor holds which side of the ‘neighbors’ to its own arrays’ boundaries.
And at some point (or points) of each iteration the processors have to be in lockstep
and exchanges the values of some of the elements.

Expressing the inter-processor communications and exchange of data was central
to the evolution of tools for parallel processing. I return to the topic, with the help
of several contributors, in Chaps. 32, 33, and 34.

C H A P T E R 7

Making Use of
Multi-Processors
Examples of Appl icat ions on MP Systems

The two previous chapters covered some instances of configuring a small number
of powerful vector processors to operate as a single system. Another approach

to applying multiple processors was to attach coprocessors of many small processing
elements to host computers. Both approaches meant the user has to find and develop
software and coding techniques that enable all the system’s processors to work in
tandem on a single demanding computational task.

Partly paving the way, and partly a demonstration of an approach different than
that of the integrated multi-processor systems, were a couple of one-off configura-
tions that deserve a mention. One is a weather modeling system from the ’60s, the
other a computational chemistry project in the ’80s.

Fleet Numerical Weather Central of the Late ’60s

In my early days with Control Data, at the start of my work on the UK Met Office
future procurement, I was taken to a visit at what we called Fleet Numerical in
Monterey, California. We went there to talk about their future Cyber 203 and 205,
but while there were told about their past CDC’s systems. The one that stuck
with me was that of a dual CDC 6500. The subject of early applications of multi-
processing brought back that fuzzy memory.

As is the case in other countries, the U.S. military has its own weather centers
for tactical and strategic reasons. The navy used to have its main computing at
FNMOC (Fleet Numerical Meteorology and Oceanography Center, as it known
now). It has been there, previously called Fleet Numerical Weather Facility, for
about 60 years. Though my focus in this book is on the civilian weather and climate

71

72 � Unmatched: 50 Years of Supercomputing

organizations, I bring up FNMOC for its unique, and little known, distinction in
the history of weather models.

In Chap. 6 we described the CDC 6500 and mentioned that the organization,
now known as FNMOC, acquired first one (in 1967), then a second, ‘6500’ (in
1969). Recall that each of these systems had two processors. What the scientists
and programmers did with these systems was remarkable. They developed the first
ever production weather model utilizing multi-processors. But this was not only a
dual processor implementation. They hooked up the two independent systems into
a four-processor configuration and ran a 4P model in 1970.

I reached out to find out more, found a historical perspective that mentioned
the 6500 episode ([20]), and through intermediaries was introduced to its author -
Tom Rosmond. Rosmond worked as a civilian research meteorologist for the Marine
Meteorology Division of the Naval Research Laboratory (NRL) in Monterey for 30
years, retiring as an NRL senior scientist. The NRL scientists in Monterey worked
closely with the FNMOC staff, and though Rosmond arrived in Monterey a few
years after the CDC 6500 period he worked with people who were directly involved
in that episode. He told me more about this very early MP application:

”Philip (“Pete”) Kesel was a young naval lieutenant and a graduate student at
the Naval Postgraduate School in Monterey at the time. His master’s degree project
was to develop and code a northern hemisphere forecast model. When he finished
he was assigned to Fleet Numerical and he brought his model with him. He put
the model on the CDC 6500 but, running on a single processor, it was too slow.
It took more than an hour for each day of forecast. It was too slow for any sort
of operational schedules - the required three-day forecasts, twice a day, would have
taken between three and four hours.

“At Fleet Numerical, Pete teamed up with Frank Winninghoff who was a civilian
member of the IT staff, and said, We have to come up with a way of using all four
of these processors so we can run this model operationally in a timely fashion. And
so they set about seeing what was going to be required to do that. Obviously, there
was a lot of things that were not available in those days to do this sort of thing.
They realized they were going to have to come up with some sort of a file locking
mechanism so processors could share a file system. Some sort of synchronization
so that the processors could march in lockstep. And they were going to have to
basically design all that from scratch because there was nothing in the Fortran
language or the operating system that would allow it. They concluded they had to
make some operating system modifications to allow this. And that’s what they set
out to do.

“The CDC 6500 had an Extended Core Storage (ECS) on which resided a shared
file system that all four of the processors could access. However, they had to come
up with a way of locking sub-parts of that file system so processors didn’t compete
for the same space at the same time. And it was basically set up as a master-slave
arrangement where one processor was the gatekeeper that told all the other three

Making Use of Multi-Processors � 73

processors when they could have the file they requested. When permitted the other
processors would write to it or read from it, and when done would send a message
back that said, Okay. The file is open for other users. They accomplished the design
by inserting some changes to the operating system where they set bits at various
places.”

Kesel and Winninghoff worked on this very early parallel version of a weather
model in 1970. It took them 3 to 4 months to deliver a parallel production model.
They describe the model and its parallelization in a 1971 paper ([21]). Three as-
pects had to be addressed: How to partition the model; how to get programs on
different processors to communicate; and how to device a synchronization mecha-
nism among the processors. (The second and third items are described in another
paper that includes additional authors involved in the implementation - see [22].)
It is interesting to look at the approach to parallelization taken back then.

As mentioned by Rosmond, a pivotal component of the system was the extended
core storage. Firstly, because it was directly accessible by all four processors. And
secondly, as important, this is where all the data resided even as it was manipulated
by the processors because the local fast memory was too small, and was able to
hold only the immediate slice of data being computed.

Given that the device holding all data was also the only path of communication
between the processors, it is, in hindsight at least, surprising that the partitioning
scheme chosen was not one of simply splitting the data and letting each processor
executes the same code - what we would call today domain decomposition or data
parallel. That is not the strategy taken. Though, in [21] Kesel and Winninghoff list
the data parallel approach as a future action item. Interestingly, forced to consider
it only as a way to increase the model’s resolution. Without partitioning the data
the 6500’s local memory would be insufficient1.

The partitioning strategy taken was what would be later called task parallel.
Kesel and Winninghoff divided the code among the processors; not the data. The
operational job flow has three phases: input and initialization, running typical time
steps, and the output phase. The first and last were partitioned onto 3 processors,
but the time-consuming part of advancing the forecast by repeatedly computing
the next step was divided 4-ways. Two processors took on the east-west and north-
south momentum equations, the third did the thermodynamics equation, and the
fourth computed the moisture equation. They could do it all in parallel because the
difference scheme used required only reading the previous time step values.

Remember, there was no MPI (or any other messaging library), nor processor
interconnect or a parallel file system. The scheme above requires that at all times
all four processors work on values from the same time step. The synchronization
mechanism required added functionality to the operating system. This was done
via a couple of routines that were added to the 6500’s peripheral processors which

1I could not find out whether a data parallel implementation was done before the 6500s were
decommissioned and replaced by more powerful single-processor systems.

74 � Unmatched: 50 Years of Supercomputing

handled the IO of the system. The changes allow one processor to establish a “mas-
ter” status. It kept track of which block of data was assigned to which processor,
and when it was released. It held advancing to the next time step until all the
processors finished their task on the current one. In [22] the authors offer details of
their creative way of devising a method for inter-processor communication and a
fail-safe synchronization mechanism using what they call Buffer File Method. The
buffer file was a set of blocks organized as a uni-directional ring. When a program
finished processing a block of data it would place it in the buffer file, and only then
another program, waiting on this data block, could read and manipulate that data.
(There is much more to the scheme, that can be found in [22].)

The resulting performance improvement was impressive. The 3-day forecast took
3 hours (184 minutes) on a single processor. The parallel 4-way version of the
same model and duration completed in tree-fold faster - in 60 minutes! Think of
it as a speedup of 3 out of possible 4. Or, as 75% parallelism efficiency. This is a
remarkable achievement given the overhead of the synchronization scheme, and the
use of task-based partitioning where careful load balancing between the processors
is not possible.

A possible explanation of the effectiveness of the project is, ironically, the small
local memory of the system. It forced the data to reside on an external device
that was directly accessible by all the processors. In other words, data was not
exchanged. It just had to be accessed in order. The IO time was significant for
the single processor version - it also had the data on the ECS, and the different
tasks accessed different arrays much of the time, so the IO time was also cut down
appropriately.

The methods the scientists at Fleet Numerical had to use to expose parallelism
do not resemble today’s tools. For one, the systems’ architecture is so different. But
it is interesting to observe that we didn’t get here in our first attempt.

The Enrico Clementi Project

A later example of connecting several host-coprocessor pairs together was the
project led by IBM Fellow Enrico Clementi that was mentioned before (see page
67). This work was done in the mid ’80s and was contemporary with the early days
of Cray multi vector processors. It resulted in what was known as the lCAP system.
Logically, we can think of it a precursor to a cluster of servers, each with a GPU ac-
celerator. The lCAP story is connected to Floating Point Systems (FPS), the story
of which is told in Chap. 8, and also to Prof. Ken Wilson from Cornell University,
the recipient of the 1982 Nobel prize in physics. I talked to Shahin Khan, who is
today an HPC technology analyst and commentator after a long career in HPC in
several companies, and then a student at Cornell. He recalls:

“When the FPS-164 came out and Prof. Ken Wilson got one at Cornell, Enrico
Clementi, an IBM Fellow, was also looking at buying an FPS-164. And because

Making Use of Multi-Processors � 75

Cornell had one, he was looking to recruit scientist types as summer interns from
Cornell. He had written to the head of Cornell Academic Computing. I managed to
see that letter and contacted Clementi, and after attending an FPS programming
training session at Clementi’s lab got the job. Clementi’s vision was to assemble
a bunch of FPS-164s together and split the codes into parallel chunks. He himself
had been behind a code called, IBMOL which was an ab-initio quantum chemistry
code. IBMOL was clearly a target code for this parallel system.

“A computationally intensive component of the code, the Self Consistent Field
(SCF) calculation, was a candidate routine that could be carved out. The SCF part
was migrated to the attached array processor (the FPS system) which then became
a workhorse for the department. Soon after, Clementi bought more FPS-164s until
we had ten of them. Each of the attached processors were connected to one of two
mid-range IBM mainframes. However, the IBM 3090 was just around the corner.

“That was the beginning of writing a parallel code. We needed some systems
programming work on the mainframe so we can parcel out pieces of the app to
different virtual machines each of which would then communicate with their corre-
sponding attached processor, and then reassemble the results back after receiving
them. Some library routines were written, which were akin of some to what MPI
(the Message Passing Interface library) does these days.”

Khan reminisces on how things were more ‘primitive’ on those days and how
the system got its name:

“The success of that initial activity was becoming known in computational
chemistry circles, and gradually in other parts of the HPC market. Clementi was
invited to talk about the system at some conference, and we had to figure out how
to use it to make presentation slides. This was before PowerPoint apps on PCs, so
we used a Tektronix graphics terminal (a storage tube) that was sitting in the lab,
with a joystick, a plotter, and a thermal printer that would capture what was on the
screen. Someone had written the code for that system to give it access to fonts etc.
Clementi would bring his sketches and slides and I would put it on the Tektronix
and he would stand behind me and direct the process. It was a very rudimentary
slide system but beat having to wait for professional graphics and camera work
which would at best take a few days for each iteration. And we needed a name
for the project and system. Coupled processors became loosely coupled processors
and then loosely coupled array processors. And I said: ‘you know, coupled array
processors doesn’t include all the mainframes and other processors that are out
there. What if we call it loosely coupled array OF processors and that became the
formal name, with lCAP as an acronym with a nice reference to El Capitan in
Yosemite’.

And the project evolved and grew:

“lCAP was used initially for computational chemistry because the lab already
had strength in that area. But then Clementi started a visitors program where he
had scientists come from around the world and bring their code. We would port the

76 � Unmatched: 50 Years of Supercomputing

code to the system and see how it ran. That became an avenue of getting additional
types of code, and before long we had the entire geophysics folks and others. And
so the codes base expanded well beyond computational chemistry. This also fit well
with Clementi’s very ambitious and pioneering “Global Simulation” vision that
would look at the whole scientific and engineering workflow.

“Clementi’s lab was in Poughkeepsie, New York in one of the original old IBM
buildings, in a beautiful setting. By the time we got the 3rd FPS-164, we were
running out of space. FPS had just announced the follow-on product, the FPS-264
which more than tripled the performance to a peak 38 MFlops, and new mainframes
were coming. At that time, IBM was just building a brand new campus in Kingston,
New York, about 30 minutes north of Poughkeepsie. There we could get a very large
data center with enough room to add more systems and people.

“With the pending arrival of additional systems, including the FPS-264s, every-
thing moved to Kingston. In short order, there were first 10, and then 20 attached
processors connected to 3 mainframes with lots and lots of disk drives and it be-
came a significant supercomputer center for its time. The system in Kingston ended
up being 23 attached processors and 2-3 large mainframes, a pretty significant su-
percomputing capability. The system architecture also became a blueprint for the
Cornell National Supercomputing Facility in the late 80s, one of the original 5 NSF
supercomputing centers.”

The lCAP project continued to expand and evolve into the late ’80s. There were
ambitious designs that did not get approved because of a combination of budgetary
constraints and some inside turf infighting. One of the design casualties was a way
to connect multiple systems via a shared memory system. The final version - called
lCAP-3090 - had a different set of building blocks: A set of 4 IBM 3090-400, each
made up of 4 vector processors, making it an interesting 16-way parallel system
with 4 distributed memories. The lCAP experiment is captured by Clementi and
his colleague Gina Corongiu in an article written a few years after their departure
from IBM (see [23]).

It seems appropriate to summarize with Khan’s appraisal of Clementi’s vision
as it relates to how HPC should be applied:

“Parallel processing was a big component of the lab. When I first joined there
were about a handful of people and then it grew up to be something like 40-50,
mostly research scientists from around the world, by the time I left. The topics of re-
search also expanded from ab-initio quantum chemistry to include Monte Carlo and
molecular dynamics simulations as well as fluid mechanics. Clementi had a grand
vision, definitely ahead of the times, to create a complete scientific and engineering
workflow. He called this “global simulation” and produced books and integrated
software to pursue it. We used to joke that at one end of the simulation you just
entered the atomic number of the elements and out came a car at the other end.
His ideas are just starting to become more common, but, in fact, part of Clementi’s
vision was that we can start with the initial calculations and come up with the ma-

Making Use of Multi-Processors � 77

terials needed, simulate the materials into what needs to happen downstream, and
then add fluid dynamics and structural analysis to it, and so on. The idea was that
we can devise a pipeline or workflow of computations that would start with basic
science and would become progressively more engineering-based, in stages that are
all connected, with compatible data formats and such that the codes would hand
each other data in the proper way. This vision is starting to look real as people now
see the full workflow and can focus on overall productivity with a business metric
attached.”

One of the consequences of IBM’s difficulties and restructuring of the early ’90s
was the closure of the IBM Kingston facility, and Clementi’s lab with it. (another
consequence relevant to HPC history is mentioned in Chap. 11.)

Multitasking on the Cray Multiprocessors

The most common, and enduring, use of multiprocessors (MP) in HPC in the
80s was on Cray systems. Cray Research had to develop tools that will assist the
application programmer in using multiple processors by a single application code.
In those days the hardware and software stacks were still propriety and the system
vendor had the sole responsibility of providing such tools (with occasional assistance
from early users from within government labs).

The problem in the abstract was one of exposing parallelism in scientific com-
puting codes. The Cray terminology for this in those days was multitasking. Not
entirely new, exposition parallelism in its fine-grain form was a known practice at
that time. This was done to create vectorized code - pipelined, but made up of
independent operations, as if done concurrently.

The MP architecture added another layer to consider. This one of actual con-
currency between distinct processors, which means between separate instruction
streams. Chap. 6 concludes with a discussion of macro parallelism, and here we
refer to it with its Cray naming conventions. Breaking up the code so that each
processor computes a different task was called macrotasking. Just as we saw with
the CDC 6500 at Fleet Numerical some 15 years earlier, this was the initial ap-
proach taken on the MP Cray systems. Soon after, the focus turned to partitioning
the data among the processors all executing the code.This is really an extension of
vectorization, where the vectors are divided (instead of dividing the code). Given
that for this approach one looks at the finer details of the code, Cray aptly called
it microtasking. Of course, serial (‘scalar’) parts of the code were done, somewhat
redundantly, on each processor. Both methods - macrotasking and microtasking,
require identifying and inserting breakpoints for synchronization. These are the
places in execution all the processors had to reach before proceeding. There were
more such synch points in micro-tasked code than when macro-tasked in a typical
code.

The compiler capability that was developed to automatically vectorize parts of

78 � Unmatched: 50 Years of Supercomputing

the code, often with the help of user-supplied directives, was now extended to auto-
matically micro-task codes. It would rely on the same analysis as for vectorization,
but would have to add the synchronization aspect. This capability was referred
to as autotasking. A review of Cray’s multitasking and some results can be found
in paper by a team from the Pittsburgh Supercomputing Center (PSC) that was
presented at the very first ACM/IEEE Supercomputing conference ([24]).

The idea of directives-assisted multitasking in Fortran, and later in C, in a
shared memory system would be taken up by the community in the 90s as part of
the move away from the proprietary silos. It would become the OpenMP application
programming interface (more on that in Chap. 17).

C H A P T E R 8

Attached Processors,
Microprocessors, and
Mini-Supers
Precursors to GPUs and Chal lenging Large Vector Processors’
Hegemony

The ’80’s saw another architectural development that was adapted to, and
adopted by, scientific computing. In addition to the use of multiple general-

purpose processors, there was the idea of providing more specialized devices that can
accelerate compute-intensive tasks. In particular, floating-point operations. Such a
device can be attached to, and controlled by, a host processor. Fortunately, it did
not have to be invented. The Signal Processing sector invented this technique al-
ready. A board was populated with processing elements and interconnected in a way
that favors FFT (Fast Fourier Transform) computations. The thought was that this
approach can be applied to numerical calculations in general.

These kinds of accelerators were referred to as Array Processors or math or
attached coprocessors. The more correct term is Attached Array Processors, since
later on there were systems of array processors that were considered stand-alone
systems. The story of attached array processors is similar to that of vector tech-
nologies in an important aspect: both impacted HPC for a period of time (though,
array processors had a lesser impact compared to vector systems), and then left
behind, only to re-emerge later on1. Vector instructions were added to cores of sin-
gle chip server microprocessors, and array processors reappeared as today’s robust
General-Purpose Graphic Processing Units (GPGPUs). As Shahin Khan, who we
met in Chap. 7, has said: “The attached array processors were basically set up

1A thorough discussion and comparisons of vector processors and array processors of the 80s
can be found at Roger Hockney’s and Chris Jesshope’s book[25].

79

80 � Unmatched: 50 Years of Supercomputing

as an IO device where a computing task would be ‘written’ to them by the host
computer, and then on the receiving end the task would be executed and then the
data would be ‘read’ back by the host. The math-coprocessor/attached processor
approach was a prelude to GPUs and the whole accelerator era that we see now”.
We will return to these topics in later parts of this book.

The following narrative captures the volatility of HPC companies in the 80s and
the 90s, accompanied by the changes to HPC system architectures.

The Story of Floating Point Systems

Floating Point Systems Inc. (FPS) was, arguably, the most prominent builder of
coprocessors (or attached processors) for fast floating-point numerical computa-
tion for HPC applications. Founded in 1970 by ex-Tektronix engineer/executive
Norm Winningstad, it was in the ’80s that it became a player in HPC (until then
FPS was focused on signal and image processing). After great success in the at-
tached processors markets, the company betted its future on a product that was
not successful. FPS nearly went under. Recovering, it bought a minisupercomputer
company (Celerity), and shortly after was acquired by Cray Research. The latter
was acquired by SGI, which sold the division that was the continuation of FPS to
Sun Microsystems. It made Sun a player in the server market. Some years later Sun
itself was acquired by Oracle, and soon enough the FPS remnants were gone.

Let me take a small detour from the attached processor narrative to tell the
story of how and why FPS was nearly destroyed prematurely. It turned out to be
a “teaching moment” for me.

The FPS story intersects with my own. I joined FPS in 1985 following the spinoff
of ETA Systems from Control Data. In the 18 months I was there I witnessed FPS
riding high with a successful 64-bit array processor, and falling hard as a result of
placing too much of the company’s future on a new product, called the “T Series”
(“T” for Tesseract), that was a huge departure from its other products. It was an
interesting and innovative design. A kind of a hypercube such that its nth degree
consisted of 2n nodes; each node a processor. Its connectivity allowed for many
useful computational topologies - rings, meshes, and even that for all the stages
of FFT (Fast Fourier Transform). The processor was proprietary but used VLSI
from third parties Inmos (the transputer), Weitek, and Texas Instruments. The
memory technology was borrowed from the video game industry. Each node had its
own memory, that had to be accessed in chunks of 1K bytes with predetermined
boundaries; it was nicely suited for problems where all dimensions were a power of
2. In the general case, the control unit had to move data around - one element at a
time. The chosen high level language for programming the machine was Occam, a
somewhat obscure language that was co-developed with the transputer in the early
80s. John Gustafson, who was a senior staff scientist at FPS at that time, described
the T Series and how to program it in a 1986 article ([26]).

Attached Processors, Microprocessors, and Mini-Supers � 81

Gustafson, who would later become known for his formulation of Gustafson’s
Law and the idea of weak scaling (see page 274), told me about the origin of the T
Series project: Ken Wilson (at Cornell university) managed to secure a generous,
DARPA-sponsored, earmark from Congress for an experimental parallel machine.
It was to support his interest in large scale QCD computations (see also Chap. 9).
That was in 1983, when Wilson and Larry Smarr were lobbying for the creation
of national academic supercomputer centers. And so it happened, as Gustafson
recalls that: “Well into the project, Cornell pulled the rug out from underneath us
by saying they would not accept a Congressional earmark. Their policy was always
to compete for funding by the traditional peer-reviewed proposals and thought that
by accepting an earmark they were telling the world they would instead start using
cronyism to get money to Cornell.”

As pointed out, the T Series did not capture the market - all of four customers
acquired small configurations. I doubt many people remember it today. The signs
were there. The vast majority of real-life applications cannot fit the very specific
data structure that matches the architecture. They also contain serial code that is
not addressed well. Only artificially tailored tests performed well on the T Series.
The design was too specialized and restricting. Then there is the use of Occam. The
community was not going to switch from Fortran or C because of one company’s
choice. It was worse: the reality was that for the demonstrations of performance
on the T, the coders had to resort to a level below that of an assembler language.
There were color-coded sheets where they marked on each row which hardware
instruction it was and at what cycle to start it. The programmer had to know
exactly how many cycles each operation would take. The completed hand written
sheets would then be ‘translated’ to a terminal-fed program. It was not pretty.

Gustafson, who was intimately involved in the T Series project captures its
failings thus: “We were assured by the engineers that the scalar performance of
the T Series will only be six times slower than the vector performance. The actual
product delivered was 1,000 times slower at scalar. Unbelievably bad balance. that
was probably the biggest single reason for the failure of the T Series.” And - “There
was a terrible delay in the transputer. It was actually two and a half years late. It
meant that we couldn’t develop much software and have it ready with the hardware.
We had to just give raw hardware out to the customers that have been waiting for
it.”

But there is more to the story beyond the technical aspects. The architect of
the T Series was not an FPS employee, but an external consultant brought in by
the CEO. Its development received the highest priority at the time, at the expense
of other, revenue producing, projects. Gustafson explains the use of non-company
resources: “The reason for going to outsiders to do the design was largely for secrecy.
The CEO was afraid people would find out we were building a hypercube of array
processors and that it was so easy to do that they’d beat us to the market if they
knew. As it turned out, Intel did beat FPS to the market, and they knew about

82 � Unmatched: 50 Years of Supercomputing

hypercubes from the same place we did: Geoffrey Fox and Chuck Seitz who built
the first hypercube system - the Caltech Cosmic Cube.”

The background story here is that the Caltech team first looked at the FPS
array processors as the building blocks for their design, but eventually went with
Intel boards. The idea of constructing parallel systems with hypercube topologies
was a sound one, as was demonstrated by several companies. More on that in Chap.
12.

Open criticism of the T Series project was not tolerated, as I learnt from a
personal experience. Immediately upon being hired by FPS, and before moving
physically to its facility, I was asked to review a Tesseract’s architecture design
document and write a report about my findings. The requestor, a senior manager,
wanted an opinion untainted by the company’s prejudices. I delivered a few-page
report that highlighted concerns about the design. The memory system, the reliance
on close to 100% vector-parallel code, and the programming language support were
found to be the major weaknesses. The report was read by only a handful of people,
to the best of my knowledge. The VP at the department I was in decided to quash
the report. Showing it to the CEO would have not changed plans and investments in
a project in its final development stages. But it would have ended my short tenure
at FPS. The internal hype was such that the company even claimed the T Series
to be the world’s fastest supercomputer in 1986 ([27]); at its maximum 16,384-
processor configuration. In fact, only very small n-cubes were ever built (16, 32, or
64 processors), with mostly synthetic kernel benchmarks for claimed performance.

This short experience and the following 18 months of watching a company de-
teriorate because an esoteric project was suffocating its successful products taught
me and reenforced several lessons:

� A product design needs to be based on real-life constraints, not an idealized
application and parameters.

� A successful product has to include an ecosystem that allows its integration
into an existing market.

� A product better come from within the company to match its experience and
skillset. An idea imported from outside that deviates from the current com-
pany’s trajectory and imposed by forceful management is rarely successful.

� A company where criticism and open debate are silenced is incapable of course
correction and doomed to fail.

I have witnessed a similar situation once more, this time at Intel. It was con-
siderably less extreme for the company, but did cause some damage. I refer to the
Itanium saga some 10–15 years later, and discuss it in the chapter on HPC at Intel
(Chap. 18).

We now return to the topic of where FPS excelled: Attached array processors.

Attached Processors, Microprocessors, and Mini-Supers � 83

Khan followed the FPS journey from when he was an intern working on early
FPS products, while at Cornell University. It was then that I came to know him
when we collaborated on some projects related to FPS and Cornell. He would stay
with what was the original FPS group through all its transitions and ended this
journey as an executive at Sun Microsystems. Here is his story:

“My initial exposure to array processors was at Cornell University where Ken
Wilson, the Nobel Prize winner, and others like him outside of Cornell were looking
for more computational power. So he got an AP-190 Array Processor from Floating
Point Systems (FPS), which was attached to one of the IBM mainframes on campus.
The system was designed for signal processing so it was a 38-bit system and did not
have much programming tools for a scientist. Ken and his team actually wrote a
Fortran compiler and job management software for it, called APEMAN, within the
Cornell Computer and Information Technology group. Interestingly, this was the IT
department, not the computer science academic department. That project was very
successful. Ken Wilson even mentioned the work with Floating Point Systems in
his Nobel prize speech. In fact, as far as I know, FPS is the only computer company
that has been mentioned in a Nobel Prize acceptance speech.

“Such efforts showed that there was a market for these attached array processors
beyond signal and image processing. But scientific work required higher precision
and much better tools. This is very similar to what GPUs went through decades
later.

“Either the success of the Cornell effort by itself, or possibly combined with
other data that FPS had, caused them to say: okay, there is a market for scientific
engineering computation; but it needs to be 64-bit arithmetic. FPS then developed
the FPS-164 attached processor which was released in 1981. Whereas the previous
array processors were rack mountable and designed so they could be ruggedized
and installed through a hatch of a submarine or a tank, the FPS-164 was really a
mainframe size machine. In fact, its backplane was too large for one big box, so the
system came in 2 refrigerator-sized boxes that got bolted together on site to form
a pretty wide box. Its theoretical peak was 11 megaflops in 64-bit arithmetic.”

For the history buffs, there is still a readable specification document of the
FPS-164 posted online. See [28].

The ’80s and into the early ’90s was a period of much experimentation and
turmoil in the HPC marketplace. The ’Big Iron’ vector processors were challenged
by coprocessors accelerators. They were challenged by ’mini-supercomputers’ that
were ’Cray-like’, less powerful, but with much better price-performance ratio. Par-
allel programming on a small number of processors opened the doors to systems
with larger number of less powerful processors, the server market, and the use of
commodity CPUs. The microprocessors would take over as the processors building
blocks in just a few years later (see Chap. 17).

It is interesting to document how the transitions described above are reflected

84 � Unmatched: 50 Years of Supercomputing

in FPS’ history. This story shows the turmoil and reshaping of the HPC market
and its players. Khan continues:

“In 1985 FPS announced the FPS-264. The product and the timing of the
announcement were brilliant because the 264 was way faster than people expected
it to be and significantly less expensive than people expected it to be. So, it really
propelled FPS to the heights that it achieved. The attached processors of the 64-bit
variety started becoming a bigger and bigger portion of the revenue stream. FPS
was the darling of Wall Street for a while and was doing better and better until
new stand-alone mini-supercomputers came to market.

“Meanwhile, FPS systems needed to hang off of a mainframe or a minicomputer
which themselves were under attack by microprocessors. FPS needed a new strategy.
They were dabbling with massively parallel systems in the form of the FPS T-series.
They had experimented with data flow architectures, played with systolic arrays,
etc. So while all that hands-on experience made their performance engineering team
one of the best in the industry, it wasn’t leading to a successful system in the market.

“The solution came when FPS acquired Celerity Computing in 1988. Celerity
had a modern Unix based system with a good vector processor. It was one of
the early pioneers of the RISC model (and was focused on number crunching.
Celerity and a number of other companies were targeting DEC VAX that was the
standard in minicomputers, all had their own custom CPU, and all fell on hard
times because of the microprocessor. At the time of the acquisition, Celerity had a
strong engineering team and a product that was ready to be launched, but had cut
most of the rest of the functions. FPS, on the other hand, had a pretty impressive
worldwide organization and market presence but its product line was weak. So, it
was a marriage made in heaven. The Celerity product was launched as the FPS 500
series.

“The FPS 500 became a contender to complete with Convex and Alliant. The
FPS engineering team already knew that they were not going to be in the CPU
business and had to use an existing microprocessor. The choices for a server class
microprocessor back then were really either HP-PA, Sun-SPARC, Intel i860, DEC
Alpha, or SGI MIPS. Intel x86 and Motorola 68k were squarely PC class chips.
They chose the Sun SPARC, adopting it for the scalar portion of the FPS 500. But
the real motivation was to use Sun Solaris and all that came with it including a
very large application base. It would now become the FPS 500S (‘S’ for SPARC),
run Solaris, and continue to offer vector coprocessors for the HPC market driven
by FPS compilers and libraries.

“FPS 500S used an ECL implementation of SPARC. ECL is complicated and the
parts were late and FPS continued to get weaker and there’s always some economic
downturn that makes things hard so by 1991, FPS needed help. Along came Cray
whose own systems were too big and specialized for traditional commercial database
applications but was being approached by large commercial customers looking for a
‘business supercomputer’. FPS seemed like a great fit, a company that understood

Attached Processors, Microprocessors, and Mini-Supers � 85

supercomputing but had a system that could run all the commercial apps you
wanted. So from a Cray standpoint the acquisition of FPS was going to fill that
gap and allow them to expand into the traditional enterprise IT market.

“The actual acquisition of FPS by Cray was dramatic, however, since Cray
did not commit in time and FPS filed for bankruptcy, laying off everybody and
preparing to deal with the aftermath before Cray came back and acquired “selected
assets” and rehired the re-assembled teams, forming what became the Cray Business
Systems Division (BSD).

“Soon after the Cray acquisition the team started collaborating with Sun on
both companies’ next-generation systems. They licensed a new parallel packet-
switched interconnect technology from Xerox PARC. Sun was having no interest
in bigger or more complex systems, but Cray built a 64-processor system with the
next-generation SuperSPARC CPU, and Solaris OS. And this time, there was no
vector attachments to complicate matters any more since the HPC market was to
be handled by Cray’s existing and expanding product line. That SPARC system
became the Cray Superserver 6400, or CS6400.

“Cray was moderately successful with the CS6400 despite go-to-market and
channel challenges. Work was starting on the follow-on to the CS6400, again as a
collaborative project with Sun. This time using what would become UltraSPARC
and with new interconnect built by the companies themselves. In early 1996, that
system was getting ready to be launched as the Cray Starfire.

“But then, quite unexpectedly, SGI announced that it would acquire Cray. SGI
was a serious competitor of Sun. It had a brand new highly scalable product line,
the Origin series, that it was just about to announce. It had no interest or use for
the SPARC-Solaris (the FPS) part of Cray. Despite a lot of advice to the contrary
SGI decided to sell that business to Sun.

“I believe the view from SGI side was that this was not going to be a threat to
them because they had their own Origin system about to be launched and selling
the business would have economic benefits without any perceptible market impact.
To this day there’s controversy about whether it would have been better for SGI
to just ‘kill’ that SPARC product. But one day after the Cray-SGI deal closed, it
was in the middle of 1996, that system and essentially the FPS component of Cray
moved over to Sun.

“The transformations of FPS – acquiring Celerity, then becoming a part of Cray,
SGI, and Sun – is a pretty unique piece of computing history. Cray BSD quickly
became the high end systems group at Sun. The Cray product became the Sun
Ultra Enterprise 10000, code-named Starfire. And because the team had come from
Cray had intimate understanding of HPC they became the lead group for Sun’s
HPC activity.

“Armed with a large global sales force and fueled by the industry rush to adopt
SAP R3 and Oracle applications, which the system ran so well, Starfire did ex-

86 � Unmatched: 50 Years of Supercomputing

tremely well. 100 days, 100 systems, $100m was a line that my group came up with
that was used in Sun’s earnings call, making Starfire a barometer for how Sun was
doing as a company and the only Sun product whose sales were discussed publicly.
The system went on to a $1B run rate and ended up with an installed base of over
5,000 units.”

And on this high note the remnants of a small pioneer engineering-driven HPC
company from Oregon, having survived numerous upheavals, departed the HPC
world with a server product supporting database environments.

Enter the Mini-Supercomputers and the MPPs

While the MP vector processors ruled the supercomputing world, a quiet revolu-
tion was taking place. Advances in process technology that offered higher degree
of integrated circuitry enabled faster designs and higher performance than that of
the one-chip personal computer processors. It was at that period, circa 1990, that
the phrase “The attack of the killer micros” became in vogue. Coincidentally, the
Unix operating system, written in the high-level language C and therefore easily
ported, was there to quickly offer a full software stack on new architectures. As
a result, the period from the mid 80s to the early 90s became either the “golden
age” for innovation in scientific computer systems or a period of great confusion,
volatility, and uncertainty in the HPC market, depending on one’s perspective.
Many start-up companies, and some established ones, engaged in offering more af-
fordable scientific-numerical computing. They used the new hardware and software
technologies to build systems that are a significant fraction of the performance
of better-known vector processors, but with an even smaller fraction of the cost.
Roughly speaking, the ‘sweet spot’ of these minisupers was at about a quarter or
a third the performance for about a tenth of the cost relative to the “big iron”
supercomputers. By one count ([29]), 35 companies offered what came to be known
minisupercomputer systems in a period shorter than 10 years. Not many survived
beyond the 90s.

To understand the place of the minisupers in the HPC landscape we need to
look at the low end of technical computing: the workstations. The early machines
that can be considered the forebearers of the workstation concept were systems,
introduced in the ’60s, such as the IBM 1130 and DEC’s PDP-8. They were too
big to be placed on a desktop, but could be installed in an office environment
and support a single user sitting by their console. In reality, these early systems
were used as a departmental or even as a campus-level resource. That is, a shared
resource in the form of one-user-at-a-time. The advent of the microprocessor and
denser memory technology allowed both higher performance and the shrinking in
size of workstations. The workstations of the 80s and 90s consisted of a display
monitor and a keyboard on the desk and a modest size box, often called tower,
at the side (or on top) of the desk. They became truly personal workstations,

Attached Processors, Microprocessors, and Mini-Supers � 87

and an identified market segment of technical computing served by most computer
companies who built PCs, and some who did not (e.g., SGI and Sun).

The technical computing market of the 80s, then, had the supercomputers,
with performance in the gigaflops range, at one end, and the workstations, of the
megaflops range, at the other end. With this performance gap of three orders of
magnitude between the categories of products, there was a definite performance
and price range that was not served. And the technologies for filling up the gap
were present.

Two classes of architectural solutions emerged: The minisupers and the mas-
sively parallel processing (MPP) systems. Some lump both types of systems into
a single category and call it minisupercomputers. In my view it is useful to differ-
entiate between them. The MPPs had a greater impact on the evolution towards
today’s clusters, as we will see in Part III - see Chap. 12.

The minisupers were a scaled-down version of the MP vector processors. Not
scaled down in the number of processors, but in the power of each CPU. Arguably,
the most commercially successful of the minisuper start-ups was Convex - founded
in 1982 with Steve Wallach one of its two co-founders. Convex’s central idea was
to use mainstream semiconductor tools to produce an architecture similar to that
of Cray. Their line of products, with up to eight processors, had lower performance
than the Crays, but better price-performance. HP acquired Convex in 1995 and
shortly after terminated the minisuper product line. About as successful as Convex
was Alliant, which existed from 1982 to 1992. Its systems allowed for up to 32
processors, also with vector instructions capability.

Digital Equipment Corporation (DEC) has been a presence in technical com-
puting, notably in academia, since the ’70s. Its products were not in the super-
computing class and initially competed with IBM’s mid-range systems. By the
late ’80s DEC produced the VAX product line that included vector instructions
and multi-processors option. By that time, DEC were looking to position their
offerings’ capabilities well above those of the technical workstations while having
a price-performance advantage over supercomputers. That put the VAX systems
within the minisupers class, and with a much larger share of the market.

What is common to the minisupers of mid ’80s to mid ’90s is the use of micro-
processing technologies to develop systems with 64-bit custom design CPUs and
modest level of parallelism via multi-processing.

CISC vs. RISC

Propriety processors have their own instruction set. But they each tend to corre-
spond to one of two instruction set architecture (ISA) methodologies; some would
even say philosophies:

� CISC - Complex Instruction Set Computing

88 � Unmatched: 50 Years of Supercomputing

� RISC - Reduced Instruction Set Computing

This topic is of interest since it still applies today, though with a twist (see
Chap. 17).

The idea of CISC is to define hardware instructions that perform a series of
operations with the issuing of a single instruction. For example, a CISC add in-
struction would include the fetching of the operands, performing the arithmetic,
and storing the result. In addition, the repertoire included compound operations
combining things such as loop control, mixing of addressing modes, recognizing data
structures, and more. Clearly, the goal was for the hardware expression to closely
resemble statements in high-level programming languages. The approach also re-
sulted in compact assembly language codes, not much more difficult to code than
the high-level languages. This is all seems like a good thing, and was implemented
early on by IBM on mainframes, and later in the x86 architecture of personal
computer microchips. However, CISC also meant that instructions took longer to
complete with varying execution times, and their implementation in hardware re-
quired more circuitry. Providing complex instructions also meant catering to a large
number of possible useful combinations of basic operations and operand types. This,
in turn, generated a very large number of instructions for CISC implementations2.
An important drawback of CISC is that it made pipelining (vectorization) and
instruction-level parallelism more difficult, if not impossible.

RISC ISA is based on breaking down high-level operations to their smallest log-
ical parts. The add operation now would require two load instructions, followed by
the performing of the addition out of the registers holding the operands, and then
storing the result register to memory. It looks more cumbersome from a program-
ming perspective, but not from that of resource utilization. The complex instruction
would reserve and hold the load and store ports, as well as the registers and the
functional unit for the duration of the instruction. In the RISC way, the load is
freed as soon as the operands are in their registers. So is the adder unit as soon
as it is done. This allows new loads to start in preparation for the next operation.
With RISC there is a smaller number of instructions, the machine language foot-
print is larger, and the compiler has more instruction scheduling work to do. But
more resources are used in parallel, with likely higher performance.

The term RISC came into being in the ’80s with several microprocessors devel-
oped in the Bay Area: MIPS, SPARC, HP-PA, and more. But in hindsight we can
credit Seymour Cray as perhaps the first architect to ‘go RISC’. Against the back-
drop of the IBM CISC mainframes, he designed the early Control Data machines
in the ’60s as true RISC implementations.

2Take, for example, the x86-64 chip, which is very common in today’s servers. People came up
with different counts, as treating instruction variants is somewhat subjective. That said, by one
count (see page 3 in [30]) the ISA has 981 distinct mnemonics and 3,684 instruction variants, many
of which exist there for maintaining backward compatibility and are rarely, if ever, used.

Attached Processors, Microprocessors, and Mini-Supers � 89

A Parting Thought

The refresh rate and the cost base made microprocessors a lethal competitive option
to custom CPUs. But systems based on them would require many more processors
to match in performance. There is a saying attributed to Seymour Cray: “If you were
plowing a field, which would you rather use? Two strong oxen or 1024 chickens?”.
This was the case for the specialized systems for supercomputing. It hit home the
idea that breaking up a problem into too many small parts results in such a loss of
efficiency that the distributed solution is rendered useless.

However, after several generations of microprocessors, the Cray’s analogy would
have been more suitably phrased as: “To plough a field every year, would you
rather have two oxen that you can replace every five years, or ten donkeys that you
replace every two years?”. Now the answer is not all that clear cut. It is true that
systems based on microprocessors were not upgraded every two years, but a five-year
upgrade cycle now was an advance of two technology generations. Extrapolating
forward it is pretty obvious the microprocessor will win this race.

The answer to the “ten donkeys” phrasing regarding the minisupers is unclear.
Both the high-end supercomputers and the minisupers departed the HPC scene at
about the same time - by the mid 90s. At least, as far as U.S. manufacturers are
concerned (NEC and Fujitsu in Japan continued to produce vector processor class
systems). Cray went through a period of producing specialized MPP systems, before
switching to commodity server boards connected by a proprietary high-performance
interconnect network.

Eventually, as it turned out, the great Cray was wrong even in the “thousand
chickens” sense. The high-end systems of today are made up of hundred of thousands
of processing units, as we will see in Part IV.

C H A P T E R 9

Studying the Standard
Model
QCD on supercomputers

Quantum Chromodynamics (QCD) is an area of computational physics I was
personally involved in. This allows me to relate, from personal experience, to

the role computations play as the third leg of science by complementing Theory and
Experiment. By that time, the early 80s, I was no longer a practicing physicist. But I
had access, in my role as a resident scientist on behalf of Control Data at Colorado
State University, to a supercomputer - the CDC Cyber 205. A physicist friend
and past colleague, the late Kevin Moriarty from Dalhousie University in Halifax,
Nova Scotia, kept in touch. An ad-hoc research project ensued in the general field
of lattice gauge theories for quantum chromodynamics - the theory of the strong
interaction, the force that applies to quarks and gluons, or Lattice QCD ([31]).
Other physicists got involved at times, including Claudio Rebbi now at Boston
University and Michael Creutz from the DOE’s Brookhaven National Laboratory.
Of course, this activity was just one of many such projects at universities and
research labs around the world. We were not the only ones, nor the most prominent,
carrying on these computations.

The Standard Model of particle physics describes three fundamental forces - the
electromagnetic, and the weak and the strong forces (but it does not include grav-
ity). As scientific theories go, it is a very successful theory. Success of a scientific
theory is determined by its predictive power, and its correspondence to experimen-
tal data. For example, the Standard Model predicted the existence of elementary
particles that were later found by experimentalist physicists. The part of comparing
quantities calculated from the theory to those measured in the lab is where com-
putations come in. The quantum field theory equations that express the model are
very complicated. They don’t have, in most cases, an analytic expression that can
be easily calculated. The approach taken is known as perturbation theory. One starts

91

92 � Unmatched: 50 Years of Supercomputing

with a simpler, approximate, system for which there is a solution, and adds correc-
tive terms, that can be calculated numerically. These can be power expansions, for
example. The approach works extremely well for Quantum Electrodynamics (QED)
through the application of Feynman diagrams.

QCD is the equivalent to QED, where electrodynamics - the study of electron-
photon interaction, is replaced by chromodynamics1 - the study of the strong force,
or the quark-gluon interaction. Unfortunately, the QCD equations that arise for
even simple cases of this strong-force interactions cannot be computed, let alone
solved, with perturbation methods. The simple explanation for this is that the
strong force is too strong. The perturbation technique involves successive terms of
exponentials of a constant proportional to the strength of the force. in QED, that of
the electromagnetic force, this constant is small enough so that the series of terms
converges. For the strong force it is too large2.

Therefore, non-perturbative methods have to be deployed. QCD is a case of a
gauge theory over an infinite-dimension path integral (a term familiar to those who
studies particle physics). To make it possible to compute, the continuum problem
has to be discretized (see the Short Introduction to Scientific Computing chapter).
Thus, Lattice QCD.

A short (but relevant) digression: The physicist who introduced this approach
to QCD computations in the mid 70s is Ken Wilson, who was at Cornell University
at the time, and was a recipient of the Nobel Prize in physics in 1982 for analysis of
critical phenomena. Wilson also played a central role in the HPC world. He was the
founder director of the Cornell Theory Center (CTC) in 1985 (now called the Cornell
University Center for Advanced Computing, or CAC). It was then that Shahin Khan
and I, working for FPS at the time, got involved with the creation of the center.
The CTC was unique among the National Science Foundation’s (NSF) five original
supercomputer centers in choosing array processors as the main building blocks of
its compute capability (see also Chap. 8). They created a system of some 10 FPS
array processors configured together, making a novel form of a supercomputer.

Back to the computational problem: The equations for the values at the grid
points have to be such that when the interval between points approaches zero,
they become the continuum equations of quantum field theory. As noted above,
perturbation methods don’t work for strong force interaction.

The method, that became popular and successful for Lattice QCD, is a random
sampling algorithm called Monte Carlo (MC). It is used in several branches of sci-
ence, including a number of physics applications - of which QCD is one. The method
is attributed to Nicholas Metropolis, who led a group in Los Alamos National Lab

1The term chromo is used because the attribute that distinguishes the different types of quarks
is called, whimsically, color.

2Do not confuse the strength of a force with its range. The strong force is many times stronger
than electromagnetism, but its action is felt only at distances many scales smaller. Gravity, by the
way, that acts at universe-scale distances, is also the weakest of the four fundamental forces.

Studying the Standard Model � 93

that developed it. The group included John von Neumann and Stanislaw Ulam, the
famous scientists of that era. It is said that the name, Monte Carlo, a reference to
the casinos there, was not only appropriate due to the randomness nature of the
method, but also in honor of Ulam’s love of these casinos.

And so it was that in the early 80s we began to apply the MC method to Lattice
QCD. The procedure is very compute intensive. It involves generating pseudoran-
dom numbers for all the lattice links (4 links for each grid point), but the essence
of the MC method is that each random value (sort of a probability between 0 and
1) is multiplied by a weight factor. And this weight factor is an exponential with an
exponent proportional to the strength of the action at that point. It also contains
a factor related to the lattice spacing. The latter makes it possible to repeat the
computations with different spacing value and extrapolate to link length of zero,
that is the real-life continuum. Calculating exponentials is computationally expen-
sive. The grid, lattice, is 4-dimensional (as it needs to be for relativistic physics)
and each pass, or iteration, is repeated many times, so that the final average is
more accurate. Every step requires a sweep through all the 4D lattice points, which
makes the problem also memory bandwidth intensive.

This was the period when the top supercomputers of the day were closing on
the one-GigaFLOPS peak performance. The Cyber 205 we used had a theoretical
peak of 800 MegaFLOPS at 32-bit arithmetic, resulting from 16 vector pipelines
(for single precision) running at 20 nanosecond clock rate, or 50 million cycles per
second. It had 64 MegaBytes (accessed as 8M words). By comparison, a MacBook
Pro today runs at a rate 40-50 times faster than the Cyber 205. Its single chip
processor has up to 8 cores (in 2021). So, a present-day laptop has a nominal
operation rate some 20-25 faster than the early 80s supercomputer. Todays laptops
even come with hardware supporting vector operations, or streaming of results.
Even more impressive is that a laptop today can have a memory capacity that is
1,000 to 2,000 times larger than the 64MB of the 80’s supercomputer.

Back then, about 40 years ago, we were able to run with grid of around 204

points (range of 20 points in each of the 4 dimensions). A rare “hero” run was
when we got the lattice up to 32 points at each dimension. I talked to Claudio
Rebbi about Lattice QCD then and now:

“Now I’m involved in a study using grids of 963 by 192 points. Runs today
are of order of 1004 in size, which is a huge increase over our runs in the distant
past. Computers help in two areas: One is due to the sheer size of problem we can
run. It allows us to investigate theories that go beyond the Standard Model. That,
combined with advances of computational methods, allow us to get results with
astounding accuracy. That’s where computers have helped enormously. Another
area is in what we could study. In the 80s we studied Fermions and pseudo-Fermions
where we let the gauge fields indicate quarks propagation. Now we can solve for
the quarks motion. It’s a set of linear equations that have to be repeatedly solved
as the gauge field evolves. The equations are sparse, luckily. Still, we have a system

94 � Unmatched: 50 Years of Supercomputing

made of 108 points (and links) multiplied by the number of the internal degrees of
freedom, which results in over a billion components.”

Rebbi adds that today each step, or iteration, can be completed in seconds. This
is when the calculations are done on some of top HPC systems in the world. He
refers to the large DOE national labs systems, such as those in Oak Ridge, TN and
in Argonne, ILL. The application makes use of the GPUs of these systems. Still, he
says, “Running these jobs is not straightforward. It take quite a lot of expertise to
make an optimal use of the compute systems. Crucial aspects of the programming
include how the data is arranged and managed.”

The MC method had some successes in validating the theory of the Standard
Model by calculating quantities that can be compared to experimental results. It
had been used to calculate masses of particles without introducing any arbitrary
constants. The proton’s mass, for example, came out very close to that measured
in the lab. Another achievement was the energy (temperature) value when confined
quarks transition to a quark-gluon plasma.

Our work on using computations to validate the Standard Model forced us to
overcome the limitations of supercomputers of that time. The follow-up to applying
the MC method highlights the central role that numerical methods play in bridging
theory and experiment in science. This is a tale that, in many different forms, was
played out in many other instances confronted by HPC practitioners.

The output of the Monte Carlo method computation is a set of “configurations”.
A configuration is a collection of SU(3) matrices, one for each of the 4 links of
every lattice site (or “point”). An SU(3) matrix has 9 complex values, or 18 real
values. So, a lattice of 163by32 is a datasets of over 9.4 million variables. These
values are numerical representation of the gauge-preserving dynamical variables
of the quantum space. This is the “raw data” upon which we can perform the
computational measurements of physical observables. In our case, we “placed” a
quark on the lattice and computed at each lattice site the “propagator” - an operator
that describes the propagation of the quark. What this entails is solving a very large
set of linear equations. The vector to be solved is made of the propagator values on
the lattice sites. The coefficients matrix is made of the configuration values.

For the purpose of this discussion it is sufficient to note that the system to be
solved is so large as to warrant an iterative solver. And because it has a “simple”
coefficient matrix, the Conjugate Matrix (CG) was a suitable algorithm. The choices
made, we faced implementation challenges.

The following episode is an opportunity to describe an example of the dynamics
between numerical algorithms and the compute system.

Supercomputers are often ranked by the potential speed of arithmetic operations
they can perform - the FLOPS measure, or Floating-point Operations per second.
It is also well known that the vast majority of HPC applications perform at a rate
that is only a small fraction of that peak potential performance. Memory bandwidth

Studying the Standard Model � 95

is, arguably, a more appropriate metric. Moving a data element takes an order of
magnitude longer than performing an operation on it. But in our CG-solver case
the situation was far worse. The problem, the dataset, did not fit in memory. That
is, much of the data was kept on a disk in the computer room. Therefore, even when
several operations are done on the data slice when in memory, the execution time
was IO-bound. The solver implementation had to be what is termed an out-of-core
solver.

The optimizations we did for the computation stage - vectorization and the use
of the gather instruction instead of multiple transpositions of the large matrix, did
not address the IO-time issue. The problem was aggravated by the fact the regular
CG algorithm steps through the data twice each iteration, and the data could not
be kept in memory. Data slices had to be rotated in and out. The hardware we were
given was fixed, but there was another aspect to consider - the algorithm itself. The
basic thought was can we do more computations that advance getting to a solution
on each piece of data brought?

Rebbi came up with the approach, that may apply to other iterative algorithms
too (and I implemented it). His idea was to write down the the arithmetic steps for
doing two iterations. Doing so allows the use of calculations for the first iteration
as immediate input for computing the second. We still needed to go through all the
data twice, but now we performed the work of two iterations. And because the IO
time was so dominant in getting to a converged solution, we essentially halved the
time to solution. For detailed derivation and explanation see [32].

I bring up the modified CG solver story as an example of the interplay between
algorithm and hardware system architecture. It is a recurring theme in the lives
of HPC applications programmers. Such examples provided insights to co-design
teams that became popular years later.

C H A P T E R 10

HPC for the Automotive
Design - Early Days
How HPC Saves Time and Resources

One of the very early industry adopters of HPC was the automotive design
industry. Designing a vehicle involves materials’ strength and weight, flow over

frame, noise, stability, and more. It involves aesthetics and comfort, and regulatory
safety measures. Computationally, these call for finite-elements and finite-volume
solvers, for fluid dynamics codes, and for visualization. It all falls under the heading
of Computer Aided Engineering (CAE).

One of the early pioneering HPC users in the automotive industry was Sharan
Kalwani who worked at General Motors for 10 years. Kalwani has a long history
within the HPC community with stints at both end user sites - industry and labs,
and with system vendors. When we talked he demonstrated his recollection of how
computing entered and grown in Automotive. Kalwani opened with:

“The automotive computing story begins sometime in 1983. Initially the focus
was on crash analysis, and software engineers had to construct the digital models.
Later they worked with suppliers and partners - CAD1 people, in order to generate
the meshes for the crash safety. The General Motors (GM) research labs were the
pioneers in this. The initial crash models contained less than 1000 elements. Today
they run on 10 to 20 billion elements. It has grown not by simple orders of magnitude
but by leaps and bounds.”

The use of HPC for Automotive grew beyond the crash safety aspect:

“One of the members at the GM Research Lab was a thermal aerodynamic
specialist, therefore familiar with Computational Fluid Dynamics (CFD). He was
thermal aerodynamics specialist. CFD in Automotive grew from that. I still have
the original published catalog of early software for engineering for automotive and

1CAD stands for Computer Aided Design.

97

98 � Unmatched: 50 Years of Supercomputing

aerospace design that was published in the late 80s as a thick book by GM Research.
It includes all the codes available then and who you can get it from. It describes
a lot of the early history of HPC at GM. From them it grew to other automotive
companies. Ford picked it up one or two years later, and then in the same time
frame the European automakers also got interested in it. They all started with the
same baby steps that GM did. Trying out very small models, given the power and
size of the Crays of those days. The codes had to be tuned by hand for performance.
Then the European software ecosystem started growing, and for the next 20 years
there was a healthy competition between North American and European software
for CAD and CFD. And then the Japanese were also there on the hardware front.
We, at Cray Research, had fierce competition from NEC, Fujitsu, and Hitachi and
their vector machines.”

Crash analysis on computers involves creating a structural model, described as
a 3 dimensional mesh shaped like a car, with physical attributes assigned at the
grid points. These will include elasticity, resistance to external forces, and other
material properties. The simulation proceeds by subjecting the car being tested to
simulated frontal collisions at varying speeds against other cars in motion or into
a wall, as well as side collisions. The output describes the damage done to the car
and allows design corrections where needed to meet safety standards. A computer
run instead of material cars driven into a wall; multiple times.

The CFD type of computations are applied well beyond modeling the airflow
around the vehicle for improving its aerodynamic properties. They include diverse
aspects such as engine combustion analysis, internal cooling and heating, ventila-
tion, fuel flow, and lubricant engine cooling. These were, and are, many digitized
simulations that save plenty of real-world experimentation.

But that is not all. HPC is applied to other areas too: NVH - Noise, Vibrations,
and Harshness. Computational Electromagnetics (CEM). Battery analysis via elec-
trochemical simulations. Durability analysis. Material sciences - finding potential
compounds that are both light and strong.

What has been happening in the Automotive industry is an example of the
major shift, a revolution indeed, of how of digital modeling entered manufactur-
ing, largely replacing mock and material-built models. It has dramatically changed
the design, development, and testing phases. Getting there was not always easy.
Engineers exercising imagination and creating a vision had to convince business
managers of the feasibility and benefits of such a process transition. Kalwani was
there in those early days and recollects:

“We had to convince the management of the use of, and investment in, HPC for
designing production and cars. And it was not a just the proof of concept. ‘we can
do safety car crash with HPC.’ They would say ‘that’s fine, but tell me how will
it benefit the company. How will I save money? How will I accelerate the design?
What is the benefit to the car consumer?’ And they threw at us lots of questions.
And we had to come back with actual numbers and business analysis. Management

HPC for the Automotive Design - Early Days � 99

would often, at the last minute, put a high-level executive in front of us and say,
‘Convince him.’ And we would have to give them answers that would survive a
very hard probing by business people or economists or marketing people. They
would try to tear our proposals apart. And then we would respond back, ‘Here is
the benefit.’ And express the benefit in terms of time, money, or market share or
whatever is the metric they threw out. Use of HPC benefits in different ways. And
by demonstrating the different ways, it actually works as a multiplier. Think of it
as a cube. So there is the top face of the cube, front face of the cube, side face of
the cube. And those are the visible parts and you can show concrete benefits in
three dimensions. And we can also show benefits on the faces of the cube that are
not visible to you. Then it becomes even a more persuasive argument about the
benefits of HPC.”

Elaborating on the actual benefits, Kalwani continues:

“With the increasing power of HPC we are able to evaluate literally thousands of
designs in a very short time. This allows us to select a design that optimizes a given
criteria. We can actually generate or analyze several different designs. Either the
design is optimized for material cost, or the design is optimized for manufacturing
assembly cost. For example, you may have made an excellent design, but that is
very hard to maintain. For instance, you have to remove 20 parts to get to one
part. This would make the after-sales service cost very high. And that’s a negative.
So with the HPC, we could actually create many, literally a thousand, different
designs in one design period of three months. And then executives and product
managers can choose any particular one depending upon market conditions and
the sale value of the car. If it’s a $20,000 car, then you don’t want to have high
aftermarket maintenance cost. If it is a higher-priced car then you don’t mind the
after-sale maintenance cost but then you want the reliability to be extraordinarily
high. So giving the planners a fantastic range of options at their fingertips was a
real benefit of HPC. They saw that they could have a spectrum of decisions they
did not have before.”

The role of HPC in manufacturing, that started in earnest in the 80s, continued
to grow. Digital, numerical, modeling became the norm. We return to this theme
in later chapters.

C H A P T E R 11

End of an Era
The last gasps of proprietary vector CPUs

When I was approached, towards the end of 1986, by Bob Korsch, the ven-
erated past manager of benchmarking at Control Data and now (1986) at

Cray Research, about joining Steve Chen’s new project, I thought this could be
both my dream job and a lucky escape from the turmoil at FPS, where I was at
that time (see Chap. 8). Instead, after joining Cray Research, I was treated to the
proverbial front row seat of the events that marked the end of vector processors in
the U.S.

The microprocessor, enabled by the development of integrated circuit technol-
ogy, was becoming an overwhelming competitor approach to the specialized big-iron
vector processors.

IBM’s mainframe IBM 3090 had a Vector Facility and was used for scientific
computing well into the late 80s. However, IBM was already developing the POWER
(Performance Optimization With Enhanced RISC) architecture as its microproces-
sor product. The resulting product line would replace the mainframe-plus-vector as
IBM’s offering for technical computing.

Control Data went out of the vector processors business in 1983, and shrunk
and disintegrated over the next decade or so, when it spun out ETA Systems but
with CDC’s financial backing. It brought to market the ETA-10 which was not a
commercial success1. In 1989 CDC shut down ETA and folded some functions back
into CDC, mostly for continuation of contractual support to existing customers.
It was out of the supercomputer business, and soon settled with customers and
eliminated all remnants of involvement with vector processors. (We saw an example
of that in the UK Met Office story on page 58.)

The demise of the mini-supers and the emergence of MPP systems, left Cray

1Though never at ETA myself, and at FPS at the time, I collaborated with fellow physicists
on a followup to our work on the Cyber-205 aptly titled Applications Development on the ETA-10
([33]).

101

102 � Unmatched: 50 Years of Supercomputing

Research as the sole bearer of the old-style vector processors in the U.S.2 What
transpired is the story of Cray’s two most celebrated architects - Seymour Cray
and Steve Chen, and two short-lived supercomputer companies.

Cray Research making hard choices

Seymour Cray finished the Cray-2 by 1985, and was designing the Cray-3 since.
Steve Chen was done with the Cray Y-MP around 1986 (though it was sometime in
1988 before the Y-MP started shipping to customers), and started a design dubbed
Cray MP (the project I was hired into).

Meanwhile, in that period of late 80s and early 90s, there were two other devel-
opment projects that were critical to the company’s survival.

Chen’s MP Project was a departure from his Cray Y-MP line, so another team
was engineering a continuation of the Y-MP - more processors (up to 16) and faster
clock. It resulted with the Cray C90 models that provided much of the revenue in
the early 90s.

At the same time, very aware of the “killer micros”, Cray Research started yet
another major project based on microprocessors and what would be Cray Research’s
first MPP product. A protege of Seymour Cray, Steve Nelson, was the lead architect
of what would be called the Cray T3D. It was quickly followed by the very successful
Cray T3E. Both used a processor from another company - the Alpha chip from DEC.

The company, under financial pressure mostly due to competition from
microprocessor-based products, could not afford to support all these projects at
the same time. Something had to give. The Y-MP and the C90 generated revenue.
The microprocessor revolution was the future. The Cray-2, which arrived nearly
10 years after the Cray-1, attracted very few customers. Both the Cray-3 and the
MP projects were technologically very ambitious and were considered risky if not
questionable. History proved the skeptics right.

Between ’87 and ’89 both Cray (the person) and Chen were pushed out of Cray
Research.

Cray Research attempted to adjust to the changing HPC environment. Chal-
lenged by low-cost vector minisupers Cray-alike competitors and the fast advances
of the microprocessors it tried to stay relevant and competitive. Its vector architec-
ture strategy was to build on the Y-MP, itself based on the X-MP. Cray’s answer
to the minisupers was the air-cooled scaled-down Cray Y-MP EL. It was followed
by the Cray J90, the minisuper version of the C90. In 1990 Cray even acquired a
minisuper company - Supertek that ‘cloned’ the X-MP design in CMOS.

At the high-end the C90 was followed by the T90 (1996), considered the last

2Again, vector processors continued to be developed by three Japanese companies - NEC,
Fujitsu, and Hitachi, for years. Some marketed globally beyond the 90s, other for Japan’s domestic
market.

End of an Era � 103

of the old-style shared-memory vector processors. Later systems would have vec-
tor capabilities, but with non-proprietary microprocessors and distributed memory
systems. More on that in the later parts of the book.

Cray even acquired FPS as a division for superscalar servers (see Chap. 8). All
of which did not alleviate the company’s financial hardships, and it would undergo
several incarnations. Acquired by SGI in 1996, then by Tera (2000) that changed
its name to Cray, and finally as a subsidiary of HPE.

The remarkable fact is that throughout the turmoil and transitions Cray re-
mained a major player in HPC, and much admired.

Seymour Cray and Cray Computer Corporation

Seymour Cray’s relationships with Cray Research was as a consultant, having re-
signed his CEO role so he can focus on designing supercomputers. Of course, a
consultant with much leverage and influence. Even though, he needed more dis-
tance from the center of activities so, as he put it, he will be “bothered” so much.
The Cray-2 was designed in Boulder, Co. where the company set up a lab for that
project. It was shut down in 1982 (though the Cray-2 was not shipped as a product
until 1985). After another stint in Chippewa Fall, WI. Seymour set up shop (or lab,
more correctly) in Colorado Springs, CO. and worked on the Cray-3.

It was then, sometime in 1988, that the Cray Research management made the
hard decision to cut funding for the Cray-3 project - entirely or drastically. It would
have resulted in delays or a lesser system. Seymour declined the offer and left Cray
Research with his team. In 1989 the Colorado Springs lab became the main facility
of a new company - Cray Computer Corporation.

And the development of the Cray-3 continued. In a departure from his tradition
of using well-established semiconductor material and processes, Cray built the Cray-
3 with gallium arsenide. One prototype was built by 1993 and installed at NCAR
while still being debugged. No other customers were found for the Cray-3.

Ignoring the market realities of the microprocessors and the MPP architecture,
accompanied by advances in tools for parallel programming, that combined to pro-
duce HPC solutions with far better price-performance ratios, Seymour Cray went
ahead and embarked on a Cray-4 design. He was hoping, so the thinking goes, that
the machine will be so powerful that the economics of pricing will not enter the
equation, as can be inferred from his oxen vs. chickens comment (see page 89).

This did not end well. Cray Computer filed for bankruptcy in 1995.

Lesson learnt, Seymour Cray started another company - SRC Computers (SRC
being his initials). This time opting for the MPP style architecture. Tragically, Cray
died in 1996 as a result of injuries from a car accident.

SRC still exists. It develops reconfigurable computing solutions, but is not in-
volved with HPC.

104 � Unmatched: 50 Years of Supercomputing

Steve Chen and Supercomputer Systems Inc.

The following episode is one where I can share first-hand experience. This allows
for a somewhat more detailed telling of the story.

I joined Cray Research and started working for Chen on the first working of
1987 (not the most hospitable season to move to Wisconsin), as head of the new
formed applications group of the MP Project. The other groups were Technology
(process), Hardware (design), and Software. All not much more than boxes on the
org chart. The focus in the first half of the year was on staffing, from with Cray
Research and externally. Then, in late August 1987, we were notified that funding a
project of the scale and ambitious goals as planned cannot be afforded. The project
is to be shut down, and the company will do its best to find the staff alternative
positions in other divisions.

By then there were some 25-30 of us working for the MP Project. Quite a few
have just relocated, with their families, from as far as the East and the West coasts.
Anxiety and emotions were high. Chen gathered the project’s principals - 6 in total,
and stated that he did not want to abandon the project, but to continue it outside
of Cray Research. Form a new company, and ‘we’ll figure it out from there..’. And,
to us: ‘please let me know in a couple of days if you’re enjoying; and who from your
group wishes to join’.

All but one heads of group decided to join and be co-founders of a new venture.

The separation from Cray was amicable. Our new entity were given temporary
use of a small facility with some history. It was the old lab Seymour Cray had
built for him by Control Data when he sought some distance from the company’s
bureaucracy and moved to Chippewa Falls, where he grew up. Located in a non-
descript wood building, in a northern section of neighboring Eau Claire known as
Hallie, with a few offices and some lab space, it was later given to Seymour when
left Control Data and formed Cray Research. It seemed, at the time, a sign for
hopeful future, and a generous gesture from Cray Research.

More than half the engineers from the original project joined the startup im-
mediately, and we barely squeezed into the old lab building. A larger facility, and
funding had to be found quickly.

The termination of Chen’s project was a fairly big news in the computer in-
dustry and attracted attention from other companies. After all, he was then the
supercomputer system architect whose products were the most powerful and the
most commercially successful. Executives from the high-end computing at IBM
were quick to start a series of conversations with Chen. IBM wished to be a major
player in HPC. IBM had a most advanced process and material technologies. The
new startup needed investors before it had anything concrete to offer, besides track
record and reputation.

The IBM executives also understood that IBM was too large and structured

End of an Era � 105

to be able to let a somewhat risky entrepreneurial project thrive, or even survive,
within the company. Chen wanted to keep his creative independence. Within days
both sides agreed on a somewhat novel framework for a cooperative relationship.
The new company will remain an independent startup company. IBM will be a ma-
jor investor, but not exclusive. Its funding of the new company will be incremental
and subject to progress and meeting of milestones.

The announcement that Chen founded a new company came out in mid-
September. The founders invested some seed money, as did a couple of early-hired
executives in administrative and marketing capacities. The mood among the em-
ployees was one of great excitement and optimism. In a true startup frame of mind
everyone was forgiving to rough initial accommodations and administrative sup-
port.

With the yet unannounced agreement with IBM at hand, we were able to move
to a larger facility in south Eau Claire. There we had adequate lab space for varies
aspects of the hardware, office space for design and software development, and room
for adding personnel.

Somewhere along the line, the company’s name was chosen: Supercomputer
Systems Inc. The new location carried the name.

Neither IBM, nor SSI wanted to have IBM be the sole provider of financial
support. The goal of SSI was to stay and prosper as an independent entity. SSI did
not want to relinquish control to venture capital providers, either. But we wanted
to find a way to involve more of the HPC eco-system in the project. In particular,
we were looking for end-user input to some design ideas.

The result was a scheme that combined end-user input and financial investment.
We signed 5-year cooperative agreements with major corporations that involved
annual contributions from them, regular review and feedback meetings, and ‘dibs’
on early systems from SSI. To avoid conflicts and to preserve open discussions,
we chose each partner from a different industry. They were Aerospace (Boeing),
Automotive (Ford), Energy (Electricity De France - EDF), and Chemical (DuPont).

In addition, SSI engaged an agency of the U.S. Department of Defense that was
interested in early access to eventual system.

All that meant that, while operating in stealth mode, we were under pretty
extensive scrutiny from early on. Delegations of the three entities - IBM, the com-
mercial partners, and the government agency - visited us in Eau Claire, WI at
regular intervals of about every three months to receive progress reports and offer
feedback and critique. The process served as a very constructive form of oversight.

The administrative and the marketing-sales functions were streamlined and min-
imal in size. The technical development was composed of four groups, not differently
than while still at Cray: Design (called “Hardware”), Process (called “Technology”),
System software (“Software”) and Applications and Libraries (“Applications”).

Starting in 1988 we recruited engineers at a fast pace (possibly too fast at

106 � Unmatched: 50 Years of Supercomputing

this early phase). The hiring spree was largely successful due to its timing. It was
not only Cray Research that was in a certain amount of turmoil. Minisuper com-
panies were failing. IBM was contracting its in-house HPC activities. The Tech-
nology group benefitted from nearby Cray engineers looking for a new challenge.
The Hardware group added several architects from technical computing compa-
nies that collapsed or were struggling. The Software group added, among others, a
complete team of ex-Cray compiler writers located in Livermore, CA. For the Ap-
plications group we had plenty of candidates from minisuper companies and even
from academia.

And then, from the end of 1988 to early 1989, when Control Data pulled ETA
back in while terminating most of its positions, SSI gained from an experienced
pool of engineers in all the required disciplines. And all from neighboring Twin
Cities, MN.

Within a couple of years SSI’s headcount grew to some 300 employees. A rate
of growth that exceeded the rate and progress of the product development.

It seems that things have lined up very favorably for SSI. It only had to deliver
on its promise; and do so on time.

And the promise was for the world’s fastest supercomputer of that time. The
plan was for a multiprocessor system targeted initially at 64 CPUs, each at per-
formance range of multiple gigaflops. The key for such an aggressive target was
a most advanced and innovative multi-layer integrated circuit, multi chip module,
packaging. This was supported by high density switching power supply. The cir-
cuits density and a clock rate at the nanosecond range required liquid cooling by
immersion of the whole unit.

The technology aspect was challenging, and at the same time the plan was to
develop the complete software stack - OS (Unix), compiler (Fortran), and libraries
(numerical, utilities). The idea was to be ready for production applications to run
on the system upon completion of testing the hardware.

This was a great experiment of what would later be referred to as co-design.
There were two dynamics in action: The Hardware and Technology dynamics, where
the architects test the limit the process technology would allow in terms of gates
available, chip size, pin count etc., and clock speed as a function of power and cool-
ing. And concurrently there was the Hardware-Software-Application interaction.
The designers proposed architecture details - instruction set, cache sizes, functional
units, and the Application group follows with an instruction-level simulator with
which Software starts writing and testing a compiler, library routines and utili-
ties, and application engineers testing computational kernels with technical writers
creating the documentation. It was truly a marvelous environment.

Alas, all these checked boxes of required or nice-to-have items were not sufficient
for success. Partly, because of matters within our sphere. Within a couple of years
the technology readiness was at least a year behind schedule. Achieving its design

End of an Era � 107

goal proved as hard as it was predicted, and not all were achieved. In general, only
in hindsight we can tell if our technology and design goals are pushing the proverbial
envelope or bursting it. It appears some technical targets were beyond reach for the
period and the time allowed.

Nevertheless, the technical obstacles notwithstanding, towards the end of SSI’s
fifth year - 1992, a prototype processor was powered on and functioning. A sealed
cube of cooling liquid surrounding a very fast processor.

Powering on this single processor was, of course, most gratifying and a moment
to celebrate. But there were already reasons to be concerned about the future of
SSI. Being about one or two years late in a five-year project is not unheard of,
and not unexpected given the complexity and the technical challenges. However,
our early fast growth meant higher rate of spending, and we have exhausted IBM’s
committed 5-year investment. It was a difficult period for IBM (the same that
affected the Clementi project - see page 77). A sharp decline of mainframes sales,
and tough competition in storage, networking, and the printer markets, caused
IBM to lose billions of dollars for several years. About half its employees lost their
jobs. IBM was about to start a major shift towards applying microprocessors and
emphasis on software and services. In that environment it could no longer continue
to support SSI.

Late 1992 saw frantic efforts by the SSI management to find other sources
of funding to complete the project, and go from a prototype to manufacturing a
product. These efforts failed, and in January 1993, unceremoniously, SSI’s facility
doors were locked and entry prevented to its employees3 . There was equipment and
IP (intellectual property) to capture and divide among the entities that supported
SSI. Other than being locked out of the building initially and very controlled entry
later on, the closure process was smooth and generous. Most, if not all, employees
found employment elsewhere pretty quickly. This was, after all, a collection of highly
skilled computer professionals. Most of us, did not have to travel for interviews.
Recruiters for computer and high tech organizations came over to Eau Claire to
talk to us4.

As much as many of us would have loved the SSI story end differently, the reality
is that even a successful product would have been too late for the HPC systems of
the 90s. Microprocessors, commodity components, MPPs, and clusters would soon
doom any chance for commercial success of propriety big-iron systems.

Cray Research would hold on for a few more years offering vector processors.
And they survived by transitioning to microprocessors and many-processors sys-
tems,

And so the glorious era of the ‘classic’ vector processors came to an end. Some
of us remember it fondly.

3John Markoff of the NYT captured the moment in a 1993 article ([34])
4That was how I ended up at NASA Ames Research Center in Mountain View, CA.

III
The Epoch of Microprocessors

The Age of Massive Parallelism

109

C H A P T E R 12

Towards Massive Parallelism
Microprocessors Establ ish Presence in Top HPC Systems

Where the ’80s saw the emergence of parallel computing at the high end, it
was, by and large, on a small scale. Starting at two processors and getting

to under ten processors by the end of the decade. Of course, array processors had
many more processing elements, but they operated under the control of a host and
executed a single instruction together. The ’90s saw the arrival in main stream HPC
of systems made up of hundreds and thousands of processors each running its own
copy of the operating system, or at least a ‘light’ version of it.

The MPPs

This architectural school is known as Massively Parallel Processing (MPP). The
choice of the term MPP is an example of present-focused marketing influence. Yes,
the MPP systems of the ’90s had about two orders of magnitude more processors
compared with the minisupers and the MP vector processors, but their concurrency
levels pale relative to today’s large clusters. The term “massively parallel” has been
used later for very large clusters and in describing accelerators with many processing
elements. Here MPP is referred to a class of systems built in the late 80s and into
the 90s by companies that no longer exist or exist but are out of the MPP systems
business.

As with any major change, this did not happen abruptly. The origins of Mas-
sively Parallel Processing (MPP) can be found years earlier. A prominent example
of the early development was Goodyear Aerospace’s Massively Parallel Processor
(MPP). Yes, this was its name. It had 16,384 (16K) 1-bit processing elements (PEs)
arranged as 128x128 two-dimensional array. It operated at NASA Goddard Space
Flight Center from 1985 to 1991. Though each PE executed the same instruction -
in a Single Instruction, Multiple Data (SIMD) fashion, just like an array processor,
it is a worth noting milestone. This is because of its scale, albeit with very simple
processors, and its being a stand-alone system.

111

112 � Unmatched: 50 Years of Supercomputing

The move from proprietary specialized supercomputers to systems made of mi-
croprocessors came at a cost. Many more components were needed to equal or
exceed the custom systems’ performance. The additional cost was not in terms of
price (the micro-based systems were less expensive), but due to the higher level of
parallelism needed in order to use the whole system, or most of it, on a single job.
The challenge of parallelism is that when more parts participate efficiency is lost.
This efficiency loss puts limits of the degree of scaling that is practical. At least
a limit of how much we can scale a single job. Of course, many-processor systems
are useful for multi-job environments since they allow flexible partitioning of the
system depending on the scheduled jobs and the resources they require.

Upwards scaling of a computing system involves two attributes, one positive
and one undesirable. Of course, the aim of scaling is to increase the capability of
the system. But, invariably, it comes with a cost: added complexity. Shahin Khan
relates the following observation: ”Scalability is the ability to add more capability
than complexity.” That is when scaling results in a positive outcome. And he adds a
caution: ”And there comes a time when complexity exceeds the incremental benefit
of scaling and, unfortunately, you usually don’t hit that wall until you’ve built a
pretty big system and it becomes too expensive to fix.”

The MPP sector took a different tack architecturally than the minisupers. The
latter attempted to be a scaled-down, and more cost-effective, versions of the classic
big-iron supers. The MPP architects started with low-end microprocessors and
devised schemes for connecting a large number of them tightly. It was a departure
from the traditional high-end systems, that was quite successful for a few years.
The MPP concept was step towards the idea of clusters.

The period from the mid 80s to the mid 90s saw a number of MPP companies
come and go. They include MasPar, nCUBE, Meiko Scientific, Kendall Square
Research, ICL DAP, Parsytec, SUPRENUM, and others.

The most successful of them was Thinking Machines Corporation (TMC). It
was in existence from 1983 to 1994, when it filed for bankruptcy and its assets were
acquired by Sun Microsystems. TMC was the darling of the U.S. government for
a few years, and marketed 5 generations of its Connection Machine (CM) designs.
Starting with the use of simple processors and hypercube topology for the early
implementations, the CM-5 was built from SPARC processors on a fat tree network.

It is a testament to its success, and to some extent the power of the U.S.
government’s purse, that the CM-5 took the top 4 places in the first edition of the
Top500 list in June of 1993. And a fifth entry within the top 10.

Enter Intel

By the early 90s Intel has had over 20 years of experience in designing and pro-
ducing microprocessors. It became Intel’s main product line after it exited the
memory chips business in the mid 80s (realizing it cannot compete with Asian chip

Towards Massive Parallelism � 113

manufacturing). What is relevant to HPC history is that ten years after its first
microprocessor, in 1981, it produced a 32-bit microprocessor - the Intel iAPX 432.
It was a departure from the x86 architecture used in the chips IBM was getting
from Intel for its PCs. The product was not successful. A young Pat Gelsinger,
today’s Intel’s CEO, was a lead engineer of the 432. Fortunately, he quickly got
involved with another design, the i486 - an x86 design, in production from 1989,
that was more successful and provided a basis for a long line of x86 CPUs (there
was the i386 that preceded the i486, which was, in fact, the first 32-bit x86 chip).

But Intel did more than just designing and manufacturing chips. By the late 80s
it had a division that developed systems. Rather than being exclusively a technology
provider to companies that are ‘system houses’, it chose to play in the systems
market too.That would last about 10 years. Having a systems division broke the
clean separation between technology and systems providers that is the basis for
the commodity business model (a theme we discuss in Chap. 17). The technical
lead and the visionary behind the idea of Intel building HPC systems was Justin
Rattner, who would later run Intel Labs and be Intel’s CTO. It was a shrewd move
that would greatly contribute to the emergence of x86 servers as the most popular
components in today’s clusters.

First were the MPP products in the early 90s. The Paragon product line,
launched in 1992, did not use an x86 CPU. It was based on a RISC processor
(the i860). Following a product called iPSC/860 and a one-off from Caltech (call
Touchstone Delta), the Paragon was could have up to 4K i860s interconnected in
a two-dimensional grid. As did other MPPs, the OS on each node was what was
known as light-weight kernel (LWK) - a stripped down OS that contained only
what was needed for running a computational task and communicating with other
nodes. Connecting to the outside world, including storage and file systems, was left
to a host or special nodes known as head nodes. In the case of the Paragon, Intel
used an LWK developed at the Sandia National Lab (SNL). This turned out to be
a prelude to another, and more significant collaboration between Intel and Sandia
Lab.

The Sandia Lab is one of three DOE national labs with responsibility, among
other subjects, for participation in nuclear weapons stewardship (the other two are
Los Alamos National Lab and Livermore National Lab). As such, in the 90s, these
labs were the recipients of the most powerful supercomputers DOE procured, under
a program named Accelerated Strategic Computing Initiative (ASCI). The Sandia
system selected in 1996 was called ASCI Red built by Rattner’s Intel supercomputer
division, with overall system design by Sandia computer architect Jim Tomkins.

ASCI Red was based on concepts taken from Paragon, but went much further
- and not just in scale. The Paragon’s i860 RISC CPU was replaced by the Intel
Pentium Pro - an x86 CISC chip. A main aspect of the innovative design was that
this large-scale distributed memory system was constructed as the sum of four task-

114 � Unmatched: 50 Years of Supercomputing

oriented partitions. The nodes in each partition were optimized for their partition’s
function: Compute, Service, I/O, and System.

The ASCI Red system was an inspiring example of a close collaboration between
Industry and an enduser. It was very successful in a couple of ways. First, its
performance: When it became operational in 1997 it was ranked the top entry on the
Top500 list. It was the first to achieve the symbolic milestone of surpassing teraflops
on the HPL (High Performance LINPACK) test. ASCI Red retained the #1 position
on the list until 2000, with upgrades along the way. Second, and arguable more
significant, ASCI Red’s longevity was unprecedented. it was decommissioned in
2006, after nearly 10 years of operation. It is a testament to its robustness and
reliability that the system was still operating reliably at the time and was taken
out only so that power and space can be given to newer systems using technologies
10-year more advanced ([35]).

Effective Parallelism in Distributed Memory

The previous decade’s MP processors ushered the beginning of parallelism at the
center of applications’ performance. The computational work had to be split into
pieces that can be executed concurrently. But the programmer did not have to
worry about where the data is. The memory was shared. Each processor had equal
access to all of it.

That has changed with the introduction of MPPs. The sheer number of pro-
cessors made it impractical for all the CPUs to be connected to a single memory
system. The solution was that each CPU had its own local memory. Distributed
memory architectures were becoming the norm.

Now the application programmer, and the compiler, had to worry not only what
computations can be done in parallel, but also where the data is, and how to make
data items in one node available to other nodes. Parallelization became a lot more
challenging.

Reasonable performance dictated that data required by a node be in its memory
when needed. And that when a chunk of data is placed there, the more computations
scheduled on it, the better. Devising a parallel algorithm, more often than not,
started with planning the distribution of the data, followed by working out the
sequence of the arithmetic operations. Data locality is a key to effective parallelism.

Apart from a class of problems known as “embarrassingly parallel”, nodes need
to know values computed at other nodes. During the execution of a code the nodes
need to transfer data among them. Interconnect schemes vary among MPPs and the
future clusters, but for any of them the application has to synchronize exchanges
of data - letting other nodes read one node’s data before it is overwritten, but not
before it is computed, for example.

Then there are what is known as global operations. Such an operation is one
that requires computations that spans multiple, or all, nodes. For example, finding

Towards Massive Parallelism � 115

the sum of the elements of an array that is spread out over the system. This would
require doing some local work (e.g., a partial sum), then not proceeding until all
the pieces were combined for the final result.

Data locality and data movement, or managing memory and interconnect, be-
came a major consideration for applications’ performance and the focus of paral-
lelization. What started with small number of large chunks of datasets has evolved
to managing thousands of servers, often each with its attached accelerator. This is
today’s world of clusters and other high-end systems.

C H A P T E R 13

Engineering with HPC
How Engineer ing Apps Responded to Changing Architectures

The development of a material product involves the interplay between design
and modeling. When computing is applied the modeling phase is a simulation.

The design can be thought of as a set of constraints or rules. They may spec-
ify shape (geometry), dimensions, weight, functionalities, maintainability, cost and
more. Think of a car: The designer draws a shape. Size is determined according
to the number of passengers, storage volume, roads’ lane width, and more. A limit
could be set on the weight. Or it could be derived by functionality requirements
such as fuel economy and engine acceleration goal. And a mechanic has to be able to
reach various parts with some quantified degree of ease, and so on. The design rules
and constraints, or design goals, constitute an envelope within which an engineering
solution is to be found; preferably, an optimal solution.

The physical modeling phase has become a digital simulation. A model is defined
mathematically based on the design rules and derivative quantities are computed.
For a moving vehicle these may be attributes related to weight, air-flow, noise,
resistance to impact at some speed range, smoothness of ride, etc. If no solution
is found within the given ‘envelope’ then the design has to be modified. More
typically, parameters within the digital model are adjusted to avoid ‘overkill’ while
improving a factor that fell short of the design goal. This ability of quickly and
easily test variants of the model is the big gift of computing for engineering-based
product development.

The 90s saw the transition from big-iron multiprocessors to massively parallel
distributed memory systems. This has greatly affected the engineering segment
of the codes running on supercomputers. More than other application segments,
computer aided engineering (CAE) and computational fluid dynamics (CFD) relied
on complex third-party software, also referred to as ISVs (for Independent Software
Vendor). The industry needed high-quality and reliable applications to comply with

117

118 � Unmatched: 50 Years of Supercomputing

regulations and standards, and home-grown codes were a feasible solution. The ISVs
were not large corporations, and the shift to parallel systems did not come easy.

Sharan Kalwani, who we met in Chap. 10, describes how the automotive indus-
try adjusted to the changing compute environment in the 90s:

“Sometime in the early ’90s we started having systems set up as constellations.
These were not clusters, but SMP1 machines put together in a fashion similar to
that of a network of work stations. And then around mid to late ’90s, clusters
started making in-roads, and constellations started shrinking. And there were the
MPPs, such as the Cray T3D and T3E, that several car manufacturers, perhaps 4
or 5 of them, experimented with.”

But, continues Kalwani, “It turned out that most of the CAE software did not
scale well on those MPP machines. CFD codes did but not CAE. And they could
not afford to have two different architectures. When clusters started becoming more
popular, the third-party CFD and CAE vendors, by necessity, migrated towards
that architecture. And naturally, the automotive, engineering, and aerospace in-
dustries followed.”

The parallelization of commercial engineering applications came about relatively
slowly. There appeared to be some resistance by the vendors to migrate to parallel
systems and a wish that simulations would continue on powerful workstations. It
wasn’t stubbornness, necessarily. The codes were old and would have to undergo
major restructuring to expose parallelism. Kalwani explains:

“I wouldn’t call it resistance. It was the difficulty in making their codes work
in parallel. Take Mcneil-Schwindler, for example. Several of us that looked at the
source code and the problem was what we call dusty deck. Those codes were written
for small memory machines. They involved a lot of matrices being written as out-of-
core solvers. The matrices resided in storage, brought into memory piece by piece,
manipulated there, and written back to storage. It was very difficult to render this
process in parallel. A complete rewrite of the base code was required, an effort that
ISVs such as Ansys or Mcneil-Schwindler or many of the other CAE vendors found
difficult to do.”

Software vendors that did not have the ‘baggage’ of the past and with smaller
presence in the market faired better:

“For example, HKS was a vendor that wrote a finite element analysis software
suite called Abaqus. It didn’t have much success earlier were better positioned
to rewrite it, and were successful in scaling on multiprocessors. Another company
that migrated to parallel implementation early on was LSTC, there best-known
code is LS-DYNA. They had success in running on multicore hardware far better
than Mcneil-Schwindler, and a few of the other ISVs. The latter were forced into
rewriting portions of their codes so that they could take advantage of parallel

1SMP stands for either Symmetric Multi-Processing or Shared-Memory Processors. The Crays
and the minisupers of the 90s were SMPs.

Engineering with HPC � 119

systems. Still, CAE codes, when compared CFD, continue to fall short in scaling.
Today CAE apps can show good scalability in]up to a few hundred cores. Beyond
that, it’s a little bit of struggle and of diminishing returns.”

Crash Analysis (or Simulation) was mentioned earlier (Chap. 10) as an early
CAE application for the automotive industry. In the early days of the 70s the
modeling was more rudimentary and involved input data of pressure and distor-
tions of panels from physical experiments. The advances in computation capabilities
achieved by the 90s allowed simulations from ‘first principles’, meaning relying on
the mathematical expression of the impact of a collision between two bodies - one
of them a car, defined with all the details of shape, geometry, strength etc.

To appreciate the impact of such an ability I turned to Robert Lucas who is
a Division Director at USC’s Information Science Institute. He is also a research
consultant and contributed to the development of LS-DYNA. Lucas put it this way:

“A General Motors speaker at a conference said that crash simulation reduced
the time from concept to production from 5.5 years to 1.5 years. There are compa-
nies that are so confident in their engineers and their simulation tools, that they
don’t build prototypes for crash testing before going into production.”

The use of HPC allows the design time to be cut by close to four times, by having
digital models that can be quickly modified and tried again. Until the desired safety
is verified computationally. Only then, when deemed production ready, is a physical
car tested for crash safety worthiness.

C H A P T E R 14

HPC for the Aero Industry
How HPC Saves Time and Resources

A irplanes and motor vehicles have some similarities. They transport people
and cargo. They both strive to be safe, comfortable, efficient, and fast. How-

ever, they differ much in the medium where they operate. This dictates much dif-
ferent shapes and design considerations for safety and comfort. Nevertheless, the
computational tools used by the two industries are very much the same. They in-
clude design and simulation, concerned with shapes, and strength and flexibility of
materials, the flow over a frame, crush resistance, etc. In short, both aviation and
automotive use pf computers is in the areas of CAE and CFD, with some material
modeling.

The aircraft industry, commercial and military, was an early user of technical
computing. Since the days of vector processors designers and developers would run
fluid dynamics codes (CFD) to simulate airflow and turbulence over the proposed
frame of the aircraft. And finite-elements or finite-volume CAE applications to
test the properties of the structure. The governing equations for the computations
were well understood, but the accuracy of the results depended on the level of
resolution of the discretized form of the equations. And that was limited by practical
limitations of compute power and memory size and bandwidth before the 90s.

As a result, when a design model appeared to show promise in achieving struc-
tural goals and flow properties, a physical mock-up model would be built. It was
often just a component of an airplane - a wing, the tail, or the fuselage. The model
was then tested in a wind tunnel to verify (or not) the CFD simulation. It was also
used to figure out the layout of electric cables, air filtration inside the cabin, access
to parts for maintenance, seats arrangements, galleys and more.

At that stage, computers provided guidance towards an optimal design and
the ability to quickly test new design ideas. But physical models were needed to
verify and tweak the design, and, most importantly, for the engineers and the public
to have confidence in the resulting product. The trust in simulated models grew

121

122 � Unmatched: 50 Years of Supercomputing

with the increase of compute power and advances in numerical techniques. And as
computed results compared well with physical evidence and experiments. This was
an incremental process.

As the reader might imagine, the ‘holy grail’ of aircraft design was to get to
an optimal design by digital simulations alone. Indeed, Japan’s National Aerospace
Laboratory (NAL) collaborated with Fujitsu to build a one-off parallel system of
vector processors they named Numerical Wind Tunnel . When completed, in 1993,
it toppled the CM-5 from the top of the Top500 list, and retained the #1 position
until 1996.

Jet Engine Simulation

Before looking at the whole aircraft, let us consider how computers assist in the
design of a very crucial component: The jet engine. To understand this subject I
talked to James Ong, who is a technical specialist at Rolls-Royce USA. Ong’s exper-
tise is in the structure aspects of turbine jet engines, and specifically in their CAE
simulations on HPC systems. He starts with differentiating the aviation challenges
from those of the automotive:

“The significant difference between crash simulation for the auto industry and
jet turbine application is that the energy involved in the events is significant higher
than that of the auto industry. For us, the model is not sophisticated enough to
get close enough to the physical behavior. It is getting better. The gap between
the simulation versus the physical test given to us is becoming smaller. But there
still is a good gap there. For the auto industry, doing crash analysis, that gap is
a significantly smaller due to the energy involved, and the physics for automotive
is well-understood. But for turbine jet engines, there is still quite a bit of work to
do.”

Ong also sees challenges that were introduced by the transition to parallelism
over distributed memory systems. Challenges that need addressing by both software
engineering and choice of numerical methods - “We introduced a lot of numerical
issues which we did not experience 30 years ago under the shared memory envi-
ronment.” A particular area of difficulty is the turbulence aspect of the airflow:
“Turbulence exhibits strong non-linear behavior. Of the many models being pro-
posed I did not see any robust enough to truly help the design process. Though
they improve over time, there’s still need for further developments.”

That said, simulations for turbine engines play a major role in the design. Ong
again: “Simulation is a big part of our design process.We do a lot of the pre-wind
tunnel simulations to guide us. Early in my career we didn’t have much information,
and did tests on the NASA wind tunnel based on guesswork extracted from past
projects. Today we certainly do a lot more simulation and minimize the number of
iterations. But I don’t think we are close enough to totally getting away from the
wind tunnel.”

HPC for the Aero Industry � 123

Ong concludes: “The simulation capability in our industry is not as good as it
is in the auto industry.”

Full Digital Design of a Complete Aircraft

It turned out that the story of the first commercial airplane that was designed
completely electronically, using computer models, before the first prototype was
ever built, belongs to Boeing. It was the Boeing 777. The project that started in
1990, saw a commercial flight of the 777 in mid 1995. Throughout the duration
of the project, the detailed design and the experimentation of changes were done
digitally. Components, such as the wings or the tail, were modeled separately, but
even their assembly was modeled digitally.

One of the best people to talk about that period at Boeing is Albert (”Al”)
Erisman, who I have known from the days of Boeing’s partnering with SSI (see page
105). Erisman was the director of technology for computing and mathematics for the
Boeing Company in the 90s. It was a 300-person organization that included some
first-rate mathematicians that innovated some numerical methods and produced a
highly regarded math library (among other things).

Getting to an all-digital design was the culmination of many steps in the use of
computing for aircraft design. Back in 1988 Scientific American published a special
issue on Trends in Computing1. Among other wonderful articles there is one by
Erisman and Ken Neves2. The article, “Advanced Computing for Manufacturing”
([36]), about the use of supercomputers in airplane design (as well as in the au-
tomotive and the petrochemical industries). Here I choose two examples from the
pre-777 era:

The Boeing 737 was around since the late 60s. A new version of it, the 737-
300, was launched in 1984. Its main change was a more efficient engine. These new
engines are more efficient by being enclosed in larger diameter nacelles. That meant
that, due to ground clearance constraint, these engines could be hung under the
wings. The problem was that placing them in front of the wings was known, by
wind tunnel experiments, to result in unacceptable levels of drag. This is where
HPC enters the picture. Simulations showed the details of the air flow and where
drag was generated that could not be observed in the wind tunnel. It showed the
designers where the problem arose. Careful and numerous computer simulations
produced a modified top of the nacelle that resulted in a smooth airflow over it.
An engineering solution that allowed the use of an efficient engine without adding
drag.

1A fun fact: I managed to acquire a hard copy of this historical issue. Its 1988 face value was
$3.95. Scientific American issue today costs $25.99..

2Ken Neves managed the research and development programs for the Engineering Scientific
Services Division at that time, and later became Senior Technical Fellow and Director of Computer
Science Research at Boeing.

124 � Unmatched: 50 Years of Supercomputing

The second example involved the 757 and 767 models. They were to be com-
pleted at about the same time with the 767 a few months ahead of the 757. Boeing
decided to use the same cockpit design for both models, mostly so that pilots can
take a single certification training and be certified for both. The cockpit pf the
767, a wide-body plane, was designed, and the problem was that the 757 is not
wide-body. The aerodynamics around the area of the cab and the body intersect is
critical to flight efficiency. Time was short and did not allow for the trial-and-error
method of building mockups. Instead, the designers ran many design of the 757 cab,
which had to be wide enough to hold the 767 layout of the cockpit instruments,
and, in a matter of weeks, honed in on the aerodynamically best solution. In the
words of the article: “Boeing engineers were so confident in their results that they
recommended fabrication of the new plane begin prior to wind-tunnel verification
of the results.”

As Erisman describe the evolution towards a digital design he links it to the
transitions in system architecture: “The progress actually started in the ’80s and
even in the ’70s. The new architecture created opportunities for applications that
hadn’t existed before. And those applications then drove the need for more robust
architecture. It is sort of a cyclical process where these feed on each other. I think
that was true for the all-digital design as well. At first it was not about doing away
with a physical mock-up, but the idea of reversing the order. It always used to be
that a mock-up was built, and then they would do analysis on what they thought
they could do with such a design. What happened with the 777 is they would do
the design first, and a mock-up or a first prototype or whatever would become the
test of it. So, in fact, you always tested it physically, but the difference is whether
it is in the inner loop or the outer loop of the design process. And, of course, a
mock-up is much more expensive than computer runs.

“Thinking about this idea of architecture giving rise to new algorithms, one of
the big breakthroughs that started happening around the time of the 777 design
was this idea that you could set the parameters for the design and then run the
analysis, ever more complex analysis, to be able to say, ‘Okay, it meets these specs,’
or, ‘It is weak here,’ or, ‘It doesn’t accomplish all that we wanted here.’ What you
can then get to is reversing that loop as well by saying, ‘Which parameters will give
me the optimal design? ’ What that means is that you basically parameterize the
space of designs and use optimization to select the best parameters to achieve a
certain design. It is one more level of abstraction where, if you wanted to optimize
for performance, instead of, ‘I have a design. How does it perform? ’, you can ask the
opposite question, ‘Which parameters will give me the best performance? ’. While,
obviously, taking into account that there are constraints on these parameters.”

The areas where constraints are set and upon which ranges of parameters can
be examined are depicted in Figure 14.1. This is a high-level depiction of what
is a collection of a large number of systems that make up a modern aircraft. For
example, the “structures” include several components, each of them itself quite
complex: Fuselage, Wings, Empennage (the ‘tail’, made up of a rudder and an

HPC for the Aero Industry � 125

elevator), Landing Gear. To which we can add the engines that are hanging off of
the wings (or tail). Then there are the electric and electronic systems, air filtration
system, layout inside the fuselage, the cockpit, and more. There is much interplay
among the pieces that make up the aircraft.

Figure 14.1: Factors that determine airplane design. Source: The Boeing Company.

The point of the figure is to highlight the areas for consideration in the design.
Looking at it as an optimization problem we easily recognize “Finance” and “man-
ufacturing” (including maintainability) as sources for constraints. A performance
design goal is subject to the interplay between the structure and its aerodynamic
profile, as well as a likely constraint the defines desired fuel efficiency level. In short,
a complex problem for a digital simulation. Especially, given that a flying object
has to be particularly reliable and safe.

The quantities of interest of the simulation framework can be thought of a set of
inputs from which other quantities are computed. Their interplay forms the design
process cycle. One of Erisman’s colleagues was Thomas Grandine, now retired, who
was a Senior Technical Fellow at the Research and Technology organization of the
Boeing Company. He explains:

“There are two types of variables to keep track of. One set of variables forms
the independent variables of the problem. These will be the design variables, and
these quantities will include things like length of the airplane, wingspan, engine
thrust, wing sweep angle, wing thicknesses, and other variables which fully describe
a potential airplane that one could build. Other variables are dependent variables,
or engineering analysis quantities. These variables describe the performance of an
airplane: drag, takeoff noise level, fuel efficiency, weight, etc. These variables are

126 � Unmatched: 50 Years of Supercomputing

typically quantities that can be measured or computed and which depend on the
values of the independent, or design variables. The main idea of design optimization
is to choose the design variables to produce an airplane whose dependent, or analysis
quantity variables, have the more desirable values.

“This problem must be solved in the presence of constraints: The airplane has to
fit at a standard gate at an airport, noise level must be at or below some prescribed
level, the airplane has to be able to fly all of the routes it’s designed to fly, etc.”

Digital design does not mean automated design. Human judgement comes into
play constantly. Suppose there is a wing design with a shape or a curve that gives
additional performance, but it adds cost to manufacture. Someone has to decide
how much more cost is worth it for what additional performance. Or, perhaps more
importantly, how much uncertainty of crash safety is tolerable. Erisman explains:

“There’ is a lot of judgment that goes into the process. But what the high-
performance computing did is it enabled you to explore the design space, including
things that you could not have ever explored before. And we added another feature
for the 777 design: We used CATIA, the software suite from the French company
Dassault. The the design system had a 3D design capability, and now you have
thousands of models from CATIA that come together to form the whole airplane.
And the question is, if they’re designed in different departments by different people,
how do you make sure that everything fits when it comes back together? And
so, again, using high-performance computing, we developed a visualization system
called Fly-Thru, that allowed you to bring all these electronic design pieces together
into one airplane and then walk, virtually, through the airplane. And you could walk
down the aisle, you could drop through the floor, you could look at the systems,
you could go up in the cockpit, and you could just visually inspect how all these
things came together.

“You could take a journey through the airplane and look at manufacturability
issues. And then we extended that to haptics (the simulation of the senses of touch
and motion). You want the airplane to be designed for maintainability. If you have
a subsystem in the airplane and you need to be able to remove it, is there enough
clearance to be able to allow you to take this out and repair it? We actually build
a robotic system that allows someone to grab a hold of the part and twist it and
pull it out (digitally). As they pull it out, they are pulling it through a robot. And
if it encountered a barrier, it would stop and it would make a noise. This idea of
being able to think beyond the design of the airplane to its maintainability, that
was a part of the 777 project too.”

The digital design process allows a robust exploration of the solution space
subject to the requirements and constraints. It benefits the manufacturer in getting
a product to the market faster and cheaper, while closer to margins set by the specs.
Is there also a benefit to the consumer - the passengers, in this case? In addition
to getting to our destination faster and at a lesser cost (due to efficiencies derived

HPC for the Aero Industry � 127

from lighter materials, aerodynamic shape, and engine design), there is the safety
aspect. According to Erisman:

“A better design improves the analysis and the resulting performance, with
improved confidence in the margins, by affording a new insight into the design.
Similarly, with safety. I remember saying in the 1990s, based on a graph that we
had, that if you look at the increase in passenger miles traveled, and if the safety
performance in the ’90s had been what it was in the ’50s, there would be a major
crash every day based on just the increase in the number and the amount of air
travel. These more sophisticated designs are much more robust with respect to
things like lightning strikes, bird strikes, turbulence, and so on. The structures we
have now are stronger and much more capable of flying in adverse conditions.

“In the 777 case in particular the idea of eliminating the mock-up as a design
tool was really the key. There are two things that you save. One is you get an
improved performance, and the other is you improve cycle time.”

Grandine offers a further insight into the use of HPC for aircraft design and the
benefits it provides. Turns out it improves the management of the supply chain.

“With the models of the airplane prior to the 777, you had paper drawings,
so you would have 2D sections of some of the surfaces. The tool and die maker
would interpret these 2D sections and handcraft some surface on the tooling and
this physical tool would then really become the real-life definition of the surface
that you are modeling. And sometimes we would want to change suppliers for a
particular part. Then you can’t just send the part definition, the drawings, to them,
because you’ll get a different part than the first supplier was creating. The only way
you could actually move the production of one of those parts from one supplier to
another was to buy the tooling from the first supplier and give it to the second
supplier so that they would be using the same tooling. Once you had a full 3D
definition, now you can say this is the official definition of the part, and you can
send that to suppliers. And so that made a huge difference up and down the supply
chain for the company to be able to send to the network of some 35,000 suppliers
exact definitions of what it is you’re expecting them to produce.”

In addition to structure and aerodynamics, there is another very important as-
pect to the design of aircrafts: The materials from which to build the plane. There
is a constant search for compounds that will be light, but strong and flexible.
HPC is an indispensable tool in that search. Computational chemistry codes for
molecular dynamics can be applied to simulate materials and compute their prop-
erties. Boeing likes to use an application called LAMMPS, an open source code
developed at the DOE Sandia Lab in the mid 90s. LAMMPS stands for Large-scale
Atomic/Molecular Massively Parallel Simulator, which explicitly expresses that the
application was designed for large problems and to be run on highly parallel sys-
tems, fitting nicely to the emerging high-performance computer architectures of the
time.

Jumping ahead in time, these days LAMMPS accounts for large amount of com-

128 � Unmatched: 50 Years of Supercomputing

pute cycles. Composites have to go through a cure cycle in autoclaves. Experiences
shows that with LAMMPS engineers can model quite accurately the chemical struc-
tural interactions. Again, allowing for quick explorations of materials. This aspect
is becoming an integral part of the design optimization process. Grandine explains:

“People are starting to take a serious look at simultaneous size, shape, and ma-
terial optimization. In the past is, the structural engineers will first prove out some
material. The materials engineers will say this looks like a really good material, and
then the structures folks will try to put together some design using that material.
But where things are certainly headed, and this has got HPC written all over it, is
to be able to design the material at the same time you are designing the structure,
and to be able to alter the material to accommodate load paths and structural
needs in various places of the design. Much of this very customizable material is
enabled by 3D printing, where you can vary material composition as part of the
printing or deposition process.”

Why Not a Single Coupled Model?

What triggered the question is the analogy to climate modeling. There, the model is
made up of several components that represent different parts of the Earth System:
Atmosphere, Ocean, Sea Ice, Land Ice. The software model has a coupler that
manages the time-progression of the simulation by invoking each component in
turn for each time step.

The automotive and aerospace models have two types of applications to support
the design and digitizing of their products. CAE for the structural aspects, and
CFD for the airflow around the object. Could the structure and the flow models be
coupled? Should they?

The differences in context between climate and vehicle modeling explain why
the latter isn’t coupled. Weather and climate change over time and the model is
tracking these changes. In the case of a car or a plane we model what is essentially a
steady-state environment. For instance, while the ‘structure’ is fixed the simulation
is of its reactions to certain configurations of speed, pressure, and temperatures.
This is a CFD code applied to a given shape and surface and material properties.
The design process may be iterative with a change of geometry or material followed
by CFD test of the external impact of the change.

The CAE and the CFD models don’t share the same space on which they operate
(unlike coupled earth models). Numerically, CAE model uses finite-elements or
finite-volume methods, whereas CFD is calculated over a mesh type of a grid.

Therefore, for vehicle digital design one can think of a scripted runs where, say,
a wing angle may be tested at a range of values, but a coupled CAE-CFD model is
hard to contemplate or justify.

For aircraft design it goes beyond the separation of structure and fluid dynamics.

HPC for the Aero Industry � 129

The presence of multiple subsystems makes the modeling more complex. Erisman
explains the difficulty in attempting a single model:

“You have a system is so interconnected with various factors that it would be
infeasible to operate. Then you say, ‘Let me break this down into components, and
then let’s figure out how we can assemble these components.’ In an airplane design,
you do as much as you can in these pieces, but then you ultimately have to pull
the pieces together. We found that it does not make sense to put them all in at the
same time. doing so is what I called it the push button airplane. And that doesn’t
make sense because in a lot of cases, there are judgments to be made. If you build a
model that puts all the pieces together, you have to parameterize this in such a way
that gives different weights to changes in different parameters. But if you do them
separately and then you look at how they come together, you can actually identify
places where a small change here doesn’t make much difference, or where a small
change here makes a lot of difference. And that helps understand intellectually how
to put the pieces together.”

So, the structure is simulated by a CAE applications and the aerodynamic
behavior is computed with a CFD application. And then there is another facet
to the design that is computer-aided: Product definition. Boeing has been using
CATIA to describe all the parts as-built. Grandine gives an example of a difference
between what a part looks like in flight and the as-built definition: “When the
plane is sitting on the ground, the landing gear and the fuselage are supporting the
wings and the wings will hang from the fuselage. But as soon as the plane takes
off, the situation is reversed, and all of the fuselage is now being carried by the
wings. For example, on the 787 you can have a 25-foot difference in location of the
wingtips relative to your seat on the airplane. When the plane is on the ground,
the wing tips will hanging low. Once the plane takes off and you are cruising, that
wing tip will be 25-foot higher than it was when you were on the ground. There is
a lot of structural deformation. It is all by design. We want the wing to flex and
support that load. Therefore, early on in the design phase, the aero engineers will
be designing the cruise shape of the wing. It is the intended shape after the plane
has taken off and is flying. But now the trick is to figure out what shape you need
to build so that when the plane is in flight, it achieves the shape that you actually
design. This is a very difficult inverse problem that needs to be solved.”

Another such inverse problem to be resolved before CATIA creates the parts’
models that are sent to manufacturing comes from the propulsion parts. As grandine
describes it: “Jet engines can run very hot. Around the pieces on the inside of the
engine combustor and the nozzle of the engine, there are built-in gaps that are
designed so that as the engine heats up, the thermal expansion will close and seal
those gaps, and you will get this very smooth nozzle surface. The hot condition is
the design condition, and you need to figure out what to manufacture that will fit
that.”

There are many of these inverse problems that need to be solved. Boeing uses

130 � Unmatched: 50 Years of Supercomputing

different codes to design the in-operation shapes. They are then passed on to CATIA
operators that create the actual part definitions.

We can appreciate why, at the time of the 777 design, the Boeing team decided
that the assembly of the components will not be automated. But, Erisman says:
“You could go a lot further than you did before. You can take steps from confirma-
tion of the design to getting to an optimal design. Each one of those is a big step
because each one puts a design function in yet another inner loop, and that is what
requires high-performance computing.”

C H A P T E R 15

The WRF Story
Mult i -use Community Model

A lready back in the ’70s it became clear that much can be learnt from a
higher resolution weather models. They would give more accurate prediction.

And, more importantly, such models allow the inclusion and capture of phenomena
that occur on smaller scales. These include topographical effects - by the presence
of mountains and valleys, and the impact of local bodies of water and forests.
Higher resolution makes it possible to model physical and chemical processes - even
the formation of clouds and cloud-resolving processes. Of course, higher resolution
meant many more grid points to describe the model, and a vast increase in the
amount of computation for a given period of time (as was discussed earlier in
Chap. 4). Therefore, initially at least, high-resolution global models were out of the
question, and the developers and researchers had to settle for regional and local
models.

One such project was a regional mesoscale model (MM) that started in the ’70s
as a community development project, coordinated and maintained by a joint team
from Penn State University and the National Center for Atmospheric Research
(NCAR) (we return to NCAR and its models in a later chapter). The model, whose
latest generation is called MM5, has evolved over the decades, until 2005. It gave
rise to what became a very successful open-source community model that is the
subject of this chapter: The Weather Research and Forecasting model (WRF).

The person to tell the WRF story, John Michalakes1, got his start with numer-
ical weather prediction working for the MM project. He went on to become the
lead software engineer for WRF. Having known John for a number of years we met
(virtually, Feb. 2020) and I asked him to tell me about the origins of WRF.

“I was involved with WRF before there was WRF. First there was the MM5 a

1At the time of writing John Michalakes is Consultant to Naval Research Laboratory Marine
Meteorology Division in Monterey, CA on behalf of the UCAR Visiting Scientist Program.

131

132 � Unmatched: 50 Years of Supercomputing

community model that was microscale and mesoscale2. That was in ’96-’97. I got
involved with NCAR through a DOE climate program while working at Argonne
Lab at the time. It started as a 3-way project with ORNL, ANL3, and NCAR for
parallel implementation of CCM - the Community Climate Model. The regional
CCM group in the mesoscale division of NCAR (Its full name is the Mesoscale
and Microscale Meteorology Division, also known as MMM or M-cubed). While
working on a parallel version of Penn State/NCAR Mesoscale Model - MM4 and
subsequent MM5 work, the NCAR team started talking to NWS (The NOAA Na-
tional Weather Service) about a mesoscale model. They came up with the idea
of the WRF project - a new model developed from scratch. Since I knew HPC
and software engineering I was asked, around ’98, to lead the software engineering
and architecture aspects. First, for 3 years as an Argonne employee, before joining
NCAR in 2001, and working on WRF until 2010. After 10 years WRF was essen-
tially done as a HPC/software engineering project. The scientific staff was adding
packages and features, and I was the only HPC guy there, and thought ‘it’s time
to move’.”

Michalakes didn’t quite leave WRF. He moved to nearby NREL - the National
Renewable Energy Lab (also one of the DOE labs). There he worked on applying
WRF to farms of wind turbines used as a source for renewable energy. This is but
one example of the versatility of WRF. Here it is serving as a simulation tools for
what is essentially an engineering project. We will return to this theme.

WRF enjoys a huge user community - according to its website ([37]) it is used
in over 160 countries by some 48,000 users. In addition to it being accessible to all,
the model owes its success and popularity to the solid software engineering it was
built on. In the words of Michalakes:

“When I started at NCAR I said ‘before we write a single line of code, let’s put
down requirements.’ The software working group did the requirements. They were
both functional and non-functional. ‘Functional’ meaning those requirements about
how the users wanted to use the model, and ‘Operational’ requirements were for the
weather forecasting services, such as resolution, specific physics, etc. The parameters
that would be useful for a particular type of application - severe storm, forecasting,
research, etc. And there were other ‘non-functional’ requirements: performance (to
run at certain speed), maintenance, single source - to support both monolithic and
clusters, MPI and threading, and modularity. It had to be maintainable across these
platforms within a single source. These requirements were expressed as design specs
and first presented at the ECMWF workshop in 1998 or 2000. The point is, no code
was written until the design and the architecture are spelled out and agreed on. And
this was a major reason for the success of WRF. Not only was it well architected,
but as often happens, people would come with other requests, and we could always

2Mesoscale indicates a coarser resolution than microscale, but a finer resolution than macroscale.
3Two of the DOE national labs - Oak Ridge National Lab in Tennessee, and Argonne National

Lab near Chicago.

The WRF Story � 133

go back to the agreed upon requirements and use it to not deviate from the original
plan. Made it a lot easier to herd all the cats.. ”

Being a mesoscale model - one with a high resolution grid - meant the WRF
was to be a regional model. Michalakes again:

“WRF was never meant to be a global model (though eventually there was
one such version)4. It was, however, put to a broad range of purpose-modeling:
atmospheric, climate, chemistry, NWP (Numerical Weather Prediction), basic at-
mospheric research, high resolution convective model for severe weather.. WRF
inherited a diverse users community who used MM5 prior to WRF.”

Most of the WRF users are researchers in hundreds of universities and research
institutes. But WRF is also used operationally by national weather centers to pro-
duce local and regional weather forecasts. For example, at different times it was
the operational model in South Korea Meteorological Administration, the National
Centre for Medium Range Weather Forecasting in India, the Central Weather Bu-
reau in Taiwan, the National Centre for Hydro-Meteorological Forecasting in Viet-
nam, and more. The China Meteorological Administration adapted the WRF soft-
ware architecture to create its own version - GRAPES (Global/Regional Assim-
ilation and Prediction System). The US Air Force ran WRF operationally for a
number of years5 and still use it for high-resolution US-only forecasts.

The WRF project is an example of how the combination of adhering to design
decisions of a software undertaking and embracing an open source community of
developers and users can result in a very successful product. WRF turned out to
be a useful and popular tool for researchers to explore and refine features that can
be added or improved in earth system models.

Michalakes: “WRF has always been open and freely available. There’s typically
one release per year, and one workshop annually. 2-3 tutorials a year. Those are
very popular and always fill up, with wait-listed hopefuls.”

Having said that, there is a cautionary tale here too. Referring to the idea
that the original specs will resolve all future disputes, Michalakes notes: “That’s
not to say we didn’t have problems along the way. There were what we called the
‘core wars’. NCEP (NOAA’s National Centers for Environmental Prediction) never
abandoned their dynamic core used in their ETA model (called NMM for non-
hydrostatic mesoscale model). At the end there were two divergent developments -
ARW (Advanced Research WRF) by the NCAR team, the other is NCEP’s NMM.
Both using the same software architecture.”

NCAR is still the center and the driver for WRF-related activities. Though
WRF’s infrastructure is in maintenance mode, components and subgrids are still
being developed by researchers. The project is moving to an open development

4The WRF’s latitude-longitude grid causes numerical singularity conditions at the poles.
5Both the US Air Force and the Korean center switched from WRF to the UK Met Office’s

Unified Model a few years ago

134 � Unmatched: 50 Years of Supercomputing

paradigm where the NCAR team are the gatekeepers as to what enters future
releases.

We will return to WRF in the next part (years 2000-2010) and see how the
use of the model impacts us outside its home at research labs. To set the stage
we should mention some of the variants and components built into and on top of
WRF.

One important spin-off is Hurricane-WRF (HWRF). Starting from WRF it
became a separate mode and is used operationally by NCEP. Hurricane predictions
is a specialty. The intensity of the storm is particularly hard to predict. Hurricane
tracking is critical for warnings and preparedness and 2-3 days of advanced warnings
and advisories are needed, which means the model has to be global.

Another variant is WRF-CHEM. It adds chemical content to the meteorological
equation of WRF, such as interactions and transformations of gases and aerosols,
and is used to study and forecast regional air quality.

There are other add-ons and adjustments made for the specific applications that
WRF serves. They are described in Chapter 20.

Chapter 26, ”The NCAR Models”, describes a model newer than WRF - Model
for Prediction Across Scales (MPAS), that is the current focus of development
efforts at NCAR. Though there is a user migration from WRF to MPAS, which
is a global model, it is a slow migration according to Bill Skamarock, who is a
lead developer of MPAS. He says that much of the academic research is still being
done on WRF. One reason for that is practical - global models require a lot more
computational resources. But also, according to Skamarock, because “WRF has a
huge number of capabilities. There are many options. For agriculture, solar, wind
etc. with subgrids to support them. the users can apply very high resolutions to use
the features properly. And to refresh the boundaries (for longer runs) people used
to use the US model - GFS. Now they can also get those from MPAS, and people
are doing that.”

Another senior NCAR researcher, Roy Rasmussen from the Research Applica-
tions Lab (see Chapter 20), is sticking with WRF for now despite acknowledging
that MPAS’s approach is good and promising: “WRF is a tried and true model that
has been in use for over 20 years. It is really a good model”. In fact, there contin-
ues to be a rich body of added components for specific research projects on WRF.
Representing the user community of WRF Rasmussen explains their relationship
to the development and evolution of the model:

“We don’t develop WRF. We define the parameterization - resolution and vari-
ables for what we’re looking for. We provide parameterization for things like pre-
cipitation, aerosols, cloud formation, hydrology, the micro-physics and the land
surfaces. Those are some of the most heavily used parameterizations in the model.
Lots of people develop parts of the code, especially on the parameterization part.
We define the parameters for, say, cloud formation- precipitation, vapors, aerosols.

The WRF Story � 135

The current weather models were helped by people like me who put in the content
over the last 25-30 years, and that feeds into the nightly weather forecasts by the
media.”

WRF enjoyed much loyal following. Good indicators of WRF’s relevance and
durability are its user base size and publications rate.

Skamarock checked the stats as of the end of 2019: The user registration count
was just short of 50,000 (49,925 to be precise). What’s even more impressive is that
the user registration annual rate has averaged 4,150 over the last five years. That
is, it is being constantly ‘refreshed’ even if some of the older registrants are inactive
now. During the same period there have been 813 WRF-related publication per
year on average. With 960 in 2019 alone. The cumulative publication count reached
6,545.

To put this in perspective, here is an anecdote from Bill Skamarock:

“I was reading an article on the Hubble space telescope and how NASA is still
supporting its use, even though it is well past its expected lifetime. One of the
reasons supporting this decision was that a lot of science was still coming out of the
ongoing observations, and they cited a scientific publications rate of papers using
Hubble data at something under 1000 per year, which interestingly enough is about
what WRF use is producing. The other thing to note is that the publication rate
derived from WRF studies is at its high-water mark.”

Another vote of confidence comes from NCAR’s Roy Rasmussen:

“Though I’m on the application side, if I were operational I’d want to use WRF.
The reason for it is that there are thousands of WRF users who keep improving
the model. After that many years the result is a really good model. When there are
changes they run tests - that have to be as good or better than before.”

WRF’s infrastructure is now in maintenance mode. However, subgrids and new
applications of WRF are continuing to be developed. It is moving towards an open
paradigm where the NCAR team are the gatekeepers for what’s being added to the
model from researchers work, with consultations with other subject matter experts.

A relatively recent overview of WRF’s history and its capabilities can be found
in a 2017 Bulletin of the American Meteorological Society article ([38]). The unique-
ness of WRF is that, as is indicated by its name, it simultaneously a research tool
and an operational weather forecast model. It provides a dozen ‘idealized’ datasets
(‘scenarios’) for research. For HPC practitioners, one of its most known dataset
and application is known as CONUS - for CONtinental (or CONterminous) U.S.
that is defined on 13km and 3km (very high resolution) grids. Both grids are used
operationally by the national weather service. WRF on a CONUS grid also shows
up frequently as a benchmark in HPC procurements in the public sector. We return
to some of the many ways WRF is applied in Chap. 20.

C H A P T E R 16

Planning Ahead
A remarkable workshop

Three years before the demonstration of the first teraflops systems (June 1997
entry on the Top500 list), a group of HPC professionals from multiple disci-

plines gathered in Pasadena, CA in February of 1994 to think and confer about
when and how we can get to petaflops-scale computing. It was a workshop spon-
sored by six federal US agencies. Its principal organizers were Paul Messina (at
that time at Caltech) who chaired the event, Paul H. Smith (at that time at NASA
HQ), and Thomas Sterling (at that time at USRA1),.

It was a remarkable 3-day by-invitation U.S.-centric workshop. There were 65
attendees, many of whom the who’s who in the HPC community. They came from
government agencies, supercomputer companies, semiconductor industry, academia,
and national labs. Their individual skillsets were nicely divided among the four
central focus areas of the workshop:

� Applications and Algorithms

� Device Technology

� Architecture and Systems

� Software Technology and Programming Models

The four working groups convened separately and proceeded in parallel for most
of the time. There were both formal and informal interactions among the partici-
pants throughout the workshop, followed by getting together at the end to share
the groups’ findings and recommendations. The workshop is well documented in a

1Universities Space Research Association (USRA) is a nonprofit consortium of universities now
under the auspices of the National Academy of Science. It was founded over 50 years ago at
NASA’s request to advance space science by fostering collaboration between academic institutes.
It established distinct divisions, institutes, and centers of excellence.

137

138 � Unmatched: 50 Years of Supercomputing

book report that bears its title - “Enabling Technologies for Petaflops Computing”
([39]). More on this below.

Sterling is now a Professor, Intelligent Systems Engineering, and the Director
of AI Computing Systems Laboratory at Indiana University. He has a long and
distinguished history in HPC (more about his pioneering work in Chap. 17). About
the ’94 meeting he says: “The Pasadena workshop was the finest technical forum
I have ever participated in throughout my more than four decades career. I credit
Paul Messina for his leadership and vision but a number of others contributed to
its organization and intellectual structure. Maybe I’m just being naive, but it was
exciting to the point of almost being existential. And that’s just how I remember
my reaction to it.”

I consider myself fortunate to have been invited to participate in the workshop,
representing NASA Ames Research Center. Most rewarding was to be assigned
to the architecture and systems working group. It included some well-known and
recognizable figures who were some of the most successful supercomputer architects
of the time. See the group photo below (Fig. 16.1).

Seymour Cray gave a keynote address at the opening of the event. Cray was
not a frequent attendee of conferences and such public gatherings. He was known
to prefer solitary work at his lab. It is likely he showed up at this meeting at the
behest of government agencies that sponsored his development of the Cray-4. While
the workshop was about petaflops computing, Cray made a prediction about the
nearer-term teraflops-scale system. Based on a Cray-4 $80,000 cost for one gigaflops,
projected improvement of 4x in four years, and the ballpark estimate that memory
costs about 50% more than the processors, Cray stated that a teraflops system is
possible at a cost of $50M within four years (in 1998). He went further, referring to
another project at Cray Computer, that a system made of millions of bit-processors
for image processing, programmed to perform floating-point ops, can also be built
to be a teraflops system in four years for roughly $50M.

Sadly, both projects did not materialize. Seymour Cray died before the first
teraflops machine was built. But his ‘prediction’ was eerily close. The June 1997
Top500 list has ASCI Red (described in Chap. 12) as the top system and the first
to exceed the teraflops mark. Its cost (before an upgrade)? - about $46M ([40]).
Both the timing and the cost are within a reasonable margin of error. Curiously, the
architecture of ASCI Red is neither a collection of small number of powerful pro-
cessors - Cray-4-style, nor an ensemble of millions of bit-processors. It’s somewhere
in-between: A networked system of some 6,000 microprocessors.

Planning Ahead � 139

Figure 16.1: Architecture Working Group, Workshop on Enabling Technologies for
PetaFLOPS Computing Systems. Source: David Barkai.

Thinking ahead towards a petaflops era Cray saw this as a transition from
micrometer-scale features to the nanometer realm. That is what did occur over
time. But Cray, having been challenged to make a ‘radical’ proposal, talked about

140 � Unmatched: 50 Years of Supercomputing

biological systems. He dismissed biological computers, but mused about ‘training’
bacteria to make transistors. Though an ongoing research area, with some early
applications for materials and biomedicine, there is no use of it in fabs for computer
chips. Maybe there’ll be such application in the more distant future.

A few words about the findings and the thinking of the subgroups gleaned from
the report ([39]):

The applications drivers were large-scale numerical simulations. Emphasis was
placed on the need for new algorithms to deal with the scale of parallelism and
awareness of data locality to overcome the latency becoming a hindrance to perfor-
mance. Whereas in the past people touted a rule of thumb that called for a byte
of memory for a flops of computing, the Applications and Architecture subgroups
concluded that, in general, 30TB of memory would be sufficient for a petaflops
system. Geoffrey Fox’s (then at Syracuse University) leadership of the Applications
subgroup is credited for reaching this important conclusion. There was an expressed
concern that the precision (word size) employed may have to be increased for petas-
cale problem sizes.

The Device Technology group found that semiconducting silicon will continue
to be used for memory and (possibly) processor logic. They concluded that super-
conducting material may provide much high speed logic at very low power, and
that optical technology will be essential for interconnect and storage.

Architecturally, there were at the time both vector processors and
microprocessor-based distributed memory systems. The participants considered sce-
narios based on the level of parallelism: Coarse Grain - made up of hundreds of
pipelined processors each teraflops-capable and shared memory. Medium Grain -
thousands of microprocessor-built workstations class processors in the range at 10-
100 gigaflops peak performance each, in a globally addressable but largely non-local
memory environment. Fine Grain - hundreds of thousands of microprocessors (1-
10 gigaflops) with memories co-resident with the chips. That was the Processor-in-
Memory (PIM) idea, and expected to cost much less than the other two approaches.

Things looked grim on the Software front. The view was that the software
framework ought to provide a model for programming methodology and manage
parallel resources and activities. The-then most commonly used programming mod-
els, message-passing and data-parallel, were seen as challenging even for the scale of
computing of the mid 90s. The group called for a more general and comprehensive
model that will encompass the different modes of parallelism and maintain porta-
bility across hardware implementations. They highlight the lack of adequate tools
for resource management and assistance to application programmers.

There were further meetings and projects as a result of the Pasadena work-
shop2. They span the next five years, and Sterling provided sketchy details: “There

2I did not participant in any of those. It was about a year after the Pasadena workshop that I
left NASA and joined Intel.

Planning Ahead � 141

were several topical workshops. The first, in 1995, was chaired by Rick Stevens
from Argonne National Lab and held in Bodega Bay (northern California). It was
a unique experience of a two weeks long workshop on application drivers and for-
mulating how Petaflops capability would advance science. It even included three
science fiction writers. There were two separate workshops, also in Bodega Bay, on
system software. The second one of these was about distributed systems and how
to collaborate. The last ‘Petaflops meeting’ was in 1999, dubbed Petaflops 2, and
held in Santa Barbra.”

Sterling recalls a major project, if controversial, that was funded after the
Pasadena meeting:

“The HTMT (Hybrid-Technology, Multi-Threaded architecture project) project
([41]) was a direct consequence of the 1994 Pasadena Petaflops workshop. It was
determined by the associated leaders of the participating federal agencies that a sig-
nificant step forward would be to inform future directions by substantive alternative
models. Specifically, in the form of point design studies. The NSF (National Sci-
ence Foundation) was selected to lead a set of such studies over a six month period.
One motivation was to highlight the potential opportunities that may be presented
by a diversity of emerging enabling technologies. Guang Gao and I submitted a
proposal for HTMT that considered the synthesis of superconducting logic, optical
interconnect networks, PIM smart memory, and holographic storage. The major
theme was how to overcome the latency challenges with multi-threading. This was
one of eight projects selected, and we undertook the paper and pencil study. We
concluded that multi-threading would not be sufficient to overcome the latencies. I
was happy to deliver a negative result. But we started to think about alternatives.
We came up with what we called “percolation” which was a form of asynchronous
message-driven computation. We presented our results at the third of the series of
in-depth petaflops workshops3. It was not well received by several of the attending
architects. However, in the back row of the room were program managers from the
key agencies. And they decided that the HTMT project should be funded to go
forward, with much more money. I proposed that we merge HTMT with one of the
other projects: Peter Kogge’s PIM-based project. They liked the idea. It lasted for
more than two more years and studied the ideas in detail delivering both positive
and negative results. It launched me on an intellectual trajectory that has continued
to this day.”

Though the proposed architecture did not materialize as a petascale system, it
serves as an example of the research that was spurred by the Pasadena workshop.
A 1999 conference paper describes the scope and results of the project (see [42]).

The Pasadena workshop’s report contains a list of items under the heading of
“Results” that is really a set of predictions about what a petaflops system would
look like. Here is a summary:

3That meeting where the eight studies were reported on what chaired by Sterling with Fox as
the technical program chair and held in Oxnard, California.

142 � Unmatched: 50 Years of Supercomputing

1. It would take 20 years for a petaflops-scale computer to be feasible (that is,
expected around 2014).

2. Such a system will be made of advanced versions of today’s (mid-90s) multi-
processor architectures.

3. Memory will be a dominant factor. But much less that byte-per-flops will be
sufficient.

4. Effective performance will require “radical departure” from current methods
of memory-processor interactions.

5. The rate of progress will be determined by the mass-volume market; not the
high-end.

6. Semiconductor technology will be the main medium of components, with op-
tical devices providing interprocessor and memory bandwidth.

7. The system’s part count (number of chips) will be between 100,000 and one
million.

Jumping ahead of the chronological sequence in telling the HPC story: How did
things turned out for petascale computing?

The first petaflops system was a one-off system from IBM called Roadrunner
delivered to Los Alamos National Lab in 2008. It consisted of 6,480 of what may be
referred to as nodes (interestingly, close to the number of processors in ASCI Red,
the first teraflops system), each made up of a dual-core AMD Opteron processor
and two IBM PowerXCell processors functioning as accelerators, each attached to
one core of Opteron. Its total memory size was just over 100TB (the Pasadena
workshop stipulated that 30TB is an adequate design target), and it consumed
2.3MW of power. Roadrunner was decommissioned after five years (contrast that
with ASCI Red, the first teraflops system, that stayed in production for 10 years).

The second system to reach petaflops was more in line of the-then prevailing
HPC architecture, and typical of most other systems of the petascale era. Jaguar,
as the system was called, reached the petaflops level in late 2008 after several
upgrades. It was a Cray XT5 system - a cluster with proprietary interconnect.
Its x86 processors were quad core Opteron CPUs from AMD. There were close
to 40,000 processors (just over 150,000 cores), and the total memory size was at
360TB. Jaguar’s power consumption was at what was then a staggering 7MW.

We can now consider the accuracy of the workshop’s prediction. First, evaluation
of the list above:

1. The first two petaflops systems appeared earlier than predicted - by about 6
years.

Planning Ahead � 143

2. The statement is a little vague, but it is safe to assume that the term “today’s
multiprocessor architectures” referred to Cray vector multiprocessor style of
architecture. The high end of the latest Top500 list at the time of the work-
shop was a mix of multiprocessor systems and MPPs. The petaflops systems
were closer to high-performance clusters made of high-end commodity micro-
processors and high-performance interconnect. With this interpretation, the
prediction missed the mark.

3. Correct prediction. Managing data, i.e. memory, became the challenging as-
pect of HPC systems. The memory size was indeed much less than byte-per-
flop, though 3-10 times larger than the workshop’s figure of 30TB. But the
concern that higher precision might be required did not materialize.

4. MPI, the message passing interface, was the main mechanism for handling the
distributed memory for parallel program on petascale systems, with OpenMP
being the tool for the shared/local part of the memory. MPI existed from the
early 90s, and OpenMP was formalized in late 1997. there was no “radical
departure” from the known methods of the 90s.

5. The rate of progress was, indeed, determined by the mass-volume market. The
processors and the memory components in the petaflops systems were those
used in the volume market of the data centers, though the high-performance
interconnect of the high-end systems was developed more specifically for the
HPC market.

6. It was a correct prediction that semiconductor technology will remain the
main medium of components, and optical cables began to be present in in-
terprocessor networks and memory bandwidth. The Jaguar system had fiber
optic network, but coaxial cables were still common.

7. The predicted range of a petaflops system part count turned out right when
including processors, memory, and network.

From the three parallelism-level scenarios considered (coarse, medium, fine) the
early petaflops systems fall somewhere higher than medium (more processors, each
less powerful),but not quite fine - perhaps at its low end.

In hindsight, it is interesting that the term “server” was not uttered in the
workshop, though servers became the building blocks of HPC systems. Nor did the
participants foresee the dominance of x86 processors by the time the petascale era
began.

Power consumption was a critical figure in designing future systems, and at
the Pasadena workshop the ceiling for a petaflops system was assumed to be
around 1MW. In reality, the Roadrunner consumed more than double that figure
and Jaguar a whopping 7-times more. The latter was more typical of subsequent
petaflops systems.

144 � Unmatched: 50 Years of Supercomputing

What to me is the biggest miss of the workshop is the role accelerators (GPUs)
were to play in future HPC systems. At the very high-end GPUs contributed much
of the computation power in petascale systems beyond the first two. They remain
a fixture of HPC systems.

The lesson: Device technologies appear amenable to forecast of 10-15 years out,
but which will be adapted is not. High-end system architecture evolution seems
incremental, but we often fail to predict the “winner” among competing architec-
tures.

The coming-together of the HPC community to think ahead and work out issues,
as was done when planning for the petaflops era, was not the last one. Some 15
years later, when the time came to think about exascale systems, another series of
meetings took place. I was there too and describe it in Chap. 23.

The Pasadena petaflops technologies meeting is also credited with being the
trigger for the DOD/DARPA High Productivity Computing Systems (HPCS) pro-
gram described in Chap. 19.

IV
The Epoch of Clusters

Standardization of Coarse and Fine Parallelism

145

C H A P T E R 17

Standardization
The Demise of propriety processors and software stacks

The start of the new millennium marked some 30 years since the introduction
of the microprocessor concept. The Intel 4004, debuted in 1971, was the first

one to be marketed. A 4-bit CPU, built with 10 micrometer feature resolution,
achieving an instruction issue rate of about 10 microseconds (92K instructions per
second)1. Of course, it was not capable of HPC workload of the 70s.

By 1990 we had over a decade of use and progress of microprocessors in personal
computers. The microprocessor became the disruptive technology for HPC systems
of that era. Starting with little ability to perform numerical computations, with
memory, clock, and software so far from what was needed for HPC, that it did
not seem threatening to the supercomputer designs of that time. However, the
capabilities of the microprocessor improved at a pace that could not be matched
by the propriety computer architects. A typical cycle for development of a next
generation supercomputer was about 5 years. The microprocessor marched forward
at the pace of Moore’s Law - doubling the number of gates every 18 to 24 months.
In those days its performance just about doubled at this rate too. By the early
90s the microprocessor was capable of floating point operations in single precision
(32-bit arithmetic) hardware. It was ‘only’ between one or two orders of magnitude
less able than the then-current supercomputer processors. It made sense now to
consider systems based on price-performance. This is where the micro won hands
down. After all, the microprocessor process technology was supported by the huge,
and fast growing, personal computing market.

1As a reminder: Present gate density is 1,000 higher, and the clock rate O(1,000) faster. Note
that Moore’s Law applies to the number of gates on a chip, which is proportional to the area, and
therefore progresses as the square of the feature resolution increase.

147

148 � Unmatched: 50 Years of Supercomputing

Workstations

We saw how the idea of using less-capable processors that can be manufactured more
cheaply and can be air-cooled was gaining strength with the advent of minisupers
and MPP designs. This approach can be seen as scaled-down supercomputers.

However, the microprocessor revolution resulted also in a different approach.
One that created a new class of technical computing devices. The personal com-
puter, the PC, while not suitable for technical computing, popularized the notion
of a personal, desk-top or desk-side, computer. Thus was born the workstation.

Starting in the 80s several companies created products based on microprocess-
ing that were considerably more expensive than PCs, but were capable of decent
performance of scientific codes, while still fitting in an office environment on a
desk or next to it. They used faster components and considerably larger memories,
had 32-bit arithmetic functional units, used (mostly) RISC architecture (see page
87), and were running the UNIX operating system. The better known workstation
vendors were Apollo Computer, Sun Microsystems, and Silicon Graphics (SGI).

SGI also added graphics accelerators that made their products particularly suit-
able for visualization. This is an often overlooked implementation of the accelerator
idea in HPC. A theme that is pervasive in today’s top HPC systems.

The focus of this book is on supercomputers - the high end machines, but
the technical workstation turned out to be a building block on which future large
systems were constructed. It served as a model for today’s server board.

And, as described in the following, workstations were used in what we can be
called the proof-of-concept of modern clusters.

As PCs - both those based on the Intel x86 architecture and those made by Apple
- advanced, the distinction between workstation capability and that of top PCs
blurred. Though initially with 32-bit floating point arithmetic, when workstations
from Sun and SGI supported 64-bit arithmetic the PC-based workstations had a
significant price advantage. They benefited from the high volume of the PC market,
as they were mostly just the biggest configurations of the high-end components of
the wider market of PCs.

The Beowulf Cluster

Teams at NASA Goddard pioneered early parallel processing with their Goodyear
MPP in the mid 80s (Chap. 12). They did it again less than 10 years later with
what came to be known as the Beowulf Cluster. The idea was to harness multiple
nodes - workstations, and later servers - to work in parallel on a single job. The
architectural technology for achieving it was developed in 1993-1994 by Thomas
Sterling and Donald Becker.

I find the Beowulf project historically significant as an early proof-of-concept, or

Standardization � 149

prototype, for the cluster architecture that dominates HPC now. Unlike the earlier
and concurrent experimentations with collections of workstations, Beowulf looked
more like a single system, managed from a single control point - typically, one of the
workstations or servers. We need to think of Beowulf not as some specification of
hardware components and software stack, but as a technology of clustering for par-
allel execution ([43]). One could choose from a variety of compute nodes, operating
system distributions, and parallel libraries. There was a guiding principle, though.
As Sterling puts it: “If I had to say what is a Beowulf, I would say it is a commodity
cluster, completely COTS (Commercial Of The Shelf).” The hardware was chosen
from consumer products, not systems that would go into computer centers, and the
software was taken from the open-source community. He adds: “In retrospect, what
we did was obvious. But at that time it was not obvious. And in fact, many of our
colleagues thought it was a terrible idea.”

As Sterling tells it, the goal was to produce a system that was less expensive
than a high-end workstation while delivering 10-20 times higher performance. It
was accomplished, by Beowulf’s three generations of clusters from 1994 to 1996,
with Intel x86 microprocessors, 100 megabits/second Ethernet, and Linux operating
systems with PVM or MPI.

Twenty years after the birth of Beowulf, there was a workshop in honor of
Sterling (it was his 65th birthday). Jim Fischer, a program manager for high-end
computing at NASA Goddard under whom the Beowulf project was run, gave a talk
titled “The Roots of Beowulf” ([44]) that provides a useful historical perspective
on the origin, motivation, and the construction of Beowulf.

Turns out NASA identified a need for a workstation (in the sense of a single-user
system) that will cost less than $50K and deliver gigaflops scale performance. Hid-
den there was also the need for portable and shared software - this is an important
element of the eventual solution. The state of affairs in HPC world, as NASA saw it,
was one mired with some fundamental issues: Proprietary software and hardware in-
hibiting portability, poor price/performance, performance bottlenecks diminishing
productivity, operational instability of existing systems, incompatible architectures
and programming models, and cumbersome acquisition process. Fischer’s team was
looking for ways to make parallel computing more accessible.

That was the environment that nurtured the new concept. Fischer recalls: “I
remember well the day that Thomas Sterling and John Dorband came to my office
and told me about the Linux PC cluster idea that Thomas and Don Becker had
conceptualized.. As they described the plan, I could see that the Linux cluster would
be amazingly inexpensive.. When they left my office I was onboard too.”

Indeed, the Beowulf project delivered on its promise. Sterling, Becker, and Dor-
band managed in 3-4 years to demonstrate the concept and get it out of the lab. By
1996 there were at least two Beowulf production clusters that delivered 1 gigaflops
at about $50K on real applications. There were two 16-processor systems at 1.1
(at LANL) and 1.26 gigaflops (at JPL) running two different applications with a

150 � Unmatched: 50 Years of Supercomputing

price tag of $50K and $60K. The architecture was proven to further scale when
these two clusters were brought together at the Supercomputing ’96 conference to
form a roughly $100K 32-processor system that executed a real application at 2.2
gigaflops.

Beowulf, and other experimental projects involving commodity parts thus ush-
ered the cluster era.

The New HPC Business Model

Fischer, at his Beowulf talk, laments what he called the “maze of architectures”
that existed in the fist half of the 90s. He’s referring to available HPC choices that
included vector processors, MPPs, minisupers, and technical workstations. That
was compounded by the uncertainty about the continuation of several architecture
styles, and even about the existence of the companies producing them.

While the microprocessor revolution took over in the early 90s with the resulting
reduction in specialized process technology, there was no immediate coalescing of
processor architecture. There was the MIPS architecture from SGI, ALPHA from
DEC, SPARC from Sun Microsystems, x86 from Intel etc. That, and the variety of
system architectures, was about to change.

By the turn of the century the HPC landscape was much different than how it
was twenty years prior. No more vector processors (with the exception of NEC in
Japan). The MPP companies of the 90s were gone or switched to software and other
products. Computer companies write compilers and libraries, but not operating
systems. Communication protocols within and without the systems are common
among products.

We can talk about two trends that altered both the engineering and the business
makeup of HPC. One is standardization, and the other is commoditization.

By standards I mean the growing commonality in the components of the software
stack and high-level view of systems’ architecture. In particular, the adoption of
Linux variants for the operating systems. The architecture could almost universally
be described as a collection of server nodes in similarly-looking racks connected by
one of the two or three generally available network technologies. The servers them-
selves share similar a structure of two processors on a motherboard with memory
DIMMs attached via memory channels and addressed by both CPUs. The CPUs
are microprocessors adhering to the IEEE standard for floating-point operations.
Over time there were fewer and fewer microprocessor implementations, and an over-
whelming majority are x86-based since, driven by the PC market volume, it did
better by the Moore’s Law progression curve. The return of accelerators to HPC
after early occurrences in the 80s (see Chap. 8) in the form of GPGPUs has very
quickly become a standard feature of most of the HPC offerings.

There are exceptions to this over-simplified picture. For instance, Cray has a

Standardization � 151

propriety interconnect solution. Some vendors offer fat nodes of 4 or 8 processors.
But these represent a very small volume of the market.

Commoditization is the reliance on parts that are mass-produced and are also
used in the consumer market. Or, at least, outside of the HPC space. It is true that
for HPC the vendors apply the high-end of their product lines. These will include
the larger and faster memory parts and the processors with more cores and faster
clock. But, almost always, these are derivatives of the parts built for the consumer
market, that is, the PC and workstation users; not the other way around. The shift
to x86-based servers amplified both standards and commodity trends.

These engineering-inspired changes in how HPC systems are created produced
a major shift in the HPC ecosystem. It has been a gradual process that started
in the early 90s. By the turn of the century is was clear that gone are the days
of in-house design, development and manufacturing of proprietary systems. The
self-contained “silo” structure of the HPC business sector has morphed into a set of
inter-dependent entities each with narrower function than the all-inclusive nature
of the companies of the past. Existing companies adjusted and new companies
appeared. A notable exception is IBM with its POWER architecture that is done
entirely in-house. But even here the software options are a UNIX-based operating
system or the open-source Linux. And IBM created an OpenPOWER alliance - a
forum for shared development with its partners.

The use of common components of both hardware and software created a sec-
tor we can call technology providers. These include companies that design and sell
the processor chips, whether manufactured in-house or elsewhere. Intel and AMD
provide x86 chips. Nvidia became a major provider of the GPU-based accelerators.
Memory cards were always outsourced to companies in the Far East and the U.S.
Storage devices are largely produced by companies specialized in digitized stor-
age. The same is true for the equipment and parts needed for power supply and
cooling. Relatively late arrivals were companies that developed high-performance
interconnect networks for HPC clusters. Mellanox stands out with its InfiniBand
products during early 2000s. The technology providers have sales and marketing
organizations that are aimed not at the HPC end-users, but at the technology cus-
tomers, who are the companies building the computer systems out of the the various
components they acquire.

These are the old HPC companies that survived past the 90s and became,
essentially, system houses. The buyers of HPC systems, who use them in-house to
support their institutional mission, acquire them from companies such as Dell, HPE,
Cray, SGI, Penguin, IBM (which also remained a technology provider), Lenovo,
Fujitsu and others2. In the emerging business model a system house can, and often
does, choose components from multiple technology providers. The model allows
products with Intel and AMD x86 processors, for example. Similarly, with the choice
of processor interconnect, storage devices, and memory parts. The differentiation

2SGI and Cray were acquired by HPE later on.

152 � Unmatched: 50 Years of Supercomputing

between system providers is about the combination of building blocks chosen for a
given product line, the engineering that goes into the server boards, the modules
and racks that house the servers, and the cooling and power supply subsystems.

This clear separation of responsibilities between the technology providers and
the system houses gets a little blurred when it comes to what is known as chipsets.
These are the chips that enable the data flow between the CPU and the memory,
storage (IO), and other systems (the network). The CPU vendors, such as Intel and
AMD, provided such chipsets to their customers, but the larger system houses such
as HP, IBM, SGI, Cray etc. often developed and deployed their own chipsets. That
was an added differentiation factor between the system houses. However, as process
technology advanced and the gate density on the CPU chips increased some of the
chipsets repertoire was integrated into the CPU chip. In particular, this is the case
for memory and PCI (Peripheral Component Interconnect) controllers.

The software delivery structure is more of a mixed bag. Commercial applications
have been mostly provided by ISVs (Independent Software Vendors) who confined
themselves to a single category of application. Examples of such categories are
Engineering Modeling, Drug Exploration, Seismic Oil and Gas Exploration, Com-
putational Chemistry, Financial Currency Trading, and more. Some application
types are produced by and for the use of a single organization. This is the case for
weather models, for example. Scientific applications are not sold commercially but
often shared among institutions. The HPC system houses have significant software
teams, though. They produce their own middleware and system libraries, and sev-
eral develop and maintain their own compilers and numerical libraries. Others use
open-source compilers and math libs. The most common operating system is Linux
with minor adaptation to cater for features of the specific system. An important in-
gredient that supports the emerging HPC environment is the adoption of standard
open-source libraries for expressing parallelism for shared and distributed memory
systems - OpenMP and MPI, respectively.

The interplay between the technology providers and the system houses leveled
the playing fields. Small companies now have access to the same technologies as
the larger ones. Easy access to different solutions of subsystems allows for greater
flexibility and faster design and development. The competitive landscape changed
from ‘who owns that latest technology’ advantage, to ‘who can better assemble
a better high-performance system from the available parts’. The system houses
can now focus their resources on the quality of packaging, assembly of parts, and
maintainability.

The HPC user community benefitted well from this new business model. Simi-
larity in the architecture and the use of common processors allow for greater com-
patibility and portability between systems from different vendors. End-users can
more easily switch vendors between procurement cycles. The competition for win-
ning the user customer is now about features that matter to the users and that
multiple vendors can strive to provide.

Standardization � 153

On Solving the CISC vs. RISC Issue

In Chap 8 there is a brief discussion of the pros and cons of the Reduced and the
Complex Instruction Set Computing (RISC and CISC) - the two approaches to
designing the instruction set for a processor. In short, RISC is simpler to build and
results in a more compact hardware. CISC results in a more compact code and
offers a richer set of instructions.

High volume products drive bigger investments in development and reduced
costs per unit produced. The PC market was the high-volume market. At Intel
they concluded that its processor - the x86 CISC architecture chip, will be adapted
to the server and the HPC market. For reasons of backwards compatibility, and
after applications investment of over a decade, its instruction set had to be kept.
But it takes less silicon and a simpler design to manufacture a RISC processor. The
Intel processor architects (and others) wished to get the best of both the RISC and
the CISC worlds. They found a way:

Build a RISC processor that will execute CISC-generated binary code. The core
of an x86 processor, since at least the mid 90s, executes a RISC-type instruction
set. We need not know what it is since compilers for x86 generate its CISC-based
instructions - allowing for continued use of ‘legacy’ codes and a smaller footprint
of the binaries produced. The RISC details are not visible to the programmer. The
magic that glues it all together is known as microcode. It is the layer that processes
the CISC binary. The microcode, occupying a fast memory on the chip, takes CISC
instructions and outputs RISC instructions that are fed into the functional units
of the processor. Thus, the x86 processor behaves as a CISC CPU to the outside
viewer, and as a RISC processor internally.

There is an additional, and very important, benefit to the use of microcode.
Being a code, a program, that is placed on the chip, it can, in principle, be modified if
necessary. Intel, and later AMD too, implemented a mechanism by which corrected
microcode can replace the code previously installed. This feature allows bug fixing
without having to replace the hardware. It was first implemented by Intel after a
rarely occurring bug, known as the FDIV bug (see [45]), resulted in wide recall of
its x86 chips. Being able to patch the microcode served Intel well since.

It is interesting to note that the first phase of the ASCI Red system described
earlier started with a RISC chip (the i860), and when the system was upgraded it
was populated with the x86 Pentium Pro CISC architecture chips (see page 113) -
a more powerful CPU.

On Accelerators

The discussion about standardization of HPC system architecture, CPUs, and soft-
ware, combined with the note about the instruction sets, is a reminder of another
element of the HPC environment: Accelerators.

154 � Unmatched: 50 Years of Supercomputing

A recurring theme of HPC, accelerators for numerical or AI workloads seem to
be quite a common fixture in todays systems3. Clearly, having attached processors
makes life more difficult for the user. But the economies of building high-performing
chips without the silicon needed for managing the OS, storage, interconnect, and
parallel execution are too attractive.

This is a case where hardware considerations overruled users’ convenience.

3At the high-end, as given by the Top500 list, accelerators are present in about 30% of the
systems. Their performance share is close to 60% (2022 data).

C H A P T E R 18

HPC at Intel
The Role of a Major Technology Provider

Intel was an HPC player back in the 90s. Not only was it the major provider
of the x86 microprocessors that enabled the ”killer micro” revolution in HPC, it

also took on the role of a systems house. As mentioned in Chap. 12 Intel designed
and manufactured several massively parallel systems. A phase that culminated with
ASCI Red at the Sandia National Lab.

Having achieved the Teraflops milestone Intel pulled back from its role as a
system integrator and vendor. It dismantled its HPC division in 1995. The main
rationale for this action was that being a systems house did not fit with the com-
pany’s business model. Intel’s strength was in the manufacturing of processor chips
and other components. The fabs were, and are, the backbone of the company. Its
customers were the companies that build HPC systems (and PCs too). It would
complicate the relationships to have to compete with one’s customers.

An unintended consequence of this move was that Intel personnel neglected, or
did not see the need, to talk to HPC users and their organizations. That changed
when the same lab where it had its greatest HPC achievement - Sandia National
Lab, selected its successor HPC system to be based on processors from Intel’s arch-
competitor - AMD, in mid 2002 (installed in 2005). That system, named Red Storm,
was build by Cray and its architecture conceived by a computational scientist from
Sandia, Jim Tomkins, with Cray as the integrator and design partner. Cray, at
that time, was using AMD CPUs. Red Storm had a similar high-level architecture
to that of ASCI Red. The tightly-coupled systems were partitioned - by function
(compute, service, IO, system for ASCI Red) or by workload (classified or not, in
the case of Red Storm). Red Storm was Sandia’s flagship system from 2005 to 2012.
It ranked #6 on the Top500 list when launched, and #2 the following year after an
upgrade that nearly tripled its performance. A second upgrade, in 2008, doubled
the system again, and yet, as a reminder of how fast technology moves, Red Storm
ended up as #9 on that list.

155

156 � Unmatched: 50 Years of Supercomputing

It is noteworthy that by that time, early 2000s, top HPC systems costs were
about an order of magnitude higher than they were merely 20 years before. Red
Storm initial installation cost about $90M, compared to the $10M or less of the early
80s supercomputers. This is in spite of using commodity parts and the advances
in process technology, and an indication of the even faster pace of growth in HPC
systems size and complexity.

The Red Storm announcement was a painful wake-up call for some in Intel.
Mainly for its Sales and Marketing organization (a datacenter group did not exist
yet at Intel). if only they would have kept in touch with their prized customer...

As fate would have it, this event brought me back to direct involvement with
HPC. I was reassigned to start what would become an HPC practice at Intel. My
first task was to go and meet with Bill Camp who headed the high-end computing
division at Sandia. I remember the lunch in Albuquerque in the summer of 2002,
where the typically mild-manners Camp gave me an earful of where Intel has gone
astray. Turned out Intel’s troubles went deeper than just not communicating with
the HPC end-users. He explained to me that Intel was lacking the right product
to be considered for Sandia Lab’s next capability system. That was all the more
unsettling considering that the system to be replaced was the Intel based ASCI
Red, the first teraflops system in the world.

Which brings us to the story of Itanium - a topic Camp raised as a misstep by
Intel.

The Itanium Story

In 2001 Intel released the first processor, code named Merced, in a product line
called Itanium (formerly known as IA-64). It was the culmination of about 12 years
of research and development, a project that started at HP Labs and that Intel
officially joined in 1996.

There are several important lessons that can be gleaned from the Itanium saga
(more below), but the salient facts regarding the Sandia Red Storm decision are
these: AMD’s Opteron had 64-bit floating-point hardware. The Intel Xeon was still
at 32-bit floating-point functional units. Intel’s 64-bit offering was the Itanium. It
underperformed even after several delays of its launch.

The Intel-HP team thought the transition to 64-bit microprocessors for the
emerging Enterprise server market and for HPC is an opportunity to introduce a
clean new architecture supporting large memory that will do away with the x86
CISC “baggage”. The idea was to go beyond RISC: Execute RISC instructions,
but operate on multiple of them concurrently. The fancy name given to the archi-
tecture was Explicitly Parallel Instruction Computing (EPIC). In fact, they revived
a concept that was tried before - the Very Long Instruction Word (VLIW), in
which the instruction format contained several machine instructions. The 128-bit
Itanium instruction bundle has space for three instructions. The Itanium’s indepen-

HPC at Intel � 157

dent functional units with its intra-processor paths and registers allowed, in theory,
up to six instructions to execute in parallel (of course, not all of the same operation
type).

The smart engineers who worked on Itanium understood that Itanium cannot
deliver on its promised performance without the compiler carefully scheduling in-
structions that can be executed in parallel by filling the VLIW. They bought off on
the idea that opportunities for such parallelism exist in abundance, and that the
compiler can be taught, within a short time, to detect them. That did not happen.
Note that here we are not looking for data parallelism, where the same operation
is applied to many array elements. This is a case of finding concurrency within a
single instruction stream.

The wishful thinking regarding the compiler (and the applications) lasted longer
than it should have because building the hardware turned out to be more difficult
than expected. It took years before there was a prototype to test the architecture
against real-life and real-size codes. So, the hype persisted.

To ease the issue of not having many applications run on Itanium and to help in
transitioning to Itanium an x86-compatibility feature was added. It was a translator
from x86 binaries to Itanium code. Almost needless to say, it did not produce quality
code, and did not open the market up for Itanium.

The delay in finishing the CPU construction meant that the first-generation
Itanium, code-named Merced and launched in 2001, was built with the 180nm
process technology of the mid 90s. The competing CPUs were one or two process
generations ahead. The Itanium line survived, longer than it should have, due to a
combination of factors: A strong case of “group think” within the Intel leadership1,
the enormous power and influence of Intel’s marketing, the reluctance of Intel’s
software group to admit its compiler cannot be taught to produce efficient Itanium
code in a reasonable time-frame, and a tight contract with HP Intel did not wish
to break. After HP (later HPE) realized Itanium cannot succeed in HPC, they still
wanted to use it for enterprise applications, especially database apps, where it had
some success.

So Intel continued to produce future generations of Itanium. Almost invariably,
they arrived later and with less than the promised performance. Relative to Xeon,
Itanium was behind in process technology, had slower clock than the x86 processors,
and consumed significantly more power. Itanium remained a low-volume product,
yet consuming engineering resources that could have been put to better use else-
where. Even worse, Intel held back adding 64-bit arithmetic hardware to the Xeon
(x86) servers, so it would not compete with Itanium. Of course, AMD did not hold
back and companies like Cray did not use processors from Intel until years later.
Intel’s share in HPC dropped. There is an interesting side story here about how
the Xeon development team quietly prepared for 64-bit capability and were able

1In the spirit of full disclosure: I was an early Itanium skeptic in an era when such dissent was
not looked on favorably.

158 � Unmatched: 50 Years of Supercomputing

to quickly spring Xeon x86-64 on the market when received the OK in 2005. More
details about the history of Itanium can be found at [46].

To me, one of the more enduring lessons from the Itanium history is the power
of Marketing in keeping a myth alive. There were many technical and performance
claims that were misleading or flat out wrong, but the sales forecasts for Itanium
outdo those easily in how wrong they were. Figure 18.1 was created in 2007. It
shows that in 1999 Intel Sales forecasted that in 2002 the annual revenue from
Itanium servers will reach $38 billions. In 2000 it was revised down to $30B, and
later that year to $25B in 2004. In 2001 the forecast was that Itanium server sales
would reach $15B in 2005, and later that year downgraded to about $7.5B. The
2002 forecast started even lower, but predicted close to $9B in 2007. Then there is
the 2005 forecast that says it’ll be 2009 before Itanium sales reach $7B. The actual
numbers? - for years 2003-2006, low at $1B to a high of $2B, annually.

Figure 18.1: Itanium Sales Forecasts History Over the Years.
Source: Arch dude -

http://en.wikipedia.org/wiki/Image:Itanium Sales Forecasts edit.png.

With all that said, there was a (short) period when Itanium showed a strong
presence in HPC land. Even at HPC high-end space as represented by the Top500
list. In June 2003, Itanium at its second generation, 17 out of the top 500 HPC
systems listed were Itanium. Its peak presence on the list was the November 2004
list, with 83 systems (16.6%) - with two at the top 10. It’s downhill from here -
eerily close to half-lifetime of radioactive decay: 44 systems in 2005, 22 a year later,
9 in 2007.

HPC at Intel � 159

Itanium became less and less competitive for HPC workloads, and it is no coinci-
dence that in mid 2004 Xeon acquired 64-bit native support. Indeed, while Itanium
was fading from HPC, Intel began to do very well with Xeon.

For HPC the greatest successes for Itanium on the Top500 list were two systems
that were built and installed in 2004. A prior system deserves an honorable mention:
An Itanium cluster installed at the DOE’s Pacific Northwest National Lab (PNNL),
reached in the summer of 2003, after an upgrade, the #5 spot on the list.

The first one, named Thunder, was a 1,024 nodes cluster with four second gen-
eration Itanium processors per node. The 4-way Itanium SMP had a large memory
(8GB/node) compared to the more common 2-way x86 servers, and was supported
by the first worldwide Lustre file system. It was the world’s fastest Linux cluster
when launched. Thunder was designed in close collaboration with scientists and
system architects at Lawrence Livermore National Lab led by Mark Seager, at that
time a principal at the Advanced Technology department at the lab. The systems
integrator was a small Bay Area outfit - California Digital Corporation. Remark-
ably, it took just 5 months to build and deliver the system. Thunder was #2 on
the June 2004 Top500 list, behind only the NEC Earth Simulator (its last time
on the #1 spot on the list), and at about one 20th of its cost. Seager expresses
Thunder’s significance thus: “Thunder was hugely successful. It put institutional
open computing on the map for NNSA2 and opened the door for clusters for the
ASCI program”.

The second large Itanium system followed soon after. This is one I was more
closely involved with, as it got me working together with past colleagues at NASA
Ames Research Center. Walt Brooks, the chief of the NASA Advanced System
division at NASA Ames, invited Intel (the sales rep and me) to a meeting in Spring
2004. He outlined a proposal for a top HPC system designed and built with SGI’s
Itanium product, Altix. The proposal quickly turned into a high-pressure project.
NASA, SGI, and Intel engineers designed a modular system made up of 20 ‘blocks’
of 512 Itanium2 processors each. A unique feature for system that size was its shared
address space through the SGI NUMAlink interconnect technology. The system was
named Columbia, in honor of the same-name ill-fated space shuttle.

We believed that if put together by fall it will top the next Top500 list. It almost
happened. Columbia was built fast and in record time3, and performed as expected.
Then rumors started of another system that would have even higher performance.
IBM was working with Livermore Lab (and Seager) to stand up a large BlueGene/L
system. It was to be much more powerful than Columbia and we did not think it
could be built in time. We were partially right. Turned out that merely half the
BlueGene’s intended size would outperform Columbia. And the Top500 list rules
allow a system that has a customer to submit the benchmark while the system

2The Department of Energy’s National Nuclear Security Administration
3the NASA-SGI-Intel team was recognized for this achievement with a NASA-sponsored award

presented in Washington, DC a few months later. I was one of the Intel representatives there.

160 � Unmatched: 50 Years of Supercomputing

is still on the factory’s floor. We found that it applied to a part of the intended
system too. Half of the planned IBM/LLNL system was built and benchmarked for
the Fall 2004 Top500 list. The ‘drama’ ended with Columbia capturing the #2 slot.
It stayed a top-10 system for two more years.

These high-end successes of Itanium did not translate to downstream acceptance
by the broader market. Technically, they had unique system designs, but they were
more ‘special’ from a business perspective. Seager talks about the Thunder deal:

“I convinced Intel to price 4-way itanium processors and chipsets for HPC differ-
ent than for enterprise. Enterprise surcharge for 4-way was excessive. With special
HPC part numbers (SKU - Stock-keeping Unit) they were able to separate the
markets and not undermine the enterprise margins. Part of the argument was that
AMD didn’t have a 4-way product, and they needed to grow the Itanium market
share in a way that didn’t inadvertently help AMD. That carried the day inside
Intel.”

In the case of NASA’s Columbia, Intel provided SGI with a one-time price for
the 10K Itanium chips that was much reduced from the standing favorable pricing
SGI already enjoyed. Rumor, deems plausible by people in-the-know, has it that
even with the O(10) discount relative to the list price, Intel more than recovered
the cost of manufacturing the Itanium chips.

There was another benefit to the purchasers of these large systems that could
not be scaled. That is the attention they received from Intel during and after the
installation. Seager again: “The other thing that Intel did was that they had some
of the compiler guys directly addressing the problems that our guys were having
while we were fielding the machine and that also made all the difference in the
world. And since these were enhancements of the existing compiler tool set, a lot
of the changes that they had to make also improved the compilers for Xeon, which
we liked a lot.”

The NASA folks got similar close attention from Intel and SGI. This mode of
vendor-user cooperation was successful, in no small measure, due to the users’ own
programming expertise. Such pools of sophisticated software and application teams
is non-existent in most customer sites.

Columbia’s architecture was more specialized than Thunder’s with its blocks of
processors connected by proprietary network and supporting global address space.
But Thunder, as Seager emphasizes, was a demonstration of 4-way, large node
memory, Linux cluster that could have been widely replicated, had there been a
more forceful marketing effort to promote the concept. He points out that Thunder
was within 10% of the Earth Simulator’s performance (on Linpack) at about 20th
of the cost.

The Itanium story can serve as a case-study of several important lessons:

� It is hard to introduce a new architecture. Merely coming up with a clean
and innovative design is not enough. Computer architecture, as a technology,

HPC at Intel � 161

has to be supported by a complex ecosystem that includes system software,
committed vendors, assurances of future generations of the processor, and,
above all, a way to migrate user applications to the new architecture. Though
successful in some aspects, Intel failed to make it easy or worthwhile for
general HPC workload to be ported over.

� It is wrong to assume that software will ‘eventually’ resolve complexities that
stand in the way of efficient use of hardware resources. Perhaps oversimpli-
fying, the gist of the matter is this: Software engineers were able to hand-
schedule VLIW instructions, mostly filling them up, for small kernels, and
then generalized that a compiler can imitate their coding process on a full-
scale application. They may have also assumed that the range of opportunities
for filling VLIW exists throughout the code. In any event, the hardware de-
velopment proceeded based on false expectations. The compiler technology
was not advanced enough, and perhaps still isn’t4.

� Marketing hype will eventually succumb to reality. It is a testament to Intel’s
influence as a technology provider that Itanium lasted as long as it did. Hard-
ware vendors were provided incentives to introduce Itanium products. Soft-
ware companies were compensated for porting operating systems and utilities
for Itanium. The large systems, including the two described above, were given
to the customers at much discounted prices. The writing was on the wall, and
all it took is revealing a 64-bit Xeon to diminish Itanium’s relevance for HPC.

� There are side effects and unintended consequences to a strategically mis-
guided business decision. To Intel’s credit, unleashing the 64-bit Xeon when
it did allowed it to recover from the continued loss of market-share in the
server and the HPC markets suffered due to the focus on Itanium. However,
hundreds of engineers, both at Intel and at HP, could have been engaged all
those years in more promising projects. Hopefully, some skills and techniques
developed then were useful elsewhere. That said, careers were disrupted and
some departures of people may well have triggered by desire to avoid working
on what seemed to be a dead-end project. Of course, we accept many failures
of startup ventures, but the Itanium project was on a much greater scale.

Getting on Track Again

The ‘Field’ (the sales organization including its technical support team) was the
driver for getting Intel re-engaged with the HPC user community. The people most
eager to participate were involved with Intel’s supercomputer division in the days

4Intel appears to have repeated the same mistake just a few years later with the Xeon Phi.
Many-core x86 design, first an attached processor, later with a stand alone version. It, too, was
pushed hard onto the market by Intel and it, too, failed to deliver the expected performance. Here it
was more of the challenge of managing the data flow that was necessary for sustaining the compute
power on the chip.

162 � Unmatched: 50 Years of Supercomputing

of the Paragon and ASCI Red. With their help I started visiting HPC personnel
in national labs, government agencies, universities, and industry. These meetings
with individual organizations were very valuable and would continue, but after
participating in a technical meeting that had the roundtable format, I thought this
format would be useful for creating the dialog between Intel and the HPC user
community.

A central lesson from the Red Storm affair was that Intel needs to engage with
influential HPC end-users and reach leaders in the HPC community - mostly in the
public sector. This target audience has to meet not with one Intel visitor, but to
have a dialog with Intel executives as well as with system and software architects.
It has to be a two-way dialog, so the number of participants has to be kept low,
and talks are to be from both sides - and fairly short, with significant time allowed
for open discussion. The goal was for Intel technologists and management to hear
directly from some of HPC’s biggest users. Intel is now a technology provider, its
direct customers are not the end-users, so this kind of Intel-users dialog was not
likely to happen in the normal course of business.

A task force was called to plan the first Intel HPC Roundtable. Objectives de-
fined: Convey that Intel is engaged, involved, and listening. Provide technologies
and products roadmap. Uncover gaps in Intel plans. Explore avenues to collabora-
tive projects. Learn of users’ HPC plans.

The practical implications were that is would be a by-invitation event, and the
attendees will be asked to sign a non-disclosure agreement. The meeting location
to be Santa Clara, close to Intel headquarters, so as to get Intel’s management
attention and attendance. In Feb. 2003 we gathered for two days with 25 users
attending (we invited over 80 people) and over 30 Intel people. We did have more
Intel talks than users’, but allowed for immediate feedback and a long discussion
session. The majority of the attendance came from the DOE national labs but there
were several from other government agencies. Their critique was frank and blunt.

The feedback can be distilled into a few key messages to Intel: AMD’s Opteron
(with its 64-bit support) is a threat to Intel’s presence in HPC. The Itanium
roadmap is disappointing and not competitive. Concerns at the platform level of
architectural direction and execution that had to do with insufficient memory band-
width, performance, cost, and time-to-market. Gaps in interconnect (for Itanium)
and request for opening the spec for IO port access. Software lacks maturity (Ita-
nium compiler, Linux tools, enabling of open-source tools).

It is interesting that at that first HPC roundtable the users did not reach the
stage of giving up on Itanium for HPC. At least, they did not express such a
sentiment. That would come later - in a matter of a couple of years. In 2003 they
were ‘merely’ disappointed and asked for improvements.

On the plus side, the audience were encouraged by the apparent Intel’s commit-
ment to HPC and wished to see it acted on. They wanted to continue the dialog
and the exchanges and requested that we repeat such events regularly. We ended up

HPC at Intel � 163

doing such an HPC Roundtable twice yearly for next five years. There were Spring
and Fall meetings one on the West Coast, one on the East Coast. The later meetings
had 50-60 users attendees, while we tried to keep the roundtable flavor alive. By
2008 the intimate roundtable format was transformed into a large-audience event,
and “Intel Day” attached to the annual supercomputing conference.

These HPC roundtable events were, of course, just a forum for communication
and exchanges. There were always lively and informative. But, by themselves, they
can only build confidence and trust between Intel and HPC planners at large. It
helped that roadmap information was given out to the organizations that sent
representatives. It was helpful for the whole HPC market that the much larger
non-HPC Enterprise market started, due to the “big data” revolution, to acquire
and require large data centers. Architecturally, the enterprise clusters look like
most HPC clusters (though the latter employ high-performance components). That
meant that at Intel, as in other companies, the HPC activities were now seen as
synergetic with those on behalf of enterprise workloads. HPC teams fit nicely as
the high-performance segment of the Data Center Group.

Indeed, Intel grew its direct involvement in the HPC sector. The “Field” got ed-
ucated about HPC users needs and priorities. The processor and system architects
sought input from internal and external HPC practitioners. The software organiza-
tion was paying close attention to performance codes and metrics relevant to HPC
(and not just those synthetic SPEC benchmarks). I was the instigator for what can
be called “weather codes practice” that was a team of several application engineers.
The company’s org charts included entries with “HPC” in them. The strategists
and upper management saw HPC as a technology driver for the datacenters at
large.

For HPC-world this fits with how Seager, from Livermore Lab, describes the
interaction between the large HPC government centers and companies such as Intel:

“The DOE Labs and the NSA have a high level of sophistication in terms of
understanding the architectures, the applications, and how to build systems and
so forth, that the rest of the HPC market doesn’t have. And so we were able
to convince Intel, begrudgingly, that going after the large systems is worthwhile
because you take your lumps early, and then you’re done. Everything else is a piece
of cake, relatively. Each system has its own challenges, and each application will
find new bugs in the compiler or the system’s software or something. But it’s minor
compared to the level of problems that we dealt with. And we drove technology
like the Lustre parallel file system. We were the guys that showed up and paid for
Lustre, and we were the first people to put Lustre into a production environment.
And that made a big difference.

“So we coined the term lighthouse account. We were the lighthouse account and
showed the way. And for a while that argument went a long way.”

Intel also acquired HPC talent from outside. Two from the DOE national labs
that were mentioned before joined Intel for a short period after their retirement from

164 � Unmatched: 50 Years of Supercomputing

their government jobs: Bill Camp from Sandia and Mark Seager from Livermore
lab. From IBM Intel hired Al Gara who was the chief architect of BlueGene, and
Robert Wisniewski who was the software chief architect for BlueGene5. There were
a few others brought from outside - from government and the private sector - to fill
management positions.

Were the changes made by Intel effective? - the answer is a qualified “yes”.

The revenue numbers from HPC over the years are not available. Even if they
were, it is hard to estimate the downstream impact of HPC on the much-bigger en-
terprise server market. The HPC research analysts firms provide details on market
share by system houses and not for technology providers. But we can look at his-
torical data of the Top500 lists. They represent only the largest HPC systems, but
the distribution of processor choices extend to the whole market, more or less. The
Itanium decline was mentioned above, and there was a contemporaneous uptick for
Xeon. Here are a few data points from the Top500 in terms of number of systems
(and not of performance share):

In June 2003 19% of the 500 were populated with Xeon (or Intel x86; not
counting x86 from AMD too). At the end of 2004 its share was 47%. Two years
later the Xeon share was about the same, with AMD’s Opteron at over 22%. Intel’s
x86 processors’ share continued to rise - 71% in 2008, 85% in 2014, peaking in 2018
at over 93%. It is fair to conclude that Intel was successful in HPC during those 15
years or so.

The Top500 entries of 15-18 years ago included a broad mix of processor types:
IBM’s BlueGene, Itanium, IBM’s PowerPC, HP’s Alpha (formerly by DEC), IBM
Power, x86 of several generations and from Intel and AMD. By 2022 some diversity
remained, but over 96% of the systems have x86 processors (with about 30% also
with accelerators, the vast majority of them made by Nvidia).

But not all was smooth sailing. There was the matter of Intel’s attempt at de-
veloping an attached processor, as a reaction to Nvidia’s GPUs. First there was
“Larrabee”, an attached processor chip with x86 cores targeting both graphics
and general computing. It was abandoned in 2010. There were two other research
projects of that nature whose names points to there intended positioning: The Ter-
aflops Research Chip (2007) and the Single-chip Cloud Computer (2009). What
followed, starting in 2010, was a series of products that came under the heading
of Many Integrated Core (MIC) architecture. This product line was marketed and
branded Xeon Phi . It had the advantage, compared to other accelerators, of having
x86 cores, and, therefore, supporting existing x86 software tools and binaries ([47]).
Though not a commercial success Xeon Phi appeared in several large HPC sys-
tems from 2012 onwards. As was the case with Itanium, the product was marketed
aggressively and was accompanied by heavy investment of software engineering.
The later generations of Xeon Phi had impressive performance potential, but the

5Seager, Gara, and Wisniewski became Intel Fellows and all four left Intel after a few years
(Camp left after only a couple of years).

HPC at Intel � 165

challenge was feeding the data sufficiently fast to make use of that capability. Its
end-of-life was announced in 2020.

History repeats itself, and as Opteron caused a decline in Intel’s x86 in HPC
at the turn of the century, so does AMD’s EPYC CPUs since their introduction in
2017. As always, competition is a driver for innovation, and the user customers will
benefit from it.

Intel continues to be a power player in HPC not just in terms of volume, but
also as a partner for the highest-end systems. It is the contractor, working with
Cray, for the second exascale system in the U.S. - the Aurora system to be installed
in Argonne National Lab in 2022, after delays due to the termination of Xeon Phi
development and related difficulties Intel had getting to 7nm process technology
(more on the march towards exascale in Chap. 23).

C H A P T E R 19

High Productivity in HPC
In i t iat ives for Achieving Higher Product iv i ty from HPC Systems

Much of the history, stories, and ‘legends’ surrounding HPC are about single-
figure performance numbers, such as theoretical peak performance, or the

fastest execution time for a given application. While this was going on, people began
to look beyond the system as a closed stand-alone object. The computer system
does not exist in isolation from its environment. There are people who maintain
the system, develop its software, and creates a myriad of applications. Surely, there
are other metrics to consider when evaluating the value of HPC.

From early days there was the tension and differentiation between capability
computing - the ability to execute a large application that require all of the sys-
tems resources to itself, and capacity computing - where the system is to process
a workload composed of smaller jobs, multiple of which in the system at the same
time. This capability vs. capacity tension is more pronounced since clusters became
the more common form of HPC systems.

Indeed, in the early 2000s there were some attempts to address the issue of
defining value of HPC that will take into consideration the broader HPC environ-
ment and the diverse ways its systems are being applied. This led to coalescing
around the notion of productivity as a way to assign value to HPC. This way of
thinking is not just a methodology for ranking systems, perhaps not at all, but a
mechanism for future planning. Some of the productivity debate and research would
later be recast, at least in the U.S., as competitiveness. Indeed, the U.S. Council on
Competitiveness established a High Performance Computing Initiative, now called
Advanced Computing Roundtable ([48]). With its slogan “To out-compete is to out-
compute” it became a forum for raising awareness of HPC to policy makers and
funding sources.

167

168 � Unmatched: 50 Years of Supercomputing

HPCS

Agencies within the US government, concerned with national security, ‘big’ science,
and space (in the stellar sense), have been quietly supporting HPC companies for
years. The beneficiaries included Cray, SGI, MPP companies, DEC, and projects
by large companies such as IBM and HP. The list is long. We saw that the 90s
was a tumultuous period for HPC companies and architectures. Indeed, planners
and strategists in these agencies became concerned about the prevailing trends.
As a result an inter-agency long-term program was created in 2001 to address to
address leadership computing in the US. It was led by the Department of Defense’s
DARPA, the Defense Advance Research Projects Agency, and augmented with
participation of DOE national labs and HPC practitioners from several academic
institutes. The program was titles High Productivity Computing Systems (HPCS).
The HPC private sector was (selectively) invited to propose high-end systems. At
the end IBM and Cray were selected for funded projects.

The HPCS program’s focus was on leadership computing of HPC. In fact, their
concern was that the emergence of clusters as a medium for HPC work might hurt
innovation at the high-end. Their interest was more in capability computing than
in capacity computing. In fact, the tangible goal of the HPCS was to realize several
petaflops-class systems, mainly through projects they funded with Cray and IBM.

Still, the ‘think-tank’ of advisors to the program grappled with the issue of
defining productivity and how to measure it, and much of it applies to the broader
HPC market. HPCS’ activities span the period of 2002 to 2010. In 2008, the advisory
team produced a comprehensive report ([49]) on productivity modeling, evaluation,
and metrics.

At the outset, the report recognizes that performance as commonly understood
- a measure of how fast an application or workload runs, should be looked at
within the broader context of productivity. Much attention was given to performance
modeling, and we return to it in Chap. 31. When physical devices are concerned
the report seems to equate productivity with what is often referred to as efficiency,
that is the fraction of the theoretical computational performance that is realized
for a given code or workload.

Using this logic we see that HPC’s obsession with performance is really the
same as seeking high productivity out of the underlying devices and the physical
system. However, we cannot devise universal high productivity (or, high perfor-
mance) systems because there is a wide diversity of the computational profiles of
applications.

The questions, then, become what is the target application or workload profile?
and how do we optimize the assembly of components to cater for the diversity of
applications and its changing over time? and should we promote radically different
architectures for capability and capacity computing, or even designs that specialized

High Productivity in HPC � 169

to a class of applications? and is it possible to have a set of building blocks from
which to build a system customized to any given profile of workload? etc.

In any event, in the context of productivity, more factors enter the equation.
Physical devices by themselves will not solve the high productivity challenge. There
is the system software, the applications’ algorithms, the uptime (availability) of
the system, and, of course, the human factor - the scientists and engineers, the
developers and the programmers. The totality of the above makes the productivity
universe.

The report cited here shows that the authors struggled with how to quantify
productivity. It is understandably difficult, as it involves hardware, software, algo-
rithms, and human factors. There is a segment in the report where productivity
is quantified as speedup gained relative to effort that was put in, where effort is
measured by the number of lines of code that resulted in said speedup. The authors
recognized the inadequacy of this measure for effort. To quote them:

“We share the concerns of the entire HPCS community that the SLOC1

metric does not fully capture the level of effort involved in porting and
optimizing an algorithm on a new system; however, it does provide a
quantitative metric to compare and contrast different implementations
in a high-level language.”

The report quotes ratios of speedups to lines of code implemented for several
applications, with the idea that a higher ratio indicates higher productivity. This is
a metric that links human productivity to the system’s performance. As expected,
when different systems were compared, over several codes, their “relative produc-
tivity” varied greatly. This attempt at quantifying productivity did not provide
much enlightenment. Worse than that, counting lines of code take no account of
effort put into algorithmic and numeric considerations. It seems that this method-
ology requires using the same person, or people with similar level of skills, for the
measurements. And a more relevant measurable would have been the time it took,
and not the number of lines of code produced. At the end, of course, we would still
get an answer that varies with the code tested. We are not closer to determining,
in general, the better system, nor the better language (unless all that matters is a
single application; which sometimes is true). Another flaw with the methodology
used is that it measured incremental improvements. There was no accounting for
how well a tested system performed on its base run; that is, the efficiency of the
system before any changes were made. If a system happened to be very efficient
initially, then its speedups would be more modest.

The HPCS program team went on to tackle productivity in its broader sense,
beyond just software productivity, by searching for a productivity metric from the
business and from the system perspectives.

1Source Lines of Code.

170 � Unmatched: 50 Years of Supercomputing

The business perspective assigns value derived from the HPC system as a rele-
vant measure. It is not sufficient to have high utilization of the system. Its output
has to be of value to the enterprise in terms of advancing its competitiveness by
providing ways to improve its products and innovate. This thinking leads to metrics
that are expressed as ROI (Return On Investment) or Cost-Benefit ratios. When all
is said and done, this is the one important metric for the commercial value of HPC
(the other one - the value to science, will drive yet-unknown benefits to society).
We return to this topic towards the end (in Chap. 35).

The system perspective of productivity is a measure of the output of the sys-
tem relative to the costs associated with its operation. The formulation involve
multiplying the system’s utility by the efficiency of the project, administration,
and the job, and by the availability and emphresources, all divided by the cost. The
resulting formula is not particularly actionable, as some items are subjective (and
there is a complication with the choice of units for the variables). But it provides a
framework for thinking about what is meant by the system’s productivity.

The HPCS program set out ambitious goals. It was well funded. However, taking
a historical perspective, it can be graded at “mixed results”.

There were two finalists hardware projects, one each with Cray and IBM. Cray
proposed the “Cascade” system. Its design was driven by the observations that, (1)
Applications vary widely and no one parallelization model fits all. For higher pro-
ductivity it is best to offer multipole processing technologies (commodity micropro-
cessor, vector processing, multithreading), and (2) The architecture has to support
programming productivity by addressing such features as compute/bandwidth bal-
ance, threads, synchronization, and latency tolerance. The resulting product line,
with its rich programming environment and a high-performance and feature-rich
interprocessor network, was very successful and a major presence in HPC since its
introduction in 2012.

IBM’s project was named PERCS (Productive, Easy-to-use, Reliable Copmut-
ing System), built with on the POWER processor with enhancements. The contract
for its first large system (NSF contract for the University of Illinois) was cancelled
in 2011 due to complexity and cost considerations. Later, smaller configurations
were delivered to some 20+ sites, notably to some of the large weather centers.

HPCS also sponsored studies of what they termed “emerging architectures”
as potentially better suited for HPCS productivity goals than the homogeneous
multicore processors. These were the STI Cell processor, GPUs, and Cray MTA.
Commodity multicore CPUs and GPUs are with us today. The Cray MTA (Multi
Thread Architecture), was an innovative system designed by the Burton Smith.
Only a few systems were shipped to non-classified sites and the product was dis-
continued after its third generation. The Cell processor, built from IBM PowerPC
cores contributed to the first petaflops system - the Roadrunner (see Chap. 16). A
shining achievement, but not of a sustained benefit, since it was a one-off relatively
short-lived system.

High Productivity in HPC � 171

On the software front there was a big investment in languages for parallel pro-
gramming that were extensions of existing languages. Collectively referred to as
PGAS (Partitioned Global Address Space) languages, there was UPC (Unified Par-
allel C), Coarray Fortran (discussed at some length in Chap. 32), and Titanium for
Java. Their use today is marginal at best. More on programming languages in a
section below.

The Community Perspective

The productivity discussion swept the HPC community at-large and was subject
for much talk and serious research. Indeed, The International Journal of High Per-
formance Computing Applications dedicated its whole Winter 2004 issue to HPC
productivity. Its ten articles were contributed by luminaries of the HPC community,
and covered such topic as software project management, framework, metrics, and
models for productivity of supercomputers and programming languages, as well as
associated metrics and models for performance.

An example of the work and thinking on productivity is the article by David
Kuck - ”Productivity in High Performance Computing” ([50]). Kuck is computer
scientist who was of the early pioneers of software for parallel computing while he
at the University of Illinois Urbana-Champaign. By this time Kuck was a Fellow
at Intel, which acquired the company he founded that developed compilers and
software tools for parallel processing.

Kuck frames his approach by pointing out that the outcome of enhanced pro-
ductivity is (or, should be) the ability to produce better work, faster, and with
greater ease. Of course, not all three - quality, speed, and ease - have to advance
with every step towards more productive environment. The context for Kuck is not
just that of the high-end of supercomputing, but of a landscape trending towards
commodity-based clusters.

And he proposes the ingredients necessary for the outcome of higher produc-
tivity: Better parallel architectures for individual jobs; better run-time support for
control, performance, and reliability; and software engineering methods for easier
development of applications. Kuck adds another item, a burden on the users (that
is accomplished almost naturally): Use larger and more complex problems (this is
the weak scaling argument - see also page 274). He concludes by suggesting indi-
cators for assessing productivity improvements: Track performance of individual
jobs; Monitor resources used for very large jobs; Broaden applications diversity;
and, enhance quality-of-service in terms of system uptime and components failure.

For the most part, the HPC community sees the productivity issue limited
to the human effort of developing ‘efficient’ codes. The focus is on programming
languages, computational algorithms, optimizing compilers, parallelization methods
and aids, and numerical libraries. These are the tools that would make the work of
the scientist and programmer easier and faster.

172 � Unmatched: 50 Years of Supercomputing

This view is akin to the optimization of one component within a complex pro-
cess. The process being the development and execution of an application on a
computational facility. There are potential side-effects to the making code devel-
opment easy and fast. How do we account for the computational resources that
are needed? The cost of the system? The performance of the code? Its portability
between different systems? etc.

What seems to be missing from the ‘productivity’ debate in the HPCS years
is bringing together, holistically, the hardware, software, and applications require-
ments and opportunities. The Cray and IBM hardware projects pay close attention
to the software requirements and wants in their design, and do their best to assist.
The software engineers develop their tools with the known architectures in mind.
But the projects are disjointed. That said, the HPCS program seems to have taken
the first steps towards the co-design approach. We get to it in Chap. 23.

On HPC Programming Languages

The HPCS report ([49]) contains a comment that seems to express some frustration:

“Programmers do value productivity, but reserve the right to define
it. Portability, performance, and incrementality seem to have mattered
more in the recent past than elegance of language design, power of ex-
pression, or even ease of use, at least when it came to programming large
scientific applications. Successful new sequential languages have been
adopted in the past twenty-five years, but each has been a modest step
beyond an already established language (from C to C++, from C++
to Java). While the differences between each successful language have
been significant, both timing of the language introduction and judicious
use of familiar syntax and semantics were important. New “productiv-
ity” languages have also emerged (Perl, Python, and Ruby); but some
of their productivity comes from the interpreted nature, and they are
neither high-performance nor particularly suited to parallelism.”

Introducing new programming languages is hard. The situation is similar to
that of introducing new hardware architectures, as we saw in the case of the Intel
Itanium debacle and the Intel Xeon Phi. Even being a technically sound product
is not sufficient. An ecosystem of dependent products is necessary for capturing a
share in the market. The same applies to programming languages.

Consider the example of Ada. The U.S. Department of Defense funded the de-
velopment of a language that will replace both Fortran and Cobol (as well as a
number of other languages used at the time). In the 90s the DoD, with its consid-
erable procurement power, mandated vendors to offer Ada and its developers to
code in Ada. The attempt in unifying around a single language failed, the mandate
removed (1997) and Ada exists today only in some legacy codes.

High Productivity in HPC � 173

The HPCS Language Project accepted and funded three new languages for
parallelism in HPC, starting in 2006. One of these, Fortress from Sun Microsystems,
was dropped from HPCS about a year later but was released later as open-source.
Development for it was discontinued in 2012, and it was targeted for Java Virtual
Machine.

Cray create the Chapel language to support multithreaded parallel program-
ming. IBM’s new language was X10 and it implemented a PGAS model. Neither
language gained traction outside of a limited group of users.

It turns out that, at least for HPC, it is not likely that new languages will gain
wide acceptance. There is too much invested in existing applications, and many
new implementations are built upon prior codes. Vendors and user facilities are
reluctant to support additional languages.

Languages that are based on existing languages, such as UPC and Coarray
Fortran, stand a better chance of acceptance. Extending the language still allows
its use on older codes (that do not make use of the new extensions). This approach
also allows to migrate to a parallel version incrementally.

Nevertheless, even languages that added extensions for parallel programming are
not used much. Two other mechanisms were found to be more effective. From earlier
on there was the use of directives to express parallelism (and vectorization) in shared
memory systems. This approach was standardized as OpenMP. For distributed
memory systems the HPC community adopted the MPI library as the means to
parallelization and synchronization. We return to this topic in the ‘Fortran chapters’
(starting in Chap. 32), and only mention here that a library can be called from
different languages, such as Fortran, C, and C++ - the popular HPC languages. It
is also easier to update compared to changes in a language syntax.

To conclude the notes about languages and productivity in HPC, here is a
relevant anecdotal research summary:

Inspired by the HPCS program, Eugene Loh - a principal software engineer
from Sun Microsystems (which was acquired by Oracle by the time the research
was published in 2010), sought to find “The Ideal HPC Programming Language”
- the title of his paper. The subtitle is “Maybe it’s Fortran. Or maybe it just
doesn’t matter” ([51]). Loh did not really answer his quest, because there was no
direct comparison of languages and the target codes were relatively small synthetic
benchmarks. But there were other interesting observations.

First, a programmer was asked to rewrite the codes while not being restricted
by any language rules or syntax, but so the ‘code’ is most expressive and clear. The
result was a much more compact and readable code. It also was Fortran-like. Which,
as the author admits, may have more to do with the original being mostly Fortran
and the programmer’s familiarity with the language. Next, the put together a team
to rewrite the codes in modern Fortran with the human productivity in mind, as
well as readability, verifiability, and maintainability.

174 � Unmatched: 50 Years of Supercomputing

The empirical findings are interesting. For the five codes examined, the number
of lines of code was reduced by 3.6 to 11 times, while the performance hit ranged
from no change to degradation of mostly 2-3x and a case of 6x slowdown.

The paper contains a technical discussion of algorithmic and numerics causes for
complexity and length of the codes, ways to simplify the code by eliminating costly
tests at the expense of a few additional values, with little effect on performance,
and where compilers can mitigate performance loss (for example, interprocedural
analysis and inlining functions or routines).

Musings about Productivity and Performance

The goal of the productivity efforts is to find ways - with software tools that include
languages, compilers, and libraries, to extract more performance from codes, with
less effort. In HPC we cannot divorce productivity from performance. In the grand
scheme of things, we can think of productive HPC as one where we maximize
performance, at a shorter development cycle, with less resources, at a lower cost.

On the face of it, if a user spends less time working on the code its performance
will not be a good as it can be. However, this is not always true, and when it is
true it is not necessarily a bad thing.

The two, productivity and performance, are not always in conflict. For example,
a user may resort to library calls to perform numerical procedures. Library calls
incur overhead. But if the task the library routine performs has been optimized
by an expert coder and is not too small a task, then the library option performs
better than in-place code. That’s the case for many math routines when they pro-
cess datasets large enough. The same is true for calls for the use of GPUs. Both
productivity and performance benefit.

On the other hand, a quick-executing task that is being performed in many
locations within the code, can be turned into a function to be called where needed.
Productivity will be gained as the code can be developed faster, be more compact,
and more easily maintained. Performance may be degraded. This may still be a
better approach if the code is to be used once or just for short period. There is
saving in development time and a quicker path to results. It can be argued that
it is justified economically as people’s time becomes more costly and the hardware
cheaper.

The trade-offs between performance and productivity is a complex matter. The
cost-benefits analysis includes factors such as the potential speedup, the time and
human resources it takes to achieve that goal, the cost and availability of computing
resources, how soon results are needed, the number of times the code will be run
etc. See also Chap. 31.

Productivity remains a subjective term. It is clear that productivity can be mea-
sured by some output metric. It is also clear that just a measure of computational
speed for a given level of effort (programming, tuning) is not an adequate measure.

High Productivity in HPC � 175

So we get into a mix of quantity and quality, the latter much harder to put a value
on, though at least as important.

We return briefly to productivity in the context of Fortran (Chap. 34 and in
particular in page 320) and embedded in the performance discussion (Chap. 31).

C H A P T E R 20

Weather Models’ Impact on
Our Lives
Appl icat ions of WRF and Other Models

A fter seeing the scope of the capabilities and popularity of the WRF model
among weather models researchers (Chap. 15), it is appropriate to ask if and

how WRF and other models contribute to society outside of the research commu-
nity. It turns out they do; in a number of interesting ways.

Though much of the content here is derived from NCAR, the applications are
by no means unique to it. In every continent and in most countries weather models
are applied in similar ways. NCAR’s WRF is a particularly convenient model to
explore because it is used globally and information about it is easily accessible.

The home page of NCAR’s Research Applications Lab (RAL)[52] lists the main
aspects of life and economy that benefit from its models (more on NCAR’s models
in Chap. 26):

� Agriculture and Food

� Air Quality

� Aviation

� Climate

� High Impact Weather

� Human Health

� National Security

� Renewable Energy

177

178 � Unmatched: 50 Years of Supercomputing

� Surface Transportation

� Testing and Evaluation

� Water

� Wildfire

The scope is breathtaking, and this chapter cannot do justice to it, but only
give a broad-brush idea of the everyday usefulness of a good weather model. RAL
has staff size of some 180 people (in 2020). It has been growing at a rate of about
5% each year for the last 25 years.

The obvious and direct impact of weather and climate models is in providing
weather forecasts and the basis for reported climate change predictions. The much
broader impact in areas listed above is less transparent. This is because the models
serve as support tools, behind the scenes, in those sections of economic activity.
RAL’s ‘products’, the data and predictions it provides to its ‘clients’, is generated
by a set of ‘tools’ developed there. Some are models that are derived from WRF,
some are add-ons to WRF, some are specialized forms of WRF.

Take agriculture and food production: Modern farming uses support tools for
decision making regarding crops growing. WRF-based models of high resolution use
observed vegetation data with predicted weather and near term climate to calculate
a quantity called the Leaf Area Index which is green leaf area per unit of surface
area. The index allows estimates of crops as it points to amount of light that falls
on the leaves. This kind of simulations informs farmers of actions to take, and
helps economists and planners prepare for the next season’s food supply. The tools
used include several variants of a high-resolution land surface model, WRF-Crop
modeling system, and others.

WRF-CHEM, which adds chemical processes and aerosol simulations, is used
for regional and local air quality forecasts. It is now possible to provide 14-day
alerts of atmospheric conditions conducive to deterioration in air quality allowing
authorities and communities to take steps that protect the vulnerable.

It is obvious that daily weather forecasts alert airlines of locations of storms and
high winds, and inform them on where flying paths are safer. But WRF products
do more to increase safety of flights. One of them provides an hourly assessment
of potential conditions for ice to form on the aircraft. Another warns airplanes of
lighting threats. In 2012 NCAR noted that for more than 15 years there was no
downed airplane due to wind shear. The credit goes to a wind-shear and turbulence
warning system, based on high-resolution WRF models around airports.

High Impact Weather includes events of water, fire, and wind. High fidelity local-
regional runs of the model track progress and strength of developing hurricanes,
including landfall timing and surge levels. When high levels of precipitation, rain
or snow, is predicted, high resolution topography-aware variants produce warning

Weather Models’ Impact on Our Lives � 179

of flood risk by location and risks to reservoirs and dams. In fact, the National
Weather Service (NWS) adopted an implementation of WRF called WRF-Hydro
as its national tool for assessing hydrologic risks in the US.

A public health-related application of weather models, that includes WRF-
CHEM, is forecasting air quality and levels of pollution. The models are used for
advanced alerts in various cities of days with poor air quality, and to study and
warn about conditions for the spread of vector-borne diseases.

On the national security front, RAL is developing methods and tools that link
the state of the atmosphere with the spread of hazardous gasses, released by accident
or intentionally. Agencies responsible for national security apply such modeling into
their emergency response systems.

The utilization of the more common renewable energy sources - solar and wind,
are helped by regional and local modeling of both wind strength and gusts, and the
amount of direct solar radiation based on time and cloud cover. These help manage
the resources and prepare for both excess and shortfall.

Timely and targeted weather forecast is critical for surface transportation.
Safety and economy benefit from advance notice of hazardous road conditions and
the timing for treating roads in the winter. Tools are being developed that incor-
porate weather predictions helped by connected-vehicle data.

One of RAL’s functions is to evaluate the accuracy of NOAA’s hurricane fore-
casts so its predictions are improved. A more accurate hurricane’s time of arrival
and its path saves lives and costs in the billions of dollars.

WRF-Hydro is instrumental in managing water resources and understanding of
the world’s water cycle. It informs utilities and governments about reservoirs and
underground water supply as well as river navigation. And it is used to warn of
flooding, both timing and size.

High resolutions models, such as WRF, help fight wildfires. There is a physics
module, called WRF-Fire, added to the main model’s body, that uses weather,
terrain, and organic fuel data to show how a fire will grow and evolve. Strong wind
warnings are issued to help communities prepare and reduce preventable damage.

Needless to say, such applications of the base model, WRF, save lives and helps
avoid potential economic damage that is sometimes hard to recover from.

To get an inside perspective on one area where WRF is applied I spoke to Roy
Rasmussen, a senior scientist and lead of the Hydrometeorological Applications
Program at RAL. The group has about 30 on staff, and is one of six at RAL. Ras-
mussen’s focus is on the environment’s water cycle. His story shows the sometimes
circuitous road research and application takes:

“I arrived at NCAR some 20 years ago. Started to work on water cycle, but
my real work was on weather. Then they put me in charge of the climate program,
and I had to learn a lot about climate change. I learnt the CESM (Community

180 � Unmatched: 50 Years of Supercomputing

Earth System Model; see Chap. 26 “The NCAR Models”) and discovered it doesn’t
describe the water cycle. So we needed to go to weather modeling scale. I realized
that would be very “expensive”, so we did short test runs. And the results were
so good we went for 10-20 years of simulation. And that’s where we are now. We
modeled the Rocky mountains using a regional model - a region of maybe a 1,000 by
2,000 km, with 2 km horizontal grid resolution. To my surprise the model did a very
good job predicting the snowfall and snowpack. That started at about 2007, and a
2011 paper we wrote on that got a lot of attention. At the same time a scientist
at ETH in Switzerland did similar studies on the Alps and the Mediterranean. He
learnt, for example, that some areas in the region are going to be hotter and dryer.
It was hard to learn that from a 100km grid model. We both learnt that we can run
high resolution (regional) model for long periods of time. We took the temperature
and moisture values from the global climate models as boundary conditions, being
the most important variables for our studies. We called this pseudo climate model
since it didn’t use the dynamical changes. But it is the temp and moisture that all
the climate models get right. They differ in their dynamical signatures, so you’d
need to run ensembles of different models. We couldn’t do that, but we could do
interesting studies based on temp and moisture.

“The dynamics does matter for studying climate. But I decided it was more im-
portant to me to capture the formation of thunder storms than to get the dynamics
of climate change perfect. And I was clear about what I’m doing: Just adding tem-
perature and moisture; and here are the results. It’s not where there’s going to be
a thunder storm, but whether there’re going to be any.

“Let’s look at hurricanes. They’re not captured correctly even at 10-20km grids
in climate models today. Can you believe in their future predictions? - I would say
it depends on the question you ask.. What is ‘climate’? - it’s ‘average weather’.
So, if you can get ‘weather’ right you can get the climate. That’s the approach I’ve
taken. That’s not to say that one is right and the other wrong. I need to get the
snowpack right, and this approach does it.”

Water resources cycle studies rely on predicting snowfall and snowpack. And
that means having to run models over mountain ranges. Which, in turn, means
the models have to employ a very high resolution grids to account for the local
topography which the precipitation patterns. Rasmussen continues:

“The world’s mountain ranges (Rockies, Alps, Andes, Himalayan) are very com-
plex. In fact, the Himalayan are so complex the modelers have given up.

“We’ve created a hydrological WRF model. It is a nested version of WRF with
climate signals added to it. We are now able to do 20 years of the continental
US. In historical runs we use the ECMWF model results to refresh the boundary
conditions. For future runs we use the average of a number of climate models. We
don’t use the ocean model that much. My philosophy is to learn how to use the
processes in WRF (which does not include an ocean model). I believe the WRF
knowledge can be transferred to MPAS (a model described in Chap. 26).

Weather Models’ Impact on Our Lives � 181

“How do we handle the Andes? how small does the timestep need to be? etc..
those are interesting questions for climate time scales. The Andes is the longest
mountain range in the world (above sea level). Can WRF handle simulating its
weather? Can MPAS? - we don’t know. I’m organizing a team of about 30 scientists
to do research on South America. That includes El Nino, La Nina, etc. My goal is
to create the datasets that students and researchers can do their research on. Learn
the processes and the model - what they do well, and what they don’t do well; how
to do simulations over south America. And that knowledge can be transferred to
MPAS.”

Applying WRF in other areas also require very high resolution - or, very small
grid size. To provide useful information for agriculture planners and farmers, the
grid point intervals have to be under 4km, according to Rasmussen.

Consider what RAL calls high impact weather, or sever weather. Extreme exam-
ples are hurricanes and tornadoes. For tornado prediction the grid requirements are
considerably more demanding. It got to be sub-km to capture the fine features. To
be useful it has to be a quick run over a region that can provide accurate prediction
at least a few hours ahead of the event. This will have to wait for the next-generation
computer systems for sever weather phenomena, say Rasmussen. At present, the
state of the art is at the stage of alerts that above a certain area, over a period of
time of some hours, there will be conditions that favor the formation of tornadoes
there. Such an alert, expressed as “tornado watch”, can be issued more than a few
hours in advance. It allows people to prepare for an event that may or may not
come their way. “Tornado warning” is issued when an actual tornado is detected.
At this time, the detection is by radar or human spotters; not computers. It gives
people 10-20 minutes warning, typically. If people are alert and not outdoors or on
the road, the time allows for finding a shelter, but not to evacuate. Obviously, a
reliable prediction of a tornado forming over a limited area, even one hour ahead
of its occurrence, would save life, if not property.

WRF helps the renewable energy sector in the US. It is applied in operational
wind farms. Rasmussen explains: “They are very sensitive to wind speed and above
certain speed they shut them down. And then the supply switches to some power
station. But that takes time, so they need accurate forecasts some 5-6 hours ahead.”
A very fine resolution wind speed forecast over the wind farm area, with topology
details, saves turbines from breaking and allows smooth operation of the energy
supply.

WRF is also being used commercially. The Weather Company, that owns
weather.com and Weather Underground, relies on WRF for its forecasts. It cre-
ated a propriety version for very high resolution version for its aviation industry
customers.

There are lesser known, but no less interesting, commercial applications of WRF.
Here is one such case:

I came across Milan Curcic in connection with the state of the Fortran language

182 � Unmatched: 50 Years of Supercomputing

(see chap. 32), only to learn of his commercial enterprise based on WRF. Curcic is
a meteorologist and an oceanographer, and a researcher at the University of Miami.
He also founded a company[53] that offers WRF modeling Software-as-a-Service on
Cloud computing (discussed in Chapter 25) platforms. Its customers can run WRF
from their desktop browser. They can select any region in the world and setup a
schedule for receiving forecasts.

Public Cloud providers have some HPC configurations available. However, “as
of now”, Curcic says, “what we use are not HPC instances. They are basically
shared-memory machines, and we tailor the domain and the resolution so that
it can efficiently run on that. We also have the capability to run in distributed
memory, by spinning up multiple compute instances, and then do the MPI across
them. But the problem is that the interconnect network between the instances is
not optimized for performance. Once we try to run it in parallel, we get very high
latency which is not conducive for HPC. With more HPC cloud providers around
we are definitely looking in that direction. But for now, we can easily get pretty
high-end 32-core shared memory instances that run WRF pretty efficiently.”

It turned out the Cloud-based business model was not suitable for academic re-
searchers. Curcic: “We had encouragement from academics, but once we launched,
we realized that academic researchers were not ready to commit funds to this for-
mat, because of the way academic and research grants operate. They have slow
feedback cycles. Funding agencies still don’t like funds being used on external re-
sources. They want people to run models on their own supercomputers at the large
research centers, such as DOE’s Oak Ridge, Livermore, or NSF’s NCAR or wherever
your partner institution is.”

But small businesses started to show interest. Curcic described to me some of
the ways people use WRF.

“There is a consultant-coach for high-end sailboat racers. He is a meteorologist
who coaches sailboat racers on the weather on the day of the race and prior to
the race, on which trajectory is best to take during the race. I learnt that modern
sailboats that are used in races can take realtime feeds of the data to update the
optimal trajectory of the boat. That is, the racers can get information during the
race. The coach is running a very localized custom LES (Large Eddy Simulations)
scale WRF simulations for coastal areas and small bays wherever he has races that
are going on. And right now (mid 2020), we are preparing for the America’s Cup in
New Zealand, which is coming up next year as well as the Tokyo summer olympics.

“Another example is in the area of energy applications and energy predictions.
Weather has a very high impact on energy load from consumers usage. When you
have a heatwave, for both residential and commercial, buildings or structures will
use considerably more AC which creates a load on the power grid. And because
you can’t easily store the energy that you produce, the optimal state of the power
grid is to produce exactly as much energy so as to match the demand, and that
can be sold to consumers. in Europe, for example, different countries trade energy

Weather Models’ Impact on Our Lives � 183

between them. It’s very much like stock trading except that they trade specifically
with electric power and between different countries and markets.”

We mentioned above that WRF is applied in support of wind farms. Curcic’s
experience also touches this aspect:

“We recently put a bid to a Dutch business that predicts loads on wind farms
for calculating the output of the energy from the wind farms. They take weather
forecasts as input.

“And another example, which is also a current customer is a research institute
in Canada. It’s a government Institute and they use WRF throughput service to
downscale a climate model for the whole of the 21st century. From 2006 to 2100 for
the metro area of Ottawa and Montreal, to look at the impact of climate change
on the urban areas. So this is all WRF on ‘under the hood’.”

The last example of how WRF can be applied is interesting in that it shows
how a regional atmospheric model can be incorporated into a long range climate
study.

Through Christian Tanasescu - see TempoQuest products and use of WRF.
https://tempoquest.com/
Ask Tanasescu for more details of what customers do with their services.

After detailing the areas impacted by weather (and climate), even if not a
complete list, the question arises as to whether the impact can be quantified. As
we might expect this is a hard question to answer. A first step is getting a handle
of how weather variability affects the economic activity. For that there is an answer
- restricted to the US and based on 2008 data. A 2011 study published in the
American Meteorological Society journal[54] concludes that variability in economic
activity due to weather is estimated to be $485B, or 3.4% of the 2008 GDP. Another
data point, and a jarring one, is that over 10 years hurricanes cost to the economy
and to property amounted to about $350B ([52]).

An even harder question to answer is how much of the negative impact of
weather variability is being mitigated by the tools and applications described above.
But it is possible to appreciate that even a small percentage of reduction in damage
is very significant, and that the return-on-investment in computing for weather and
climate modeling is high.

NOAA’s chief economist crafted a 2018 report titled “NOAA’s Contribution
to the Economy”[55]. NOAA’s products are related to weather and climate. Its
predictive and advisory tools are models that run on supercomputers. Its annual
budget is $5-6B. Data collection and observation stations are a significant part of
it. As is the human capital for research. All are essential for the agency’s mission.
However, the investment in high performance computing - the systems and their
ancillary equipment, is a small fraction of the budget, measured in the $10M’s an-
nually. The report lists areas where NOAA contributes: Emergency Management,

184 � Unmatched: 50 Years of Supercomputing

Transportation and Warehousing, Fisheries, Insurance, Agriculture, Mining, Utili-
ties, Construction, Manufacturing and Retail. The aggregate annual value of these
enterprises runs in the trillions of dollars. Again, even a single digit percentage of
increased efficiency or reduction in damage amounts to benefit far exceeding the
investment. For example, NOAA estimates that just improving the forecast of El
Nino impact can add some $300M to the US economy.

Without supercomputers all these would not be possible.

C H A P T E R 21

Computational Life Sciences
The Depth and Breadth of HPC Appl icat ions for Li fe Sciences

L ife Sciences is a broad discipline with many sub-disciplines each of which de-
serving its own mention. Here we are concerned with these areas that are helped

by, and require, computations - Computational Life Sciences, or CLS. It is a prime
example of an interdisciplinary field combining biology and medicine with computer
and computational sciences. At a finer granularity it brings to HPC applications
in subjects such as bioinformatics, big data analysis and text mining, genomics,
molecular dynamics, imaging, and a variety of medical sciences. Biological systems
are very complex and it is the computational approach and methods that make it
possible to progress from general descriptions to more quantitative statements.

A Scientific-Computational Perspective

Rick Stevens, is an associate lab director for Computing, Environment and Life
Sciences at Argonne National Lab and a professor of computer science at the uni-
versity of Chicago. I asked him to introduce the use of HPC for life sciences (LS)
applications over time:

“One way to characterize LS applications is to look at space and time scales. If
we go down to the molecular level, we think about modeling biological molecules,
whether they are proteins or DNA or metabolites, and studying the interactions of
those classes of objects. That’s a whole area of life science computing. It involves
micro-dynamics, quantum mechanics, molecular mechanics methods and so forth.
This is the molecular space, where we can model interactions from a Newtonian
standpoint, or model them quantum mechanically. There’s been, of course, enor-
mous progress over the last 20, 30 years in those kinds of problems, largely coming
from a little bit of improvement in methods and employing large-scale ensemble
techniques. With the latter, instead of simulating one system, you do hundreds of
thousands or tens of thousands of systems and then you aggregate the statistics to-
gether. There’s been huge progress at this molecular scale. We were able to predict

185

186 � Unmatched: 50 Years of Supercomputing

quite accurately how this kind of brute force approach to that class of problems
would improve as we moved from terascale to petascale to exascale. The results
were aligned pretty much to our expectations.”

We later take a look at data analytics and artificial intelligence (AI) research is
being incorporated to, and changing the face of, HPC. With regard to LS Stevens
notes: “What has changed recently is the idea that we can use AI methods, machine
learning (ML) methods, to further enhance or accelerate molecular simulations. We
can learn approximations of the force fields with ML, and then we can apply that.
When we do that, we get factors of a thousand or so acceleration on top of what we
got from high-performance computing hardware. We can also use AI to aggregate
the ensembles. That gives us factors of a hundred in speedup. AI can be used to steer
molecular mechanics simulations by understanding whether or not the molecular
state that we are in is a new state or a state we have previously seen. And if it is
one that we have already seen, we skip over it. If it is a new state, we study it. So,
we actually can use machine learning to sample the configuration space in a much
more efficient way than with classical methods.”

Moving up from the molecular scale, Stevens continue, while highlighting what
AI/ML methods made possible:

“The next level up are subjects such as protein interactions and drug interac-
tions with proteins, or protein folding. We heard a lot about that in the last couple
of years, because machine learning methods have really more or less solved it; at
least solved many instances. And though we thought about it, in the abstract,
some 20 years ago, there was really no sense that it was going to be solvable in
our lifetime. Two things have changed: One, the ability for machine learning meth-
ods to be applied in spaces that we didn’t understand before. And applying ML
on many thousands of configurations meant that the protein folding configuration
will be encountered at some point. Two, We now can produce the 3D coordinates
of the folded protein. The initial approach to using machine learning to address
that problem combined classical bioinformatics approaches where you would take
proteins that are similar from a sequence standpoint, you compute them all to a
sequence alignment which gave you a 2D object that showed you where the substi-
tutions were happening between different instances of the proteins. This is used to
build an evolutionary tree. But if you take that 2D object as input to the machine
learning, it could actually go to the next level, which was predicting which parts of
the protein are going to be in close proximity to each other. Taking that as input
to another machine learning program, it could predict the 3D coordinates1.”

Recent (2022) developments of ML methods now allow all-AI (in the sense of
ML and DL) protein studies to replace the classical bioinformatics combination
with AI followup.

Above the level of proteins we get to examining, computationally, a whole bio-

1AlphaFold, a deep-learning program from DeepMind, an Alphabet/Google company, is such
an application.

Computational Life Sciences � 187

logical mechanism. For most of the cases at this level there is not enough knowledge
or data to be able to invoke AI methods. The interesting cases of interactions be-
tween proteins or between proteins and DNA are still done by first-principles, that
is, numeric, simulations.

This brings us to the important field of drug discovery. A proposed drug will only
work if it binds to proteins in our body, and much search time is saved if finding the
molecules that bind can be simulated. Here HPC is is crucial for discovery of various
cures. As Stevens puts it: “Drug target-identification has been hugely accelerated
in the last five years by high-performance computing, in that we have machines
now that can easily classically (screen), say, a billion molecules against the target,
in a day or two.”

This step is helped by AI techniques, which themselves require intensive com-
putations of matrix manipulations in the learning phase. This is a case where it is
hard to separate the improved hardware contribution from that of the new algo-
rithms (AI) in accelerating the solution time of identifying a promising drug. This
is how HPC helps identify promising drugs, that can be brought out for trial much
sooner than in the past with higher probability of success.

That is not where computer simulations end for LS. Going beyond proteins
we get to biological systems in what is referred to as pathways. Quoting NIH fact
sheet ([56]): “A biological pathway is a series of actions among molecules in a cell
that leads to a certain product or a change in the cell.” Computationally, Stevens
explains, it can be presented as mathematical graph. For a bacterial organism it
would be of order of a thousand nodes and a few thousands edges (a bacteria has
about 4,000 genes). Progress has been made, but much is yet to learn to get to the
level of human genome and its pathways.

Stevens continues: “At the cellular level, there have been various efforts to sim-
ulate entire cells. Not at the atomic level, but at the abstraction that is more like
pathways and biological interactions. Those models are more similar discrete event
simulations, or games theory kind of models. The network they simulate is similar
to that of agent-based models. And while there’s been progress there, we haven’t
seen a major breakthrough on how to get some acceleration because of exascale.
We cannot run individual models much faster, but we can run large ensembles, or
whole population, of them. We can do certain kinds of population biology experi-
ments on exascale platforms. For example, we can do simulations where we have,
say, millions of different cell simulations, and when we impose variations on them
we can perform evolutionary studies.”

From cell-based evolutionary studies, scaling up, there are simulations of tissues
and organs. Stevens points to the Physiome2 Project. The project can be called
“The Human Physiome” as it aims to explain the working of every component in the

2“The physiome of an individual’s or species’ physiological state is the description of its func-
tional behavior. The physiome describes the physiological dynamics of the normal intact organism
and is built upon information and structure” (from ‘Physiome’ in Wikipedia).

188 � Unmatched: 50 Years of Supercomputing

body, from molecules up, as a part of the “integrated whole” ([57]). The project is
run under the auspices of the International Union of Physiological Sciences (IUPS).

Stevens on the Physiome Project: “The idea is to build a digital
twin/indexDigital Twin of a human. For that they need to model tissues, find
out some kind of structural model, as well as materials, and a functionality model.
To that they add a model of the circulatory system, and model some version of
the nervous system. It is a 3D model with about 200 different types of tissues that
humans have. The tissues make up organs, and so they construct a hierarchy of
models for tissues, organs, and then subunits like the entire circulatory system etc.
With such models they can do very interesting things. They can model, for example,
a heart attack and watch what happens. Or heart arrhythmias or stroke. One can
model what happens in an accident or maybe how metastasis happens in cancer,
how a tumor moves around and colonizes other tissues.”

We see that these simulations are of great benefit for understanding biological
processes, and in providing non-invasive means of studying cures and remedies.
Stevens reflects on the computational aspects:

“There is much progress with these large-scale full-organism models because
they’re highly parallel. They can be parallelized in the spatial dimensions, of course,
but also by, say, running the fluid dynamics of the circulatory system separately
from the electrical components in the nervous system, and then aggregate them. So
you could think of having both functional decomposition and domain decomposition
on parallel machines. The progress is driven by computing at scale.”

Another area of life sciences aided by HPC is genomics, discussed at greater
length in Chap. 22. Stevens highlights DNA analysis as a computational tool that
is sued to find, for example, the genetic contribution to cancer. Again, progress
there is being achieved due to the combination of greater compute capability that
produces much more data that, in turn, make machine learning methods effective.
In particular, today’s compute power enable the computationally intensive process
of imputation. It is the process of estimation, or a structured interpolation, to fill
in the missing pieces of the often incomplete genome sequence for a population.

Applying CLS

Here is a short look at a small sample of institutes, out of many such centers and
labs, that apply CLS on HPC systems for projects that can result in products and
knowledge of near-term benefits to society.

For example, Riken, the renown research institute in Japan for a variety of
disciplines (and home for the Fugaku exascale system), has a strategic program
called Supercomputational Life Science (SCLS). Its mission statement centers on
the use of HPC for efficient analysis of large amounts of data that is generated with
the aid of modern measurement instruments to gain understanding of life systems.

Computational Life Sciences � 189

It claims that such a capability is necessary for reliable predictions of the multilayer
systems they study ([58]).

Closer to actual patients, the Cleveland Clinic, a nonprofit medical center in
Ohio, uses HPC via cloud computing for its Center for Computational Life Sciences.
It also employs AI techniques and even quantum computing for their “Discovery
Accelerator” ([59]). CLS is applies to the discovery of material and treatments in
healthcare.

Then there is the Mayo Clinic. I met Yuan-Ping Pang around 2003. Pang is
an emeritus professor of biophysics and pharmacology at Mayo Clinic College of
Medicine and Science in Rochester, Minnesota. Before his retirement in 2021 he
directed a Computer-Aided Molecular Design Laboratory at the Mayo Clinic, and
that is where HPC comes in. At that time, the early 2000s, Pang wanted to use
computers for drug discovery. Inspired by the Beowulf concept (see page 148) and
with limited budget Pang went about building his own cluster.

He secured a medium-size room and brought in 4-levels frame carts of the type
used in bakeries and stores to pile up loaves of bread. They were lined up in sev-
eral rows. A tower-style workstation would fit in one level of the cart. The setup
was populated with about 470 Xeon-based desk-side workstations. The cluster’s
nodes were connected by Gigabit Ethernet cables and ran RedHat Linux. Its 940
processors produced enough heat (40 KW) to require a cooling unit. With a peak
performance of 1.1 teraflops, it was not, of course, one of the fastest systems of its
time, but built at a cost of $0.4M it had a performance-to-cost ratio that was 27
times better than that of the Earth Simulator, and about 40% better than the 10
teraflops innovative Apple Mac-based cluster at Virginia Tech at that time.

Figure 21.1 shows the cluster, named Kibbutz100, in 2002. We can see the wheels
of the carts on the floor - a more ‘mobile’ version of an early ‘server rack’. On the
left, a glimpse of the raised floor for critical ventilation and cooling using a Liebert
DS system.

Anecdotally, “Kibbutz” does refer to the Israeli communal village style of set-
tlement. While visiting the Weizmann Institute of Science in Israel, Pang visited a
Kibbutz, and found the idea of a community sharing the burden of work appropriate
to the concept of a cluster.

This low-cost home-made Beowulf-style cluster affords Pang running continu-
ously on a teraflops system for months on end. It had reduced an in-silico screening
run from close to 2,000 hours to 5 hours on the Kibbutz100 cluster. A noteworthy
achievement was the successful prediction of a substrate-bound of a SARS-CoV-1
proteinase after only 20 days from the release of the SARS-CoV-1 genome [60],
which offers insights into how a water molecule regulates the proteinase activity
that is relevant to other proteases, including that of the SARS-CoV-2 (we return
to this topic in the COVID chapter (Chap. 30). For more on the science done with
the original cluster see [61].

190 � Unmatched: 50 Years of Supercomputing

Figure 21.1: Kibbutz100: A 1.1 Teraflops Computer Designed for in Silico
Screening and Multiple Molecular Dynamics Simulations. Source: Clinical

Pharmacology & Therapeutics.

Pang then developed two additional clusters with newer Intel processors. His
third generation of in-house cluster comprised of 100 Mac Pros with Intel’s 32nm
chip technology. Interestingly, the same network switch (Hewlett Packard ProCurve
Switch 4000M) used in Kibbutz100 - one recommended by Don Backer and that
was used in the original Beowulf cluster at NASA, was still in use in the third
cluster until Pang’s retirement in 2021.

The third cluster enabled Pang to determine protein folding rates from simu-
lation with overlapping with that of experimental data [62]. As Pang puts it: “It
opens new prospects of combining simulation with experiment to develop computer
algorithms that can predict ensembles of conformations and their interconversion
rates of a protein from its sequence in order to understand how and when a protein
acts as a receiver, switch, and relay to facilitate various subcellular-to-tissue com-
munications. With this understanding the genetic information that encodes proteins
can be read in the context of biological functions.”

The crowdsourcing project Folding@home Consortium (see also Chapter 25)
offers a simple and convincing testament to the value of simulating protein folding:
“There are many experimental methods for determining protein structures. While
extremely powerful, they only reveal a single snapshot of a protein’s usual shape.
But proteins have lots of moving parts, so we really want to see the protein in
action. The structures we can’t see experimentally may be the key to discovering
a new therapeutic. Using football as an analogy for the experimental situation, it’s
as if you could only see the players lined up for the snap (the single arrangement
the players spend the most time in) and were blind to the rest of the game.” ([63])

Computational Life Sciences � 191

The field of computational life sciences provides a powerful tool for research and
is of direct benefit to us in our everyday lives. It is applied to modeling of biologi-
cal systems that is helpful for diagnosis and therapy based on cell-level processes.
Multi-level simulations contribute to what is known as predictive medicine where
individual’s health risks can be identified and thus addressed, perhaps preventing,
future issues. This is a start to personalized medicine. CLS is used for drug discov-
ery and pharmacology, and to study the biology of cancer. Genomics, proteomics,
and biotechnology cannot be done without computers. Then there are the research
areas with longer term impact potential such as neuroscience, evolutionary biology,
and large-scale studies of living organisms’ data.

C H A P T E R 22

Genomics and Beyond
Computat ions, Data, and its Impact

G enomics is a hot topic in HPC from at least 30 years ago (The Human Genome
Project kicked-off in 1990). A quick recap: There exists a special-purpose

device that determines the order of the bases in a strand of a DNA sample. It is
called DNA Sequencer, naturally. However, the human DNA, among others, is too
complex (long) for the sequencer to handle all at once. In fact, the DNA strand being
sequenced would contained several thousands ”letters” of the DNA. The complete
DNA would be made up of many millions such strands. That’s where computers
come in. The DNA strands are constructed such that there is a little overlap with
their neighbors in the full DNA sequence. The Assembly phase of putting all the
strands together in the right order is a big pattern recognition problem. The NIH
(National Institutes of Health) put together a short introduction to genomics ([64]).

Applying methods and software tools to very large and complex datasets that
originated in biological systems gave birth to what we commonly refer to these days
as Bioinformatics. It is most often associated with DNA and amino acid sequences,
i.e., with genomics.

There are many institutes dedicated to genomics. In this chapter we look at two
programs under the auspices of the U.S. DOE Office of Science: The Joint Genome
Institute ([65]) and the ExaBiome Project ([66]). Scientists in these programs col-
laborate since there is an overlap in the research areas of the two. Each involves
several organizations, with the principals in the DOE’s Berkeley Lab.

The Joint Genome Institute

To find out more about the computational aspects of genomics and why the infor-
mation we gain can revolutionize medical treatments, I talked to Kjiersten Fagnan.
Fagnan is the Chief Information Officer of the Joint Genome Institute (JGI). The
institute is a user facility located at the Lawrence Berkeley National Laboratory

193

194 � Unmatched: 50 Years of Supercomputing

(aka Berkeley Lab and LBL). Fagnan is an applied mathematician, a fact that high-
lights the multi-disciplinary nature of modern computational scientific research.

When Fagnan started to model biological systems she had to supplement math
with courses in anatomy that focus on material properties and structures of biolog-
ical organisms. As she puts it:

“One of the hardest things in biology is moving from the toy problems to reality.
You can come up with very good models. In a very straightforward settings, you
can model how a cell moves if you assume it only moves in two-dimensional space.
But as soon as you want to consider movements in three-dimensional space, the
complexity of what a cell is able to do and the chemicals and materials it’s able
to sense as well as the structures that the cell builds to move in 3D are incredibly
complex and hard to capture with the types of methods we typically look at.”

The fact that the interesting biological patterns only show up in the much more
complex 3D models is what brought Fagnan to HPC and Berkeley.

“When you’re sticking to simplified circumstances, then there’s not so much
the need for high-performance computing. But one of the reasons I wound up at
NERSC1 was because of the modeling we were doing of the sound waves propagating
through the body. They turn into shocks, which made the problem non-linear. I had
to use multiple nodes, and that was how I started with parallel computing.”

Turns out that just sequencing a genome, as big a milestone as it is, is only a
start. Fagnan:

“The genome is involved in regulating the body and determining what proteins
are present or absent in a particular human. This is of massive combinatorial com-
plexity, and you have to learn far more about that complexity before you could ever
start to think about modeling it.”

The purpose of looking at how human genomes are different and finding markers
for certain diseases is only one facet of this endeavor. A more challenging quest,
Fagnan says, is:

“To understand how the genome serves as a blueprint for the activities in the
body, like what drives the creation of certain proteins and the creation of certain
metabolites that you might find in the process that is healthy in one person and
perhaps diseased in another person. This is an incredibly complex process, it turns
out. And then when you consider the fact that you have microbes that have been
evolving on the planet for something like 400 million years, and the diversity in
microbial life that exists on the planet because of all of the different niches that they
can find on the planet and different sort of mechanisms they’ve found for survival.
It is fascinating. Within your body, you have roughly five pounds of bacteria just
hanging out and helping you stay alive.”

1The National Energy Research Scientific Computing Center, located at LBL, is a primary
scientific computing facility for the DOE’s Office of Science.

Genomics and Beyond � 195

Turns out, according to Fagnan, that what can be learned with the help of
powerful computers is limited by the completeness of the data and what she calls the
“huge bias” of the instruments collecting the data. It’s the reality that sometimes
low-abundance organisms have large effect, but are harder to detect experimentally.

Fagnan on what this means to the data analytics part of the challenge: “Trying
to put those strings of information back together again into a blueprint for all
these different organisms is error prone. There is noise in the data. There are a lot
of repetitive regions, so you can’t necessarily resolve one coherent long piece of a
genome. You actually end up with breaks and sort of a lot of uncertainty in it. You
take that information and you try to identify the areas where they are genes. Then
you try to think about whether or not those genes are actually turned on or not in
that particular organism from that particular environment. So, there are just very
many, many layers of information that are still needed.”

Yes, bioinformatics shows us how overcoming one major milestone - the sequenc-
ing of the human genome, only points to an even more complex and demanding
challenge. One of understanding the workings of the totality of organisms, including
the human body.

Fagnan had an interesting observation about the role of HPC in genomics re-
search:

“In a lot of cases, you’ll take a sample from in the environment and you can only
cultivate a small fraction of the microbial life that’s actually in that sample. Much
dies on transit or dies from having its environment disturbed. Therefore, there
are huge chunks of this puzzle that are kind of missing still. The genomics field
tends to be focused on cataloging, understanding, sequencing, and looking for new
things that we haven’t seen before, and thinking about new laboratory techniques
to improve the quality of the data so that we can ensure a high quality in the
reference databases. When finding something that’s unknown, the researchers will
look up in the databases and see what it might be or what it might be related to. We
are still in this information-gathering phase. But there’s enough data from the work
that’s been done for a few decades where you need high-performance computing to
be able to analyze and put all of those data together. And so that’s really what’s
driving the use of high-performance computing and genomics now.

“However, many of my colleagues, they will say they don’t need high-
performance computing. There’s a significant camp that thinks that it’s actually
just incredibly painful to use HPC, and that’s in part because those systems and
those architectures weren’t built with data workloads in mind. They were built
for large-scale simulations. For PDE solvers. Additionally, the genomic data analy-
sis problem involves comparing data that was collected from an organism to some
reference database, trying to figure out what it is. The result can come back in
less than a minute or it could take hours. You don’t know how long it’s going to
take ahead of time. This is the high-performance computing environment we are

196 � Unmatched: 50 Years of Supercomputing

in. We’re terrible users because we can’t really predict our resource usage ahead of
time.”

The problem these scientists have seem to be, at least partially, an administra-
tive one. In practice, the researcher using an HPC system has to budget machine
time which is difficult when they can’t estimate the execution time.

Rick Stevens, from Argonne Lab, described in the Computational Life Sciences
chapter the necessity and value of large HPC systems for imputation process that
is so critical for genomics studies (see page 188). He goes on to say:

“Now that we have, literally, millions of genomes that are available, you can
calculate statistically across each gene what the very fine-grain distribution of vari-
ations are use this pattern in the genome to predict quite accurately how it would
show in new genomes. Imputation fills in all the missing parts, and then you can
take genomes that have been imputed and run them through pipelines to predict
things like incidence of cancer or predict various phenotypes, diseases, and so forth.
This results from a combination of improvements in the scale of computing, and,
to some degree, of algorithms. But it’s also very much piggybacking on the increase
in data that we have access to that has occurred over the last decade, enabled by
the reduction of sequencing costs.”

We see that the genome application of HPC is an example of data driven prob-
lem. As Fagnan explains:

“We have a couple of memory bound problems. One of them is genome assembly
or metagenome assembly2. Assembling metagenomic samples individually can result
in losing out on the low abundance organisms. But combining them together for
a joint assembly generates enough of a signal of those low abundance organisms
and makes them more discoverable. And this is only possible with a machine that
has several terabytes of memory, or when the algorithm is adapted to make use of
clusters. And for that we need a high-speed network because there is a huge amount
of message passing between all of the nodes to while generating the graph that is
being constructed in order to build the assembly.”

All this research has real life applications. Here are two important examples that
tie together compute-based discovery and experimentation to addressing climate
change:

“The JGI was heavily involved in creating high quality reference plant genomes.
The goal is to make plants more resilient to changes in the environment. Many are
feedstock plants such as soybean and corn. Other crops are good for potential
biofuel production. All of these genomes are studied. There have been different
experiments where people grow these plants in different environments and look at
what genes are expressed. The phenotypic (observable characteristics) results are
used to identify a gene that is being expressed that made this plant more able to

2Metagenomics refers to the analysis of the gene content of a community of organisms; microbes,
for example.

Genomics and Beyond � 197

survive in a drought-tolerant environment. The researchers then look at ways to
increase that gene expression in other plants or potentially breed for it, or it just
gives them an understanding of what’s actually going on in the plants to make them
more resilient to climate change.

“There are similar efforts to understand how you can actually do a better job
breaking down lignin (organic polymers important in the formation of cell walls) in
plants because that’s one of the barriers to creating cost-effective biofuels. Biofuels
are a little hard to produce because it’s hard to break the plant material down into
the sugars that are needed to actually scale up into biofuel production. Solutions
are sought by studying fungi genes that cause generation of enzymes that are good
at breaking down lignin. They are then transferred into other organisms that can go
into the plant or into the biofuel mixture to actually help break down the plants.”

Drought-tolerant plants and biofuel generation - helped by data analyzed on
HPC systems.

Addressing the biology of humans as a whole system is much more complex. One
of the important ingredients is our microbiome (the aggregate of microorganism in
a specific habitat). Studying it starts with animals. Fagnan again:

“There is a project by researchers from UC Davis, UC San Francisco, and the
Berkeley lab to look at microbiome analysis across different types of animals be-
cause we can’t do human yet. But it turns out that the same bacteria that are in our
guts are present in other organisms and other animals. JGI has generated and ana-
lyzed these microbiome data for a decade. We produce really high quality microbial
references and also metagenomic data. Other researchers want to use the JGI data
to augment data that they generate themselves to give themselves enough statisti-
cal power to be able to say something about the microbes that are present. Right
now it’s all about being able to aggregate enough data to be able to do statistical
learning and to be able to leverage some of what’s been developed in computing
sciences and in mathematics and statistics to develop a better understanding of
what’s going on in these microbial communities.”

We see that decoding the genome is a stepping stone and a foundation for
understanding the much more complex total living systems. It also serves, through
its role in driving the structure of amino acids and protein chains, to advance
discovery and development of commercial products. Biofuels, for example. Here
we cannot avoid the intersection of the public academic and government research
findings and work done by private enterprise. Of course, the latter have a great
incentive in keeping their data to themselves. It is a tricky balance to navigate.
On the one hand, combining datasets and human resources will speed up discovery
and share the costs of uncertain outcome. On the other hand, the rewards from the
discovery may have to be shared.

Advancing the broad field of biology today relies, to a large extent, on vast
amounts of data. The more basic research is public funded. Much data is collected
by commercial interests such as crop producers, pharmaceutical companies, and

198 � Unmatched: 50 Years of Supercomputing

others. For example, Genome sequencing and how genes’ expression manifests itself
in plants is central to the relatively new field of bioenergy. The US Department of
Energy (DOE) established the Bioenergy Technologies Office (BETO) which works
in partnership with the private sector to develop sustainable energy sources.

Genomics also contributes to drug discovery (Chap. 21). Think of antibiotics.
There is a complex process that involves use of both computers and lab work. It
proceeds from the genome to transcriptome (the set of all RNA strands resulting
when genes are transcribed) to proteins that can pick up secondary metabolites. The
latter provide insights into natural products where antibiotics can be found. The
discovery process is being helped, or driven, by modeling on computers. Refining
the models require large amount of data. If and when large enough datasets are
available, their size would require running on a large system. Unfortunately, the best
software tools for the models were designed for laptop class of machines. However,
the success of this line of discovery - from the genome to new antibiotics - requires
enhancing the modeling tools to run on distributed memory parallel systems. Such
work is done in JGI and by other research teams.

The way the study of genomes results in tangible benefits to our lives involves
multiple aspects of interactions between theory, analytics, prediction, and experi-
mental validation. The use of HPC-class systems is almost a constant. And certainly
indispensable. The discovery process Fagnan described to me involves supercom-
puters for the large genomic datasets described above, and later on for investigating
very large images data. It goes like this:

“Molecular dynamics calculations still take up a chunk of resources in NERSC,
including for validation of genomic-derived prediction. The genome is the blueprint,
and the researcher might think that because you found what looks like a gene coding
region, that it is going to produce a particular protein. But you don’t know for sure
until you experimentally validate that. Until you actually see that and measure that
this protein has been produced. There is prediction software out there that tells
you what the protein might be. Now enters cryogenic electron microscopy (cryo-
EM). Protein crystallography only works for the proteins that you could actually
freeze. There are cryo-EM imaging techniques that are letting folks actually look
at a whole host of new protein structures. Going from this predicted structure to
actually experimentally validating that this structure is what you see is where a
huge amount of work happening right now.

“There are national cryo-EM centers that generate a huge amount of image
data to be processed. And that is one of these linchpins that makes it possible
to validate the functional prediction that you get from the genome. You use the
genome to make these predictions, helped by software to structure the predictions.
But to validate it you need images. At JGI, we provide some of that first step
genomic information and then folks can take that and validate that a predicted
function is real.”

Today there are genome sequencers that can fit on a desktop. The length of the

Genomics and Beyond � 199

sequences read allow a whole genome to be processed on a laptop. But to deal with
errors that occur, the researcher might end up with many copies of the genome in
question. It becomes a big data problem. And this is only the beginning. Fagnan
explains:

“Let’s fast-forward 10 years to a world where all of the genomic data comes
out and let’s say it is perfect. We get perfect genomes, perfect metagenomes, we
know exactly what organisms are present in different locations. The problem is far
from solved. Just sequencing microbial organisms and all of the potential variations
there, would probably take a yottabytes of data.”

Where we are going to see the real benefits from genomic studies is not from
individual genomes, but from collections of genomes from members of an organism,
and even across organism. There is a lot more to the subjects of matching traits
to genes and the proteins they enable, how evolutionary features came about from
dependencies between species, identification of causation from gene to protein to
health condition, and more. All this is beyond the scope of this book. The point
here is, the field requires HPC systems due to the size of the datasets involved. The
quantity and complexity of the relationships calls for Machine Learning techniques
for the discovery process.

The ExaBiome Project

The JGI is one of the collaborating organizations, with teams from the DOE labs
in Berkeley and Los Alamos, that participate in the ExaBiome Project. The project
is also under the umbrella of the Exascale Computing Project (ECP) as one of
the projects preparing applications for exascale computing (see Chap. 23). It deals
with the use of computers to study microorganisms, communities of microbes that
sustain life through complex interconnections. This is the realm of metagenomics.

Kjiersten Fagnan made the case for approaching the ExaBiome’s principals
highlighting their ‘performance assembler’ - not the programming language, but
a genome assembler. It allowed some plant genomes and metagenomes, that were
beyond JGI’s capability, to be assembled. It made possible to take the raw data,
perform quality control, then annotate it. This is the data representation that is
useful to biologists and other researchers.

Katherine Yelick, Vice Chancellor for Research and Distinguished Professor of
EECS at UC Berkeley, is the ExaBiome’s Principal Investigator. Lenny Oliker from
LBL is its Executive Director. They shared with me aspects of the work done within
the project.

ExaBiome is about the application of computing, HPC systems in particular,
to the study of microorganisms ([67]). As pointed above, much of the software for
genomics was written for a shared-memory systems and that limited the size of
data it could handle. At the same time the problems biologists want to work on -

200 � Unmatched: 50 Years of Supercomputing

in metagenomics and microbiomes, for example, require analysis of very large data
sets. Data sets that experimental instruments are providing. Yelick explains:

“Our goal in the ExaBiome Project is to take these problems that were really
limited to a terabyte or so that you could handle on a shared memory machine, and
turn them into something where you can handle multi-terabyte structures and data
sets. We have demonstrated with the HPC versions of these codes that we can now
run multi-terabyte data sets. Recently we ran a 30 terabytes data set that was part
of a data set that has been part of a 84 terabytes dataset collected across all the
oceans in the world. That’s our exascale science problem that we will be working
on: assemble that entire data set.” - by some time in 2023.

Yelick emphasizes that the challenge of parallelizing the genomics codes is quite
different than that of numerical simulations of physical phenomena. Aside from the
difference in the type of operations, and a more challenging difference, is that for
that genomics data structure is irregular. We have no knowledge of relative locality
of the data elements: “For one thing, these codes that we use for assembly don’t
have floating-point operations in them. They have very irregular patterns of data
access. We build hash tables and filter data structures for counting things. There is
no mesh that you put down and then chop it up into pieces and give each processor
a piece. If we knew what the locality is in the genome we would know what the
genome looks like. But since we don’t know what the genome looks like we don’t
know how to divide it up in advance. This makes it interesting from a computer
science standpoint. The algorithms are really quite different than a lot of numerical
simulations.”

Oliker adds: “There are several reasons bioinformatics and genomic analysis are
late comers to HPC: data structure irregularities, low data reuse, high and complex
communication patterns, and scarcity of floating-point operations. That, and the
inherent lack of locality where you really have to go across the entire data set. For
the ocean data mentioned above, when you actually do the calculation, it could be
a factor of 10 bigger. So we are starting to approach a petabyte of actual data at the
highest memory use of the computation. And this obviously necessitates distributed
memory computing. Then the question is how to orchestrate this in an efficient way
not only for computation on regular CPUs, but also leveraging GPUs, since all the
exascale and pre-exascale systems make heavy use of these accelerators, which are
inherently better suited for the more traditional HPC applications. It all made it a
really interesting project, trying to figure out how to connect the dots and be able
to leverage these large systems.”

Given the nature of the data structure and the processing flow for genomics
it is clear that current HPC architectures are certainly not optimized for it. The
one aspect that would be most helpful to improve is, according to Yelick, the com-
munication overhead. Latency will always be there, but there is software overhead
and there are hardware protocols that be better tailored to the genomics type of
workload. The data characteristics listed for genomics are present for other data

Genomics and Beyond � 201

analysis applications - social networks data, for example. Meanwhile, the ExaBiome
team needs to find ways to mitigate the communication overhead. Yelick explains:

“Existing hardware protocols require a bunch of handoffs that make it very
inefficient to have fine-grained communication. So we try to coarsen the granularity
of communication by doing dynamic aggregation. But unlike a typical simulation
codes where one does domain decomposition to get chunks of data and exchanging
boundary values, when you’re building a hash table this is not possible. Instead, we
put items into buckets and say ‘This bucket is destined for that processor, and this
bucket is destined for that processor.’ And when the bucket gets full, we ship it off.
This is a dynamic and adaptive way of trying to aggregate things. On the other
hand, if we could lower the overhead of communication, even if latency is long, we
will be able to overlap transfers. That is, to have multiple things in flight at once.
As it is, having high overhead makes it harder to run these codes efficiently.”

We also encounter here the recurring theme of the somewhat unexpectedly fast
adoption of GPUs as the main processing units in recent large systems. According
to Yelick: “When exascale took a turn very clearly towards GPUs, we had to do
quite a bit of work to rethink some of the algorithms to figure out how to take
advantage of GPUs and I’ve been surprised at the substantial speed-ups we get
from GPUs.”

In chapter 19, on the subject of high-productivity in HPC, we mentioned several
languages that started their development in that period (late 90s). Yelick was one
of the principals, perhaps ‘the’ driving force, behind UPC (Unified Parallel C). It
was later augmented by object-oriented library to become UPC++. It was fortu-
itous that both the ExaBiome project and UPC were led by Yelick, as it tuned out
that UPC++ made coding for for ExaBiome easier and allowed for faster devel-
opment. Oliker states: “The global address-based methodology has made the task
of implementing these complex irregular algorithms much simpler. Our success in
successfully porting these codes onto different architectures has been due to the
ability to leverage UPC++.”

In addition to microbiomes, the project includes analysis and computations of
protein clustering, and the software for this is written with the MPI programming
model (and not UPC++). The team hopes to draw conclusions about which ap-
proach is more productive and how they complement each other.

One example of work done through the ExaBiome Project’s access to large HPC
systems is the analysis performed on vast amounts of microbiome data collected
from oceans by the French Tara Ocean Foundation. A schooner named Tara has
been roaming the oceans since 2003, collecting microbiome data with the objective
of studying the impact of climate change ([68]) - after all, as the foundation’s tag
line says, “Our future depends on the good health of the Ocean”. Tens of thousands
of samples were collected, amounting to about 100 terabytes, which requires close
to petabytes to process and analyze ([67]).

The ExaBiome’s contribution is by enabling co-assembly (rather than multi-

202 � Unmatched: 50 Years of Supercomputing

assembly). Yelick uses an analogy to explain the difference: “If I’m only shredding
one book, it’s going to be hard to put the book back together because I don’t know
where the errors are. But if I shred 50 copies of the same book, it’ll be easier to
piece the book back together because I’ll have 50 copies to compare it to, and it’s
unlikely that errors will occur in the same place.”

Oliker adds:“The TaraOcean teams came home with all this data, presumably
not having an idea that somebody was concurrently spending years coming up with
the computational capability of sequencing all those metagenomes in one compre-
hensive computation, which is the best way to get the highest accuracy, the highest
quality for extracting the most number of genomes and phenotypes. In other words,
instead of chopping up the samples into small pieces that you could fit individually
onto a shared memory node, doing individual assemblies, and then merging them
together (multi-assembly), we are able to do one large so-called co-assembly. This
gives a much higher quality of the solution. It is quite fortuitous for us because
there are not that many data sets that are large enough to be of interest to running
these types of simulations on an exascale platform, partly because it didn’t occur
to teams that they could actually have the computational capabilities to do these
large-scale data analysis. And now, as more teams are learning about this capability,
we’re already seeing larger and larger data sets that are being collected.”

There is another level of complexity to studying microbiome, better understood
with another analogy, as explained by Oliker: “When doing a genome assembly of a
single individual the sequencing technology breaks up the genome into little chunks
called reads, and the assembly process is one of stitching these back together. It’s
like putting a jigsaw puzzle together, but without a picture on the box. In the
case of microbiome there are tens of thousands of different microbes at different
concentrations. Some are very similar because they’re near species. Now imagine
taking ten thousands of jigsaw puzzles at different concentrations, throwing them
on the floor, and now you have to rebuild the individual pictures or the genome.
This is the large-scale challenge of metagenome assembly.”

The treatment of genomics codes is one example of the changing face of HPC
away from just numerical simulations. And it is not just the data analysis. Some
of the ExaBiome projects deal with understanding what proteins are coded in the
genomes, and what are their functions. And here the other new comer to HPC,
machine learning, comes in handy, by using a set of known proteins for a training
set, then applying ML to further the investigations. We return to this theme in
Chapter 24.

What is there to be gained from studying microbiomes? - One area is that
of mitigation and remediation of climate change effects. It starts with identifying
microbes that capture or release carbon. The ExaBiome’s assembler and tools were
used to compare this aspect on wetlands stretch that was overrun with salt water
and later restored with fresh water. There is research into how wildfires change
microbes and how it affects forests’ recovery after fire. And, not surprisingly, in

Genomics and Beyond � 203

the realm of agriculture, researchers are trying to understand the relationships
between microbiome environments and soil resilience to drought and what microbes
are helpful for hight yield of produce. It is expected that this may be applied to
bioengineering of plants.

There is huge amount of data from microbes in the human body. A truly exascale
task, in terms of data and computations, is assembling it all together - in a single
assembly procedure.

This work would not have been possible without the software tools that were
adapted to distributed memory architectures.

The ECP, and with it the ExaBiome project, is funded until 2024. Yelick and
Oliker see the large-scale assemblies mentioned above as the culmination and end-
points of the project, with the understanding that it is only the beginning of this
scale of assembly and analysis, and the hope that subsequent projects will be funded.
In particular, the continued incorporation of machine learning techniques to metage-
nomics.

V
The Epoch of Accelerators and

Cloud

From Simulations to Analytics and AI

205

C H A P T E R 23

Codesign
Mult idiscipl inary Teams Prepare for Exascale

For the most part application implementations were adapted to the proces-
sor and system architecture as they evolved over time. Programming models

changed from serial processing on mainframe-type computers, to vector processors,
to multi-processor shared-memory, to highly-parallel distributed memory systems,
and the addition of accelerators.

It is not that computer architects were not listening to users and software devel-
opers. Some privileged users (due to their considerable buying power), such as some
government agencies, would get briefings prior to product launches, but mostly the
computer vendors would take external input and go back to their closed environ-
ment and do the best they can. There are some notable instances of direct and
specific response to user demands.

The example that is consequential for general numerical HPC code is the intro-
duction, first by Seymour Cray, of the fused multiply-add (FMA) instruction. The
operation is found with any matrix operation, and very common in scientific codes.

The intelligence community had enough buying power in the 60s and 70s to get
the supercomputer companies (CDC, Cray Research) to implement an instruction
only they needed at that time. It is a rather strange instruction, called popcount
(for population count) that returns the number of bits set to 1 in a word. It is a
useful operation for decryption algorithms. The same agencies were also interested
in more complex instructions for bit-wise operations, such as bit-matrix-multiply
and bit-matrix-transpose (and got some of those implemented at times).

The popcount instruction story is an example of a feature that was done for a
narrow and specific application, but, because it was there, found a much broader
use. Today we find the popcount instruction in several microarchitectures where it
is used in a variety of ways: machine error correction, neural networks, molecular
‘fingerprinting’, and even in chess programs and compiler optimization techniques.

207

208 � Unmatched: 50 Years of Supercomputing

The examples above notwithstanding, the more common occurrence is that soft-
ware and application people make requests and express wishes that are only par-
tially fulfilled; or not at all. That is true even for ‘insiders’. Ken Miura, with his
illustrious past at Fujitsu, says: “It is very difficult to get hardware designers to
add instructions. I tried several times and they said ‘no’.”

It has always been clear to HPC practitioners that in an ideal world there would
be an ongoing exchange between computer architects, system software developers,
and application programmers. Of course, there have always been such conversations
to gather feedback, to ask questions, to express wishes and requirements. But it has
never been an all-party joined project from start to finish. First steps towards such
a dialog were taken by the organizers of the Petaflops Technologies 1994 workshop
and its follow-up meetings (Chap. 16), and later by the HPCS program (described
in Chap. 19). The latter, with its limited success and market scope, did not include
direct participation of technology provider companies.

At the close of the first decade of the 21st century, with the petascale era
starting, the time has come set out for the next monumental milestone - the next
1,000-fold growth in compute power that will usher in the exascale era. The chal-
lenges seemed to be even more formidable than in the mid-90s, and people began
to talk more explicitly of the need for Co-Design, planning ahead cooperatively by
multi-disciplinary teams of technologists, system architects, software engineers, and
application developers.

A Technology Challenges Study

Repeating the idea of studying, in 1994, the technologies that can be expected
for petascale computing, a study was conducted in 2007 with exascale in mind.
It was sponsored by DOD’s DARPA but was composed of people from academia,
national researchers, and engineers-scientists from Industry. Their work, over several
months, is documented in a book-length report titled “ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems” published in 2008 ([69]).
Among the participants (listed in the citing of the reference) I single out Peter
Kogge, from the university of Notre Dame, who was the study lead, and Bill Harrod,
who was the program manager.

It should be noted that the study group’s directive was to determine if ‘main-
stream’ technologies will get us to exascale by around 2015. We now know it has
taken 5-7 more years (depending how we count “pre-exascale” systems).

The working group stipulated that technology advances alone will deliver the
1,000-fold increase over petascale within the same physical boundaries: An exascale
would be “datacenter-sized, present-day departmental system would be petascale,
and a few chips will have the capability of a terascale rack. That’s not to say that
the component count and power consumption will remain constant. Indeed, they
identified the major technology challenges as:

Codesign � 209

� Power. The most challenging of the list. The more difficult part to solve is
the energy used to move data; not the compute part.

� Memory and Storage. Lack of technology for both capacity and transfer
rates desired by applications.

� Concurrency and Locality. Because clock rates and single thread per-
formance are reaching the end of their upwards trend, there will be orders
of magnitude more components and the burden of increasing system perfor-
mance will fall to successful explicit parallelism at-scale.

� Resiliency. This refers to frequency of interruptions or failures of the sys-
tems. The concern arises from the explosion of component count and use of
advanced technology at lower voltage levels. The count adds to the statisti-
cal possibility, and the latter increases the sensitivity of the devices to their
operating environment.

The body of the study is rich in technical details, parameters, metrics, and
projections. What was significant to me was that when it came to recommendations
the common theme there was that of inter-disciplinary cooperation.

The component devices are to be co-developed with system architects for opti-
mum outcome.

The hardware architects are to cooperate with the software engineers defining
future programming models.

There has to be co-development of algorithms and application with that of tools
and run-time modules.

The programming models and application developers have to work with, and
understand, the hardware resiliency pitfalls, so as to be able to recover and continue
in the face of some component failures.

The value of the study is not so much in generating new information, as it is
in gathering disjointed aspects of what enables HPC, present a coherent picture of
the status, and make projections. The scope of technologies examined shows the
intent of looking at HPC holistically. Specific sections of the technology roadmap are
assigned to: Logic, Memory, Storage, Interconnect, Packaging, Resiliency, Software
Operating Environment, and Extracting Parallelism. More attention was given to
hardware components - of the group’s nine meetings, one “special topic” meeting
was dedicated to programming environments (with ‘architectures’) and another
special-topic on applications (with ‘storage and I/O’). We see in the next section
the additional actions taken by the software community.

The exascale study group highlighted technology trends, well-established or
starting to manifest themselves, that would guide directions and possibilities of
future developments: Device feature shrinking a la Moore’s Law will continue, but
without a proportional increase in performance (clock rates not increasing), though

210 � Unmatched: 50 Years of Supercomputing

challenged by limits set by lithography’s capability. The limit has been reached for
extracting parallelism automatically out of a serial program. The same is true for
mechanisms and methods for hiding memory latency.

The study group warned that the challenges cannot be addressed unless the
hardware and the software communities work in concert.

It laments the decline in investment in research of alternatives that will mitigate
or eliminate the challenges that are exacerbated by the trends above.

Addressing the challenge of continuing with past rate of increase in performance
of computer systems means added complexity by the huge increase in device count
combined with figuring out how to extract and express parallelism. That meant
microprocessor design has become a very costly endeavor, requiring teams of hun-
dreds of engineers and thousands of hours of computer simulations, that only a
small number of large corporations can afford.

Contrast this with the vector processors era, when Seymour Cray single-
handedly design his supercomputers using a pencil and paper1.

The report present several important observations, some even alarming: Critical
applications demand performance levels well above petascale, and they don’t just
larger datasets but are becoming more complex. From the report: “Technology is
hitting walls for which there is no visible viable solutions.” There is little to no
research into architectures that can provide further “explosive growth in perfor-
mance”. And apart from a few “heroic” codes, they conclude, “our ability to scale
up applications to the millions of processors, or even port conventional personal
codes to a few dozen cores is almost non-existent.”

In hindsight, we now know that exascale was achieved without resorting to major
architectural innovations, and we did manage to continue and scale up applications,
while staying pretty close to the trajectory of past rates of performance increases.

The International Exascale Software Project

While the high-productivity (HPCS) and the exascale technologies study were
driven by the Department of Defense (in the U.S.), the next step, centered on
software, was led by the U.S. Department of Energy (DOE) and included interna-
tional participation. The International Exascale Software Project (IESP) received
support not only from the U.S. DOE and the National Science Foundation, but also
from agencies and universities in France, the UK, and Japan, and from corporations
- Cray, Dell, Fujitsu, Hitachi, IBM, Intel, and Nvidia. The list of sponsors has 30
entries.

1HPC lore includes the story of Seymour Cray being notified that Apple purchased a Cray
Research supercomputer in the mid-80s to support their circuit design simulation (this is true,
they bought a Cray XMP - designed by Steve Chen, but a descendent of the Cray-1). To which he
replies that he is using an Apple desktop for his work (possibly for drawings related to the Cray-3).

Codesign � 211

I was fortunate to be asked to represent Intel at the IESP meetings, and par-
ticipated from its start at 2009 until my retirement from Intel at the end of 2010.

The initial phase of the IESP work is summarized in a report, the IESP
Roadmap, that has been referenced extensively in the last decade (see [70]). It
lists 65 names of participants and contributors from national labs, universities, re-
search agencies, and the private sector. They come from the U.S., several countries
in Europe, and Japan from Asia (later meetings had participants from China, too).
The working group met in a series of workshop-type meetings in all three continents.

The central idea was to build on the concept of the open-source software for
HPC, and add coordination and planning to has been a disjointed collection of
components. The underlying assumption was that without such cooperation the
challenges of software for exascale computing will not be met. The IESP’s stated
mission was:

“The guiding purpose of the IESP is to empower ultra-high resolution
and data-intensive science and engineering research through the year
2020 by developing a plan for (1) a common, high-quality computa-
tional environment for petascale/exascale systems and (2) catalyzing,
coordinating, and sustaining the effort of the international open source
software community to create that environment as quickly as possible.”

The thinking at the time was that the challenges for the software infrastructure
that is needed to make exascale systems useful are so daunting that it requires,
in the words of the IESP report, “the wholesale redesign and replacement of the
operating systems, programming models, libraries, and tools on which high-end
computing necessarily depends.” And key to success of such an ambitious project
is coordination and collaboration among all the parties involved; internationally.

The end-product of this open-source and common software infrastructure was
called extreme-scale/exascale software stack, abbreviated as X-stack . It was to be
able to support running on the whole of the largest systems, as well as on scaled-dow
systems. It was to be modular, to allow for alternative modules and participation
of multiple developer teams. And there was to be an open-source option for all
components.

Going from petascale to exascale means an increase of up to 1,000-fold in several
aspects of the system, which defines challenges to software in terms of concurrency
- expected 100s of millions of arithmetic units and up to 10 billion threads to
deal with hiding latencies, and, consequently, in terms of resilience - recovery and
continuation of of execution in the face of errors or components failure.

The list of X-stack components, rated on scales of exascale uniqueness and crit-
icality at the level of sub-components, is comprehensive: frameworks, numerical
libraries, algorithms, debugging, I/O, scientific data management, programming

212 � Unmatched: 50 Years of Supercomputing

models, compilers, operating systems, performance, power, programmability, re-
silience, and runtime systems.

A central tool for driving the IESP activities is what was denoted Co-Design
Vehicles (CDVs). The idea was that applications to be run at the exascale level are
supposed to inform the development of the IESP roadmap. But, at that time (circa
2010), only few existing applications were able to utilize such a scale of computing.
Several elements were identified that were critical to exascale jobs: Programming
models for many-core and heterogeneous nodes; handling the much larger datasets
to be processed at that scale; making applications resilient and fault tolerant. They
also wisely pointed out that the then-common insistence on bit-level reproducibility
is not practical at the level of concurrency required for exascale.

The team then went on to look for applications that have a demonstrated need
of exascale performance associated with science-based goals, with definable set of
intermediary steps over some 10 years. It was stipulated that the development
team has to be interdisciplinary and include expertise from hardware to software to
algorithms; the code modular (for ease of modifications, additions, and simulations);
and that it stresses the various dimensions of the X-stack.

When the IESP Roadmap was written there were two CDVs identified (Lattice
QCD and Fusion Energy), with hopes expressed for quite a few more. Candidates
were sought from a list of disciplines where it is understood exascale computing
is needed: Materials, Energy, Chemistry, Earth Systems, Astrophysics, Biology,
Health, High-Energy Physics, Fluid Dynamics.

Rick Stevens, the associate lab director at Argonne National Lab (who we met
already in Chap. 21), was also one of the leaders of the IESP. He describes the
investment in preparing applications and the software stack for the exascale era:

“We started planning for the Exascale Computing Project back in 2007, but
it finally became resourced at scale between 2014 and 2016. And at that point,
we knew we had to fund the applications and the software. We had about 80 or
so software efforts ranging from libraries to compiler tools to I/O systems and so
forth. Lots of pieces. Debugging and visualization and so forth. And we funded
about 25 application projects. These application projects were all over the place,
from climate to wind energy and earthquakes, cancer to material science, and more.

“We funded about a thousand people for the last five, six years. It’s been a
standing army of people who are working on this. And the applications are really
interesting, because many groups inside the application space, once they knew what
the hardware was looking like, had a pretty good idea what to do. They had to
re-optimize their codes for the hardware, for the hierarchical programming model,
and so on. And in some cases, they made the decision to not maintain dependencies
on libraries and do it themselves. In other cases, they decided to enforce the use of
existing libraries, and then they partner with the library people. it has been a very
interesting ecosystem.”

Codesign � 213

The last chapters of the IESP Roadmap deals with practical matters of execu-
tion the plan. The relationships with vendors (systems and software) is spelled out.
They basically reiterate ongoing understanding and practices within the HPC com-
munity: Products closer to the hardware, such as the operating system, compilers,
and runtime utilities, will be provided and mostly supported by vendors. The user
community may support some tools (debugging, compilers) and numerical libraries.
The community will, of course, provide and support application-level components
from algorithms to visualization, and, most important, programming models.

What is perhaps new, or just stated in stronger terms than in the past, is the
emphasis on open source across the board and the insistence that what is developed
with public funds will be unconditionally available to the community.

In conjunction with the Roadmap report, the IESP’s leadership team of about
10 people from all the three continents, published a “call to action” report ([71])
following the first three workshop meetings (one in each continent - U.S., France,
Japan). It described the expected requirements of applications in several areas and
the challenging of applying them at the exascale level. From these observations of
complexity, resolution, timescales, and data analysis, they make the case that the
IESP is necessary to address three HPC-existential factors: There is a compelling
science case for exascale computing. The current software infrastructure is inade-
quate and replacing it is a formidable task. Lastly, there is no global coordinated
activity of the HPC open source community to confront the challenge.

Formal meetings of the international working group continued until 2012. The
organizing team created a website with a trove of information. It contains all the
presentations given at the ten meetings and serves as an historical record of the
thinking and the process that took us from petascale to exascale, with their insights,
foresights, and misses. The reader will find it fascinating to browse through [72].

How Did the Forecasts and Predictions Turn Out?

Now that the first exascale systems are operational, we can look back and compare
reality to assumptions and predictions made over a decade ago.

The IESP Roadmap stipulated a timeline with several stages on the way to
exascale. The 2010-11 thinking called for readiness of the software stack components
in 2014-15; 2018-20 initial delivery of an exascale system with integrated software
stack able to handle billion-way concurrency; exascale system in production in 2020.

Fugaku, at Riken (a scientific research institute in Japan) facility in Kobe,
was the #1 supercomputer in 2020. By the customary measure of the 64-bit HPL
benchmark it rated at over 400 petaflops, quite a way from exaflops level. It did,
however, pass the exaflops threshold (1.4 exaflops) in a modified HPL test of mixed-
precision arithmetic suitable for AI computations. Fugaku was heralded as having
ushered the exascale era. It is an outlier system in some aspects: the CPU is an
ARM architecture (with vector extensions) and it uses no accelerators, such as

214 � Unmatched: 50 Years of Supercomputing

GPUs. Consider its concurrency level: With close to 160K CPUs, each with 48
cores, it can support 7.6M threads. In addition, its vectors can be up to 32 64-bit
words long, so in theory, it is designed to support 244M streams. Not quite a billion,
but within reach. Notably, Fugaku is likely the first system to have cost $1B (from
concept to research and design to construction of the system).

The first exaflops system, in the sense understood in 2010 - performing 64-bit
HPL at over one exaflops, came officially online in the summer of 2022 following
partial and limited operations in 2021. It missed the forecasted date by one to two
years, but ±2 years difference in a forecast made a decade earlier, at a period of
major shifts in technology and architecture, is reasonable and expected.

The system, named Frontier (Fig. 23.1), funded by DOE was delivered by HPE
employing Cray system design (having acquired Cray) and AMD CPU and GPU
technologies, and installed at Oak Ridge National Lab (ORNL).

Figure 23.1: The Exascale-class HPE Cray EX Supercomputer at Oak Ridge
National Laboratory. Source: OLCF at ORNL.

Frontier is constructed out of what we may consider a new kind fat nodes, made
of one general-purpose CPU (AMD EPYC) and four GPUs. Similarly, the node
of the second U.S. exascale system, named Aurora and to be installed at Argonne
National Lab, will have two Xeon processors and six GPUs (Intel’s Ponte Vecchio).

When we compare past assumptions with later reality, one of the glaring con-
trasts is related to GPUs. The Exascale Computing Study of technologies did not
foresee the extent GPUs will play as the overwhelming source of compute power
in getting to exascale, though there is recognition of the need to support heteroge-
neous hardware environment for increasingly more applications. Mark Seager, who

Codesign � 215

we met before (Chap. 18), known for his sometimes colorful language, summed it
this way:

“The major thing that changed from the viewpoint that those guys had for the
IESP discussions and where the industry actually went was GPUs. I don’t think
that they envisioned GPUs, (a) being as powerful as they ended up being for a broad
class of applications; and (b) that the industry would, kicking and screaming, go
there, which is what happened.”

Rick Stevens provides deeper context to the underestimation of GPUs’ role in
the future:

“Recall that in the early planning we had these design points. We called them
swim lanes. And one swim lane was loosely based on something like BlueGene, where
you had a lot of fine-grain, homogeneous processors, and you just keep enlarging
more and more. So, for 1018 flops, with about a gigahertz clock, you would have
to have something like 109 processors. That gets you to one exaflops. And that
was one of the conceptual swim lanes. We also had swim lanes that were much
more on these fat node concepts. A fat node might be some big SMP or a vector
processor. And you can think of GPUs as basically vector processors at some level.
Not exactly, but it’s one way to think about them.

“At that time, in 2010, classical vector machines had fallen out of favor. It
was microprocessors, and everybody was just arguing about what the scale of the
microprocessors were. Whether GPUs became established, I would say it’s still
not completely resolved. In the US, we’ve got GPUs, because we have three big
vendors making them. Outside the US, that isn’t the case. In China, they’ve got
a couple of accelerators, but they don’t have really a US-style GPUs at scale that
are dominant. The same think in Europe. They use US-made parts, but RISC-V
and other approaches there are much more like what they were thinking about in
the 2010s. There were two things going on. One is that the GPUs became useful
enough that they broke out of the scene, and people were tinkering with them for
a long time. And secondly, GPU use grew because of the vendors’ investment.”

Stevens demonstrated the uncertainty during the last decade with ANL’s own
exascale system, Aurora. In just a couple of years it went through three design
concepts. First, it Intel’s Xeon Phi, then on a dataflow engine, only to end up with
a GPU-based solution.

The implications of this design decision will, no doubt, be studied extensively.
Some consequences are obvious:

With GPUs entrenched in HPC systems the norm now will be the added layer
of parallelism of the many functional units in GPUs. This is another layer to the
existing ones of vector instructions in each core of general-purpose CPU, multiple
cores in the CPU chip, the shared-memory parallelism on the multi-chip node, and,
finally, across nodes within a cluster. Though not a new phenomenon, a significantly
greater role is given to the GPU component.

216 � Unmatched: 50 Years of Supercomputing

Having dramatically increased the compute power of the node allowed an ex-
aflops machine to be constructed with fewer than 10K nodes, the same level of
node count we saw at the petascale era. The necessary increase in concurrency
was achieved with the simpler functional units on the GPUs. System complexity
is reduced (but not necessarily for the application programmer), as is power con-
sumption, while the system’s resilience increases.

More on the case for fat nodes in the “performance” chapter (page 281).

In mid 2021, while Frontier’s design was finalized and it was being built-up, Al
Geist, a long-time scientist at ORNL and the CTO of the lab’s Leadership Com-
puting Facility (OLCF), presented a webinar talk about the exascale project ([73]).
Geist recalled the trepidation they felt at the possibility of failing to built a workable
exascale system within manageable power constraints, and even if they did, that it
would be impossible to run applications at scale. Yet, they were successful. Not so
much due to heroics of overcoming insurmountable obstacles, as for the fact that
the hardware architecture turned out to less complex and less power-hungry, and
the software environment did not have to be rewritten from scratch. Geist showed
a ‘scorecard’ summary of how the 2009 predictions turned out in the actual system
(Frontier) in 2022.

The most striking aspect, as highlighted by Geist, is that the number of nodes
was predicted to be around 100K or 1B (there were two estimates). It turned out
to be under 10,000, consistent with the unpredicted role of GPUs. It is important
to note that Frontier’s level of concurrency is, indeed, O(1B), as predicted. Only
that much of it, by orders of magnitude, is packed into the node.

Let’s pause here to consider that the peak performance of a single Frontier node
is over 150 teraflops. Compare that with the 76 compute cabinets of the mid-90s
ASCI Red that peaked at one teraflops. When comparing an ASCI Red node to
one of Frontier’s, we come up with around 700,000-times performance increase over
a 25-year period!

Another gratifying achievement was that of the power consumption of Frontier.
It was ‘dictated’ to be 20MW for 1 exaflops system, based on what was deemed
possible and affordable. In circa 2010 some feared an exaflops system would require
over 100MW. It turned out to be 29MW for the 1.5 exaflops Frontier - within the
required power envelope.

There are several other elements Geist enumerated:

Frontier’s memory size, at the huge size of 45PB, is about 2/3 of what was
predicted. The interconnect bandwidth between nodes, at 100 GB/s, is no better
than at the pre-exascale times. Storage size fell within the predicted range (716
PB), and the system’s IO bandwidth came out better than predicted by about 25%
(75 TB/s).

Finally, resilience was recognized as a significant challenge for an exascale sys-
tem. It was predicted that such a system will incur an average of about 10 interrupts

Codesign � 217

a day (it does not mean the whole system is down, but that there is an issue to be
addressed). In practice, Frontier performs about 3 times better than expected.

One of the bold statements in the IESP Roadmap report was the need for a
complete overhaul and redesign of the software stack - from the operating system
to libraries, tools and programming models. We now know this was not necessary.
Software components were hardened to support the higher scale of computing, and
libraries were modernized to support heterogeneous computing. Yet, the OS is Linux
and the programming model is a combination of MPI, OpenMP, with CUDA or
OpenACC for GPUs. I asked Rick Stevens for his thoughts on the software issue,
and it turned out the ‘alarmist’ perspective was not shared by all:

“If you look at the software side, there was a tendency, and there even still is
a tendency in the system and software community to put their favorite research
project between where we are now and where we’re trying to go, and say, ‘Oh,
you can’t get there unless you solve this problem’, such as a new operating system
or a new language or a new fault-tolerant scheme etc. And this happens over and
over again. And it was happening then. The people saying we need a new OS were
the OS people, not everybody else. The people saying we need a new language
are language people. It is not that people outside are saying ‘Oh, the current stuff
won’t work’. It’s the people that have vested interest in getting R&D money for
those things that were pushing that.”

In fact, Stevens points out that for the first two exascale systems of the DOE
labs, Frontier and Aurora, they opted for the more conservative choice of Cray’s op-
erating system over a newer version from HPE that involved micro-services suitable
for cloud computing. The idea was to minimize the risk of less-tested innovations
where possible, given that risks involving the hardware, applications, and libraries
were unavoidable.

Stevens explains that the OS has evolved to better manage jitter2 and noise.
He emphasizes that it is hard to lodge software parts that enjoy wide mainstream
acceptance. We end up with Stevens calls “MPI+”, where the “+” was initially
unclear - OpenMP or OpenGL and/or CUDA or oneAPI. He concludes: “I would
say that we were pretty good at getting the programming model right.”

And how did the X-stack turn out (or, what it actually is)?

The term X-stack was initially a funded R&D program, contemporary with
IESP, that built upon some ongoing software projects. The IESP and the Exascale
Computing Project (ECP), the DOE project to stand an exaflops system, each had
a conceptual software stack. The work that spanned over 10 years culminated with
an actual stack for Frontier. That said, Stevens clarifies:

“It wasn’t something that was a concrete, ‘Let’s design once and make one
thing’. It was designed to have lots of components that could be replaced, and so

2Jitter is the phenomenon of interference that applications can experience due to background
processes initiated by the operating system.

218 � Unmatched: 50 Years of Supercomputing

it was more like a conceptual organization within which you would have multiple
modules.”

The actual stack on Frontier is a software package that gets regular update
releases. The ANL’s Aurora will have a compatible stack and applications will be
pretty much portable between the systems; up to the use of interface libraries. This
is an example of the “+’ in the “MPI+”: Frontier users make CUDA calls when
using its AMD GPUs, whereas Aurora users will apply Intel’s oneAPI to access its
GPUs.

Stevens makes an interesting observation regarding the impact of availability
of ‘big data’ in the context of genomics studies: “We did not understand at the
time (2007-8) the impact that data was going to have. We were pretty good esti-
mating where computing alone was going to take us, but we were not very good
at anticipating that once there was a million genomes’ data, or some other huge
amount of data, that our actual approach to the problem would change from a pure
computational approach to a combination of data-driven and computation.”

Add as an example of app adjusted for exascale: add?
An article about redoing NWChem for exascale (HPCWire, 4/30/21):
https://www.hpcwire.com/2021/04/29/nwchemex-computational-
chemistry-code-for-the-exascale-era/
Contact is Theresa Windus, now at Ames Lab and Iowas State? - looks like
the article provides enough info.

Lessons Learnt

What have we learnt, looking back on this multi-year experiment?

The IESP is explicitly a collaborative software project. It also touts “codesign”
as a driving principle. And when it comes to HPC we cannot forget the hardware
side of the equation. Especially when representatives of the systems vendors par-
ticipated throughout the project. Were they there for the software only? - I asked
Rick Stevens about the hardware-software interplay:

“Hardware co-design is harder largely because the ability to actually test an
idea in a simulator is quite limited. Whereas in software, you can usually prototype
it and try something, in the hardware co-design one has to extract from existing
applications on existing hardware in order to understand such features as, for exam-
ple, ratios or functional requirements and dependencies, and then relate that to the
new hardware that was being discussed. One might create micro benchmarks that
could be run on a hardware simulator. But often, we try to understand a proposed
hardware design point in terms of its ratios. For example, what is the ratio between
some numerical operation and some logical operation, or how many outstanding
memory references I need, etc.”

Codesign � 219

But did the software community influenced or drove hardware design decision?
- Stevens explains that when the hardware architect asks a software engineer a
“trade-off” question, such doing something about outstanding memory references
or a functional unit feature, the software person lacks the tools to provide an answer.
Still, he says:

“We tried to do what can be called ‘normal co-design’, which means we tried to
work out trade-offs between functionalities that would be in the hardware and those
that we’d make in software. Now, in a codesign scenario of an embedded system
where there is one app and relatively simpler architecture, where it is possible to
instantiate with different options, one can figure out the optimal trade-off between
hardware and software. But for the large systems we consider it is very difficult.
It’s not that we didn’t try to do it. We tried to do it all over the place. It’s just
very hard.”

This kind of trade-offs experimentation that involves the hardware comes to
an end once the hardware simulator phase is over. Within the software envelope
the process can continue indefinitely, in principle. Stevens concludes: “All things
considered, a goal of the IESP was to create a conversation that allowed us to think
big enough about the software to not make mistakes.”

The IESP took the format of the planning activities of the mid-90s towards
petascale computing (Chap. 16) and greatly expanded its scope and reach. The
codesign aspect applied along several vectors: The project was international, as
well as multi-disciplinary. It went further into development, creating a complete
software stack. And it spun dozens of application development projects. All that
resulted in, arguably, unprecedented readiness of the system software, libraries, and
applications when the hardware became available.

Interestingly, perhaps the result of the difficulty of hardware codesign, each
geography has taken a different system approach for its initial exascale systems.
The US systems are scaled-up versions of pre-exascale system with fatter nodes of
multiple GPUs. Japan’s Fugaku is ARM-based with no GPUs. China (not an active
participant in IESP) is doing its own thing hardware-wise using local device parts.
And Europe has its European Processor Initiative for its own CPUs for its exascale
project.

Collaboration has not stifled innovation.

C H A P T E R 24

The Changing Face of HPC
How Data Focus and AI are Changing What We Think of as HPC

To be sure, the face of HPC has hardly been static for more than a few years
at a time. We saw the transitions from mainframes to vector processors, to

multi-processors, to MPPs, and to clusters. These were all hardware platform tran-
sitions, and throughout the years, until after 2000, HPC was still almost1 only
about scientific and engineering numerical simulations.

The changes in HPC over the last decade or so are different. They are about
the content of HPC.

The last decade saw a broadening of the applications space that falls under
the umbrella of HPC on a scale not seen before. This expansion has dramatically
reshaped HPC’s scope from that of numerical scientific computing in nature to an
enterprise much broader and more complex. It entails major implications for the
hardware requirements of the systems, the software environments, programming
languages, and skillset demands of its users.

Not only the content of HPC is undergoing much change, but so do its platforms.
The GPU, or the general-purpose GPU (GPGPU), as it is called more accurately to
reflect its application beyond graphics, has emerged as the new form of accelerator,
and is taking center stage by providing by-far the most flops for high-end systems.
One indicator of the popularization of GPUs comes from the historical data of the
Top500 lists. In 2006 there was a single accelerated system on the list, 8 two years
later, 17 in 2010 - still only in about 3% of the systems. But by 2015 more than 20%
(103 entries) had GPUs. In June 2022 a third of the entries (166) were accelerated.
Their fraction of the total performance is much higher.

We now have the term accelerated computing to encapsulate what is becoming
a common environment of heterogeneous hardware compute elements. This goes
beyond accelerators for 64-bit floating-point numerical simulations. Reflecting the

1There were, and are, the codes used by the intelligence community on HPC systems.

221

222 � Unmatched: 50 Years of Supercomputing

changes in the nature of workloads, there is a whole host of new attached processors
that target the AI space. one of their key features is the use of significantly smaller
word size for such application types as machine learning.

The hardware evolutionary transition aside2, the bigger impact to what we think
of as HPC are the addition of new types of workloads. That is, the expansion of the
content of HPC. Specifically, the inclusion of big data or data analytics, and that
of AI-based methods in the form of machine learning.

Data Analytics

An obvious outcome of the increase in processing power and the accompanied
growth in memory and storage capacity was that HPC systems could ingest, and
produce, ever increasing amounts of data. In the past the attention was given to
streamline the data as a support for the compute part of the process. Memory
bandwidth was a challenge, but not the size of datasets. But now, exacerbated by
the prevalence of distributed memory (and storage) systems, much more attention
had to be spent on managing data.

In HPC circles people began to talk about data-driven processing. The shape,
structure, and size of the data determine the flow of the compute process; not the
numerics.

The category of multiphysics applications, where several physical properties
are simulated together (a simple example is climate modeling) became central to
HPC. Gaining understanding and insights into what the results mean, and given
the amount of the data, requires the additional step of analysis of the output data.
And the field of data analytics was incorporated into HPC.

The analysis of ever larger and more complex sets of data meant that new tools
and methods were needed with which to perform the analysis. Developing these
capabilities is the domain of Data Sciences. It deals with processes and algorithms
for modeling data, devising the questions that can be asked and how to expose
predictive powers from data analysis.

There are different tasks given to the analysis phase of data that was captured
by instruments or computed via a simulation model. One way to describe this is
through a simple taxonomy ([74]):

� Descriptive. Show what was found. A common final product may use visu-
alization tools.

� Diagnostic. An analysis that explains the “why” - an insight to the process
behind the numbers.

2The topic of quantum computing is touched on in the closing chapter of the book, as it is not
yet a mainstream technology.

The Changing Face of HPC � 223

� Predictive. Using the existing data to predict how the process examined is
likely to proceed.

� prescriptive. The most useful and demanding level: Suggesting action to be
taken.

Of course, not all levels of analysis are always sought or even possible.

While data-driven processing of scientific workloads became a part of HPC, it
has always been the focus in non-HPC areas that involve large populations or other
objects. These include social studies in academia and digital social networks and
online commerce, as well as high-frequency stock trading. Those applications have
also seen an explosive growth in the amount of data they collect and commensurate
increase in the capacity to process the data in a timely manner. They now require
high-performance system components for memory, storage, I/O, and interconnect
(when running on clusters). Those and high-speed integer and logical operations.
Therefore, even when not requiring much in the way of floating-point performance,
their more demanding jobs benefit from HPC level of system configurations.

Which is why some in the industry now refer to data analytics, in the sense
described above, as High Performance Data Analytics (HPDA). We can think of is
as the Venn graph intersection of scientific computing and enterprise-commercial
applications.

We can think of the addition of data analytics to numerical simulations as a
convergence of HPC with Big Data. However, ignoring our historical prejudices,
this is just what HPC has become. It is not all about number crunching anymore.

HPDA adds speed and capabilities to computational data analysis. It makes
data mining over large datasets efficient. This is critical for large-scale customer
relationship management and resource planning, for example. High performance is
a must for situations where the information is needed in real-time. This applies
to frequency-trading in finance, of course, but also for online commerce and other
business intelligence queries, as well as for telecom and intelligence. An accompanied
benefit of access to high performance is having computational resources to perform
error-checking (on data items or results) while processing a task, thus enhancing
the reliability of the outcome.

One of the more demanding data analysis applications is finding connections
and associations in very large datasets of objects or people. This is known as graph
analytics (GA). It is a network analysis problem depicted as nodes (the objects)
and edges (connections of nodes that may indicate relationships or just association).
There is a brach of mathematics, graph theory, that is dedicated to the subject. It
deals with types of graph and algorithms for answering questions about them.

In the world of computing GA is used to find out such attributes as the weight
given to a node (think of identifying an ‘influencer’ in a social network), informa-
tion about density in a network (a denser space of connected nodes is a sign of a

224 � Unmatched: 50 Years of Supercomputing

‘community’), measures of the strength (or weight) of connections between nodes
(can be used to quantify shopping preferences or to aid ranking of references for a
search engine), and more ([75]).

GA output is typically described with the aid of visualization tools. It is hard
to conceive how else to make sense of reams of numerical data about nodes and
edges. We can easily imagine how, given access to the appropriate datasets, GA can
be applied to tracking routes of currency transfers for compliance purposes and to
detect fraud. Or, for to uncover connections, otherwise hidden, between individuals
suspected of illegal activities through telecom records. And to streamline supply
chains and better manage utility grids.

Data Analytics involves arithmetic, but unlike numerical simulation of physical
systems the computational load is driven and dominated by the tasks of managing
data. DA methods are now used in HPC applications such as climate modeling
and genomics. The same methods are employed by non-HPC applications that now
require, due to the size of their datasets, HPC-class systems.

Machine Learning

Artificial Intelligence (AI) has been, and still is, an exciting research discipline for
decades now. In fact, back in 1950 the famous mathematician Alan Turing proposed
a test he called the imitation game (now widely simply called the Turing Test) that
will establish if a computer program exhibits ‘intelligence’. The test applies only
to the use of language (as opposed to, for example, inventing a flying machine).
There are several nuances involved, but in essence an observer moderates a two-way
conversation conducted via written notes. The test is for the observer to figure out
if one of the conversants is a computer program. The machine is deemed intelligent
if the observer cannot tell which side of the conversation is machine-generated.

There is no consensus over some details and the interpretation of the test devised
by Turing. It certainly looks like examining only one aspect of what we would call
intelligence. And it seems passing the test may be more of an act of imitation than
one the involves thinking. Still, so far no program passed the Turing test (no success
above the level of random selection).

I bring up the Turing test here only so we do away with the term ‘artificial
intelligence’ when it comes to our use of some of its aspects in computing. Thomas
Sterling makes the case against the use of ‘artificial’, since ‘artificial’ is understood
as ‘not real’. Whatever degree of computer intelligence we achieve, it is real. He
suggests machine intelligence.

The present state of AI-by-computers is that of software that performs tasks we
associate with intelligence. But the process is really one of accessing a previously
stored reservoir of knowledge. Once fixed, there is no re-consideration of past ‘deci-
sion’, nor re-examination. This kind of machine intelligence has the appearance of

The Changing Face of HPC � 225

intelligence without the repeated exercise of intelligence and without the ability to
absorb and consider the impact of factors surrounding it environment.

What we consider intelligence exhibited by computer programs takes many
forms - chatbots, language translation, speech and face recognition, chess playing
etc., but in HPC-world we associate “AI” with machine learning (ML). It requires
large amounts of data to be useful and effective.

Machine Learning is getting a lot of attention now and is applied with various
models and for multiple purposes within and outside of HPC. But the idea behind
is not new with the AI research community. The term itself was coined by the AI
pioneer Arthur Samuel in 1959 - over 60 years ago, well before computers were able
to make real use of the concept. Samuel should be remembered for several other
achievements: He worked with Donald Knuth on the development and documen-
tation of TEX, the precursor to LATEX that many of us use today. Samuel is also
credited with starting the ILLIAC IV project (see Chap. 6), though he left it to join
IBM where he created one of the earliest hash tables programs. Samuel defined ML
as “The field of study that gives computers the ability to learn without explicitly
being programmed”.

There is, of course, software involved. But unlike ‘classical’ HPC, where the
program operates on the data and produces results, then repeat it on subsequent
datasets, ML software uses initial dataset so the app can learn how to respond to
other datasets of the same type. This first procedure is the training phase of the
process. It fixes how the app will process from here on. If it is found that the results
when acting a previously unseen data are not good enough, then the ‘training’ can
be repeated using another dataset or with some ‘hints’. The material difference
here compared to past programming is that for numerical simulations we would fix
the code, where as in ML-land we just expose the app to new data to improve its
performance.

ML is useful when we want to digitize operations that we do naturally but that
are hard to program. We do so so that they can be done on a large scale and
fast. Think of face recognition or natural language translations or speech-to-text
capture.

We can look at ML as a set of methods for performing data analysis where we
don’t only gain insights but create an object that can then function on its own
when given new datasets. As with data analytics, ML outcome can be descriptive,
predictive, or prescriptive.

The practice of ML programming is very different than that of numerical sim-
ulations.

There are several approaches for creating a ML system, chosen depending on
the type of data and the desired learning. The most common method is supervised
training. This is when data items are labeled by humans and the machine is taught

226 � Unmatched: 50 Years of Supercomputing

to identify items by these labels. Think of learning to recognize specific objects -
buildings, cars, cats, faces - in a set of images.

An unsupervised machine learning is when the data is not labeled and the
program seeks to find patterns or connections among the data items. It often results
in unexpected findings of correlations or groupings to be interpreted by humans.

There is a more interactive methods usually termed reinforcement which is a
trial-end-error process where the machine is ’told’ when it makes the right decision.
It is useful, for example, in training autonomous vehicles.

Computationally, much of ML models are programmed in languages such as
Python, R, Java, Julia, even LISP. Not in Fortran or C. Most of the algorithms
used are not familiar to practitioners of numerical simulations. Linear regression,
used to create best fit lines that show relationships between variables, is not un-
familiar. Then there are classification algorithms such as logistic regression for
discrete values, Decision Tree or an ensemble of decision trees known as Random
Forest, Support Vector Machine (the vectors are coordinates in n-dimensional space
and the algorithm separates ‘clusters’ of vectors), Naive Bayes, k-Nearest Neigh-
bors (kNN) (associates an item with a group based on its distance, by some metric,
from other items). An algorithm called K-Means is applied as unsupervised solver
of figuring out the number of different clusters. More algorithms exist, and surely
more variants will be invented.

Often mentioned in conjunction of ML is the term Deep Learning (DL). DL
itself is often used interchangeably with artificial neural networks (ANN), which
is another important computational model for AI applications. As indicated by its
name DL implies a greater complexity and difficulty of the problem, in terms of
data size and compute time, compared to that of a typical ML application. It is
recognized that important challenges in our digital world, such as autonomous vehi-
cles, natural language processing, and image recognition, require DL-level solutions
(see, for example, [76]).

The software tools used for ML, and AI in general, came from outside of the
HPX community. It originated in companies whose products involve ‘big data’ that
needs yo be studied and acted upon. One of the best-known examples is Google’s
TensorFlow. It is an open source library of tasks that are common in machine
learning, inference and neural networks. Tensor is the mathematical term for multi-
dimensional array and is used here in recognition of the multi-variable datasets the
ML models are applied onto.

The AI-driven innovation did not stop with software. Google also developed an
accelerator called Tensor Processing Unit (TPU) to support ML training. It excel
in linear algebra operations, in particular, small word-size dense matrix multiply (it
contains 65K 8-bit multiply-add units). These operations dominate the ML training
phase in neural networks learning models, and the TPU speeds them up relative to
CPUs and GPUs.

The Changing Face of HPC � 227

The above is certainly an incomplete introduction to machine learning but high-
lights how different a space of computations it is compared to our past ‘classical’
HPC. For more on ML and its models see these short introductory articles: [77],
[78] and [79].

HPC and AI

It was quickly understood that ML techniques can be useful not only for social
networks and tracking of online shopping habits, but also for gaining insights and
increasing the predictive power of HPC applications. These include weather fore-
casting and climate modeling, spread of diseases and drug discovery, genomics,
astrophysics, even fraudulent transactions, and more.

Just as data analytics is at the intersection of scientific and commercial appli-
cations, there is a subset of AI-type applications that resides at the intersection of
big data and HPC.

To capture how “AI” is adding to HPC scientific applications I turned to a report
from three DOE science labs. The report “AI for Science” ([80]) begins with:

“From July to October 2019, the Argonne, Oak Ridge, and Berkeley National
Laboratories hosted a series of four town hall meetings attended by more than
1,000 U.S. scientists and engineers. The goal of the town hall series was to examine
scientific opportunities in the areas of artificial intelligence (AI), Big Data, and
high-performance computing (HPC) in the next decade, and to capture the big
ideas, grand challenges, and next steps to realizing these opportunities.”

By “AI” the authors meant more than strictly AI (machine and deep learning),
but also data analytics and automation. Essentially, methods that are added to the
simulation of physical systems. Though focused on DOE needs the scope of disci-
plines examined covers most areas of HPC. Turns out there are opportunities for
‘AI’ assistance in Chemistry, Materials, and Nanoscience; Earth and Environmental
Sciences; Biology and Life Sciences; High Energy Physics; Nuclear Physics; Fusion;
Engineering and Manufacturing; Smart Energy Infrastructure.

There is also a role for AI in Computer Science, Software, and Imaging. Even in
driving Hardware design and close to the instruments that produce large amounts
of data. The report recognizes that investment and progress are needed to gain a
better understanding of the foundation of AI in order to utilize its full potential.

Some details on the use of AI methods in the application areas covered in this
book are included in chapters dedicated to the application areas covered in this
book. Weather and Climate (Chap. 27), Engineering (Chap. 28), and Life Sciences
(Chap. 21).

An example of where AI can, and will, assist in basic science, taken from the
“AI in Science” report, is in High Energy Physics. Particle colliders, in particu-
lar the Large Hadron Collider in Geneva, produce experimental data in amounts

228 � Unmatched: 50 Years of Supercomputing

that can reach exabytes when digitized; and it does it very fast. Simulations for
testing theoretical hypotheses by comparisons to experimental data also produce
similar amounts of data - that’s the idea of digital twin, the complete replica of
reality digitized, that is mentioned in the context of engineering in Chap. 28. Cos-
mology studies are already being helped by the use of AI tools. Deep learning and
classification methods are used to estimate redshift data, feature extraction, and
more. In particle physics machine learning techniques are used to identify events
and particles and estimate energy levels.

Looking forward, physicists identify challenges that can be helped by AI: Recon-
structing the history of the universe, cosmic structure formation, and uncovering
“new physics”, among other topics. With AI methods they hope to answer some
foundational questions such as: Is the Higgs boson a composite or a fundamen-
tal particle? Are there particles not predicted by the Standard Model? Are there
particles that may be the constituents of dark matter?

AI models are seen as indispensable in the quest to understand the make-up of
the universe, including its dark matter and dark energy and its early moments. No
less than understanding the universe we live in and peering into its future.

The take-away from this chapter is that what was the traditional HPC - by and
large, numerical simulation - is being augmented by computational tools that are
very different. This is impacting system designs and software components.

C H A P T E R 25

HPC in the Cloud
Deliver ing HPC Cycles from Remote Datacenters

Not only the content of HPC has been changing over the last decade or so.
A new option for delivering HPC cycles has been evolving. It was brought

about due to the emergence of Cloud Copmuting, which was mentioned before in
the context of weather forecasting and life sciences. Cloud computing has become
a growing factor in the HPC ecosystem that is worth looking into. First, how we
got here with respect to HPC and ‘Cloud’. Second, what it means to HPC.

Cloud Computing is a shorthand name for the practice of using, via the inter-
net, a remote datacenter of networked servers for processing and computing. This
mode of delivering computing services was not conceived with HPC in mind. The
ingredients that enabled it were developed over time, and somewhat independently.
The Internet providers, in an effort to satisfy online gamers and video stream-
ing, are offering bandwidth rates that made it practical to move data back and
forth between the user’s location and some remote site. Concurrently, also unre-
lated to HPC, communication giants, social network companies, and online content
providers showed the world that present technologies - processors, network, storage,
power consumption management, make it possible to construct very large datacen-
ters. Quite a few of these datacenters had aggregate flops count well above that
of the top HPC systems (but, of course, not having the high-end components and
interconnect necessary for parallel HPC jobs).

Then there is the business case for cloud computing. Access to online pres-
ence became essential to all aspects of commerce. But not all businesses wanted,
or could, invest in acquiring and maintaining systems in-house. Small and medium
size businesses also did not need a system of the size needed to process their work-
load full-time. Bigger businesses who had their own systems are having periods or
circumstances when their compute requirements peaks and exceeds their in-house
system’s capability. Being able to outsource computing services makes sense to
plenty of users.

229

230 � Unmatched: 50 Years of Supercomputing

So, we have the hardware technology and the business case. What is still needed
is the mechanism to make on-demand remote compute a reality. Essentially, the
software envelope that drives the process. Looking back, there were several projects
and ideas that preceded cloud computing, and mostly don’t look anything like it,
but that included aspects adopted into the cloud stacks.

A Bit of History

A few years after the birth of the Internet and the world wide web, the notion of
Peer-to-Peer (P2P) computing gained popularity. That happened in the late 90s
and came to the forefront with the music-sharing app Napster. The idea was that
computers, specifically individual computers, can communicate and interact with
each other directly. Music sharing made P2P popular, but there were many other
productive applications developed by quite a few startups in that period. They
emphasized collaboration and trust on the web1. P2P, as a fad, faded away, but it
sewed the seeds for inter-computer collaboration ([82]).

Going beyond file-sharing, the tools that allowed computers to interact directly
in a decentralized, distributed, network environment, led to envisioning collabora-
tion between computers where many computers contribute to a single task. The
idea was that there are applications that can be divided into chunks of work units
that can be done without independently of other chunks. When the individual com-
puter completes such a subtask it communicates its output to a computer assigned
to manage the distribution of work and collect the results. The ‘worker’ computer
can then disconnect from the joint activity or get another work-unit to process.

Thus was born the concept of crowdsourcing computing2, and several interesting
scientific computing projects. No supercomputer involved, but the combined per-
formance of the participating desktop computers was certainly in the supers class.
This mode is not strictly P2P, where there is a one-to-one interaction, and here we
have one-to-many and many-to-one exchanges. Crowdsourcing benefits and draws
from the reality that today’s home and office computers have considerable amount
of spare cycles that can be harnessed for the good of us all.

Perhaps the best known example is SETI@home from the Berkeley SETI Re-
search Center that operated from 1999 to 2020. SETI stands for Search for Ex-
traTerrestrial Intelligence ([83]). The participants downloaded radio telescope data
and ran a program over it that looked for signals or signatures indicating that an
intelligent entity is behind it.

Similarly, there is the Folding@home Consortium that partners with a dozen
high-tech companies (yes, employees also contribute idle cycles on their company’s

1I got involved in P2P for a short time and wrote a book about it with the subtitle of “Tech-
nologies for Sharing and Collaborating on the Net” ([81])

2These days there are mobile apps that resort to crowdsourcing in the sense of collecting infor-
mation and passing it on via the app. A typical of this kind is the navigation app Waze.

HPC in the Cloud � 231

equipment). Its name refers to the ‘folding’ aspect of protein simulations, which is
at the heart of the endeavor. As their mission statement says ([84]): “We exploit
the biological insight these simulations provide to inform drug discovery and other
efforts to combat global health threats.” The consortium was also an active par-
ticipant in addressing COVID-19 (see Chap. 30). Folding@home is by no means
the only project using crowd sourcing, or “citizen science” (See, for example, a
2020 survey from the NIH National Library of Medicine on such projects for “open
innovation in drug discovery” in [85]).

There are more examples of crowdsourcing. For example, PrimeGrid is an orga-
nization that use volunteers’ computers, mostly home and desktop PCs, for finding
prime numbers of different forms. Apart from the interest to pure mathematicians,
prime numbers are often used in strong encryption of data ([86]). It turns out there
is a live list of dozens of active distributed computing projects ([87]) under vari-
ous categories - Science, Life Sciences, Cryptography, Financial, mathematics, etc.
There is no official ‘standard’ for these crowdsourcing projects but many of them
build their application on a software platform called BOINC. BOINC stands for
Berkeley Open Infrastructure for Network Computing and is run from the Univer-
sity of California, Berkeley ([88], [89]).

We see that the internet allowed the development of protocols and tools for
direct sharing of content between computers, and then for the creation of ad hoc
collection of computers who all collaborate in processing a large-scale scientific
computations, albeit such that no communication is needed between participant
‘worker’ computers. A next logical step, starting at the same period of mid-to-late
90s, was the idea of applying the sharing (of content, data) and collaboration (of
work, computing) to a set of supercomputers. In particular, the US DOE national
labs have several high-end HPC systems and so do major universities. Computer
resources are distributed, when considering the set of available systems. They are
not similar in terms of architecture and their components - such as memory, storage,
visualization, software stacks, etc. The idea was to enable HPC systems connected
via a network to jointly perform computational tasks. Conceived by Ian Foster from
the Argonne National Lab and the University of Chicago, and Carl Kesselman from
the University of Southern California, the concept was named Grid Computing , a
reference to the power utility grid with which it shared some conceptual similari-
ties of regulated resources ‘on the grid’ that can be arranged to be accessible by
consumers.

Grid Computing is the means to process a computational task as a coordinated
use of shared resources from systems that are networked but operate under different
administrative regimes. The targeted workloads are large-scale scientific computa-
tions that require tight coordination and synchronization in applying different types
of resources (compute, storage, visualization, etc.) that is greatly more demanding
and stringent than that of crowdsourcing projects.

Organizationally, interested institutes and individuals created the Grid Forum

232 � Unmatched: 50 Years of Supercomputing

in 1999. It became the Global Grid Forum in 2001 to include participants from
Europe and Japan, and in 2006 became the Open Grid Forum (OGF) after merg-
ing with a private sector group - the Enterprise Grid Alliance. the forum, in its
various incarnations, dealt with proposals and ‘standards’ for tools that enable grid
computing.

To help users of grid computing focus on the science and not the IT aspects,
Foster, kesselman, and Steve Tuecke (from Argonne Lab at that time) created a
non-profit service called Globus ([90]). When I met Foster and Tuecke in 2001,
while researching P2P, they articulated the Globus (and Grid Computing’s) mis-
sion as addressing interactive coupling of computers and smart instruments, dis-
tribution of computations among networked supercomputers (and even desktops),
and collaborative design in virtual spaces. To achieve these goals they defined pro-
tocols, and developed tools and libraries that offered resource management, data
management and access, application development environment, and data security
measures. Clearly, ingredients found today in Cloud Computing services. Indeed,
one of Globus’ partners is AWS (Amazon Web Services).

Now, some 20 years later, Globus emphasizes managing the movement and
sharing of data files and kit tools for development of applications and gateways.
Researchers in hundreds of institutes use Globus to deal with data, IT teams apply
its tools for storage access, and app developers use it to automate data workflows.

Foster and Kesselman narrate the history of grid computing in a recent paper
- see [91]. In some ways Cloud is simpler than Grid computing, especially since it
is contained within a single administrative domain.

HPC and Cloud Computing

Cloud computing was built on concepts and tools that had a strong imprint of and
from the scientific computing environments: Remote processing, virtual machines,
job schedulers, and more. But at its start its target users were not from the HPC
universe. The datacenters that offered cloud services included many racks of servers
with groups of them interconnected. They also largely ran Linux. But they did not
have the tight high-performance networks and components nor the software stacks
that are necessary for any serious HPC workloads.

The HPC ecosystem was never a static one. However, until the last 10-15 years
HPC has always been associated with specialized facilities that were not available
to the masses. But remote processing was fixture of HPC for many years. National
centers, government labs and universities, provide HPC cycles to thousands of re-
searchers; some of them globally. We saw that Grid Computing enables both remote
and multi-site access to HPC cycles.

Cloud computing borrowed and built on ideas and tools originated in HPC. Can
the HPC ecosystem benefit from Cloud computing? Can the ‘Cloud’ model be an
option for delivering HPC cycles?

HPC in the Cloud � 233

Let’s first consider the similarities and the differences between HPC’s Grid com-
puting and Cloud computing. Both deliver compute cycles to remote users. The big
difference is that Cloud delivers from a facility under a single management, where
as Grid established collaborative processing among multiple domains, allowing va-
riety of architectures. That means that in Cloud the job runs as it would run on an
in-house system (with only inputting the data and retrieving the results crossing
administrative regions). In principle, this is similar to a researcher submitting an
HPC job to a remote national lab’s system, which is the most common mechanism
of high-end HPC. Grid computing use is less common and involves breaking up the
job into major tasks - not necessarily equal tasks, but likely defined by function:
compute, data manipulation, storage, visualization.

Grid computing is distributed and decentralized. Cloud computing is based on
centralized client-server relationships. The Grid concept demands interoperability
support. The Cloud does not.

Differences aside, the Grid developers and HPC, in general, demonstrated, be-
fore there was Cloud, how to manage users’ request for resources and secure data
movements for remote access.

Cloud computing came about from the largely correct assumption that large
datacenters can deliver compute needs more economically compared with each user
or company acquiring their own systems. This model also saves the users having
to have in-house staff and expertise to manage such systems. It allows on-demand
processing while eliminating idle time of on-premise resources. And it offers a source
for periods of high demand, whether seasonal or unexpected, so the consumers don’t
have to maintain systems that are not fully utilized most of time.

Given the potential and real advantages of Cloud computing, it is reasonable
to ask if this model of delivering compute cycles and data handling can be applied
for HPC needs.

In fact, in some sense the HPC community was ahead of the Cloud providers.
Supercomputers, by definition, are far and few, and the scientists and public sector
researchers have to access regional or national computer centers remotely for years.
Still, a user has to belong to an agency or apply in advance, submitting a proposal
to get a budgeted access to such a facility. A number of agencies with operational
missions are having trouble at times providing timely cycles at moments of crisis
and high demand.

As mentioned above, initially Cloud providers built datacenters that were not
tailored for the tight high-performance requirements of HPC. With the increased
maturity of the Cloud delivery and configuration mechanisms, and that of the pri-
vacy and security during data transfers and execution in the datacenter, it became
clear that if parts of the resources were to be configured with clusters such as those
used for HPC then the Cloud model can serve this sector too.

Indeed, in the last few years public Cloud providers have been hiring HPC ex-

234 � Unmatched: 50 Years of Supercomputing

perts and constructing HPC-grade capabilities. We see that in the offerings of AWS
(Amazon Web Services), Google Cloud, Microsoft Azure, and Oracle cloud services,
to name a few. Now these Cloud providers offer ‘instances’ that are specifically for
HPC jobs. Within the Cloud ecosystem a new flavor of companies that help en-
dusers use the Cloud was created (Rescale is an example, but there quite a few
others).

That is not to say that Cloud is replacing the traditional HPC in-house (“on-
prem”) systems. As with most options we encounter, there are pros and cons to use
of HPC in the Cloud. Consider some of the benefits Cloud can offer to HPC users
and sites:

� Where there is an on-prem system, it can be kept just sufficiently large for the
regular load of jobs while occasional or periodical needs for timely processing
of beyond the in-house capacity being directed to the Cloud on a on-demand
basis.

� For small and medium size companies, a possible operational model is having
a modest system in-house for development a and testing and running the
full-scale production codes in the Cloud with its vast amount of resources.

� The scale of a Cloud provider’s datacenter allows it to track technology more
closely, more frequently, than the typical refreshment cycle of on-site system.

� The ‘instance’ in the Cloud can be tailored to the application’s need, where
as the on-prem system is optimized for a broader range of application types.

� There is likely to be cost-saving of expenses such as ISV software licenses,
data storage, and data access during execution when using the Cloud due to
its pricing negotiating power and features such as parallel file systems and
the per-use pricing of software.

� Cloud computing often makes possible access to IT-level of HPC expertise,
thus reducing level of in-house staff. This is especially relevant for the smaller
user entities.

There are potential cons, though:

� Cost: Creating on-demand HPC instances for just a short execution time will
make the per-compute-unit cost higher than it would be on-prem.

� Performance: Beware of the instance’s interconnect performance for paral-
lel jobs. Use of Virtual Machine to package a job with its special software
environment (from the home system) may also affect performance.

� Managing data: Moving data back and forth is time consuming and costly,
but so is keeping it at the rented space remotely. Optimizing the process is
no trivial matter.

HPC in the Cloud � 235

� Security: Commercial and governmental data requires more stringent security
measures when not on-prem. This adds complexity, cost, and risk.

The conclusion most organizations draw from all the above is that the Cloud
model has benefits and drawbacks. In other words, it should be use when appro-
priate. When an on-prem system is possible, or required, it is advisable to keep
the Cloud option available for some apps and/or some times. This is know as the
Hybrid Cloud computing.

C H A P T E R 26

The NCAR Models
Suite of Models for Research and Appl icat ions

Having described the momentous changes that occurred to HPC in the 2010s,
we now turn back to how HPC is applied. This chapter and the next are

dedicated to weather and climate modeling.

Funded by the National Science Foundation (NSF) the National Center for
Atmospheric Research (NCAR is located on a mesa above the Colorado town of
Boulder. The center was established in 1960 at the initiative of scientists from
departments of meteorology at some top universities who were concerned at the re-
duction in funding and interest in atmospheric sciences after robust activity during
WWII. They also realized that the complexity of the subject is better addressed
at the national level. NCAR’s stated mission was to address the fundamental at-
mospheric processes by assembling a large scale research facilities for this purpose.
It was to do so through an interdisciplinary approach not possible at a university
department.

The center has a long history with supercomputers. The list of flagship systems
at NCAR reflects the ups and downs of HPC system architectures and the com-
panies that manufactured them. From Control Data Corp. scientific mainframes in
the 60’s, to Cray Research vector processors through the mid 80’s, and massively
parallel Connection Machine in late 80’s early 90’s. An early cluster as a main sys-
tem appears in ’92 (by IBM). Another MPP-class machine, the T3D, from Cray
Research in ’94. A late representation from the mini-super era, a Convex system
by HP in ’97. Followed by SGI Origin and a distributed memory server-based from
IBM. This started close to two decades of several IBM systems - Power-based, in-
cluding BlueGene/L and a cluster with x86-architecure processors, with one break
of a Cray system (2010-2013) - also an HPC x86 cluster. Continuing with the same
genre of architecture, an SGI system was installed in 2017, shortly before SGI was

237

238 � Unmatched: 50 Years of Supercomputing

acquired by HPE1. And HPE will be delivering the next NCAR supercomputer in
2023 - this one a Cray design (see [92] and [93]).

NCAR offers a view of how weather and climate models have evolved, even
though, or perhaps because, it is not an operational forecast center. NCAR is a
research institute, and it does now much more than atmospheric research. It is
a choice institute for exploring the set of models and computational tools that
is needed to study the Earth System. We looked at WRF in some detail, but it
represents only a piece of the puzzle, and much of the development work has shifted
to more complex modeling systems.

There are four major models at NCAR ([94]):

� Community Earth System Model (CESM) - a global climate model

� Weather Research and Forecasting Model (WRF) - the robust model described
in Chap. 15

� Model for Predicting Across Scales (MPAS) - featuring a flexible hexagonal
mesh

� Whole Atmosphere Community Climate Model (WACCM) - modeling the
atmosphere up to the thermosphere (up to 375 miles above earth’s surface)

But that’s not all. There are several, more specialized, models at NCAR: Solar
Models for exploring the Sun’s impact. A variety of Water Models - land surface,
hydrological, water resource management, and some linked to WRF. Regional At-
mospheric Chemistry Models for exploring issues of air quality and its chemistry.

The scientific disciplines served by the NCAR models are categorized as Climate
and Global Dynamics, Mesoscale and Microscale Meteorology, and Atmospheric
Chemistry.

Here we bring personal observations and insights related mostly to MPAS and
CESM.

The core model’s development group of WRF has moved on and now focus on
model called MPAS (Model for Prediction Across Scales). The model was a joint
development project with the DOE’s Los Alamos National Lab (LANL).

William (Bill) Skamarock (who we encountered before - see page 134), a senior
scientist and section head in the Weather Modeling and Research division of NCAR,
is the lead scientist for MPAS. Skamarock got his start in weather models, in the
early ’80s, at Stanford University working on an adaptive mesh for a weather model
and running on the CDC Cyber 205 that was located at the navy’s research facility
in Monterrey, CA. He arrived at NCAR in ’87, and is still there. He talked to me
about what makes MPAS a modern weather code:

1As fate would have it, I joined SGI in time and for a role that had me deeply involved with
this acquisition by NCAR

The NCAR Models � 239

“In some ways MPAS is a continuation of WRF. WRF was designed as a regional
model. Its predictions are good for few hours to a couple of days. That was its niche,
and it’s a big niche. MPAS represents a better path to global model than WRF. This
is why we’re making the transition. If you look at the weather centers, their models
are getting now to grid spacing of about 10km. The centers also run ensembles to
get an estimate of the uncertainty, and those run at about 20km grids. The global
models are coming down to the scales that we’ve been doing research for the last
30 years, and we’re moving now to the cloud scale. In Japan, for example, they
ran their model at 900m (0.9km) spacing ([95]). This is a ‘hero’ computation, but
that’s is where it’s going. At our research community we’re trying to provide these
capabilities on the path from WRF to MPAS.

“My sense of what’s going on in NCAR: We’re trying to consolidate atmospheric
models. In particular, bring together weather and climate. Meaning, we want to
run a weather application inside a climate system. Right now, MPAS doesn’t have
an ocean model that it can be coupled to. And that’s becoming more and more
important, even for weather. ECMWF and the UK Met Office will soon be running
weather models that are coupled to an ocean model. They can show that it improves
the forecast. When you increase forecast days, this becomes important. Therefore,
at NCAR, we’re bringing MPAS into the Earth System model that has atmosphere,
ocean, sea ice, land ice, and lakes parts. With that we can do weather prediction
research within a single earth system model.

“MPAS is brought into the climate model - CESM (Community Earth System
Model). And the reason is that MPAS solves the non-hydrostatic equations. It
does not make the hydrostatic approximations, so we can simulate clouds. The
other dynamic core on the climate model is hydrostatic - which does not show
any vertical momentum. It assumes the atmosphere is hydrostatic, and, therefore,
cannot simulate convection. That’s why we bring MPAS to CESM. This way MPAS
get used in the context of a coupled model.

“Also coming is a new Chemistry model. It helps with air quality calculations. It
also helps with weather climate predictions because it is used for aerosol simulation,
cloud forming, radiation, etc. We can see the difference between simulating with
clear air and with aerosols. The model brings all this together - chemistry and air
quality, to the research community. What’s happening at NCAR is that he overlap
between the disciplines (weather, climate) is growing larger and larger.”

MPAS has “Across Scales” in its name. It refers to the fact that the horizontal
view of the grid (enveloping the surface of the earth) can have variable resolution.
The mesh is finer over regions where this will contribute to more accurate outcome
because of greater variability in that region. For example, transitioning from flat
plains area to a high mountains range will benefit from smooth refinement of the
grid. In the past weather models used grids that followed the longitude and latitude
directions, creating approximate squares or rectangles, ignoring topographical con-
sideration. This also caused unequal spacing as we get closer to the poles; in fact,

240 � Unmatched: 50 Years of Supercomputing

there is a numerical singularity at the poles. Modern grids are more complex, but
address the numerical instabilities. MPAS uses a hexagon-shape cells which remove
the unwanted asymmetry of the ’longitudal-lattitudal’ grids. Physical quantities
can be defined on edges between cells or at the cells’ center (See Figure 26.1).

Figure 26.1: MPAS Mesh Options. Left: Global uniform meas. Center: Global
variable resolution mesh. Right: Regional mesh. Source: Bill Skamarock et co.

As Skamarock explains it: ”The scheme allows for a different mesh density in
different parts of the globe. It is a static mesh. The other way to include varying
mesh is to do grid nesting. Starting with a coarse mesh, a finer mesh is created by
subdividing cells. In this case the transition from coarse to fine is abrupt. It brings
up all kinds of issues. In MPAS it is an unstructured grid in the horizontal and
the transition between cells is very smooth. So the problem associated with wave
refraction and reflection is minimized.

”With the MPAS scheme when the calculation moves to a coarse part of the grid
it gets absorbed smoothly. It does that better than nested grids would. Generally,
the fine part absorbs the computational errors from the coarse part and smoothes
them.”

As Skamarock point out, MPAS is a cleaner code compared to WRF. Impor-
tantly for today’s systems, it has a GPU version that funded by The Weather
Company, an IBM subsidiary. He predicts a bright future for MPAS: “Not for us to
say if it will stay a research tool or become operational. Maybe both. The Weather
Company is doing so right now.”

More on the role of MPAS and CESM in the modeling space:

“We are bringing the MPAS dynamical core into CESM. It is one of several
other dynamical cores in there: For the atmosphere, a spectral core, a spherical
harmonics one, and others. For each run you choose one of the cores available,
depending on the application. For climate we use the spectral elements core; for
weather - the MPAS core. Maybe in the future they will use MPAS core for climate
too. MPAS has a core for atmosphere, and another core for Ocean. And others
for land and sea ice. They all use the same horizontal mesh, share operators and
structures. The ocean model is used inside DOE’s climate model, called E3SM

The NCAR Models � 241

(Energy Exascale Earth System Model). They are using the MPAS’ ocean core and
also the land and sea ice core. DOE, for a number of reasons related to its mission
and priorities, branched out with their own climate model. They needed a separate
system. They still use the atmospheric spectral elements core that is in CESM.
They share components but not at the same repository, so the models will diverge.
However, the MPAS components sit in a shared repository used by NCAR and
DOE. It is an open repository shared by the developers.”

The story of WRF is an example of the broader questions of when and how a
research tool is transforms to an industrial-commercial operational tool, and if and
when it ends its life when more modern new tools are developed. In this case and
at this time, WRF is a research model that finds usages by commercial interests,
and was even used operationally in weather centers for regional forecasts. And after
20-some years its user community growth and research work continue unabated.

The development of MPAS has been going on for more than several years by
now. CESM has been around even longer. Yet, WRF’s user community is much
larger. The newer models have advantages - they are global models, use grids that
are better for the numerics and local refinements, etc. But WRF has not been
replaced and is still very popular with researchers and even operationally (see Roy
Rasmussen’s declaration page 135).

It appears that transition to newer models will occur in time, but it will be a
long process.

That said, the users are looking for more. The main requirements are for the
model to be global, and for it to describe the whole earth system, not just the atmo-
sphere. But the product has to be well tested and stable. As Rasmussen expresses
it:

“If I’m going to run a global model, I’m going to have to interact with the ocean
directly. CESM has that. MPAS doesn’t have an ocean coupling. That’s why they
want MPAS integrated with CESM. I’m waiting for it to happen and be well tested.
I’m on the user side so I’m waiting for it to be production quality. To be able to
see how it captures the snowfall in the Andes, for example. Maybe it’s close, we’ll
see..”

We now turn from the NCAR example to amore general look at how HPC is
enabling the modeling of the earth system.

C H A P T E R 27

Modeling the Earth System
The many facets of s imulat ions of atmosphere, oceans, land,
and ice

The role of HPC in weather forecasting and climate modeling is a prominent
theme in this book. Not only has this been the application area I was close to

for many years, but it is relatively easy, compared to other fields, to evaluate its
progress against advances of the HPC systems. The content of the models evolves,
more physics and chemistry is added, but the object they simulate - the earth -
remains constant.

Much progress was made from the early days of supercomputers when weather
forecasts for the next 2-3 days were run on coarse grids to high fidelity 10-14 days
forecasts on very fine meshes. From atmospheric-only models to atmosphere-ocean-
land ice-sea ice coupled models, and from near-term forecasts to long-term climate
predictions.

More concisely, the state of the art evolved from crude simulation of layers of air
to a very complex fine-mesh modeling of the whole earth system from the depths
of the oceans to the upper layers of the atmosphere. And the trend continues.

Trends in Weather/Climate Modeling

Much is known about how to improve the two main tasks of meteorologists and
climatologists:

� Achieve more accurate, detailed weather forecast for more days

� Generate high-confidence climate predictions with means to investigate miti-
gation and adaptations ideas for climate change

It is obvious that finer grid will result in higher accuracy (up to a point; see
later). And because the amount of computation goes up by an order of magnitude

243

244 � Unmatched: 50 Years of Supercomputing

when the horizontal interval is halved (the time-step is also shorten for numerical
stability and more vertical layers are added), while the forecast results are time
critical, this requires commensurate increase in computing power. Yet, the trend
continues, as we show below.

In fact, some global models now have fine enough resolution so that in areas
where the land’s features are smooth there is no more a need for a regional model
there.

Data Assimilation

Just as important is improving the initialization data for the forecasts runs. There
is an increased focus on data assimilation (as described in Chapter 4). The amount
of timely observed data has increased over time and the instruments improved. In
addition, the computation time given to the assimilation phase has gone up. Getting
better starting values involves computing the equivalent of several hours of forecast.
And since the data used has to be the latest possible, this has to be done as late as
possible. And, therefore, be computed fast, requiring high-end systems. Together,
more data and more data ‘massaging’ is a major contributor to the improved fidelity
of forecasts over a longer period.

It turns out that the reason the two big European weather centers, ECMWF
and the UK Met Office, have a better forecast accuracy record than other centers,
is that they do a better job on the assimilation. They predicted recent hurricane
paths better than the U.S. models1.

The data assimilation phase is getting more attention and prominence in the
workflow of weather forecasting. Here is how Bill Skamarock, from NCAR and a
developer of MPAS, describes its importance for severe weather situations, where
predicting small feature phenomena is critical:

“We’re not looking for a particular thunder storm. We’re looking to see if the
environment produces conditions for thunder storms that have tornadoes or heavy
hail associated with them. The model tells us that a thunder storm conditions will
exist in an area. It can tell us that for the next 2-3 days. The models are not looking
for a deterministic prediction of a phenomenon but at the statistic probability of it
occurring.

“A lot of people, NOAA and others, are trying to warn of severe storms 1-2
hours in advance. Success has a lot to do with the data assimilation phase. Looking
at the operational centers, the number of people working on assimilation is 2,3 or 5
times bigger than the number of people working on the atmospheric model. And the
amount of compute time put into assimilation is also very large. Data assimilation
is the most important part of the system.”

1Recently (as of early 2020) the US National Weather Center, NWS, moved to 4th place in its
fidelity of data assimilation. The model of the Canadian Meteorological Service of Environment
Canada is also doing better.

Modeling the Earth System � 245

Ensemble

Ensemble mode of running a forecast has picked up and moved from research to
production around 2010 and is ingrained by now in the major weather centers.
Reducing the interval between grid points and doing a better job on initial data
help the average accuracy of the model, but do not eliminate the risk of occasional
large divergence from correct values, due to the non-linearity of the governing equa-
tions, that can happen even when the input error is very small. The idea is to run
multiple copies of the model concurrently, with each member of the ensemble with
small changes to the initial data, within the known margin of error or uncertainty.
Investigations showed that extracting an outcome of the results produces a better
quality forecast. This true even though the ensemble runs a at lower resolution than
a single copy would run (consider that halving the resolution allows about 10 en-
semble members for the same amount of computations). For example, the UK Met
Office, in 2022, makes 17 perturbations to the analysis and, with the unperturbed
version, runs an ensemble of 18 members ([96]). Ensemble mode provides a ‘spread’
of outcomes, corresponding to the spread of inputs. It needs to be interpreted and
the techniques for doing so are still maturing. Some say this is still an ‘art’ (as was
said about ‘translating’ the set of raw numbers to forecast about rain, clouds, wind,
temps, etc.)

Skamarock observes that, often, the ensemble’s members don’t exhibit enough
spread. To remedy modelers resort to stochastic methods designed so the spread is
indicative of the actual error and correctly propagated over time. “It is an active
area of research. The spread is telling you something about the uncertainty. For ex-
ample, when tracking hurricanes and cyclones by looking at predictions of different
models, sometimes the paths are bunched together, sometime they’re all over the
place. This tells us about the uncertainty of initial conditions, and how it develops
over time. Within a model members exhibit a spread, but also when comparing
different models produces a spread. That is because each model has different error
characteristics, and combining them tends to give a better prediction.”

The spread and its underlying uncertainty result probabilistic prediction, which
adds to the difficulty of communicating a clear forecast to the public.

The ensemble concept is useful for climate modeling too where, because of the
much longer periods simulated, the uncertainties and possible divergence from a
single run can grow much larger and result in inaccurate predictions if not checked.

As an example, the climate lab at NCAR produced the ’large climate ensemble’
with some 50 members and simulated about 100 years. As expected, over the pe-
riod simulated the members all dispersed somewhat. But climate ensemble allows
investigation of interesting scientific questions of possible future scenarios. Where
as a weather forecast with much divergence it may be useless, for climate, looking
a broad averages, it would still be useful. Mathematically this is so because cli-
mate is a boundary conditions problem, not an initial value problem that weather
forecasting is.

246 � Unmatched: 50 Years of Supercomputing

Performance and Precision

In another example of history repeating itself the possibility of using single-precision
(32-bit) arithmetics is back. Recall (Chapter 5) that the UK Met Office opted for
single-precision, with its double compute rate, on its Cyber 205 in 1980. Though
single-precision is still applied in some models, most have been using 64-bit opera-
tions only. This is changing. In recent years, with the mergence of ensemble mode
of forecast runs, we see leading centers turn to single-precision. Doing so creates
memory space for more members in the ensemble, and even increased performance.
The European premier center, ECMWF, established that such practice comes at
no cost to the quality of the forecasts ([97]).

John Michalakes2, the WRF developer, talks about the need for faster comput-
ing elements:

“For operational models to have value the simulation needs to run about 150
times faster than real-time. The problem cannot be solved by more parallelism
only, since the time dimension will always be sequential. In addition, it needs to be
shorter when the spatial resolution is finer to maintain numerical stability. But we
can be smart about structuring the grid. For example, for a U.S. forecast it makes
no sense to put a very high resolution over China.”

The trend away from deterministic forecasts to ensemble allows adding ensemble
members for better forecasts. This operation does lends itself to perfect parallelism.
Of course, adding members can reach the point of diminishing returns. In addition,
we do need very high resolution for phenomena such as convection. That is the
tradeoff between high resolution and more members in the ensemble. A subject of
an active debate with the weather forecasting community.

Grids

As is the case with any other simulation of physical space, much attention is given
to the construction of the grid, or mesh, that defines the locations where value
are computed. In the early days the grid was formed along latitude and longitude
coordinates. This works fairly well for regional models that are not close to the poles.
For global models developers and numerical analysts had to go to great lengths in
dealing with the condensing of grid points as we get closer to the poles and with the
actual singularity there. For the last few decades the modelers constructed more
sophisticated meshes that required changes to the discretization schemes.

Skamarock explains: “What is driving the developments of these grids are two
things: One, to get certain properties in the solver. Conservation of certain physical
quantities (such as angular momentum), and the other consideration is how they
map to emerging architectures - GPUs, in particular.

2Michalakes wrote a recent review chapter on the relationship between HPC and weather
forecasting[98].

Modeling the Earth System � 247

Several models adopted a hexagonal grid. When drawn on a sphere representing
the globe it looks like a soccer ball (see Figure 26.1). The RIKEN model that ran
with a 0.9km resolution also uses a hexagonal mesh. Its dual mesh is also used. A
Dual grid is the one generated by connecting the centers of the original (longitude-
latitude grid is its own dual) grid. Connecting the centers of the hexagonal grid
results in a triangular mesh (such a grid is used by the German weather service,
DWD). The two dual meshes can be used within the same model, with some quan-
tities placed at the hexagon’s edges and some in its center (an edge of the triangular
grid).

Yet another ‘modern’ grid is the cubed-sphere. It is derived by taking a grid on
the surface of a cube and projecting it to a sphere, resulting in six curved faces.
This grid is used by NASA and NOAA, for example. One of the dynamical cores of
NCAR’s climate model, CESM, is used with spectral discretization, which can be
thought of as finite elements grid.

So, there are two competing issues that developers wrestle with: The accuracy
of the solution, and how well it maps to HPC architectures; that is, its efficiency. In
the literature you often see how fast the model integrates on the system. Accuracy
is often disregarded. The efficiency really needs to be the accuracy relative to the
cost. When you make a choice it should be based on the accuracy versus the cost.
And on the climate community that is often not the case. That is, in my view, a
question of applied math. But this is why one center runs one way, and another
takes another way, depending on how they weigh these aspects.

Related to grids and solution efficiency is the choice of numerical method for the
solution of the differential equations. In the introduction chapter I mentioned the
multigrid (MG) method where one cycles up and down several levels of coarser and
finer grids. It got my attention when Skamarock told me that “multigrid is making
a comeback” since I worked on adapting a multigrid solver to vector processors
in the early 80s ([99]) collaborating with the ‘father’ of MG, Achi Brandt from
the Weizmann Institute of Science in Israel. The reason, Skamarock points out, is
that scales nicely, whereas alternatives such as conjugate gradient methods do not.
Indeed, the UK Met Office uses MG in its Unified Model ([100]).

On Programming Languages

While Fortran is still the language of choice for the numerical simulation, the model
complexity makes it advantageous to make use of higher-level languages and tools
not written in Fortran.

An example, typical of other centers too, was given to me by Tom Clune, a
computational scientist at NASA Goddard, when we talked about Fortran in general
(Chapter 32):

“The next-generation data assimilation system, to be common to NOAA, NASA
and other agencies, has been written from scratch in C++ using templating. There

248 � Unmatched: 50 Years of Supercomputing

will be a large C++ layer at the top of our call stack. We are also seeing, because
of the increased importance of accelerators and the long lead time between Fortran
releases, that we are likely to start seeing other solutions to the ‘under the hood’
codes. For our dynamical core for instance, we are counting on a technology called
GridTools, a set of software libraries that comes out of the Swiss weather center -
MeteoSwiss.”

GridTools ([101]) uses C++ code and templating to recognize objects such as
stencils and is able to perform high-level optimizations such as fusion of loops. Its
next generation will be written in Python. With that it will be possible to write
computational kernels in Python and have those, basically, spit out templated C++
in the end for a variety of operations.

More Applications

There is an ever-growing versatility in how models and their derivatives are applied.
We should not think of weather models as only providing forecasts in our daily lives.
It is important to repeat here that there are numerous ways they are applied that
are mostly hidden from the public at large. Some examples:

One such area is their help for the renewable energy sector. Local, mesoscale
models are used to design wind turbines, as well as during their operations - giving
alerts and forecasts on local wind conditions. Similarly, specialized high-resolution
local models assist utility providers of solar energy by providing forecasts of cloud
cover.

Another emerging use of derivative models are those tailored to model waves.
They provide the means to predict surges from storms still distant from shore. And
they are used in the design of off-shore structures and alerts afterwards.

ECMWF and Earth System’s Digital Twin

ECMWF, the European Center for Medium-Range Weather Forecasts, has been a
premier weather center from its inception (introduced in chapter 5). I reached out
to Peter Bauer to learn about the current state-of-the-art in earth system modeling.
Bauer, previously the Deputy Director of the Research Department at ECMWF, is
now Director Destination Earth in ECMWF’s Programmes Department.

Bauer showed an interesting chart that ECMWF have been updating over the
years - Figure 27.1 below. It maps the forecast’s model parameters against the
measured sustained performance of their HPC system starting at 1984 and until
2018. The rate of sustained performance increase corresponds to the ‘24-months’
version of Moore’s Law. The chart extrapolates into the future to indicate when the
goal of 1km horizontal resolution might be reached. The starting value of 208km
interval on the surface and 16 vertical layers changed to 9km and 137 layers in 2018,
and the aspiration of reaching 1km and 180 layers by circa 2030.

Modeling the Earth System � 249

Figure 27.1: The progress in the degrees of freedom (vertical levels, grid columns,
prognostic variables) of the ECMWF operational global atmosphere model in

comparison to Moore’s law. Source: Schulthess et al ([102]).

The slope of increase in the delivered performance reflects more than just com-
puting with a larger number of grid points. Weather models evolve and more phys-
ical and chemical processes are introduced over time. In addition, finer resolution
allows simulation of fine-feature phenomena. Cloud resolving is an example of a
compute-intensive process that is important for a more precise local forecast. There
is a delicate trade-off calculus going on between higher resolution and the compu-
tational content of the simulation.

ECMWF’s mission, and it is in its name, is to provide medium-range (10-14
days) weather forecasts to its European member states. How about climate model-
ing? - Bauer explains:

“Weather forecasting is our mission indeed. All the member states were very
keen to assign a mission to us that is weather forecasting and actually medium range
weather forecasting. So it is not short range weather forecasting or climate predic-
tion. But over time these boundaries have blurred. Of course, if you do medium
range forecast, then you automatically do short range forecasting also. But increas-
ingly, we have extended even our medium range into the sub-seasonal and seasonal
timescales. Seasonal predictions are for up to 9 or 13 months ahead. And parts of
our model are actually used by others for climate modeling. For example, in the
European Consortium model called EC Earth the atmospheric component is nearly
identical with the the one we use for weather forecasting. In short, even though
ECMWF’s mission is not climate prediction, parts of our system are actually used
for it - by others. What we do, though, is climate monitoring, and that refers to

250 � Unmatched: 50 Years of Supercomputing

as re-analysis. Re-analysis is a way to use the data estimation system to perform
analysis of the existing state since we have observations that are needed for data
estimation. A forecast model is needed as well. The analysis is used to produce fore-
casts. But re-analysis is about using the same system to run a consistent analysis
with the same system over decades, even a century, to achieve a good climate mon-
itoring record of the past evolution of the climate. So that is not climate prediction,
but it is at least climate monitoring. These are the best records of past evolutions
of climate that exist today.”

The Integrated Forecasting System (IFS) of ECMWF is a suite of models tar-
geted and tailored for different purposes, referred to as components. The atmo-
spheric component, that which produces the daily forecasts, includes a 10-day high-
resolution model, a coarser 15-days ensemble, a coarser-still 46-days ensemble, data
assimilation model (single run and an ensemble), and seasonal forecasts - monthly
runs for the next 7 months, and quarterly runs for the next 13 months. There are
two ocean and sea-ice models, an ocean-wave component, and a set of re-analysis
runs ([103]).

The European member states have access to all of ECMWF’s raw data and
products. Most run ensemble systems for their local forecasts using ECMWF’s
output to determine the boundary values for their country’s forecast run in what
Bauer calls “a cascade of models”. There is a subtle point here: Even though the
statistical average produced by the ensemble is shown to provide a more accurate
forecast than any single run, that data averaging cannot be used for boundary
values of regional runs because it is not a physically consistent set of values. It is
not a deterministic evolution produced by a model. The member states can use
the center’s output of the high-res model, or, more typically, the output from each
ensemble member to make their own local ensemble-based forecast.

Asked about how weather modeling changed over time, Bauer highlights several
areas: “We have invested in numerical methods and in physical parameterizations.
As we increase resolution you also have to adjust the parameterizations. The pa-
rameterizations have to be adjusted to the scale of the distance between grid points.
We also learn more about the physical processes. We understand better how they
actually work. There is a constant cycling of research into operations where we try
to reflect the latest knowledge of how the physics works and implement that. Also,
in the last 10 years there has been a lot of progress regarding model coupling. We
used to run only atmosphere models. Increasingly, everybody is running global-scale
systems coupled to an ocean model because of the importance of momentum and
gases exchanged at the interface.”

The coupling, or integration, of models to better simulate the earth’s physical
reality does not stop there. Added are components that model ice over land and
over seas, and snow and ice sheets. And characterization of surfaces in terms of
vegetation and how it changes with the seasons, types of soil and the effect of
precipitation on it.

Modeling the Earth System � 251

ECMWF has been using spectral methods for solving the differential (Navier-
Stokes) equations. Where other centers moved to, or stayed with, grid-point stencil
discretization, spectral methods involved transformations to the frequency domain,
and then back to the spatial coordinates’ values. It’s been thought to be too com-
putationally expensive and that it’ll get worse with higher resolution because of
the global communication aspect in spectral domain solution process. But, Bauer
states: “But so far, with the combination of the spectral method and the semi-
implicit time stepping, we see that we can run quite high resolutions in the spectral
space with very large time steps, which make our model actually faster than any
other grid point model in the world today, even down to a kilometer spatial reso-
lution. The spectral method was declared dead many times in the past because of
its computational cost, but it seems that it’s actually quite efficient, at least in the
way we implemented it.”

Weather centers measure their model’s skill ; that is, how well it forecasts. It can
get complicated. Which quantity to measure by? at what location? how to average
over time in the day? There is a methodology agreed on that averages absolute value
of the error. The message from the findings is that accuracy improved over time,
and it can be measured. The combined contributions from observations, modeling,
and compute power leads to the “one day per decade” progress. If in the 80s we
had a certain (‘good’) level of skill at day 2 of the forecast, then 10 years later we
were getting this level at day 3. According to ECMWF we now get a good level of
skill with high-res model for 7 days of forecast, and achieve that level for 10 days
with the ensemble.

I asked Bauer to what he attributes the status ECMWF gained as the premier
weather center in the world: “There’s no silver bullet. ECMWF has been leading
medium range weather forecasting since we issued our first forecast, for over 45
years. It is the combined effect of investment in different areas and making sure that
the investments are applied very quickly.” He went on to list the top factors that
contributed to the center’s leadership status, emphasizing the institutional culture
of a significant research function and a quick turnaround of scientific findings into
operational skill:

� Data assimilation: Adapting quickly to data from new instruments and new
data types.

� Numerics: Aggressive with increase of grid resolution while maintaining stable
and efficient dynamical core.

� Physics: Constant improvement of physical parameterization and capturing
the effects of convection, turbulence, clouds, etc.

� Coupling: Adding ocean, ice, and land surface effects on weather.

� Computing: Always a top system relative to other centers.

252 � Unmatched: 50 Years of Supercomputing

The culmination of modeling the earth system is the creation of its digital twin,
a concept we saw in engineering and in life sciences. Indeed, such an ambitious
project is underway (of which Bauer is its director). Destination Earth (DestinE),
commissioned by the EU, is a partnership of three organizations: ECMWF, the Eu-
ropean Space Agency (ESA), and the European Organization for the Exploitation
of Meteorological Satellites ([104]).

By pushing the limits of climate science and computing the program’s goal
is to have, by 2024, the tools and building blocks necessary for constructing the
earth’s digital twin. It will support Europe’s Green Deal actions on climate change
and the environment. ECMWF will provide two digital twins: One on weather and
environmental extremes - for risk management, and the second on climate change
adaptation - for analysis and testing of various scenarios.

These ‘models’ will deserve the term digital twins because of their inclusion
of all of the contributing factors - atmosphere, sea, hydrology, ice, and land, and
so so at a level of resolution currently unattainable. An earth digital twin can be
applied in three temporal modes - learn and validate from the past, assess present
situations, and, of course, predict future changes (Figure 27.2).

Figure 27.2: Earth System Digital Twin: Revisit the past to understand change.
Monitor the present. Predict future changes. Source: Destination Earth project,

ECMWF.

AI Methods to Support Modeling

The field of weather and climate modeling is one of the HPC disciplines to adopt
machine learning techniques.

At the ISC, the annual European HPC conference, a 2021 keynote presentation

Modeling the Earth System � 253

by Xiaoxiang Zhu from the Technical University of Munich was dedicated to the
use of machine and deep learning methods to manage earth’s observation data. ML
became a necessary tool when the fleet of satellites of the European Space Agency’s
Copernicus program began producing hundreds of petabytes of data. To get an idea
of the scale of the problem Zhu explain that an area of 10x5km is represented by
about 50M pixels, each undergoing an intensive computational process which can
only be done with the aid of a high-end HPC system. The amount of data garnered
from remote sensors requires, and the available compute power allows, going beyond
classical neural networks and applying deep neural networks that are more complex
and include more layers, or stages ([105].

At NASA Goddard, the center for NASA’s climate modeling, they began to
introduce neural networks in the data analysis phase. Further out is the idea of
using AI methods for optimizing the physics columns in the vertical layers of the
model. This is still far out in time, but the center started to save models and data
for training an AI-type model.

This is but one example. Many other weather and modeling centers are intro-
ducing AI methods to their climate research and forecasting workflow.

Interviewed about their reactions to a report by the IPCC (see also below),
several HPC experts mentioned the growing role of AI ([106]). Rick Stevens from
Argonne National Lab touts its potential in the downscaling process, as well as
in interpreting both observational data and the model’s output. Thomas Sterling
opines that AI will assist in correlating atmospheric data to chemical processes
affecting climate dynamics.

Some researchers are going further than just augmenting the numerical weather
prediction (NWP) models with data mining and neural network techniques for bet-
ter forecasts, and ask if deep learning (DL) methods can completely replace NWP
([107]). The authors conclude that borrowing machine or deep learning methods
from other application fields is not sufficient in the case of predictions based on
weather data. However, they propose the research direction should be one that
starts with the weather as a big-data problem to which some DL methods are ap-
plied, discarding with the traditional flow of data assimilation, numerical modeling
and the output processing.

We are clearly not there yet, and maybe never will be. However, Stevens and
Kate Evans, the division director for Oak Ridge National Laboratory’s Compu-
tational Science and Engineering Division, see AI methods included in the model
itself. They see the future models as a combination of numerical simulation with
machine (or deep) learning which will result in lesser uncertainty and better under-
standing of the processes involved.

Auroop Ganguly, from Northeastern University in Boston, investigates climate
resilience (related to climate adaptation mentioned below). In the annual supercom-
puting conference in 2022 (SC22) he stated that the subject’s complexity demands
going beyond modeling and simulation and applying other methods: Physics-guided

254 � Unmatched: 50 Years of Supercomputing

ML and computer vision; probabilistic graph ML guided by engineering principles;
agent-based models guided by social science theories.

At ECMWF there is an active research into development of machine learning
methods with neural networks to emulate components of the numerical model,
such as the radiation scheme. The argument for this is that ML methods would be
computationally less expensive, both in number of operations and the ability to use
lower precision (see [108], for example).

Earth system modeling is a stage for one of the most impactful convergence
examples of numerical physics-based simulations and AI methods.

Climate Change and Society

One of this book’s main themes is the impact HPC has on society, through the
applications it is used for. Climate modeling is of these main applications, so it is
worth noting that there a segment of society that denies what science tells us via
HPC.

With all the talk about climate change and how to address it, we cannot avoid
mentioning that not only there is no full acceptance within our society that it is an
urgent matter. The issue has been politicized. Mostly in the US. In particular, there
are those who are skeptics or deniers of either that there is climate change, and/or
that human activities contribute to it. Roy Rasmussen from NCAR addresses me
when he tells this story:

“I hope you can explain to people the climate change issue. I stick to the science
and models. I had the experience with a Wyoming rancher, I said: ‘you listen to the
weather forecast every night; right?’ and he said: ‘No. I don’t believe to anything
the government says’ .. I was flabbergasted. The forecasts issued are excellent for
the next 2-3 days. You’re a rancher. Why wouldn’t you listen to it?”

Of course, it is even harder to make people believe in climate models’ predictions
about what would occur many years from now. Instead of starting with the future,
a convincing case can be made looking to the past. Validate the model by testing
it against known outcome, by simulating the last few decades, for instance. Test
it with and without processes and impacts of human activity and show that the
‘without’ comes out way off. Again, as Rasmussen explains it:

“I say to people ‘you see the weather forecast from weather models; I use the
same model to do climate predictions. Run it for 10-30 years, average the weather,
and that’s climate’. To validate, we run the model from some point of the past -
say 40 years - and show it predicts what we know happened. We use WRF over the
Continental U.S. (CONUS) for that. I think WRF is just perfect for the question
you posed. That’s exactly what I’m doing. I’m hiring post-docs to analyze the last
40 years. People also test models by removing the man-made impact and see the
predictions don’t come out right. They do the runs with and without industrial
pollution. We only get agreement when emissions are included. That’s probably

Modeling the Earth System � 255

one of the strongest arguments for climate change we have. By now people agree
there is climate change. But some say it’s a natural cycle. We know there are cycles.
That’s why we have to run multiple models to see there is a real signal (of other
effects).”

The Sixth Assessment Report (AR6) ([109]) by the Intergovernmental Panel on
Climate Change (IPCC) emphasizes that now climate change is much more clearly
upon us, and not a future prediction. This has impacted the direction research is
taking. It is a shift from mitigation only to an equal effort spent on adaptation -
there was a separate working group for each (the third was about the modeling it-
self). The difference between the mitigation and adaptation is beautifully expressed
by a saying attributed to Lord Nicholas Stern, Professor of Economics and Govern-
ment at the London School of Economics and Political Science:

“Adaptation is managing the unavoidable, and mitigation is avoiding
the unmanageable.”

Climate modeling continues to rely on access at-scale to the most powerful HPC
systems available. Not only for running existing models, but for basic-research level
of work to better understand processes in nature that could not be simulated be-
fore. And it turns out improvements in climate predictions require running climate
models in high resolution. This is not for a few-days’ forecast, but for simulating
decades or more. One of the main drivers for this requirement is clouds. Simulating
clouds is fine-feature phenomenon, and it is critical to understanding the impact of
rising temperatures. Cloud cover patterns are evolving with statistical temperature
changes. And clouds possess two opposing properties: They absorb heat radiation
rising from the earth’s surface, while they also reflect solar radiation. Working out
the fine-features physics and the balance between both processes is essential for
accurate prediction of future average temperatures.

As far as the society at large: The sentiment within much of the research com-
munity is that their job is to continue to focus on the factual and numerical findings
and explain the impact. Some feel it is not their job to ‘sell’ their concern to the
public; others contend they are the most qualified people to do so.

C H A P T E R 28

HPC, Cloud and AI for
Engineering
Engineer ing Adapt ing to Modern HPC

H ere we return to the more current state of affairs in the use of HPC for
engineering - in the automotive and aviation industries. This includes the use

of current modes of computational components and the inclusion of data analytics
and AI, as well as the development of driverless cars.

Computational Platforms

Sharan Kalwani explains why there is little to no use of GPUs by third-party
engineering software vendors:

“In the last five to eight years GPUs have become a permanent feature of HPC.
Not just because of the AI, but because they very good at math on a large number
of cores. However, there is a business wrinkle, which is why there aren’t many CAE,
CFD software apps taking advantage of GPUs. Most of these codes in the automo-
tive industry are now third party codes. The same is largely true of the aerospace
industry (but they do have their own transonic and supersonic codes because they
are very proprietary to their aerospace designs). GPUs are only implemented in
some of these companies, because of how the license fees are structured. They start
to become enormous when the GPU component is added to it. This is because the
use of GPUs would force a major re-write of the codes, an effort that the relatively
small software companies cannot afford without a substantial increase in the license
fees.”

The re-write of the codes for GPUs could have potentially be justified if the
application can then be executed at-scale - on many thousands of cores. But this
is not the case. The CAE codes don’t scale well beyond, roughly, a thousand cores.
In fact, most of the CAE licenses are for a single node.

257

258 � Unmatched: 50 Years of Supercomputing

The GPUs do have a role in the engineering domain. There are used, within
relatively small clusters, for graphics and visualization, as was the original role of
these devices.

As for Cloud Computing, legal and technical issues limit their use by the auto-
motive and aero industries. These have to do with intellectual property concerns.
Therefore, they rely on in-house computing capabilities. But, they do take advan-
tage of cloud computing for short periods of peak demand of computing or for
short-duration projects. Doing so cuts time-to-completion of the projects and is
beneficial to the business even when the cost of the remote processing is a little
higher than doing so on premises.

The economic argument for using cloud computing plays even for military con-
tracts. In 2021 Rolls-Royce were awarded the contract to provide the engine for
air-force bombers ([110]). They won by digitally modeling the (old) wing and pylon
with the newly design engine. In the process, James Ong from Rolls-Royce says,
it was the government that “ pushed us go to Microsoft Azure to establish this
government-approved cloud with its security features, to ensure all the requirements
will be met.” This anecdote is a testament to the advances made by public cloud
computing providers both in terms of high performance computing capabilities and
of data security measures.

Ong captures the trade offs caused by limited compute capability in the com-
mercial sector and their dependence on HPC: “whatever simulation we do, the goal
is we need to get a solution back in under 12 hours. So, many times we sacrifice
model size or accuracy by simplifying the model to accommodate this design cy-
cle. We need HPC to help us eliminate that barrier. High-performance computing
is certainly the key enabler to help us continue to reduce the time to getting the
design out of the door. That really is our vehicle.”

Aviation

Ong talked about the design of turbine jet engines in Chapter 14, and the challenges
of high-quality simulations of the CFD part of the design. The simulation capabil-
ities for the structures part of engineering are more robust relative to the state of
fluid dynamics. According to Ong, “We’re able to model the whole engine structure.
It is feasible to model every bit of the structure. The model we put together has
about 67 million nodes. Using the finite elements method this amounts to about
200 million degrees of freedom.” Five years ago it would have taken the team at
Rolls-Royce seven to eight weeks to get the results of the run back. Working with
the software vendor of LS-DYNA, they now use a much improved implicit-direct
solver implemented on a cluster, and able to get the simulation run done over night.

Indeed, in 2014 NASA commissioned a study of the state of CFD and a vision
as to how to improve matters. The report, “ CFD Vision 2030 Study: A Path to
Revolutionary Computational Aerosciences” ([111]) was authored by a team that

HPC, Cloud and AI for Engineering � 259

represented the relevant disciplines: Aircraft design and manufacturing, turbine
engine manufacturer, researchers and developers of CFD methods, software de-
velopment architect, and mechanical engineer. The findings, in the words of the
authors, “were obtained with broad community input, including a formal survey,
a community workshop, as well as through numerous informal interactions with
subject matter experts”. The report should be taken to represent the consensus
among the members of the CFD community, not just those of the named authors.

Here is an excerpt from the report’s conclusions:

“Despite considerable past success, today there is a general feeling that CFD
development for single and multidisciplinary aerospace engineering problems has
been stagnant for some time, caught between rapidly changing HPC hardware, the
inability to predict adequately complex separated turbulent flows, and the difficul-
ties incurred with increasingly complex software driven by complex geometry and
increasing demands for multidisciplinary simulations.”

We see that some 20 years after the first fully digital design of a commercial
airliner (verified via a physical prototype before going to production, as described
in Chap. 14), the CFD community is not satisfied with with the state of the art
concerning turbulent flows.

One of the major findings in the report is the observation that because the
hardware landscape is undergoing a paradigm shift in the form of heterogeneous
massive parallelism and new technologies, the application developers need to come
up with new algorithms that can take advantage of these new capabilities.

To address the CFD challenge for aerodynamics simulation, namely turbulence,
the authors determined that computational algorithms require major improvements
in numerics (solvers), error estimation, and discretization techniques. Related to
these items, and a necessary tool for addressing them, is the stage of mesh genera-
tion, the grid upon which the simulation is calculated. The mesh does not only have
to be locally refined (where turbulence occurs), but also adaptive, shifting as the
simulation progresses. The NASA report identified these topics as ones that have
not been sufficiently invested in.

Then there is the added concern of the ability to manage the much larger
amounts of data generated by higher resolution simulations, and analyzing data
coming both from simulations and experimentally. This is an example of the chang-
ing face of HPC we introduced in Chap. 24.

NASA and its partners are acting on the vision recommended actions. Turns
out there is a team, with close association with AIAA (American Institute of Aero-
nautics and Astronautics) that tracks the roadmap that was drawn in order to
realize the CFD 2030 vision, and report annually on its progress and status. They
are the “Roadmap subcommittee”. A 2021 update report ([112]) looks at the state
of the main technical domains identified for needed progress: high performance

260 � Unmatched: 50 Years of Supercomputing

computing (HPC), physical modeling, algorithms, geometry and grid generation,
knowledge extraction, and multidisciplinary analysis and optimization (MDAO).

For the HPC item there are goals (or, rather, needs) specified for CFD on mas-
sively parallel systems and for CFD on revolutionary systems (such as quantum
computers). For the former there is a gap of three orders of magnitude to bridge by
2030 which the authors consider very challenging, but not out of the question. As
far as quantum computing goes, in the words of the authors, “While progress has
been made in the field of quantum computing, this technology has yet to penetrate
into aerospace CFD.” The areas related to applying HPC - algorithms, grid gener-
ation, data management, and MDAO - appear to be on track to meet envisioned
milestones.

The 2014 Vision 2030 report sought to lay a path for revolutionizing aero-
sciences. That was followed by another NASA-commissioned study that resulted in
a 2018 report - Vision 2040: A Roadmap for Integrated, Multiscale Modeling and
Simulation of Materials and Systems ([113]), that is more specific and targeted
in its objectives. Pushing forward the concept of modeling all the components of
a system in a single, holistic, model, as we have seen with the earth system, the
vision is for a simulation that spans the scales from the exterior of the body, to the
structural aspects, and into the insides of the materials it is built from. Looking
ahead more than 20 years out, the authors - with input from many subject-matter
experts - envision these foundational changes:

� Integrated design of systems and material (disconnected today)

� Development stages seamlessly joined (segmented today)

� Common tools, methodologies and standards across the community (domain-
specific today)

� Material properties determined digitally (empirical today)

� Product certification mostly by simulation (physical testing today)

AI methods feature in the report as necessary participants in achieving the 2040
vision. For example, selecting an optimal solution from the mixture of considera-
tions and parameters for materials, manufacturing, and design will be done by an
autonomous agent. This is an example where AI tools are integrated into a complex
HPC-powered design flow.

The multi-disciplinary scope of aero modeling described by Vision 2040 is anal-
ogous to the digital twin idea encountered before as applied to life sciences, physics,
and weather/climate modeling. Indeed, at Rolls-Royce they invoke the termIndustry
4.0, for the 4th Industrial Revolution, to mark the dominant stature ‘smart’ tech-
nology applications have taken in the engineering sector. They refer to big data,

HPC, Cloud and AI for Engineering � 261

machine learning, virtual reality, and global connectivity, where digital twin tech-
nology combines them together to form a powerful tool. In their words, referring to
these technologies ([114]): “At their core Digital Twins are virtual replicas of phys-
ical devices, products or entities created by combining data with machine learning
and software analytics to create digital models that update and change alongside
their real-life counterparts.”

The digital twin continues to update through feeds of on-board sensors’ data.
Maintenance becomes less probabilistic-based, more deterministically timed.

Automotive and Manufacturing

We saw the role of HPC in the design of vehicles through applications in structural
analysis, fluid dynamics, crash analysis, noise and vibrations simulations, and more.
These days, while driverless cars are still experimental and under development, and
as an interim to fully autonomous vehicles, the automotive industry is investing in
what they call Advanced Driver Assistance Systems (ADAS).

The automotive industry is gradually implementing the tools that will eventu-
ally allow hands-off driving managed entirely by instruments. The main systems,
still driver-assistant, are lidar (laser-based detection system), camera, and radar
([115]). The development of the devices, that obviously need the highest standards
of safety and performance, requires HPC-level simulations. The virtual design pro-
cess that needs to capture such varied facets as temperature, visibility, weather,
traffic, surface conditions etc. can only be expressed as a multiphysics simulation
model.

Autonomous vehicles are not going to be ‘HPC systems on wheels’, even when
possessing a large amount of compute power when totaling the many processing
units scattered around the vehicle. And HPC is a means to its development.

Automotive and aviation are two prominent examples of where HPC is a critical
tool for the manufacturing sector. There are others. This broad area is commonly
referred to as Computer Aided Engineering, or CAE.

The U.S. Department of Energy created the Advanced Manufacturing Office
(AMO) that makes use of DOE’s HPC capabilities to accelerate innovation in man-
ufacturing processes, with emphasis on energy efficient solutions. The AMO can
point to success stories in several sectors ([116]). Examples include metal additive
manufacturing for light weight parts for aircrafts, aluminum casting that reduce
cracking, next-generation LEDs, energy-efficient process for drying paper pulp, im-
proving yields of converting molten glass to solid fiber, predicting behavior of light-
weight material for vehicles and aircraft, energy-efficient design of spray dryers, and
more.

All these gains are made possible with the use of the DOE’s National Labs
supercomputers.

C H A P T E R 29

Two Scientific Anecdotes:
LIGO, Fusion
The Invis ible Hand of HPC

There are numerous examples of how computing served as the third-leg of
science. Below are two examples - one of purely scientific interest, the other

with huge implications for society: Gravitational waves and nuclear fusion, and the
role of HPC.

LIGO and the discovery of gravitational waves

One of the most beautiful examples of how HPC helps scientific discovery has to
be the story of detecting gravitational waves generated by events such as a most
powerful collision of two black holes. Such waves were predicted soon after Einstein
published his general relativity theory. This was followed by decades of devising
and funding an experimental instrument to test the theory, then failing to detect
the expected waves, until complex and massive computations on supercomputers
narrowed down the search space and wave frequencies. It guided the design of
sensors-detectors for these elusive waves. And now we have a validation of the
theory and numerous detections of black hole and neutron star formations.

The project that brought it all together - an observational experiment, is known
as LIGO. It stands for Laser Interferometer Gravitational-wave Observatory. Its
main components were two antennas, one in Louisiana and one in eastern Washing-
ton state, tuned to listen to wave frequencies computed for events involved black
holes. Two sites were needed so analysis can eliminate any local ’noise’ and validate
the extraction of the extraterrestrial waves. 40 years in the making and over $1B in
cost (funded by the National Science Foundation), one day in mid-September 2015
a special wave pattern was recorded that produced a chirp sound. It corresponded
to two black holes colliding some billion light-years away (and that many years

263

264 � Unmatched: 50 Years of Supercomputing

in the past). It was a triumph of bold theoretical courage (yes, there were scien-
tists who were ’black holes skeptics’) and experimental ingenuity, aided by complex
computations that made the discovery possible.

John Shalf, the Computer Science Department Head within the Computational
Research Division (CRD) of the DOE’s Lawrence Berkeley Lab (LBL), worked on
the Fortran programming and the running of the code that computed the range and
signature of the frequencies of the gravitational waves that would indicate presence
of black holes. He recalls the exciting day when it all came together (for him):

“I was waiting for my flight when, over someone’s shoulder, my eye caught a
chart of wavy frequencies in a NYT article. It looked familiar. I suddenly realized
this is the signature pattern that our LIGO calculations came up with 25 years ago.
Sure enough, the article was about the LIGO experiment and recent observations.
I was excited and asked the guy - “can I get closer; I don’t want to freak you out”.
The observed profile was almost identical to the computational prediction. To me
it was pretty amazing. People think the computation is fast and we’re done. Well,
this was 10 countries, multiple institutes, over 5 years. It’s not like watching Star
Trek..”.

Indeed, the report published in Physical Review Letters included over 1,000
authors - all scientists who contributed to the findings. More on some of the key
physicists behind LIGO can be found in the article Shalf mentioned[117].

Figure 29.1 shows the computed and the observed wave forms.

Figure 29.1: Gravitational waves signature. Left: As recorded at Hanford and
Livingston, 2016. Source: LIGO, Caltech, M.I.T., Simulating eXtreme Spacetimes
project. Right: As computed by the Cactus framework prior to 2011. Source: John

Shalf et al.

HPC and the Demonstration of Fusion Ignition

At the closing days of 2022, the U.S. Department of Energy (DOE) announced
([118]) a major experimental achievement at one of its labs. Scientists at Lawrence
Livermore National Lab (LLNL) managed, for the first time, to perform a con-
trolled nuclear fusion ignition, meaning that more energy was produced than what

Two Scientific Anecdotes: LIGO, Fusion � 265

was put in to create the heavy hydrogen (one that has a neutron added to its nu-
cleus)1. A successful ignition, the theory says, at the right setup of materials and
environment, will generate a self-sustaining fusion accompanied with a continuous
release of energy.

The 2022 achievement is a big deal, even if only confirming the ignition stage
and far from a commercial volume application. It is the first time, after more than
60 years of trying, that the theoretical hypothesis was confirmed by experiment.
The research and development that led to the recent success involved lasers, optics,
materials, and designs of experiments. It also involved computer simulations on su-
percomputers. The importance of HPC in the fusion-ignition achievement cannot
be better stated than by how Brian Spears, a principal investigator at the Na-
tional Ignition Facility (NIF), put it ([119]): “Our laboratories have two pillars of
excellence, in simulation and high performance computing, and in large-scale ex-
perimentation, and with this, the net result was just a fantastic demonstration of
what HPC can do for us.” Since 2009 the NIF team has run hundreds of thousands
of simulations that informed the experiments, with success finally at hand.

There is a side story here of another example of how AI assist in the transition
from simulations to experiment. The NIF team developed a cognitive simulation
model - one that simulates human problem solving and mental processing, where
the input was the data from prior experiments, to create experimental predictions
that informed corrections to the simulation models.

While providing a new capability for the DOE’s mission of Stockpile Steward-
ship, for the rest of us the fusion ignition milestone is a promising step towards
deploying fusion as a source for clean energy and the corresponding reduction in
the use of carbon-emitting sources of energy.

1Fusion is nuclear-level process where a heavier nucleus is created by fusing two lighter nuclei.

C H A P T E R 30

The COVID-19 Campaign
HPC and the Fight Against the Coronavirus Pandemic

Most of this book was written in the midst of the worldwide COVID-19 pan-
demic. Many of the institutes owning HPC capabilities, whether their mission

included life sciences or not, made it their high priority to make their system and
personnel available to the search for a vaccine, and perhaps a cure, for COVID-19.

Indeed, as early as the first half of March 2020 all around the HPC community
people asked “How can we leverage the nation’s and the world’s most powerful HPC
capabilities and resources to accelerate understanding and the pace of scientific dis-
covery? And, how can we provide those resources to help COVID-19 researchers
worldwide to advance their critical efforts?” The answer in the U.S. was the cre-
ation of The COVID-19 High Performance Copmuting Consortium. It was set up
within days as a partnership between the public sector (U.S. government Office of
Science and Technology, DOE, NSF) and the private sector (IBM) offering a single
point of no-cost access to computing resources and technical support. A process for
submitting proposals was quickly established, researchers applied - often dropping
what they were doing before, and HPC facilities prioritized resource allocations to
the fight against the pandemic.

More organizations and institutes joined the effort. Among the early ones were
Rensselaer Polytechnic Institute, Microsoft, Google, Harvard Medical School, MIT,
Amazon’s AWS, and NASA. And, of course, the DOE national labs and NSF-
sponsored HPC facilities. It is estimated that already at the start of the consortium
more than 300 petaflops were made available to its projects.

It did not take long for the membership to grow to over 40. Members came
from academia, industry, government agencies, and software companies. And it
went international with member organizations from Korea and Japan, as well as
collaborations with initiatives in Europe and Australia.

There were over 100 projects funded by the consortium. They cover several

267

268 � Unmatched: 50 Years of Supercomputing

aspects of the response to the spread of the virus. Here are some notable achieve-
ments:

Treatment of the disease (COVID-19). Molecular-level simulations of how the
virus’ (SARS-COV-2) interacts with membranes. Chemical synthesis of over 300
assays delivered to researchers resulting in 20 showing potency against the virus.
Predicted compounds passed on to experimental teams led to discovery of inhibitors
to viral protein with a couple entering clinical trials. Predictions from some 35
billion simulations of the effects of combination of drugs led to 10 drug pairings
predicted to target the disease. Simulation model of airflow in ventilators enables
splitting a single ventilator across several patients allowing for their varying needs.
Analysis of differences of gene expression among patients helps plan their treatment.

Spread of the virus: Modeling and analyzing potential mutations of the virus and
how they will impact test, vaccines, and treatment. COVID-19 transmission model,
for California, that forecasts hospitalizations, ICU beds, and mortality. Simulations
of aerosol transport that include turbulence resolving at classrooms helped planning
re-opening of schools.

Improved diagnostics: Development of new version of the gene-editing CRISPR
to be better identify viral genetic material.

Among the lessons learnt from the consortium experience, that turned into a
recommendation, was the need for a National Strategic Computing Reserve.

The more complete story of the consortium’s history and accomplishments can
be found in ([120]).

Crowdsourcing was described earlier as sharing some of the technologies that led
to grid and cloud computing. Some of its applications are HPC-class in reach even
when not tied to HPC-class systems. The methodology came in useful in the war
against the coronavirus. one such project, named COVID Moonshot, was initiated
in March 2020 (contemporary to the formation of the consortium described above).
Its open-science premise and sharing of genetic information of the virus aimed at
accelerating of finding anti-viral therapeutics that cannot be patented. In less then
a year there were some 14,000 compound designs, and the project transitioned to a
collaborative drug discovery mode. Candidates for clinical trials were identified by
2022. When the need arose for large system for simulations it was the The COVID-
19 High Performance Copmuting Consortium that provided the machine time on
supercomputers.

Another crowdsourcing project, the Folding@home Consortium (mentioned in
Chapter 25), joined the ‘COVID war’. They applied the protein-folding simulation
software to the virus, to gain understanding of how the viral proteins work and,
from there, how to design therapeutics to stop their invasion.

There are many more examples across the world of how HPC facilities and
people came forward to help society in a time of crisis - the coronavirus pandemic,
in this case.

VI
Wrap Up and Outlook

Some HPC Themes and What the Future Holds

269

C H A P T E R 31

P is for Performance
The metr ics, the debates, and its importance for HPC

Chapter is not complete:
Benchmark section - not complete
Last Section - not done

P erformance, or rather, high performance and how to achieve it, is a central
theme in HPC. Some would say it is the whole point of the HPC enterprise. For

as long as there were computers, and especially supercomputers, there were claims
and counter claims about which system is the most powerful for its time. True,
in our competitive commercial world there was the ’bragging rights’ motivation.
Setting this aside, it is nonetheless useful to have some metrics that would enable
measurements to ascertain which system is best suitable for a certain workload. It is
useful, and not just for procurement purposes, to quantify performance differences
between systems. Whole books could be, and were, written on the subject. Here I
will touch on some aspects of how the performance concept plays out in HPC, or,
indeed, in the world of computing systems.

Performance Has No Universal Units

Performance in the context of HPC is a nebulous concept. Intuitively, and quite
naturally, if a code runs in a shorter time on one system than on another, we would
say that the first system performs better (on this specific code). Similarly, we would
say that a higher performance was achieved when a run finishes sooner after some
code modifications on a fixed system. So, we can say that time-to-solution is a
possible measure of performance, with values expressed as units of time.

Any single measurement of performance cannot stand alone for it to be useful.
It is qualified. It only applies to the specific code, or some mix of codes, used
for measuring it. When comparing two systems based on such a timing test, we
need to look at the resources applied in each case. This can be generally seen as

271

272 � Unmatched: 50 Years of Supercomputing

a comparison of the systems’ sizes. Or, more commonly, comparing the cost of the
systems, and then normalizing the measured timings against a cost unit. This is
the price-performance (PP) metric. It would make it a more valid comparison than
just the timing data. But it does have its limitations. Consider two environments:

The workload consists of a mix of many jobs, none of them very large. One
solution is a single large system. The other is made of multiple small systems. The
latter would have a better PP value because of the integration and interconnect that
make the large system what it is. What the organization gets with the single large
system is more flexibility and ease of managing the job stream. A scaled-down
sample of jobs determining the PP value is not, by itself, helpful for a selection
decision.

Another environment has a workload that includes one or more mission-critical
jobs that can run in a reasonable time, or at all, only when taking all of the large
system’s resources. Here the PP comparison makes sense only between systems of
roughly the same size. Thankfully, this condition is satisfied in most HPC procure-
ments. There are cases when the performance of a critical job is of such importance
that the system with the shorter time-to-solution will be chosen even when its
price-performance ratio is worse.

(more on that in the ‘Benchmarks’ section below.)

The bigger point here is that timing alone is of limited use. It applies only to
workloads that have the profile that closely models the test measured. It is not
a universal identifier of the system. A different timing test is likely to result in
a different conclusion about the performance of the same two systems compared
before.

A question I will address below (in the last section) is whether it is possible to
create tests that will represent something like an ‘average’ HPC workload - at least
its numerical simulation characteristic.

All of the above, while well recognized within the HPC community, did not
negate the desire for a simple (and oversimplified) single-figure to rank systems by.
It is known as theoretical peak performance (TPP) and stand for a calculated value
of the most floating-point operations per second (generally, in 64-bit arithmetic)
the system can perform if there is no delay of waiting for data and while employing
all the add and multiply arithmetic functional units available.

The TPP is a relatively easy figure to calculate for any given system. It is also
quite misleading as a measure of performance. We could, for instance, figure out
the memory bandwidth of the system and use it instead. In fact, as it turned out,
for many HPC applications the limiting factor, and bottleneck, for performance is
memory bandwidth. Therefore, it would make sense to rate a system by the memory
metric. But that would be a non-representative metric for other applications, though
perhaps less so than the TPP figure. It could be said that the memory bandwidth
is not adequate because the focus was on arithmetic, which produces results we

P is for Performance � 273

look at. But a memory bandwidth score is a better indicator of systems’ relative
performance of HPC codes.

To wit, it is very common for a production code to run at the range of 5-
10% of TPP. This is a fuzzy figure, and arguable overly optimistic. The statement
requires a fairly accurate count of the floating-point operations executed during
the run. Or, at least, an estimate that relies on an operations count of a heavily
used kernel - such as the solver part of an application. But there is at least one
solid data point; or rather, a set of points. The Top500 site added an optional test
to its better known linear algebra (HPL) test. It is called the High-Performance
Conjugate Gradient (HPCG) benchmark (see also the Benchmarks section below),
and represent a more realistic form of a solver - one that requires sparse algebra
calculations and is memory intensive. None of the top performing HPC systems in
the world can achieve a flops count on this test that is above 3.6% of TPP in 2021
(check [2]).

Another metric of performance that is receiving much attention in the last 20
years or so is related to power consumption. Facilities of large systems are now often
optimized for power. There are limits on how much power can be delivered to a site.
And there is a cost aspect, of course, and environmental considerations. Calibrating
the CPU clock speed is one way to optimize for power. For a given fraction of reduc-
tion in power consumption, the performance loss fraction is smaller (the relationship
between power and performance is one of exponential vs. linear). For memory in-
tensive codes somewhat slower compute speed may hardly change the run’s time
to completion. In fact, the Top500 site mentioned before also keeps a list they call
the “Green500” which ranks the top systems by their ratio of gigaflops/watts when
running a standard test.

TPP numbers provide a simple indicator of the size of the system. But it is of
little value in comparing how systems do on actual applications. When comparing
two systems a higher TPP is no guarantee of a higher performance for codes of
interest. We see that compacting the performance discussion to the count of of
theoretically possible arithmetic operations says very little about the computational
benefits the system delivers on applications of interest. That said, the systems
ranked high by the flops count still do run jobs faster than systems with lesser flops
count, and are able to execute larger jobs. Even when not in the most cost-effective
manner.

It should be noted that while computer architects recognize the singular impor-
tance of a system’s memory bandwidth, increasing it is much harder than adding
more compute power. Technology allows scaling of compute speed at a rate that
far exceeds that of increasing memory bandwidth and reducing latency. The hope
has always been that software will lessen the efficiency gap through innovative al-
gorithms and code optimizations. Much of the HPC community is engaged in this
enterprise.

274 � Unmatched: 50 Years of Supercomputing

Speedup Through Concurrency

The performance topic can also be viewed via the concept of speedup. Hardware-
based speedup in the early days of HPC was mostly ‘generational’ - applying faster
and denser circuitry to the next-generation single processor system. Speeding up
a single CPU has run its course when it hit the power and heat barrier. Prior to
that the rate of speedup from denser circuitry has slowed down, and the architects
started to resort to increasing the number of functional units and the processors.
Parallelism at the system level (multi server nodes) and concurrency within the
CPU chip (multi-core) became the main avenue to raw hardware speedup.

We saw how Amdahl’s Law is used to estimate the potential system’s speedup
when some components are sped up and some are not (see page 38 where it was
applied to vectorization):

Speedup =
1

(1 − f) + f
s

The formula was also applied to when a portion of the code can be parallelized.
One limitation of the expression is that it applies to a fixed-size problem. In practice,
quite often the purpose of a newer and bigger system is to run a bigger size problem
of the same application. For instance, when the larger dataset problem run on a new
system at the same time the smaller size problem executed on a previous system,
we can look at the ratio of the datasets sizes as a speedup factor.

John Gustafson, at the DOE Sandia Lab at the time, addressed the theoreti-
cal estimate of speedup in parallel systems where the problem’s size is allowed to
grow with the number of processors. The article “Reevaluating Amdahl’s Law” was
published in 1988 ([121]). The new speedup formula, with the number of processors
explicit in it, is now known as Gustafson’s Law :

S = s + p ∗N
where S = Speedup of the whole program,

s = Fraction of the execution time done serially,

p = Fraction of the execution time done in parallel,

N = Number of processors,

and s + p = 1

The expression above has the number of processors as an explicit parameter.
Implicitly, it assumes that when N changes the performance of each processor does
not. The assumption is correct when the amount of work given each processor is

P is for Performance � 275

constant, which is the case when the problem size scales with N . The serial part,
s, is a constant for the application, and is assumed to be not dependent on N ,
and therefore independent of the problem size. This is often a correct assumption
for numerical simulations, where the solver can be parallelized and s represents
initialization setup that is not concerned with the size of the datasets.

Gustafson’s Law applies nicely to cases where the users wish for more detailed
solution that is achieved with higher resolution of the discretized grids. This is
certainly the case for weather forecasting models, auto and plane design, and more.

The case of fixed-size problem speedup, covered by Amdahl’s Law, is often called
strong scaling . When the workload at each processor remains constant, the speedup
as described by Gustafson’s Law is referred to as weak scaling .

The ideal case of parallelism relative to a single processor is a speedup that is
equal to the number of processors in a parallel system. Or so it would seem. In fact,
there are cases where we can do even better than the supposedly ideal best-case.
This phenomenon is called Superlinear Speedup. How can this be possible?

To understand superlinear speedup we start with the reminder that when nodes
are added resources other than CPUs are added. The memory isn’t just propor-
tionally larger. It is also distributed. The interconnect often has more paths per
processor. The total amount of cache memory also multiplied. These resources can
assist in gaining extra performance.

The cache item is significant for memory intensive codes and fixed-size problem
(or where its size grows less than the increase in the number of nodes). When each
processor gets less data to process, more of the data (all of it in the extreme case)
resides in a cache for relatively longer period of the execution, eliminating much
wait time for RAM memory access.

Distributed memory, with its independent memory banks, reduces wait times
for problems that would hit on data elements sharing a memory bank.

A more robust interprocessor network can reduce congestion of data exchanges
by providing relatively higher number of alternate paths.

We should not forget the case where a new parallel version of a code is done
optimally, but the single-processor version used for base-timing has not been im-
proved.

Superlinear speedup does happen; but rarely. Typically, for a fixed-size problem
and a modest level of parallelism. When it does it also has to make up for overhead
introduced by parallelization, such as communication and exchange of data between
processes.

Performance as an Optimization Process

Performance as discussed so far applies to reducing execution time of a single code.
This is certainly the right methodology when considering a critical production code

276 � Unmatched: 50 Years of Supercomputing

- a weather forecast application in a weather center, for example. In particular, the
single-code optimization approach is necessary for the class of applications known
as Grand Challenges. These are problems that are both deemed very important
for progress in their respective fields, and that addressing them computationally
stretches the capability of current systems. Such problems are often called out
when making the case for the next generation of supercomputers.

There is another way to think of performance. Optimize the productivity of the
system; not that of an individual code. Most institutes, even those with a mission-
critical code or two, have periods where a the system has to process a mix of
user jobs. The metric for performance now becomes the ability of the system to
process more of these jobs in a given time period. This is referred to as Throughput
Performance.

Of course it is still desirable that individual jobs run fast, but now the consid-
erations are different. Consider a case that when doubling the resources for one job
it will run 50% faster. Very nice for the single job, but it is very likely that the
system’s throughput will be higher of those additional resources were used used to
run other jobs, even when the single job completes later that it would have had if
given more of the system.

The central mission of a computational facility defines its performance met-
ric, and the staff would employ optimization strategies to address it. It would be
algorithmic, coding, software libraries, parallelization, and compiler optimizations
for the organization’s mission-critical application. Or, it would be a focus on job
scheduling and managing workload techniques when the goal is to optimize through-
put. In most real-life situations the compute environment is a mix of the two. The
facility may schedule periods when the single-app performance is paramount, and
when the system is optimized for throughput. It may associate relative weights to
the conflicting performance targets when selecting a new system and when assigning
resources for improving performance.

As a practical matter, there is an argument against pushing the optimization
of utilizing the system resources to its limit. Smooth operations benefit from some
excess capacity. Unexpected critical demand and failure of some components can
be handled with less disturbance to other jobs.

The considerations above apply to the system after it is handed to the users
and the support staff. However, the performance campaign starts before that. It is
a given that that HPC systems are designed for performance in the sense that they
employ high-performance components - CPUs, memory channels, memory DIMMs,
large memory systems, accelerators, storage and file systems, and high-bandwidth
low-latency interconnect. The optimization process here is putting together these
components such that the facility’s workload runs on it efficiently in the sense of
minimizing bottlenecks that hold up execution speed. Quantifying the performance
is done by benchmarking and is done within the constraints of cost and power
consumption (see below).

P is for Performance � 277

There are situations when facilities have to optimize their power consumptions.
One strategy, as noted above, might be to set the CPUs clock speed at a lower level
than the maximum possible and to not allow burst rate when this option exists. If
such an environment is desired permanently then the organization would also save
on the cost of the system by purchasing a slower variant of the CPU.

One interesting form of optimizing for performance is to find the ‘sweet spot’
between the job’s execution time and the resources it used. For example, when the
memory bandwidth cannot keep up with the compute speed it is possible to deploy
less CPUs without affecting (much) the time to solution. In this vain, here is an
anecdote as told by John Gustafson:

“I heard the following from AMD: They use supercomputers for fluid dynamics
simulations to model turbulence in the Formula 1 race cars, how well they corner,
and so on. Now, all the things in Formula 1 have specifications and limits. The
car can’t weigh more than this and other mechanical constraints. And one of the
limits is on the peak flops in the supercomputer you use. So AMD took one of
its multicore processors that had eight cores, they turned off seven of the cores.
And it still had all the memory management units and all the bandwidth going
into the chip. But now the peak speed was down by a factor of eight. It barely
hurt the performance at all, of course, because all microprocessors are starved for
operands, especially when they’re doing computational fluid dynamics. And so, that
allowed them to put eight times as many processors in their system (each with one
operational core). And they got a very high fraction of peak, because now they
achieve system balance.”

We can think of the HPC performance issue in terms of an analogy to cars and
driving. The car manufacturer produces hardware optimized to a mix of perfor-
mance and safety, with some parameters that can be tweaked by the driver. The
car’s performance and handling are set until they are changed. These are analogous
to CPU and OS and libraries settings of the HPC system. But, then, the driving
experience is also affected by the driver’s skill. Similarly, the programming skills
of the enduser - how well the code is structured to allow the compiler to better
utilize the resources available, will determine the application’s performance. Both
activities involve tweaking what one is given and exercising the skills one possesses.

The Efficiency Metric

When concluding, above, that the theoretical peak performance (TPP) is usually
of little use by itself, we noted that most HPC codes perform in practice at a very
small fraction of that “not-to-exceed” figure. But perhaps this TPP measure is still
useful in conjunction with additional information. The most common application
of this idea is the metric of efficiency. That is, the fraction or percentage of TPP
that has been actually achieved by an application or some workload. The efficiency
metric is a useful starting point for drawing conclusions about the fit between the
code and the system.

278 � Unmatched: 50 Years of Supercomputing

Whereas TPP is an easily calculated value, getting the actual flops performance
of a run requires some careful attention. We need the floating-point operations count
of the run and the execution time in order to derive the efficiency. The ‘floats’ count
can be sometimes estimated to a close approximation if most of the execution time
is spent in a solver or a small number of loops. A better approach would be to
invoke a performance monitor tool that counts executed instructions and groups
them by type. And then run the application without the tool to get timing without
the tool’s overhead. For many codes this would provide a reliable measure of the
efficiency as understood here. But there are cases when different datasets result in
very different execution paths, and, therefore, in possible different efficiency values.

Whether the efficiency measure meets or exceeds or fails to meet some ex-
pected value depends on several factors: Does the balance between system attributes
such as computational speed, number and type of functional units, memory band-
width, interconnect latency and bandwidth, I/O performance, etc. match the char-
acteristics of the code? Is the code optimized (vectorized, parallelized, instruction-
scheduled) for the system?

In other words, is low efficiency due to the fact that the system was designed for
applications of different profile than the one examined, or because the programmer
failed to extract all that can be had?

Another source for uncertainty is the expected efficiency itself. It is hard to
profile an application accurately. It is not just the operation counts, or the memory
bandwidth, or the communications requirements, but how they all interact and
overlap.

With all that said, an efficiency number, if done half decently, is still a more
constructive measure than a performance value that states the average flops rate
of the job. Given the calculated peak computational performance the efficiency
measure provides a quick answer as to whether one should look for optimizations
opportunities, be them code changes, compiler options, choice of libraries, or even
changing the numerical algorithm or the datasets structure.

There is another measure of efficiency that is of particular interest in today’s
computing: the efficiency of parallelism. It is a measure of how much is gained
in speeding up the time to solution when adding processors (nodes) to a parallel
application. This efficiency metric is applied almost always to a fixed size problem
(though Gustafson’s Law that stipulates increasing the problem with the number
of processors can also be tested by varying N in the formula). Users have the
problem size (dataset) they wish to run on a large system. For jobs that may
run many times it is useful to determine an optimal level of concurrency. If, say,
doubling it results in a speed up of 5%, then perhaps this would be a wasteful use
of resources. For 50% gain it may be tempting to go with the larger configuration.
This process corresponds to Amdahl’s Law, and if the time spent in the sequential
portion of the code is known, then one could figure out the concurrency cut-off
without experimenting.

P is for Performance � 279

When we talk about efficiency and ’waste’ of resources we need to consider
the human factor too. Take the cost of person’s time and the costs of computer
hardware and its operations 50 years ago, and compare them to present time. The
computing costs has gone by a factor in the millions. The professional’s time is
now worth orders of magnitude more. So having resources underutilized is worth
it if their availability on-demand increases people’s productivity. Back to the car
analogy, Gustafson reminds us, that we often drive alone in cars that can hold
several passengers. He also notes that at any moment most of the grand piano keys
are sitting there idle when music is played. We should look at computer resources
the same way.

Mathematicians’ Contributions to Performance Gains

The question of how much of the performance advances in HPC came about not
just from hardware technologies and computer architecture, but from innovation in
numerical algorithm is not an easy one to answer. Attempts to quantify the con-
tribution of new and improved algorithms to performance are open to some level
of subjectivity and selectivity in what is presented. With that in mind, one such
study was done in 1991-92 by the High Performance Computing and Communica-
tions Working Group reporting to the Committee on Physical, Mathematical, and
Engineering Sciences of the Federal Coordinating Council for Science, Engineering,
and Technology ([122]). The working group was made up of over 20 highly respected
individuals from some 10 U.S. Government agencies with stake in HPC. Its main
thrust was the Grand Challenges of HPC - those applications that are critical for
the well-being, progress, and security of our society, and that are hard or impossible
to execute well on the then-current supercomputers. Part of the analysis involved
the algorithms and their impact on performance - the aspect explored here.

Fig. 31.1 is a visual presentation of the working group’s findings. The curves from
the hardware-derived speedup and that of the speedup derived from computational
methods over 20 years look similar. But they are drawn on a logarithmic scale,
and, in fact, whereas the hardware curve shows a factor of 1, 000-fold speedup,
the algorithmic curve is shown to have improvements that add up to a speedup of
3, 000.

280 � Unmatched: 50 Years of Supercomputing

Figure 31.1: Performance Improvement for Scientific Problems Due to Hardware
and to Computational Methods. Source: Grand Challenges: High Performance

Computing and Communications. Office of Science and Technology Policy. 1992.

The message conveyed was that numerical algorithms and computational meth-
ods contribute to speedup over time at least as much as hardware technologies and
innovations. The authors did not provide information about how the chart was
constructed. There are reasons not to take the data points as definitive.

Consider the hardware chart: The speedup according to TPP from 1970 to
1980 is more than 30x (from the CDC 7600’s 36 megaflops to Cray XMP’s 800
megaflops). By 1990 we had a vector processor (Cray C90) at 16 gigaflops TPP.
Memory improvements were slower than for the computing speed. It looks like the
hardware speedup for that period was less than half of what is claimed. (The rate
of hardware speedup has increased from the mid 80s on.)

The computational methods chart is more vague. What problem and what size
dataset was used? How were the hardware changes oner time taken into account?
Was the change of workload profile taken into account? Or was it a rough estimate

P is for Performance � 281

based on paper and pencil analysis? - The latter is likely: Take a problem, perhaps
Poisson’s equation, for example, and do an operation count according to the method
used. It is hard to account for data movements, though.

The point made via the chart is valid and important: algorithmic innovations of
numerical methods are a main source of performance improvements beyond what
is provided by hardware technologies and system architecture.

On the Relationship Between Architecture and Algorithm

In the early days of the vector processors people discovered that after a code has
been vectorized, when run again serially (on system with no vector instructions), it
often ran faster than before. Today we find, similarly, that parallelized code often
runs faster than it did before on a single processor. This is mostly due to changes
about how data is organized and accessed, and better use of data already loaded.

But specializing for a specific architecture is not always helpful for other ar-
chitectures. An example: Iterative methods are in common use for solving partial
differential equations. They involve repeated updates to each grid point through
values of its immediate neighbors. To correctly get a new value from values of the
previous iteration, in vector form, the grid is split into two, in what is known as the
red-black ordering. Each point is surrounded by points of the other color. The vec-
tor code updates the points of one color, then updates the other color. Each step
uses values from the same iteration. This works well for vectorization. However,
running the code now serially on a microprocessor degrades performance because
the scheme creates redundant loads of the data. John Shalf laments: “I spend years
at NCSA to undo red-black codes for microprocessor clusters.”

Note from conversation with John Shalf: On interaction between algorithm
and architecture: the example of using red-black for iterative methods to
enable vectorization. John: ”and I spend years at NCSA to undo red-black
- for microprocessors..”

The Case for Fat Nodes

Contrary to early predictions, Frontier, the first exaflops system, was built with
under 10K nodes. That is, much more performance was packed into a single node
than was expected 10 years earlier. We know that this was due to use if multiple
GPUs in each node. This is not the classical fat node that was made of symmetrical
configuration of 4-way or 8-way general-purpose processors. Frontier’s nodes have
one host processor managing four GPUs. But from the application perspective it is
a fat node (even when each GPU has hundreds of units).

282 � Unmatched: 50 Years of Supercomputing

Describe here the benefit to performance and interconnect and resilience
from fat nodes. Refer to Chap 23, where we said:
Fat nodes are beneficial to applications’ performance. A bigger chunk of
data resides and is computed within the node. Less data needs to be trans-
ferred between nodes. This outcome is sometimes referred to as the surface-
to-volume effect. Many physical simulations are three-dimensional, and
each node is given a 3D ‘box’ to process. The size of the data and amount
of computations goes up as n3, while the data exchanged between nodes are
the surface points which is proportional to n2. So, the bigger is the chunk
of data in a node, the more it computes locally, and the less is the relative
size of data that needs to be moved between nodes

From Seager:
“We thought that the physics apps that wanted to use that machine would
want to have a large surface-to-volume effect because networks weren’t keep-
ing up with the compute capability. If you had a large memory, you could
have much larger MPI tasks on the node, say one per socket. So, for 4-
way there’re four MPI tasks (and the memory was quite large). This is one
of the reasons for fat nodes. And this goes for GPUs as well. The exact
argument goes for Thunder and for GPUs. But the technology is different
and you actually have to have way more data parallelism, amount of data
on a node (not on the GPUs). (The MPI task is talking to other nodes
not the GPU.) That makes the communication problem way easier. And
so if you can make your code data parallel, the amount of communication
relative to non-fat node goes down, which is a big plus. That is how you
can get the extra scale without heroics on the network, without heroics in
terms of the number of nodes in the system, and hence the reliability of
the system is much higher. These systems will stay up somewhere between
days and weeks, between MTBAF and the A is important there, and that’s
application failure.”

Performance Modeling and Prediction

Talk here about more general modeling of performance and how it is used
as a predictive tool.
Go back to sections from the DARPA HPCS report - [49]. On page 33
there is a reference to Gustafson (paper saved in “performance” folder)
and McCalpin papers - check them.

Metrics for ranking: Refer to paper by Snavely et al (2005?):
“Metrics for Ranking the Performance of Supercomputers” - [123]

P is for Performance � 283

Benchmarks

Benchmarks in computing are user codes (and sometime system software routines)
that are meant to represent a workload, an environment, or profile the demands of
a computer facility.

This is a field fraught with misconceptions, arguments, subjectivities, misleading
information, and more. Let’s start with a nod to a 1991 humorous article penned
by my past colleague, David Bailey (we were together at NASA Ames). The title
says it all: “Twelve Ways to Fool the Masses When Giving Performance Results on
Parallel Computers” ([124]).

Bailey lists sins of omission and of commission in how benchmark results on
parallel systems are sometimes reported with the purpose of making them look
better than they deserve. Here a few of them: Quote single-precision results (when
can be done faster) without mentioning and compare to double-precision results.
Quote the timing of a kernel or solver, possible with some assembly code, as if it were
the whole application. Run the test on one configuration (size) and write down an
estimated projection the performance of a larger system. Compare a parallel code
to an unoptimized scalar code, or compare to an older version of a code run on an
older system. Use algorithm that results in high flops rate (when this is the measure
asked for) even when the execution time is longer.

No one is claiming these transgressions are common; only that such cases were
observed. The “offenders” come from the ranks of researchers parallelizing codes
and from vendors trying to make a sale. Being misled by the latter can be avoided
by careful instructions in the Request for Proposal (RFP) and diligently verifying
of the reported results. Spotting the pitfalls in published papers or conference talks
requires detailed attention, and some skepticism, to what is said or written.

Bailey’s Twelve Ways to Fool the Masses aside, benchmarks are a useful tool
and serve several purposes. The most common of which is the selection of a future
system. Other applications of benchmarks include measuring historical progress of
processors and systems, and evaluations of parallelizations and other code opti-
mizations. In its most general terms, benchmarks are used to compare systems’
performance under some constraints and for specific workload environment.

Benchmarks can be classified into several categories:

� Standard Community Benchmarks

� Procurement Benchmarks

� ISV Benchmarks

284 � Unmatched: 50 Years of Supercomputing

Standard Benchmarks

By standard benchamrks we mean those tests that are available to all (not necessar-
ily managed by Standards bodies). They tend to be fixed over time, and modified
almost always only to accommodate new architectural features.

There are many open source benchamrks in use within the HPC community.
Probably the best known is the one used to create the Top500 list ([2])- the High
Performance LINPACK (HPL). LINPACK is a library of mathematical routines
for linear algebra developed in the 70s and its core are the BLAS - Basic Linear
Algebra Subroutines. In the passage of time LINPACK has been largely replaced
by LAPCK, which is better suited for current system architectures. This is an
appropriate place to introduce Jack Dongarra, a central figure in the development
of LINPACK and LAPACK, and one of the founders and authors of Top500.org.
Dongarra is now a Distinguished Professor at the University of Tennessee. His
research team maintains LAPACK and other numerical software collections in the
Netlib Repository (netlib.org).

Dongarra put forward the LINPACK Benchmark which is to solve a system of
dense linear equations using the the Gaussian elimination method with partial piv-
oting to get LU decomposition form of its matrix representation. It was defined for
several matrix sizes. HPL, the high-performance variant of the test and the test to
rank the top HPC systems, was designed to let the target system demonstrate the
best performance it can achieve on this problem. The problem size can be chosen
to fit the system. Dongarra explains the motivation was “to have a benchmark that
could scale over time and remain relevant in tracking performance”.This aspect is
consistent with the notion of the weak scaling principle behind Gustafson’s Law.
But there is more: Code changes are allowed. Even replacing the LU factorization
scheme, as long as the operation count is not reduced. However, there is a strict
bound on the accuracy of the results. The HPL benchmark is one where the per-
formance can be close to TPP. The parallel efficiency is high by spreading blocks of
the large dense matrices to each node, allowing for plenty of local computations and
infrequent inter-node data exchanges. Within the node it is possible to achieve high
efficiency by further dividing the arrays so they fit in the processor’s cache. Most
of the time is taken by a highly optimized matrix multiplication library routine,
so that there is no stress on the memory bandwidth either (though the memory
system is typically filled to capacity). Of the top 500 systems not many are below
50% efficient. The median for that group is around 60%. And systems with par-
ticularly high performing interconnect, exemplified by some of the Cray XC40’s in
the November 2021 list, achieve over 90% efficiency!

Of course, it is not a complete application, and, in fact, most real applications
involve sparse matrices for which the possible compute rate is much reduced. But
that’s not to say that this LINPACK benchmark has no value.

The top500 list, published twice year, is coming on to its 30th year anniversary.
It provides a historical record of the advances and architectural transitions of the

P is for Performance � 285

top HPC systems. The data the lists provide show the ups and downs of computer
vendors, the distribution of top systems across continents and countries, and much
more.

Top500.org group added HPCG, and Green500.

The Dongarra team is also credited with the development of what is known as
the HPC Challenge benchmark. It is a set of tests that can be used to learn about
comparative value of systems. [check https://icl.utk.edu/hpcc/index.html]

More on the HPC Challenge suite in the DARPA HPCS report, that is
more about high productivity. See [49].

There are quite a few less known standard benchamrks that are not applications-
based. Their purpose is to measure specific features or components. For a compre-
hensive list of standard, open-source, and specialized benchmarks see [125].

Procurement-Targeted Benchmarks

Targeted benchmarks.

Discuss here the issue of having to replicate past results to the last bit;
whether more accurate or not. Difficult to verify or validate code exactly
against physical phenomena. This has costs in terms of performance and/or
readability.

ISV Application-Specific Benchmarks

Private modeling tests designed and maintained by ISV for the applications they
offer.

Multi-Components Metrics Approach

The idea is to characterize the workload for a target system, break it down into ‘ker-
nels’ - including data management, I/O, communications etc. Determine fraction of
time for each ‘kernel’ - then optimize the design accordingly (using simulations?).

The Berkeley “13 dwarfs” ... See [126] and my paper for the IESP

Add/include a discussion on scaling.
The exascale technologies study ([69], pages 71-72) lists categories of apps
re scaling.

The discussion above about the efficiency as a metric correlates well with the

286 � Unmatched: 50 Years of Supercomputing

notion of balanced system. A system well-balanced for a particular workload achieves
high efficiency mark. It is important to realize that when we talk about balance
among the system’s components, it is always qualified by the codes being run.
Therefore, there is no absolute, or universally accepted, ‘balanced system’. Though,
it is generally true that a system that has a higher memory bandwidth relative to
compute rate than another system is better balanced for HPC workloads.

C H A P T E R 32

Fortran: The Coarrays Story
Expressing Distr ibuted Memory Paral le l ism: In- language or
Library; MPI wins

F rom the early days of supercomputing there was always Fortran. To this day it
is the language most suitable to numeric calculations. The language has evolved

over time to include more capabilities, to abstract more complex data structures, to
accommodate parallelism. And also to stay relevant when other languages, mostly
C and C++, gained popularity. Having arrived at the end of our HPC journey, it
is appropriate to visit the state of the Fortran language.

The next three chapters, including this one, are dedicated to this end.

My start at HPC was by learning FORTRAN IV on the CDC 7600, and Fortran
has always been the software workhorse enabling much of scientific computing. A
testament to the durability of Fortran and its evolving nature is the 1982 quote by
the British computer scientist, winner of the Turing Award, Tony Hoare:

“I don’t know what the language of the year 2000 will look like, but I
know it will be called Fortran.”

What follows is not an exposé on the evolution of Fortran. But, rather, some
perspectives about its present place in HPC and parallelism, its relationship to
other emerging languages, as well as the dynamics between the language guardians
and the user community.

To this end I sought out a few of the people who play, or played, a role in
defining the Fortran language on its standards committees (by which I mean both
the US body - known by its former shorthand J3, and WG5 - the abbreviated name
of the international committee)1. A mix of old-timers and some who arrived on the

1To be more precise: The US Fortran Programming Language Technical Committee is for-
mally called INCITS (InterNational Committee for Information Technology Standards) PL22.3.

287

288 � Unmatched: 50 Years of Supercomputing

scene more recently. They have all dedicated, and are dedicating, much time and
energy for the advancement of Fortran:

Ondřej Čert́ık, a scientist at the Computational Physics and Methods group
of the Los Alamos National Lab.

Milan Curcic, a scientist at the university of Miami and WRF2 user and
contributor.

John Reid, past convenor of WG5 (’99-2017); now retired, but maintains a
desk at the Rutherford Appleton Laboratory in the UK.

Tom Clune, senior computational scientist at NASA GSFC; leads software
infrastructure team for weather and climate modeling.

Jon Steidel, compiler engineer at Intel; previously at Cray Research, SGI,
Cray, SRC.

Steve Lionel, current convenor of WG5; a.k.a “Doctor Fortran.” Retired from
Intel; previously at DEC (Digital).

Damian Rouson, Group leader at Lawrence Berkeley National Laboratory and
President of the Sourcery Institute, and lead developer of OpenCoarrays.

Two of them, Ondřej and Milan, belong to the new generation of Fortran ad-
vocates. John, Jon, and Steve represent the ‘old guard’. And Tom and Damian are
in-between. Steve and Jon are, or were, compiler writers. The others come from the
user community; the people who program in Fortran3.

The next chapters in this series contain perspectives from members of the For-
tran standards committee, and observations about current Fortran-related activities
and the status of the language. But first, to set the scene, let us go over an episode
that exposes the issues of Fortran’s role and evolution - The coarrays idea and its
journey to be included in the Fortran standard. Of course, we should be careful
not to over-generalize based on one episode in the language’s history. There are
some generalizations to be made, but examining other aspects - such as data struc-
tures, data typing, and memory allocation - would shed a different light on the
committee’s work. It is just that expressing parallelism is so central to HPC.

It was formerly called ANSI (American National Standards Institute) X3J3, and still referred to
informally as J3. It is the US representative for the international standards committee - ISO/IEC
JTC1/SC22/WG5. One can see why people use the shorthand of J3 and WG5. I refer to the bodies
interchangeably as the Fortran Standards Committee, or just the standards committee.

2The Weather Research and Forecasting model described at some detail in previous chapters.
3The presence of two convenors among the listed above reminded me that shortly after arriving

to live in the US, working for Control Data at the Colorado State University (CSU) campus in Ft.
Collins, Co., I was fortunate to have met the late Jeanne Adams from NCAR. Jeanne was the first
to lead a Fortran standards body, first known as the Fortran Experts group, then as the WG5. She
was later the chair of J3.

Fortran: The Coarrays Story � 289

Some Context

A 2020 paper[127] by three long-time Fortran practitioners - John Reid, Bill Long,
and Jon Steidel - captures the aspects of the Fortran evolution that relate mostly
to the expression of parallelism. Fortran’s birth was at IBM in 19564. Designed for
numerical calculations it became the main and dominant programming language
for HPC. Fortran could not remain static. It had to adapt to the evolving com-
puter architectures. It had to be done in an orderly fashion. Standardization began
through the American Fortran committee, J3. People from other countries joined
the committee and its working groups.

First there was the identification of independent vector operations that can be
streamed. Then came the multi-vector-processors. Elements of arrays and vectors
can be split between processors, where each pipelines the operations. The significant
feature for the programmer was that the processors shared a single memory system.
Each processor “saw” all the data. Care must be taken, but sharing the address
space made it possible within the existent language syntax, with additional means of
communication between execution threads. Once we arrived at distributed memory
systems, the days of the MPP (Massively Parallel Processing) architecture and
later the clusters and accelerators, things got more difficult. Expressing parallelism
across images of operating systems, over interconnect network between compute
nodes, and with data distributed among multiple memory systems became the
programming challenge for HPC.

It is understandable that while the system architecture was evolving, and chang-
ing, a solution to the reality of distributed data that did not impact the foundations
of the language was more convenient and expedient. This approach resulted in an
external library that contained the tools for manipulating distributed data in a
parallel program. The Message Passing Interface (MPI) is the library most in use
today. The library approach was (and is) attractive in that it offers a solution that
can be easily adopted by multiple programming languages. It can be more easily
experimented with as people learn what works best for large scale parallelism. And
it was developed and implemented faster than a language modification, through the
Standards, would have allowed.

The Coarrays Story

There is, however, a non-library approach that is now part of the Fortran language.
It followed a number of previous solutions that never quite caught on; at least, not
universally5. The paper cited above [127], titled “History of Coarrays and SPMD
Parallelism in Fortran”, set out to tell the story of a powerful feature of Fortran -

4There are different accounts of Fortran’s birth date. An IBM history page puts Fortran’s start
at 1954, with a commercial availability at 1957.

5I am referring to such techniques as microtasking, macrostasking, compiler directives, block
directives in HPF, Fortran extension in the Vienna Fortran, auto tasking, and more.

290 � Unmatched: 50 Years of Supercomputing

Coarrays, that was first proposed (invented) by my friend from our days at Con-
trol Data, Robert Numrich. Numrich, at Cray Research at the time (early 90s)
and involved with the Cray MPP systems - the T3D and T3E, set out to remove
complexities of expressing parallelism for the application user and the compiler.

The story of how the coarrays idea was introduced into Fortran is interesting to
me for a couple of reasons. One, it provides a vivid example of the “codesign” idea
described in Chap. 23. Second, the process of realizing the idea allows a critical
look at the pros and cons of “move fast and break things” vs. orderly committee
work.

Thinking about the challenges of parallelizing codes for massively distributed
memory systems, Numrich asked a question along the lines of “how can one pro-
cessor access data from another processor if the address on the remote processor is
known?” Cray Research was a “full service” vendor, but a small enough company,
and Numrich, from the applications and software side of the house, was able to
interact with the hardware group. There he found from the interconnect team that,
indeed, there was a sequence of instructions that allows a processor to point to, or
‘touch’, an address in the memory of another.

What remains is to actually know the remote address of a given data item
or variable. This would typically be the starting address of an array or a subset
of an array. Fortran had a statement called COMMON block. Variables placed
there are available to all the routines where the block is declared. Now, in the
SPMD (Single Program Multiple Data) programming model, each processor gets
an identical image of the program to be executed with its own portion of the data.
All that is needed, then, it to declare the arrays that are to be common to all the
processors - that is, a coarray, and place them in COMMON blocks. The memory
mapping of the data is identical in all processors - this was known as Symmetric
Memory Processing (SMP, not to be confused with Shared Memory Processing),
so any processor can figure out the address of any element in a coarray on another
processor6.

Armed with these ingredients, Numrich defined one-sided communication func-
tionality of PUT and GET - for placing and retrieving data between processors.
There is more to the model and the story, but the important lesson here is that
innovation moves faster when people from different disciplines and skillsets collab-
orate.

That was in 1991. Numrich formalized his ideas with a proposal of a variant
of Fortran he called F--. The name designation is a tongue-in-cheek play to con-
trast the C++ language. Whereas the “++” stand for adding complexity to C, the
minus signs symbolize the simplicity proposed for expressing parallelism in For-

6As implemented later, the declaration of a coarray is sufficient for the compiler to place it into
symmetric memory across processes (or allocate it on a shared heap). There is no need to put the
coarray into a COMMON block

Fortran: The Coarrays Story � 291

tran7. Numrich continued to develop his ideas and conduct early experiments of
implementing them. Early work was done with Fortran 77 on the Cray-T3D. The
foundations and the proof-of-concept work done by Numrich are captured in his ’97
paper titled “F--: A Parallel Extension to Cray Fortran”[128]. At this stage, he was
able to get to a partial implementation by taking advantage of special hardware of
the T3D/T3E. Though lacking the elegance and clarity of the later coarrays stan-
dard, it provided an undeniable proof of concept. It took a summer intern from the
University of Minnesota, assigned to Numrich almost as a favor, to accomplish this
feat. The intern incorporated into the Cray compiler some existing assembler code,
which took advantage of specialized hardware in the T3E, that had been designed
for other purposes outside the compiler group.

It was during that period, from the early to mid 90s, when MPP and distributed
memory solutions took center stage, that Cray Research became less sure-footed
about programming models for their compiler. Various approaches were tried out,
none successful. This is another factor that explains the hesitancy in promoting and
pushing for the coarrays SPMD model.

So Numrich proceeded without support from the compiler team: “It took me a
while to convince myself that the GET/PUT model worked on the T3D. It worked
because the T3D had something like a global address mechanism, and the systems
people put common blocks at the same address in local memory on each processor.
So I wrote a little bit of assembler code, called GET, to set a remote address for
moving data around. I still remember the day that I was able to run the NAS Parallel
Benchmark codes on the T3D without any compiler support. Many people inside
Cray told me over and over again that my idea couldn’t possibly work until I showed
them the results for the NAS codes. Even then, management didn’t recognize it. In
fact, for over a year, the only way people could benchmark the T3D was by using
my little bits of assembler code. I only needed a GET function, but people insisted
on an additional PUT function. Then the whole thing evolved into the SHMEM
Library8.”

He justifiably concludes: “With my little GET function, I saved the Cray T3D
from failure.”

Resorting to a library solution was out of necessity. However, Numrich found a
way around it even back then. He recalls:“I always wanted the GET/PUT model
to be implemented as part of the language rather than implemented as a library.
Since the compiler people wouldn’t help me, I wrote another little bit of assembler
code that converted the local address of a variable into a remote address for the
same variable on another processor. Using a Cray pointer, an extension to the

7Turns out Numrich credits a colleague, Geert Wenes, with helping him choose the name for
his variant of Fortran. I came to appreciate Geert when we were colleagues at Cray many years
later.

8SHMEM stands for “shared memory” library for one-sided access of distributed memory in
parallel programming. The acronym was later interpreted to stand for “Symmetric Hierarchical
MEM.”

292 � Unmatched: 50 Years of Supercomputing

language before pointers became part of the Fortran language, that was returned
from this function, I could write communication code in Cray Fortran with no
compiler support. It worked really well.”

It was later, in the mid 90s, close to the time of SGI’s acquisition of Cray, that
the compiler group got more involved. Fortran 90 was stable enough, and its array
features allow a less specialized implementation of the model. It showed promise in
terms of ease of programming and performance.

Jon Steidel recalls how his involvement with coarrays started: “Robert Numrich
had his shared memory library, which became SHMEM. One day he walked into
my office, and started writing on the whiteboard. And he said, ‘What do you think
about this syntax for doing the SHMEM stuff.’ And I looked at it and I thought,
‘This is pretty cool. This is pretty clean.’ He was strictly focused on Fortran 77
at the time, and I was working on the Fortran 90 compiler. So I taught Numrich
about Fortran 90 features, and he got more excited.”

Numrich recalls that the reason he got excited was because F90 derived types
removed the restriction of symmetric memory allocation for a co-array object. The
ability to reference a non-local allocated component within an F90 derived type was
something that no other proposed language extension was doing. In other words,
every processor could see all of remote memory whether allocated symmetrically
or not. In addition, it did not require data buffers for data communication that
included computations, as was required in MPI-1’s two-sided message passing, for
example.

Irene Qualters, now at LANL after a stint at the NSF, managed Cray’s software
at the time. She met with Steidel: “And she said, ‘We’ve got our proprietary model’,
which was the CRAFT compiler at the time. It was very much like HPF where you
had explicit data distribution, and we’ve got Numrich’s F--. And she said, ‘I want
you to figure out what direction we should go.’ And so I met with a few other
people, and my recommendation was that we go ahead with F--. I gave the nod to
F--, and had somebody in my group implement the syntax for it.”

F-- was later implemented as an extension to Fortran 95. It was then that
Numrich named it Co-Array Fortran (CAF). That was done on the Cray compiler
for the SGI ORIGIN 2000 and the CRAY-T3E. It is worth noting that it took 3-4
Cray developers just about a week to create this compiler version. An example of an
early use of CAF is given in [129], showing results of a multigrid solver. In general,
the authors claim, CAF’s performance compared with MPI was almost always as
good for small numbers of processors but invariably scaled better to large number
of processors. To be sure, this was a comparison of one application against one
vendor’s implementation, and not a general finding about the superiority of one
tool over the other.

This F-- project was done somewhat skunk-works style. Indeed, Steidel con-
cludes: “We almost got fired for it.”

Fortran: The Coarrays Story � 293

Still, at that period John Reid collaborated with Numrich to define the extension
to the language more precisely. Their work, captured in [130], was used as the
definition of coarrays for at least five years.

Numrich relayed another anecdote that shows the benefits of co-design: After
SGI parted ways with Cray, which was passed to Tera, the Seattle-based company
that later named itself Cray Inc., the Cray people built the Cray X1/X1E. This
machine actually incorporated the co-array model into the hardware address space.
Addresses on the Cray X1/X1E included a node number in its higher bits set by
default to the local node number. Reference to a remote node just required changing
these higher bits to the remote node number. In his words: “It was the best approach
to distributed memory ever designed, and it was all done to support the co-array
model.”9

The broader background to the story is the question of whether parallelism is
expressed within the language, be it Fortran or C or any other, or by calling on
an external library. Cray had coarrays in its compiler from the late 90’s, but no
other compiler vendor did. Though the Cray implementation served as a model for
the standards, it was not until 2008 that the details for the standard were agreed
on. Implementation by other vendors would take a couple more years. The result
is that the MPI library model is now, essentially, ‘the law of the land’.

That’s not to say that the coarrays model is dead. People other than Num-
rich, including John Reid who sat on the Fortran Standards Committee, found the
concept and the proposed syntax attractive.

As John Reid says: “I got involved in coarrays because it struck me as a much
nicer way to express parallelism. It is safer, too, because the writer’s intention is so
much clearer.”

So the idea took a different path, that of a formal addition to the language.
Getting the coarrays model into the official Standard Fortran turned out to be a
long and arduous journey, driven mostly by the enthusiasm of John Reid and Bill
long. John did not propose coarrays for Fortran 2003 because the changes already
agreed, including object orientation and polymorphism, were huge (see Chap. 34).
Proposals were written and debated. Not all the committee members agreed on the
need or the urgency of this model. There were delays due to disagreements over
syntax - which did evolve somewhat over time. The coarrays model made it in for
Fortran 2008, which was approved in 2010. More was added to coarray Fortran,
described as Fortran’s parallel execution model, in Fortran 2018[127]. The coarrays
approach to parallelism in Fortran, with emphasis on how it is applied, is captured
in Numrich’s book[131].

Steve Lionel recalls: “It was in 2008, my very first international Fortran meeting
in Tokyo. I like coarrays, but there was a lot of objection to it from vendors who

9Unfortunately, this product was not a commercially successful, and it was the last proprietary
processor from Cray.

294 � Unmatched: 50 Years of Supercomputing

didn’t want to do the work to implement it. And it almost didn’t make it into the
language. I think I was a deciding vote for keeping it in the language. They voted by
country, and it won over by one vote. Nowadays, the vendors have kind of accepted
coarrays. A lot of it comes down to the fact that we are a small committee, and we
had been working inefficiently.”

To recap: Numrich conceived of the coarrays model in ’91. He first called it F--

but by 1998 hd changed the name to Co-Array Fortran (CAF). It has taken until ’97
for Numrich to be able to talk and publish papers about the model outside of Cray.
One factor holding him back was the unfortunate coincidence of the negotiations
with SGI about acquiring Cray, because SGI’s focus at the time was on systems
with globally coherent virtual memory. And Numrich’s model targeted distributed
memories, although his model worked just as well, if not better, for a globally
coherent virtual memory. Cray’s management was also not supportive of the idea.
Numrich admits to having failed to make a strong enough case. But, more significant
to the topic of the Fortran committee, was the fact that, as Numrich puts it: “I
had no idea how to communicate with the committee.” Thanks to the work of Reid
and Long as committee members it finally made it into Fortran 2008, which was
published in 2010. It would take compilers other than Cray’s more time, measured
in years, to implement coarrays.

It has taken the coarrays model between 15 to 20 years from concept to imple-
mentation and general access!

The MPI Perspective

For comparison, let’s take a look at the history of the competing approach - that
of a library:

MPI (the Message Passing Interface)[132] is the most successful and the most
used library for parallel Fortran codes on distributed memory systems. It came after
several other, mostly vendor proprietary, software systems, including PVM (Parallel
Virtual Machine)[133]. PVM, like MPI, was developed by a user community team.
It was first written in 1989, with at least two more versions 2 years apart. A number
of its developers became develops and advocates of MPI. MPI was designed and
built by learnings from the early libraries that laid the foundations to the message
passing approach to parallelism in distributed memory systems. Its developers’ goal
was to create a high performance and portable library that would eliminate the need
for a high performant vendor-specific solution.

MPI grew out of a workshop organized by Ken Kennedy in April 1992, with the
goal of creating a target for parallel compilers (the “Williamsburg workshop”). The
workshop provided the motivation for the community to get together and define
a library from scratch. The real work started at the November 1992 ACM/IEEE
conference on supercomputing (also known as SC ‘92 and Supercomputing 92). The
MPI Forum that was formed then conducted some eight working meetings in 1993,

Fortran: The Coarrays Story � 295

culminating with an MPI specification draft that was presented at the November
‘93 Supercomputing conference. It was finalized and released in May 1994 as MPI
1.0. By then the MPI project had grown to about 80 people from 40 organizations.
All the more impressive that it has taken less than two years from conception to a
released product.

In fairness to the Fortran committee, it should be noted that MPI, while a
standardized interface, is not a formal standard. It should be more properly referred
to as specification. MPI is not an ISO10 or ANSI standard, but Fortran is. This
allows the MPI developers more frequent releases.

To better understand the process that led to MPI and the thinking behind
its design, I contacted one of its principal developers - William Gropp. Gropp is
currently (2021) the director of NCSA (National Center for Supercomputing Appli-
cation) at the University of Illinois at Urbana-Champaign. He is also a professor at
the Computer Science department there. Gropp has been involved with MPI from
its inception, and for the last more than 25 years.

Why was MPI designed as a library? - Gropp recalls: “We did think about
whether we should be designing something that was compiled or was a library,
but we decided it had to be a library because we didn’t believe we could get the
language developers and the compiler vendors, in particular, to cater to our niche
community. So that was a compromise. But I think that that was an important,
pragmatic one because it gave us potability.”

Gropp clarifies that the reason MPI started with support for two-sided com-
munications is that, at that time, all the production system supported two-sided,
but not one-sided communication. He adds: “One-sided was starting to emerge, and
MPI added one-sided in MPI-2, only a few years after the original MPI specifica-
tion. However, this version of one-sided also had limitations, some a result of the
limitations of the technology of the time, and others because of a desire to have a
well-defined standard that avoided ambiguities. That actually turned out to be a
problem, which was addressed in the MPI-3 revision of one-sided operations.”

There has been a recurrent aphorism among programmers: MPI is the assembly
language of parallel programming. That is, it forces the programmer pretty close
to the hardware. Damian Rouson tells of the time he ran into Gropp at a confer-
ence a few years ago, and repeated quip. Gropp responded (allowing for possible
paraphrasing here): “That’s what we always intended it to be! The problem is that
it took so long for parallel programming languages to come along, and domain
scientists couldn’t wait, so they embedded MPI directly in the application source
code.”

So, did Gropp and his colleagues intend for the MPI calls to be generated by
the compiler of the parallel language of choice, and not to be called directly by the
application programmer? - Well, no and yes. Gropp explains:

10ISO stands for International Organization of Standardization

296 � Unmatched: 50 Years of Supercomputing

“I did not see MPI as primarily a compiler target - it really is too high level
for that. However, I did not and do not believe that most programmers should use
MPI extensively within their applications. Rather, they should take advantage of its
features for “programming in the large”, such as its support for libraries, and limit
MPI to the implementation of core communication and parallel computation oper-
ations, much as is done in numerical libraries that provide distributed computing
abstractions.”

He expands on the idea: “Most programmers should either use a parallel frame-
work (e.g., PETSc or Trilinos11) and leave the MPI programming to someone else,
or they should design good abstractions and put those into a few routines that
implement those abstractions. What programmers should not do is sprinkle MPI
throughout their program as if they could use it as assignment (store) or reference
(load) of individual words. MPI has features that make it easier to write those li-
braries (including message contexts, support for arbitrary groups of processes, and
data caching on key MPI objects).”

Gropp says this about high performance production codes use of MPI for paral-
lelization: “In many cases, the applications are not using a big common library, but
what they have done is they have defined the operations on their data structures,
and then written their own application library (using MPI for the defined opera-
tions). So, instead of having thousands of lines of MPI calls scattered through the
application, the actual MPI calls are restricted in a special communication module.
the developers optimized very special data structures and very special sets of oper-
ations. And MPI gives them the tools to build the parallel communication part of
the application for an arbitrary data structure.”

This, in Gropp’s view, gets to a core reason for the success of MPI:

“MPI makes nothing easy, but makes everything possible.”

Gropp emphasizes that there is no parallel data structure that cannot be built
with MPI code. The level of difficulty is the same whether the structure is a Carte-
sian mesh or a dynamic, unstructured, weird graph. Just as the manta above states.
He believes that models that attempted to be simple could not cater to most real
applications, because their data structures were some perturbations from the simple
structures.

And Gropp anchors the view above with a performance argument: “A lot of
this comes back to what is really the fundamental problem in my view: We want to
program with operations on individual elements, but for performance, because of the
latency to all layers of local to remote memory, we need to work with aggregates, and
use algorithms that give us sufficiently large aggregates. MPI forces the programmer
to work in terms of larger groups of data (you can do individual elements, but the

11Two examples of open-source collections of portable libraries, a toolkit, to be used as building
blocks for scientific applications.

Fortran: The Coarrays Story � 297

performance will be so terrible you won’t) - this makes it often harder to write the
first version of a program but easier to get to the performant one - because you
start by acknowledging that, whether it is cache lines, RAM rows, network flits, or
disk blocks, data in real systems moves in blocks.”

As for coarrays, Gropp likes the fact it is a tool that can used to teach people
to work with blocks of data, not with remote scalar variables or single elements.
Though, he adds, the coarrays model “does make it very easy to write point-wise
code that accesses data on other processes.”

MPI, in light of the above, is really a library whose direct use can be ineffective.
Instead of its aspirational use by parallel languages, it may have found its optimal
place embedded in a framework the application is built around. Marc Snir, who
is an emeritus professor in the department of computer science at the university
of Illinois Urbana-Champaign and also a principal early developer of MPI, gave
a provocative talk on the occasion of 25 years to MPI. Its title was “MPI is too
High-Level / MPI is too Low-Level” [134]. Depending on the role played by MPI,
people claim that MPI is too low-level as an application programming interface,
but too high-level for communication run-time not exposed to the application. Snir
goes on to explain that MPI lacks functionality needed to be an assembly language.
And, yes, its communicator has features not needed for low-level protocol. The
examples Snir provides convince me that Gropp is right in encouraging users not
to ‘get in the weeds’ by sprinkling MPI calls throughout their application, but rely
on a ‘mediator’ library as an umbrella for MPI use.

Beyond the issue of how to incorporate MPI into the application, the early
years saw some “truly dreadful implementations” in Gropp’s words. It has taken
some years and efforts by the MPI developers and the vendors to get the good
performance MPI users enjoy today.

There is talk about MPI being too big, or complex or difficult, and whether
it should be replaced by something else. Gropp shrugs and says “I wish I knew
what it should look like”. He goes to highlight the foresight, at the 90s, of designing
MPI to be thread-safe. But acknowledges that MPI did not, or could not, take
into account what modern processors will look like; meaning, the parallelism on
the processor chip. Because MPI is thread-safe, modular, and composable, it was
possible to marry it with OpenMP. And with CUDA. These combination became
common programming models. This is not without its challenges. Each of the par-
ticipants - OpenMP for multicore shared memory parallelism, MPI for distributed
processing - does its job well. The challenge is with the interaction between the two
standards. “Socially, it’s difficult because it means that the two standards would
have to agree on the interactions.” Gropp points to some success in coexistence
between standards: “Fortran is perhaps the best example where Fortran made to
support the memory model that MPI has.”

Gropp points to the MPI-IO feature, and the lack of coarrays-IO, as a plus for
MPI. He says a complete model should include IO. “I should be able to open a file,

298 � Unmatched: 50 Years of Supercomputing

put a coarray into it, and close it. And do so in such a way that I should be able
to access the data correctly with a different number of processes, for example.”

The criticism associated with MPI notwithstanding - complexity, performance
issues, lack of compiler and runtime help, and more, the MPI project has been
successful. Some years ago Gropp described the factors that, in his view, were
fundamental to the popularity enjoyed by MPI (see [135]). He highlights six factors
where MPI shines as the significant sources for its success:

� Portability: Most important property. MPI runs on most parallel platforms,
and works with multiple programming languages.

� Performance: For small number of processors MPI allows effective placement
of data in memory. For large systems it provides effective means to scale
programs and algorithms.

� Simplicity and Symmetry: The number of routines matters less than the fact
that MPI requires only a few concepts. That’s the simplicity part. Symmetry
is achieved by elimination of exceptions (by adding routines).

� Modularity: MPI supports component-oriented software, for a clean and main-
tainable service. A communicator ensures all communications are kept within
a component, which make MPI a reliable library.

� Composability: MPI was designed to work with other tools, and exploit im-
provements in them.

� Completeness:Any parallel algorithm can be implemented with MPI.

Referring to the attributes above, Gropp summarizes: “Each of these is necessary
in a general-purpose parallel programming system.” He added that MPI is not
perfect and suggests areas for improvement. Gropp wrote the paper in 2006. Much
has been done since to improve MPI.

Lessons Learnt and Outcomes

The MPI vs. Coarrays is more than a Library vs. Compiler matter. Initially, it could
have been seen as a debate about the programming model for expressing parallelism
in Fortran (and possibly in other languages too). Message Passing vs. One-Sided
Communication is one way of looking at the different approaches taken. As we saw,
now MPI supports both. Then there is the societal aspect of who decides what
the programming model and implementation would be. Should it be the compiler
vendors and a few large users working with the Standards body, or should it be a
broader and direct representation of the user community?

At the end it was the Message Passing approach, as library implementation,

Fortran: The Coarrays Story � 299

championed by one influential segment (the DOE labs) that became the norm. And
perhaps the whole affair was more about the programming model than anything
else.

We are left to wonder how a parallel Fortran might have fared had the coarrays
model been promoted more vigorously from its inception, and had been considered
for the standard in the late 90’s. Would it have accelerated adopting the model into
the language?

What we do know, as Ondřej Čert́ık tells me, is that the coarrays model is not
being used at LANL, for example. The main reason for that is that the lab’s users
are not satisfied with the level of support it gets by the several compilers they use.
That’s probably true for the other DOE labs.

Similarly at NASA; at least at NASA Goddard. Tom Clune sees coarrays as a
positive for some resurgence of Fortran use, in that it addresses parallelism very el-
egantly. Nevertheless, coarrays are not used for production codes there. A few years
ago, Clune’s group performed a prototyping exercise with coarrays that targeted
a large legacy application based on MPI. They found they needed to work with
arrays having different extents on different images, and this capability was not yet
robustly supported in the compilers used in the study. Instead, they explored the
use of coarrays in synthetic kernels, but did not find significant performance ben-
efits in their computing environment. Although the NASA team understood that
the need to use consistent array extents could have been avoided using F90 derived
types, the necessary changes to demonstrate this within the targeted legacy appli-
cation were well beyond the scope of the prototyping effort. While aware that other
compilers were more mature in this respect, e.g., the Cray compiler, the usefulness
of co-arrays was being evaluated in the context of an application that needed to be
supported on a system with Intel and GNU compilers.

Portability considerations may also be a reason for avoiding the use of coarrays
in some organizations. IBM, for one, chose not to implement coarrays. Nor is it
implemented in the PGI compiler, now owned by NVIDIA. Even as it makes these
compilers not fully compliant with Fortran 2008 and Fortran 2018.

That’s not to say that there is no use of coarrays at all. Damian Rouson tells
me of some meaningful projects he has been involved where coarrays was central.
Meaningful because they were commissioned by government agencies such as the
U.S. Nuclear Regulatory Commission, NASA, and NCAR. Rouson also sees interest
in coarrays as a major reason people cite for attending his Fortran training courses.

One of the interesting fallouts of the Coarrays-MPI story is that some compilers
found it useful (or convenient) to incorporate MPI in the implementation of coar-
rays. For example, gfortran of the open-source GNU Compiler Collection (GCC)
supports coarrays in the language, but ‘under the covers’ the compiler generates
MPI calls to execute the coarrays-related commands. In fact, it is the OpenCoarrays
project[136], with its set of library routines, that makes coarrays support possible
in gfortran. More on OpenCoarrays, led by Damian Rouson, in the next chapter.

300 � Unmatched: 50 Years of Supercomputing

The Intel Fortran compiler also uses MPI calls to implement coarrays. This imple-
mentation choice comes with a possible performance penalty, due largely to MPI
use of intermediate data buffers.

Users do not have to choose between the models. The use of MPI and coarrays
can be mixed within a program. This allows developers to bring together routines
that don’t employ the same programming model. And it also allows a gradual
migration from one model to the other.

One can only speculate on what HPC programming may have looked like if the
library-oriented people and the compiler-language teams collaborated. One idea for
a possible outcome of such collaboration was suggested by Numrich at a confer-
ence talk in 2009[137]. He suggested that the expression of parallelism could be
abstracted into an object-oriented framework. From that abstract class each pro-
gramming model might then implement its own functionality, since both Commu-
nicators and Teams, for example, can be descendants of the same abstract object.
Other objects, such as collectives, could also be defined abstractly, and then be
specified through inheritance. And so on.

Well, it turns out that the idea of object-oriented framework came up at the
MPI Forum and it is now under discussion. As Gropp relays, the old C++ binding
was removed so it would be possible to create and add a new one.

Everyone I talked to agrees that the coarrays model is an elegant, clear, and sim-
ple method for expressing parallelism within the Fortran language. From Numrich’s
experience: “Fortran programmers understood what a co-array meant without hav-
ing to explain it to them because it fit precisely into the whole design philosophy
of the Fortran language based on arrays.”

We should also remember that the coarrays model was not without compiler-
based competition. There were a number of other ideas for Fortran parallel program-
ming models for distributed systems that have been tried in the first half of the 90s.
They include HPF (High-Performance Fortran, from Ken Kennedy’s team at Rice
University), Fortran D (a data parallel Fortran also from Ken Kennedy’s group),
Vienna Fortran 90 (extension of Fortran 90), CRAFT-90 (by Cray Research), and
a few others. Only the coarrays model survived among the models tried in Fortran.

That it has not caught on much seems to be the result of both the time-to-
standardize and the preference of a library solution by an influential segment of the
user community; especially the US DOE labs.

With the passage of time, Numrich reflects that the investigation of the choice
between message-passing and one-sided communication models, which is separate
from the library vs. in-language debate, got cut short by the quick emergence of
MPI.

An open source portable library offers more flexibility in the choice of the pro-
gramming language, and provides a convenient vehicle for adding functionality and
modifications as compared to doing so within the language. However, including a

Fortran: The Coarrays Story � 301

feature in the language allows a better optimized code, better error messages, and
faster compilation. Perhaps it is good that both options exist.

C H A P T E R 33

Fortran Today
The State of the Language and Related Projects

B efore getting to the personal reflections of the Fortran’s Standard committee
members it is useful to go over some projects and activities that serve the

Fortran user community, as well as summarize where the language is heading.

The expansion of HPC beyond numerical simulations of the physical world to
encompass also data analytics and manipulations as well as applications in the
AI space, brought about commensurate expansion of software tools in use. This
includes languages and libraries. And, significantly, additional requirements for en-
vironments where multiple languages are applied to a single job, and for support
of richer set of data structures and data formats.

Recognizing this new reality the Fortran 2018 Standard defined a new layer
that allows C and Fortran code to interoperate using more Fortran features. In the
past it had been somewhat limited. For example, it was difficult to access Fortran
allocatable arrays in C. Fortran 2018 added new elements to the language that
enable doing all that in a standard, portable way.

Machine Learning (ML) and big data brought Python to the world of HPC. The
Python ML programmer might need a computational kernel best done in Fortran.
A typical implementation would have a light-weight C wrapper around the Fortran
routine. C is used as a bridge between Python and Fortran because it is more easily
called from Python.

Fortran is the language of choice for the numerically intensive kernels and solvers
of what we may refer to as ‘classic’ HPC. This includes areas in engineering and
science such as electromagnetics, mechanics, astrophysics, computational fluid dy-
namics (CFD) for aerodynamics and flow, computational chemistry and biology,
seismic processing, technical financial application and, yes, computational kernels
in machine learning too.

Python is more suitable for analysis and visualization because it allows a more
rapid prototyping and more convenient software for graphics.

303

304 � Unmatched: 50 Years of Supercomputing

This trend was reflected at the FortranCon 2020[138] conference, an interna-
tional meeting that took place in July 2020 (virtually, of course). There were several
presentations about interoperability between Fortran and other languages. Fortran
interfacing with C++, with python, and also with Lua. Beyond the Standards
there’s a lot of development work going on how Fortran interfaces to these other
languages. The Standards are only concerned with Fortran interoperating with C,
but because C is such a versatile low-level language and so well designed, it allows
Fortran to coexist with almost any other language.

The proliferation of languages other than Fortran in HPC happened despite
adding those features that made the other languages attractive into Fortran. In
particular, features for handling more data types and data structures. The Fortran
Derived Type provides the functionality of the C Struct and the C++ Class (and
their representation in newer languages such as Java and Python).

A major departure from the old-style Fortran came about with the addition
of support for object-oriented programming style. Fortran 90 through Fortran
2003 saw incremental expansion of object-oriented programming facilities. Object-
oriented programming became popular in the early ’90s. Especially for business
applications and where more abstract and unstructured data were present. Today’s
Fortran supports most object-oriented operations imagined. This aspect of Fortran
is crucial to the use of the language in processing that go beyond just number
crunching with simple arrays.

Steve Lionel, as the WG5 convenor, gave a talk titled “Fortran 2018 ... and
Beyond” at FortranCon 2020. He shows that whereas Fortran 66 was defined in
a 39-page document (190 pages for Fortran 77), Fortran 2018 required 539 pages
to capture all its features. This provides a measure of the increased richness (and
complexity) of the language. Lionel summarizes the main additions in Fortran 2018:

� Parallelism: New coarray features for richer use cases

� Further Interoperability with C - numerous details for greater closeness of
expressions and descriptions

� Other enhancements; but also declaring some features deleted or obsolescent

Lionel concluded with a list of about 20 small changes and additions planned
for a future Fortran release, referred to informally as Fortran 202X. They have
been kept small because the committee is determined that delay of widespread
implementation be avoided. Five larger features were proposed but not included for
this reason or because much more work was needed on the details. One of them,
generics, was seen as so important that work should begin at once with a view to
its inclusion in the following standard, informally known as Fortran 202Y.

The coarrays story led me to wonder about the dynamics and interactions be-

Fortran Today � 305

tween the Fortran user community and the body that determines how the language
develops and evolves. My guess is that the pull and push among the bodies of
developers, users, and commercial interests is not unique to Fortran.

I found out about FortranCon 2020 through an online article about a presen-
tation that was given there. The talk described projects for creating a standard
library and a package manager for managing a modern Fortran environment. These
are the first two projects by a recently-founded (December 2019) organization called
fortran-lang.org[139]. The organization’s mission is to create a community and a
forum for collaboration for Fortran programmers. Their current focus is on the
development of modern infrastructure for Fortran. The presenter was Milan Cur-
cic, who we met on the topic of WRF applications (Chap. 20). It was the Fortran
connection that had me look for Curcic, only to find out about his WRF enterprise.

It started for Curcic with Fortran 77 that was taught to meteorology students
at the University of Belgrade in Serbia1 in 2006 (even though Fortran 90 and
Fortran 2003 already existed). Fast forward to 2020 and Curcic as a researcher at
the university of Miami. We talked about how Fortran is evolving now2:

The Fortran Standards Committee is made of a small group of people - a mix
of representatives of compiler vendors and large user organizations. There was no
process or tools for end-users whose company is not represented on the committee
to provide input. Most Fortran users, if they even know about its existence, don’t
know how the committee operates. This has improved in the past a few years, but
it is far from perfect. The vendors are more attentive to requirements of those large
users, and are also subject to their own constraints of resources and costs when
it comes to support of proposed changes. But, Curcic and others argue, there is a
broader community of users who do not have relationships with compiler vendors.
There was no mechanism for these users in the US to provide feedback and offer
suggestions or demands (there is such a mechanism in the UK, though.).

This has changed in the fall of 2019, when Ondřej Čert́ık, the LANL scientist,
opened a GitHub repository for proposals to be considered by the committee. In
talking to Čert́ık, it becomes clear he wants to contribute in two main aspects of
the Fortran world: User community involvement and a vision for the language.

So, how did creating the GitHub repository work out? - Curcic describes it this
way:

Within three months after the start of the repository there were already several
proposals from the community presented to the committee for consideration. “This
was a demonstration of how very easily and quickly a user from the community
who knew nothing about the standards committee, can now submit feedback about
the language.” Čert́ık concurs that the user community was excited to see the

1The same department where the Eta model, later used as the North American Mesoscale Model
(NMM), and a predecessor to WRF, was developed in the 70s.

2I spoke to Milan Curcic just before he joined the J3 committee as an alternate.

306 � Unmatched: 50 Years of Supercomputing

establishment of the repository. They advised, though, that it is a long process
from this first step to having a proposal to consider. A proposal that would have
to be revised, voted on, slated for future implementation (if accepted), and so on.
A process that usually takes several years.

And that wasn’t all. The participation initiative drove further developments:
Standard library, and a package management utility [139].

The instigators arrived at the idea of working together on the Fortran standard
library. That was in recognition of the fact that most programming languages have
a fairly rich and mature general-purpose standard library with various utilities, col-
lections, data structures, and similar. And Fortran doesn’t. It only has a collection
of intrinsics or built-in procedures and modules that are mostly oriented toward
numerical work. There are several well-established and rich numerical libraries for
almost any computational need, but the language contains no support for data
structures such as dictionary or a linked list, for example.

Curcic: “The programmer would need to write their own. Of course, without
coordination everyone has been rolling their own. There is no ‘go-to’ solution for
some of commonly used utilities.

“So we thought, ‘why don’t we join forces, and work together on something
that would provide general utilities, and we call it the Standard Library’.” The idea
was not to create a language Standard, but to offer a go-to library for people to
use with the language. It is not done in isolation. The developers communicate and
collaborate with several members of the standards committee who provide feedback
on the development of this community Standard Library.

While working on the Standard Library, they identified a gap in the building of
Fortran environment: The lack of Build and Package Management tools. Python,
and other languages, have ‘standard’ tools for creating the software files, and pack-
age and distribute them. These are easily available to other users. Nothing like that
exists for Fortran. Currently, sharing code means the recipient needs to literally
take it and put the files into their application. There is no easy way to automati-
cally build and link a code received from another user. That was the motivation for
starting the project called ‘Fortran Package Manager’. At the time of this writing
it is incomplete, but already useful to its users.

Presently (2020), the projects target the open source Fortran, gfortran, from
GCC and under the GNU umbrella. The goal is to extend the tools to other flavors
of Fortran, as well as include support for non-Fortran dependencies such as C
libraries and functions.

Čert́ık sees this activity as a campaign that aims at resurrecting Fortran with
a community of developers. See his summary of the current state of affairs in his
March 2021 blog[140]. I’m certain more projects will follow.

Fortran Today � 307

A better known, and longer in existence, is a project called LLVM (see [141,
142]). The project name is not an acronym. Started at the University of Illinois
some 20 years ago (in 2000), its webpage defines it as a “collection of modular
and reusable compiler and toolchain technologies.” In reality, its scope is broader
than that implied by its own definition. The part that is of interest here, and
central to LLVM, is a compiler backend and an intermediate representation language
(IR), that, together, support compilation of any programming language. There are
numerous subprojects under the LLVM umbrella, including at least two Fortran
frontends:

An interactive Fortran, called LFortran, for interactive execution much like how
people use Python, MATLAB, or Julia[143]. Both Curcic and Čert́ık are involved
in this project.

And Flang, which is LLVM’s Fortran frontend.

Quite a few companies rely on LLVM components. Especially on its compiler
backend. They include AMD, Apple, ARM, Nvidia, and IBM. In addition, Intel has
plans to use LLVM’s backend for its compilers in the future. In 2005 Apple hired
one of LLVM’s co-founders, Chris Lattner, and formed a team for using LLVM as
an integral part of its development tools for its flagship operating systems.

It is not likely that all will be migrating towards the use of a single community
Fortran backend. As Jon Steidel puts it: “Most people building compilers off of
LLVM create some proprietary optimizations, which go into their products but
don’t get upstreamed to the public LLVM repository.”

It looks likely that LLVM is becoming a prominent component in the soft-
ware layer in support of exascale computing, the era of which we are entering
now. As touted in [144], its tools and breadth of collaboration across the labs and
leading computer companies “made LLVM-based compiler technology the default
gatekeeper to these [exascale-capable] systems.”

Much was said earlier about the length of time it took to get coarrays imple-
mented in compilers. That was, in large part, due to the fact that implementing
the full coarrays repertoire in the compiler is hard. The OpenCoarrays project[136]
was created to make that easier. It is, at this time and as a first step, an application
binary interface for the gfortran front-end for the parallel programming features of
Fortran 2018. Flang seems to be the project’s next compiler target. I reached out
to Damian Rouson to find out more.

Turns out the idea for OpenCoarrays originated in Italy. A graduate student
in the University of Rome published a paper in 2014 with 5 collaborators from
Italy, Germany, and the US, including Rouson, who now leads the OpenCoarrays
development[145].

The project has a broader vision than just making coarrays implementation
easier. Rouson: “One of the main goals of OpenCoarrays was to liberate Fortran

308 � Unmatched: 50 Years of Supercomputing

source from direct reliance on one parallel programming model. MPI alternatives
such as OpenSHMEM and GASNet can also be used and the switch doesn’t require
changing or even recompiling the source code. The decision about which one to use
can be made at link time.”

Rouson’s goal for OpenCoarrays is perfectly aligned with Numrich’s 2009 sug-
gestion in [137] of an object-oriented framework under which different programming
models can be implemented.

Rouson points to a couple of other practical reasons that keep OpenCoarrays
separate and outside of any compiler, other than the freedom to choose the parallel
programming model: The outdated development technology used, until recently, by
the GNU Compiler Collection (i.e., gfortran). And the need for licensing flexibility
in order to support multiple compilers.

All in all, despite the new types of workloads in HPC and the prevalence of
other programming languages, the Fortran community is alive, well, and thriving.

C H A P T E R 34

Thoughts from the
Guardians of Fortran
Ref lect ions from Those Who Do the Work

Why has Fortran not managed to stay the absolute language of choice for
HPC? - I can only theorize. One contributing factor has to be timing. For-

tran has been a follower, not a leader, as far as adopting data structure and man-
agement capabilities. Add to it the time it takes the Fortran standards committee
to deliberate and approve, and we end up with a time delay that drives users to
seek solutions elsewhere. Other factors include the flexibility of programming in
the more modern languages. Some are, perhaps, driven by what they see as a more
elegant foundation of the syntax of newer languages. Or, the interactivity enabled
by line interpreter compilers.

Perhaps this is purely of academic interest, and the community is, in general,
quite happy with the current state of affairs.

It is best to hear from some of the people who are in the thick of all-things
Fortran. The conversations described here took place around December 2020 and
early 2021. They show areas of agreement and a spectrum of perspectives.

John Reid lives in the UK and is the longest serving convenor of the committee,
so far (1999-2017). Though retired, he has an honorary position at the Rutherford
Appleton Laboratory in Oxfordshire, UK. His exposure to Fortran dates back to
the 60s. He became convinced of the need for standards in the language in the 70s
when his IBM Fortran codes could not run on other computers without changes.
That got him to join the J3 standards committee in 1983, where he represented all
the sites of the UK Atomic Energy Authority. They were concerned with protecting
their investment in large Fortran codes.

I was interested in Reid’s historical perspective.

309

310 � Unmatched: 50 Years of Supercomputing

As he puts it to me: “By 1983 Fortran was looking dated. I was keen to see
improvements.” But - “There’s always a conflict between people who want more
features in the language and the cost of developing those features into a compiler.”
The vendor representatives on the committee were protective of their investment
and preferred to keep old-style Fortran and make little to no changes. As Reid
recalls:

“in 1988, the situation was really critical. We got into a total deadlock, that was
finally resolved only at the ISO level at a meeting in Paris, because about half the
J3 committee were in favor of a fairly major change to the language, and the other
half were totally opposed to anything but a very minor revision. The rules that J3
operated upon at that time were that if a decision was made at a meeting to make
some change to the language it couldn’t be undone at a later meeting without a
two-thirds majority. So, a two-thirds majority was needed to make any change and
there wasn’t a two-thirds majority either way. We were split about half and half.
So we were in a deadlock.

“The long delay in the Fortran 90 standard was a disaster for Fortran. It made
the committee determined to make the next revision (Fortran 95) small and make
it happen soon.”

“The idea was that it could be followed by a major revision. Here we had an
overshoot. The committee was too nice: ‘It is a major revision and this looks useful
- we should include it.’ Fortran 2003 was too big. I was convener by then and I
should have done more to counter this. But the role of an ISO convener is to achieve
consensus, and all the additions had this.”

Reid highlights the dilemma the committee has to contend with: Users complain
the language is too big in terms of options and features. Yet, they lobby for this
feature or another to be added. Of course, the existence of large and complex old
Fortran codes makes it next to impossible to remove features. Even when outdated
or rarely used. It is a standing requirement that these old codes continue to be
supported in the language.

There is also a tension in what motivates changes in features. Reid uses the
term safety to indicate the assurance that a code would do what the programmer
intended, and that this intention will be clear to users years later. The other ap-
proach is to give the resulting performance a higher priority. He relates an anecdote
from the 90’s: “A group of Cray users were invited to a discussion with the compiler
team on their plans for the compiler and associated tools. There were about ten of
us. None of the others thought safety should play any part in the objectives.”

As for the nature of features, Reid believes “Fortran should focus on what it’s
doing well, which is numerical computations, because this is wanted by many users.”

Clearly, Reid represents those who prize, above all, code safety and stability.
He summarizes his views on Fortran’s past and future: The lesson learnt from past
revisions is not to overload future revisions with too many changes. Allow compiler

Thoughts from the Guardians of Fortran � 311

vendors to keep apace. In addition to performance, code safety has to be a priority
factor to consider. Old superseded features are, regrettably, here to stay in support
of old codes. Beyond that, the new generation of committee members and users
have to decide what is important for the Fortran language.

Jon Steidel, from Intel, is another old-timer in Fortran-world. He played a role in
the coarrays story as a colleague of Numrich and participant in its proof-of-concept
implementation. Having been a compiler developer for decades, and at several HPC
companies, and a past and current member of the standards committee, I sought
his perspective on Fortran’s past and future.

Steidel is involved, on behalf of Intel, with the DOE’s Argonne National Lab
as they prepare codes for a future exascale system. He observed that whereas in
the past, in the 80s, over 90% of the cycles were executing Fortran originated code,
he estimates that now the fraction is down to around 60%. “Fortran was slow to
get data structures in general. It wasn’t until 2003 that we got Object-Oriented.
And there was a lot of interest in C++ by that time because of its Object-Oriented
features.” He points out that though Fortran is superior, and the language of choice,
for numerical simulations of all kinds, C interacts better with the operating system.
Therefore, interoperability with C is important for data analysis tasks, for example.
He recalls: “One of the things that I really pushed for in 2003 was to get some C
interoperability stuff into the standard, because IBM, DEC, and Cray had it, but
not in the same manner. I thought it was really important that we standardize that
or Fortran probably would be in worse shape now than it is.”

On the topic of innovation in programming languages, Steidel makes the in-
teresting observation that for C and C++, addition and changes occur only after
being implemented by at least two compilers. As for Fortran - “We go out and in-
vent things that nobody has implemented. Maybe that’s a problem..” For example,
he points out, it took Intel 9 years to have a fully compliant Fortran 2008. To be
fair, by 2020 they already have a fully compliant Fortran 2018.

The coarrays story is one facet of Fortran’s struggles with expressing parallelism.
We ended up with the majority using MPI for what can be called coarse-grain par-
allelism, and OpenMP for fine-grain - vectors and shared memory regions. OpenMP
is closer to the compiler, and now its interface to the compiler is in the standards.
Steidel was around when this came about:

“OpenMP has its own committee. Its own rules. They aren’t part of the ANSI or
the ISO standards. It started back in about ’97. There was an interest in standard-
izing shared-memory parallel processing. There was much effort, many meetings,
and a lot of time put into thinking these things through. And there was actually
a committee formed, but it disbanded. The DOE labs came to Cray and IBM and
to Digital, and they said: ‘Could you guys please standardize the way that we do
parallelism?’. And that was the start of OpenMP. Several vendor companies got

312 � Unmatched: 50 Years of Supercomputing

involved with representatives from the labs. We would meet fairly frequently and
hash things out. We came up with what was, basically, the Cray autotasking model
with different spelling. OpenMP continued to evolve through the years. It is ver-
sion 5.0 of the standard now. And it even contains the necessary syntax for GPU
offloading.”

The Fortran Standards committee is fine with letting handling of parallelism by
the outside bodies of OpenMP and MPI.

Asked about direction Fortran should be evolved Steidel joins others by high-
lighting generic programming. The language feature is also known as templates. It
provides the ability to write a procedure once, then compile it with different data
types as needed by the application. This is also a part of the increased focus on
high productivity programming (see also the discussion about high-productivity in
Chap. 19).

Tom Clune, from NASA, is another committee member from the user commu-
nity. His role is that of a software engineer who advises and supports scientists-
programmers. In his case, they are the climate and weather modelers at NASA
Goddard.

Clune is not concerned with the level of Fortran-teaching in higher education in-
stitutes. The NASA recruits with a graduate degree in science arrive with sufficient
knowledge of Fortran or can readily learn on the job if they know other high-level
languages, he states.

On the subject of object-oriented features, Clune points out that Fortran and
C++ employ different models: “It’s not like you can just write a simple thing in
the standard to mandate how objects are interoperable between the two languages
the way we could at the C-layer level.” It is possible to achieve interoperability
with C++ through a C wrapper, but it is tedious, and therefore not much used at
NASA.

The topic above led to Clune expressing his perspective on the working of the
committee:

“I have actually found that the committee itself is generally very open to commu-
nication from the broader community. But there’s a difference between being open
to that and successfully getting a paper through. You really have to have somebody
on the committee that’s championing it. It really does help to have somebody in
the room for whom that’s a key issue. But I’m much more concerned about the
time frame. Not only that it wasn’t until 2003 that Fortran had object-oriented ca-
pabilities, but it really wasn’t until, maybe 2015 that compilers were robust enough
to actually use. It puts Fortran about 20 years behind other languages. This is
partly because Fortran is a small community now. The vendors have very limited
budgets to implement the new features. They can only introduce new features at
a certain rate. If we want to keep our codes able to work with a certain compiler,

Thoughts from the Guardians of Fortran � 313

we’re oftentimes stuck with 10 years behind the standard in terms of what language
subset we can use. As opposed to C++ where developers apparently spend a much
smaller fraction of their effort diagnosing, reporting, and working around compiler
bugs. This is frustrating.”

Clune is of the opinion that whenever possible making smaller and more frequent
updates to the standards will work better for the community. He observes that this
is indeed the direction the committee is currently taking. At the same time, he
realizes this is not always possible, and provides this example:

“Fortran users have wanted something along the lines of C++ templating for a
long time. We now have a mandate to work on that. It is considered to be such a
big feature that we are aiming it for the standard after the next. It is referred to as
F202Y (the next version is called F202X) - without committing to a specific year.
It may be as late as 2030. I’m really looking at developing a feature that doesn’t
actually get robustly implemented until I retire. This is something I’ve wanted for
a large swath of my career. I’m happy to help create it, but jealous of the fact that
I won’t get to use it.”

When it comes to the matter of abstracting the language from the underly-
ing system architecture, Clune agrees with the current philosophy, while conceding
there should be some notion of distinct memory spaces as a way of addressing
accelerators. Perhaps, a third level - beyond shared and distributed, to deal with
hosted attached processors, such as GPUs. And, in this context, the question arises
of how much control to provide the user in instructing the compiler. Not through
non-standard extensions, but within the language. “There are language people that
will say: ‘the compiler is in a better position to decide the balance between vector-
ization and threading.’ I don’t believe that is always the case. I think that the
compiler is not even going to know what I’m doing with MPI. And it is not going
to know that turning on threads is going to kill my performance because now it is
oversubscribing resources. There should be a way for the user to provide that kind
of guidance. And Fortran right now does not recognize that.”

Ondřej Čert́ık from LANL observes that the Standards Committee tasks itself
with defining a feature - how to express and how to use it. It does not comment on
implementation. In general, the feature has not been tried and tested before it is
published in the Standard (a concern expressed also by Steidel). He suggests that
a better process would be to prototype a proposed feature. That will remove the
estimation and guesswork of both implementability and usability. He says: “The
committee standardizes things before they get used in practice. That’s like putting
the carriage in front of the horse.”

The other point Čert́ık makes is that the Standards Committee should have
some kind of an outreach program to promote a new version of the compiler. He
mentions two elements: Advertisement directed at the users, and convincing com-

314 � Unmatched: 50 Years of Supercomputing

piler developers to implement early. He says: “To actually get the Fortran commu-
nity to use new features you have to do more than just publish them. You have to
advertise, and you have to ensure that it is implemented in several major compilers,
with support for the users.”

When seeking a vision for Fortran, Čert́ık points to C++ as an example of
what a vision may look like. It sounds more like an underlying design philosophy:
C++ is to be rich and versatile enough so that user developers can create libraries
for any processing task they wish. In contrast, for Fortran, he agrees with other
Fortran guardians who are taking a counter view. For Fortran the language itself
has to contain everything that is needed for numerical scientific computing (and
not just for any possible processing task). “make Fortran the best language for
scientific computing again.” Čert́ık fears Fortran will be delegated to the lower
level of routines being called from programs written in other languages. Existing
Fortran programs in production are being maintained, but there is not much new
major applications being developed in Fortran. He worries that the newer languages
that developers start with have rich enough set of libraries that reduces the need
to call even the numerical libraries of Fortran. And, he suggests, Fortran will be
helped by having standard set of libraries for utilities and functions beyond the
numerical.

A running theme in todays HPC programming is the use of multiple languages
and the interoperability among them. For Čert́ık, this matter was another reason
he got involved with the Fortran standards: “It needs to become easy to mix and
match C++ and Fortran, Python and Fortran, Julia and Fortran, and so on.”

In my exchanges with Damian Rouson, he placed the OpenCoarrays project
in the broader context of parallelism and parallel programming models. He points
out that “One little-recognized fact is that the parallel feature set in Fortran 2018
extends well beyond coarrays. A surprisingly large fraction of applications can go
parallel in Fortran 2018 without ever declaring a single coarray. For embarrassingly
parallel applications1, collective subroutines, teams, failed images, image enumer-
ation, synchronization, and error termination cover all of the application’s algo-
rithmic needs without requiring coarrays. Moreover, there are plenty of features
in the language that are implicitly parallel, including array statements, elemental
procedures, and the concurrent form of do loops. For all these reasons, I usually
just talk about parallelism in Fortran 2018 broadly without necessarily tying it to
coarrays.”

Rouson, who teaches modern Fortran to researchers and scientists, further em-
phasizes the parallelism aspect of scientific programming, even if somewhat hy-
perbolically: “There’s so much parallelism in the language that even the shortest

1The term ‘embarrassingly parallel applications’ applies to a class of application where the
distributed tasks require little to no communication during the parallel processing.

Thoughts from the Guardians of Fortran � 315

standard-forming program is parallel. Or to put it another way, rather than asking
the common question of how to parallelize an algorithm, we could start asking why
we would ever serialize an algorithm. It’s probably fair to say that nature is parallel
in all ways that satisfy causality. Thus, when I teach modern Fortran, the courses
usually start parallel from the first line of code and stay parallel throughout. It’s
an inherently parallel language now. Any Fortran code can be compiled in a way
that it executes in parallel. The only question is whether the programmer is going
to take advantage of that ability in any explicit way.”

It is appropriate to round off the conversations with Steve Lionel, who is the
current (circa 2021) convenor of the standards committee. His start with Fortran
dates back to the late 70s and the compiler group at Digital Equipment Corporation
(DEC).

Interestingly, it was then that the second Fortran standard - for Fortran 77, was
published. Lionel notes that it would take 13 years before the next Standards version
is published. The delay caused issues. Users demanded features and vendors had
to implement them on their proprietary compilers. Of course, not all implemented
the same features or in the same way. As a result, when the Standard came out
there was re-work to be done, while preserving support of past implementations.
That long-ago experience must be what is driving Lionel now, as the committee’s
convenor, to establish a process of more frequent and less burdened updates. It took
8 years between Fortran 95 and Fortran 2003. An improvement, but still too long.
As Lionel explains:

“The Fortran Standards Committee has been a mix of compiler vendors and
end-users. But in recent revision cycles the committee had not been soliciting input
from the broad user base. Many of the members were familiar with what their
customers were doing. The compiler vendor representatives tended to be from the
support side. They were familiar with the types of programs that their customers
were doing and the things they ran into, and they would make suggestions to the
committee. And often these compiler vendors would create an extension to the
language to make their hardware look better. Sometimes it would be as an actual
language feature; sometimes it would be directives that would alter the way that
the program was interpreted. Soon the compiler vendors started becoming more
conservative about creating new language features because that was especially a
problem if the new standard conflicted with the feature they created2.”

Lionel repeats what Reid stated before. Fortran 2003 was a very big update,
perhaps too much so: “Fortran 2003 was another big, big, big change. With poly-
morphism and a bunch of other features that had never been done in a Fortran

2John Reid adds that there was a huge outreach to users for the revision of Fortran 77 -
there were 396 letters sent in the first public review and much committee effort was expended in
considering them and replying. In recent years, it has become much harder to get opinions from
users, but we have certainly been trying within the UK.

316 � Unmatched: 50 Years of Supercomputing

before. But they were popular in other languages. So in addition to what customers
or the users were saying they would like to do, the committee also looked at what
other languages do and said: ‘Gee. That would be a useful thing’, or, ‘That’s some-
thing that people are asking for, so let’s do that.’ What made things worse was
that the economy was contracting at that time. The Fortran compiler teams were
getting smaller. There were companies that just stopped doing Fortran entirely.
There was consolidation as when Intel bought the DEC team in 2001.”

When comparing to other languages’ updates, Lionel tells me, consider that
the Fortran committee has between 15 to 20 members, with contributors from
five countries, at most (US, Canada, Japan, Germany, UK), with only about 6-7
members doing much of the work. The C++ committee, for example, has some 250
members. Still, he is eager to reform, gently, how the committee operates: “When
I became convener of the Fortran committee in 2017, the first thing I did was to
do a public survey among Fortran users. We had 137 responses with hundreds of
suggestions and we asked the users to rank them. We then got together, and went
through all of those suggestions, plus those from committee members, and that’s
how we came up with the feature list for what would be the next revision, which
we’re calling 202X.”

Fortran 2018 was actually published in 2018, unlike previous revisions which
were named after the year in which the features were finalized (integration of the
new features into a large and complicated standard document together with final
publishing add delay measured in years). It adds clarity to the timeline of revisions,
but only because that revision was previously called Fortran 2015. Following the
2018 publication and the user survey “We immediately started working on the
next revision, planning a very short cycle, five years maximum. We have been very
successful with that. We’ve got almost all the features designed already. Even with
the pandemic slowing us down and holding virtual meetings.”

Lionel’s vision for the workings of the committee fits well with the GitHub
repository described above, of which he is fully supportive. He highlights another
advantage it brings about: “One of the things that’s held us back in the past is
that nothing happened between meetings. During the meeting there’s this flurry
of activity. People go up back to their hotel rooms and write papers and design
features. We vote on them. We do that all week, and then we go back to our jobs
and forget about it again until the next meeting. There are just three meetings a
year. This is a terribly inefficient way of doing things. I think of the repository as an
‘incubator for ideas’. It serves to get ideas fleshed out so that we can get a running
start on the next revision. It definitely makes things more visible to the end users,
which is something that I was promoting.”

“It has worked so far. I’m pleased that compilers are catching up with the
standard. In fact, in the past compiler vendors were saying: ‘The standards are just
moving too fast. We can’t keep up with it.’ ”

Lionel also has an ongoing blog series under the heading of “Doctor

Thoughts from the Guardians of Fortran � 317

Fortran”[146]: “The blog is where I talk about Fortran standards activities and
where I try to explain things. This is a way of keeping more in touch with the
users.”

We talked about Fortran’s place among programming languages. Lionel is of the
opinion that the standards committee cannot do much about schools not teaching
Fortran anymore in the US (not so in Europe and Asia). And that, anyway, there
is no one language that is best at, or designed for, everything. Mixing languages
where appropriate is just fine. That said, “Fortran continues to have its strengths in
numeric processing. That’s going to be important. I tell people to use the language
they know and can maintain. And not to rewrite applications from one language
to the other just because a language is out of favor. That would usually introduces
bugs. There are new applications being written in Fortran, because Fortran is still
very strong in scientific and mathematical engineering applications. Other languages
have their place too. I don’t think this is a zero-sum game. And my goal is to keep
Fortran relevant for the people who want to use it.”

Reinforcing the guiding principle of detaching the language from the hardware
architecture the code runs on, Lionel says: “One of the things that we on the For-
tran committee take a stand on is that we don’t want to put into the language
anything that looks like it’s going to be temporary. Fortran is actually hardware
agnostic. There is almost nothing in the language that’s specific to hardware im-
plementations.”

For example, he believes GPUs use is temporary and will be over in a few years.
This is based on the cyclical history of deploying attached accelerators. Anyway,
“Our approach regarding GPUs and attached processors is that there is an existing
model: OpenMP or OpenACC, to enable their use independently of the language.”

This is consistent with a basic tenet of the Fortran standards committee: “For-
tran’s philosophy is unusual, in that it allows the processor - and by which we mean
compiler and underlying OS and hardware - to do things in any way that it sees
fit to get the desired result. Things like auto parallelism and vector processing and
such, are invisible in the language. The implementation just makes it happen. We
do try not to put restrictions in the language that make it difficult for accelerators
to work. It’s a different philosophy than that of some of the other languages.”

And the justification, Lionel continues, is:“I would rather focus on language
features that improve programmer productivity in terms of the development process
and let committees, such as OpenMP and OpenACC, focus on getting the best out
of the hardware if the compiler can’t do it. There are tools that can analyze the
running program and advise the user on what to do for a better performance.
Compilers can tack on directives that say, ‘vectorize this.’, or, ‘Don’t vectorize
that.’.”

Again, the underlying assumption is that things like attached processors and
even vector functionalities are all temporary.

318 � Unmatched: 50 Years of Supercomputing

Commentary

Here I offer my opinions about what I heard and observed. My major takeaways
from the conversations described above, about the thinking of the Fortran guardians
regarding its near-term future, are:

� New versions of Fortran standards to be published at the faster pace of one
every 4 to 5 years.

� Desire and activity to generate a greater user community feedback and sug-
gestions into the committee, as well as projects to enhance the language’s
usability and popularity.

� High productivity, of development and maintenance, gets more attention than
performance enabling features.

� The language definition is independent of any hardware architectural details.

� Fortran continues to limit the scope of its target codes to numerical compu-
tations.

� Fortran for HPC is here to stay even if in a mixed-language environment.
Interoperability with C is a central tenet.

The points above serve me as a roadmap for a discussing my reactions to the
conversations described in the Fortran chapters.

On the Workings of the Committee

Accomplishing the goal of a faster release cycle of the Fortran standards requires
both that the amount of changes is kept in check and that committee work continues
between meetings. The use of an online repository for proposals, open to the public,
makes the goal feasible.

We saw that some people would like to see more promotion of Fortran. Lionel,
the current committee convenor, would welcome it, but states that the committee
has no funding or the tools for such an activity. Perhaps it is a role for the user
community. Possibly driven by national research labs, government agencies with
stake in the language, engineering schools; even, organizations interested in higher
productivity in computing. For example, it is likely that many recent graduates are
not aware that much of what they do in C can be done in Fortran too.

Looking at the committee’s past performance, with the coarrays story in mind,
the verdict is not as complimentary.

By having taken until 2010 (when Fortran 2008 was published) to introduce

Thoughts from the Guardians of Fortran � 319

parallelism intrinsically into the language via the coarrays model, the Fortran stan-
dards bodies, effectively, ceded the expression of parallelism to external libraries and
other committees. Of course, that wasn’t intentional, but what might be termed a
historical misfortune. Coarrays’ use is far, far less than that of MPI and OpenMP
(or OpenACC for GPUs). Not all compiler vendors feel compelled to implement
coarrays. Most who do, employ MPI under the covers. Though not a part of the
standard, there is a tacit acceptance by the Fortran committee (and users) that
OpenMP is the tool to use for local memory parallelism and, with OpenACC, for
GPU processing, and MPI for distributed (and shared) memory parallelism.

The outcome is that the details for expressing parallelism in Fortran are, in
practice (because coarrays is not in common use), controlled by bodies external to
the Fortran standards committee.

This is not a matter of status or recognition. But still feels awkward (to me,
at least) that most programmers in Fortran, the language that accompanied su-
percomputing throughout its history, rely on tools external to the language for
expressing parallelism; an aspect so fundamental to HPC.

The coarrays story is used here as an example in order to draw some more
general conclusions regarding the evolution of Fortran. But it is not the only case
from which lessons can be learnt, and as was hinted about in the preceding chapters:

One such topic is the introduction of array syntax in Fortran 90. Influenced
by the then-popular data-parallel paradigm, it turned out that the early imple-
mentations could affect performance negatively. It has taken a long time for the
compiler vendors to fix the performance issue, after which many more of the users
were willing to use the feature3.

Another important feature worth mentioning is the concept of derived type. It
was supposed to resemble the C Structure, and first introduced in Fortran 90. One
difficulty was that there was no outreach to Fortran users explaining the feature as
a first step towards Object-Oriented languages style. Some old time Fortran pro-
grammers disdained that style. It wasn’t until Fortran 2003 that Fortran added
procedures that resemble C++ classes, and allowed allocatable components within
derived types.(A Technical Report, published in 1998, defined allocable components
and allowed implementations prior to 2003.) Using pointer components instead can
cause situations that resulted in memory leaks, leading to running out of mem-
ory space. The other big issue is that Fortran derived types and C++ are not
compatible. To this day it seems the newer (and younger) users and members of
the committee are more open to the Object-Oriented features in designing modern
Fortran codes.

These last two items are examples where greater interaction with the user com-

3As an aside, the CDC Cyber 205 already had array syntax in the early 80s, designed to
support memory-to-memory architectures (already known to be ineffective). Some people ridiculed
that syntax at the time.

320 � Unmatched: 50 Years of Supercomputing

munity and earlier inclusion of language interoperability might have prevented some
difficult chapters in the history of Fortran.

On Performance and Productivity

As Lionel stated, there is more emphasis on productivity than on performance when
the committee considers new features for the language4. He also expressed the
committee’s philosophy of avoiding consideration of hardware architectural details,
while ‘doing no harm’ to the compiler’s ability to optimize for performance, and that
users concerned with improving their code’s performance can call on performance
analysis tools.

Reid values safety, that is reducing the likelihood of blunders going undetected,
and also the quest for high performance. He sees safety, productivity, and perfor-
mance as separate of each other, and equally important.

These concepts are separate, but in practice there can be dependencies involved.
For example, allowing the user to declare regions safe for vectorization or paral-
lelization, for enhanced performance, whereas there might be possible race condi-
tions that cause errors (safety eroded). Productivity measures through abstractions
(objects) may well be to the detriment of performance. In short, the language can
provide ways for productivity on code development, but to extract higher perfor-
mance the developer may have to forego productivity in terms of time spent and
even of features to use.

We saw that the matters of performance and productivity are complex and
subjectives. There is the difficulty in defining productivity in the context of HPC. It
is generally understood to mean support for quick development of codes and easing
its maintenance. However, consider the difference in approaching a research code
compared to that of a production code that is developed once and run thousands
of times, and is central to an organization’s mission. Optimizing for performance
of the latter by utilizing complex coding techniques and tools, slows down the
development phase, but increases the organization’s productivity in the long run5.

Put coarsely, production codes, running repeatably, require high performance
outcome, not fast development, for the organization’s overall productivity. For one-
time research code, overall productivity benefits from quick development features
and the resulting performance matters less. Thus, the two attributes are entangled.
Both scenarios - quick development and high performance - need to be served. The
challenge for the Standards committee is how to do so optimally.

4These aspects of HPC were discussed at greater length in chapters 19 and 31.
5It is worthwhile to repeat here the potential ambiguity of the terms productivity and perfo-

mance: By higher performance we imply higher productivity of the computing system. By high
productivity we really mean higher performance of the humans involved.

Thoughts from the Guardians of Fortran � 321

On Abstraction Away from Hardware Details

The principle of abstracting the language from hardware details consideration is,
in my opinion, the most impactful and consequential criteria for the language. It
has been a long standing principle that all the members I talked to agree should
be adhered to and preserved. A legitimate principle that results in a more elegant
formalism, and helps in avoiding the pitfalls of enshrining in the language features
of short-lived usefulness. Other major languages are also architecture-agnostic, of
course.

But for Fortran, the absolutism of not addressing important hardware features
appears to be somewhat inhibiting in two areas:

� Addressing parallelism holistically

� Support for higher performance of codes

Regarding the parallelism item, abstracting away from the hardware architec-
ture (the presence of distributed memory) was not a factor in the committee’s
thinking that led to the late adoption of coarrays in 2008. But that addressing
distributed memory systems took so long is consistent with that philosophy. And
whenever there is a hardware component, be it distributed memories or attached
processors, that cannot be pointed to within the language people will, by necessity,
resort to creating libraries through which these components can be accessed.

There are practical implications to relying on libraries. Library calls inhibit
potential compiler optimizations for faster execution. In addition, ceding control of
the language over functions such as parallelism and attached processors opens the
door to multiple solutions, and away from a single standard. This has happened
regarding GPUs. The Fortran standard is aligned with OpenMP and OpenACC,
and there is an alternative: CUDA .

It may be just an aesthetic difference, but it seems that striving for the purity
of the language forced some external appendages that take away from such design
purity.

Decision to not include functionality in the language means leaving it to a li-
brary. That was true at least as far as parallelism and attached processors go. With
some degree of oversimplification we can say the following on the subject: Ideally
(but not practical), the language should just express the processing the user wishes
the computer to perform. ‘This is the data. These are the equations. Apply them and
present the results.’ After all, Fortran’s name came from “FORmula TRANslation.”
Compiler front-ends transform this high-level code to an intermediate representa-
tion. At this phase architectural details can be exposed. Finally, a backend compiler
and an optimizer generates machine code that is executed on the system.

Now we get to the matter of performance. The process above sounds good in
theory, but the reality is more complex. There are often multiple ways to write down

322 � Unmatched: 50 Years of Supercomputing

a numerical procedure. Multiple ways to step through the data. Multiple ways to
declare data structures. And not being able to be specific about the programmer’s
intentions regarding aspects of the architecture can result in an intermediate rep-
resentation that the backend cannot optimize well for performance.

Indeed, the reality is that, over the years, compilers and companion tools often
did not live up to expectations. For users who care about performance (and what
Fortran user doesn’t?), providing ways to advise and assist the compiler seems like a
reasonable compromise. Such features exist in some compilers, but are not universal
or standard. Users who want to offer such hints and advise to the compiler also
want the code to remain portable across compilers. For that to be true these advise
capabilities have to be included in the standard. Such a capability would also allow
a more consistent performance across compilers. The ability to get a performance
boost through hints and directives is preferable to time-consuming tweaking of the
code in a guesswork manner until the compiler does what is expected of it (recall
the ‘performance’ discussion in Chapter 31.). Fortunately, for shared memory and
GPUs there is OpenMP. Its instructions appear in the Fortran code as special
comment lines that the compiler can use to invoke the parallelism as requested by
the programmer, and as possible on the system the code runs on. In the language
itself there is the “do concurrent” statement and the “contiguous” attribute that
were added in Fortran 2008.

So, we have a medley of forms and styles for expressing parallelism in Fortran.
The popular tools used today are OpenMP for shared memory; OpenACC, CUDA
and OpenMP for GPUs, MPI for distributed memory. An in-language model con-
sistent in style and form that exposes the architectural features mentioned here
would have been cleaner.

Adjacent to the discussion above is the difficult issue of what decisions regarding
data placement to leave solely to the compiler. Should there be features that allow
the performance-conscious programmer greater control over ordering and placement
of data elements? Think, for example, of ability to define an ordering of elements
in an array that is different than the standard’s default (and goes beyond a two-
dimensional transposition). Or, how about features for controlling the mapping
of the logical distribution of data to the its physical configuration, so that the
program can refer to data located at the physical neighboring server (for example)?
(See footnote 7, page 324)

The argument against exposing hardware details is that they are often tempo-
rary. Mostly true at the low-level details. But consider global system components
and general processing modes. What I have in mind are concepts like vector process-
ing, distributed and hierarchical memory, and accelerators (attached processors).
These are features that have been around for a long time, even if we can’t tell that
it will be so forever.

Vectorization exists now for 50 years; even if missing for a short time during
the transition from proprietary to commodity processors. Vectors are treated as

Thoughts from the Guardians of Fortran � 323

one-dimensional arrays. An explicit and specific vector notation that implicitly
recognizes the presence of vector registers would be helpful to the programmer
and the compiler. The array syntax allows defining any vector within the declared
arrays, be it in any dimensional direction, or as diagonal, or non-contiguous set of
elements. It is a minor matter of esthetics perhaps, but a Vector type, separate
from and in addition to being a one-dimensional array, would increase the code’s
affinity with the hardware, and indeed with the math behind the code.

Attached processors in various forms - array processors, coprocessors, accelera-
tors, GPUs - were around since the 80s. The concept of a hosted processor continues
to gain popularity. Heterogeneous computing - the mixing of different types of pro-
cessors in a system, is a given in today’s HPC systems. The attached processor may
be a GPU, FPGA, or some specialized accelerator for machine learning. In all likeli-
hood, quantum computing devices will show up as attached and hosted processors.
They each have their own characteristics of processing and interface, but have in
common that a host processor sends data to them to process, and to send results
back to the host. The equivalent of the OpenMP (or CUDA) statements could have
been abstracted into the language.

Multiple memory layers will stay with us, and managing data efficiently will
demand awareness of the memory-storage hierarchy. Above all, parallel and dis-
tributed processing, with its piecemeal memories and interconnected nodes, will be
with us as far out as we can see. The details will vary, and compilers will adjust
for them, but the ‘performance user’ and production codes can benefit from being
able to be explicit about data location on memory on-chip, directly addressable
(shared), or remote (distributed) as they lay out the data and as it moves during
execution of the code.

Maybe features such as vectors, accelerators, and layers of memory, that have
been so fundamental to HPC systems for decades deserve to be considered non-
temporary and be visible in the language6.

Abstracting away from the hardware architecture led to resorting to external
libraries over in-language features. This affects the optimizations for performance
that the compiler can perform. There is a class of users who prefer the language to
reflect the problem they wish to compute and let the compiler do the best it can.
There are, also, critical codes that benefit from the best performance that can be
had. Often, these codes serve to select which system to acquire. It can be argued (as
I do here) that if truly integrated language constructs for management of vectors
(including for sparse arrays - gather and scatter and merge etc.), recognition of
memory layers and proximity, and handling of attached accelerators, existed, then
those performance-driven critical codes would be developed faster and perform
better. The language may have a ‘For Power Users’ section. The most effective

6Coarrays is visible and goes a long way in addressing distributed processing. Unfortunately, it
is not in common use for the reasons given before.

324 � Unmatched: 50 Years of Supercomputing

aspects (memory management?, GPU access?) may well become common for all
users in time7.

Perhaps I’m too optimistic and too obsessed with performance. The lesson from
the coarrays story is that timing is critical. It is hard to change facts on the ground.
The facts being the current ways of dealing with GPUs and parallelism. The Market
has spoken.

Fortran is for Numerics and HPC Embraces Multi-language Programming

The HPC community is paying more attention now to AI and data analytics. That
has also contributed to lessen the overall role of Fortran. Instead, users in those
new areas, now integral part of HPC, tend to program in Python and C++, under
frameworks such as TensorFlow, PyTorch and the like. It is not that the HPC users
are strictly divided between those doing numerical simulations and those, new to
the HPC world, who do AI and data analytics. There are now HPC applications
that are not numerically intensive, but perhaps more significant is that ‘classic’
HPC applications now venture into explicitly analytics and AI domains. One such
example is the use of machine learning algorithms and techniques on climate data
at weather centers and climate research labs.

The Fortran guardians do not attempt to expand the applicability of Fortran
to areas outside the computationally intensive one. This is not said as a criticism.
Better to serve one purpose well than try to be a ‘Jack of all trades’. That said,
object-oriented programming features, enabling the handling of complex data types
and structures, were added to language. But it has taken some 20 years to get the
richness of object-oriented features Fortran has today. Meanwhile, many application
developers, who valued the objects abstraction, migrated to other languages. The
community is adapting to multi-language coding practices. Especially in the area
of AI.

There is, though, work going on in using Fortran to create neural networks for
deep learning (see [147] by Curcic). It is a parallel Fortran framework that makes
use of the collective routines of Fortran 2018. What started as an academic exercise
is becoming a useful research tool with several published research projects to its
credit.

In Closing

Naturally, there is tension between the two necessities of a living programming
language: The orderly and inherently consistent standard formalism of the language,
on one hand, and the freedom and enabling of experimentation and innovation, on
the other. From its history so far, it is difficult not to conclude that the scales have

7This is not a new idea. I am reminded that HPF - the High Performance Fortran, came out in
the 90s as Fortran extension for high-performance. It did not enjoy much success and faded away.

Thoughts from the Guardians of Fortran � 325

been tipped towards the rigorous committee work and formalism. Not evolving fast
enough may have been to the detriment of the popularity of Fortran among the
broad HPC user community. Perhaps the repository for proposals described above is
a first step in creating a more productive collaboration between users and compiler
developers. And from that, innovation will spring forth.

The topic of leaving features to external libraries or including them in the lan-
guage came up a number of times. The resort to libraries was presented as a failure
of the language definition and standard. This was not meant as a general objection
to use of libraries, but only in the cases of Fortran’s expression of parallelism and
of access to attached processors.

In general, the use of libraries has a place and advantages too. Gropp highlighted
specific reasons for the success of MPI ([135]). Not all libraries accomplish those
attributes, but the library concept allows portability, for example, that cuts across
programming languages. History shows that, compared with language features and
compilers, people can experiment more easily with libraries, implement additions
and changes faster, and make them accessible to the user community sooner.

There are lists of programming languages ranked by popularity. Fortran is
ranked nowhere near the top. However, I am not referencing such lists because
most are not confined to HPC, and their metrics are not appropriate for judging
the importance of a language. They measure popularity of languages. That is, by
references on search engines and chat boards. Useful information for skills needed
by job seekers. For HPC the important metric is the portion of systems resources
and cycles consumed by codes generated by a given language. There may be fewer
Fortran programmers than for other languages, but they still account for a most
significant portion of HPC cycles consumption.

There is, clearly, a much smaller universe of Fortran practitioners compared to
that of some the more popular languages. Some find the need to explain and justify
their loyalty to Fortran. A few years ago, Daniel C. Elton wrote a short article titled
“Why physicists still use Fortran”[148]. He points to existence of legacy codes, ease
of learning the language, array handling features, no need for pointers and memory
allocation8, and a couple of other benefits. Physicists will continue to use Fortran,
even as more often via calls from another language.

My attachment to Fortran goes back to my past as an applications engineer and
a benchmarker. I’m happy to see a new generation of Fortran ‘activists’ who keep
Fortran thriving.

8That is not to say that pointers and memory allocation are redundant. Memory allocation is a
real necessity in modern Fortran codes. Pointers, though not compatible with C pointers, are very
useful in some cases.

C H A P T E R 35

Measure of HPC Impact
Quanti fy ing the ROI on Investment in HPC

W e have examples of how HPC benefited society and mankind in several do-
mains. Beyond the justifiable satisfaction and pride from the cited achieve-

ments, it is worth asking about the measured economic impact of the HPC enter-
prise.

As far back as 1991 the U.S. Congress requested the General Accounting Office
to report on how the Industry is using supercomputing, and to try and assess the
economic impact of such use. Quantifying the impact was difficult (see [149]), but
the authors give this assessment in the report’s executive summary:

“Supercomputers contribute significantly to the oil, automobile, aerospace,
and chemical and pharmaceutical industries’ ability to solve complex
problems. They enable companies within these industries to design new
and better products in less time, and to simulate product tests that would
have been impossible without spending months developing and experi-
menting with expensive product models. Some companies have attributed
significant cost savings to the use of supercomputers, For example, al-
though exact figures were not always available, representatives of some
automobile and aerospace companies estimated that millions of dollars
have been saved on specific models or vehicle parts because of reduced
manufacturing or testing costs. In addition, one oil company represen-
tative estimated that over the last 10 years, supercomputer use has re-
sulted in increased production of oil worth between $6 billion and $10
billion from two of the largest U.S. oil fields.”

Fortunately, a more recent study exists. The analyst group Hyperion Research,
formerly a division of International Data Corporation (IDC), created models based
on evaluation of hundreds of projects, that quantified HPC’s economic impact by
several metrics. Their latest report, as of this writing, was completed in 2013 [150].

327

C H A P T E R 36

Looking Forward
Technology Transformation Ahead and Ongoing Expansion of
Use Models and Users

The HPC market has always been evolving. The changes were always accompa-
nied with the steady, if fast, march of progress in device technologies. Architec-

turally, we identified transitions from big-iron monoliths with proprietary software
stacks, to multi-processors, to MPPs, and to clusters with ‘standard’ processors,
memory parts, interconnect, and a common operating system. These transitions
took time and almost always were not clear cut. Some vector processor product
lines survived well into the clusters period (NEC’s, for example). Vector instruc-
tions found their back into microprocessors used in clusters. Accelerators in HPC
existed for a while in the 80s, then returned to HPC some 20 years later. MPPs as
we knew them in the early 90s all but disappeared, but the term is now applied by
the authors of the Top500 list to systems with specialized high-performance and
proprietary interprocessor networks (such as Cray XC and the Fugaku systems).
That was the journey described in this book.

That said, the outlook for the coming decade or two is one of a much more
dramatic transformative period. The reasons for saying that is the apparent end to
the feature shrinking of silicon (Moore’s Law), the early products using quantum
computing (which requires us to rethink ‘programming’), and the future role of AI
aspects in HPC and computing in general.

But I’m reminded that when people contemplated exascale when we just reached
petascale, the consensus was that just evolving current architectures and program-
ming models will not be sufficient. But exascale is largely an evolution of petascale
systems, not a departure.

There is much more to changes of the HPC landscape than just a technological
revolution. The scope of what was once considered HPC, namely numerical simu-
lations of various phenomena, has expended explosively to be almost governed by
data and AI applications. With it the HPC user community has expanded and is

329

330 � Unmatched: 50 Years of Supercomputing

changing from mostly physical sciences researchers to include data analysts and
scientists, as well as AI researchers and practitioners. As of this writing, a new
organization, HPC Next Generation (HPCng)[151], was founded. From its mission
statement: “We, the members of the HPCng community, strive to create a diverse
community of backgrounds, ideas, skill sets, and perspectives. Such diverse perspec-
tives are needed to unite the currently disparate capabilities of HPC and enterprise
to allow for running advanced computational and data analytics at scale.”

From InsideHPC on HPC myths - touches on trends and future
https://insidehpc.com/2023/01/conventional-wisdom-watch-matsuoka-co-
take-on-12-myths-of-hpc/

With the new face of HPC - with AI and data, there is no clear line of
where HPC begins. It’s a continuum, and one can draw line subjectively.
Mostly on what it takes to run the app.

Topics:
Chiplets
RISC-V
Quantum Computing
Floating point precision
AI chips

Check also the HPCng charter document - PDF saved.
Another source is “Reinventing HPC” by Dan Reed et al.

Shahin: ”Now that Moore’s law is slowing or ending, and we have big emerg-
ing new applications like AI, we are seeing another explosion in new mi-
croprocessors and accelerators. We did an industry survey of AI at OrionX
and found 30+ chip efforts globally, and that number has grown since.”

Looking Forward � 331

On fat nodes trend:
From Rick Stevens:
“In terms of fat nodes, I just finished talking to 40 or so vendors in the last
couple of months about futures, and I would say it’s trending towards fat
nodes, but not necessarily with the accelerators. So if you think of modules,
wafer-scale things, perhaps, could have accelerators, could be mixtures of
tiles. Because with chiplets, it’s really easy to do integration of, say, pro-
cessor, classical CPUs and GPUs, and other types of accelerators within a
single package. So we will see over the next few years, packages that have
CPUs and GPUs in the same package. We’ll see CPUs, AI accelerators,
and memory accelerators in the same package. We’ll see FPGA and CPUs
and something else in the same package. And so fat nodes is really a pack-
aging decision. ”
“You’re almost always going to be shared memory within the package. Now,
the issue is how big of a shared memory domain are you going to go, and are
you going to do this chiplet integration at wafer scale, which is something
people are talking about. Because if I do it at wafer scale, then my area– the
amount of communication and bandwidth I have internally is much higher.
I have an internal surface to area kind of ratio. And if I have a lot of
interconnecting bandwidth on the interior, it gives me much more capability
than if I have to take these things apart. And now, I have to go off chip
or off module. So the trend is going to be towards bigger building blocks.
But with chiplets, I think it’s going to be heterogeneous, of course. And
what we think of as accelerators in this discrete sense is going to become
weaker. I think we’re going to think of these as chiplet building block, LEGO
types, and we’ll integrate them in different ratios and you’ll have SKUs that
are different ratios of those things. And then packaging will really become
dependent upon your system architecture.
And level of concurrency will continue to increase? - Yeah. Absolutely. No
other way.

332 � Unmatched: 50 Years of Supercomputing

On Exascale: - Note that this was discussed before. Can probably be dis-
carded.
From Ken Miura - on Japan’s efforts:
Asked about now: he’s involved with Fujitsu’s Fugaku (old name for Mt
Fuji) - he was in the naming committee.. ARM based, many core, own
interconnect - 3D, nearest neighbor .. ”each node has own structure” a
node is cube of 3x2x2 (?). each system board has 2 nodes; each chip has 48
cores (?), system has ’fancy’ hypercube connectivity. Previous - K computer
- was best for CG code; and power.. Fugaku will use 30-40MW. Goal is 100x
app performance over K .. not as measured by peak flops. K was 10PF peak.
Due in 2021. 1st PF in 2008 (Roadrunner), 1st 10PF was K (2012), 1st
100PF in ORNL (2018).

On Quantum Computing:

[me] Position QC as starting a new era, post Moore’s Law..

From Ken Miura:
chat about QC .. Ken: very far .. ”noisy, intermittent, ... ” given up on
RSA related topics .. showed at SC 2 years ago, but not now.. not doing
things like 100 digit integers etc.. too ”noisy” /”fake quantum” device with
annealing .. QC people worry about losing funding.

From John Shalf:
On what is promised, they have to walk back claims .. app space is very
limited ..

Rick Stevens on QC:
“ any existing useful quantum application (there’s not really any yet), but
when they eventually become useful, they’re going to rely on a lot of classical
computing as well as the quantum accelerator. So I think the right way to
think of them is a quantum accelerator for sure. Right now, they’re physics
experiments, so they’re not really accelerators. But I think when they become
mature, the way that you will access them is from a classical API. From a
hardware standpoint, depending on what the latency requirement is, they’ll
be either embedded in a big classical machine, or they’ll be right next to one.
(Only as such, maybe not.) Quantum processing is also something that’s
going to be very important in quantum communication networks and in
quantum sensing. And so you’ll have versions of processors that are actually
close to sensors or close to communication that won’t be like accelerators.
They’ll be an integral part of the device, whatever it is. ”

Looking Forward � 333

Eng Lim Goh video interview with a reporter from the Atlantic on exascale
and what it means.
Talks about drug discovery, weather prediction.
https://www.hpe.com/us/en/insights/articles/whats-with-the-18-zeros-
2009.html

From Gustafson:
Where is it going? Well, of course, the modern challenge is machine learn-
ing. And that’s the new HPC, to me, is the fascination with artificial in-
telligence. Once again, we’re doing things that look a lot like matrix-matrix
multiply, but they’re really low precision. And finally, people are reexamin-
ing what kind of way do we use to represent numbers on a computer, real
numbers not integers, and discovering that there’s a lot of efficiency to be
gained, and maybe enough for two cycles of Moore’s Law. We could get a
factor of four by using better number representations. And that’s, to me,
the most exciting thing happening in high performance computing is you
can get the number sizes down to 8 bits or 16 bits, and only very selectively
use higher precisions for summations, dot products, but then, immediately
return to a low precision. Then you can get away with even 16 bit linear
algebra, for example, you can get good answers out of that. The reasons for
using double precision in the past turned out to be poorly based, if you re-
ally look at the problem carefully. And to discover we can now do the same
number of operations, but with one-fourth as much data, is a big relief on
the memory wall, that Imbalance problem.
When you asked me what’s the most exciting thing happening in HPC, I
really should have said NextSilicon. brilliant man, Elad Raz, and a very
clever design in two huge innovations. One is just having enough inte-
ger processors that they can lay out the algorithm like a factory floor and
manufacture the solution without having to have any instruction stream
to each processor. And the other thing is their telemetry, where they can
check where’s the bottleneck, and then rewrite it every three seconds, and
dynamically speed things up in response. That’s amazing. two fundamen-
tal ideas together, I think, are the biggest breakthroughs in supercomputing
I’ve seen since parallel processing. I mean, the Cray-1 was a huge leap. It
was 100 X times what had come before, and then, going parallel was the
next big leap. And it’s been a long time since we’ve seen anything like those
kind of big leaps in HPC. It’s just been cluster computing, very dull. But
I think NextSilicon is going to solve the problem of arithmetic because you
can define any kind of arithmetic you want on those integer processors.

Bibliography

[1] Wikipedia. Moore’s Law: https://en.wikipedia.org/wiki/Moore’s_law.

[2] Top500.org. Top500: https://www.top500.org/.

[3] William J. Kaufmann and Larry L. Smarr. Supercomputing and the Trans-
formation of Science. Scientific American Library, 1993.

[4] Susan L. Graham, Marc Snir, and Cynthia A. Patterson, editors. Getting
Up to Speed: The Future Of Supercomputing. The National Academies Press,
2005. National Research Council. https://doi.org/10.17226/11148.

[5] Gene H. Golub and James M. Ortega. Scientific Computing and Differential
Equations. Academic Press, 1981.

[6] Wikipedia. List of Numerical Analysis Topics. https://en.wikipedia.org/
wiki/List_of_numerical_analysis_topics.

[7] Wikipedia. The partial differential equation. https://en.wikipedia.org/

wiki/Partial_differential_equation.

[8] Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc.,
1962.

[9] Andie Hioki. The Cray-1 Supercomputer: http://www.openloop.

com/education/classes/sjsu_engr/engr_compOrg/spring2002/

studentProjects/Andie_Hioki/Cray1withAdd.htm#Intro.

[10] Wikipedia. Vector Processor: https://en.wikipedia.org/wiki/Vector_

processor.

[11] Josef T. Devreese and Piet Van Camp (editors). Supercomputers in Theoret-
ical and Experimental Science. Plenum Press, 1984.

[12] NCAR’s Research Applications Laboratory. Climate Modeling and Downscal-
ing. https://ral.ucar.edu/nsap/climate-modeling-and-downscaling.

[13] Peter Lynch. The origins of computer weather prediction and cli-
mate modeling. Journal of Computational Physics, 227(7):3431–44,

335

336 � Bibliography

2008. (and https://web.archive.org/web/20100708191309/http:

//www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/

Lynch,Peter/OriginsCompWF.JCP227.pdf).

[14] ECMWF. Who we are: History. https://www.ecmwf.int/en/about/who-
we-are/history.

[15] UK Met Office. Who we are: Our History. https://www.metoffice.gov.
uk/about-us/who/our-history.

[16] Wikipedia. Met Office. https://en.wikipedia.org/wiki/Met_Office.

[17] Mike Hawkins and Isabella Weger. Supercomputing at ECMWF.
https://www.ecmwf.int/sites/default/files/elibrary/2015/17329-

supercomputing-ecmwf.pdf.

[18] Wikipedia. ILLIAC: https://en.wikipedia.org/wiki/ILLIAC_IV.

[19] J. E. Thornton. Design of a Computer: The Control Data 6600, 1970.
Computer History Archive. https://archive.computerhistory.org/

resources/text/CDC/cdc.6600.thornton.design_of_a_computer_the_

control_data_6600.1970.102630394.pdf.

[20] Thomas Rosmond. 30 Years of Navy Modeling and Supercomputers: an Anec-
dotal History. http://www.ncep.noaa.gov/nwp50/Presentations/Tue_06_
15_04/Session_2/jnwpu_rosmond.ppt.

[21] Philip G. Kesel and Francis J. Winninghoff. The fleet numerical
weather central operational primitive-equation model. Monthly Weather
Review, 100:360–373, 1972. https://doi.org/10.1175/1520-0493(1972)

100<0360:TFNWCO>2.3.CO;2.

[22] E. Morenoff, W. Beckett, P. G. Kesel, F. J. Winninghoff, and P. M. Wolff. 4-
way parallel processor partition of an atmospheric primitive-equation predic-
tion model. AFIPS ’71 Proceedings of the Spring Joint Computer Conference,
pages 39–48, 1971. https://doi.org/10.1145/1478786.1478793.

[23] Enrico Clementi and Giorgina Corongiu. Early parallelism with a loosely cou-
pled array of processors: The lcap experiment. Parallel Computing, 25:1583–
1600, 1999.

[24] N. Balram, C. Belo, and J. M. F. Moura. Parallel Processing on Su-
percomputers: A Set of Computational Experiments, 1988. In Super-
computing ‘88: Proceedings of the 1988 ACM/IEEE conference on Super-
computing https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.129.6837&rep=rep1&type=pdf.

[25] R W Hockney and C R Jesshope. Parallel Computers 2: Architecture, Pro-
gramming and Algorithms. CRC Press, 1988.

Bibliography � 337

[26] John Gustafson. Programming the FPS T Series, 1986. http://www.

johngustafson.net/pubs/pubt1986.2/FPS.pdf.

[27] Peter Coy. Company Claims World’s Fastest Supercomputer, 1986. AP News.
https://apnews.com/article/c31339533c42b5ed1be5f7639bc0bbfc.

[28] Floating Point Systems. FPS-164 Scientific Computer, 1982.
http://archive.computerhistory.org/resources/access/text/2010/

02/102647686.05.01.acc.pdf.

[29] Wikipedia. Minisupercomputer. https://en.wikipedia.org/wiki/

Minisupercomputer.

[30] William Mahoney and J. Todd McDonald. Enumerating x86-64 - It’s Not as
Easy as Counting. https://www.unomaha.edu/college-of-information-

science-and-technology/research-labs/_files/enumerating-x86-64-

instructions.pdf.

[31] Wikipedia. Lattice QCD. https://en.wikipedia.org/wiki/Lattice_QCD.

[32] D. Barkai, K.J.M. Moriarty, and C. Rebbi. A Modified Conjugate Gradient
Solver for Very large Systems. Computer Physics Communications, 36(1),
1985.

[33] D. Barkai, M. Campostrini, K.J.M. Moriarty, and C. Rebbi. Applica-
tions Development on the ETA-10. Computer Physics Communications,
46:13–33, 1987. https://www.academia.edu/52021944/Applications_

development_of_the_ETA_10.

[34] John Markoff. Lockout at Chen’s Supercomputer Company, 1993. The New
York Times. https://www.nytimes.com/1993/01/25/business/lockout-

at-chen-s-supercomputer-company.html.

[35] Sandia National Lab. Sandia’s ASCI Red, world’s first teraflop super-
computer, is decommissioned, 2006. https://newsreleases.sandia.gov/

releases/2006/asci-red-decom.html.

[36] Albert M. Erisman and Kenneth W. Neves. Advanced Computing for Man-
ufacturing. Scientific American, 1:148–155, 1988. Special Issue: Trends in
Computing.

[37] NCAR’s Mesoscale & Microscale Meteorology Laboratory. The Weather
Research & Forecasting Model. https://www.mmm.ucar.edu/weather-

research-and-forecasting-model.

[38] Jordan G. Powers et al. The Weather Research and Forecasting Model:
Overview, System Efforts, and Future Directions. Bulletin of the American
Meteorological Society, 98:1717–1737, 2017.

338 � Bibliography

[39] Thomas Sterling, Paul Messina, and Paul H. Smith. Enabling Technologies
for Petaflops Computing. The MIT Press, 1995.

[40] ExtremeTech. The History of Supercomputers (6). https://www.

extremetech.com/extreme/125271-the-history-of-supercomputers/6.

[41] Guang Gao, Konstantin K. Likharev, Paul C. Messina, and Thomas L.
Sterling. Hybrid Technology Multi-Threaded Architecture, 1996. https:

//www.hq.nasa.gov/hpcc/petaflops/paws.96/htmt/htmt.html.

[42] Thomas L. Sterling and Larry Bergman. A Design Analysis of a Hybrid Tech-
nology Multithreaded Architecture for Petaflops Scale Computation, 1999.
https://cseweb.ucsd.edu/classes/sp99/cse190_C/ICSJun99Final.pdf.

[43] Wikipedia. Beowulf Cluster. https://en.wikipedia.org/wiki/Beowulf_

cluster.

[44] James R. Fischer. The Roots of Beowulf, 2014. In “20 Years of Beowulf:
Workshop to Honor Thomas Sterling’s 65th Birthday” https://ntrs.nasa.

gov/citations/20150001285.

[45] Wikipedia. Pentium FDIV Bug. https://en.wikipedia.org/wiki/

Pentium_FDIV_bug.

[46] Wikipedia. Itanium. https://en.wikipedia.org/wiki/Itanium#Itanium_
(Merced):_2001.

[47] Wikipedia. Xeon Phi. https://en.wikipedia.org/wiki/Xeon_Phi.

[48] Wikipedia. Advanced Computing Roundtable. https://compete.org/

advanced-computing-roundtable.

[49] Jack Dongarra, Robert Graybill, William Harrod, Robert Lucas, Ew-
ing Lusk Piotr Luszczek, Janice McMahon, Allan Snavely, Jeffery
Vetter, Katherine Yelick, Sadaf Alam, Roy Campbell, Laura Car-
rington, Tzu-Yi Chen, Omid Khalili, Jeremy Meredith, and Mustafa
Tikir. DARPA’s HPCS Program: History, Models, Tools, Languages,
2008. https://www.academia.edu/22894524/DARPAs_HPCS_Program\

_History_Models_Tools_Languages?email_work_card=view-paper.

[50] David J. Kuck. Productivity in High Performance Computing. The Interna-
tional Journal of High Performance Computing Applications, 18(4):489–504,
2004. https://doi.org/10.1177/1094342004048541.

[51] Eugene Loh. The Ideal HPC Programming Language. acmqueue, 8, 2010.
https://queue.acm.org/detail.cfm?id=1820518.

[52] NCAR’s Research Applications Laboratory. Benefits and Impact Solutions.
https://ral.ucar.edu/solutions.

Bibliography � 339

[53] Milan Curcic. Cloudrun is a custom weather prediction service using WRF.
https://cloudrun.co/.

[54] Jeffrey Lazo, Megan Lawson, Peter Larsen, and Donald Wald-
man. U.S. Economic Sensitivity to Weather Variability. https:

//journals.ametsoc.org/bams/article/92/6/709/106985/U-S-

Economic-Sensitivity-to-Weather-Variability, 2011.

[55] NOAA Chief Economist. NOAA’s Contribution to the Economy.
https://www.performance.noaa.gov/wp-content/uploads/NOAA-

Contribution-to-the-Economy-Final.pdf, 2018.

[56] National Human Genome Research Institute. Biological Pathways
Fact Sheet. https://www.genome.gov/about-genomics/fact-sheets/

Biological-Pathways-Fact-Sheet.

[57] International Union of Physiological Sciences. Physiome Project. https:

//physiomeproject.org/about.

[58] Riken. Supercomputational Life Science. http://www.scls.riken.jp/en/

research/index.html.

[59] Cleveland Clinic. Center for Computational Life Sciences. https://my.

clevelandclinic.org/research/computational-life-sciences.

[60] Yuan-Ping Pang. Three-Dimensional Model of a Substrate-Bound SARS
Chymotrypsin-Like Cysteine Proteinase Predicted by Multiple Molecular
Dynamics Simulations: Catalytic Efficiency Regulated by Substrate Bind-
ing. PROTEINS: Structure, Function, and Bioinformatics, 57:747–757, 2004.
https://onlinelibrary.wiley.com/doi/epdf/10.1002/prot.20249.

[61] Yuan-Ping Pang. In Silico Drug Discovery: Solving the “Target-rich and
Lead-poor” Imbalance Using the Genome-to-drug-lead Paradigm. CLINICAL
PHARMACOLOGY & THERAPEUTICS, 81(1):30–34, 2007. https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC7162381/pdf/CPT-81-30.pdf.

[62] Yuan-Ping Pang. How fast fast-folding proteins fold in silico. Biochemi-
cal and Biophysical Research Communications, 492:135–139, 2017. https:

//www.sciencedirect.com/science/article/pii/S0006291X17315462.

[63] Folding@home. Learn more about proteins and SARS-CoV-2.
https://foldingathome.org/diseases/infectious-diseases/covid-

19/?lng=en-US.

[64] National Human Genome Research Institute. What’s a Genome? https:

//www.genome.gov/About-Genomics/Introduction-to-Genomics.

[65] Joint Genome Institute. DOE Office of Science. https://jgi.doe.gov/.

340 � Bibliography

[66] ExaBiome Project. DOE Office of Science. https://sites.google.com/

lbl.gov/exabiome/.

[67] ExaBiome Brings Metagenomics into the Exascale Era. Exascale Com-
puting Project. https://www.exascaleproject.org/exabiome-brings-

metagenomics-into-the-exascale-era/.

[68] Foundation Tara Ocean. https://fondationtaraocean.org/en/home/.

[69] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William
Carlson, William Dally, Monty Denneau, Paul Franzon, William Harrod,
Kerry Hill, Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark
Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas Sterling, R. Stan-
ley Williams, and Katherine Yelick. ExaScale Computing Study:Technology
Challenges inAchieving Exascale Systems, 2008. https://www.academia.

edu/60931242/Exascale_Computing_Study_Technology_Challenges_In_

Achieving_Exascale_Systems?email_work_card=view-paper.

[70] Dongarra J., Beckman P., et al. The International Exascale Software
Roadmap. International Journal of High Performance Computer Applica-
tions, 25(1), 2011.

[71] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas
Lippert, Satoshi Matsuoka, Paul Messina, Terry Moore, Rick Stevens, Anne
Trefethen, and Mateo Valero. The International Exascale Software Project:
A Call to Cooperative Action by the Global High Performance Community.
International Journal of High Performance Computer Applications, 2009.
https://www.academia.edu/47026194/The_International_Exascale_

Software_Project_a_Call_To_Cooperative_Action_By_the_Global_

High_Performance_Community?email_work_card=view-paper.

[72] IESP website. International Exascale Software Project. https://exascale.
org/mediawiki/index.php.html.

[73] Tiffany Trader for HPCwire. Frontier to Meet 20MW Exascale
Power Target Set by DARPA in 2008. https://www.hpcwire.com/2021/07/
14/frontier-to-meet-20mw-exascale-power-target-set-by-darpa-

in-2008/.

[74] CareerFoundry. What is Data Analytics? A Complete Guide for Begin-
ners. https://careerfoundry.com/en/blog/data-analytics/what-is-

data-analytics/.

[75] Cem Dilmegani. Graph Analytics: Types, Tools, and Top 10 Use Cases in
2022. https://research.aimultiple.com/graph-analytics/.

Bibliography � 341

[76] Yulia Gavrilova. A Guide to Deep Learning and Neural Networks. Serokel
Labs. https://serokell.io/blog/deep-learning-and-neural-network-
guide.

[77] Sara Brown. Machine Learning, Explained. MIT Sloan School of Man-
agement. https://mitsloan.mit.edu/ideas-made-to-matter/machine-

learning-explained.

[78] Terence Shin. All Machine Learning Models Explained in 6 Minutes.
https://towardsdatascience.com/all-machine-learning-models-

explained-in-6-minutes-9fe30ff6776a.

[79] Sunil Ray. Commonly used Machine Learning Algorithms. Analyt-
ics Vidhya. https://www.analyticsvidhya.com/blog/2017/09/common-

machine-learning-algorithms/.

[80] Rick Stevens, Valery Taylor, Jeff Nichols, Arthur Barney Maccabe, Katherine
Yelick, and David Brown. AI for Science, 2019. https://publications.anl.
gov/anlpubs/2020/03/158802.pdf.

[81] David Barkai. Peer-to-Peer Computing: Technologies for Sharing and Col-
laborating on the Net. Intel Press, 2002.

[82] Peer-to-peer. https://en.wikipedia.org/wiki/Peer-to-peer.

[83] SETI@home. https://setiathome.berkeley.edu/.

[84] Folding@home. https://foldingathome.org/?lng=en.

[85] David C. Thompson and Jorg Bentzien. Crowdsourcing and open innovation
in drug discovery: recent contributions and future directions. Drug Discovery
Today, 25:2284–2293, 2020. And online: https://www.sciencedirect.com/
science/article/pii/S0006291X17315462.

[86] PrimeGrid. http://www.primegrid.com/.

[87] distributedcomputing.info. http://www.distributedcomputing.info/

projects.html.

[88] Compute for Science. https://boinc.berkeley.edu/.

[89] BOINC. http://www.distributedcomputing.info/platforms.html#

boinc.

[90] Globus. https://www.globus.org/.

[91] Ian Foster and Carl Kesselman. The History of the Grid. Ad-
vances in Parallel Computing, 20:3–30, 2011. Also via https:

//www.sciencedirect.com/science/article/pii/S0006291X17315462,

342 � Bibliography

or http://www.ianfoster.org/wordpress/wp-content/uploads/2014/

01/History-of-the-Grid-numbered.pdf.

[92] NCAR’s Computational & Information Systems Lab. NCAR supercomputing
history. https://www2.cisl.ucar.edu/ncar-supercomputing-history.

[93] NCAR’s Computational & Information Systems Lab. Computational systems.
https://www2.cisl.ucar.edu/computing-data/computing.

[94] NCAR. Simulating a Complex World. https://ncar.ucar.edu/what-we-

offer/models.

[95] Y. Miyamoto, Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and
H. Tomita. Deep moist atmospheric convection in a subkilometer global sim-
ulation. Geophysical Research Letters, 40:4922, 2013. http://doi.org/10.

1002/grl.50944.

[96] Met Office. The Met Office ensemble system. https://www.metoffice.gov.
uk/research/weather/ensemble-forecasting/mogreps.

[97] ECMWF. Forecast upgrade innovates on single precision and
ensemble resolution. https://www.ecmwf.int/en/about/media-

centre/news/2021/forecast-upgrade-innovates-single-precision-

and-ensemble-resolution.

[98] John Michalakes. HPC for Weather Forecasting. In A. Grama and A. Sameh,
editors, Parallel Algorithms in Computational Science and Engineering.
Birkhauser-Science, Basel, 2020.

[99] David Barkai and Achi Brandt. Vectorized multigrid poisson solver for
the CDC cyber 205. Applied Mathematics and Computation, 13:215–227,
1983. Published by Elsevier. https://www.sciencedirect.com/science/

article/abs/pii/0096300383900139, or https://ntrs.nasa.gov/api/

citations/19840012162/downloads/19840012162.pdf.

[100] University of Bath Institute for Mathematical Innovation. Multi-grid meth-
ods for speeding up weather forecasts. https://imibath.ac.uk/projects/

multi-grid-methods-for-speeding-up-weather-forecasts/.

[101] Anton Afanasyev, Mauro Bianco, Lukas Mosimann, Carlos Osuna, Felix
Thaler, Hannes Vogt, Oliver Fuhrer, Joost VandeVondele, and Thomas C.
Schulthess. GridTools: A framework for portable weather and climate ap-
plications. SoftwareX, 15:100707, 2021. Published by Elsevier. https:

//www.sciencedirect.com/science/article/pii/S2352711021000522.

[102] Thomas C. Schulthess, Peter Bauer, Nils Wedi, Oliver Fuhrer, Torsten Hoe-
fler, and Christoph Schar. Reflecting on the Goal and Baseline for Ex-
ascale Computing: A Roadmap Based on Weather and Climate Simula-
tions. Computing in Science & Engineering, 21:30–41, 2019. Published

Bibliography � 343

by the IEEE Computer Society. https://ieeexplore.ieee.org/document/
8586949, or https://htor.inf.ethz.ch/publications/img/schulthess-

exascale-climate.pdf.

[103] ECMWF. About our forecasts. https://www.ecmwf.int/en/forecasts/

documentation-and-support#ERA.

[104] ECMWF. Destination Earth. https://www.ecmwf.int/en/about/what-we-
do/environmental-services-and-future-vision/destination-earth.

[105] Xiaoxiang Zhu. Artificial Intelligence and Data Science in Earth
Observation. https://az659834.vo.msecnd.net/eventsairwesteuprod/

production-nikal-public/940a052ebdba4573855d738faa2ec946.

[106] Oliver Peckham. Supercomputing Experts React to Dire Climate Re-
port. HPCwire. https://www.hpcwire.com/2021/08/26/supercomputing-
experts-react-to-dire-climate-report/.

[107] M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H.
Leufen, A. Mozaffari, and S. Stadtler. Can deep learning beat numeri-
cal weather prediction? Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 379, 2021. https:

//royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0097.

[108] Matthew Chantry and Peter Dueben. Machine learning to emulate com-
ponents of ECMWF’s Integrated Forecasting System. ECMWF, Science
Blog. https://www.ecmwf.int/en/about/media-centre/science-blog/

2021/machine-learning-emulate-components-ecmwfs-integrated.

[109] Sixth Assessment Report. ipcc. https://www.ipcc.ch/assessment-

report/ar6/.

[110] Air Force Magazine. Rolls-Royce Digitally Modeled Wing and Pylon With
Engine to Win B-52 Contract. https://www.airforcemag.com/rolls-

royce-digitally-modeled-entire-wing-pylon-to-win-b-52-engine-

contract/.

[111] Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal,
William Gropp, Elizabeth Lurie, and Dimitri Mavriplis. CFD Vi-
sion 2030 Study: A Path to Revolutionary Computational Aerosciences,
2014. NASA/CR-2014-218178. https://ntrs.nasa.gov/api/citations/

20140003093/downloads/20140003093.pdf.

[112] Andrew Carey, John Chawner, Earl Duque, William Gropp, Bil Kleb, Ray
Kolonay, Eric Nielsen, and Brian Smith. The CFD Vision 2030 Roadmap:
2020 Status, Progress and Challenges, 2021. https://cfd2030.com/report/
CFD-Vision-2030-Roadmap-2020-Report.pdf.

344 � Bibliography

[113] Xuan Liu, David Furrer, Jared Kosters, and Jack Holmes. Vision
2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of
Materials and Systems, 2018. https://ntrs.nasa.gov/api/citations/

20180002010/downloads/20180002010.pdf.

[114] Rolls-Royce. How Digital Twin technology can enhance Avia-
tion. https://www.rolls-royce.com/media/our-stories/discover/

2019/how-digital-twin-technology-can-enhance-aviation.aspx.

[115] Ansys. Why High-Performance Computing (HPC) Is Critical to Au-
tonomous Vehicle Development. https://www.ansys.com/blog/why-hpc-

is-critical.

[116] HPC for Energy Innovation. Success Stories. https://

hpc4energyinnovation.llnl.gov/success-stories.

[117] Dennis Overbye. Gravitational Waves Detected, Confirming Einstein’s
Theory. The New York Times. https://www.nytimes.com/2016/02/12/

science/ligo-gravitational-waves-black-holes-einstein.html.

[118] Department of Energy. DOE National Laboratory Makes History by Achiev-
ing Fusion Ignition. https://www.energy.gov/articles/doe-national-

laboratory-makes-history-achieving-fusion-ignition.

[119] Doug Black. Due Credit: Sierra, JADE and HPC’s Role in Livermore’s Fusion
Ignition Breakthrough. insideHPC. https://insidehpc.com/2022/12/due-
credit-sierra-jade-and-hpcs-role-in-livermores-fusion-

ignition-breakthrough/.

[120] James Brase, Nancy Campbell, Barbara Helland, Thuc Hoang, Manish
Parashar, Michael Rosenfield, and John Towns. The COVID-19 High
Performance Computing Consortium. https://s3.us-south.cloud-

object-storage.appdomain.cloud/covid-19-hpc-object-storage-

production/Consortium_Overview_Paper_03_2022_1f72939a70.

[121] John L. Gustafson. Reevaluating amdahl’s law, 1988. http://www.

johngustafson.net/pubs/pub13/amdahl.htm.

[122] David Nelson et al. Grand challenges: High performance computing and com-
munications, 1992. The FY 1992 U.S. Research and Development Program.
Committee on Physical, Mathematical, and Engineering Sciences. Office of
Science and Technology Policy. https://www.nitrd.gov/pubs/bluebooks/
1992/pdf/bluebook92.pdf.

[123] Tzu-Yi Chen, Meghan Gunn, Beth Simon, Laura Carrington, and Al-
lan Snavely. Metrics for Ranking the Performance of Supercomput-
ers. https://www.academia.edu/12449799/Metrics_for_Ranking_the_

Performance_of_Supercomputers.

Bibliography � 345

[124] David H. Bailey. Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers, 1991. Supercomputing Review, Aug. 1991,
pg. 54–55, and https://www.davidhbailey.com/dhbpapers/twelve-ways.

pdf.

[125] Wikipedia. Benchmark (computing). https://en.wikipedia.org/wiki/

Benchmark_(computing).

[126] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keurtzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The Landscape of Parallel Computing Research: A View from
Berkeley, 2006. Electrical Engineering and Computer Sciences, University of
California at Berkeley. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-183.pdf.

[127] John Reid, Bill Long, and Jon Steidel. History of Coarrays and SPMD
Parallelism in Fortran. Proc. ACM Program. Lang., 4:72:1, 2020. https:

//dl.acm.org/doi/pdf/10.1145/3386322.

[128] Robert W. Numrich. F--: A parallel extension to Cray Fortran. Scientific
Programming, 6(3):275–284, 1997.

[129] Robert W. Numrich, John Reid, and Kieun Kim. Writing a multigrid solver
using Co-Array Fortran. In Bo K̊agström, Jack Dongarra, Erik Elmroth,
and Jerzy Waśniewski, editors, Applied Parallel Computing: Large Scale Sci-
entific and Industrial Problems, pages 390–399. 4th International Workshop,
PARA98, Ume̊a, Sweden, June 1998, Springer, 1998. Lecture Notes in Com-
puter Science 1541.

[130] Robert W. Numrich and John Reid. Co-array Fortran for parallel program-
ming. ACM SIGPLAN Fortran Forum, 17(2), 1998.

[131] Robert Numrich. Parallel Programming with Co-Arrays. CRC Press, 2018.

[132] Wikipedia. Message Passing Interface. https://en.wikipedia.org/wiki/

Message_Passing_Interface.

[133] Wikipedia. Parallel Virtual Machine. https://en.wikipedia.org/wiki/

Parallel_Virtual_Machine.

[134] Marc Snir. Mpi is too high-level; mpi is too low-level. https://www.mcs.

anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf.

[135] William Gropp. Learning from the success of mpi. https://wgropp.cs.

illinois.edu/bib/papers/pdata/2001/mpi-lessons.pdf.

[136] OpenCoarrays.org. OpenCoarrays http://www.opencoarrays.org/.

346 � Bibliography

[137] Robert W. Numrich. A Team Object for CoArray Fortran. In
R. Wyrzykowski, J. Dongarra, K. Karczewsk, and J. Wasniewski, editors,
Proceedings of the 8th International Conference on Parallel Processing and
Applied Mathematics (PPAM 2009), Lecture Notes in Computer Science, Vol.
6068, Part 2, pages 68–73. Springer-Verlag, 2010.

[138] The Organizing Committee of FortranCon 2020. International Fortran Con-
ference 2020. https://tcevents.chem.uzh.ch/event/12/.

[139] fortran-lang.org. High-performance parallel programming language. https:
//fortran-lang.org/.

[140] Ondřej Čert́ık. Resurrecting Fortran https://ondrejcertik.com/blog/

2021/03/resurrecting-fortran/.

[141] LLVM. The LLVM Compiler Infrastructure. https://llvm.org/.

[142] Wikipedia. LLVM. https://en.wikipedia.org/wiki/LLVM.

[143] LFortran. Modern interactive LLVM-based Fortran compiler. https://

lfortran.org/.

[144] Rob Farber. LLVM Holds the Keys to Exascale Supercomputing, 2021. Ex-
ascale Computing Project by insideHPC https://insidehpc.com/2021/07/

llvm-holds-the-keys-to-exascale-supercomputing/.

[145] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone,
Dan Nagle, and Damian W I Rouson. OpenCoarrays: Open-source Transport
Layers Supporting Coarray Fortran Compilers. PGAS ’14: Proceedings of the
8th International Conference on Partitioned Global Address Space Program-
ming Models, 2014. https://dl.acm.org/doi/10.1145/2676870.2676876.

[146] Steve Lionel. Doctor Fortran. https://stevelionel.com/drfortran/.

[147] Milan Curcic. A parallel Fortran framework for neural networks and deep
learning. ACM SIGPLAN Fortran Forum, 38(1), 2019. https://dl.acm.

org/doi/abs/10.1145/3323057.3323059.

[148] Daniel C. Elton. Why Physicists Still Use Fortran
http://www.moreisdifferent.com/2015/07/16/why-physicsts-still-

use-fortran/, 2015.

[149] High Performance Computing. Industry Uses of Supercomputers and High-
Speed Networks. United States General Accounting Office. https://www.
gao.gov/assets/imtec-91-58.pdf.

[150] Earl C. Joseph, Steve Conway, and Chirag Dekate. Creating economic models
showing the relationship between investments in hpc and the resulting finan-
cial roi and innovation - and how it can impact a nation’s competitiveness
and innovation, 2013. https://www.osti.gov/servlets/purl/1156830.

Bibliography � 347

[151] HPCng. The Next Generation of High Performance Computing. https://
hpcng.org/.

Index

Čert́ık, Ondřej, 288, 305, 313

Abaqus, 118
Accelerators, 79
Adams, Jeanne, 288
ADAS - Advanced Driver Assistance

Systems, 261
AIAA - American Institute of

Aeronautics and Astronautics,
259

Alliant, 84, 87
Altix, 159
AMD, 142, 164, 277
Amdahl’s Law, 38
Amdahl, Gene, 38
Ansys, 118
Apollo Computer, 148
Apple, 307
ARM, 213
Array Processors, 26, 79
Artificial Intelligence - AI, 11, 14, 224
ASCI Red, 113, 138
Attached Array Processors, 79
Aurora, 165, 214

Backer, Donald, 190
Bailey, David, 283
Bauer, Peter, 248
Becker, Donald, 148
Bioinformatics, 193
Boeing, 105, 123
BOINC, 231
Boston University, 91
Brandt, Achi, 247
Brooks, Walt, 159

CAE, 97, 117, 121
CAE - Computer Aided Engineering,

261

Camp, William, 156, 164
Canadian Meteorological Service

(CMS), 244
Carruthers, Robert, 58
CATIA Dassault, 126, 129
CDC 6400, 64
CDC 6500, 64, 72
CDC 6600, 64
CDC 7600, 22
CDC Cyber 205, 28, 91
CDC STAR-100, 27
Celerity Computing, 84
CESM, 238, 239
CFD, 97, 117, 121
Chapel, 173
Chen, Steve, 65, 101, 104
CISC, 87, 153
Clementi, Enrico, 67, 74
Cleveland Clinic, 189
Climate Modeling, 49
Cloud Computing, 229
CLS - Computational Life Sciences, 185
Clune, Tom, 247, 288, 312
Coarray Fortran (CAF), 171, 292
Computational Science, 1
Control Data - CDC, 22, 27, 54, 64
Convex, 84, 87
Copernicus, 253
Cornell Theory Center, 92
Cornell University, 83, 92
Corongiu, Giorgina, 76
Cosmic Cube, 82
COVID Moonshot, 268
COVID-19 High Performance

Copmuting Consortium, 267
CRAFT, 300
Cray Cascade, 170

349

350 � Index

Cray Computer Corporation, 103
Cray Research, 28, 54, 102, 290
Cray X-MP, 65
Cray, Inc., 293
Cray, Seymour, 28, 64, 89, 103, 138
Cray-1, 28
Cray-2, 65
Cray-3, 103
Cray-T3D/T3E, 291
Creutz, Michael, 91
CUDA, 218, 321
Curcic, Milan, 181, 288, 305, 324

Dalhousie University, 91
DARPA - Defense Advance Research

Projects Agency, 168
Data Analytics, 11
DEC VAX, 84
Deep Learning, 14, 226
Destination Earth - DestinE, 252
Dickinson, Alan, 58
Digital Equipment (DEC), 87, 315
Digital Twin, 228, 252, 260
Distributed Memory, 114
DOE

Advanced Manufacturing Office,
261

ANL - Argonne National Lab, 132,
165, 214, 311

ASCI - Accelerated Strategic
Computing Initiative, 113

Bioenergy Technologies Office, 198
BNL - Brookhaven National Lab,

91
LANL - Los Alamos National Lab,

54, 92, 238, 288
LBL - Lawrence Berkeley National

Lab, 64, 194, 264
LLNL - Lawrence Livermore

National Lab, 54, 159, 264
NNSA - National Nuclear Security

Administration, 159
NREL - National Renewable

Energy Lab, 132

ORNL - Oak Ridge National Lab,
132, 214

PNNL - Pacific Northwest National
Lab, 159

SNL - Sandia National Lab, 113,
127, 155

Dongarra, Jack, 284
Dorband, John, 149
Downscaling, 50
Drug Discovery, 187
DuPont, 105

Earth Simulator, 67
ECMWF, 53, 239, 244, 248
Electricity De France - EDF, 105
Elton, Daniel, 325
EPYC, 165
Erisman, Albert, 123
ESA - European Space Agency, 252
ETA Systems, 28, 58, 101
Evans, Kate, 253
ExaBiome Project, 199
Exascale Computing Project, 217
Extended Core Storage (ECS), 72

Fagnan, Kjiersten, 193
Fischer, James, 149
Floating Point Systems (FPS), 80, 92
FNMOC - Fleet Numerical Meteorology

and Oceanography Center, 65,
71

home Consortium, 190, 268
Folding@home Consortium, 230
Ford, 105
Fortran, 287
Fortran D, 300
Fortress, 173
Foster, Ian, 231
Fox, Geoffrey, 82, 140
Frontier, 214, 281
Fugaku, 67, 213
Fujitsu, 67, 122

Ganguly, Auroop, 253
Gao, Guang, 141

Index � 351

Gara, Al, 164
GASNet, 308
GCM - General Circulation Model, 50
Geist, Al, 216
Gelsinger, Pat, 113
Genomics, 193
Globus, 232
GNU, 299
Golub, Gene, 10
Google, 226
Grandine, Thomas, 125
Grid Computing, 231
GridTools, 248
Gropp, William, 295, 325
Gustafson’s Law, 274
Gustafson, John, 80, 274, 277

Harrod, William, 208
Hitachi, 67
Hoare, Tony, 287
HP - Hewlett Packard, 87
HP Labs, 156
HPCS - High Productivity Computing

Systems, 168
HPDA - High Performance Data

Analytics, 14, 223
HPF - High Performance Fortran, 300,

324
HPL - High Performance LINPACK,

284
Hyperion Research, 327

IBM, 75, 104, 267
IBM PERCS, 170
IBM POWER, 101
ICL DAP, 112
IDC, 327
IESP - International Exascale Software

Project, 210
IFS - Integrated Forecasting System,

250
ILLIAC IV, 63
Intel Corp., 112, 153, 311
Intel Paragon, 113

IPCC - Intergovernmental Panel on
Climate Change, 253

ISA, 87
Itanium, 156
Iterative Methods, 13
IUPS - International Union of

Physiological Sciences, 188
Iverson, Kenneth, 27

Joint Genome Institute, 193

K Computer, 67
Kalwani, Sharan, 97, 118, 257
Kaufmann, William, xiv
Kendal Square Research, 112
Kennedy, Ken, 294, 300
Kesel, Philip, 72
Kesselman, Carl, 231
Khan, Shahin, 74, 79, 112
Knuth, Donald, 225
Kogge, Peter, 141, 208
Korsch, Robert, 101
Kuck, David, 171

LAMMPS, 127
LAPACK, 284
Lattice QCD, 91
Lattner, Chris, 307
lCAP, 67
LFortran, 307
Lincoln, Neil, 27
LINPACK, 284
Lionel, Steve, 288, 293, 304, 315
LLVM, 307
Loh, Eugene, 173
Long, Bill, 289
LS-DYNA, 118, 258
LSTC - Livermore Software Technology

Corp., 118
Lucas, Robert, 119
Lustre, 159

Machine Learning, 11, 14, 224
Markoff, John, 107
MasPar, 112

352 � Index

Mayo Clinic, 189
Mcneil-Schwindler Corporation (MSC),

118
Meiko Scientific, 112
Messina, Paul, 137
MeteoSwiss, 248
Metropolis, Nicholas, 92
MIC - Many Integrated Core, 164
Michalakes, John, 131, 246
Minisupercomputers, 86
Miura, Kenichi, 64, 208
Monte Carlo Method, 92
Moore’s Law, xiii
Moriarty, Kevin, 91
Mozdzynski, George, 58
MPAS, 134, 238
MPI, 152, 289, 294
MPP - Massively Parallel Processing,

87, 111

NAL - National Aerospace Laboratory,
122

Napster, 230
NASA

Ames Research Center, 64, 159
GSFC, 111, 288

National Ignition Facility (NIF), 265
Naval Research Lab (NRL), 72
NCAR, 131, 177, 237
NCSA, xiv, 295
nCUBE, 112
NEC, 67
Nelson, Stephen, 102
NERSC, 194
Neves, Kenneth, 123
NIH, 193
NOAA , 183

NCEP - National Centers for
Environmental Prediction, 133

NWS - National Weather Service,
132, 179, 244

NPB - NAS Parallel Benchmarks, 291
NSF - National Science Foundation, 92,

237

Numerical Wind Tunnel, 67, 122
Numrich, Robert, 290, 294, 300
Nvidia, 151

Oliker, Lenny, 199
oneAPI, 217
Ong, James, 122, 258
Open Grid Forum, 232
OpenACC, 321
OpenCoarrays, 299, 307
OpenMP, 78, 152, 173, 311
OpenSHMEM, 308
Opteron, 142
Ortega, James, 10

P2P - Peer-to-Peer Computing, 230
Pang, Yuan-Ping, 189
Parsytec, 112
PDE - Partial Differential Equations, 13
Pentium, 113
PGAS - Partitioned Global Address

Space, 171
Pittsburgh Supercomputing Center

(PSC), 78
Ponte Vecchio, 214
POPCOUNT instruction, 207
punch-card, 20, 21
PVM, 294

QCD - Quantum Chromodynamics, 91
Qualters, Irene, 292

Rasmussen, Roy, 134, 179, 254
Rattner, Justin, 113
Rebbi, Claudio, 91, 93, 95
Red Storm, 155
Reed, Daniel, 330
Reid, John, 288, 309
Richardson, Lewis, 55
Riken, 213
RISC, 87, 153
Roadrunner, 142
Rolls-Royce, 122, 258, 260
Rosmond, Thomas, 72
Rouson, Damian, 288, 299, 307, 314

Index � 353

Rutherford Appleton Lab, 309

Salmond, Deborah, 58
Samuel, Arthur, 225
Scientific Computing, 1
SCLS - Supercomputational Life

Science, 188
Seager, Mark, 159
Seitz, Chuck, 82
SETI@home, 230
SGI, 85, 148, 159, 294
Shalf, John, 264, 281
SHMEM, 291
Skamarock, William, 134, 238, 244
Slotnick, Daniel, 63
Smarr, Larry, xiv, 81
Smith, Burton, 170
Smith, Paul H., 137
Snir, Marc, 297
Spears, Brian, 265
SPMD, 290
Standard Model, 91
Steidel, Jon, 288, 292, 311
Sterling, Thomas, 137, 148, 224, 253
Stern, Nicholas, 255
Stevens, Rick, 141, 185, 212, 253
Strong Scaling, 275
Sun Microsystems, 80, 148, 173
Supercomputer Systems Inc. (SSI), 104
Supercomputing, 20
Superlinear Speedup, 275
Supertek, 102
SUPRENUM, 112

T Series, FPS, 80
Tara Ocean, 201
TensorFlow, 226
Tera, 293
Theoretical Peak Performance, 272
Thinking Machines, 112
Thornton, James, 27, 64
Tomkins, James, 113, 155
Top500, 112, 273
TPU - Tensor Processing Unit, 226

Transputer, 80
Tuecke, Steve, 232
Turing Test, 224
Turing, Alan, 224

UK Met Office, 48, 53, 239, 244
Ulam, Stanislaw, 93
University of California, Berkeley, 231
Unix, 86
UPC - Unified Parallel C, 171

VAX, 87
Vector processor, 25
Vienna Fortran, 300
von Neumann, John, 93

WACCM, 238
Wallach, Steve, 87
Wave Equation, 4
Weak Scaling, 275
Weather Company, The, 181
Weather Models, 41
Wilson, Kenneth, 74, 83, 92
Winninghoff, Francis, 72
Winningstad, Norm, 80
Wisniewski, Robert, 164
WRF, 131, 177, 238

X-stack, 211
X10, 173
Xeon, 156
Xeon Phi, 164

Yelick, Katherine, 199

Zhu, Xiaoxiang, 253

