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ABSTRACT

Thyroid functional disease, and in particular hypothyroidism,
is highly prevalent among chronic kidney disease (CKD) and
end-stage renal disease (ESRD) patients. In the general popu-
lation, hypothyroidism is associated with impaired cardiac
contractility, endothelial dysfunction, atherosclerosis and pos-
sibly higher cardiovascular mortality. It has been hypothesized
that hypothyroidism is an under-recognized, modifiable risk
factor for the enormous burden of cardiovascular disease and
death in CKD and ESRD, but this has been difficult to test due
to the challenge of accurate thyroid functional assessment in
uremia. Low thyroid hormone levels (i.e. triiodothyronine)
have been associated with adverse cardiovascular sequelae in
CKD and ESRD patients, but these metrics are confounded by
malnutrition, inflammation and comorbid states, and hence
may signify nonthyroidal illness (i.e. thyroid functional test
derangements associated with underlying ill health in the
absence of thyroid pathology). Thyrotropin is considered a
sensitive and specific thyroid function measure that may more
accurately classify hypothyroidism, but few studies have exam-
ined the clinical significance of thyrotropin-defined hypothy-
roidism in CKD and ESRD. Of even greater uncertainty are
the risks and benefits of thyroid hormone replacement, which
bear a narrow therapeutic-to-toxic window and are frequently
prescribed to CKD and ESRD patients. In this review,
we discuss mechanisms by which hypothyroidism adversely
affects cardiovascular health; examine the prognostic

implications of hypothyroidism, thyroid hormone alterations
and exogenous thyroid hormone replacement in CKD and
ESRD; and identify areas of uncertainty related to the interplay
between hypothyroidism, cardiovascular disease and kidney
disease requiring further investigation.

Keywords: cardiovascular risk, hyperthyrotropinemia, hypo-
thyroidism, renal failure, thyroid functional disease

INTRODUCTION

Epidemiologic studies show that there is a substantially higher
prevalence of thyroid functional disease, and in particular
hypothyroidism, in chronic kidney disease (CKD) and end-
stage renal disease (ESRD) patients compared with the general
population [1–10]. However, many cases of hypothyroidism
may remain latent or undiagnosed in advanced CKD and
ESRD due to symptom overlap with uremia and co-existing
comorbidities [3]. Despite three decades of research, the
mechanistic link and directionality of association between
hypothyroidism and kidney disease remain widely unknown.
It has been hypothesized that kidney disease may predispose
to thyroid hormone derangements due to nonthyroidal illness,
malnutrition, inflammation, iodine retention, metabolic acid-
osis, medications, mineral deficiencies (e.g. selenium) and ex-
posure to dialytic procedures (i.e. peritoneal effluent losses) [3,
11–17]. Yet other data suggest that hypothyroidism leads to
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impaired kidney function through alterations in renal hemo-
dynamics and structure [14, 18].

Studies in the general population have shown that hypothy-
roidism is associated with increased cardiovascular morbidity
and possibly mortality, owing to its adverse effects on cardiac
contractility, systemic vascular resistance, endothelial function
and atherosclerosis [19–21]. In CKD and ESRD patients, car-
diovascular disease is the leading cause of mortality, accounting
for nearly half of all deaths [22]. Most of these fatalities relate to
coronary heart disease (CHD), congestive heart failure (CHF)
and sudden cardiac death (SCD), which are incompletely ex-
plained by traditional cardiovascular risk factors.

The search for biologically plausible cardiovascular risk
factors has prompted increasing interest in hypothyroidism as
a predictor of adverse outcomes in the CKD and ESRD popu-
lations. Mounting data suggest various thyroid functional test
derangements may be associated with greater cardiovascular
morbidity and mortality in CKD and ESRD [6, 23–35].
However, disentangling hypothyroidism from nonthyroidal
illness and other thyroid hormone alterations observed in
kidney disease has been a major hurdle in clarifying its prog-
nostic significance. Given their enormous burden of cardiovas-
cular disease and death, examining whether hypothyroidism is
a modifiable cardiovascular risk factor versus an epiphenom-
enon in the CKD and ESRD populations may be of immediate
importance to medicine and public health. In this review, we
will provide (i) an overview of the prevalence of hypothyroid-
ism and thyroid hormone alterations frequently observed in
CKD and ESRD; (ii) examine mechanisms by which hypothy-
roidism may increase cardiovascular morbidity and mortality;
(iii) summarize existing literature on the prognostic implica-
tions of biochemical hypothyroidism, thyroid hormone altera-
tions and thyroid hormone replacement in CKD and ESRD
patients and (iv) discuss areas of uncertainty requiring further
investigation.

PREVALENCE OF HYPOTHYROIDISM

Hypothyroidism is a relatively common endocrine disorder in
the general population, with a prevalence of 5–10% in most
US cohort studies [36, 37]. It is characterized by an elevated
serum TSH level and a low (i.e. overt hypothyroidism) or
normal (i.e. subclinical hypothyroidism) thyroxine (T4) level
[38]. Using these biochemical criteria, epidemiologic studies
suggest that there is a disproportionately higher prevalence of
hypothyroidism in CKD, hemodialysis (HD), and peritoneal
dialysis (PD) patients (Table 1) [1–10, 39]. Indeed, data from
14 623 participants in the Third National Health and Nutri-
tion Examination Survey (NHANES III) demonstrate an
increasing prevalence of hypothyroidism (defined as TSH
>4.5 mIU/L or treatment with thyroid hormone) with incre-
mentally impaired kidney function [5.4, 10.9, 20.4, 23.0 and
23.1% with estimated glomerular filtration rates (eGFRs) of
≥90, 60–89, 45–59, 30–44 and <30 mL/min/1.73 m2, respect-
ively] [7]. Cross-sectional population-based studies have
shown that higher TSH is associated with lower eGFRs and
higher prevalence of CKD (defined as eGFR <60 ml/min/1.73

m2) independent of confounding factors such as age, sex, body
mass index, smoking and comorbidities (e.g. hypertension and
diabetes) [7, 40, 41]. Limited data also suggest that elevations
in TSH are more commonly observed in nephrotic syndrome,
presumably due to urinary losses of thyroid hormone bound
to carrier proteins [42]. There are fewer studies on hypothyr-
oidism’s prevalence in contemporary large-scale dialysis
cohorts. However, existing data suggest that 15–25% and
3–5% of dialysis patients have subclinical and overt disease, re-
spectively; wide ranges in the prevalence of hypothyroidism
relate to differences in the definition of disease, age distribu-
tion and dietary intake of iodine across studies [3, 5, 6, 8, 9].

THYROID HORMONE SYNTHESIS ,
METABOLISM, AND REGULATION IN
KIDNEY DISEASE

The synthesis and secretion of thyroid hormones [e.g. triiodo-
thyronine (T3) and T4] are stimulated by TSH from the pituit-
ary gland, which is regulated by thyrotropin-releasing
hormone (TRH) from the hypothalamus. In turn, TRH and
TSH are regulated by feedback inhibition from circulating T4,
which is converted to T3 in the hypothalamus and pituitary by
type 2 50-deiodinase 2 (D2) [43, 44]. D2 activity increases as
T4 levels fall. In peripheral tissues, T4 is converted to T3 via
type 1 50-deiodinase enzymes (D1) and D2 [45, 46]. It is now
thought that in humans, D2 is the primary contributor to the
peripheral production of T3 [44].

The kidney plays a key role in the metabolism, degradation
and excretion of thyroid hormone and its metabolites (Table 2)
[3]. Kidney disease may predispose to alterations in regulation
of the hypothalamic–pituitary–thyroid axis, as well as changes
in thyroid hormone uptake and action. The uremic milieu
may also influence the performance of thyroid hormone
assays. Consequently, distinguishing between alterations in
thyroid hormone measurements resulting from kidney disease
versus authentic hypothyroidism is challenging.

Triiodothyronine

Low T3 levels are the most frequently observed biochemical
thyroid alteration in CKD [47]. In a cross-sectional cohort of
2284 CKD patients with normal TSH levels, 78.6% of patients
with an eGFR <15 mL/min/1.73 m2 had low T3 levels [48]. In
contrast to T4 which is largely produced by the thyroid gland,
80% of T3 is produced by peripheral deiodination of T4 to T3
[46]. Low T3 levels were also the most commonly observed
thyroid functional test alteration observed in a recent study of
35 patients with acute kidney injury (37.1% of patients) [49].
Deiodination is decreased in uremia, nonthyroidal illness, star-
vation, inflammation, certain medications (e.g. glucocorticoids),
and in the context of elevated serum cortisol and free nonesteri-
fied fatty acids [14, 45, 46, 50–52]. A potent association between
low T3 with inflammatory markers has consistently been
observed in studies of CKD, HD, PD, CHF and critically ill pa-
tients [24, 35, 53, 54]. These collective data suggest that low T3
may be a marker of malnutrition, inflammation and nonthyroi-
dal illness in CKD and ESRD.
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Table 1. Prevalence of hypothyroidism (overt and subclinical) and elevated TSH levels in end-stage renal disease and chronic kidney disease cohorts

Study (year) Cohort (n) Definition of overt or subclinical
hypothyroidism or elevated TSH

Prevalence

End-stage renal disease cohorts
TSH elevation
Lin [6] (1998) HD/PD (221) TSH > 3.1 mIU/L 14.9%
Kutlay [5] (2005) HD (87) TSH > 5.5 mIU/L 23.1%
Rhee [39] (2013) HD/PD (2715) TSH > assay ULN 12.9%

Subclinical hypothyroidism
Shantha [9] (2011) HD (137) TSH 4.5–10 mIU/L + Normal FT4 24.8%
Ng [8] (2012) PD (122) TSH > 4 mIU/L + Normal FT4 15.6%
Meuwese [28] (2012) HD (218) Diagnostic criteria not available 1.8%
Rhee [39] (2013) HD/PD (2715) TSH: assay ULN to 10 mIU/L 8.9%

Overt hypothyroidism
Kaptein [4] (1988) HD* (306) (1)TSH≥ 20 mIU/L, or (2) TSH 10–

20 mIU/L + exaggerated TRH
response + Low TT4 or FT4 index

2.6%

Lin [6] (1998) HD/PD (221) TSH≥ 20 mIU/L + Low TT4 or FT4 5.4%
Kutlay [5] (2005) HD (87) TSH > 5.5 mIU/L + Low FT4 3.4%
Meuwese [28] (2012) HD (218) Diagnostic criteria not available 5.0%
Rhee [39] (2013) HD/PD (2715) TSH > 10 mIU/L 4.3%

Chronic kidney disease cohorts
TSH elevation
Bando [1] (2002) Patients with diabetic and

nondiabetic nephropathy (63)
TSH≥ 10 mIU/L + Normal or low T4 24%

Lo [7] (2005) NHANES III participants with eGFR
across varying ranges (14,523)

TSH > 4.5 mIU/L, OR treatment with
thyroid hormone

eGFR≥ 90: 5.4%
eGFR 60–89: 10.9%
eGFR 45–59: 20.4%
eGFR 30–44: 23.0%
eGFR < 30: 23.1%

Subclinical hypothyroidism
Carrero [23] (2007) Stage 5 CKD initiating dialysis (210) TSH > 4.5 mIU/L + T4 < 4.5 μg/dl 8%
Chonchol [2] (2008) Ambulatory CKD patients (3089) TSH > 4.5 mIU/L + Normal FT4 9.5%
Targher [10] (2009) Ambulatory CKD patients (85) TSH > 4 mIU/L + Normal FT4 10.7%

HD, hemodialysis; PD, peritoneal dialysis; TSH, thyrotropin; ULN, upper limit of normal; TRH, thyrotropin-releasing hormone; TT4, total thyroxine; FT4, free thyroxine; NHANES III,
Third National Health and Nutrition Examination Data; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease.
*19% with ESRD but were pre-HD.

Table 2. Thyroid hormone alterations frequently observed in kidney disease

Thyroid function test Alterations

Triiodothyronine (T3) • Low T3 levels due to decreased peripheral T4-to-T3 conversion due to uremia, malnutrition, inflammation, mild
illness

• Impaired binding of T3 to thyroid hormone nuclear receptors

• Impaired T3-induced transcriptional activation

Reverse triiodothyronine (rT3) • Normal rT3 levels*

Total thyroxine (TT4) • Decreased TT4 levels due to low protein states (i.e. hypoalbuminemia)

Free thyroxine (FT4) • Altered FT4 levels measured by indirect/estimate methods due to impaired hormone–protein binding associated
with uremia, low protein states, medications

• Impaired FT4 cellular uptake

Thyrotropin (TSH) • Decreased clearance—but levels typically normal

• Blunted response to TRH

• Decreased pulsatility

• Increased half-life

• Impaired glycosylation

*19% with ESRD but were pre-HD.
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Reverse triiodothyronine

In contrast to the D1 and D2 enzymes which produce
biologically active T3, type 3 50-deiodinase enzyme is respon-
sible for: (i) the conversion of T4 to reverse T3 (rT3), a meta-
bolically inactive form of thyroid hormone and (ii) the
degradation of T3 to inactive diiodothyronine (T2) [45, 46]. In
kidney disease patients, rT3 levels are typically normal. This
stands in contrast to: (i) nonthyroidal illness in which rT3
levels are typically high (due to increased generation of rT3
from T4 and decreased clearance of rT3 to T2) and (ii) hypo-
thyroidism in which rT3 levels are typically low [3, 46].
However, it has yet to be determined whether rT3 has a role in
distinguishing low T3 observed with hypothyroidism versus
uremia versus nonthyroidal illness in CKD and ESRD patients.

Total and free thyroxine

Essentially 99.98% of circulating T4 is bound to carrier pro-
teins (mostly to thyroid-binding globulin, followed by trans-
thyretin, albumin and lipoproteins) [55]. Thus total T4 assays,
which measure both free and protein-bound hormone, may
result in reduced T4 levels in low-protein states frequently ob-
served in advanced CKD and ESRD patients.

In contrast, the free thyroxine (FT4) analog assay indirectly
measures unbound, biologically active hormone. These assays
estimate FT4 levels based on antibody sequestration of total
T4 proportional to the FT4 concentration (i.e. immunoassays),
and are widely used in the clinical setting as they are adapted
for an automated platform and are generally accurate [55].
However, the FT4 analog method is protein dependent, and
may inaccurately estimate FT4 levels in patients with low or
high serum protein levels or pathologic conditions (e.g.
uremia, nonthyroidal illness) in which circulating substances
and medications (e.g. heparin, furosemide) impair hormone–
protein binding [46, 55]. A FT4 index is based on total T4
levels and direct measurement of thyroxine-binding globulin
or indirect measurement of serum protein binding, such as the
resin uptake ratio. The FT4 index accounts for alterations in
serum proteins, but is not adapted for an automated platform,
takes longer to perform, and is not widely available.

In contrast to the aforementioned ‘indirect’ FT4 methods,
technological advances in thyroid function testing have led to
‘direct’ FT4 methods with greater specificity, sensitivity and re-
producibility than indirect assays. Direct FT4 assays physically
separate free versus protein-bound hormone using ultrafiltra-
tion or equilibrium dialysis methods, followed by measure-
ment of free hormone using radioimmunoassay or liquid
chromatography tandem mass spectrometry [55–57]. Com-
pared with indirect FT4 levels, direct FT4 levels show a stron-
ger correlation with the inverse log of TSH (i.e. suggesting
more accurate thyroid functional assessment) and a weaker
correlation with serum albumin (i.e. suggesting less confound-
ing by protein-energy wasting) in populations with both
normal and altered hormone–protein binding (i.e. pregnancy)
[58–61]. Although its use is currently limited to reference la-
boratories, direct FT4 assays may become available for routine
clinical use and research given their superior performance
characteristics, and may provide heightened opportunity with

which to more accurately diagnose and assess prognostic sig-
nificance of hypothyroidism in CKD and ESRD patients.

Thyrotropin

In the general population, serum TSH is considered the
most sensitive and specific single measure of thyroid function
owing to its inverse logarithmic association with serum T3/T4,
and it is typically used for screening, diagnosis and treatment
monitoring in primary hypothyroidism [38]. In kidney disease
patients, some TSH alterations may be observed such as
altered clearance, blunted response to TRH, decreased pulsati-
lity, increased half-life and impaired glycosylation leading to
reduced bioactivity [3, 47]. However, TSH is typically normal
in nonthyroidal illness [62], and one clinical study in dialysis
patients has suggested that TSH is a more reliable indicator of
thyroid function than serum T3 using metabolic testing as a
surrogate measure for thyroid status [63]. Furthermore, in dia-
lysis patients, an appropriate rise and fall in TSH has been ob-
served in response to thyroid ablation and exogenous thyroid
hormone, respectively, suggesting that the thyroid–pituitary
feedback loop remains intact [47]. On the basis of these data,
it might be inferred that TSH is a more reliable measure of
thyroid function in kidney disease, but further study is needed
to identify the optimal metric of thyroid function assessment
in order to (i) correctly classify hypothyroidism in CKD and
ESRD and to (ii) identify patients in whom thyroid hormone
replacement is warranted.

Alterations of thyroid hormone action and uptake

Circulating thyroid hormones enter peripheral cells by
thyroid hormone transporters or diffusion across the plasma
membrane, and intracellular metabolism of T4-to-T3 accounts
for the majority (∼80%) of extrathyroidal T3 produced from
T4 [64, 65]. T3 then binds to thyroid hormone nuclear recep-
tors, and these T3-nuclear receptor complexes then bind to
DNA and modify gene transcription to alter protein synthesis
and substrate turnover.

Kidney disease may alter thyroid hormone transport into
peripheral tissues, as well as intracellular thyroid hormone
nuclear action. Exposure to uremic serum from patients inhib-
ited the cellular uptake of T4 by rat hepatocytes, which may
potentially result in low tissue levels of T3 [66]. In another
study, serum obtained from uremic patients prior to HD was
observed to impair thyroid hormone nuclear receptor–DNA
binding and T3-induced transcriptional activation in human
cell cultures, which was reversed after HD [67]. Given the vari-
ation in local production of T3 and tissue distribution of
thyroid hormone nuclear receptors, further studies are needed
to determine the impact of uremia on T3 transport and action
across different tissues.

HYPOTHYROIDISM AND CARDIOVASCULAR
DISEASE

The cardiovascular system is a major target for thyroid
hormone action. In the general population, hypothyroidism,
even in subclinical forms, is associated with altered cardiac
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contractility and output, myocardial oxygen consumption,
vascular resistance, blood pressure and electrophysiologic con-
duction [21, 68]. Upon cell entry and binding to nuclear re-
ceptors, thyroid hormone transcriptionally regulates a number
of cardiac structural and regulatory proteins, membrane ion
channels and cell surface receptors, which may explain the
diverse effects of thyroid hormone on the heart [69]. Thyroid
hormone directly affects gene expression by binding to thyroid
hormone nuclear receptors which then affect gene transcription
by binding to thyroid hormone response elements of target
genes [64]. Thyroid hormone’s action on the heart may also be
more rapidly mediated via indirect mechanisms [21]. This
section will refer to data in the general population in whom
there has been substantial research examining mechanistic
pathways linking hypothyroidism and cardiovascular disease.

Impaired systolic and diastolic function

Hypothyroidism directly alters cardiac function via altera-
tions in the transcription of gene products which impact
myocyte contractility and relaxation (e.g. sarcoplasmic reticu-
lum calcium-ATPase, phospholamban), which may result in
decreased systolic function and delayed diastolic relaxation and
filling [21, 68]. Independent of gene expression, hypothyroid-
ism also influences intracellular calcium and potassium levels
via effects on cardiac ion channels, consequently altering ino-
tropy and chronotropy. Thyroid hormone deficiency may also
indirectly affect cardiac function through reductions in periph-
eral oxygen consumption and metabolic requirements. These
functional impairments may be exacerbated by underlying dis-
tortions in ventricular architecture related to hypothyroidism (i.
e. myocardial fibrosis due to fibroblast stimulation) [70, 71].

Endothelial and vascular function

Hypothyroidism may result in decreased endothelial vaso-
dilator synthesis and availability (e.g. nitric oxide and adreno-
medullin), leading to arterial stiffness, impaired vasoreactivity,
increased systemic vascular resistance, increased mean arterial
pressure and diastolic hypertension [21, 68]. Decreased tissue
thermogenesis and metabolic activity may also indirectly de-
crease systemic vascular resistance.

Altered blood volume and hemodynamics

Hypothyroidism results in decreased blood volume due to
(i) decreased erythropoietin and red blood cell synthesis and
(ii) decreased renin–angiotensin–aldosterone activity and sub-
sequent increased renal sodium absorption [68, 72]. Decreased
cardiac preload, in conjunction with reduced cardiac contractil-
ity, peripheral oxygen consumption and metabolic demands
and increased systemic vascular resistance, may reduce cardiac
output by as much as 30–50% [73]. Some observational studies
and meta-analyses have shown that even subclinical hypothy-
roidism may be associated with greater CHF risk [74, 75].

Dyslipidemia and atherosclerosis

Hypothyroidism causes dyslipidemia in as many as 90% of
patients, most commonly manifested by increased total and
LDL cholesterol levels, as well as increased lipoprotein(a) and,
in some studies, triglyceride levels [76–78]. This is in part due

to decreased fractional clearance of LDL from reductions in
hepatic LDL receptor density and activity, as well as decreased
catabolism of cholesterol into bile (by the T3-regulated choles-
terol 7-alpha-hydroxylase enzyme) [79, 80]. In untreated
hypothyroid patients, dyslipidemia in conjunction with dia-
stolic hypertension may accelerate atherosclerosis. Some [81–
83], but not all [84], epidemiologic studies have shown that
subclinical hypothyroidism may also be associated with ische-
mic heart disease. However, in a pooled analysis of 11 cohort
studies, subclinically hypothyroid patients with TSH levels
≥10 and ≥7 mIU/L had increased risk of CHD events and
CHD mortality, respectively [85].

Ventricular arrhythmias

Hypothyroid-related changes in cardiac ion channel ex-
pression may result in QT interval prolongation, increasing
the risk of Torsades de Pointes and SCD particularly when
coupled with an arrythmogenic substrate (e.g. LVH, fibrosis)
in CKD patients [21, 86]. Case reports in the general popula-
tion suggest that these electrophysiologic abnormalities may
be reversed with thyroid hormone replacement [87, 88].

Mortality

Given the association of hypothyroidism with cardiac dys-
function, hypertension, atherosclerosis and conduction abnor-
malities, it might be inferred that hypothyroidism imparts
increased mortality risk. However, limited data exist with
regards to overt hypothyroidism, and studies of subclinical
hypothyroidism and mortality show considerable variation,
likely due to heterogeneity in the definition of hypothyroid-
ism, population selection and adjustment for confounding
factors [89]. Several meta-analyses have examined the associ-
ation between subclinical hypothyroidism and mortality, and
despite considerable dissimilarities in patient populations, the
overall results show a trend towards increased mortality in in-
dividuals with subclinical hypothyroidism, particularly among
those with higher TSH levels, younger age and higher co-
morbidity burden [85, 90–92].

Emerging data suggest that the above associations may also
depend upon underlying cardiovascular risk. Whereas studies
in high cardiovascular risk populations (e.g. recent cardiac
events or CHD risk factors) have observed that subclinical
hypothyroidism is associated with greater all-cause and cardio-
vascular mortality [93–95], this has not been consistently ob-
served in average risk groups [84]. A recent study of NHANES
III participants demonstrated that subclinical hypothyroidism
is associated with greater death risk in those with CHF but not
in those without [96]. These data may bear particular relevance
in CKD and ESRD patients given their high prevalence of struc-
tural heart abnormalities (i.e. increased left ventricular mass ob-
served in >70% of patients initiating dialysis) [97].

EMERGING CARDIOVASCULAR
MECHANISMS

It is plausible that the cardiovascular sequelae of hypothyroid-
ism may be magnified in CKD and ESRD patients given their
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excessive burden of CHD, CHF and cardiovascular mortality.
Furthermore, advanced CKD and ESRD patients may have
greater susceptibility to hypothyroid-related cardiovascular
perturbations given their impaired capacity for sodium and
fluid excretion and increased sympathetic drive [98]. There is
emerging data that hypothyroidism may be associated with
changes in kidney function, mineral metabolism, hematologic
parameters and inflammation, which have been implicated as
nontraditional cardiovascular risk factors in CKD and ESRD
(Figure 1) [99–101]. However, further studies are needed to
confirm the associations between hypothyroidism and the fol-
lowing nontraditional cardiovascular risk factors.

Impaired kidney function and altered structure

In CKD patients, hypothyroidism may directly worsen
kidney function, an independent risk factor for cardiovascular
disease and death, through alterations in hemodynamics and
structure [99]. In terms of the former pathway, hypothyroid-
related reductions in cardiac output, rises in peripheral vascu-
lar resistance, and intra-renal vasoconstriction may decrease
renal blood flow and predispose to prerenal kidney injury [18,
21, 102, 103]. Kidney function may be further impaired due to
hypothyroid-related reductions in renin–angiotensin–aldosterone
activity due to both direct (i.e. decreased renin gene expres-
sion) and indirect effects (i.e. increased mean arterial pressure
[MAP]) resulting in impaired renal autoregulation [14, 18,
104, 105]. In animal studies, hypothyroidism has been shown
to reduce single nephron GFR, renal plasma flow and glom-
erular transcapillary hydrostatic pressure [106, 107]. Case
series have observed that severely hypothyroid patients have
reduced renal plasma flow and GFR measured by creatinine-
based estimating equations and isotopic scans, which were

reversed with thyroid hormone replacement [108–111]. Two
cohort studies have shown that thyroid hormone replacement
in CKD patients with subclinical hypothyroidism was asso-
ciated with greater kidney function preservation compared
with nontreatment [112, 113].

Hypothyroidism may also adversely affect kidney develop-
ment and structure. In experimental animals, hypothyroidism
has been associated with reductions in kidney-to-body weight
ratio and truncated tubular mass, as well as adverse changes in
glomerular architecture (i.e. decreased glomerular volume and
area, glomerular basement membrane thickening, mesangial
matrix expansion and increased glomerular capillary perme-
ability to proteins) [72, 114–117]. These findings have yet to
be confirmed in clinical studies.

Vascular calcification

Emerging data suggest that hypothyroidism may be asso-
ciated with vascular calcification, which has been implicated as
a predictor—and plausible mediator—of cardiovascular mor-
bidity and mortality in kidney disease patients [118, 119]. Ex-
perimental data show that thyroid hormone deficiency
downregulates mRNA levels of matrix Gla [120], and decreases
Klotho expression, inhibitors of vascular and soft tissue calcifi-
cation, respectively [121]. In the general population, hypothy-
roidism is associated with increased serum osteoprotegerin
levels, an inhibitor of vascular calcification in experimental
studies but a marker of vascular calcification, atherosclerosis
and cardiovascular events in clinical studies, which may nor-
malize with exogenous thyroid hormone treatment [122–126].
Elevated TSH and low FT4 have been associated with valvular
and coronary artery calcification [127, 128].

F IGURE 1 : Mechanisms of hypothyroidism and cardiovascular disease.
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Anemia and erythropoietin-stimulating agent resistance

Hypothyroidism may worsen anemia and lead to erythro-
poietin-stimulating agent (ESA) hyporesponsiveness, each of
which are cardiovascular risk factors in kidney disease [100,
129, 130]. Anemia may be observed in up to 43 and 39% of pa-
tients with overt and subclinical hypothyroidism, respectively,
and may relate to one or more of decreased erythropoietin
production, iron deficiency (due to impaired intestinal absorp-
tion and incorporation of iron into erythrocytes), vitamin B12
deficiency (in association with autoimmune thyroid disease
and pernicious anemia) and blood loss associated with im-
paired hemostasis (Supplementary data, Figure S1) [131–135].
Hypothyroid HD patients have been observed to require
higher monthly ESA doses compared with their euthyroid
counterparts, independent of case-mix differences [136]. In a
randomized controlled trial of patients with coexisting sub-
clinical hypothyroidism and iron deficiency anemia, those as-
signed to oral iron and exogenous thyroid hormone
experienced a greater rise in hemoglobin, iron and ferritin
compared with those receiving oral iron alone [132]. Case
reports have described reversible ESA resistance among dialy-
sis patients with overt and subclinical hypothyroidism, but
controlled studies are needed to determine whether exogenous
thyroid administration reduces intravenous iron and ESA re-
quirements in the CKD and ESRD populations [137–140].

Platelet activation and thromboembolism

Hypothyroidism has been associated with increased platelet
reactivity, which plays a central role in thrombosis and
thromboembolic events in cardiovascular disease [141, 142]. A
study in the general population has shown that platelet aggre-
gation induced by adenosine diphosphate and collagen was in-
creased among hypothyroid patients, and that aggregation
normalized following thyroid hormone administration [143].
However, other studies suggest that platelet aggregation may
be impaired among hypothyroid patients [144]. Hypothyroid-
ism has also been linked to increased mean platelet volume
[145–147], a marker of large platelets which produce greater
amounts of vasoactive and prothrombotic factors, and an
emerging risk factor for myocardial infarction, stroke and
death in the general population and CHD in dialysis patients
[148–150].

Coagulation abnormalities

Limited and mixed data suggest that hypothyroidism may
be associated with both impaired hemostasis (due to decreased
von Willebrand and coagulation factor levels and activity)
and hypercoagulability (due to increased coagulation factor ac-
tivity) [151–155]. Varying patterns of fibrinolysis have been
observed with different severities of hypothyroidism (i.e. de-
creased versus increased fibrinolysis and risk of bleeding ten-
dency in subclinical versus overt disease, respectively) [131].

Inflammation

Inflammation has been identified as a risk factor for cardio-
vascular disease and death in both the general and kidney
disease populations [156–158]. Inflammation has been shown

to result in alterations in peripheral and central (i.e. hypothal-
amic–pituitary–thyroid axis) thyroid hormone metabolism
(nonthyroidal illness) [159, 160]. However, the role of hypo-
thyroidism as a contributor to inflammation remains less
certain. Studies examining the association between subclinical
hypothyroidism and inflammation have been mixed, and ex-
ogenous thyroid hormone administration has not been shown
to significantly affect inflammation in this context [161–164].
Although studies examining hypothyroidism and inflamma-
tion in CKD patients are limited, TSH appears to show less
correlation with inflammatory markers compared with T3
[53].

PROGNOSTIC IMPLICATIONS OF THYROID
FUNCTIONAL DISEASE IN KIDNEY DISEASE

Triiodothyronine and thyroxine derangements

There has been increasing interest in hypothyroidism and
other thyroid functional disorders as novel determinants of
adverse cardiovascular outcomes in CKD and ESRD. Early
studies suggested that low thyroid hormone levels may be a
physiologic adaptation in ESRD patients who are prone to hy-
percatabolism, malnutrition and dialytic protein and amino
acid losses [165]. However, recent studies in CKD and ESRD
patients suggest that low T3 and/or T4 levels are associated
with adverse cardiovascular surrogates, including atheroscler-
osis, vascular calcification, arterial stiffness, impaired flow-
mediated vasodilation, intravascular volume deficits, abnormal
ventricular conduction and impaired cardiac function
(Table 3) [26, 29–31, 33, 121, 166, 167]. Several studies have
shown that baseline low T3/T4 levels are associated with
greater mortality in ESRD, and in the only study to examine
longitudinal thyroid hormone levels (baseline and 3-month
follow-up), persistently low T3 was associated with a 2.7- and
4-fold higher all-cause and cardiovascular death risk in ESRD
patients (Table 3) [23–25, 28, 32, 35, 166].

The associations between T3 with inflammation, protein-
energy wasting, and illness states as well as altered T4 assay
performance in these contexts have made the interpretation of
these data challenging. In several studies of ESRD patients, as-
sociations between low T3 with cardiovascular surrogates and/
or mortality were abrogated after adjustment for markers of
protein-energy wasting [34, 35, 168, 169]. Two potential inter-
pretations have been suggested based on these observations
(Supplementary data, Figure S2): (i) Protein-energy wasting is
a confounder of the association between low T3 and cardiovas-
cular morbidity and mortality. (ii) Low T3 is a mechanism by
which protein-energy wasting increases cardiovascular mor-
bidity and mortality [35]. The latter is an intriguing hypoth-
esis, given that malnutrition and inflammation are among the
most potent predictors of cardiovascular mortality in CKD
and ESRD, and it remains widely unknown through which
mechanisms protein-energy wasting and death are related
[170]. On the basis of these data, it remains uncertain whether
low T3/T4 levels are a mediator of adverse cardiovascular out-
comes or a marker of the malnutrition–inflammation complex
in kidney disease patients.
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Table 3. Studies of thyroid functional disease and cardiovascular surrogates and mortality in end-stage renal disease and chronic kidney disease patients

Study (year) Cohort (n) Definition of thyroid functional disease Outcome

Cardiovascular surrogates
Jaroszynski [26] (2005) HD (52) Low FT3 syndrome:

Low FT3 (ref. range 3.0–7.0 pmol/L) + high
rT3 (ref. range 0.15–0.61 nmol/L)

FT3 also separately defined as a continuous
variable

Delayed ventricular depolarization measured
by signal-averaged EKG

Zoccali [34] (2006) HD and PD (234) Low FT3:
Low FT3 defined as the lowest tertile (ref. range

not available)

Decreased left ventricular systolic function and
increased left ventricular mass; estimates
attenuated to null with adjustment for IL-6
and serum albumin

Kang [27] (2008) PD (51) Subclinical hypothyroidism:
Baseline TSH > 5 mIU/L + normal FT4 (ref.

range 0.6–1.5 ng/dL)

Decreased left ventricular ejection fraction

Tatar [30] (2011) HD (137) Low FT3:
Low FT3 defined as the lowest tertile

FT3 also separately defined as a continuous
variable (ref. range 3.10–6.80 pmol/L)

Carotid artery atherosclerosis and increased
arterial stiffness (nondiabetics only)

Tatar [31] (2011) PD (57) Low FT3:
Low FT3 defined as the lowest tertile

FT3 also separately defined as a continuous
variable (ref. range 2.0–4.4 pg/mL)

Increased arterial stiffness

Yilmaz [33] (2011) Nondiabetic stage
3–4 CKD (217)

Low FT3:
Low FT3 defined as FT3 <median

FT3 also separately defined as a continuous
variable (ref. range 3.54–6.82 pmol/L)

Impaired flow-mediated vasodilation

Meuwese [166] (2013) PD (84) Low FT3:
FT3 defined as FT3 <median

Increased vascular calcification

Mortality
Zoccali [35] (2006) HD (200) Low FT3:

FT3 defined as a categorical variable (tertiles)

FT3 also separately defined as a continuous
variable (ref. range not available)

Increased all-cause mortality

Enia [24] (2007) PD (41) Low FT3:
FT3 defined as a categorical variable (tertiles)

FT3 also separately defined as a continuous
variable (ref. range not available)

All-cause mortality

Carrero [23] (2007) Dialysis (187) Low TT3:
Low TT3 defined as TT3 ≤78.5 ng/dL

Increased all-cause and cardiovascular
mortality with low TT3 but not FT3

Fernandez-Reyes [187] (2010) HD (89) Low FT3:
FT3 defined as a categorical variable (tertiles)

FT3 also separately defined as a continuous
variable (ref. range 1.8–4.6 pg/mL)

No association with all-cause mortality

Ozen [169] (2011) HD (669) Low FT3 syndrome:
Low FT3 defined as FT3 < 1.71 pg/mL + TSH

normal (ref. range: 0.35–4.94 μIU/
mL) + FT4 level normal or low (ref. range
0.71–1.85 ng/dL)

Low FT3:
FT3 defined as a categorical variable (tertiles)

FT3 also separately defined as a continuous
variable (ref. range 1.71–3.71 pg/mL)

Increased all-cause mortality; estimates
attenuated to null with concurrent adjustment
for serum albumin and CRP

Continued
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Thyrotropin derangements

To date, only two studies have examined the prognostic sig-
nificance of hypothyroidism defined by elevated TSH levels in
kidney disease patients. In a cross-sectional study of PD pa-
tients, subclinical hypothyroidism (defined as elevated TSH
with normal FT4 levels) was associated with impaired left ven-
tricular function, and in analyses adjusted for inflammatory
markers and CHD, TSH levels were negatively associated with
left ventricular ejection fraction [27]. In another study of HD
and PD patients, hypothyroidism defined by baseline TSH
levels was associated with increased all-cause mortality [39].
At this time, further studies are needed to confirm the validity
of TSH as an accurate metric of thyroid function in kidney
disease, and to determine the longitudinal impact of hypothy-
roidism on the cardiovascular morbidity and mortality of
CKD and ESRD patients independent of malnutrition, inflam-
mation and comorbidity status [3, 14, 16, 17].

TREATMENT

Levothyroxine is the 4th and 12th most commonly prescribed
medication in CKD and ESRD Medicare Part D enrollees,

respectively, but the therapeutic benefits of thyroid hormone
replacement in these populations remain unclear [171].
Studies in the general population indicate that restoration of
euthyroid status favorably affects cardiovascular risk profiles,
and limited data suggest that treatment of subclinical hypothy-
roidism may reduce cardiovascular events particularly in
younger populations [172–176]. To date, there has been
limited study of the impact of treatment on surrogate or hard
outcomes in hypothyroid CKD and ESRD patients.

In an early study of HD patients with low T3 levels, admin-
istration of exogenous T3 resulted in increased protein
degradation, suggesting that thyroid hormone repletion in
hypothyroid ESRD patients exacerbates protein malnutrition
[165]. However, in a placebo-controlled study of 39 euthyroid
HD patients, exogenous T4 administration over 12–16 weeks
reduced LDL cholesterol and lipoprotein(a) levels and did not
lead to clinical symptoms of thyrotoxicosis [177]. In a recent
study of 2715 HD and PD patients, patients with normal
baseline TSH levels receiving exogenous thyroid hormone (i.e.
presumed to be hypothyroid treated-to-target) had similar all-
cause mortality compared to those with normal baseline TSH
levels not on treatment (i.e. presumed to be spontaneously eu-
thyroid); in contrast, patients with elevated baseline TSH

Table 3. Continued

Study (year) Cohort (n) Definition of thyroid functional disease Outcome

Horacek [25] (2012) HD (167) Low TT3:
Low TT3 defined as TT3 < 1.0 nmol/L (ref.

range 1.0–3.0 nmol/L)

Low TT3 also separately defined as
TT3 <median

Increased all-cause mortality

Lin [188] (2012) PD (46) Abnormal thyroid function
defined as:
(1) Subclinical hypothyroidism: TSH > 4.0

μIU/mL + normal FT4 (ref. range
4.5–11.0 μg/dL), OR FT4 < 0.59 ng/
dL + normal TSH (ref. range 0.25–4.0
μIU/mL)

(2) Overt hypothyroidism: FT4 < 0.59 ng/
dL + TSH > 4.0 µIU/mL

(3) Sick euthyroid syndrome: Low TT4
defined as < 4.5 mg/dL, OR Low TT3
defined as TT3 < 95 ng/dL (ref. range
95–205 ng/dL)

Increased all-cause mortality

Meuwese [28] (2012) HD (210) Low TT3:
Low TT3 defined as TT3 < 66th percentile

Low T4:
Low T4 defined as TT4 < 66th percentile

Low TT3 and T4 (basal and persistently low)
associated with increased all-cause and
cardiovascular mortality

Yang [32] (2012) CKD with proteinuria
(211)

Low T3:
Low T3 defined as T3 < 0.60 ng/mL + TSH

normal (ref. range 0.35–5.50 μIU/mL)

Increased all-cause and cardiovascular
mortality

Rhee [39] (2013) HD/PD (2715) Hypothyroidism:
Hypothyroidism defined as TSH > assay-

specific reference range

Increased all-cause mortality

Meuwese [166] (2013) PD (84) Low FT3:
FT3 defined as FT3 < median

Increased all-cause mortality

HD, hemodialysis; rT3, reverse triiodothyronine; PD, peritoneal dialysis; FT3, free triiodothyronine; TSH, thyrotropin; FT4, free thyroxine; EKG, electrocardiogram; CKD, chronic
kidney disease; TT3, total triiodothyroxnine; TT4, total thyroxine; CRP, C-reactive protein; CKD, chronic kidney disease.F
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levels with or without treatment had increased mortality risk
[39]. Treatment with exogenous thyroid hormone has been as-
sociated with decreased progression or reversal of impaired
kidney function in hypothyroid CKD patients (see ‘Impaired
kidney function and altered structure’ above) [108–113, 178].

Although these data suggest possible benefit and minimal
risk, the narrow therapeutic-to-toxic window and catabolic
properties of thyroid hormone treatment warrant more rigor-
ous study in CKD and ESRD patients for two reasons: (i)
Markers of protein-energy wasting (e.g. hypoalbuminemia)
are stronger mortality predictors than traditional cardiovascu-
lar risk factors in CKD and ESRD and (ii) CKD and ESRD pa-
tients may be more vulnerable to the risk of unwarranted
treatment (i.e. atrial fibrillation, high output heart failure)
given their high underlying cardiovascular risk [179, 180].
Some experts suggest that concerns about adverse treatment
effects in patients with underlying CHD are largely unfounded
[181]. In the largest study examining the impact of exogenous
thyroid hormone on CHD exacerbation conducted over five
decades ago, patients with atherosclerotic disease were more
likely to improve than worsen with treatment [182]. Alterna-
tively, thyromimetics (thyroid hormone synthetic analogues)
are an emerging class of drugs with tissue-specific thyroid
hormone actions that may selectively improve cardiovascular
risk factors (e.g. dyslipidemia) without adverse effects on the
heart and other end organs (e.g. tachycardia) [64, 183, 184].
Further studies are needed to determine the longitudinal
impact of thyroid hormone treatment and novel pharma-
cotherapies on hard outcomes in hypothyroid CKD patients.

FUTURE AREAS OF RESEARCH

While there have been advances in our understanding of the
interplay between thyroid and kidney disease, including
thyroid hormone alterations commonly observed in the
uremic milieu, limitations of classic thyroid functional assess-
ment methods in CKD and ESRD, and the prognostic implica-
tions of particular thyroid hormone alteration patterns such as
the low T3 syndrome in CKD and ESRD patients, many un-
answered questions remain: Is hypothyroidism a mere physio-
logic adaptation in CKD and ESRD, or does it portend
pathologic consequences? If pathologic, what are the specific
mechanisms underlying the association between hypothyroid-
ism and adverse outcomes in kidney disease (i.e. acceleration
of atherosclerosis, impaired cardiac function, metabolic altera-
tions in body composition and temperature [185]) What are
the optimal target ranges for classical biochemical thyroid
functional markers (e.g. TSH) in CKD and ESRD? What are
the risks and benefits of exogenous thyroid hormone replace-
ment in CKD and ESRD? Can nonpharmacologic inter-
ventions such as increasing dialysis dose, frequency and
intensity normalize thyroid function in ESRD patients? [186]
To determine the prognostic implications of hypothyroidism
and its treatment in CKD and ESRD populations, the key chal-
lenge and objective of future research studies will be to distin-
guish authentic hypothyroidism from nonthyroidal illness by
(i) using sensitive and specific diagnostic methods to

accurately assess and classify thyroid function and (ii) rigor-
ously assessing and accounting for confounders of the associ-
ation between thyroid functional test abnormalities and
clinical endpoints (e.g. inflammation, malnutrition, comorbid-
ities) using sophisticated analytic techniques in well-defined
CKD and ESRD study populations.

CONCLUSION

Given the cardiovascular risks associated with hypothyroidism
and the excessive burden of cardiovascular disease and death
in CKD and ESRD, hypothyroidism may be an under-
recognized risk factor and a biologically plausible link to car-
diovascular disease and death in this population. Identification
of more sensitive and specific thyroid hormone assays will
provide greater opportunity to distinguish hypothyroidism
from nonthyroidal illness and to define corresponding risk in
CKD and ESRD patients. Given the high prevalence of hypo-
thyroidism and exogenous thyroid hormone use in CKD and
ESRD patients, further research is needed to determine the
prognostic implications of hypothyroidism and to more accur-
ately define the risks and benefits of treatment in these popula-
tions.

SUPPLEMENTARY DATA

Supplementary data are available online at http://ndt.oxford-
journals.org.
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