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Summary

Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our 

understanding of genotype-phenotype relationships across multiple biological scales. Adaptive 

Laboratory Evolution (ALE) allows for such mutations to be found and characterized in the 

context of clear selection pressures. Here, several ALE-selected single-mutation variants in 

Escherichia coli's RNA polymerase (RNAP) are detailed using an integrated multi-scale 

experimental and computational approach. While these mutations increase cellular growth rates in 

steady environments, they reduce tolerance to stress and environmental fluctuations. We detail 

structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome 

and energy allocation towards growth and away from several hedging and stress functions. We find 
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that while these mutations occur in diverse locations in the RNAP, they share a common adaptive 

mechanism. In turn, these findings highlight the resource allocation tradeoffs organisms face and 

suggest how the structure of the regulatory network enhances evolvability.

Graphical abstract

Introduction

Many causal genetic variants across all forms of life are found in regulatory regions (Enard 

et al., 2014; Fraser, 2013; Jones et al., 2012; King and Wilson, 1975; Prud'homme et al., 

2007; Wray, 2007). In addition to cis regulatory variation, causal mutations are often found 

in trans-acting transcriptional regulators (Barrick et al., 2010; Ferenci, 2008; LaCroix et al., 

2015; Sandberg et al., 2014; Saxer et al., 2014). Due to transcriptional regulators' 

involvement in multiple cellular processes, mutations in transcriptional regulators often 

affect multiple phenotypes (King et al., 2004; Solopova et al., 2014; Venturelli et al., 2015; 

Wang et al., 2015). Understanding the multi-scale and pleiotropic cascade of events resulting 

from regulatory mutations poses a challenge for systems biology.

Adaptive Laboratory Evolution (ALE) allows for adaptive mutations to be found and 

characterized in the context of clear selection pressures. ALE experiments repeatedly 

identify mutations in the RNA polymerase (RNAP)(Barrick et al., 2010; Dragosits et al., 

2013; LaCroix et al., 2015; Sandberg et al., 2014; Tenaillon et al., 2012). Several of these 

mutations have been shown to result in fitness benefits in the selected environment and 

fitness deficits in several different environments (Cheng et al., 2014; Conrad et al., 2010; 

Dragosits et al., 2013). While the RNAP is not typically considered a transcription factor, it 

can be considered to lie at the top of the transcriptional regulatory network hierarchy. 

Presumably, these mutations alter the gene regulatory network to change the specific balance 

of cellular resources.
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Here, we detail the multi-scale mechanism underlying several trans-acting adaptive 

regulatory mutations of E. coli's RNAP (Cheng et al., 2014; Conrad et al., 2010; LaCroix et 

al., 2015). Using detailed phenotypic assays we show consistent fitness effects in different 

environments. A multi-‘omic’ approach with key environmental controls reveals a 

systematic and consistent modulation of the transcriptional regulatory network (TRN) 

towards growth functions and away from functions that hedge against environmental change. 

‘Econometric’ analysis using a genome-scale model reveals that the resulting resource re-

allocation can quantitatively explain the fitness effects. Finally, structural dynamics of RNA 

polymerase (RNAP) provide insight as to how these mutations result in strikingly similar 

effects. This study moves the field forward by detailing the multi-scale molecular, 

phenotypic, and physiological responses underlying the pleiotropic effects of adaptive 

regulatory mutations. It provides insight into the evolutionary constraints and the 

mechanisms that govern resource allocation in simple organisms.

Results

Pleiotropy of adaptive mutations in RNA polymerase

A recent adaptive laboratory evolution (ALE) experiment of E. coli in glucose minimal 

media (MM) identified recurring mutations in rpoB (the β subunit of RNAP), including rpoB 
E546V and rpoB E672K (LaCroix et al., 2015). We introduced these two ALE-selected 

mutations into the starting strain (i.e., the ‘wild type’ strain) and observed consistent 

physiological effects. Growth rate increased (by ∼25%) resulting from increases in both 

biomass yield (by ∼11%) and substrate uptake rate (by ∼14%). The use of an automated 

plate reader to obtain frequent measurements revealed a diauxic shift of the mutant strains in 

glucose M9 mineral media (Figure 1A).

Since mutations often have positive and negative fitness effects across several environments 

(referred to as pleiotropy), we then assessed the growth rate of the rpoB E546V and rpoB 
E672K mutants under a variety of single carbon sources, mixtures of carbon sources, rich 

media, and stress conditions. Additionally, we performed motility, acid shock, and antibiotic 

persistence phenotypic tests (Figure 1B and S1, Data S1-S2). These RNAP mutations show 

consistent fitness effects: they enable faster growth in several carbon sources, in low pH, and 

in the presence of erythromycin. However, they lead to lower motility, lower survival under 

acid shock, reduced antibiotic persistence, longer diauxic shifts, and lower growth rates in 

complex media.

Therefore, the mutants show increased fitness in conditions of steady-state growth, but a 

decreased fitness in changing environments. In other words, they show strong, consistent 

antagonistic pleiotropy for growth versus ‘hedging’ functions.

Mutations in RNA polymerase are highly specific

To assess whether other amino acid substitutions in the RNAP ALE-selected loci affect 

growth phenotypes, we used multiplex automated genome engineering (MAGE) (Wang et 

al., 2009) to generate variants in all possible 546 and 672 positions. After 8-12 rounds of 

MAGE we isolated and verified 6 variants of E546X position and 7 variants for the E672X 
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position. Two amino acid substitutions, E546K and E672R, which have similar chemical 

properties as those discovered by ALE, resulted in an increase in growth rate. These MAGE-

selected mutants also exhibit longer diauxic shifts, showing similar pleiotropic effects as the 

ALE selected mutants (Figure S2). All other amino acid substitutions generated by MAGE 

did not affect growth rate significantly.

These results suggest that the mutations in RNAP affecting fitness are specific. Namely, all 

faster-growing RNAP mutants showed antagonistic pleiotropy for growth versus ‘hedging’.

Genome-scale transcript profiling reveals conserved growth versus hedging response

To reveal the systems-level mechanism of the pleiotropic effects of the RNAP mutations, we 

obtained RNA-seq and metabolomics data from mid-logarithmic growth phase in glucose 

minimal media for the wild-type, rpoB E546V, and rpoB E672K mutant strains (Figure S3). 

The concentrations of 10 metabolites, including pyrimidine, glycolytic, and TCA 

intermediates, changed significantly compared to the wild-type (Student's t-test, p < 0.01, 

Bonferroni corrected). But overall, the metabolome remained fairly stable (Figure S3, Data 

S1). In contrast, the expression profiling data revealed 243 consistently differentially 

expressed genes. Like the pleiotropic fitness effects of the mutants, the differential gene 

expression is strikingly consistent (Figure 2A, left), suggesting a common underlying 

mechanism at the systems level.

Notably, we also found that the differential expression profiles of the two strains harboring 

rpoB mutants were similar to that of a previously profiled mutant strain that has a 27 amino 

acid deletion in the β′ subunit of the RNAP (rpoC-del27, identified by ALE on glycerol) 

(Cheng et al., 2014; Conrad et al., 2010; Herring et al., 2006). The changes in expression of 

the rpoC-del27 mutant (Cheng et al., 2014) (compared to wild-type) grown in glycerol 

match those of the rpoB mutants grown in glucose (Figure 2A, right; χ2 test for 

independence, p < 10-8).

To obtain insight into the processes perturbed by the RNAP mutations, we classified the 243 

consistently differentially expressed genes by function (Data S3). We found that the genes in 

the same functional category are often differentially expressed in a consistent direction. We 

used this observation to define up-regulated and down-regulated functions. The up-regulated 

functions (defined as >80% of the genes being up-regulated) were broadly related to cellular 

growth, including protein synthesis and folding, amino acid biosynthesis and uptake, and 

carbohydrate transport and utilization. On the other hand, the down-regulated functions 

(defined as >80% of the genes being down-regulated) broadly hedge against environmental 

change and stress, including osmotic and oxidative stress, flagella, chemotaxis, acid 

resistance, and biofilm formation. Two categories of genes were not consistently up or 

down-regulated; these are DNA repair and genes with unknown function. Some of the 

differentially expressed genes were transcription factors or small RNA regulators (Figure 

4B). These regulators were differentially expressed in the direction expected based on the 

directionality of the regulator (i.e, activator or repressor) and the direction of the differential 

expression of the regulated functional category (Data S3, Table S3). Thus, at the molecular 

level, the differentially expressed genes reflect the growth versus hedging phenotypes 

observed at the organismal level.
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Environmental controls disentangle cause versus effect of mutations

As growth rate itself has a strong effect on gene expression (Klumpp and Hwa, 2014), we 

sought to identify the differential expression changes caused only by the mutation from 

those caused indirectly by increased growth. To disentangle these effects, we obtained RNA-

seq data under conditions where the wild-type and mutant strains grow at the same rate 

(glucose limited chemostat culture) and under conditions where the mutants grow slower 

than the wild-type (LB rich media). Regardless of the growth rate and environment, the 

hedging functions were down-regulated in the mutant strain compared to the wild-type 

(Figure 2C). Differential expression of the growth functions, however, was dependent on the 

growth rate: growth genes were not differentially expressed in chemostat and were down-

regulated in LB. Thus, these environmental controls disentangle the cause and effect of the 

mutations: the mutations directly result in the down-regulation of hedging genes whereas 

expression of the growth-related genes is coupled to the cell's growth rate.

Structural dynamics of RNAP suggests a common allosteric mechanism

Both mutations, rpoB E546V and E672K, are located ∼25 Å from the catalytic site of 

RNAP, and ∼25 Å from each other. How do they result in such similar patterns in 

transcriptional reprogramming to down-regulate hedging functions?

To investigate this question, we performed molecular dynamics simulations of the core 

RNAP open complex aiming to propose a common putative molecular mechanism for the 

pleiotropic fitness effects of the rpoB mutations. We found a strong correlation between the 

extent of increase in interaction energy between the β and β′ subunits, and the increase in cell 

fitness for various E672 mutations generated by MAGE (both beneficial and neutral, Figure 

3A). Such destabilization of subunit interaction is consistent with a previous study that 

showed a decrease in open complex half-life of the rpoC-del27 mutation, which has similar 

growth and transcriptional effects (Conrad et al., 2010).

To further explore the functional correlation among different mutations, we decomposed the 

RNAP complex into ∼20 ‘structural communities’ within which the molecular motions of 

residues are strongly correlated (Sethi et al., 2009). Despite the large spatial separation 

between E672 and E546, they belong to the same dynamical community (Figure 3B). 

Furthermore, many mutations detected in RNAP in other ALE experiments (Barrick et al., 

2010; LaCroix et al., 2015; Tenaillon et al., 2012) can also be found in this and neighboring 

communities (Figure 3B and Table S4). This structural community consists of ∼250 

residues in rpoB, part of the bridge helix (BH) in rpoC, and nucleotides on the template 

DNA strand. As such, we may link the collective motions of these structural modules to the 

structural rearrangements of BH that were shown to coordinate catalysis and DNA 

translocation in the nucleotide addition cycle (NAC) (Bar-Nahum et al., 2005; Weinzierl, 

2010).

Three observations about the motions of structural modules in RNAP are notable. First, the 

bridge helix kinked at two hinge positions (BH-HN and BH-HC, Figure 3C) in discrete steps 

of ∼10° to 20°, indicating the existence of transient metastable intermediates between the 

RNAP open and close conformations. Second, boundary between the two neighboring 
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structural communities switched from BH-HN to BH-HC when the BH went through 

transition from its bent to relaxed state. Third, there was a strong correlation between the 

bending angle of the BH and the relative motion between neighboring communities along 

the direction of DNA translocation. Based on these observations, we hypothesize that the 

ALE-selected mutations may modulate the stability of the RNAP open complex by adjusting 

the coupling between the relative motions of neighboring communities and the bending-

relaxing cycle of the BH (Figure 3C).

The stability of the RNAP open complex not only affects efficiency of the nucleotide 

elongation reactions, but may also modulate the multistep process of bacterial transcription 

initiation (Saecker et al., 2011). First, it has been shown that the competitive binding of 

different σ factors to the RNAP core enzyme can be tuned by the stability of open complex 

in the presence of (p)ppGpp or σD mutations (Barker et al., 2001; Jishage et al., 2002; 

Osterberg et al., 2011). Notably, many RNAP mutations with experimentally measured 

short-lived open complex are located in community 1, indicating that E672 and E546 (and 

other ALE-selected mutations in the same and neighboring community, Figure 3B) may 

achieve global transcriptional regulation in a similar way. Second, further along the 

transcription initiation process, lower stability of the open complex is shown to facilitate σ 

factor release and promoter escape which in turn coordinate the probability of abortive and 

productive RNA synthesis (Cashel et al., 2003; Roberts and Roberts, 1996). It is worth 

noting that sequence and structural differences in the critical σ3.2 region of σD and σS may 

be coupled to open complex stability in order to convey differential transcription regulation 

for growth-related versus hedging functions.

In summary, we observed a strong correlation between the open complex stability and the 

growth rates of RNAP mutants. Detailed analysis of the structural communities suggested a 

common molecular mechanism, regarding how distantly located mutations may result in the 

same allosteric effect. Although previous findings indicated that open complex stability can 

modulate global transcription through alternative σ factors binding, coordination of abortive 

RNA synthesis, and speed of nucleotide addition, further experiments are required to draw 

conclusion on the exact mechanism as to how the ALE-selected mutations achieve these 

goals.

Transcriptional regulatory network perturbation explains observed molecular response

Consistent with the perturbed structural properties of the mutated RNAP, the down-regulated 

(hedging) genes tend to have promoters utilizing stress related sigma factors (σS, σF), and 

the up-regulated (growth) genes tend to have promoters utilizing growth related sigma 

factors (σD, σN, σH) (Figure 4A and S4). The sigma factors themselves are not detectably 

differentially expressed. However, the observed differential expression is more specific than 

that caused by sigma factors alone.

There are 10 transcription factors (TFs) and regulatory small RNAs (sRNAs) that were 

differentially expressed in the mutant strains (Figure 4B). Each of these regulators can be 

associated with one or more of the differentially expressed functional categories identified 

(Table S3). Furthermore, across all of the strains (wild-type, rpoB E546V, and rpoB E672K) 

and environments (glucose excess, glucose limitation, and rich media) examined with RNA-
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seq, the differential expression of the identified growth and hedging functions was in a 

direction consistent with the differential expression of their regulators (based on known 

activation or repression relationships; Figure 4B). Taken together, these results suggest that 

the balance between growth and hedging functions is achieved through global modulation of 

the transcriptional regulatory network. The structure of the network may enable E. coli to 

rebalance its proteome in response to evolutionary pressures with single point mutations in 

RNAP.

‘Econometric’ analysis of proteome and energy resource allocation explains the fitness 
trade-off

The molecular and regulatory effects of the rpoB mutations revealed that resource allocation 

underlies the observed growth versus hedging fitness effects. We used a recently developed 

genome-scale computer model of microbial growth (O'Brien et al., 2013), called a ME-

model (Lerman et al., 2012; Liu et al., 2014; O'Brien et al., 2013; Thiele et al., 2009) (for 

metabolism and expression) to quantify the fitness effects associated with proteome and 

energy reallocation by these mutations (Figure 5A).

The ME-model allows global energy accounting based on the physiological data from wild-

type and RNAP mutant strains. This analysis showed that the RNAP mutations shift about a 

third (28-37%) of the unaccounted for energy (i.e., processes outside of metabolism and 

protein synthesis, often referred to as the ‘maintenance energy’ (Pirt, 1982)) to growth 

related processes (Figure 5B). Then, using the gene expression data, we estimated a 2-5% 

reduction of the transcriptome allocated to non-ME genes (i.e., genes not included in the 

ME-model; non-growth functions) and a commensurate increase in allocation to ME genes 

(i.e., modeled, growth functions) in the RNAP mutants (Figure 5B). ME-model analysis thus 

shows a clear shift to a more growth-supporting energy and proteome allocation as a result 

of the observed RNAP mutations.

We used the ME-model to understand how these changes in resource allocation affect 

cellular physiology (i.e., growth rate, biomass yield, and uptake rate). The non-ME proteome 

and energy allocation are adjustable model variables; when varied in the model, the 

measured changes in non-ME energy and transcriptome allocation can quantitatively 

account for the measured physiological changes (biomass yield and uptake rate) in the 

mutant strains (Figure 5C and S5). Therefore, the growth increase can be accounted for by 

the measured change in resource allocation, suggesting that the expression of hedging 

functions restrains growth rate in the wild-type strain.

The ME-model allowed us to quantitatively elucidate the relationship between changes in 

overall physiological measures (i.e., growth rate, substrate uptake rate, and yield) and the 

changes in allocation of protein and energy (Figure 5). On the basis of this quantitative 

relationship, we suggest that the pleiotropic effects of the rpoB mutation are due to a 

fundamental constraint of limited proteome and energy resources, leading to an inherent 

trade-off in resource allocation.
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Discussion

Here, we elucidate the mechanistic multi-scale phenotypic effects of adaptive regulatory 

mutations. Single amino acid changes in the RNAP reprogram the transcriptional regulatory 

network to re-allocate resources towards growth and away from hedging functions. The 

mutations result in antagonistic pleiotropy where the organism is more fit in stable 

environments but less fit in environmental shifts and shocks (Futuyma and Moreno, 1988).

Antagonistic pleiotropy due to a fundamental trade-off

Mutations that are beneficial or neutral in one environment often have negative fitness 

effects in other environments, referred to as pleiotropy. Pleiotropy shapes the evolution of 

organisms and is thought to underlie the evolution of specialist species. Several mechanisms 

can give rise to pleiotropy and some have been demonstrated (Cooper and Lenski, 2000; 

Leiby and Marx, 2014; Remold, 2012).

Fundamental biological constraints can result in antagonistic pleiotropy, though examples of 

these cases are lacking. Using a systems biology approach, we show that the growth rate 

difference in wild-type and mutant strains can be quantitatively explained by changes in 

proteome and energy allocation. These resources are limited, resulting in an inherent trade-

off between growth and hedging functions. Such proteome and energy allocation constraints 

likely result in pervasive evolutionary trade-offs and likely underlie several recent examples 

of antagonistic pleiotropy (Solopova et al., 2014; Venturelli et al., 2015; Wang et al., 2015)..

Bacterial evolvability through regulatory network structure

Mounting evidence supports that much of the functional divergence between organisms 

occurs in regulatory regions (Enard et al., 2014; Fraser, 2013; Jones et al., 2012; King and 

Wilson, 1975; Prud'homme et al., 2007; Wray, 2007). The detailed example of the RNAP 

mutations here suggests why (in part) this may be the case.

As regulatory networks are ‘aligned’ with particular functional subsystems, mutations that 

perturb them change phenotypes in a functionally coherent manner (Innocenti and 

Chenoweth, 2013; Saxer et al., 2014; Wagner et al., 2007). The regulatory rebalancing 

detailed here occurs along a coherent growth versus hedging trajectory. On the other hand, 

mutations that are inconsistent or imbalanced in the molecular changes they cause would 

likely not be selected. Therefore, in addition to enabling short-term responses to 

environmental change, the structure of the regulatory network also enables longer-term 

productive evolutionary change. Remarkably, single, but non-unique, point mutations allow 

such adaptation.

Multi-scale characterization of genotype to phenotype

Sequencing of many individual genomes has led to the identification of genomic regions 

under selection (Grossman et al., 2013) and enabled the association of variants with 

organismal (McCarthy et al., 2008) and molecular (Cookson et al., 2009) phenotypes. 

However, there is a large gap between identifying causal variants and mechanistically 

understanding their phenotypic consequences. The mutations studied here are some of the 
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most comprehensively phenotyped to date, with environmental controls to separate cause 

and effect. We employ state-of-the-art structural and systems biology modeling approaches 

to help bridge the gap between genotype and phenotype. Together, these analysis approaches 

enabled us to infer links from mutation to biophysical effects on protein function to systems-

level molecular and regulatory response, and finally to organismal phenotype (Figure 6). 

Therefore, this study outlines how we might begin to understand the multi-scale genotype-

phenotype relationship at a true systems level.

Experimental Procedures

Strains and cultivations—E. coli MG1655 was used as wild-type. The ALE selected 

rpoBE564V and rpoBE672K knock in strains were previously constructed by allelic 

replacement (LaCroix et al., 2015). To generate additional variants of rpoB 546 and 672 

positions, MAGE was performed on the wild-type strain by first transformation of 

recombineering plasmid pKD46 (Datsenko and Wanner, 2000), then inactivation of mutS 
with two nonsense mutations at residues 189 and 191 using an oligo (mutS_MUT). Two 

oligos (rpoB_E546X and rpoB_E672X) that resulted in NNS codon mutations at rpoB 
residues 546 and 672 were introduced into the strain through 8-12 rounds of MAGE, 

followed by colony isolation of mutants, PCR verification, and Sanger sequencing. To 

perform each cycle of MAGE, the λ-Red system was induced with 0.5%-arabinose 45 

minutes prior to generation of electrocompetent cells and oligo. Batch cultures were done in 

flask with M9 minimal media and 4 g/L of glucose at 37°C or LB rich media. Glucose 

limited chemostats were carried out in a Bioflo 110 fermentor (New Brunswick Scientific, 

NJ). Glucose supplemented M9 was added to the reactor at 0.31 and 0.44 h-1 dilution rates 

controlled by a peristaltic pump. Steady state was achieved after 3-5 residence times and was 

verified by biomass measurements. Phenotypic tests were performed by inoculation of 

media with an overnight pre-culture of glucose M9 media for all cases. Erythromycin was 

added to the media to the indicated concentration. The pH of M9 was adjusted to the 

indicated value with 6M HCl. Different substrates and mixtures were added to M9 to test 

growth in the indicated conditions. All growth curves were inoculated to a 0.02 OD and 200 

μL were cultured by triplicate in a Bioscreen C device at 37°C for 15- 24 h. Growth rates 

were calculated by determining the slope of the log-linear region using a linear regression, 

the first growth phase was used to do calculations when diauxic growth was observed.

Motility test—Cells were grown to mid log phase and 10 microliters of cell suspension 

were spotted onto 0.3% agar plate with glucose M9 media, plates were photographed 

motility was determined by halo expansion between 24 and 48h

Acid shock—Cells were harvested in mid log phase and normalized to 1×108 cells/mL, 50 

μL of cells suspension were diluted in 950 μL of pH 2.6 glucose M9 media. After 3 hours of 

incubation cells were diluted and plated in LB agar plates for cell counts (Tucker et al., 

2003).

Antibiotic persistence—Cells were harvested in mid log phase and normalized to 1×108 

cells/mL, different dilutions were plated in LB ampicillin plates after 24h a sterile solution 

of 25 U of penicinillase was plated and plates were re-incubated for 24h. Appearance of 
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colonies was determined and persistence frequency determined in base of initial cell counts 

(Korch et al., 2003).

Analytics—Biomass was determined by measuring the absorbance of the culture at 600nm 

using an equivalence of 0.429gDW/L per OD600 unit. Glucose, and acetate were measured 

by HPLC using refractive index (RI) detection by high-performance liquid chromatography 

(HPLC) (Waters, MA) with a Bio-Rad Aminex HPX87-H ion exclusion column (injection 

volume, 10 μl) and 5mM H2SO4 as the mobile phase (0.5 ml/min, 45°C). Metabolomic 

sampling, extraction and analysis was carried out as described earlier by our group 

(McCloskey et al., 2015; McCloskey et al., 2014). At-test was performed on log-normalized 

data with metaboanalyst 3.0 suite (Xia et al., 2015) comparing the wild type to each of the 

mutants, a p-value cutoff of 0.01 and Bonferroni correction was used to determine 

significance between metabolite concentration levels.

RNA-seq libraries—Samples for RNA-sequencing were taken in mid log phase of batch 

cultures or during the steady-state in chemostats. Cells were collected with Qiagen RNA-

protect Bacteria Reagent and pelleted for storage at -80°C prior to RNA extraction. Cell 

pellets were thawed and incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 

20% SDS for 20 minutes at 37°C. Total RNA was isolated and purified using the Qiagen 

RNeasy Mini Kit columns and following vendor procedures. An on-column DNase-

treatment was performed for 30 minutes at room temperature. RNA was quantified using a 

Nano drop and quality assessed by running an RNA-nano chip on a bioanalyzer. The rRNA 

was removed using Epicentre's Ribo-Zero rRNA removal kit for Gram Negative Bacteria. 

Paired-end, strand-specific RNA-seq was performed following a modified dUTP method 

(Latif et al., 2013).

Transcriptome analyses—The obtained reads were mapped to the E. coli MG1655 

genome (NC_000913.2) using the short-read aligner Bowtie (http://bowtie-

bio.sourceforge.net) (Langmead, 2010) with two mismatches allowed per read alignment. To 

estimate gene expression FPKM values were calculated using cufflinks tool and differential 

expression analysis was carried out using cuffdiff feature of the same package using the 

upper quartile normalization (http://cufflinks.cbcb.umd.edu/) (Trapnell et al., 2010).

Regulatory network—Sigma factor use at promoters was obtained by combining 

annotations in Cho et al. (Cho et al., 2014) and EcoCyc (Keseler et al., 2013). The list of all 

transcription factors and sRNAs was obtained from RegulonDB (Salgado et al., 2013). A 

two-proportion z-test with two-tailed comparisons was used to determine significant 

differences in sigma factor usage among up-regulated and down-regulated genes.

Computation of maximum non-growth energy use—The E. coli ME-Model with all 

parameters as published in O'Brien et al. was used (O'Brien et al., 2013). For all replicate 

cultivations, the measured growth rate, glucose uptake rate, and acetate secretion rate were 

fixed in the model. The maximum unaccounted for energy use was then computed by 

maximizing the flux through ATP maintenance reaction, which hydrolyzes ATP. For a given 

strain, the unaccounted for energy use is reported as the average across biological replicates.
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Computation of non-ME transcriptome—The (protein coding) ME and non-ME 

transcriptome fractions were estimated using FPKM and gene length. A gene's transcriptome 

fraction was taken to be the product of FPKM and the gene length, divided by the sum of 

this product over all genes. The ME and non-ME transcriptome fractions were then 

calculated by summing the transcriptome fractions of all ME and non-ME genes, 

respectively. Ranges are determined from the estimated lower and upper FPKM values 

across different samples.

Computation of the effects of changes in resource allocation—Protein and 

energy that are not used towards cell growth are changeable variables in the ME-Model. 

These are varied to determine the growth rate, biomass yield, and substrate uptake rate 

contours (Figure 5C, S5). The points and error bars for wild-type and rpoB mutants are 

placed according to the unaccounted for energy (Figure 5C) and change in non-ME 

transcriptome (Figure 5B). As we do not explicitly know the proteome fraction devoted to 

growth in each strain, we determine these values with two assumptions. First, we assume the 

change in non-growth proteome is equal to the change in the non-ME transcriptome. 

Second, we infer the non-growth proteome in the wild-type strain based on its measured 

growth (which is why there is no y-axis error bar for the wild-type), resulting in a value 

consistent with previous estimates (Scott et al., 2010).

Molecular dynamics simulations—Molecular model of the E. coli RNAP elongation 

complex (EC) were created using the crystal structure of the E. coli RNAP core enzymes 

(PDB code: 3LU0 (Opalka et al., 2010), the template and non-template DNA strands, and 

the DNA:RNA hybrid helix (PDB code: 2O5J (Vassylyev et al., 2007). The model 

represented the open conformation of RNAP EC, and we model selected substrates into the 

active site to mimic the pre-translocated state (with ADE), the post-translocated state (no 

additional substrate), and the post-translocated preinsertion state (with ATP) during the 

nucleotide elongation cycle.

All three systems were neutralized with Mg2+ and K+ ions, initially placed in positions 

occupied by metal ions in the crystal structure or according to the electrostatic potential. The 

complexes were then solvated by well-equilibrated water molecules with periodic boundary 

conditions. 200 mM KCl was added to the final solution. Minimization and equilibration 

were conducted by releasing constraints step-by-step according to the protocol described in 

(Eargle and Luthey-Shulten, 2012; Lai et al., 2013). Such procedure was shown to be critical 

to maintain stability of complex molecular system with interactions between protein, RNA 

and DNA. Production runs were performed with 1-fs time step under constant pressure (1 

atm) and constant temperature (25 °C) using NAMD2.9 (Phillips et al., 2005) and the 

CHARMM36 force field (Best et al., 2012) A total of 140 ns MD simulations of the RNAP 

open complex were obtained for analysis, including 50 ns from the pre-translocated state, 60 

ns from the pre-translocated state, and 30 ns from the pre-translocated preinserted state.

Analysis of the molecular dynamics trajectory—Analysis of the three MD 

trajectories showed consistent results. Therefore we present the results from the longest 

simulation of post-translocated state as the representative.
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Interaction energy change between the β and β′ subunits upon mutations were calculated 

with the alanine scan script using PyRosetta (Chaudhury et al., 2010) originally distributed 

by the Gray lab (http://graylab.jhu.edu/pyrosetta/downloads/pyrosetta_scripts/ala_scan.zip). 

We applied modifications of the score function parameterized according to recently reported 

protocols (Gavenonis et al., 2014; Kortemme and Baker, 2002). To reduce the bias 

introduced by a single static crystal structure, we performed the computational alanine scan 

every 25 ps through the entire trajectories, resulting in a broad distribution of the ddG 

values. Although such ddG value was taken to be qualitative conventionally (with ddG > 1 

kcal/mol to be destabilizing), we emphasized that it was the observed trend over the 

dynamical trajectory that correlated with phenotypic fitness of the MAGE mutants.

Dynamical community analysis was done using algorithms described in (Sethi et al., 2009) 

with the NetworkView plugin (Eargle and Luthey-Shulten, 2012) in VMD (Humphrey et al., 

1996). The analysis was done for two chosen windows (3-23 ns and 35-55 ns) in the 60 ns 

trajectory of the post-translocated state, because the overall RMSD of the RNAP complex 

suggested that they might represent two different conformations during the RNAP EC open-

close conformational transition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Growth versus hedging antagonistic pleiotropy in organismal phenotypes
A) Adaptive Laboratory Evolution (ALE) -selected rpoB mutations (E546V blue, E672K 

gray) grow faster in the glucose consumption phase but have a longer diauxic shift to grow 

on acetate than the wild type (red) (Table S1).

B) In addition to growth on glucose (the environment in which the mutants were selected), 

several additional organismal phenotypes are affected by the rpoB mutations. Bar charts 

show the percent change in measured phenotypes compared to the wild type. Steady-state 

growth rate increases (cyan) and growth rate in LB medium as well as fitness in 

environmental shifts and shocks decreases (brown). LB: Luria Broth, Glc: Glucose, Succ: 

Succinate, Ac: Acetate, Ery 100: 100 μg/mL erythromycin, Amp: Ampicillin.

See also Figure S1 and S2, Table S1 and S2.

Utrilla et al. Page 17

Cell Syst. Author manuscript; available in PMC 2017 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Consistent molecular growth versus hedging response
A) The differential RNA expression in the ALE-selected rpoB mutants (E546V, E672K) is 

consistent (left). The differential RNA expression in glucose is also concordant with the 

differential protein expression measured in a previous work on glycerol of an ALE-selected 

27 aa deletion in β′ compared to the wild type (rpoC-del27 (Cheng et al., 2014) right).

B) Functional classification of differentially expressed genes reveals that genes with 

common functions are often differentially expressed in the same direction, segregating 

growth (up-regulated, cyan) and hedging (down-regulated, brown) functions. Gray dots are 

genes with functions that are not consistently differentially expressed. Median differential 

expression of genes in the functional categories is shown in the heat map; dashes indicate 

genes not detected in proteomics data (Cheng et al., 2014).

C) Environmental controls disentangle direct effects of the mutations and indirect effects of 

changes in growth. Box plots show differential expression of identified growth and hedging 

functions across environments, showing that hedging functions are consistently down-

regulated and the expression of growth functions depends on the growth rate. Stars indicate 

if the mean differential expression of the group of genes is significantly different than zero, 

based on a two-sided t-test (p<0.05, *; p < 0.0001, ***).

See also Figure S3 and Table S3.
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Figure 3. ALE-selected rpoB mutations modulate structural dynamic of the E. coli RNAP
A) Change in interaction energy between the β & β′ subunits across six different E672 

mutations, compared with their corresponding growth rates. To reduce bias from a single 

static crystal structure, interaction energy is calculated every 25 ps over a 60 ns molecular 

dynamic trajectory starting from the RNAP open complex.

B) Dynamical community structures encompassing the ALE-selected mutations. Community 

1 (green), as discussed in the text, includes the bridge helix in β′ subunit (purple), βE672, 

βE546, and a few other ALE-selected mutations in contact with βE672. Community 2 

(brown) spans the interface between the β & β′ subunits, interacting with community 1 on 

one side, and the (p)ppGpp binding site on the other.

C) A schematic representation showing how relative movements between the dynamical 

communities modulates open complex stability. Components are color coded as in panel B. 

A third community (blue) is identified for calculating the correlated motions with respect to 

the mutation containing community 1. Continuous arrows show the direction of relative 

collective motions of the community structures. Effective allosteric communication between 

distantly located residues can be resolved from optimal path calculated based on a 

dynamical correlation network. The result shows that βE672 and βE546 share the same 

optimal dynamical path (orange) towards the (p)ppGpp binding site in the ω subunit. 

Structural elements are shown from the same perspective, and color-coded the same as in B).
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See also Figure S2 and Table S4.
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Figure 4. Reprograming of the regulatory network
A) The σ factor usage of differentially expressed genes in mutant strains is shown. Bars 

indicate the fraction of up-regulated (cyan) and down-regulated (brown) genes that have a 

promoter that is regulated by a given σ factor. Only σ factors with greater than 10% of 

promoters regulated among either up-regulated or down-regulated genes are shown. 

Significant differences in the proportion between σ factor use in up-regulated and down-

regulated genes are indicated with asterisks; one asterisk indicates p<0.05 and two asterisks 

indicate p<0.005.

B) The fold change for transcription factors and sRNA that are significantly differentially 

expressed in both mutant strains compared to the wild-type are shown.

See also Figure S4 and Table S3.
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Figure 5. The changes and effects of proteomic and energetic resource allocation
A) A genome-scale model of Metabolism and gene Expression (ME-Model) is used to 

integrate the RNA-sequencing and physiological data. The transcriptome fraction devoted to 

ME and non-ME (i.e., not included in the ME-Model) genes is calculated for the wild-type 

and mutant strains. Grey area of the pie chart indicates the fraction of the transcriptome 

reallocated from non-ME to ME genes. Bar chart shows the functional categories that 

reduced or increased in expression by more than 0.1% of the total transcriptome. 

Abbreviations for the functional categories are: amino acid biosynthesis (AA), protein 

synthesis/folding (Pro), acid resistance (AR), and flagellar (Fla). All percentages are shown 

as the average for E546V and E672K.

B) The physiological data was used to calculate the energy use not accounted for by the ME-

Model (see Methods, Computation of maximum unaccounted for energy), showing a 

reduction in unaccounted for energy use in rpoB mutants compared to the wild-type. Error 

bars indicate standard error across biological replicates.

C) The effects of non-ME protein and energy use on maximal growth rates in the ME-Model 

are computed and shown in the contour plot (see Methods). The wild-type and mutant 

strains are indicated on the plot, showing how lower non-ME protein and energy use can 

cause increased growth.

See also Figure S5.
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Figure 6. Multi-scale characterization from genotype to phenotype
The multi-scale effects of the studied adaptive regulatory mutations in RNAP are 

summarized. The mutations alter the structural dynamics of the RNAP, perturbing the 

transcriptional regulatory network through the action of key transcription factors. The 

decrease in expression of hedging functions lowers the proteome and energy allocation 

towards hedging functions and increases cellular growth. In turn, the cell can grow faster in 

conditions of steady-state growth, but is less fit under environmental shifts and shocks.
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