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Abstract There has been significant work recently in
developing machine learning (ML) models in high energy
physics (HEP) for tasks such as classification, simulation,
and anomaly detection. Often these models are adapted from
those designed for datasets in computer vision or natural lan-
guage processing, which lack inductive biases suited to HEP
data, such as equivariance to its inherent symmetries. Such
biases have been shown to make models more performant and
interpretable, and reduce the amount of training data needed.
To that end, we develop the Lorentz group autoencoder
(LGAE), an autoencoder model equivariant with respect to
the proper, orthochronous Lorentz group SO+(3, 1), with a
latent space living in the representations of the group. We
present our architecture and several experimental results on
jets at the LHC and find it outperforms graph and convolu-
tional neural network baseline models on several compres-
sion, reconstruction, and anomaly detection metrics. We also
demonstrate the advantage of such an equivariant model in
analyzing the latent space of the autoencoder, which can

RK was partially supported by the LHC Physics Center at Fermi
National Accelerator Laboratory, managed and operated by Fermi
Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy (DOE). JD and RK were
supported by the DOE, Office of Science, Office of High Energy
Physics Early Career Research program under Award No.
DE-SC0021187, the DOE, Office of Advanced Scientific Computing
Research under Award No. DE-SC0021396 (FAIR4HEP), and the
NSF HDR Institute for Accelerating AI Algorithms for Data Driven
Discovery (A3D3) under Cooperative Agreement OAC-2117997. NC
was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program
(Grant Agreement No. 772369). This work was performed using the
Pacific Research Platform Nautilus HyperCluster supported by NSF
awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967,
the University of California Office of the President, and the University
of California San Diego’s California Institute for Telecommunications
and Information Technology/Qualcomm Institute. Thanks to CENIC
for the 100 Gpbs networks.

a e-mail: rkansal@ucsd.edu (corresponding author)

improve the explainability of potential anomalies discovered
by such ML models.

1 Introduction

The increasingly large volume of data produced at the LHC
and the new era of the High-Luminosity CERN Large Hadron
Collider (LHC) poses a significant computational challenge
in high energy physics (HEP). To face this, machine learn-
ing (ML) and deep neural networks (DNNs) are becoming
powerful and ubiquitous tools for the analysis of particle col-
lisions and their products, such as jets – collimated sprays of
particles [1] produced in high energy collisions.

DNNs have been explored extensively for many tasks,
such as classification [2–5], regression [6,7], track recon-
struction [8–10], anomaly detection [11–17], and simulation
[18–23].1 In particular, there has been recent success using
networks that incorporate key inductive biases of HEP data,
such as infrared and colinear (IRC) safety via energy flow
networks [28] or graph neural networks (GNNs) [29–31]
and permutation symmetry and sparsity of jet constituents
via GNNs [5,20,32].

Embedding such inductive biases and symmetries into
DNNs can not only improve performance, as demonstrated
in the references above, but also improve interpretability and
reduce the amount of required training data. Hence, in this
paper, we explore another fundamental symmetry of our data:
equivariance to Lorentz transformations. Lorentz symmetry
has been successfully exploited recently in HEP for jet clas-
sification [33–36], with competitive and even state-of-the-art
(SOTA) results. We expand this work to the tasks of data com-
pression and anomaly detection by incorporating the Lorentz
symmetry into an autoencoder.

1 Interested readers can find comprehensive reviews in Ref. [24–26]
and a living review in Ref. [27].
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Autoencoders learn to encode and decode input data into
a learned latent space, and thus have interesting applications
in both data compression [37,38] and anomaly detection
[11,13–17,39,40]. Both tasks are particularly relevant for
HEP, the former to cope with the storage and processing of
the ever-increasing data collected at the LHC, and the latter
for model-independent searches for new physics. Incorporat-
ing Lorentz equivariance into an autoencoder has the poten-
tial to not only increase performance in both regards, but also
provide a more interpretable latent space and reduce training
data requirements. To this end, in this paper, we develop a
Lorentz-group-equivariant autoencoder (LGAE) and explore
its performance and interpretability. We also train alternative
architectures, including GNNs and convolutional neural net-
works (CNNs), with different inherent symmetries and find
the LGAE outperforms them on reconstruction and anomaly
detection tasks.

The principal results of this work demonstrate (i) that
the advantage of incorporating Lorentz equivariance extends
beyond whole jet classification to applications with particle-
level outputs and (ii) the interpretability of Lorentz-equiva
riant models. The key challenges overcome in this work
include: (i) training an equivariant autoencoder via particle-
to-particle and permutation-invariant set-to-set losses (Sect. 4),
(ii) defining a jet-level compression scheme for the latent
space (Sect. 3), and (iii) optimizing the architecture for dif-
ferent tasks, such as reconstruction (Sect. 4.3) and anomaly
detection (Sect. 4.4).

This paper is structured as follows. In Sect. 2, we discuss
existing work, motivating the LGAE. We present the LGAE
architecture in Sect. 3, and discuss experimental results on
the reconstruction and anomaly detection of high energy jets
in Sect. 4. We also demonstrate the interpretability of the
model, by analyzing its latent space, and its data efficiency
relative to baseline models. Finally, we conclude in Sect. 5.

2 Related work

In this section, we briefly review the large body of work
on frameworks for equivariant neural networks in Sect. 2.1,
recent progress in Lorentz-equivariant networks in Sect. 2.2,
and finally, applications of autoencoders in HEP in Sect. 2.3.

2.1 Equivariant neural networks

A neural network NN : V → W is said to be equivariant
with respect to a group G if

∀g ∈ G, v ∈ V : NN(ρV (g) · v) = ρW (g) · NN(v), (1)

where ρV : G → GL(V ) and ρW : G → GL(W ) are rep-
resentations of G in spaces V and W respectively, where
GL(X) is the general linear group of vector space X . The

neural network is said to be invariant if ρW is a trivial rep-
resentation, i.e. ρW (g) = 1W for all g ∈ G.

Equivariance has long been built into a number of suc-
cessful DNN architectures, such as translation equivari-
ance in CNNs, and permutation equivariance in GNNs [41].
Recently, equivariance in DNNs has been extended to a
broader set of symmetries, such as those corresponding to the
2-dimensional special orthogonal SO(2) [42], the Euclidean
E(2) [43], the 3-dimensional special orthogonal SO(3) [44],
the 3-dimensional Euclidean E(3) [45,46] groups, and arbi-
trary matrix Lie groups [47].

Broadly, equivariance to a group G has been achieved
either by extending the translation-equivariant convolutions
in CNNs to more general symmetries with appropriately
defined learnable filters [48–51], or by operating in the
Fourier space of G, or a combination thereof. We employ
the Fourier space approach, which uses the set of irreducible
representations (irreps) of G as the basis for constructing
equivariant maps [43,52,53].

2.2 Lorentz group equivariant neural networks

The Lorentz group O(3, 1) comprises the set of linear trans-
formations between inertial frames with coincident ori-
gins. In this paper, we restrict ourselves to the special
orthochronous Lorentz group SO+(3, 1), which consists of
all Lorentz transformations that preserve the orientation and
direction of time. Lorentz symmetry, or invariance to trans-
formations defined by the Lorentz group, is a fundamental
symmetry of the data collected out of high-energy particle
collisions.

There have been some recent advances in incorporating
this symmetry into NNs. The Lorentz group network (LGN)
[33] was the first DNN architecture developed to be equiv-
ariant to the SO+(3, 1) group, with an architecture similar
to that of a GNN, but operating entirely in Fourier space on
objects in irreps of the Lorentz group, and using tensor prod-
ucts between irreps and Clebsch–Gordan decompositions
to introduce non-linearities in the network. More recently,
LorentzNet [34,35] uses a similar GNN framework for equiv-
ariance, with additional edge features – Minkowski inner
products between node features – but restricting itself to only
scalar and vector representations of the group. Both networks
have been successful in jet classification, with LorentzNet
achieving SOTA results in top quark and quark versus gluon
classification, further demonstrating the benefit of incorpo-
rating physical inductive biases into network architectures.
In this work, we build on top of the LGN framework to out-
put not only scalars (e.g. jet class probabilities) but encode
and reconstruct an input set of particles under the constraint
of Lorentz group equivariance in an autoencoder-style archi-
tecture.
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Fig. 1 Individual Lorentz group equivariant message passing (LMP) layers are shown on the left, and the LGAE architecture is built out of LMPs
on the right. Here, MixRep denotes the node-level operator that upsamples features in each (m, n) representation space to τ(m,n) channels; it appears
as W in Eq. (5)

2.3 Autoencoders in HEP

An autoencoder is an NN architecture comprised of an
encoder, which maps the input into a, typically lower dimen-
sional, latent space, and a decoder, which attempts to recon-
struct the original input from the latent features. By using a
lower dimensional latent space, an autoencoder can learn a
smaller representation of data that captures salient proper-
ties [54], which can be valuable in HEP for compressing the
significant volumes of data collected at the LHC [55].

This learned representation can also be exploited for later
downstream tasks, such as anomaly detection, where an
autoencoder is trained to reconstruct data considered “back-
ground” to our signal, with the expectation that it will recon-
struct the signal poorly relative to the background. Thus,
examining the reconstruction loss of a trained autoencoder
may allow the identification of anomalous data.2 This can
be an advantage in searches for new physics, since instead
of having to specify a particular signal hypothesis, a broader
search can be performed for data incompatible with the back-
ground. This approach has been successfully demonstrated
in Refs. [12,39,40,56–61].

Furthermore, there are many possible variations to the
general autoencoder framework for alternative tasks [62,63],
such as variational autoencoders (VAEs) [64], which are pop-
ular generative models. To our knowledge, while there have
been some recent efforts at GNN-based autoencoder mod-
els [16,65], Lorentz equivariance has not yet been explored.
In this work, we focus on data compression and anomaly

2 Another approach directly examines the latent space [14,15].

detection but note that our model can be extended to further
applications.

3 LGAE architecture

The LGAE is built out of Lorentz group-equivariant message
passing (LMP) layers, which are identical to individual lay-
ers in the LGN [33]. We reinterpret them in the framework
of message-passing neural networks [66], to highlight the
connection to GNNs, and define them in Sect. 3.1. We then
describe the encoder and decoder networks in Sects. 3.2 and
3.3, respectively. The LMP layers and LGAE architecture
are depicted in Fig. 1. We provide the LGAE code, written
in Python using the PyTorch ML framework [67] in Ref.
[68].

3.1 LMP

LMP layers take as inputs fully-connected graphs with nodes
representing particles and the Minkowski distance between
respective node 4-vectors as edge features. Each node Fi

is defined by its features, all transforming under a corre-
sponding irrep of the Lorentz group in the canonical basis
[69], including at least one 4-vector (transforming under the
(1/2, 1/2) representation) representing its 4-momentum. As
in Ref. [33], we denote the number of features in each node
transforming under the (m, n) irrep as τ(m,n), referred to as
the multiplicity of the (m, n) representation.

123
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The (t + 1)-th MP layer operation consists of message-
passing between each pair of nodes, with a message m(t)

i j to
node i from node j (where j �= i) and a self-interaction term
mii defined as

m(t)
i j = f

((
p(t)
i j

)2
)
p(t)
i j ⊗ F (t)

j (2)

m(t)
i i = F (t)

i ⊗ F (t)
i (3)

whereF (t)
i are the node features of node i before the (t+1)-th

layer, pi j = pi − p j is the difference between node four-
vectors, p2

i j is the squared Minkowski norm of pi j , and f is
a learnable, differentiable function acting on Lorentz scalars.
A Clebsch–Gordan (CG) decomposition, which reduces the
features to direct sums of irreps of SO+(3, 1), is performed on
both terms before concatenating them to produce the message
mi for node i :

m(t)
i = CG

[
m(t)

i i

]
⊕ CG

⎡
⎣∑

j �=i

m(t)
i j

⎤
⎦ , (4)

where the summation over the destination node j ensures per-
mutation symmetry because it treats all other nodes equally.

Finally, this aggregated message is used to update each
node’s features, such that

F (t+1)
i = W (t+1)

(
F (t)
i ⊕ m(t)

i

)
(5)

for all i ∈ {1, . . . , Nparticle}, where W (t+1) is a learnable
node-wise operator which acts as separate fully-connected
linear layers W (t+1)

(m,n) on the set of components living within
each separate (m, n) representation space, outputting a cho-
sen τ

(t+1)
(m,n) number of components per representation. In prac-

tice, we then truncate the irreps to a maximum dimension to
make computations more tractable.

3.2 Encoder

The encoder takes as input an N -particle cloud, where each
particle is each associated with a 4-momentum vector and
an arbitrary number of scalars representing physical features
such as mass, charge, and spin. Each isotypic component is

initially transformed to a chosen multiplicity of
(
τ

(0)
(m,n)

)
E

via

a node-wise operator W (0) identical conceptually to W (t+1)

in Eq. (5). The resultant graph is then processed through
NE

MP LMP layers, specified by a sequence of multiplicities{(
τ

(t)
(m,n)

)
E

}NE
MP

t=1
, where

(
τ

(t)
(m,n)

)
E

is the multiplicity of the

(m, n) representation at the t-th layer. Weights are shared
across the nodes in a layer to ensure permutation equivari-
ance.

After the final MP layer, node features are aggregated to
the latent space by a component-wise minimum (min), max-

imum (max), or mean. The min and max operations are per-
formed on the respective Lorentz invariants. We also find,
empirically, interesting performance by simply concatenat-
ing isotypic components across each particle and linearly
“mixing” them via a learned matrix as in Eq. (5). Crucially,
unlike in Eq. (5), where this operation only happens per par-
ticle, the concatenation across the particles imposes an order-
ing and, hence, breaks the permutation symmetry.

3.3 Decoder

The decoder recovers the N -particle cloud by acting on
the latent space with N independent, learned linear opera-
tors, which again mix components living in the same rep-
resentations. This cloud passes through ND

MP LMP layers,

specified by a sequence of multiplicities
{(

τ
(t)
(m,n)

)
D

}ND
MP

t=1
,

where
(
τ

(t)
(m,n)

)
D

is the multiplicity of the (m, n) represen-

tation at the t-th LMP layer. After the LMP layers, node
features are mixed back to the input representation space(
D(0,0)

)⊕τ
(0)
(0,0) ⊕ D(1/2,1/2) by applying a linear mixing layer

and then truncating other isotypic components.

4 Experiments

We experiment with and evaluate the performance of the
LGAE and baseline models on reconstruction and anomaly
detection for simulated high-momentum jets. We describe
the dataset in Sect. 4.1, the different models we consider in
Sect. 4.2, the reconstruction and anomaly detection results in
Sects. 4.3 and 4.4 respectively, an interpretation of the LGAE
latent space in Sect. 4.5, and finally experiments of the data
efficiency of the different models in Sect. 4.6.

4.1 Dataset

The model is trained to reconstruct 30-particle high trans-
verse momentum jets from the JetNet [70] dataset, obtained
using the associated library [71], zero-padding jets with fewer
than 30, produced from gluons and light quarks. These are
collectively referred to as quantum chromodynamics (QCD)
jets.

Jets in JetNet are first produced at leading-order using
MADGRAPH5_aMCATNLO [72] and decayed and show-
ered with pythia 8.2 [73]. They are then discretized and
smeared to take detector spatial and energy resolution respec-
tively into account, with simulated tracking inefficiencies –
emulating the effects of the CMS and ATLAS trackers and
calorimeters – and finally clustered using the anti-kT [74]
algorithm with distance parameter R = 0.8. Further details
on the generation and reconstruction process are available
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Table 1 Summary of the relevant symmetries respected by each model discussed in Sect. 4

Model Aggregation Name Lorentz symmetry Permutation symmetry Translation symmetry

LGAE Min-Max LGAE-Min-Max � (equivariance) � (invariance) � (equivariance)

Mix LGAE-Mix � (equivariance) × � (equivariance)

GNNAE Jet-level GNNAE-JL × � (invariance) � (equivariance)

Particle-level GNNAE-PL × � (equivariance) � (equivariance)

CNNAE CNNAE × × � (equivariance)

in Ref. [20]. The exact smearing parameters and calorimeter
granularities used are reported in Table 2 of Ref. [75] and
correspond to the “CMS-like” scenario.

We represent the jets as a point cloud of particles, termed a
“particle cloud“, with the respective 3-momenta, in absolute
coordinates, as particle features. In the processing step, each
3-momentum is converted to a 4-momentum: pμ = (|p|,p),
where we consider the mass of each particle to be negligible.
We use a 60%/20%/20% training/testing/validation split-
ting for the total 177,000 jets. For evaluating performance in
anomaly detection, we consider jets from JetNet produced
by top quarks, W bosons, and Z bosons as our anomalous
signals.

Finally, we note here that the detector and reconstruction
effects in JetNet, and indeed in real data collected at the
LHC, break the Lorentz symmetry; hence, Lorentz equivari-
ance is generally an approximate rather than an exact symme-
try of HEP data. We assume henceforth that the magnitude of
the symmetry breaking is small enough that imposing exact
Lorentz equivariance in the LGAE is still advantageous – and
the high performance of the LGAE and classification models
such as LorentzNet support this assumption. Nevertheless,
important studies in future work may include quantifying this
symmetry breaking and considering approximate, as well as
exact, symmetries in neural networks.

4.2 Models

LGAE model results are presented using both the min-
max (LGAE-Min-Max) and “mix” (LGAE-Mix) aggregation
schemes for the latent space, which consists of varying num-
bers of complex Lorentz vectors – corresponding to different
compression rates. We compare the LGAE to baseline GNN
and CNN autoencoder models, referred to as “GNNAE” and
“CNNAE” respectively.

The GNNAE model is composed of fully-connected
MPNNs adapted from Ref. [20]. We experiment with two
types of encodings: (1) particle-level (GNNAE-PL), as in
the PGAE [16] model, which compresses the features per
node in the graph but retains the graph structure in the latent
space, and (2) jet-level (GNNAE-JL), which averages the
features across each node to form the latent space, as in the

LGAE. Particle-level encodings produce better performance
overall for the GNNAE, but the jet-level provides a more fair
comparison with the LGAE, which uses jet-level encoding
to achieve a high level of compression of the features.

For the CNNAE, which is adapted from Ref. [76], the rel-
ative coordinates of each input jets’ particle constituents are
first discretized into a 40×40 grid. The particles are then rep-
resented as pixels in an image, with intensities corresponding
to prel

T . Multiple particles per jet may correspond to the same
pixel, in which case their prel

T ’s are summed. The CNNAE
has neither Lorentz nor permutation symmetry, however, it
does have in-built translation equivariance in η − φ space.

Hyperparameter and training details for all models can
be found in Appendix A and Appendix B respectively, and a
summary of the relevant symmetries respected by each model
is provided in Table 1. The LGAE models are verified to be
equivariant to Lorentz boosts and rotations up to numerical
error, with details provided in Appendix C.

4.3 Reconstruction

We evaluate the performance of the LGAE, GNNAE, and
CNNAE models, with the different aggregation schemes dis-
cussed, on the reconstruction of the particle and jet fea-
tures of QCD jets. We consider relative transverse momen-
tum prel

T = pparticle
T /pjet

T and relative angular coordinates
ηrel = ηparticle − ηjet and φrel = φparticle −φjet (mod 2π) as
each particle’s features, and total jet mass, pT and η as jet fea-
tures. We define the compression rate as the ratio between the
total dimension of the latent space and the number of features
in the input space: 30 particles×3 features per particle = 90.

Figure 2 shows random samples of jets, represented as dis-
crete images in the angular-coordinate plane, reconstructed
by the models with similar levels of compression in com-
parison to the true jets. Figure 3 shows histograms of the
reconstructed features compared to the true distributions. The
differences between the two distributions are quantified in
Table 2 by calculating the median and interquartile ranges
(IQR) of the relative errors between the reconstructed and
true features. To calculate the relative errors of particle fea-
tures for the permutation invariant LGAE and GNNAE mod-
els, particles are matched between the input and output clouds
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Fig. 2 Jet image reconstructions by LGAE-Min-Max (τ(1/2,1/2) = 4, 56.67% compression), LGAE-Mix (τ(1/2,1/2) = 9, 61.67% compression),
GNNAE-JL (dim(L) = 55, 61.11% compression), GNNAE-PL (dim(L) = 2 × 30, 66.67% compression), and CNNAE (dim(L) = 55, 61.11%
compression)

using the Jonker-Volgenant algorithm [77,78] based on the
L2 distance between particle features. Due to the discretiza-
tion of the inputs to the CNNAE, reconstructing individual
particle features is not possible; instead, only jet features are
shown.3

We can observe visually in Fig. 2 that out of the two
permutation invariant models, while neither is able to

3 These are calculated by summing each pixel’s momentum “4-vector”
– using the center of the pixel as angular coordinates and intensity as
the prel

T .

reconstruct the jet substructure perfectly, the LGAE-Min-
Max outperforms the GNNAE-JL. Perhaps surprisingly, the
permutation-symmetry-breaking mix aggregation scheme
improves the LGAE in this regard. Both visually in Fig. 3
and quantitatively from Tables 2 and 3, we conclude that
the LGAE-Mix has the best performance overall, signifi-
cantly outperforming the GNNAE and CNNAE models at
similar compression rates. The LGAE-Min-Max model out-
performs the GNNAE-JL in reconstructing all features and
the GNNAE-PL in all but the IQR of the particle angular
coordinates.

123
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Fig. 3 Top: particle momenta (prel
T , ηrel, φrel) reconstruction by

LGAE-Min-Max (τ(1/2,1/2) = 4, resulting in 56.67% compression)
and and LGAE-Mix (τ(1/2,1/2) = 9, resulting in 61.67% compression),
and GNNAE-JL (dim(L) = 55, resulting in 61.11% compression) and
GNNAE-PL (dim(L) = 2 × 30, resulting in 66.67% compression).
The reconstructions by the CNNAE are not included due to the dis-

crete values of ηrel and φrel, as discussed in the text. Bottom: jet feature
(M, pT, η) reconstruction by the four models. For the jet feature recon-
struction by the GNNAEs, the particle features in relative coordinates
were transformed back to absolute coordinates before plotting. The jet
φ is not shown because it follows a uniform distribution in (−π, π ] and
is reconstructed well

Table 2 Median and IQR of relative errors in particle feature reconstruction of selected LGAE and GNNAE models. In each column, the best-
performing latent space per model is italicized, and the best model overall is highlighted in bold

Model Aggregation Latent space Particle prel
T Particle ηrel Particle φrel

Median IQR Median IQR Median IQR

LGAE Min-max τ(1/2,1/2) = 4 (56.67%) 0.006 0.562 0.002 1.8 0.003 1.8

τ(1/2,1/2) = 7 (96.67%) 0.002 0.640 −0.627 1.7 < 10−3 1.7

Mix τ(1/2,1/2) = 9 (61.67%) < 10−3 0.011 < 10−3 0.452 < 10−3 0.451

τ(1/2,1/2) = 13 (88.33%) < 10−3 0.001 < 10−3 0.022 < 10−3 0.022

GNNAE Jet-level dim(L) = 45 (50.00%) −0.983 3.8 0.363 3.1 0.146 2.1

dim(L) = 90 (100.00%) −0.627 3.5 4.4 14.7 0.146 2.6

Particle-level dim(L) = 2 × 30 (66.67%) −0.053 0.906 0.009 0.191 0.013 0.139

dim(L) = 3 × 30 (100.00%) −0.040 0.892 −0.037 0.177 0.005 0.243
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Table 3 Median and IQR of relative errors in jet feature reconstruction by selected LGAE and GNNAE models, along with the CNNAE model. In
each column, the best performing latent space per model is italicised, and the best model overall is highlighted in bold

Model Aggregation Latent space Jet mass Jet pT Jet η Jet φ

Median IQR Median IQR Median IQR Median IQR

LGAE Min-max τ(1/2,1/2) = 4 (56.67%) 0.096 0.134 0.097 0.109 < 10−3 0.004 < 10−3 0.002

τ(1/2,1/2) = 7 (96.67%) −0.139 0.287 −0.221 0.609 < 10−3 0.021 < 10−3 0.007

Mix τ(1/2,1/2) = 9 (61.67%) < 10−3 0.003 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

τ(1/2,1/2) = 13 (88.33%) < 10−3 0.003 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

GNNAE Jet-level dim(L) = 45 (50.00%) 0.326 0.667 0.030 0.088 0.005 0.040 0.001 0.021

dim(L) = 90 (100.00%) 3.7 2.6 0.030 0.089 0.292 0.433 0.006 0.021

Particle-level dim(L) = 2 × 30 (66.67%) 0.277 0.299 0.037 0.110 0.002 0.010 −0.001 0.005

dim(L) = 3 × 30 (100.00%) 0.339 0.244 0.050 0.094 −0.001 0.011 < 10−3 0.005

CNNAE linear layer dim(L) = 55 (61.67%) −0.030 0.042 −0.021 0.017 < 10−3 0.017 < 10−3 0.003

4.4 Anomaly detection

We test the performance of all models as unsupervised
anomaly detection algorithms by pre-training them solely
on QCD and then using the reconstruction error for the QCD
and new signal jets as the discriminating variable. We con-
sider top quark, W boson, and Z boson jets as potential sig-
nals and QCD as the “background”. We test the Chamfer
distance, energy mover’s distance [79] – the earth mover’s
distance applied to particle clouds, and MSE between input
and output jets as reconstruction errors, and find the Cham-
fer distance most performant for all graph-based models. For
the CNNAE, we use the MSE between the input and recon-
structed image as the anomaly score.

Receiver operating characteristic (ROC) curves showing
the signal efficiencies (εs) versus background efficiencies
(εb) for individual and combined signals are shown in Fig. 4,4

and εs values at particular background efficiencies are given
in Table 4. We see that in general the permutation equiv-
ariant LGAE and GNNAE models outperform the CNNAE,
strengthening the case for considering equivariance in neu-
ral networks. Furthermore, LGAE models have significantly
higher signal efficiencies than GNNAEs and CNNAEs for all
signals when rejecting > 90% of the background (which is
the minimum level we typically require in HEP), and LGAE-
Mix consistently performs better than LGAE-Min-Max.

4.5 Latent space interpretation

The outputs of the LGAE encoder are irreducible represen-
tations of the Lorentz groups; they consist of a pre-specified
number of Lorentz scalars, vectors, and potentially higher-

4 Discontinuities in the top quark and combined signal LGAE-Min-
Max ROCs indicate that at background efficiencies of � 5 × 10−3,
there are no signal events remaining in the validation dataset.

order representations. This implies a significantly more inter-
pretable latent representation of the jets than traditional
autoencoders, as the information distributed across the latent
space is now disentangled between the different irreps of
the Lorentz group. For example, scalar quantities like the jet
mass will necessarily be encoded in the scalars of the latent
space, and jet and particle 4-momenta in the vectors.

We demonstrate the latter empirically on the LGAE-Mix
model (τ(1/2,1/2) = 2) by looking at correlations between jet
4-momenta and the components of different combinations of
latent vector components. Figure 5 shows that, in fact, the jet
momenta is encoded in the imaginary component of the sum
of the latent vecotrs.

We can also attempt to understand the anomaly detection
performance by looking at the encodings of the training data
compared to the anomalous signal. Figure 6 shows the indi-
vidual and total invariant mass of the latent vectors of sample
LGAE models for QCD and top quark, W boson, and Z boson
inputs. We observe that despite the overall similar kinematic
properties of the different jet classes, the distributions for the
QCD background are significantly different from the signals,
indicating that the LGAE learns and encodes the difference
in jet substructure – despite substructure observables such as
jet mass not being direct inputs to the network – explaining
the high performance in anomaly detection.

Finally, while in this section we showcased simple “brute-
force” techniques for interpretability by looking directly
at the distributions and correlations of latent features, we
hypothesize that such an equivariant latent space would also
lend itself effectively to the vast array of existing explainable
AI algorithms [80,81], which generically evaluate the con-
tribution of different input and intermediate neuron features
to network outputs. We leave a detailed study of this to future
work.
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Fig. 4 Anomaly detections for the top quark signal (upper left), W
boson signal (upper right), Z boson signal (lower left), and the combined
signal (lower right) by the selected LGAE-Min-Max (τ(1/2,1/2) = 7),

LGAE-Mix (τ(1/2,1/2) = 2), GNNAE-JL (dim(L) = 30), GNNAE-PL
(dim(L) = 2 × 30), and CNNAE (dim(L) = 55) models

Table 4 Anomaly detection metrics by a selected LGAE and GNNAE models, along with the CNNAE model. In each column, the best performing
latent space per model is italicized, and the best model overall is highlighted in bold

Model Aggregation Latent space AUC εs at given εb

εs(10−1) εs(10−2) εs(10−3)

LGAE Min-Max τ(1/2,1/2) = 2 (30.00%) 0.7253 0.5706 0.1130 0.0011

τ(1/2,1/2) = 4 (56.67%) 0.7627 0.5832 0.1305 0.0007

τ(1/2,1/2) = 7 (96.67%) 0.7673 0.5932 0.0820 0.0009

Mix τ(1/2,1/2) = 2 (15.00%) 0.8023 0.6178 0.1662 0.0250

τ(1/2,1/2) = 4 (28.33%) 0.8023 0.6257 0.1592 0.0229

τ(1/2,1/2) = 7 (48.33%) 0.7967 0.6290 0.1562 0.0225

GNNAE JL dim(L) = 10 (11.11%) 0.5891 0.1576 0.0161 0.0014

dim(L) = 40 (44.44%) 0.6636 0.2293 0.0262 0.0013

dim(L) = 80 (88.89%) 0.7006 0.2240 0.0239 0.0010

PL dim(L) = 2 × 30 (66.67%) 0.8195 0.4435 0.0564 0.0042

dim(L) = 3 × 30 (100.00%) 0.8095 0.4306 0.0762 0.0044

CNNAE Linear layer dim(L) = 55 (61.67%) 0.7700 0.2473 0.0469 0.0053
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Fig. 5 The correlations between the total momentum of the imaginary components in the τ(1/2,1/2) = 2 LGAE-Mix model and the target jet
momenta. The Pearson correlation coefficient r is listed above

Fig. 6 Top: distributions of the invariant mass squared of the latent 4-vectors and jet momenta of the LGAE-Mix with τ(1/2,1/2) = 2 latent
4-vectors. Bottom: distributions of the invariant mass squared of two latent 4-vectors and jet momenta of the LGAE-Min-Max with τ(1/2,1/2) = 2
latent 4-vectors

4.6 Data efficiency

In principle, equivariant neural networks should require less
training data for high performance, since critical biases
of the data, which would otherwise have to be learnt by
non-equivariant networks, are already built in. We test this
claim by measuring the performances of the best-performing
LGAE and CNNAE architectures from Sect. 4.3 trained on
varying fractions of the training data.

The median magnitude of the relative errors between the
reconstructed and true jet masses of the different models and
fractions is shown in Fig. 7. Each model is trained five times
per training fraction, with different random seeds, and eval-
uated on the same-sized validation dataset; the median of the
five models is plotted. We observe that, in agreement with
our hypothesis, the LGAE models both maintain their high
performance all the way down to training on 1% of the data,
while the CNNAE’s performance steadily degrades down to
2% and then experiences a further sharp drop.
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Fig. 7 Median magnitude of relative errors of jet mass reconstruction
by LGAE and CNNAE models at trained on different fractions of the
training data

5 Conclusion

We develop the Lorentz group autoencoder (LGAE), an
autoencoder model equivariant to Lorentz transformations.
We argue that incorporating this key inductive bias of high
energy physics (HEP) data can have a significant impact on
the performance, efficiency, and interpretability of machine
learning models in HEP. We apply the LGAE to tasks of
compression and reconstruction of input quantum chromody-
namics (QCD) jets, and of identifying anomalous top quark,
W boson, and Z boson jets. We report excellent performance
in comparison to baseline graph and convolutional neural
network autoencoder models, with the LGAE outperform-
ing them on several key metrics. We also demonstrate the
LGAE’s interpretability, by analyzing the latent spaces of
LGAE models for both tasks, and data efficiency relative to
baseline models. The LGAE opens many promising avenues
in terms of both performance and model interpretability, with
the exploration of new datasets, the magnitude of Lorentz
and permutation symmetry breaking due to detector effects,
higher-order Lorentz group representations, and challenges
with real-life compression and anomaly detection applica-
tions all exciting possibilities for future work.
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Appendix A: Model details

Appendix A.1: LGAE

For both encoder and decoder, we choose NE
MP = ND

MP = 4
LMP layers. The multiplicity per node in each LMP layer
has been optimized to be

{(
τ

(t)
(m,n)

)E
}4

t=1
= (3, 3, 4, 4) (A.1)

for the encoder and

{(
τ

(t)
(m,n)

)D
}4

t=1
= (4, 4, 3, 3) (A.2)

for the decoder, the components in the vector on the right-
hand side are the multiplicity in each of the four LMP layers
per network, and the multiplicity per layer is the same for
all representations. After each CG decomposition, we trun-
cate irreps of dimensions higher than (1/2, 1/2) for tractable
computations, i.e., after each LMP operation we are left with
only scalar and vector representations per node. Empirically,
we did not find such a truncation to affect the performance of
the model. This means that the LMP layers in the LGAE are
similar in practice to those of LorentzNet, which uses only
scalar and vector representations throughout, but are more
general as higher dimensional representations are involved
in the intermediate steps before truncation.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  485 Page 12 of 15 Eur. Phys. J. C           (2023) 83:485 

Fig. 8 An MPNN layer in the GNNAE. Here, EdgeNet and NodeNet
are feed-forward neural networks

The differentiable mapping f (di j ) in Eq.(2) is chosen
to be the Lorentzian bell function as in Ref. [33]. For all
models, the latent space contains only τ(0,0) = 1 complex
Lorentz scalar, as we found increasing the number of scalars
beyond one did not improve the performance in either recon-
struction or anomaly detection. Empirically, the reconstruc-
tion performance increased with more latent vectors, as one
might expect, while anomaly detection performance gener-
ally worsened from adding more than two latent vectors.

5.1 GNNAE

The GNNAE is constructed from fully-connected MPNNs.
The update rule in the (t + 1)-th MPNN layer is based on
Ref. [20], and given by

m(t)
i =

n∑
j=1

f (t)
e

(
x (t)
i ⊕ x (t)

j ⊕ d
(
x (t)
i , x (t)

j

))
, (A.3)

x (t+1)
i = f (t)

n

(
x (t)
i ⊕ m(t)

i

)
, (A.4)

where x (t)
i is the node embedding of node i at t-th iteration, d

is any distance function (Euclidean norm in our case), m(t)
i is

the message for updating node embedding in node i , f (t+1)
e

and f (t+1)
n are any learnable mapping at the current MP layer.

A diagram for an MPNN layer is shown in Fig. 8. The overall
architecture is similar to that in Fig. 1, with the LMP replaced
by the MPNN. The code for the GNNAE model can be found
in the Ref. [82].

For both the encoder and decoder, there are 3 MPNN lay-
ers. The learnable functions in each layer are optimized to

be

f (1)
n = (LeakyReLU0.2 ◦ Linear30→15)

◦ (LeakyReLU0.2 ◦ Linear60→30)

f (1)
e = (LeakyReLU0.2 ◦ Linear40→30),

◦ (LeakyReLU0.2 ◦ Linear50→40)

◦ (LeakyReLU0.2 ◦ Linear61→50),

(A.5)

f (2)
n = (LeakyReLU0.2 ◦ Linear15→8)

◦ (LeakyReLU0.2 ◦ Linear45→15)

f (2)
e = (LeakyReLU0.2 ◦ Linear31→30),

◦ (LeakyReLU0.2 ◦ Linear30→30)

◦ (LeakyReLU0.2 ◦ Linear30→30),

(A.6)

f (3)
n = (LeakyReLU0.2 ◦ Linear8→δ)

◦ (LeakyReLU0.2 ◦ Linear38→8)

f (3)
e = (LeakyReLU0.2 ◦ Linear20→30),

◦ (LeakyReLU0.2 ◦ Linear16→20)

◦ (LeakyReLU0.2 ◦ Linear17→16),

(A.7)

where LeakyRelu0.2(x) = max(0.2x, x) is the LeakyReLu
function.

Depending on the aggregation layer, the value of δ in f (3)
n

and the final aggregation layer is different. For GNNAE-JL
encoders, δ = N×dim(L), where L is the latent space, and N
is the number of nodes in the graph. Then, mean aggregation
is done across the graph. For GNNAE-PL encoders, δ = d,
where d is the node dimension in the latent space. In the
GNNAE-JL decoder, the input layer is a linear layer that
recovers the particle cloud structure similar to that in the
LGAE.

Appendix A.3: CNNAE

The encoder is composed of two convolutional layers with
kernel size (3, 3), stride size (2, 2), “same” padding, and 128
output channels, each followed by a ReLU activation func-
tion. The aggregation layer into the latent space is a fully-
connected linear layer. The decoder is composed of trans-
posed convolution layers (also known as deconvolutional lay-
ers) with the same settings as the encoder. A softmax function
is applied at the end so that the sum of all pixel values in an
image is 1, as a property of the jet image representation. A
55-dimensional latent space is chosen so that the compres-
sion rate is 55/90 ≈ 60% for even comparisons with the
LGAE and GNNAE models.

Appendix B: Training details

We use the Chamfer loss function [83–85] for the LGAE-
Min-Max and GNNAE-JL models, and MSE for LGAE-Mix
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and GNNAE-PL. We tested the Hungarian loss [78,86] and
differentiable energy mover’s distance (EMD) [79], calcu-
lated using the JetNet library [71], as well but found the
Chamfer and MSE losses more performant.

The graph-based models are optimized using the Adam
optimizer [87] implemented in PyTorch [67] with a learn-
ing rate γ = 10−3, coefficients (β1, β2) = (0.9, 0.999), and
weight decay λ = 0. The CNNAE is optimized using the
same optimizer implemented in TensorFlow [88]. They are
all trained on single NVIDIA RTX 2080 Ti GPUs each for
a maximum of 20,000 epochs using early stopping with the
patience of 200 epochs. The total training time for LGAE
models is typically 35 h, and at most 100 h, while GNNAE-
PL and GNNAE-JL train for 50 and 120 h on average, respec-
tively. By contrast, the CNNAE model, due to its simplicity,
can typically converge within 3 h.

Appendix C: Equivariance tests

We test the covariance of the LGAE models to Lorentz trans-
formations and find they are indeed equivariant up to numer-
ical errors. Bogatskiy et al. point out that equivariance to
boosts in particular is sensitive to numerical precision [33],
so we use double precision (64-bit) throughout the model.
In addition, we scale down the data by a factor of 1000 (i.e.
working in the units of PeV) for better numerical precision
at high boosts.

For a given transformation � ∈ SO+(3, 1) we compare
�·LGAE(p) and LGAE(�· p) are compared, where p is the
particle-level 4-momentum. The relative deviation is defined
as

δp(�) =
∣∣∣∣mean(LGAE(� · p)) − mean(� · LGAE(p))

mean(� · LGAE(p))

∣∣∣∣
(A.8)

Figure 9 shows the mean relative deviation, averaged over
each particle in each jet, over 3000 jets from our test dataset
from boosts along and rotations around the z-axis. We find

Fig. 9 The relative deviations, as defined in Eq. (A.8), of the output
4-momenta pμ to boosts along the z-axis (left) and rotations around the
z-axis (right)

the relative deviation from boosts to be within O (
10−3

)
in

the interval γ ∈ [0, cosh(10)] (equivalent to β ∈ [0, 1 − 4 ×
10−9]) and from rotations to be < 1012.
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