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Abstract

It is shown that for four-transmitter systems, a family of four-by-four unit-rate complex quasi-orthogonal space–time

block codes, where each entry equals a symbol variable up to a change of sign and/or complex conjugation, can be

generated from any two independent codes via elementary operations. The two independent groups of codes in the family

generally have different properties of diversity, but the codes in each group have the same diversity provided that the

differential symbol constellation is symmetric. It is also shown that for four-transmitter systems, an eight-by-four unit-rate

complex linear dispersion space–time block code can be constructed by using Hurwitz–Radon families of matrices of size

eight such that diversity three is guaranteed even when all symbols are independently selected from any given constellation.

This code is so far the only known unit-rate linear dispersion code that has diversity no less than three for four transmitters

under any given constellation.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Space–time block codes (STBC); Orthogonal STBC; Quasi-orthogonal STBC; Non-orthogonal STBC; Hurwitz–Radon

families of matrices; Diversity analysis
1. Introduction

Design and analysis of space–time block codes (STBC) for multiple transmitting antennas have been an
active field of research since the work by Alamouti [1] and that by Tarokh et al. [2]. STBC is aimed to exploit
the channel diversity between multiple transmitters and multiple receivers to improve the rate of reliable data
transmission and/or the performance of bit error rate. STBC is also useful for cooperative relays in wireless
e front matter r 2008 Elsevier B.V. All rights reserved.
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mobile networks [3–6], where STBC can be used effectively as if between multiple transmitters and a single
receiver.

STBC is a mapping (applied at the transmitters) between a sequence of input symbols and multiple
sequences of output symbols. The number N of the output sequences typically corresponds to the number of
transmitters. The ratio of the length T of the output sequences over the length S of the input sequence is called
the rate of the STBC (assuming that both the input symbol constellation and the output symbol constellation
have the same dimension). The output of the STBC mapping can be denoted by a T �N matrix CðxÞ where
the S � 1 vector x represents the input symbols. Assume that the channel following the N transmitters is
frequency flat, and there are M receiving antennas at the end of the channel. Then, the received baseband
signals at the destination over a time interval of T symbols can be represented by the T �M matrix Y:

Y ¼ CðxÞH þW , (1)

where H is an N �M channel matrix whose entries may be assumed to be i.i.d. complex Gaussian random
variables (Rayleigh fading), and W is a T �M noise matrix whose entries may also be assumed to be i.i.d.
complex Gaussian random variables. With a coherent maximum likelihood decoder, the pairwise error rate
(PER) Pðx! ~xÞ averaged over the channel fading distributions is upper bounded as follows [2]:

EH ½Pðx! ~xÞ�p
Yr

j¼1

vj

 !�M

ðEs=4N0Þ
�rM , (2)

where Es and N0=2 are, respectively, the symbol energy and the variance of noise per dimension; the signal-
to-noise ratio (SNR) may be defined as the ratio of Es over N0=2; r is the minimal rank of Cðx� ~xÞ over all
possible distinct pairs of the symbol sequences; vj ðj ¼ 1; . . . ; rÞ are the non-zero eigenvalues of
Cðx� ~xÞHCðx� ~xÞ. To reduce the PER of a code, one must increase r and the minimum of

Qr
j¼1vj. The

value of r is called the diversity of the code, and the minimum of
Qr

j¼1vj determines a coding gain. Diversity
and coding gain are among the key measures of a code.

A detailed review of STBC is available in [7,8]. For convenience, we will also refer to STBC simply as codes.
The most attractive codes are perhaps the orthogonal codes [1], which allow the maximum likelihood
(optimal) detection to be performed independently on each of the individual symbols. But the unit-rate
orthogonal complex codes exist only for two transmitters [9]. For more than two transmitters, there are only
fractional-rate orthogonal complex codes [9]. Upper bounds on the rate of orthogonal complex codes are
explored in [10]. There are also quasi-orthogonal codes that allow the maximum likelihood detection to be
performed independently on pairs of symbols [11] or even independently on each symbol as shown in [12]. But
the quasi-orthogonal code given in [11] does not have a full diversity. Various improvements of quasi-
orthogonal codes are further developed in [13–16]. In [16], it is shown that unit-rate quasi-orthogonal codes
with maximal diversity products can be constructed by using a finite information symbol set on square and
triangular lattices. There are also codes that are designed to maximize an orthogonality measure [17].
Numerous other codes can be found via [18–24] and the references therein.

The purpose of this paper is not to present a new code competing against existing ones. But rather, we reveal
a structural insight into a class of linear dispersion codes whose properties are intrinsically governed by the
Hurwitz–Radon (HR) families of matrices. We first explore the quasi-orthogonal codes of the type shown in
[11,25–28]. It will be shown that all 4� 4 quasi-orthogonal codes, where each entry of the code matrix is a
symbol variable up to a sign change and/or complex conjugation, can be generated from any two independent
codes by elementary operations. This result is a fundamental unification of all existing (as well as numerous
previously unrevealed) 4� 4 quasi-orthogonal codes in this category. If all symbols are selected independently
from a common constellation (which will also be referred to as common constellation condition), the quasi-
orthogonal codes may have diversity two. More precisely, half of the quasi-orthogonal codes always have
diversity two under the common constellation condition, and the other half may have diversity either two or
four under the common constellation condition. If the common constellation is an odd-numbered phase-shift-
keying, half of the quasi-orthogonal codes actually have diversity four. As illustrated later, both the 2� 2
orthogonal codes and the 4� 4 quasi-orthogonal codes can be expressed as linear dispersion codes in terms of
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the HR families of matrices. This observation motivated us to explore 8� 4 linear dispersion codes using the
HR families of matrices of size eight. It will be shown that a class of 8� 4 linear dispersion codes constructed
with the HR families of matrices have diversity three even under the common constellation condition. To our
knowledge, this is the first 8� 4 unit-rate linear dispersion code that is guaranteed to have diversity three when
all symbols are independently selected from any given constellation. This is an unique insight, which is
unknown from the previous studies of linear dispersion codes [19,22,29]. A high diversity order regardless of
symbol constellation is practically useful since it could reduce the physical layer complexity associated with
constellation constraint.

In Section 2, we review the HR families of matrices. In Section 3, we show that all 4� 4 quasi-orthogonal
codes can be constructed by two independent codes, and their properties are discussed. In Section 4, we
introduce a class of 8� 4 linear dispersion codes using the HR matrices of size eight, and show that these
codes have diversity three under any given constellation. The proof of the diversity three property is a lengthy
part of this paper. We hope that interested readers will find the proof theoretically insightful as it reveals
detailed structures in the problem. In Section 5, we provide a simulation example to illustrate the performance
of the non-orthogonal 8� 4 HR code.

1.1. Notations and terminologies
�
 Lower case letters are used for scalars.

�
 Upper case letters are used for matrices.

�
 Underlined lower case letters are used for vectors.

�
 In normal script, � denotes an undetermined quantity. As superscript, * denotes complex conjugation.ffiffiffiffiffiffiffip

�
 In normal script, j denotes �1. In subscript, j denotes an integer.

�
 Kronecker product is denoted by � as defined later.

�
 ¼
:
denotes ‘‘equal by definition’’.
�
 I l is an l � l identity matrix.

�
 As superscripts, T denotes transpose, and H denotes conjugate transpose.

�
 R denotes real part, and I imaginary part.

�
 Unless specified otherwise, by ‘‘symbol’’, we mean a complex variable.

�
 Unless specified otherwise, two vectors of variables are said to be orthogonal only if they are orthogonal for

all values of the variables.

�
 All other notations are defined the first time they are used.

2. HR matrices

2.1. General properties of HR matrices

Radon Theorem [30]: Within the space of L� L integer matrices, there is a family of p matrices
fA0;A1; . . . ;Ap�1g satisfying A0 ¼ IL (the L� L identity matrix) and:
�
 Property 1(a): AiA
T
i ¼ IL.
�
 Property 1(b): Ai ¼ �AT
i ði40Þ.
�
 Property 2(a): AT
i Aj ¼ �AT

j Ai ðiajÞ,
where the maximum value pmax of p is governed by L as follows. Let L ¼ 2ab where b is odd, a ¼ 4cþ d and

0pdp3, then pmax ¼ 8cþ 2d .
A family of matrices defined above is called an HR family of matrices of size L. The following properties of

the HR matrices follow readily from Properties 1 and 2(a):
�
 Property 2(b): AiA
T
j ¼ �AjA

T
i ðiajÞ.
�
 Property 3: For any real vector v, vTAT
i Aj v ¼ dði � jÞj v j2 where dðxÞ is one when x ¼ 0 and zero otherwise,

and j v j is the norm of v.
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�
 Property 4: Given the matrices Aj ; j ¼ 1; . . . ;N; within an HR family, we have

XN

j¼1

ajAj

 ! XN

j¼1

ajAj

 !T

¼
XN

j¼1

a2j I .

An HR family of matrices of any size can be constructed from the following 2� 2 matrices [30]:

P ¼
0 1

1 0

� �
; Q ¼

1 0

0 �1

� �
; R ¼

0 1

�1 0

� �
. (3)
2.2. HR matrices of size two

For L ¼ 2, an HR family is fI2;Rg. The Alamouti code can be expressed in terms of the 2� 2 HR
matrices, e.g.,

Cðs1; s2Þ ¼
s1 s2

�s�2 s�1

 !

¼ R
x1ð1Þ

x1ð2Þ

 !
þ jI2

x2ð1Þ

x2ð2Þ

 !
; I2

x1ð1Þ

x1ð2Þ

 !
þ jR

x2ð1Þ

x2ð2Þ

 !" #

¼
x1ð2Þ þ jx2ð1Þ x1ð1Þ þ jx2ð2Þ

�x1ð1Þ þ jx2ð2Þ x1ð2Þ � jx2ð1Þ

 !
, (4)

where s1 ¼ x1ð2Þ þ jx2ð1Þ and s2 ¼ x1ð1Þ þ jx2ð2Þ.

2.3. HR matrices of size four

For L ¼ 4, an HR family consists of the following matrices:

Q0 ¼ I4; Q1 ¼ P� R; Q2 ¼ R� I2; Q3 ¼ Q� R, (5)

where � is the Kronecker product, e.g.,

a11 a12

a21 a22

 !
� B ¼

a11B a12B

a21B a22B

 !
.

The HR families of size four are closely related to 4� 4 quasi-orthogonal codes as discussed later.
The following theorem provides the complete set of HR families of matrices of size four. If the first matrix in

each family is fixed to be identity, there are total 2� 23 ¼ 16 HR families of size four.

Theorem 2.1. Any HR family of matrices of size four has either one of the following two possible forms:

O1¼
:
fQ0;�Q1;�Q2;�Q3g and O2¼

:
fG0;�G1;�G2;�G3g,

where G0 ¼ Q0, G1 ¼ Q1½Q�Q�, G2 ¼ Q2½�I2 �Q�, and G3 ¼ Q3ðQ� I2Þ. The Qi matrices were defined

previously. (Note that in this paper, � in one place should be treated as independent of � in another place unless

specified otherwise.)

Proof. The proof of this theorem requires an exhaustive but finite search, which is tedious but feasible. In the
following, we provide an outline of the proof. The goal is to show that under Properties 1(a), 1(b) and 2, only
O1 and O2 can be valid HR families.

Let us first search for all possible 4� 4 HR matrices satisfying Properties 1(a) and 1(b). Under Property 1(a),
each entry of an HR matrix F is either zero or �1 and each row of F has no more than one non-zero entry.
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Under Property 1(b), i.e., FT ¼ �F where FaI4, we can write

F ¼
B1;1 B1;2

B2;1 B2;2

 !
,

where Bi;j is a 2� 2 block matrix. It follows that BT
i;i ¼ �Bi;i for i ¼ 1; 2 and BT

1;2 ¼ �B2;1. Therefore, B1;1 and
B2;2 are both equal to either the 2� 2 zero matrix or �R, where B1;1 and B2;2 may have the same or opposite
signs. Namely, we have

either
B1;1 ¼ B2;2 ¼ 0;

BT
1;2 ¼ �B2;1a0

(
or

B1;1 ¼ �R;

B2;2 ¼ �R;

B1;2 ¼ B2;1 ¼ 0:

8><
>: (6)

It is easy to verify that if B1;1 ¼ B2;2 ¼ 0, the only possible choices of B1;2 are �I2;�P;�R;�Q.
By an exhaustive, finite and feasible search, one can further verify that any HR matrix F of size four has to

be one of the matrices in O1 or O2. In other words, the above two sets O1 and O2 contain all possible 4� 4 HR
matrices satisfying Properties 1(a) and 1(b).

We next consider Property 2(a). It is straightforward to verify that O1 and O2 each satisfies Property 2(a).
Namely, each of O1 and O2 (with a fixed set of � signs) is a valid HR family. In order to prove that there is no
other possible HR family, we need to show that for any i; j with 1pi; jp3, Qi and Gj cannot co-exist in one
family. Indeed, it is straightforward to verify that QT

i Gja� GT
j Qi, i.e., Property 2(a) is not satisfied by Qi and

Gj for any i; j with 1pi; jp3. &

2.4. HR matrices of size eight

For L ¼ 8, an HR family is determined by the following eight matrices [30]:

I8; I2 � R� I2; I2 � P� R;Q�Q� R;P�Q� R;R� P�Q;R� P� P;R�Q� I2 (7)

which is easy to verify.
An HR family of matrices of size eight (or size integer-power-of-two no less than eight) have the following

Properties 5 and 6:
�
 Property 5: Given distinct i, k, m, n, then AT
j AmAT

i An is unitary and symmetric. And the eigenvalues of
AT

j AmAT
i An are �1 of differing signs.

Proof. It is easy to verify that AT
j AmAT

i An is unitary. To prove the symmetry, we apply Property 2:

AT
j AmAT

i An ¼ AT
mAjA

T
n Ai

¼ � AT
mAnAT

j Ai

¼ � AT
n AmAT

i Aj

¼ AT
n AiA

T
mAj

¼ ðAT
j AmAT

i AnÞ
T. (8)

We now prove the eigenvalue property. The symmetry and orthogonality of AT
j AmAT

i An tell us that each of its
eigenvalues is þ1 or �1. We only need to prove that the signs of these eigenvalues are always mixed. Suppose
that the eigenvalues of AT

j AmAT
i An are all equal to one or all equal to minus one. Then, the matrix is either I or

�I , i.e.,

AT
j AmAT

i An ¼ �IL

) AT
i An ¼ �AT

mAj

) An ¼ �AiA
T
mAj, (9)



ARTICLE IN PRESS
Y. Chang et al. / Signal Processing 88 (2008) 2030–2062 2035
where the signs in the above three equations are consistent with each other. Considering another member Al in
the HR family where l is distinct from m; n; i; j, we have

AnAT
l ¼ � AiA

T
mAjA

T
l

¼ 	 AlA
T
i AmAT

j

¼ 	 AlA
T
mAjA

T
i

¼ � AlA
T
j AmAT

i , (10)

where the signs in the above equations are consistent with each other. From (9), we have

�AlA
T
n ¼ 	AlA

T
j AmAT

i . (11)

Since AnAT
l ¼ �AlA

T
n , (10) and (11) imply �AlA

T
j AmAT

i ¼ AlA
T
j AmAT

i and hence AlA
T
j AmAT

i ¼ 0. This
contradicts the condition of non-zero eigenvalues. Therefore, all eigenvalues of AT

j AmAT
i An are �1 of differing

signs. &
�
 Property 6: If AT
i AkAT

mAn � AT
j AtA

T
q Ar ¼ 0 where all matrices are distinct HR matrices in one family,

we have

AT
i1

Ak1
AT

m1
An1 � ð�1Þ

EAT
j1

At1A
T
q1

Ar1 ¼ 0,

where E is an integer and

½Ai1 ;Ak1
;Am1

;An1 ;Aj1 ;At1 ;Aq1 ;Ar1 �

is a matrix series generated by exchanging E pairs of matrices in the following matrix series:

½Ai;Ak;Am;An;Aj ;At;Aq;Ar�.
Proof. It suffices to prove that by switching any pair of matrices in AT
i AkAT

mAn � AT
j AtA

T
q Ar ¼ 0, the � sign

changes to the 	 sign.
First, we consider the two matrices exchanged are from either the first term AT

i AkAT
mAn or the second term

AT
j AtA

T
q Ar. Exchanging any two matrices A and B that have d other matrices in between is equivalent to

the following process: (a) exchanging A with its next matrix repeatedly until A is right behind B and then (b)
exchanging B with its preceding matrix repeatedly until B is in the original position of A. Step (a) undergoes
d þ 1 exchanges of neighboring matrices, and step (b) undergoes d exchanges of neighboring matrices. By
Property 2(a), the resulting expression has changed its sign 2d þ 1 times, and therefore there is a net sign
change.

We now need to prove the Property 6 for the case where a pair of matrices exchanged are ‘‘crossed’’ between
the two terms. We first observe the following equivalent expressions:

AT
i AkAT

mAn � AT
j AtA

T
q Ar ¼ 0, (12)

() AT
j AiA

T
i AkAT

mAn � AT
j AiA

T
j AtA

T
q Ar ¼ 0

() AT
j AkAT

mAn 	 AT
i AtA

T
q Ar ¼ 0, (13)

where we should notice that only the leading matrices Ai and Aj are actually exchanged when we move from
(12) to (13). We now consider a matrix A (from the first term) that has dA matrices proceeding it and another
matrix B (from the second term) that has dB matrices proceeding it. In order to exchange A and B, we can
do the following steps: (a) move A to the front of the first term and move B to the front of the second term,
(b) exchange A and B, and (c) move B to where A initially was and move A to where B initially was. We see
that step (a) undergoes the sign change dA þ dB times, step (b) undergoes the sign change once, and step (c)
undergoes the sign change dA þ dB times. Therefore, there is a net sign change. &
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Given the HR family of size eight shown in (7), it can be verified that

AT
1 A6A

T
7 A0 ¼ AT

5 A2A
T
4 A3. (14)

(At this stage, it is not clear whether (14) holds under a more general condition.) Let i; k;m; n; j; t; q; r be a
permutation of ½0; 1; . . . ; 7�. Then, together with Properties 6 and 3, (14) implies the following properties:
�
 Property 7(a): AT
k AiA

T
mAn ¼ �AT

j AtA
T
q Ar where the sign depends on the ordering of the indices.
�
 Property 7(b): AT
mAn ¼ 	AT

k AiA
T
j AtA

T
q Ar where the sign is consistent with Property 7(a).
�
 Property 7(c): For any real vector v, vTðAT
k AiA

T
j AtA

T
q ArÞ v ¼ 0.
3. Quasi-orthogonal codes

We now present a complete family of 4� 4 quasi-orthogonal codes (or code matrices) of Type I. A 4� 4
quasi-orthogonal code matrix of Type I is defined as such that each entry in the matrix is an element from
the symbol set f�s

ð�Þ

k1
;�s

ð�Þ

k2
;�s

ð�Þ

k3
;�s

ð�Þ

k4
g and a pair of columns of the matrix is orthogonal to the other pair

(and the two columns in each of the above pairs are not necessarily orthogonal to each other). Note that each
� is an independent plus or minus sign, and each superscript (*) denotes independently the presence or absence
of complex conjugation. The above definition of quasi-orthogonal code of Type I was used in [11]. It is
obvious that if Sðs1; s2; s3; s4Þ is a Type I 4� 4 quasi-orthogonal matrix of the four symbols s1; s2; s3; s4, then
numerous Type I quasi-orthogonal codes can be constructed by the following elementary operations:

Cðs1; s2; s3; s4Þ ¼ PrSð�s
ð�Þ

k1
;�s

ð�Þ

k2
;�s

ð�Þ

k3
;�s

ð�Þ

k4
ÞPc, (15)

where ðk1; k2; k3; k4Þ is a permutation of ð1; 2; 3; 4Þ, Pr permutes the rows and/or reverses the signs of none or
some rows, and Pc permutes the columns and/or reverses the signs of none or some columns. Note that the
above statement is obvious because none of the operations Pr, Pc, � and � changes the quasi-orthogonality of
(15). While the above statement is obvious, a number of Type I quasi-orthogonal code matrices have been
introduced in the literature without mentioning the connections among them. For beginners, each of these
codes appears to be a new one. Even for experts, it was unknown whether all existing codes of Type I are
related to each other by (15). In this section, we will show that not all Type I codes are related to each other by
(15), but, however, there are only two groups of Type I codes. The codes in each of the two groups are related
to each other by (15), but no code from one group is related to any code from the other group.

One can also extend the family of quasi-orthogonal codes by allowing left or right multiplication of a
diagonal matrix to (15), which is a simple extension of the Type I codes. There are also orthogonal or quasi-
orthogonal codes where the entries of the code matrix are non-linear functions of the symbol vector
fs1; s2; s3; s4g and/or the symbol constellation is constrained [31]. In this paper, we will not consider any quasi-
orthogonal codes other than the Type I quasi-orthogonal codes.

Two codes will be called independent of each other if they are not related to each other according to (15), or
otherwise dependent on each other. It is clear that a complete set of quasi-orthogonal codes can be generated
by all independent codes via (15). But we will show that the number of independent codes is two. Examples of
such two independent codes are also given. All existing codes of this type will be explicitly expressed in terms
of the two independent codes.

3.1. Independent quasi-orthogonal codes

We show next that there are only two independent 4� 4 Type I quasi-orthogonal codes. But first, we have
the following property about complex vectors:

Lemma 3.1. Let s ¼ sr þ jsi be a 4� 1 complex vector in the four-dimensional complex space C4 where sr is the

real part and si is the imaginary part. Define the second 4� 1 complex vector as p ¼Mrsr þ jMisi where Mr and

Mi are unitary integer matrices. Then, sH p ¼ 0 holds for all s in C4 if and only if (to be denoted by iff) a pair of

elements in s is orthogonal to the corresponding pair in pfor all s in C4 and the other pair of elements in s is
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orthogonal to the other corresponding pair in p for all s in C4. (The pair-wise orthogonality is equivalent to that in

Alamouti code [1].)

Proof. Taking the real and imaginary parts of sH p ¼ 0 separately, we have sH p ¼ 0 iff t1 þ t2 ¼ 0 and t3 ¼ 0
where t1 ¼ sTr Mrsr, t2 ¼ sTi Misi, and t3 ¼ sTi Mrsr � sTi MT

i sr.
Because of the independence between sr and si, t1 þ t2 ¼ 0 iff t1 ¼ 0 and t2 ¼ 0. Because both sr and si are

any real vectors, we have t1 ¼ 0 iff Mr ¼ �MT
r and t2 ¼ 0 iff Mi ¼ �MT

i . Similarly, we have t3 ¼ 0 iff

Mr ¼MT
i .

The above implies that sH p ¼ 0 holds for all s in C4 iff Mi ¼ �Mr and Mr ¼ �MT
r .

With the above choice of Mr and Mi, sH p ¼ 0 is equivalent to sHMr s� ¼ 0. We next apply that Mr ¼ �MT
r

and each row of Mr has only one non-zero entry �1. Without loss of generality, we can assume that the ði0; j0Þ
entry of Mr is �1, i.e., Mrði0; j0Þ ¼ �1. Then Mrðj0; i0Þ ¼ �Mrði0; j0Þ where i0aj0 and all other elements in the
i0th and j0th rows of Mr are zero. This property implies that the i0th and j0th elements in s cancel each other in
the form �ðs�ði0Þs

�ðj0Þ � s�ðj0Þs
�ði0ÞÞin sHMrs

� ¼ 0. In other words, the i0th and j0th elements in s are
orthogonal to the i0th and j0th elements in p for all s in C4. More explicitly, the i0th and j0th elements in p are
�s�ðj0Þ and 	s�ði0Þ.

Following the same reasoning, sH p ¼ 0 for all s in C4 iff the other two elements in s are also orthogonal
(in the same way as described above) to the other two corresponding elements in p for all s in C4. &

From Lemma 3.1, the next theorem follows (which corrects a result shown in [32]):

Theorem 3.1. Define a code set SQ of 4� 4 quasi-orthogonal codes for the symbol vector s ¼ ðs1; s2; s3; s4Þ
T,

where each element in a (normally full rank) code matrix has the form �s
ð�Þ

k and two of the four columns in each

code are orthogonal to the other two over all s in C4. Then, the following two codes S1ðs1; s2; s3; s4Þ and

S2ðs1; s2; s3; s4Þ:

S1 ¼

s1 �s4 s�2 �s�3

s2 s3 �s�1 �s�4

s3 �s2 �s�4 s�1

s4 s1 s�3 s�2

0
BBBB@

1
CCCCA; S2 ¼

s1 s4 s�2 �s�3

s2 s3 �s�1 s�4

s3 s2 �s�4 s�1

s4 s1 s�3 �s�2

0
BBBB@

1
CCCCA (16)

span all the codes in SQ via (15), and furthermore S1ðs1; s2; s3; s4Þ and S2ðs1; s2; s3; s4Þ are not related to each

other via (15).

Proof. We will say that a pair of codes are dependent of each other if they are related via (15), or otherwise
independent of each other. Our proof is constructive in that we will construct a largest possible set S of
independent codes. It is important to stress that permutations of rows and/or columns, permutations of symbol
indices, change of sign to each row and/or column, and sign and/or conjugation changes to each symbol are all
variations allowed by (15) among dependent codes. Our proof consists of several steps by which the above
variations are eliminated from a largest possible set of independent codes. These steps will lead to two possibly
independent codes S1 and S2. These two codes S1 and S2 are then finally verified to be independent.

Without loss of generality, we can fix the first column of each code matrix in S to be ½s1; s2; s3; s4�
T.

Furthermore, we can choose S in such a way that the first two columns of each code matrix are orthogonal to
the last two columns. From Lemma 3.1, it follows that among all code matrices in S, there are no more than
the following two possible forms up to the variations defined by (15):

T1 ¼

s1 � s�2 �

s2 � �s�1 �

s3 � �s�4 �

s4 � s�3 �

0
BBBB@

1
CCCCA or T2 ¼

s1 � �s�2 �

s2 � s�1 �

s3 � �s�4 �

s4 � s�3 �

0
BBBB@

1
CCCCA,

where � (not in superscript) denotes a unspecified entry. Note that in each of T1 and T2, the first two elements
of the first column are orthogonal to the first two elements of the third column for all s in C4, and the last two
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elements of first column are orthogonal to the last two elements of the third column for all s in C4. One can
easily verify that no other possibility exists that is independent of T1 and T2.

Similarly, from T1, one can generate no more than the following four possibilities in S up to (15):

T1;1 ¼

s1 � s�2 �s�3

s2 � �s�1 �s�4

s3 � �s�4 s�1

s4 � s�3 s�2

0
BBBB@

1
CCCCA; T1;2 ¼

s1 � s�2 �s�3

s2 � �s�1 s�4

s3 � �s�4 s�1

s4 � s�3 �s�2

0
BBBB@

1
CCCCA,

T1;3 ¼

s1 � s�2 �s�4

s2 � �s�1 �s�3

s3 � �s�4 s�2

s4 � s�3 s�1

0
BBBB@

1
CCCCA; T1;4 ¼

s1 � s�2 �s�4

s2 � �s�1 s�3

s3 � �s�4 �s�2

s4 � s�3 s�1

0
BBBB@

1
CCCCA.

Furthermore, from T2, one can generate no more than another four possibilities in S up to (15):

T2;1 ¼

s1 � �s�2 �s�3

s2 � s�1 s�4

s3 � �s�4 s�1

s4 � s�3 �s�2

0
BBBB@

1
CCCCA; T2;2 ¼

s1 � �s�2 �s�3

s2 � s�1 �s�4

s3 � �s�4 s�1

s4 � s�3 s�2

0
BBBB@

1
CCCCA,

T2;3 ¼

s1 � �s�2 �s�4

s2 � s�1 �s�3

s3 � �s�4 s�2

s4 � s�3 s�1

0
BBBB@

1
CCCCA; T2;4 ¼

s1 � �s�2 �s�4

s2 � s�1 s�3

s3 � �s�4 �s�2

s4 � s�3 s�1

0
BBBB@

1
CCCCA.

By filling the second column of each of the above matrices (to satisfy the orthogonality condition), it follows
that there are no more than the following eight possibilities in S up to (15):

T1;1 ¼

s1 �s4 s�2 �s�3

s2 s3 �s�1 �s�4

s3 �s2 �s�4 s�1

s4 s1 s�3 s�2

0
BBBB@

1
CCCCA; T1;2 ¼

s1 s4 s�2 �s�3

s2 s3 �s�1 s�4

s3 s2 �s�4 s�1

s4 s1 s�3 �s�2

0
BBBB@

1
CCCCA,

T1;3 ¼

s1 s3 s�2 �s�4

s2 �s4 �s�1 �s�3

s3 s1 �s�4 s�2

s4 �s2 s�3 s�1

0
BBBB@

1
CCCCA; T1;4 ¼

s1 s3 s�2 �s�4

s2 s4 �s�1 s�3

s3 �s1 �s�4 �s�2

s4 �s2 s�3 s�1

0
BBBB@

1
CCCCA,

T2;1 ¼

s1 s4 �s�2 �s�3

s2 s3 s�1 s�4

s3 �s2 �s�4 s�1

s4 �s1 s�3 �s�2

0
BBBB@

1
CCCCA; T2;2 ¼

s1 �s4 �s�2 �s�3

s2 s3 s�1 �s�4

s3 s2 �s�4 s�1

s4 �s1 s�3 s�2

0
BBBB@

1
CCCCA,
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T2;3 ¼

s1 s3 �s�2 �s�4

s2 �s4 s�1 �s�3

s3 �s1 �s�4 s�2

s4 s2 s�3 s�1

0
BBBB@

1
CCCCA; T2;4 ¼

s1 s3 �s�2 �s�4

s2 s4 s�1 s�3

s3 s1 �s�4 �s�2

s4 s2 s�3 s�1

0
BBBB@

1
CCCCA.

If we let S1 ¼ T1;1 and S2 ¼ T1;2, then it can be verified that

T1;3ðsÞ ¼ P11S2ð�s1; s2; s4; s3ÞP21, (17)

T1;4ðsÞ ¼ P12S1ðs3; s2; s4; s1ÞP22, (18)

T2;1ðsÞ ¼ P13S1ðs4; s2; s3; s1ÞP23, (19)

T2;2ðsÞ ¼ P14S2ð�s1; s2; s3; s4ÞP24, (20)

T2;3ðsÞ ¼ P15S1ðs1; s2; s4; s3ÞP25, (21)

T2;4ðsÞ ¼ P16S2ðs1; s2; s4; s3ÞP26, (22)

where

P11 ¼ P�ð1;1Þ;þð2;2Þ;þð3;4Þ;þð4;3Þ, (23)

P21 ¼ Pþð1;1Þ;�ð2;2Þ;�ð3;3Þ;�ð4;4Þ, (24)

P12 ¼ Pþð1;4Þ;þð2;2Þ;þð3;1Þ;þð4;3Þ, (25)

P22 ¼ Pð1;1Þ;þð2;2Þ;�ð3;4Þ;�ð4;3Þ, (26)

P13 ¼ Pþð1;4Þ;þð2;2Þ;þð3;3Þ;þð4;1Þ, (27)

P23 ¼ Pþð1;1Þ;þð2;2Þ;�ð3;4Þ;�ð4;3Þ, (28)

P14 ¼ P�ð1;1Þ;þð2;2Þ;þð4;3Þ;þð3;4Þ, (29)

P24 ¼ Pþð1;1Þ;þð2;2Þ;þð3;3Þ;�ð4;4Þ, (30)

P15 ¼ Pþð1;1Þ;þð2;2Þ;þð4;3Þ;þð3;4Þ, (31)

P25 ¼ Pþð1;1Þ;�ð2;2Þ;�ð3;3Þ;þð4;4Þ, (32)

P16 ¼ Pþð1;1Þ;þð2;2Þ;þð4;3Þ;þð3;4Þ, (33)

P26 ¼ Pþð1;1Þ;þð2;2Þ;�ð3;3Þ;þð4;4Þ (34)

and P�ði1;j1Þ;�ði2;j2Þ;�ði3;j3Þ;�ði4;j4Þ denotes a matrix where the entries at ði1; j1Þ; ði2; j2Þ; ði3; j3Þ; ði4; j4Þ are �1 and all
other entries are zero.

Therefore, there are no more than two independent codes in S, and S1 and S2 are two possible independent
codes.

To prove that S1 and S2 are indeed independent codes, we need to observe a property from (15). If all
elements of s come from a common symmetric constellation (symmetric in terms of sign change and complex
conjugation), then it is obvious from (15) that any two dependent codes C1ðsÞ and C2ðsÞ must satisfy the
following identity:

min
sa0

rankðC1ðsÞÞ 
 min
s̄a0

rankðC2ðs̄ÞÞ, (35)
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where s̄ is a function of s, satisfying

s̄ ¼ ð�s
ð�Þ

k1
;�s

ð�Þ

k2
;�s

ð�Þ

k3
;�s

ð�Þ

k4
Þ
T.

In the next subsection, we show that S1 and S2 do not satisfy the property (35). In fact, we will consider an
equivalent situation where s is replaced by D s and the constellation of D s is symmetric with respect to sign
change and complex conjugation. Since S1 and S2 do not satisfy the necessary condition (35) as required for
any pair of dependent codes, S1 and S2 are independent. &

3.2. Diversity of quasi-orthogonal codes

The diversity of a code matrix CðsÞ is the minimum rank of CðD sÞ over all possible D sa0 where D s is the
difference between two symbol vectors. For the diversity analysis of quasi-orthogonal codes, we will assume
that the constellation of D s is symmetric with respect to sign and conjugation. Such a condition is common in
practice. Because of the property (35) among dependent codes, to study the diversity of all the 4� 4 quasi-
orthogonal codes, it suffices to consider the diversity of S1ðsÞ and S2ðsÞ.

The diversity of SiðsÞ is the minimum rank of DiðD sÞ over all D sa0 where D s ¼ ðDs1;Ds2;Ds3;Ds4Þ
T. Here,

D1ðsÞ¼
:

S1ðs Þ
HS1ðsÞ ¼

aðsÞ jb1ðsÞ 0 0

�jb1ðsÞ aðsÞ 0 0

0 0 aðsÞ jb1ðsÞ

0 0 �jb1ðsÞ aðsÞ

2
66664

3
77775 (36)

and

D2ðsÞ¼
:

S2ðs Þ
HS2ðsÞ ¼

aðsÞ b2ðsÞ 0 0

b2ðsÞ aðsÞ 0 0

0 0 aðsÞ b2ðsÞ

0 0 b2ðsÞ aðsÞ

2
66664

3
77775, (37)

where

aðsÞ ¼
X4
k¼1

jskj
2, (38)

b1ðsÞ ¼ 2Iðs1s�4 þ s�2s3Þ, (39)

b2ðsÞ ¼ 2Rðs�1s4 þ s�2s3Þ. (40)

It is clear from (36) and (37) that the rank of DiðD sÞ is either two or four as long as D sa0. To determine
the conditions under which DiðD sÞ has the full rank (i.e., rank four), it is useful to examine its determinant.
The determinants of DiðsÞ are given by detðDiðsÞÞ ¼ ðaðsÞ � biðsÞÞ

2
ðaðsÞ þ biðsÞÞ

2 or equivalently

detðD1ðsÞÞ ¼ ½jjs1 � s4j
2 þ js2 � js3j

2�2½jjs1 þ s4j
2 þ js2 þ js3j

2�2, (41)

detðD2ðsÞÞ ¼ ½js1 þ s4j
2 þ js2 þ s3j

2�2½js1 � s4j
2 þ js2 � s3j

2�2. (42)

We show next that the conditions for a full rank D1ðD sÞ is generally different from that for a full rank D2ðD sÞ

even if the constellation of D s is symmetric. (Note that this was needed to complete the proof of Theorem 3.1.)
Expression (41) would make Lemma 2.1 in [33] more complete and would also enrich Lemma 2.2 in the

same paper. It follows from (41) that if and only if the set fjDs1g and the set f�Ds4g have no common elements
except zero or the set fDs2g and the set f�jDs3g have no common elements except zero, then D1ðD sÞ has full
rank as long as D sa0.

Expression (42) is given and well discussed in Lemma 2.1 in [33]. It follows from (42) that if and only if the
set fDs1g and the set f�Ds4g have no common elements except zero or the set fDs2g and the set f�Ds3g have no
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Fig. 1. The set of Dsi (crosses) and the set of jDsi (circles) for 3-PSK. Note that the constellation of Dsi is symmetric in terms of sign change

and complex conjugation, which meets the condition for (35).
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common elements except zero, then D2ðD sÞ has full rank as long as D sa0. This is an observation also made in
[13–16].

For example, if the constellation is odd-numbered phase-shift-keying as illustrated in Fig. 1, then the set
fjDs1g and the set f�Ds4g have no common elements except zero and the set fDs2g and the set f�jDs3g have no
common elements except zero, and hence D1ðD sÞ has full rank under D sa0. But for the same constellation,
D2ðD sÞ does not have full rank under D sa0.

3.3. Quasi-orthogonal codes in terms of HR matrices

We now illustrate that all quasi-orthogonal codes are linear dispersion codes by expressing the two
independent codes S1 and S2 in terms of the HR matrices. Let the real and imaginary parts of each symbol sk

be expressed as sk ¼ rk þ jik. It is not difficult to verify the following results. For the first code,

S1 ¼

r1 �r4 �r2 �r3

r2 r3 r1 �r4

r3 �r2 r4 r1

r4 r1 �r3 r2

0
BBBBB@

1
CCCCCAþ j

i1 �i4 i2 i3

i2 i3 �i1 i4

i3 �i2 �i4 �i1

i4 i1 i3 �i2

0
BBBBB@

1
CCCCCA

¼ ½Q0r1;�Q1r1;Q3r1;�Q2r1� þ j½Q2i1;�Q3i1;�Q1i1;Q0i1�,

where r1 ¼ ½r1; . . . ; r4�
T and i1 ¼ ½i3; i4;�i1;�i2�

T. For the second code,

S2 ¼

r1 r4 r2 �r3

r2 r3 �r1 r4

r3 r2 �r4 r1

r4 r1 r3 �r2

0
BBBBB@

1
CCCCCAþ j

i1 i4 �i2 i3

i2 i3 i1 �i4

i3 i2 i4 �i1

i4 i1 �i3 i2

0
BBBBB@

1
CCCCCA

¼ ½�Q3Kr2;Q2r2;Q0Kr2;Q
T
1 r2� þ j½�Q0Ki2;Q

T
1 i2;Q3Ki2;Q2i2�, (43)

where r2 ¼ ½�r2;�r1; r4; r3�
T, i2 ¼ ½i1;�i2; i3;�i4�

T, and K ¼ �I2 �Q.
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Table 1

Expressions of existing quasi-orthogonal codes in terms of two independent quasi-orthogonal codes

Authors/reference Original code Pr Si Pc

Papadias and Foschini [25] s1 s2 s3 s4

s�2 �s�1 s�4 �s�3

s3 �s4 �s1 s2

s�4 s�3 �s�2 �s�1

0
BBBB@

1
CCCCA

þð1; 3Þ þð2; 1Þ

þð4; 4Þ þð3; 2Þ
S1

s�2

s3

s1

s�4

0
BBBB@

1
CCCCA

þð1; 1Þ �ð2; 4Þ

�ð3; 2Þ �ð4; 3Þ

Hou et al. (20) in [26] s1 s2 s3 s4

�s2 s1 �s4 s3

�s�3 s�4 s�1 �s�2

�s�4 �s�3 s�2 s�1

0
BBBB@

1
CCCCA

þð1; 1Þ þð2; 4Þ

þð3; 3Þ þð4; 2Þ
S1

s1

�s�4

�s�3

�s2

0
BBB@

1
CCCA

þð1; 1Þ þð2; 2Þ

�ð3; 4Þ þð4; 3Þ

Ran et al. (10) in [27] s1 s2 s3 s4

s�2 �s�1 �s�4 s�3

s�3 �s�4 �s�1 s�2

s4 s3 s2 s1

0
BBB@

1
CCCA

þð1; 1Þ þð2; 2Þ

þð3; 3Þ þð4; 4Þ
S2

s1

s�2

s�3

s4

0
BBB@

1
CCCA

þð1; 1Þ þð2; 4Þ

þð3; 2Þ �ð4; 3Þ

Tirkkonen et al. (10) in [28] s1 s2 s3 s4

�s�2 s�1 �s�4 s�3

s3 s4 s1 s2

�s�4 s�3 �s�2 s�1

0
BBBB@

1
CCCCA

þð1; 1Þ þð2; 2Þ

þð3; 4Þ þð4; 3Þ
S2

s1

�s�2

�s�4

s3

0
BBB@

1
CCCA

þð1; 1Þ �ð2; 3Þ

�ð3; 2Þ þð4; 4Þ

Jafarkhani [11] s1 s2 s3 s4

�s�2 s�1 �s�4 s�3

�s�3 �s�4 s�1 s�2

s4 �s3 �s2 s1

0
BBB@

1
CCCA

�ð1; 1Þ þð2; 2Þ

þð3; 3Þ þð4; 4Þ
S2

�s1

�s�2

�s�3

s4

0
BBB@

1
CCCA

þð1; 1Þ �ð2; 4Þ

þð3; 2Þ �ð4; 3Þ

A column vector of symbols is used instead of a row vector for a more compact form. The arrays of �ði; jÞ in the third and fifth columns

indicate the �1 entries in the integer matrices Pr and Pc. Other unspecified entries of Pr and Pc are zero.
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3.4. Previously published quasi-orthogonal codes

The previously published 4� 4 unit-rate quasi-orthogonal codes of Type I can all be expressed in terms of
the above two independent codes via (15). Table 1 summarizes these connections.
4. Non-orthogonal HR codes

In this section, we present an 8� 4 unit-rate code and prove that it has diversity no less than three under any
constellation. Like the 4� 4 quasi-orthogonal codes presented in the previous section, this code is also a linear
dispersion code constructed from HR matrices. This 8� 4 unit-rate code is

Cðx1; x2Þ¼
:
½A0x1 þ jA4x2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v1

;A1x1 þ jA5x2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
v2

;A2x1 þ jA6x2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
v3

;A3x1 þ jA7x2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
v4

�, (44)

where x1 and x2 are two real-valued 8� 1 symbol vectors, and Ai, i ¼ 0; . . . ; 7, are 8� 8 matrices from any
single HR family of size eight satisfying (14). This code is motivated by the structure of a half-rate 4� 4
orthogonal code for four transmitters. In fact, it is easy to verify that the code (44) is an orthogonal code if the
8� 1 complex vector x1 þ jx2 is replaced by a 4� 1 real vector and Ai, i ¼ 0; . . . ; 3 are replaced by 4� 4 HR
matrices. This code has a very simple and appealing structure.

The above code, also referred to as non-orthogonal HR code, is a special form of a more general HR code
introduced in [5], and is also a special form of the linear dispersion codes introduced in [29,34].
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One specific form (example) of the non-orthogonal HR code follows from (44) with the HR family
given in (7):

x1ð1Þ þ jx2ð6Þ x1ð3Þ þ jx2ð7Þ x1ð4Þ þ jx2ð8Þ x1ð2Þ þ jx2ð5Þ

x1ð2Þ � jx2ð5Þ x1ð4Þ � jx2ð8Þ �x1ð3Þ þ jx2ð7Þ �x1ð1Þ þ jx2ð6Þ

x1ð3Þ � jx2ð8Þ �x1ð1Þ þ jx2ð5Þ x1ð2Þ þ jx2ð6Þ �x1ð4Þ � jx2ð7Þ

x1ð4Þ þ jx2ð7Þ �x1ð2Þ � jx2ð6Þ �x1ð1Þ þ jx2ð5Þ x1ð3Þ � jx2ð8Þ

x1ð5Þ þ jx2ð2Þ x1ð7Þ � jx2ð3Þ x1ð8Þ � jx2ð4Þ �x1ð6Þ � jx2ð1Þ

x1ð6Þ � jx2ð1Þ x1ð8Þ þ jx2ð4Þ �x1ð7Þ � jx2ð3Þ x1ð5Þ � jx2ð2Þ

x1ð7Þ � jx2ð4Þ �x1ð5Þ � jx2ð1Þ x1ð6Þ � jx2ð2Þ x1ð8Þ þ jx2ð3Þ

x1ð8Þ þ jx2ð3Þ �x1ð6Þ þ jx2ð2Þ �x1ð5Þ � jx2ð1Þ �x1ð7Þ þ jx2ð4Þ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
, (45)

where xiðkÞ is the kth element of the real symbol vector xi.
From the theorem shown next, the code (44) is guaranteed to have diversity three even when all symbols are

independently selected from any constellation (regardless of the design of the constellation). To our
knowledge, for four-transmitters systems, the code (44) is the only known unit-rate linear dispersion code that
is guaranteed to be of diversity (at least) three under any given constellation. This is a useful property in
practice since any symbol constellation can be applied to this code while the diversity is guaranteed to be no
less than three.

Theorem 4.1. Given any x1 þ jx2a0, the code Cðx1;x2Þ defined in (44) has a rank no less than three regardless of

the constellation from which all symbols are independently selected.

The rest of this section is to prove Theorem 4.1. Since the proof is quite lengthy, we divide the proof into
several sections as explained next.

4.1. Outline of the proof of Theorem 4.1

The proof consists of a sequence of lemmas, and these lemmas are indexed as follows:

Theorem 4:1

Lemma 4:1( Lemma 4:1:1

Lemma 4:2( Lemma 4:1:1

Lemma 4:3( Lemma 4:3:1(
Lemma 4:3:1:1( ð47Þ;

ð14Þ:

(
8>>>><
>>>>:

All lemmas are stated below. The proofs are given in the subsequent subsections in the order shown above.
Theorem 4.1 results immediately from the three main lemmas:

Lemma 4.1 (Proof in Section 4.3). The minimum rank of (44) is no larger than three.

Lemma 4.2 (Proof in Section 4.4). Among any three column vectors in (44), at least two of them are independent.

Lemma 4.3 (Proof in Section 4.7). Given (14), if any three column vectors in (44) are linearly dependent, they are

orthogonal to the fourth vector in (44).

The above three main lemmas are based on the following supporting lemmas:

Lemma 4.1.1 (Proof in Section 4.2). Given distinct i, j, m, n and the (non-zero) real vectors x1 and x2,
the equation Aix1 þ jAjx2 ¼ kðAmx1 þ jAnx2Þ holds if and only if

k¼
:

k1 þ jk2 ¼ �j;

ðAiA
T
mAj þ AnÞx2 ¼ 0;

x1 ¼ �k2AT
i Anx2;

8><
>: (46)

where k1 and k2 are real numbers. There is always a non-zero x2 that satisfies ðAiA
T
mAj þ AnÞx2 ¼ 0.
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Lemma 4.3.1 (Proof in Section 4.6). Referring to (44), v2 is orthogonal to v3 and v4 if (a) the condition (14) holds

and (b) there exist two complex scalars k¼
:

k1 þ jk2 and t¼
:

t1 þ jt2 with jtj2 þ jkj2a0 and two real vectors x1 and

x2 such that

v1 ¼ ½v3; v4�
k

t

� �
. (47)

Lemma 4.3.1.1 (Proof in Section 4.5). The necessary and sufficient condition for (47) to hold is

Mx1 ¼ 0;

x2 ¼ �ðk
2
2 þ t22Þ

�1
ðA6k2 þ A7t2Þ

T
ðA0 � A2k1 � A3t1Þx1;

(
(48)

where

M ¼ A2k2 þ A3t2 þ ðk
2
2 þ t22Þ

�1
ðA4 � A6k1 � A7t1ÞðA6k2 þ A7t2Þ

T
ðA0 � A2k1 � A3t1Þ. (49)

One important property of M is

MTM ¼ cMI þN, (50)

where cM40, N is symmetric and orthogonal, and the eigenvalues of N are �cM of differing signs. The exact

content of cM is given in (68) and the content of N is given in (68) and (65). Furthermore, M is singular if and

only if

k2
2 þ t22 ¼ k2

1 þ t21 þ 1;

t1t2 þ k1k2 ¼ 0:

(
(51)

4.2. The proof of Lemma 4.1.1

Given the complex-valued equation Aix1 þ jAjx2 ¼ kðAmx1 þ jAnx2Þ, there are two corresponding real-
valued equations (real and imaginary parts):

ðAi � k1AmÞx1 þ k2Anx2 ¼ 0, (52)

ðAj � k1AnÞx2 � k2Amx1 ¼ 0. (53)

Because Ai � k1Am is an invertible matrix for distinct i and m, k2 has to be non-zero. Otherwise, there is no
non-zero solution for x1 or x2. From (53), we have

x1 ¼ k�12 AT
mðAj � k1AnÞx2. (54)

Taking (54) into (52) leads to

Zx2 ¼ 0, (55)

where Z ¼ ðAi � k1AmÞk
�1
2 AT

mðAj � k1AnÞ þ k2An. It is clear that Z must be singular, or otherwise there is no
non-zero solution for x2.

With Properties 2 and 4 of the HR matrices, it is easy to verify that

ZTZ ¼ ½k2
2 þ ð1þ k2

1Þ
2k�22 þ 2k2

1�I8 þ 2AT
j AmAT

i An. (56)

It is known that Z is singular if and only if Z has at least one zero eigenvalue. Therefore, based on (56) and
Property 5, the matrix Z is singular if and only if k2

2 þ ð1þ k2
1Þ

2k�22 þ 2k2
1 ¼ �2. This equation is equivalent to

any of the following equations:

k4
2 þ ð1þ k2

1Þ
2
þ 2k2

1k2
2 ¼ �2k2

2,

k4
2 þ 2ðk2

1 þ 1Þk2
2 þ ð1þ k2

1Þ
2
¼ �4k2

2,

ð1þ k2
1 þ k2

2Þ
2
¼ �4k2

2.
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From the above, we see that the minus sign leads to no real solution. After dropping the minus sign, the above
is equivalent to any of the following:

ð1þ k2
1 þ k2

2 � 2k2Þð1þ k2
1 þ k2

2 þ 2k2Þ ¼ 0,

ðk2
1 þ ð1� k2Þ

2
Þðk2

1 þ ð1þ k2Þ
2
Þ ¼ 0,

k1 ¼ 0 and k2 ¼ �1. (57)

Therefore, k ¼ �j. Taking this back into (54) and (55) yields the sufficient and necessary conditions on x2 and
x1 as shown in the lemma.

4.3. The proof of Lemma 4.1

It follows from Lemma 4.1.1 that there are always non-zero x1 and x2 such that any two columns from (44)
are linearly dependent of each other. For example, if

x1 ¼ ½�1; 1;�1; 1;�1;�1;�1;�1�
T,

x2 ¼ ½�1; 1; 1;�1;�1;�1; 1; 1�
T

then the codeword given in (44) has a rank no more than three.

4.4. The proof of Lemma 4.2

Based on Lemma 4.1.1 we can now prove that any three columns from (44) have a rank larger than one.
Suppose that Aix1 þ jAjx2 depends on each of Amx1 þ jAnx2 and Atx1 þ jArx2. From Lemma 4.1.1, we have

x1 ¼ �k2A
T
i Anx2;

x1 ¼ �k02A
T
i Arx2

(
(58)

which implies AT
i ðAn � ArÞx2 ¼ 0. However, AT

i ðAn � ArÞ is an orthogonal matrix, which means that x2 ¼ 0
and hence x1 ¼ 0. Therefore, Aix1 þ jAjx2 cannot depend on each of Amx1 þ jAnx2 and Atx1 þ jArx2.

4.5. The proof of Lemma 4.3.1.1

Given the complex-valued equation (47), we equivalently have the following two real-valued equations
(i.e., the real and imaginary parts):

A0x1 ¼ A2x1k1 þ A3x1t1 � A6x2k2 � A7x2t2,

A4x2 ¼ A2x1k2 þ A3x1t2 þ A6x2k1 þ A7x2t1

or equivalently

ðA0 � A2k1 � A3t1Þx1 ¼ �ðA6k2 þ A7t2Þx2, (59)

ðA4 � A6k1 � A7t1Þx2 ¼ ðA2k2 þ A3t2Þx1. (60)

Recalling Property 4, ðAm � Ank1 � Alt1Þ is always non-singular for distinct m, n and l, and ðAmk2 þ Ant2Þ is
non-singular for distinct m and n unless k2

2 þ t22 ¼ 0. So from (59) and (60), k2
2 þ t22a0 unless both x1 and x2

are equal to zero. Also from (59) and (60), x1 ¼ 0 if and only if x2 ¼ 0.
From (59), we have

x2 ¼ �ðk
2
2 þ t22Þ

�1
ðA6k2 þ A7t2Þ

T
ðA0 � A2k1 � A3t1Þx1. (61)

Also, from (60), we have an equivalent form of x2:

x2 ¼ ð1þ k2
1 þ t21Þ

�1
ðA4 � A6k1 � A7t1Þ

T
ðA2k2 þ A3t2Þx1. (62)
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Using (61) in (60) yields Mx1 ¼ 0 where

M ¼M1 þM2 (63)

with M1 ¼ A2k2 þ A3t2 and

M2 ¼ ðk
2
2 þ t22Þ

�1
ðA4 � A6k1 � A7t1ÞðA6k2 þ A7t2Þ

T
ðA0 � A2k1 � A3t1Þ.

Clearly, x1a0 if and only if M is singular. Summarizing the above, we have that (47) holds if and only if M is
singular, x1 satisfies Mx1 ¼ 0, and x2 satisfies (61).

To reveal a property of MTM, we now apply Property 4 to obtain that M1M
T
1 ¼ ðk

2
2 þ t22ÞI8 and

M2M
T
2 ¼ ðk

2
2 þ t22Þ

�1
ð1þ k2

1 þ t21Þ
2I8. Furthermore,

MT
1 M2 ¼ ðk

2
2 þ t22Þ

�1
ðAT

2 k2 þ AT
3 t2ÞðA4AT

6 k2 þ A4A
T
7 t2 � k1k2I8 � A6AT

7 k1t2 � A7A
T
6 t1k2 � t1t2I8Þ

�ðA0 � A2k1 � A3t1Þ

¼Mc12;1 þMc12;2, (64)

where

Mc12;1 ¼ ðk
2
2 þ t22Þ

�1
ðAT

2 k2 þ AT
3 t2Þ ½A4A

T
6 k2 þ A4A

T
7 t2 þ A6A

T
7 ð�k1t2 þ k2t1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DM

ðA0 � A2k1 � A3t1Þ, (65)

Mc12;2 ¼ � ðk
2
2 þ t22Þ

�1
ðAT

2 k2 þ AT
3 t2Þðt1t2 þ k1k2ÞðA0 � A2k1 � A3t1Þ

¼ � ðk2
2 þ t22Þ

�1
ðt1t2 þ k1k2ÞðA

T
2 k2A0 � k1k2I8 � AT

2 A3t1k2 þ AT
3 t2A0 � AT

3 t2A2k1 � t1t2I8Þ. (66)

Using Property 2 and (66) yields

Mc12;2 þMT
c12;2 ¼ 2ðk2

2 þ t22Þ
�1
ðt1t2 þ k2k2Þ

2I8. (67)

Therefore,

MTM ¼MT
1 M1 þMT

2 M2 þMc12;1 þMc12;2 þMT
c12;1 þMT

c12;2

¼ ½ðk2
2 þ t22Þ þ ðk

2
2 þ t22Þ

�1
ð1þ k2

1 þ t21Þ
2
þ 2ðk2

2 þ t22Þ
�1
ðk1k2 þ t1t2Þ

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cM

�I8 þMc12;1 þMT
c12;1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N

. (68)

It is straightforward to verify that

N ¼Mc12;1 þMT
c12;1

¼ 2ðk2
2 þ t22Þ

�1
½AT

2 k2DMA0 þ AT
3 t2DMA0 � k2A

T
2DMt1A3 � AT

3 t2DMk1A2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W 0

. (69)

We note that DT
MDM ¼ cDI8 where cD ¼ t22 þ k2

2 þ ðk2t1 � t2k1Þ
2. It is also straightforward to verify that

W 0W
T
0 ¼ c2DI8. (70)

We now need to prove W 0a� cDI8. Suppose W 0 ¼ �cDI8. Then,

AT
2 k2DMA0 þ AT

3 t2DMA0 � k2A
T
2DMt1A3 � AT

3 t2DMk1A2 ¼ �cDI8

which can be rewritten as

k2A
T
2 ðA0 � A3t1Þ ¼ �f ðDMÞ

T
� t2AT

3 ðA0 � k1A2Þ, (71)

where f ðDMÞ ¼ AT
4 A6k2 þ AT

4 A7t2 þ AT
6 A7ð�k1t2 þ k2t1Þ.

Note that f ðDM Þ is antisymmetric, and f ðDMÞ
Tf ðDMÞ ¼ cDI8. For Ak where kað4; 6; 7Þ, AT

kDM ¼ f ðDMÞA
T
k .

From (71), we have

ðk2
2 þ t22ÞA0 ¼ ðA2k2 þ A3t2Þf�f T

ðDMÞ � AT
3 A2ðk2t1 � k1t2Þg. (72)
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We now multiply (72) by AT
3 to yield

�ðk2
2 þ t22ÞA

T
3 A0 ¼ � ðA

T
3 A2k2 þ t2IÞf�f T

ðDMÞ � AT
3 A2ðk2t1 � k1t2Þg

¼ � ½k2
2A

T
3 A2AT

4 A6 þ k2t2A
T
3 A2AT

4 A7 þ k2ðk2t1 � k1t2ÞA
T
3 A2AT

6 A7�

� t2f ðDMÞ þ ð�1Þk2ðk2t1 � k1t2ÞI8 þ AT
3 A2ðk2t1 � k1t2Þt2. (73)

Applying Properties 2 and 5, we add Eq. (73) to its transposed version to yield

k2 �ðk2AT
3 A2A

T
4 A6 þ t2AT

3 A2A
T
4 A7 þ ðk2t1 � k1t2ÞA

T
3 A2AT

6 A7|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F0

Þ þ ð�1Þðk2t1 � k1t2ÞI8

0
B@

1
CA ¼ 0. (74)

Recall k2
2 þ t22a0. From the definition of F0 shown in (74), it is easy to verify that F 0F

T
0 ¼

½k2
2 þ t22 þ ðk2t1 � t1k2Þ

2
�I8aðk2t1 � t1k2Þ

2. Therefore, (74) implies k2 ¼ 0. Similarly, we can multiply (72) by

AT
2 , and then follow the same analysis as shown above to conclude that t2 ¼ 0. Therefore, we have proven by

contradiction that W 0a� cDI8.
Since MTM ¼ cMI8 þN where N has the eigenvalues �2ðk2

2 þ t22Þ
�1cD, M is singular if and only if

cM ¼ 2ðk2
2 þ t22Þ

�1cD (75)

which is equivalent to

½ðk2
2 þ t22Þ

2
� ðk2

1 þ t21 þ 1Þ2�2 þ 4ðt1t2 þ k1k2Þ
2
¼ 0

and hence (51).

4.6. Proof of Lemma 4.3.1

Given the definitions of v2 and v3 shown in (44), it follows that

vH2 v3 ¼ ðx
T
1 AT

1 A2x1 þ xT
2 AT

5 A6x2Þ þ ðx
T
1 AT

1 A6x2 � xT
2 AT

5 A2x1Þj

¼ ðxT
1 AT

1 A6x2 � xT
2 AT

5 A2x1Þj. (76)

Using (61) and Property 3, the first term (ignoring j) in (76) becomes

xT
1 AT

1 A6x2 ¼ � ðk
2
2 þ t22Þ

�1xT
1 AT

1 A6ðA6k2 þ A7t2Þ
T
ðA0 � A2k1 � A3t1Þx1

¼ � ðk2
2 þ t22Þ

�1xT
1 ðk2A

T
1 A0 � k1k2A

T
1 A2 � k2t1AT

1 A3 þ t2A
T
1 A6A

T
7 A0

� t2k1A
T
1 A6AT

7 A2 � t2t1A
T
1 A6AT

7 A3Þx1

¼ � ðk2
2 þ t22Þ

�1xT
1 t2A

T
1 A6AT

7 A0 � t2k1A
T
1 A6AT

7 A2 � t2t1A
T
1 A6A

T
7 A3

� �
x1. (77)

Taking (62) into the second term in (76), we can similarly show that

xT
1 AT

2 A5x2 ¼ ð1þ k2
1 þ t21Þ

�1xT
1 AT

2 A5ðA4 � A6k1 � A7t1Þ
T
ðA2k2 þ A3t2Þx1

¼ ð1þ k2
1 þ t21Þ

�1t2x
T
1 ðA

T
2 A5A

T
4 A3 � k1A

T
2 A5A

T
6 A3 � t1AT

2 A5A
T
7 A3Þx1. (78)

Based on (14) and Property 2, we have AT
1 A6A

T
7 A0 ¼ AT

5 A2AT
4 A3 ¼ �AT

2 A5A
T
4 A3. Also, recall

1þ k2
1 þ t21 ¼ k2

2 þ t22. Therefore,

vH2 v3 ¼ ðk
2
2 þ t22Þ

�1xT
1 ð�t2A

T
1 A6AT

7 A0 þ t2k1A
T
1 A6AT

7 A2 þ t2t1A
T
1 A6AT

7 A3

� t2A
T
2 A5AT

4 A3 þ k1t2A
T
2 A5AT

6 A3 þ t1t2A
T
2 A5AT

7 A3Þx1j

¼ ðk2
2 þ t22Þ

�1t2x
T
1 ðk1A

T
1 A6AT

7 A2 þ t1AT
1 A6A

T
7 A3 þ k1AT

2 A5A
T
6 A3 þ t1A

T
2 A5AT

7 A3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MN

Þx1j. (79)
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In order to prove vH2 v3 ¼ 0, it remains to prove xT
1 MNx1 ¼ 0. By Lemma 4.3.1.1, Mx1 ¼ 0 and

MTM ¼ cMI8 þN. From the property of N, it follows that rangeðcMI8 þNÞ and rangeðcMI8 �NÞ are
orthogonal complement of each other. Therefore, the solution space of Mx1 ¼ 0 is given by the range of
M0¼

:
cMI8 �N, i.e., x1 ¼M0 v for any real vector v. Then, xT

1 MNx1 ¼ 0 if and only if vTMT
0 MNM0 v ¼ 0 for

any v. The proof of vTMT
0 MNM0 v ¼ 0 is straightforward but very lengthy, the details of which are given in

the Appendix.
To prove vH2 v4 ¼ 0, we need to exchange A2 with A3 and A6 with A7 in the proof for vH2 v3 ¼ 0. With

Property 6, (14) still holds after the double exchanges. So, the proof of vH2 v4 ¼ 0 is basically identical to the
proof of vH2 v3 ¼ 0.

4.7. Proof of Lemma 4.3

Each vector in ½v1; v2; v3; v4� depends on two out of eight HR matrices satisfying (14). Exchanging any two
vectors in ½v1; v2; v3; v4� is equivalent to exchanging two pairs of HR matrices. With Property 6, condition (14)
continues to hold under any even number of exchanges of HR matrices. Therefore, following the same proof
as for Lemma 4.3.1, if any three vectors in ½v1; v2; v3; v4� are linearly dependent of each other, they must be
orthogonal to the fourth vector.
5. Further remarks on the non-orthogonal HR codes

5.1. Full diversity non-orthogonal HR codes

Like the quasi-orthogonal codes, the non-orthogonal HR codes can also be made full diversity by
introducing proper diversity in symbol constellations. While the best method to achieve full diversity of the
non-orthogonal HR codes is still an open problem, we give one method here to achieve full diversity. Consider
the codeword as in (45). Let each complex element of x1ðiÞ þ jx2ðiÞ, i ¼ 1; 2; 3; 4, be from the constellation set
of exp½jpðm=4þ 1=6Þ�, m ¼ 1; 3; 5; 7, and each complex element of x1ðiÞ þ jx2ðiÞ, i ¼ 5; 6; 7; 8, be from another
constellation set expðjpm=4Þ, m ¼ 1; 3; 5; 7. Through exhaustive search, it has been verified that the rank of the
four column code matrix is always four.
5.2. Simulation

To illustrate the performance of the non-orthogonal HR codes, we show a simulation example. For a
system of single receiver and four transmitters, each block of received data can be expressed as

y ¼ CðxÞ hþ n , (80)

where we assume
�
 The entries of the fading vector h are i.i.d. Gaussian distributed with unit variance.

�
 The entries of the noise vector n are i.i.d. Gaussian distributed of variance s2m � 4� 10�0:1SNR where SNR is

the dB value of the ratio of the transmitted power over the noise variance. Here, s2m is dependent on
modulations. For example, s2m ¼ 2 for 4-QAM (four symbols on the corners of a square of side equal to 2),
s2m ¼ 1 for QPSK (four symbols uniformly spaced on a circle of unit radius), and s2m ¼ 10 for 16-QAM.
The factor 4 is due to four transmitters.

�
 The code matrix CðxÞ is given by (45).

An alternative form of (80) is as follows:

RðyÞ

IðyÞ

 !
¼ H

x1

x2

 !
þ

RðnÞ

IðnÞ

 !
, (81)
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Fig. 2. Averaged bit error rate versus SNR for four space–time block codes. The data rate for all codes is 2 bits/s/Hz. A system of four

transmitters and one receiver is considered.
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where

H ¼

P3
i¼0 AiRðhiÞ

P3
i¼0 Aiþ4IðhiÞP3

i¼0 AiIðhiÞ
P3

i¼0 Aiþ4RðhiÞ

 !
. (82)

We used (81) with a sphere decoding algorithm [35–37] to detect x. For each realization of x, we chose an
independent realization of h and n.

In our simulation, we compared the four different codes: the quasi-orthogonal code [11], and the full rank
quasi-orthogonal code with the constellation rotation given in [14,16], the non-orthogonal code (44), and
the half-rate complex orthogonal code [9]. To ensure the same bit rate, we used QPSK for the first two codes,
4-QAM for the third code, and 16-QAM for the fourth code.

The performances of the four different codes are compared in Fig. 2. The non-orthogonal HR code
(referred to as diversity 3 code in the figure) shows a good performance in a medium range of SNR, i.e., better
than the original quasi-orthogonal code and even the half-rate orthogonal code. The half-rate orthogonal code
performs well at very high SNR because of its full diversity. But the full diversity quasi-orthogonal code
performs the best among the four codes compared.

It is important to remember that the code (44) has diversity no less than three for any constellation while the
full diversity quasi-orthogonal code needs to be readjusted for each different constellation.
6. Conclusion

In this paper, we have investigated STBC that have strong connections with the HR families of matrices.
The key contributions are Theorems 3.1 and 4.1. Theorem 3.1 states that the Type I family of all published as
well as unpublished 4� 4 unit-rate quasi-orthogonal codes are simply variations from two independent codes
shown in (16) via (15). Theorem 4.1 states that the unit-rate code (44) for four transmitters has a rank no less
than three under any given constellation. To our knowledge, the code (44) is the only known unit-rate linear
dispersion code that is guaranteed to have diversity (at least) three for four transmitters. This is a useful
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advantage since it could reduce the physical layer complexity associated with constellation constraint. It
remains a challenge to discover whether or not there exists a linear dispersion code that guarantees a higher
diversity than the code (44) for four transmitters over all possible constellations. It is our hope that the
in-depth analysis shown in this paper will motivate and help this pursuit.
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Appendix A. Proof of vTMT
0 MN M0 v ¼ 0

The proof is relatively lengthy. We will repeatedly apply Properties 1–7 of the HR matrices as well as
condition (14). To help the presentation of the proof, we will use the sum table to be introduced next.
A.1. Introduction of the sum table

For example, to describe the sum a1AT
1 A2AT

3 A4 þ a2AT
5 A6AT

7 A3, we use the following sum table:

(83)

where each group of four integers from ð0; 1; 2; 3; 4; 5; 6; 7Þ corresponds to a product of four
matrices, i.e.,

�½ijmn�¼
:
� AT

i AjA
T
mAn. (84)

To describe b1A
T
2 A4ða1AT

1 A2A
T
3 A4 þ a2AT

5 A6A
T
7 A3Þ as another example, we will use

(85)

From Properties 1(a) and 2(a), it is easy to verify that ½241234� ¼ ½13�. Because of AT
1 A6A

T
7 A0 ¼

AT
5 A2A

T
4 A3 ¼ AT

2 A4A
T
5 A3, we can write ½245673� ¼ ½245367� ¼ ½1670�½67� ¼ ½01�. Therefore, we can also

express

b1A
T
2 A4ða1AT

1 A2A
T
3 A4 þ a2AT

5 A6A
T
7 A3Þ

as

(86)
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A.2. Main body of the proof

From the definition of M0, it is straightforward to verify that

M0 ¼ cMI8 �N

¼ 2ðk2
2 þ t22ÞI8 � 2k2ðk

2
2 þ t22Þ

�1AT
2 ½A4AT

6 k2 þ A4A
T
7 t2 þ A6A

T
7 ð�k1t2 þ k2t1Þ�ðA0 � A3t1Þ

� 2ðk2
2 þ t22Þ

�1t2A
T
3 ½A4A

T
6 k2 þ A4AT

7 t2 þ A6AT
7 ð�k1t2 þ k2t1Þ�ðA0 � k1A2Þ. (87)

With c1¼
:

k2
2 þ t22 and c2¼

:
k1t2 þ k2t1, we can write

(88)

Therefore,

(89)
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From (79) we have

MN ¼ k1A
T
1 A6AT

7 A2 þ t1A
T
1 A6A

T
7 A3 þ k1A

T
2 A5A

T
6 A3 þ t1AT

2 A5A
T
7 A3

¼ k1½1672� þ t1½1673� þ k1½2563� þ t1½2573�. (90)

To compute the product M0MN (where M0 is symmetric), we have

(91)

(92)
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(93)

(94)

The following table shows how the common terms in the previous four tables are combined.
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(95)

Therefore,

(96)

We now need to multiply each term of M0MN , i.e., (96), by M0 from right. Note that
vTðAT

k AiA
T
j AtA

T
q ArÞ v ¼ 0 and vTðAT

k AiÞ v ¼ 0 for any vector v and distinct indices. So, we will use ½kijtqr��0
and ½ki��0 to denote that the corresponding terms become zero after being multiplied by v from left and right.
We will use

E1¼
:
2k1c

2
2c�11 þ 2k1t

2
2c�11 � 2t1k2t2c�11 , (97)

E2¼
:
2t1c

2
2c
�1
1 þ 2t1k2

2c
�1
1 � 2k1k2t2c�11 , (98)
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(99)

(100)
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(101)

(102)
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(103)

(104)
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(105)

(106)

There are 10 distinct groups of common terms in the previous eight tables. All the common terms cancel
each other as shown by the following tables.
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The 1st group:

(107)

The 2nd group:

(108)

The 3rd group:

. (109)
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The 4th group of terms in the sum is

. (110)

The 5th group:

. (111)

The 6th group:

. (112)

The 7th group:

. (113)
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The 8th group:

(114)

The 9th group:

(115)

The 10th group:

(116)
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