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Testing Branching Process Estimators of Cascading Failure
with Data from a Simulation of Transmission Line Outages

Ian Dobson,1,∗ Janghoon Kim,1 and Kevin R. Wierzbicki1

We suggest a statistical estimator to quantify the propagation of cascading transmission line
failures in large blackouts of electric power systems. We use a Galton-Watson branching
process model of cascading failure and the standard Harris estimator of the mean propagation
modified to work when the process saturates at a maximum number of components. If the
mean number of initial failures and the mean propagation are estimated, then the branching
process model predicts the distribution of the total number of failures. We initially test this
prediction on failure data generated by a simulation of cascading transmission line outages
on two standard test systems. We discuss the effectiveness of the estimator in terms of how
many cascades need to be simulated to predict the distribution of the total number of line
outages accurately.

KEY WORDS: Blackout risk; branching process; cascading failure; electric power transmission system;
infrastructure

1. INTRODUCTION

Cascading failure is a sequence of dependent
failures that successively weaken a system. In electric
power transmission systems, cascading failure is the
main way that blackouts become more widespread.
For example, the August 2003 blackout affecting
50 million people spread to a sizable region of North-
eastern America by cascading.(1) Other examples are
the July and August 1996 blackouts of the Western
power system of North America(2) and the Novem-
ber 2006 European blackout in which failures propa-
gated from Germany to Southern Europe.(3) In these
examples, a small initial disturbance spread to a large
blackout by cascading. Some blackouts with a large
initial disturbance such as caused by extremely bad
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weather may also spread further via cascading. Cas-
cading failure is of great interest in the risk analysis of
several of the interconnected infrastructures that un-
derpin our society, but here we focus on initial test-
ing of methods of analyzing cascading failure in elec-
tric power transmission systems. Indeed, the impact
of large blackouts on society is a good motivation for
the analysis of cascading failure. An initial review of
methods for cascading failure in electric power sys-
tems is in Reference 4.

Electric power transmission systems are meshed
networks at high voltages that form the backbone
of the electric power system.(5) They can be of con-
tinental scale with thousands or tens of thousands
of transmission lines and nodes. The components
of transmission systems include transmission lines,
transformers, substations, and protection, control,
communication, and computing equipment. In our
terminology, the “failure” of a component can in-
clude automatic or manual de-energizing of the com-
ponent so that it is not damaged but is unavailable to
transmit power, or a component malfunctioning or
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Branching Process Estimators of Cascading 651

becoming damaged. Other types of failures are hu-
man errors or errors in software or operational pro-
cedures.

There are many different mechanisms of cascad-
ing in electric power transmission systems by which
one failure can cause other failures. Large blackouts
are typically complicated sequences of cascading fail-
ures that combine several of these mechanisms .(1−3,6)

For a readable account of the formidable complexi-
ties of blackouts, see Reference 1, which describes
cascading line failures as well as many other cas-
cading processes. However, one common feature of
blackouts is the successive failure of transmission
lines. Moreover, the number of transmission lines
failed is one measure of blackout size. (The number
of transmission lines failed is not a measure of direct
impact to society as is energy unserved or customers
disconnected, but it does provide an accessible mea-
sure of blackout size internal to the power system
that is useful to utilities.) Thus, transmission line fail-
ures are useful diagnostics in monitoring the progress
and extent of blackouts.

The traditional way to address cascading failure
in electric power transmission systems is to design
and operate the system so that a chosen subset of se-
vere initial failures do not cause subsequent failures.
This approach tends to prevent some cascading fail-
ures, but other cascading failures can still occur. We
suggest that one complementary approach would be
to monitor and limit the subsequent propagation of
a cascade of failures after the initial disturbance. To
do this, it would be very useful to be able to quantify
how much failures propagate. In this article, we pro-
pose an estimator of the mean failure propagation λ

that is based on a branching process model of cas-
cading failure. The estimator should work when the
number of components that can fail “saturates” at a
given maximum number of components. The reasons
for modeling saturation are discussed in Section 2.2.

To develop methods toward quantifying the risk
of cascading failure, we need to predict the prob-
ability distribution of the number of transmission
line failures as one measure of the distribution of
blackout size. We start with cascading failure data
produced by the OPA2 simulation of power sys-
tem transmission line overloads described in Sec-
tion 4 and Reference 7. These cascading failure data

2 OPA stands for Oak Ridge National Laboratory, Power Systems
Engineering Research Center at the University of Wisconsin, and
the University of Alaska and indicates the institutions collaborat-
ing to devise the simulation.

describe how many simulated lines trip in succes-
sive stages of each cascade. We show how to es-
timate the mean propagation λ and the mean ini-
tial line failures θ from these cascading failure data.
These estimated quantities are the parameters of a
Galton-Watson branching process model of cascad-
ing failure, and substituting the estimates for these
parameters in an analytic formula predicts the prob-
ability distribution of the number of transmission line
failures. We initially test this combined use of the
estimates and the branching process model to pre-
dict the probability distribution of the number of
transmission line failures. The testing compares this
predicted probability distribution with the empirical
probability distribution of the number of transmis-
sion line failures produced by exhaustively running
the OPA simulation.

Branching process models are an obvious possi-
ble choice of stochastic model to capture the gross
features of cascading blackouts because they have
been developed and applied to other cascading pro-
cesses such as genealogy, initial spread of epidemics
and cosmic rays,(8) and avalanches in idealized sand-
piles.(9) Thus estimation of the mean propagation λ is
already established in cascading failure in other ap-
plications.(10) The first suggestion to apply branch-
ing processes to cascading failure in blackouts is in
Reference 11 and subsequent applications appear in
References 12–17. One difference between stochas-
tic modeling with branching processes of cascading
in blackouts and cascading in the previous applica-
tions is the many and complicated mechanisms by
which failures propagate in blackouts. In this arti-
cle, we test the branching process modeling of cas-
cading with data produced by a simulation of one
of these mechanisms, namely, cascading transmission
line overloads. Similar testing with data produced by
simulations of other blackout mechanisms or combi-
nations of mechanisms is future work.

We now discuss the evidence that branching
processes can be useful approximations to some
of the gross features of cascading blackouts. The
idealized probabilistic model of cascading failure(6)

describes a general cascading process in which
component failures weaken and further load the
system so that subsequent failures are more likely.
This cascading failure model and variants of it can
be well approximated by a Galton-Watson branch-
ing process with each failure giving rise to a Pois-
son distribution of failures in the next stage.(11,18)

Moreover, some features of this cascading failure
model are consistent with results from cascading
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failure simulations.(7,12,19−21) All of these models can
show criticality and power-law regions in the distri-
bution of failure sizes or blackout sizes consistent
with North American data(22,23) and data from other
countries.(24) The distribution of the number of high-
voltage transmission lines lost in North American
contingencies from 1965 to 1985(25) also has a heavy
tail distribution that is fairly close to a power law.(26)

The first work fitting or testing branching process
models with observed blackout data is in References
13 and 16.

Initial work toward this article appeared in parts
of the conference article(14) and Wierzbicki’s Mas-
ter’s thesis.(27) The new contributions of this article
relative to this initial work are to introduce a new es-
timator for the propagation of failures, prove that the
new estimator is unbiased and examine its variance,
analyze the number of cascades needed for statistical
accuracy, and substantially rework and rewrite the
expression of the ideas. Some of these contributions
are also described in parts of Kim’s Master’s thesis(28)

and summarized in the conference paper.(29) This ar-
ticle also includes new processing of the results on
the IEEE 118 bus test system and new results on the
IEEE 300 bus test system.

In a Galton-Watson branching process,(8,30) the
failures are produced in stages. The process starts
with Z0 failures at stage zero to represent the initial
disturbance. The failures in each stage independently
produce further failures in the next stage according
to a probability distribution called the offspring dis-
tribution. The offspring distribution has mean λ. That
is, each failure in each stage propagates to produce
an average of λ failures in the next stage.

The eventual behavior of the branching process
is governed by the mean propagation λ. In the sub-
critical case of λ < 1, the failures will die out (i.e.,
reach and remain at zero failures at some stage) and
the mean number of failures in each stage decreases
exponentially. In the supercritical case of λ > 1, al-
though it is possible for the process to die out, often
the failures increase exponentially until the system
size or other saturation effects are encountered.

At the critical case of λ = 1, the branching pro-
cess has a power-law region of the probability dis-
tribution of number of failures with exponent −1.5
(Otter’s theorem(8)). A corresponding power-law re-
gion can be observed in the distributions of num-
ber of failures in the cascading failure model(6) and
in the distribution of blackout size in blackout mod-
els(7,20,21) when the system has a particular loading
called the critical loading. The implications of the

power-law region are that the risk of large black-
outs is comparable to or even exceeding the risk of
small blackouts (Section 2 and Reference (31)) (here
blackout risk is the product of blackout probabil-
ity and blackout cost). This observation justifies the
study of large blackouts; an exponential tail in the
distribution of blackout size would imply that large
blackouts have negligible risk and that a risk-based
analysis would ignore large blackouts. Moreover, at
criticality the mean blackout size starts to increase
more rapidly and above criticality there is an increas-
ing risk of large blackouts. The terminology of crit-
icality comes from statistical physics and does not,
at this stage of knowledge about blackout risk, nec-
essarily imply improper power system operation. In-
deed, there is some evidence that power systems may
organize themselves to near critical loading in re-
sponse to strong societal forces balancing economic
use of the transmission system and reliability.(22,32)

One requirement for the failure data in order to
estimate λ is that the failures be grouped into stages.
The estimator we propose depends on the number
of failures in the stages and particularly on the total
number of failures and the number of failures in the
initial and final stages. Many cascading failure sim-
ulations naturally produce failures in stages as the
simulation iterates. However, if the method is ap-
plied to real data, the problem of grouping the data
into stages must be addressed. References 13 and 16
use simple methods of grouping failures according to
their timing.

One direct way to estimate the probability dis-
tribution of number of line failures is simply to run
the simulation or record real blackout data until suf-
ficient data are accumulated to estimate the empir-
ical probability distribution. This is straightforward
but requires a large number of simulations or an im-
practically long observation time. If the distribution
of line failures is near criticality and therefore has a
power-law character, the empirical probability distri-
bution requires many observations to determine its
form for the larger blackouts. We discuss the effi-
ciency of predicting the distribution of the number
of line failures via the branching process model com-
pared to estimating the distribution empirically in
Section 6.

More generally, if high-level probabilistic mod-
els, such as branching processes, can be established
for cascading failure of electric power transmis-
sion systems, this would allow efficient estimation
of the model parameters and hence better estima-
tion of blackout risk. These possibilities are further
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indicated in Reference 33. One general approach
would start with the probability distribution of the
size of initial failures, which can be evaluated for sev-
eral measures of size using conventional risk analy-
sis, and then would determine the extent to which
these initial failures propagate in a cascading pro-
cess to a more widespread blackout. This amounts
to estimating the probability distribution of the cas-
cading blackout size for various measures of black-
out size. The probability distribution of the cascading
blackout size could then be combined with estimates
of blackout cost to estimate the probability distribu-
tion of blackout risk. Moreover, some of the model
parameters, such as the mean propagation λ consid-
ered in this article, could give insight into the cascad-
ing process and be useful in monitoring real or simu-
lated power systems. For example, mean propagation
λ could be a measure of system resilience to cascad-
ing and changes in λ over time could be monitored
similarly to the other blackout statistics analyzed in
Reference 34.

In summary, the goals of the article are to use a
Galton-Watson branching process model of cascad-
ing failure and failure data produced by the OPA
simulation of cascading transmission line overloads
to:

1. Propose and analyze a statistical estimator of
mean failure propagation λ that works in the
presence of saturation.

2. Use estimates of initial failures and λ and the
branching process model to predict the prob-
ability distribution of the number of transmis-
sion line failures and test these predicted dis-
tributions by comparing them with empirical
distributions produced by the OPA simula-
tion.

3. Evaluate the accuracy and reduced amount of
data needed when using the estimators and
branching process model to predict the prob-
ability distribution of the number of transmis-
sion line failures.

2. BRANCHING PROCESS
WITH SATURATION

This section describes the branching process
model used in this article.

2.1. Galton-Watson Branching Process

Suppose that there are N identical components
and all components are initially unfailed. Component

failures occur in stages, with Zn the number of fail-
ures in stage n and Yn the total number of failures up
to and including stage n:

Yn = Z0 + Z1 + Z2 + · · · + Zn.

The process saturates when S ≤ N components fail.
That is, if S components fail, the cascading process
stops and there are no further failures.

There are Z0 initial failures, where Z0 has a Pois-
son distribution with parameter θ that is conditioned
on a nonzero number of failures and has saturation
at S failures:

P[Z0 = r ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−θ

1 − e−θ

θ r

r !
; 1 ≤ r < S

e−θ

1 − e−θ

∞∑
a=S

θa

a!
; r = S.

(1)

Each of the Zn failures in stage n independently
produces a further number of failures in stage n + 1
according to a Poisson distribution with mean λ, ex-
cept that if the total number of failures exceeds S,
then the total number of failures is limited to S. That
is, the jth failure in stage n produces Z[ j]

n+1 failures in
stage n + 1 according to the Poisson distribution and
the total number of failures in stage n + 1 is:

Zn+1 = min
{

Z [1]
n+1 + Z [2]

n+1 + · · · + Z [Zn]
n+1 , S − Yn

}
,

where Z [1]
n+1, Z [2]

n+1, . . . , Z [Zn]
n+1 are independent. (A dif-

ferent form of saturation is described in References
11 and 12). The intent of the modeling with the
branching process is not that each failure in each
stage in some sense causes failures in the next stage;
the branching process simply produces random num-
bers of failures in each stage that can statistically
match the outcome of cascading processes.

We are interested in the total number of failures
conditioned on a nonzero number of failures and this
is distributed according to:

P[Y = r ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ(rλ + θ)r−1 e−rλ−θ

r !(1 − e−θ )
; 1 ≤ r < S,

1 −
S−1∑
s=1

θ(sλ + θ)s−1 e−sλ−θ

s!(1 − e−θ )
; r = S.

(2)

If there is no saturation (S = ∞) and λ < 1, then
Equation (2) reduces to the generalized Poisson dis-
tribution(35,36) conditioned on nonzero failures:

P[Y = r ] = θ(rλ + θ)r−1 e−rλ−θ

r !(1 − e−θ )
; 1 ≤ r,
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and the mean value of Y reduces to:

EY = θ

(1 − λ)(1 − e−θ )
.

2.2. Saturation

There are several reasons for modeling satura-
tion as described above so that there is a maximum
of S components failed. Since there are always a fi-
nite number of components N, and S ≤ N, satura-
tion prevents more than N components failing. In the
absence of saturation, there is a positive probability
of an infinite number of components failing in the
supercritical case of λ > 1. Thus, the saturation pre-
vents nonphysical outcomes and allows the theory to
apply to the supercritical case λ > 1.

Saturation with S < N before all the components
fail is a plausible effect in real blackouts that is not
established or understood. Many observed cascading
blackouts do not proceed to the entire interconnec-
tion blacking out. This may be due to the rarity of
the largest blackouts or may be due to inhibition ef-
fects such as load shedding relieving system stress, or
successful islanding in which the power system sep-
arates into disconnected portions. In any case, it is
plausible that when cascading failure proceeds be-
yond a certain number of components, the cascad-
ing process will change its form due to the extreme
degradation of the network and the modeling used
for the initial part of the cascade will no longer be
applicable. The methods of this article will apply if
S is chosen to be this number of components. Defin-
ing the range of applicability of the cascading failure
model in terms of the number of components failed
using S is more plausible than defining it in terms of
the number of stages of cascading.

Even if the saturation effects turn out in prac-
tice to be negligible in larger power networks (tens of
thousands of nodes), much of the ongoing research
on power system blackouts simulates much smaller
power system networks with only hundreds of nodes,
for pragmatic reasons. Some saturation effects have
been observed in simulations of smaller power sys-
tem networks(12) and saturation is one way to explain
criticality phenomena observed in blackout simula-
tions.(7,20,21)

In summary, at the present state of knowledge
about cascading failure blackouts, there are several
motivations and possible interpretations for model-
ing saturation. The methods of this article allow for
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Fig. 1. Log–log plot of probability distribution of total number of
failures Y in branching process model with saturation at S = 1,000
failures for three values of propagation λ. The distribution has an
approximate power-law region at criticality when λ = 1. The prob-
ability of 1,000 failures is 0.025 for λ = 1, and 0.797 for the super-
critical case λ = 2.

saturation at S components failed and we avoid de-
scribing the cascading process after S components
have failed and only estimate the propagation of fail-
ures before saturation is encountered.

2.3. Behavior of Branching Model

If the parameters θ and λ can be estimated,
then the saturating branching process predicts the
probability distribution of total number of compo-
nents failed according to Equation (2). This subsec-
tion briefly illustrates the qualitative behavior of the
probability distribution of total number of compo-
nents failed.

Assuming a mean initial failure of one (θ = 1),
Fig. 1 shows the probability distributions obtained
from the saturating branching process for S = N =
1,000 and three values of λ. For subcritical λ = 0.1,
well below 1, the probability of a large number near
S of failures is exponentially small. The probability of
exactly S failures is also very small. As λ increases in
the subcritical range λ < 1, the mechanism by which
there develops a significant probability of large num-
ber of failures near S is that the power-law region
extends toward S failures.(12) For near critical λ ≈ 1,
there is a power-law region extending to S failures.
For supercritical λ = 2, there is an exponential tail.
This again implies that the probability of large num-
ber of failures <S is exponentially small. However,
there is a significant probability of exactly S failures
that increases with λ.



Branching Process Estimators of Cascading 655

3. ESTIMATING BRANCHING
PROCESS PARAMETERS

3.1. Cascading Failure Simulation Data

Following the notation of Dobson et al.,(14) we
suppose that the cascading failure simulation pro-
duces Z0 > 0 initial failures in stage 0 and then
iterates to produce further numbers of failures
Z1, Z2, Z3, . . . in stages 1, 2, 3, . . . , respectively. The
assumption of Z0 > 0 implies that all statistics are
conditioned on the start of a cascade. The simulation
is run K times to produce K independent realizations
of the cascade. The failures in the kth run are written
as Z(k)

0 , Z(k)
1 , Z(k)

2 , Z(k)
3 , . . . . The simulation results

can be tabulated as follows:

Stage 0 Stage 1 Stage 2 Stage 3 · · ·
Run 1 Z(1)

0 Z(1)
1 Z(1)

2 Z(1)
3 · · ·

Run 2 Z(2)
0 Z(2)

1 Z(2)
2 Z(2)

3 · · ·
Run 3 Z(3)

0 Z(3)
1 Z(3)

2 Z(3)
3 · · ·

. . . . .

. . . . .

Run K Z(K)
0 Z(K)

1 Z(K)
2 Z(K)

3 · · ·

(3)

Define the cumulative number of failures in run k up
to and including stage n as:

Y(k)
n = Z (k)

0 + Z (k)
1 + Z (k)

2 + · · · + Z (k)
n .

3.2. Standard Propagation Estimator λ̂n

The standard Harris estimator λ̂n of the offspring
mean is:

λ̂n =

K∑
k=1

(
Y(k)

n − Z (k)
0

)
K∑

k=1

Y (k)
n−1

λ̂n uses a fixed number of stages n for each run.
If there is no saturation, then λ̂n has some good

statistical properties. In particular, λ̂n is a max-
imum likelihood estimator,(10,37,38) and a strongly
consistent and asymptotically unbiased estimate of
λ as K → ∞.(39) Moreover, using the approach of
Yanev,(39) λ̂n has an asymptotically normal distribu-
tion with variance:

σ 2(λn) = λ(1 − λ)(1 − e−θ )
K(1 − λn)θ

. (4)

However, if there is saturation, then λ̂n becomes
biased and underestimates λ as K → ∞. This asymp-
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Fig. 2. Bias of estimator λ̂s (solid line close to horizontal axis)
and bias of standard estimator λ̂n (dashed line) plotted against
λ from saturating branching process with θ = 1 and saturation
S = 20. The bias is estimated from 1,000 samples of the estimator
for K = 50 nonzero cascades.

totic bias is proved in the Appendix. The bias arises
because stages of the branching process that en-
counter saturation usually have fewer failures. The
bias of λ̂n is illustrated in Fig. 2 by generating data
from the saturating branching process and evaluating
the sample mean of λ̂n for a range of values of λ.

The next subsection proposes a modified estima-
tor with no asymptotic bias.

3.3. Propagation Estimator λ̂s that Accounts
for Saturation

Each run of the simulation has a stage at which
the number of failures is zero and remains zero for
all subsequent stages, either because the cascade dies
out, or the saturating number S of components have
failed. Define:

s(k, S) = max
{

n
∣∣Y (k)

n < S and Z (k)
n−1 > 0

}
.

Then s(k, S) is either the first stage at which there
are zero failures or the last stage before a total of S
failures.

We define the estimator of λ as:

λ̂s =

K∑
k=1

(
Z (k)

1 + Z (k)
2 + · · · + Z (k)

s(k,S)

)
K∑

k=1

(
Z (k)

0 + Z (k)
1 + · · · + Z (k)

s(k,S−1)−1

)

=

K∑
k=1

(
Y (k)

s(k,S) − Z (k)
0

)
K∑

k=1

Y (k)
s(k,S−1)−1

.
(5)
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λ̂s only uses information from stages before satura-
tion.

In the Appendix, we prove that λ̂s is strongly
consistent, asymptotically unbiased, and normal as
K → ∞. The bias of λ̂s is illustrated in Fig. 2 for
K = 50 nonzero cascades by generating data from
the saturating branching process and evaluating the
sample mean of λ̂s . For small λ, λ̂s and λ̂n have al-
most the same bias because it is likely that cascades
die out before reaching saturation. The Appendix
also derives the variance of λ̂s in the subcritical case
with no saturation and gives some numerical results
for the bias and variance of λ̂s .

3.4. Estimator θ̂ of Mean Initial Failures

K samples of the initial failures are given by
Z (1)

0 , Z (2)
0 , . . . , Z (K)

0 . Let the sample mean of the ini-
tial failures be:

Z0 = 1
K

K∑
k=1

Z(k)
0 .

Then, neglecting saturation, both maximum likeli-
hood and method of moments estimation of θ in
Equation (1) yield an estimate θ̂ satisfying:

Z0 = g(̂θ) = θ̂

1 − e−θ̂
. (6)

(Accounting for saturation makes negligible differ-
ence to θ̂ for 0 ≤ θ ≤ 10 and S ≥ 20.) The variance of
Z0 is, neglecting saturation:

σ 2(Z0) = σ 2(Z0)
K

= θ(1 − e−θ − θe−θ )
K(1 − e−θ )2

and hence, linearizing Equation (6), the variance of θ̂

is:

σ 2(̂θ) ≈
(

d(g−1)

dZ0

)2

σ 2(Z0) = θ(1 − e−θ )2

K(1 − e−θ − θe−θ )
.

(7)

4. OPA SIMULATION OF CASCADING
LINE FAILURES

The OPA simulation represents probabilistic
cascading line failures in a power transmission net-
work and is used to produce statistics such as the
probability distribution of the number of line fail-
ures. This section summarizes the OPA simulation;
for details see Reference 7 and for a larger context

discussing cascading failure models in electric power
systems see Reference 24.

At some network nodes, generators supply elec-
tric power that flows in the transmission lines accord-
ing to circuit laws to substations at load nodes. The
OPA model represents transmission lines, loads, and
generators and computes the network power flows
with the usual “DC load flow” approximation.(40)

Each simulation run starts from a solved base case
solution for the power flows and generation and
loads that satisfy circuit laws and constraints. To ob-
tain diversity in the runs, the system loads at the
start of each run are varied randomly about their
mean values by multiplying by a factor uniformly dis-
tributed in [2 − γ, γ ]. γ determines the load variabil-
ity. It is necessary and realistic to have some random
variability in the model so that a range of possible
cascades are simulated. γ is further discussed in Ref-
erences 7 and 32. Initial line failures are generated
randomly by assuming that each line can fail in-
dependently with probability p0. This crudely mod-
els initial line failures due to a variety of causes
including lightning, wild fires, bad weather, and
operational errors. Whenever a line fails, the gener-
ation and load is redispatched to satisfy the trans-
mission line power flow constraints and generation
constraints using standard linear programming meth-
ods (since there is more generation of power than
the load requires, one must choose how to select and
optimize the generation that is used to exactly bal-
ance the load in the network). The optimization cost
function is weighted to ensure that load shedding is
avoided where possible. If any lines were overloaded
during the optimization, then these lines are lines
that are likely to have experienced high stress, and
each of these lines fails independently with probabil-
ity p1. The lines that have failed (if any), and other di-
agnostic data are recorded. The process of redispatch
and testing for line failures is iterated until there are
no more failures. The cascade of line failures contin-
ues in this manner until no further lines fail. Thus,
the OPA simulation produces probabilistic cascading
line failures in stages resulting from a random initial
set of line failures.

The OPA model neglects many of the cascad-
ing processes in blackouts and the timing of failures.
However, the OPA model does represent in a sim-
plified way a dynamical process of cascading trans-
mission line overloads and failures that is consistent
with some basic network and operational con-
straints. In particular, the OPA simulation rep-
resents the simplified physics of power flow in
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the network of transmission lines as the lines
successively reach their limits, probabilistically rep-
resents the tripping of the lines that reach their lim-
its, and has a basic representation of generator redis-
patch and load shedding. We emphasize that OPA is
much more complicated and entirely different than
the branching process model that we are comparing
it with. At the same time, we also emphasize that the
OPA model is a highly simplified model of only one
of the physical processes in power system cascading
blackouts. Testing the branching process with OPA
results does find out whether the branching process
can reproduce one physical mechanism for cascading
failure in an important application. But this testing
does not establish that branching processes are gen-
erally applicable to other cascading failure processes
in blackouts or in other applications.

5. RESULTS: PREDICTING THE
DISTRIBUTION OF LINE FAILURES

We test the use of the estimators λ̂s and θ̂ and
the branching process model (Equation (2)) in pre-
dicting the distribution of line failures on cascading
line outage data produced by the OPA simulation.

For each case considered, OPA was run so as
to produce at least 5,000 cascading failures with a
nonzero number of line failures. These cascades yield
line failure data in the form of Equation (3). All the
statistics are conditioned on a nonzero number of
line failures. Then, λ̂s and θ̂ are obtained using Equa-
tions (5) and (6). The number of cascades is large
enough that the standard deviations of λ̂s and θ̂ are
negligible. (The influence on statistical accuracy of
the small number of cascades desirable in practice is
evaluated in the Appendix.)

The first three cases used the IEEE 118 node
test system(41) at average load levels of 0.9, 1.0, and
1.3 times the base case loading. (The OPA parame-
ters are γ = 1.67, p0 = 0.0001, and p1 = 1. These are
typical values used in previous work and are more
fully explained in Reference 7.) Since no saturation
effects are observed in these results, we used a high-
saturation value of S = 100 in Equation (5). The re-
sults are shown in Figs. 3–5 and Table I. The matches
in Figs. 3–5 are very good. Fig. 5 shows a case with
a large initial disturbance (the mean number of lines
initially failed is estimated as θ̂ ≈ 12).

The last four cases use the IEEE 300 node test
system(41) at average load levels of 0.9, 1.0, 1.05, and
1.25 times the base case loading. (The OPA param-
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Fig. 3. IEEE 118 node test system with loading factor 0.9. Prob-
ability distribution of line outages estimated with branching pro-
cess (solid line) compared with OPA empirical distribution (dots).
Note the log–log scales. Reprinted with permission from Refer-
ence 29. C© 2007 IEEE.
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Fig. 4. IEEE 118 node test system with loading factor 1.0. Prob-
ability distribution of line outages estimated with branching pro-
cess (solid line) compared with OPA empirical distribution (dots).
Reprinted with permission from Reference 29. C© 2007 IEEE.
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Fig. 5. IEEE 118 node test system with loading factor 1.3. Prob-
ability distribution of line outages estimated with branching pro-
cess (solid line) compared with OPA empirical distribution (dots).
Reprinted with permission from Reference 29. C© 2007 IEEE.
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Table I. Estimators θ̂ and λ̂s for Simulation Cases

Power Loading
System Factor θ̂ λ̂s

IEEE 118 node 0.9 1.10 0.19
IEEE 118 node 1.0 1.66 0.41
IEEE 118 node 1.3 12.2 0.44
IEEE 300 node 0.9 0.52 0.15
IEEE 300 node 1.0 0.81 0.26
IEEE 300 node 1.05 1.30 0.47
IEEE 300 node 1.25 4.56 0.65
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Fig. 6. IEEE 300 node test system with loading factor 0.9. Proba-
bility distribution of line outages estimated with branching process
(solid line) compared with OPA empirical distribution (dots).

eters3 are γ = 1.67, p0 = 0.001, and p1 = 0.15, and
Equation (5) is evaluated with saturation S = 100.)
The results are shown in Figs. 6–9 and Table I. The
results in Figs. 6–8 show a good match. The highly
stressed case of 1.25 times the base case loading in
Fig. 9 shows a much poorer match, and we suspect
that this is caused by additional lines being forced to
trip in the first few stages.

The results show good predictions of the proba-
bility distributions of the number of line failures for
all cases except for a highly stressed case of the IEEE
300 node test network. For further results on an arti-
ficial 190 node test network, see Reference 14.

Computing the empirical distributions is time
consuming: it takes several days to compute the 5,000

3 The ratios of each line flow limit to its base case line flow (not
specified in the IEEE data) were determined by running OPA
with self-organization that selectively upgrades lines in response
to their participation in blackouts,(32) starting from an initial
guess of the line limits. This procedure results in a coordinated
set of line limits.
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Fig. 7. IEEE 300 node test system with loading factor 1.0. Proba-
bility distribution of line outages estimated with branching process
(solid line) compared with OPA empirical distribution (dots).

1 2 5 10 20 50 100

0.500

0.100

0.050

0.010

0.005

0.001

number of lines failed

p
r
o
b
a
b
i
l
i
t
y

Fig. 8. IEEE 300 node test system with loading factor 1.05. Proba-
bility distribution of line outages estimated with branching process
(solid line) compared with OPA empirical distribution (dots).
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Fig. 9. IEEE 300 node test system with loading factor 1.25. Proba-
bility distribution of line outages estimated with branching process
(solid line) compared with OPA empirical distribution (dots).



Branching Process Estimators of Cascading 659

nonzero cascades for each of the 300 bus system
cases. This reinforces the need for faster methods
such as the estimation via a branching process model
developed in this article.

6. NUMBER OF CASCADES VERSUS
ACCURACY

This section estimates how many more cascades
are needed to estimate the probability distribution of
the total number of failures empirically than via the
branching process model, assuming that the variance
of the estimates is the same. The case considered is
the total number of failures less than saturation (1 ≤
r < S), large S, and λ < 1.

For 1 ≤ r < S, rewrite the probability distribu-
tion of the total number of failures from Equation
(2) as:

p(r, θ, λ) = P[Y = r ] = θ(rλ + θ)r−1 e−rλ−θ

r !(1 − e−θ )
.

(8)

The empirical estimate p̂(r, θ, λ) from M cascades is
the number of cascades with r total failures divided
by M. The empirical estimate p̂(r, θ, λ) has variance:

σ 2( p̂) = p(r, θ, λ)[1 − p(r, θ, λ)]
M

. (9)

The estimate of the distribution p(r, θ, λ) from K
cascades via the branching process is p(r, θ̂ , λ̂s). The
asymptotic variance of p(r, θ̂ , λ̂s) can be obtained
by linearizing Equation (8), approximating σ 2(̂λs) by
σ 2(̂λ∞) for large saturation S, and substituting from
Equation (A.2) and (7) to obtain:

σ 2[p(r, θ̂ , λ̂s)] ≈
(

∂p
∂λ

)2

σ 2(̂λs) +
(

∂p
∂θ

)2

σ 2(̂θ)

≈
(

∂p
∂λ

)2
λ(1 − λ)(1 − e−θ )

Kθ

+
(

∂p
∂θ

)2
θ(1 − e−θ )2

K(1 − e−θ − θe−θ )
. (10)

The use of the asymptotic variance (Equation (A.2))
requires large S and λ < 1.

Equating the variances of Equations (9) and (10)
so that σ 2( p̂) = σ 2[p(r, θ̂ , λ̂s)] bounds the ratio of the
number of cascades M needed to estimate p̂ and the
number of cascades K needed to estimate p(r, θ̂ , λ̂s).

M
K

� B ,

where

B = p(r, θ, λ)[1 − p(r, θ, λ)](
∂p
∂λ

)2
λ(1 − λ)(1 − e−θ )

θ
+

(
∂p
∂θ

)2
θ(1 − e−θ )2

(1 − e−θ − θe−θ )

.

(11)

Evaluating Equation (11) numerically gives the min-
imum M/K as a function of r, θ , and λ. For exam-
ple, evaluating Equation (11) for θ = 1 and 0 < λ < 1
shows that B > 10 for r ≥ 8 and B > 100 for r ≥ 55.
Evaluating Equation (11) for θ = 5 and 0 < λ < 1
shows that B > 10 for r ≥ 11 and B > 100 for r ≥ 70.
Evaluating Equation (11) for θ = 10 and 0 < λ < 1
shows that B > 10 for r 	= 6 and B > 100 for r ≥ 82.
These results indicate that the estimation of p(r, θ, λ)
via the branching process compared to the empirical
estimation of p(r, θ, λ) requires one or two orders of
magnitude fewer cascades for moderate or large r to
achieve the same variance.

7. CONCLUSION

In this article, we approximate cascading failure
by a Galton-Watson branching process with satura-
tion in order to propose a method of quantifying the
mean propagation of failures λ. The proposed esti-
mator λ̂s for λ requires multiple observations of cas-
cades with the initial and final failures grouped in
stages. Unlike the standard Harris estimator of λ,
the estimator λ̂s has zero asymptotic bias in the pres-
ence of saturation modeled by a maximum number
of components failed.

The branching process model gives an analytic
formula to predict the distribution of the total num-
ber of failures from an estimate θ̂ of the mean initial
failures and the estimate λ̂s of the mean propagation.
We test this prediction on cascading failure data from
a simulation of cascading transmission line outages in
standard IEEE electric power system test networks
of 118 and 300 nodes. The predicted distribution is
close to the empirical distribution of total number of
line outages for all cases except for a highly stressed
case on the 300 node test system. That is, except for
this case, the joint use of the estimators θ̂ , λ̂s , and the
branching process model is effective in predicting the
distribution of the total number of line outages.

Since the simulation used for testing the branch-
ing process approximately models only one of the
physical mechanisms involved in cascading black-
outs, we are not able at present to draw general
conclusions about the extent to which branching
processes capture other mechanisms of cascading
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failure in blackouts. However, the results of this
article are sufficiently promising to indicate that
future work testing the branching process model
on other cascading failure simulations or observed
blackout data would be worthwhile. For example, the
branching process model could be tested on data gen-
erated by more detailed cascading failure simulations
such as the Manchester model(42) or TRELSS.(43)

The approach could also be tested on cascading fail-
ure data for large networked infrastructures or in
interacting infrastructures. If future testing on sim-
ulated and real data succeeds in establishing branch-
ing process models for cascading failure, we note that
the ability to estimate the propagation of failures and
the distribution of failures with a modest number of
observations would expand the opportunities for us-
ing cascading failure simulations to study the effect
of transmission system upgrades on cascading failure
and would be crucial for the practicality of monitor-
ing failures in the power grid to assess the overall risk
of cascading failure.

We estimate the minimum number of cascades
to be simulated in order to get sufficiently accurate
estimates of λ and the probability distribution of the
total number of failures. For example, with satura-
tion at a large number of components, 50 cascades
yield λ̂s with negligible bias and worst-case standard
deviation less than 0.06. Direct empirical estimation
of the distribution of the total number of failures in
the region of a moderate or large number of compo-
nents failed requires one to two orders of magnitude
more cascades than first estimating θ and λ and then
using the branching process model to predict the dis-
tribution of the total number of failures.

ACKNOWLEDGMENTS

We gratefully acknowledge support in part from
NSF Grants ECCS-0606003 and SES-0623985 and
DOE Grant DE-SC0002283. We gratefully acknowl-
edge that this article is an account of work sponsored
in part by the Power Systems Engineering Research
Center (PSERC). Janghoon Kim gratefully acknowl-
edges support in part from scholarships from the
Korean Electric Power Corporation. We gratefully
acknowledge funding provided in part by the Cal-
ifornia Energy Commission, Public Interest Energy
Research Program. This article does not necessarily
represent the views of the Energy Commission, its
employees, or the State of California. It has not been
approved or disapproved by the Energy Commission
nor has the Energy Commission passed upon the ac-
curacy or adequacy of the information.

APPENDIX: BIAS AND VARIANCE OF λ̂s

We continue to assume that the branching pro-
cess has Poisson initial failures with mean θ and a
Poisson offspring distribution with mean λ.

To show that λ̂s is asymptotically unbiased,
rewrite Equation (5) as:

λ̂s =

1
K

K∑
k=1

S−3∑
i=0

Z(k)
i+1 I

[
Y(k)

i+1 < S
]

1
K

K∑
k=1

S−3∑
i=0

Z(k)
i I

[
Y(k)

i+1 < S − 1
] .

Let

w
(k)
i = Z(k)

i+1 I
[
Y(k)

i+1 < S
] − λZ(k)

i I
[
Y(k)

i+1 < S − 1
]
.

Then

λ̂s − λ =

1
K

K∑
k=1

S−3∑
i=0

w
(k)
i

1
K

K∑
k=1

Y(k)
s(k,S−1)−1

. (A.1)

For each k, Y(k)
s(k,S−1)−1 is bounded by S and has fi-

nite mean and variance. Moreover, Y(k)
s(k,S−1)−1, k =

1, 2, . . . , K are independent and the strong law of
large numbers implies that the denominator of Equa-
tion (A.1) tends almost surely to a constant.

Therefore, to prove that E(̂λs − λ) → 0 almost
surely and λ̂s is asymptotically unbiased, it is suffi-
cient to show that Ew

(k)
i = 0 for i = 0, 1, 2, . . . , S − 3.

But Ew
(k)
i = 0 follows from:

E[Zi+1 I(Yi+1 < S)]

= E[E[Zi+1 I[Zi+1 < S − Yi ]|Yi , Zi ]]

= E

[
S−Yi −1∑

m=1

m
(Ziλ)m

m!
e−Zi λ

]

= λE

[
S−Yi −2∑

m=0

Zi
(Ziλ)m

m!
e−Zi λ

]
= λE

[
E[Zi I[Yi + Zi+1 < S − 1]|Yi , Zi ]

]
= λE[Zi I[Yi+1 < S − 1]].

We derive the asymptotic variance of λ̂s in the
subcritical case of λ < 1 and when saturation is ne-
glected by letting S → ∞. When λ < 1, the branch-
ing process dies out with Z(k)

i → 0 as i → ∞ al-
most surely and Y(k)

n → Y(k)
∞ as n → ∞ almost surely.
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Table A1. Bias and Standard Deviation of λ̂s on Saturating
Branching Process with θ = 1

Number Standard
of Runs Saturation Bias Deviation
K S max

0<λ<2
|μ(̂λs) − λ| max

0<λ<2
σ (̂λs)

10 20 0.035 0.28 = 0.87/
√

K
20 20 0.018 0.18 = 0.80/

√
K

50 20 0.008 0.11 = 0.78/
√

K
200 20 0.004 0.055 = 0.77/

√
K

10 100 0.050 0.16 = 0.57/
√

K
20 100 0.027 0.092 = 0.41/

√
K

50 100 0.010 0.057 = 0.40/
√

K
200 100 0.003 0.029 = 0.41/

√
K

Hence, the Harris estimator λ̂n → λ̂∞ as n → ∞,
where:

λ̂∞ =

K∑
k=1

(
Y(k)

∞ − Z(k)
0

)
K∑

k=1

Y(k)
∞

.

Moreover, for λ < 1, our estimator λ̂s → λ̂∞ as S →
∞. From Equation (4), the variance of λ̂∞ as K → ∞
is:

σ 2(̂λ∞) = λ(1 − λ)(1 − e−θ )
Kθ

. (A.2)

Thus, Equation (A.2) gives the asymptotic variance
of λ̂s as K → ∞ and S → ∞ for λ < 1. For example,
for θ = 1, the maximum asymptotic variance occurs
for λ = 0.5 and the asymptotic standard deviation
from Equation (A.2) becomes σ (̂λ∞) = 0.40/

√
K.

To augment these asymptotic results, the estima-
tor λ̂s is tested on the saturating branching process
with θ = 1 and 0 < λ < 2. The worst-case bias and
standard deviation of λ̂s are determined numerically
from 1,000 cascades with nonzero failures and the re-
sults are shown in Table A1. The asymptotic variance
(Equation (A.2)) and Table A1 can be used to esti-
mate the number of cascades K needed to obtain a
given standard deviation in λ̂s .

The proof that the standard estimator λ̂n is
asymptotically unbiased when there is no satura-
tion relies on the fact that E[Zi+1] = λE[Zi ].(39)

When there is saturation, λ̂n asymptotically underes-
timates λ because the following shows that E[Zi+1] <

λE[Zi ].

E[Zi+1] = E[E[Zi+1|Yi , Zi ]]

= E

[
S−Yi −1∑

r=1

r
(Ziλ)r

r !
e−Zi λ

+ (S − Yi )
∞∑

r=S−Yi

(Ziλ)r

r !
e−Zi λ

]

= E

[ ∞∑
r=1

r
(Ziλ)r

r !
e−Zi λ

−
∞∑

r=S−Yi

(r − S + Yi )
(Ziλ)r

r !
e−Zi λ

]

< λE

[
Zi

∞∑
r=0

(Ziλ)r

r !
e−Zi λ

]
= λE[Zi ].
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