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Abstract

Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply
increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being
identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles
of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles
in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic his-
tory of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different
branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci.
Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression.
From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at
low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored
them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to mod-
ern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.

Keywords: adaptive introgression; ancient DNA; genetic hitchhiking

Introduction
Within the last decade, population genomic studies have
revealed many cases of hybridization that have led to the intro-
gression of genetic material between diverged populations. While
these genetic introductions are often ecologically or developmen-
tally maladaptive, a growing number of studies are providing evi-
dence of adaptive introgression, whereby natural selection
favored the spread of introgressed alleles (e.g., Whitney et al.
2006; The Heliconius Genome Consortium 2012; Jones et al. 2018;
Oziolor et al. 2019). These introgressed alleles likely facilitated ad-
aptation to new or changing environments, highlighting admix-
ture as a potentially important source of genetic variation for
fitness.

Patterns of archaic introgression in modern humans offer
some of the most compelling examples of adaptive introgression
(reviewed in Racimo et al. 2015). When a subset of modern
humans spread out of Africa, likely in the past hundred thousand
years, they encountered a broad range of novel environments, in-
cluding reduced UV exposure, new pathogen pressures, and
colder climates. At roughly the same time that modern humans
outside of Africa experienced new conditions, they were also in-
terbreeding with Neanderthals, who had been living in
and adapting to these Eurasian environments for hundreds of

thousands of years (Hublin 2009). The early-generation hybrids of
Neanderthals and modern humans may have had low fitness
due to the accumulation of weakly deleterious alleles in
Neanderthals, who had a small effective population size. The low
fitness of these early hybrids, combined with the greater efficacy
of purifying selection in modern humans, led to widespread se-
lection against deleterious Neanderthal alleles and linked
Neanderthal variation (Harris and Nielsen 2016; Juric et al. 2016).
As a result, Neanderthal alleles segregate at around 1–3% fre-
quency genome-wide in present-day modern humans, with a de-
pletion in gene rich, regulatory, and low-recombination regions
(Sankararaman et al. 2014; Schumer et al. 2018; Steinrücken et al.
2018; Petr et al. 2019; Telis et al. 2020).

While, on average, Neanderthal-derived alleles have been se-
lected against, a few alleles persist at high frequency in present-
day non-African populations and reflect putative cases of adap-
tive introgression (Abi-Rached et al. 2011; Khrameeva et al. 2014;
Sankararaman et al. 2014; Vernot and Akey 2014; Dannemann
et al. 2016; Deschamps et al. 2016; Gittelman et al. 2016; Quach
et al. 2016; Sams et al. 2016; Racimo et al. 2017; Jagoda et al. 2018;
Setter et al. 2020). These alleles have been identified based on the
characteristic patterns left behind by adaptive introgression,
namely high haplotype similarity between Eurasian modern
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humans and Neanderthals, and the deep divergence of haplo-
types within modern human populations. It appears that most
sweeps on Neanderthal-introgressed alleles were partial, with
selected alleles only reaching frequencies around 30–60%.
Thus, dips in genetic diversity due to adaptive Neanderthal intro-
gression are dampened relative to hard, full sweeps on de novo
mutations.

Some of the selected Neanderthal alleles contribute to traits
that may have been under selection during modern human ex-
pansion out of Africa, such as immunity, skin pigmentation, and
metabolism (Abi-Rached et al. 2011; Khrameeva et al. 2014;
Sankararaman et al. 2014; Vernot and Akey 2014; Dannemann
et al. 2016; Gittelman et al. 2016; Quach et al. 2016; Racimo et al.
2017; Jagoda et al. 2018). Because modern humans mated with
Neanderthals around the same time that they were exposed to
new environments, a natural assumption is that Neanderthal
variation immediately facilitated modern human adaptation.
Alternatively, some of the selected Neanderthal-introgressed
alleles may have contributed to the reservoir of standing genetic
variation that became adaptive much later (Jagoda et al. 2018) as
human populations were exposed to and created further novel
environments. A recent study found evidence of this phenome-
non for a Denisovan haplotype contributing to high-altitude ad-
aptation on the Tibetan Plateau (Zhang et al. 2020), and so
nonimmediate selection on introgressed archaic variation may
be more common than previously thought.

Population genetics offers a number of approaches to date the
timing of selection on alleles. The first broad category of
approaches relies on the hitchhiking signal created in surround-
ing linked variants as the selected alleles sweep up a chunk of
the haplotype on which they arose (or introgressed) (Maynard
Smith and Haigh 1974). Second, ancient DNA now offers an op-
portunity to assess when these selected haplotypes rose in fre-
quency, and the ancient populations in which they first achieved
high frequency. Currently, methods that use ancient DNA to in-
vestigate the temporal history of selection focus on identifying
significant increases in selected allele frequencies over time (e.g.,
Mathieson et al. 2015; Schraiber et al. 2016; Mathieson and
Mathieson 2018). These time series approaches are powerful be-
cause they can provide more direct evidence of selection driving
allele frequency change, however they are limited to characteriz-
ing cases of selection that began after the oldest sampling time
and among sampled populations. For studies of modern human
evolution, we are currently restricted to learning about adapta-
tion in mostly European populations and within the last 10,000
years, long after hybridization with Neanderthals.

Here, we leverage the advantages of both temporal sampling
and patterns of neutral diversity at linked loci (the hitchhiking ef-
fect) to infer the time that Neanderthal-introgressed alleles be-
came adaptive. Our investigation of the hitchhiking effect allows
us to date selection older than the ancient samples, while ancient
populations provide useful reference points closer to the sweep
time. We use coalescent theory to describe patterns of sequence
similarity around a selected site when selection favors intro-
gressed variation at different times since admixture. Our predic-
tions relate sequences among ancient and present-day
populations by incorporating information about their history of
divergence and migration. In addition, we utilize information
from partial sweeps by modeling this hitchhiking effect among
both selected and nonselected haplotypes. Our approach builds
on the model-based inference framework introduced in Lee and
Coop (2017), which connects predicted coalescent histories to
their corresponding probability distribution of population allele

frequencies. Thus, we can distinguish among possible selection
times by analyzing allele frequency data from ancient and pre-
sent-day populations.

By providing the age of selection favoring Neanderthal alleles
in specific regions, we can determine the context within which
Neanderthal alleles facilitated modern human adaptation and in
turn narrow their potential phenotypic contributions. If selection
was immediate, then the Neanderthal variation was useful in the
early Eurasian environments that modern humans experienced,
possibly because Neanderthals had been adapting to those same
conditions for a long period of time. Otherwise, Neanderthal
haplotypes were selected during different time periods and in
different populations. These latter haplotypes are particularly in-
teresting candidates, as they shed light on the similarities and
differences in selection pressures affecting human populations
over space and time. Furthermore, they show that admixture be-
tween closely related species can provide an important source of
standing genetic variation for future adaptation. In this study, we
provide evidence for each of these scenarios in different genomic
regions of adaptive introgression.

We begin by introducing the data that we analyzed, followed
by an intuitive description of the hitchhiking patterns that we
modeled before providing the mathematical details of our model
and inference framework. We then show how our method per-
forms on simulations and its results when applied to candidates
of adaptive Neanderthal introgression.

Distribution of adaptive Neanderthal-
introgressed haplotypes across populations
Choice of population samples
We applied our method to a set of eight population samples: one
archaic (Neanderthals), three present-day modern human, and
four ancient modern human. For the Neanderthal sample we
used the Vindija 33.19 Neanderthal (n¼ 2, for two chromosomes
sampled from one individual) because it is high coverage and
most closely related to the introgressing population (Prüfer et al.
2017; Mafessoni et al. 2020). Our results only change slightly
when the high coverage Altai Neanderthal sample is included in
the Neanderthal population, which we discuss later. The present-
day populations are from Phase 3 of the 1000 Genomes Project
(The 1000 Genomes Project Consortium 2015): the Yoruba in
Ibadan, Nigeria (YRI; n¼ 216), Han Chinese from Beijing (CHB;
n¼ 206), and Utah Residents (CEPH) with Northern and Western
European Ancestry (CEU; n¼ 198). We chose ancient populations
based on previous work about their relationships with present-
day populations. We included the West Eurasian Upper
Paleolithic (EurUP; n¼ 12), who are the oldest samples and ba-
sally related to all West Eurasians (mean sampling time
t � 34kya), and three populations known to be ancestral to pre-
sent-day Europeans: the Mesolithic hunter gatherers from west-
ern Europe (WHG; n¼ 66; t � 9kya), the Neolithic Anatolian
Farmers (EF; n¼ 134; t � 7kya), and the Bronze Age Steppe indi-
viduals (Steppe; n¼ 14; t � 5kya). Each population ancestral to
present-day Europeans was composed of samples with �90%
inferred ancestry corresponding to that population. Inferred an-
cestry proportions are from Mathieson et al. (2018)’s supervised
ADMIXTURE analysis using four clusters with fixed membership
corresponding to each of these three ancient populations and
Eastern Hunter Gatherers. See Supplementary File S2 for detailed
information on the ancient samples we analyze. One reason for
taking this set of ancient populations is that our method requires
a known population history, namely the approximate timing and
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admixture proportions among populations, as well as the timing
of divergence among Neanderthal-admixed populations. The pri-
mary admixture graph that we used is shown in Figure 1
(Skoglund et al. 2012; Lazaridis et al. 2014; Allentoft et al. 2015;
Haak et al. 2015; Mathieson et al. 2015; Fu et al. 2016; Lipson et al.
2017; Sikora et al. 2017; Mathieson et al. 2018). We acknowledge
that we took a coarse approach by simplifying human demo-
graphic history to a set of ancestral populations, who themselves
are products of mixtures of the past.

All ancient modern human samples were typed on a 1240k
capture array. Because we needed dense sampling of the neutral
loci surrounding the selected site, we imputed genotypes in the
ancient modern human samples using Beagle 4.1 (Browning and
Browning 2007, 2016). To ensure imputation accuracy, we se-
lected ancient samples for analysis if they had �1� coverage.
This cutoff was chosen because at this point an imputation pro-
cedure very similar to ours can correctly recover around 80–95%
of an ancient sample’s heterozygous sites and preserves proper-
ties of the genotypic data such as samples’ PCA locations relative
to no imputation (Mathieson 2016). To perform the imputation
we followed a procedure similar to that of Mathieson et al. (2015).
At the 1240k sites, we computed genotype likelihoods from read
counts according to binomial likelihoods of these counts and a
small amount of sequencing error. We then ran Beagle twice, first
to impute genotypes at just the 1240k sites using the gl and im-
pute ¼ false arguments, and then to impute the remaining sites
using the gt and impute ¼ true arguments. After each round of
imputation, we removed polymorphic sites with allelic r2 < 0:8
(a measure of imputation accuracy). These intermediate filtering
steps can improve the imputation accuracy of even ultra-low
coverage ancient samples (Hui et al. 2020). To account for some of
the uncertainty in the imputation procedure, we calculated
population allele frequencies by weighting sample genotypes
by their posterior probability, rather than using the maximum
likelihood genotypes. We imputed each population separately,
used the HapMap Project’s genetic map (The International
HapMap Consortium 2007), and used a reference panel consisting
of all East Asian and European 1000 Genomes populations

(as multi-population panels can improve imputation accuracy
in untyped populations; Huang et al. 2009). Finally, to assess the
impact of imputation uncertainty on our results, we also ran
our method on bootstrapped data sets, which we describe after
introducing the method.

Choice of Neanderthal-introgressed regions
We analyzed genomic regions that were previously identified as
putative candidates of adaptive introgression by Racimo et al.
(2017). We chose regions with signals of adaptive introgression in
European populations, as we have more information on their an-
cestral populations to infer the age of selection. We removed any
regions whose introgressed sequences could not be distinguished
from Denisovan ancestry (according to Racimo et al. 2017) and
any regions on the X chromosome. To ensure that we were cap-
turing the full window of potentially selected sites, we extended
the 45 kb windows identified by Racimo et al. (2017) by 2� 10�2

cM (20 kb if the window has a constant per base pair recombina-
tion rate of 10�8) and collapsed those that were overlapping or
directly adjacent. This resulted in 36 distinct regions, listed in
Supplementary Table S2 of Supplementary File S1, out of 50 45 kb
windows with signals of adaptive Neanderthal introgression in
Europeans.

Neanderthal ancestry over time
As a first step toward understanding the temporal history of se-
lection, we investigated levels of Neanderthal ancestry in ancient
and present-day admixed modern human populations within
each of the previously specified regions. These levels were deter-
mined from ancestry informative sites, which we identified as bi-
allelic sites in modern humans that have one allele fixed in
Neanderthals (combined Vindija and Altai, two high coverage
Neanderthals) and at less than 5% frequency in the Yoruba. We
included the Altai Neanderthal sample here to increase our
confidence that we identified true fixed differences between
Neanderthal and modern human lineages. In Figure 2, we show
average Neanderthal allele frequencies across all ancestry infor-
mative sites with a Neanderthal allele frequency of at least 20%
in at least one population. We use this subset of ancestry infor-
mative sites because we are interested in frequencies along the
selected haplotype(s), which do not necessarily span the entire
length of the previously described windows. If selection quickly
favored introgressed alleles, we would at least expect all admixed
modern human populations, whether sampled in the past or
present, to show high levels of Neanderthal ancestry. However, in
a number of these genomic regions, Neanderthal ancestry is
almost or completely absent from East Asian and/or some
ancient populations (Figure 2).

Method to estimate the timing of selection
from introgressed haplotypes
Verbal description
We first describe the intuition behind our models, before laying
out the mathematical framework. We focus on how patterns of
haplotype similarity among modern human populations and
Neanderthals change with the start time of selection. Because we
describe selection favoring a Neanderthal-introgressed allele, the
earliest selection can begin is the time of admixture between
Neanderthals and modern humans. To accompany our descrip-
tion, in Figure 3, we show a cartoon of haplotype diversity and
introgressed ancestry under two scenarios: immediate selection
and recent selection.

EF

CEU

WHG

Steppe

EurUP

CHB

EF sampled: 252 gen
Steppe sampled: 165 gen

WHG sampled: 314 gen

EurUP sampled: 1161 gen

CHB split: 1724 gen

EurUP split: 1552 gen

European split: 1379 gen

Neanderthal admixture: 2069 gen

Figure 1 The primary admixture graph that we use in our method. Our
method requires the divergence times among admixed modern human
populations, the timing and proportion of admixture with Neanderthals,
and the sampling time of each population. It also requires the timing
and proportions of admixture among modern human populations,
which we describe in detail in Supplementary S1 in Supplementary File
S1. We converted many of these estimates from years to generations
assuming a generation time of 29 years (Fenner 2005). Our method is
robust to modifications to this admixture graph, which we discuss later.
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Neanderthal alleles that introgress into modern human popu-
lations start on long Neanderthal ancestry tracts (entire chromo-
somes at the time of admixture) that shorten over time with
recombination. Because the selected Neanderthal allele takes its
linked variation to high frequency with it, the timing of selection
determines the genetic distance over which neutral Neanderthal
alleles sweep to high frequency as well. The earlier selection is,
the larger the Neanderthal haplotypes that sweep to high fre-
quency with the selected Neanderthal allele. Conversely, the
later selection is, the shorter the Neanderthal haplotypes that
sweep to high frequency, such that some haplotypes in modern
humans that did not introgress from Neanderthals (which we
call “modern human haplotypes”) also rise in frequency.

Because Neanderthal genetic diversity is very low, haplotypes
that introgressed from Neanderthals into modern human
populations should look almost identical to each other and hap-
lotypes sampled from Neanderthals. Conversely, Neanderthal
haplotypes are relatively distinct from modern human haplo-
types compared to differences typically observed among modern
human haplotypes. This is because the earliest time that
modern human and Neanderthal haplotypes can coalesce is
when Neanderthals and modern humans shared a common
ancestor, about 16,000 generations ago. Therefore, when selec-
tion brings Neanderthal haplotypes to high frequency in those
modern human populations where the Neanderthal allele experi-
enced positive selection (hereafter “selected populations”),
selected populations gain unusually high sequence similarity
with Neanderthals and unusually low sequence similarity with
other modern human populations in which Neanderthal haplo-
types are rare in the genomic region affected by the sweep. These
patterns of unusually high and low sequence similarity persist
over greater genetic distances as selection begins closer to the
time of introgression.

Within selected populations, selection increases sequence simi-
larity because the sampled haplotypes descended from one or a few
ancestral haplotypes that hitchhiked to high frequency during the
sweep. When selection begins earlier, these ancestral haplotypes
are mainly one of the few Neanderthal haplotypes introduced by

admixture. The later selection begins, the more likely these ances-
tral haplotypes are modern human haplotypes that became linked
to the selected allele prior to the selection onset.

In the cases of adaptive introgression that we investigated, the
putative selected Neanderthal allele did not reach fixation, either
because the sweep is ongoing and selection is weak, selection pres-
sures changed before the Neanderthal allele reached fixation,
or the phenotypic response to selection was achieved by allele
frequency changes at multiple loci. Our models allow for all of
these possibilities, where if selection stopped favoring the
Neanderthal allele we consider a neutral phase after the sweep.
From this phase, we can further distinguish among selection times
based on how recombination distributes Neanderthal ancestry
among haplotypes within the same population that do and
do not carry the selected Neanderthal allele. As the partial
sweep finishes, the Neanderthal alleles that hitchhike to higher
frequency with the selected allele have a higher chance of recom-
bining onto the background of the nonselected allele. The earlier
the onset of selection, the more time post-sweep for these recom-
bination events to occur, and therefore the higher the probability
that alleles on the nonselected background descended from
Neanderthals.

Model background
We aim to distinguish among the possible scenarios of selection
on introgressed variation. Each scenario is defined by the combi-
nation of two parameters we aim to infer in our model: the
amount of time between Neanderthal admixture and the onset
of selection, which we refer to as the waiting time until selection
(tb), and the additive strength of selection favoring the beneficial
Neanderthal allele (s). We build on the model-based, statistical
approach introduced in Lee and Coop (2017), which uses coales-
cent theory to describe how different selection scenarios modify
the neutral variance and covariance of population allele frequen-
cies surrounding the selected site. This allows us to describe a
multivariate normal model of population allele frequencies for
each scenario, which serves as a simple approximation for their
probability distribution (Nicholson et al. 2002; Weir et al. 2002).
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Figure 2 Average Neanderthal allele frequency at ancestry informative sites in ancient and present-day populations in genomic regions with signatures
of adaptive introgression. Darker shades of purple correspond to higher average Neanderthal allele frequencies. The size of points correspond to the
number of sites over which the average Neanderthal allele frequency was calculated. Moving left to right, regions have decreasing average Neanderthal
allele frequencies among ancient populations.
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Here, we review the framework laid out by Lee and Coop (2017).
We model the change in allele frequency Dxi ¼ xi � xa in our sam-
pled populations (i) from their common ancestral population (a) at
the root of the tree relating all populations we consider. For neutral
alleles, the population allele frequency will on average be the
same as the ancestral allele frequency (E½Dxi� ¼ 0) because drift
and hitchhiking are direction-less on average. Drift and hitchhiking
do however cause an increase in the variance in the change in al-
lele frequencies within a population, and pairs of populations can
also covary in their change in allele frequency from the ancestor if
they have some shared population history or gene flow, i.e., their
changes in allele frequency since the ancestral population are not
independent of one another. These effects are captured by the
population covariance between populations, i and j, given by

Cov½Dxi;Dxj� ¼ xað1� xaÞfij; (1)

where fij is the probability that the ancestral lineages of an allele
sampled in population i and an allele sampled in population j

coalesce before reaching the ancestral population (see Lee and
Coop 2017, for details).

We can estimate the neutral probabilities of coalescing among
populations from neutral allele frequency data genome-wide. If
we are considering k populations in our analysis, we thus have a
k� k matrix, F, that describes probabilities of coalescing within
and between these populations. See Appendix A2 for details on
how we estimate this matrix. These estimated neutral probabili-
ties of coalescing allow us to describe our neutral expectations
without making any assumptions about the demographic history
of populations: they implicitly account for population size, diver-
gence, and migration. We note, however, that while this flexible
approach allows for arbitrary relationships among populations,
our tree requires a root that our coalescent probabilities and fre-
quency deviations will be relative to. We define this root by plac-
ing the two most genetically distant populations on opposite
sides of it. This implies that in our models, they have no shared
history since the ancestral population, and therefore no chance
for coalescence between the ancestral lineages of alleles sampled
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Figure 3 Top: Cartoon of haplotype diversity and ancestry at three time points when selection favors Neanderthal-introgressed alleles immediately
(tb ¼ 0) and when selection favors Neanderthal-introgressed alleles more recently (tb > 0). Our models use a specific value of tb, but here our purpose is
to visualize qualitative differences between early and recent selection. Purple tracts represent Neanderthal-introgressed haplotypes, whereas green
tracts represent haplotypes that did not descend from Neanderthals. We display Neanderthal ancestry tracts with fewer shades to represent their
lower genetic diversity. Bottom: Example frequency trajectory of a selected Neanderthal-introgressed allele when there is a waiting time until selection.
The light gray lines represent 50 stochastic trajectories in which the selected allele reached a frequency greater than 20%. The dark gray line represents
the trajectory we assume in our models using the same waiting time until selection (tb), selection coefficient (s), and duration of the sweep phase (ts)
used to generate the stochastic trajectories.
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in each. In our analysis, the Neanderthals and Yoruba are the
most distantly related, and therefore are placed on opposite sides
of the root, without any subsequent gene flow. This does not
negate the possibility of indirect gene flow between them; we
simply define all other relationships relative to theirs.

When we incorporate the effects of selection, we model how
probabilities of coalescing change with increasing genetic dis-
tance from the selected site. Importantly, all of our predictions
converge to our neutral estimates because increasing recombina-
tion rates between selected and neutral sites allow for increasing
independence of their coalescent history. At a far enough genetic
distance, dynamics at the selected site become quickly disassoci-
ated with those at the neutral site, such that the probability of co-
alescing at the neutral site is that of any neutral allele unaffected
by linked selection.

Haplotype partitioning and the null model
No identified case of adaptive Neanderthal introgression has
resulted in the population fixation of a Neanderthal-derived al-
lele. These partial sweeps weaken the effect of linked selection
on surrounding neutral diversity because much of the original ge-
netic diversity prior to selection persists in these populations. In
order to increase the power of our approach, we divide admixed
populations according to ancestry assignments at the putative
selected site. For the 1000 Genomes samples, from which we
have phased haplotypes, we create two partitions: one consisting
of haplotypes that carry the beneficial Neanderthal allele at the
selected site (B), and the other consisting of haplotypes that carry
the non-Neanderthal allele at the selected site (b). For the ancient
samples, we only have unphased genotype data, and so we
divide the population samples into three partitions according to
individuals’ ancestry genotypes at the selected site: BB, Bb,
and bb. In our models, we are concerned with a neutral allele’s
ancestry background at the selected site when it is sampled.
Therefore, haplotype partition B is equivalent to genotype parti-
tion BB in that any neutral allele sampled in these partitions is
linked to the Neanderthal allele at the selected site. Similarly,
haplotype partition b is equivalent to genotype partition bb in
that any neutral allele sampled in these partitions is linked to
the non-Neanderthal allele at the selected site. From here on,
we refer to them in our models as partition B or partition
b. Predictions for genotype partition Bb are simply a linear combi-
nation of our predictions for the other partitions, which we de-
scribe in Supplement S3.5 in Supplementary File S1.

Our haplotype partitioning of the data requires us to modify
our null model from that of Lee and Coop (2017), who focused on
full sweeps and simply used the genome-wide neutral F matrix to
parameterize their null model. The neutral probabilities of coa-
lescing that we estimate between any pair of populations (i; j) are
essentially averaged over all possible migration histories of our
alleles. However, our population partitioning scheme alters the
probability of each migration history because we split popula-
tions based on ancestry at the partition site. When we create a
population that only carries Neanderthal alleles at the partition
site (partition B), nearby sites will have a much higher frequency
of Neanderthal alleles relative to the full population. Therefore,
even under neutrality, the probability that a randomly sampled
allele in partition B will coalesce with an allele sampled in
Neanderthals is much higher than in the full population case.

Under population partitioning, we can describe our null coa-
lescent probabilities as a function of the genome-wide neutral
probabilities of coalescing and the recombination rate (r) between
the partition site and neutral site of interest. We first consider

the relationship between Neanderthal population n and partition
B of population i in which all haplotypes carry a Neanderthal al-
lele at the partition site. We define tI as the number of genera-
tions ago that Neanderthal alleles introgressed into modern
human populations. We are interested in the probability that the
neutral lineage remains linked to the same Neanderthal allele at
the partition site that it was linked to at sampling by the time
of admixture. We can approximate this probability as e�rtI . By
remaining linked to the Neanderthal allele at the partition site,
we know that it, too, introgressed from Neanderthals and thus
will coalesce with the Neanderthal allele with approximately the
same probability as any two alleles sampled from Neanderthals
(fnn). If it does recombine out at some point before admixture,
it has the population’s neutral probability of coalescing with
Neanderthals. This neutral probability of coalescing still
accounts for the possibility that the neutral allele descended
from Neanderthals, when the average Neanderthal-introgressed
allele frequency is the initial admixture fraction (g). We define
probabilities of coalescing under the null model as f ðNÞin , where su-
perscript (N) refers to predictions under our null model. In all we
derive the probability of coalescing between a pair of lineages
sampled from partition B of population i and Neanderthal popu-
lation n to be

f ðNÞin ¼ e�rtI fnn þ ð1� e�rtI Þfin; if sampled from partition B: (2)

In partition b of the same population (i), all alleles are linked
to the non-Neanderthal allele at the partition site when sampled.
If an allele sampled in this partition never recombines out, we
know it cannot have introgressed. Therefore, in order to have the
chance at coalescing with the ancestral lineage of the sampled
Neanderthal allele, it must recombine out before admixture.
Forward in time, that means that a Neanderthal allele recom-
bined onto the sequence carrying the non-Neanderthal allele at
the partition site. Therefore, the ancestral lineage of a neutral al-
lele sampled from partition b of population i has the following
probability of coalescing with the neutral lineage sampled from
Neanderthals:

f ðNÞin ¼ ð1� e�rtI Þfin; if sampled from partition b: (3)

Selection model
Selection favoring Neanderthal alleles in modern human popula-
tions modifies probabilities of coalescing from neutral expectations
because it increases levels of Neanderthal ancestry around the se-
lected site in selected populations. Thus, in the whole (nonparti-
tioned) population, the probability that an allele descended from
Neanderthals is much higher than the original admixture propor-
tion, as we described informally above in our discussion of Figure 3.

In selected populations, we consider three phases in the se-
lected allele frequency trajectory: the neutral phase following ad-
mixture in which the Neanderthal-derived variant is at frequency
g for tb generations (neutral phase I), the sweep phase in which
the variant rises from frequency g to frequency xs in time ts, and
the neutral phase between the sweep finish and the present in
which the variant remains at frequency xs (neutral phase II).
When the relative fitness advantage of the selected allele is addi-
tive, such that heterozygotes have an advantage of s and homo-
zygotes 2s, the sweep duration
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ts ¼
1
s

log
xsð1� gÞ
gð1� xsÞ

� �
; if xs < 1: (4)

Since the sum of all three phase durations equals the time be-
tween the present day and admixture (tI), the duration of neutral
phase II equals tI � tb � ts.

As the waiting time until selection tb increases, and assuming
the same tb for all selected populations, we transition from de-
scribing a case in which the selected allele became beneficial in
the common ancestor of all Eurasian populations, to the case in
which the selected allele became beneficial independently in
each selected population. If tb is short enough such that selection
began in the common ancestor of a group of selected popula-
tions, we must account for the possibility that this common an-
cestor also has descendent populations that do not carry the
selected allele at high frequency, possibly due to subsequent drift
or negative selection. According to tb, we assign each population
with very low frequency of the selected allele into one of two cat-
egories: (i) ancestors never selected or (ii) ancestors selected with
subsequent loss of the selected allele in this population. We as-
sign the first category if the low-frequency population does not
share a common ancestor with any selected populations at the
time selection starts, i.e., its divergence from all selected popula-
tions predates selection. Otherwise, we assign the second cate-
gory.

Similar to the null model, we condition on ancestry at the pu-
tative selected site and consider how recombination modulates
ancestry with increasing genetic distance. The most important
difference between the null and selection model is neutral phase
II: in the selection model, if a neutral lineage recombines, it has a
high probability of recombining onto the selected allele’s back-
ground. Therefore, there is a higher chance that the neutral line-
age itself descended from Neanderthals.

Between Neanderthals and selected populations:
In this section, we derive the probabilities of coalescing between
the haplotypes in each partition of selected human populations
and Neanderthals. When we sample an allele, we know whether
or not it is linked to the selected Neanderthal allele based on the
partition it belongs to. Conditioning on this ancestry background
at sampling, we focus on whether the ancestral lineage is linked
to the selected Neanderthal allele when we transition between
each phase looking backwards from the present to admixture.

First, we determine the probability that a neutral lineage is
linked to the selected Neanderthal allele at the transition point
between neutral phase II and the sweep completion (which
occurs at time tI � tb � ts). If there is never a recombination event
between the selected and neutral site during neutral phase II,
then the neutral lineage remains associated with its initial ances-
try background at the time of the sweep completion.
Alternatively, if at least one recombination event occurs, then
the final recombination event determines the ancestry back-
ground that the neutral lineage is associated with at the time of
the sweep completion. The frequency of the selected allele deter-
mines the probability that a recombining neutral lineage
becomes associated with the selected background. Thus, with
probability xs, the neutral lineage becomes associated with the
selected Neanderthal allele, and with probability 1� xs it
becomes associated with the non-Neanderthal allele at the se-
lected site. Therefore, the probability that a neutral lineage sam-
pled from a selected population is linked to the selected
Neanderthal allele at the transition point between neutral phase
II and the sweep completion is

Prðlinked to selected allele at sweep finishÞ

¼

exp
�
� rðtI � tb � tsÞ

�
þ ð1� exp

�
� rðtI � tb � tsÞ

�
Þxs;

if sampled from partition B:

ð1� exp
�
� rðtI � tb � tsÞ

�
Þxs;

if sampled from partition b:

8>>>>><
>>>>>:

(5)

in which an allele sampled from partition b can only be linked if
it recombines off of its background.

Second, during the sweep phase, an allele that begins linked to
the selected allele will always be associated with that background
with probability

Prðalways linked to selected allele during sweepÞ

� exp
�
� r
Ð ts

0 1� rð1� XðtÞÞdt
�

¼ xð1�gÞ
g

� ��r
s
;

(6)

where X(t) is the frequency of the selected allele in generation t of
the sweep, following a deterministic, logistic trajectory. In words,
this probability is approximately the product of the probabilities
of not recombining onto the nonselected background each gener-
ation of the sweep. Similarly, an allele that begins the sweep
phase linked to the nonselected allele will always be associated
with that background during the sweep with probability

Prðalways linked to non� selected allele during sweepÞ

� 1
xs

� ��r
s
; if xs < 1:

(7)

The above associations persist if the lineage never recombines
out of its background during neutral phase I, with approximate
probability e�rtb . So, if a neutral lineage remains linked to the se-
lected allele during the sweep phase and fails to recombine dur-
ing neutral phase I, it must have descended from Neanderthals
and thus coalesces with the lineage sampled from Neanderthals
with approximately the same probability as any two lineages
sampled from Neanderthals, fnn. If the neutral lineage remains
linked to the nonselected allele throughout the sweep phase and
fails to recombine during neutral phase I, it definitely did not de-
scend from Neanderthals and thus cannot coalesce with an allele
sampled from Neanderthals. If a lineage becomes disassociated
with its background at some point during the sweep phase, and/
or recombines out at least once during neutral phase I, we as-
sume it has its population’s neutral probability of coalescing
with Neanderthals. Our approximation ignores the possibility
that a lineage linked to the nonselected allele can recombine
onto the selected allele’s background during the sweep. In total,
the ancestral lineage of an allele sampled from an admixed, se-
lected population coalesces with the ancestral lineage of an allele
sampled from Neanderthals with probability

f ðSÞpn

¼ ½Prðlinked to selected allele at sweep finishÞ
�Prðalways linked to selected allele during sweepÞe�rtb fnn�
þ½Prðlinked to selected allele at sweep finishÞ
�ð1� Prðalways linked to selected allele during sweepÞe�rtb Þ
þð1� Prðlinked to selected allele at sweep finishÞÞ
�ð1� Prðalways linked to non-selected allele during sweepÞ
�e�rtb Þ�fpn;

(8)

where the superscript S in f ðSÞpn refers to our predictions under the
selection model, and subscript p denotes any partition of any
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selected population. In Supplement S3.1 and S3.2
(Supplementary File S1) we illustrate predictions for other popu-
lation relationships under the selection model. We follow by de-
scribing modifications under both the null and selection models
to incorporate ancient samples (Supplement S3.3), migration
among admixed modern human populations (Supplement S3.4),
and genotype partition Bb (Supplement S3.5). Our approxima-
tions provide a good fit to those obtained by simulations, see
Figure 4.

Inference
For each model (null or selection) and combination of free
parameters, we define a variance-covariance matrix of popula-
tion allele frequencies for a given distance away from the
selected site (Lee and Coop 2017). We approximate the joint prob-
ability distribution of population allele frequencies at a neutral
locus (l) as being multivariate normal around the ancestral allele
frequency (xal) with covariance equal to xalð1� xalÞ times the
modified matrix of coalescent probabilities (FðNÞ or FðSÞ)
(Nicholson et al. 2002; Weir et al. 2002; Samanta et al. 2009; Coop
et al. 2010). In both the null and selection models, the modified
matrices of coalescent probabilities depend on the genetic dis-
tance to the selected site (rl), the genome-wide neutral matrix of
coalescent probabilities (F), and all of the admixture graph
parameters of interest (AG), which describe admixture propor-
tions and timing among Neanderthal and admixed modern hu-
man populations as well as divergence and sampling times of
admixed modern human populations (see Figure 1 and
Supplementary Table S1 in Supplementary File S1). The selection
model’s FðSÞ depends on three additional parameters: the
strength of selection (s), the waiting time until selection (tb),
and the final frequency of the selected allele (xs). Therefore, at
a neutral polymorphic site with allele frequency data in our
populations, we can estimate the probability of the observed
population allele frequencies (~xl ) under the selection model as

Pð~xl jrl; F;AG; s; tb; xsÞ
�N

�
~xl jxal; xalð1� xalÞFðSÞðrl;F;AG; s; tb; xsÞ

�
;

(9)

where the set of parentheses following FðSÞ denote the parame-
ters of the function FðSÞ. When we predict FðSÞ, we categorize
Neanderthal-admixed populations as “selected” if their frequency
of the Neanderthal allele at the selected site is greater than or
equal to 0.05. We set xs to be the average selected Neanderthal al-
lele frequency among all of these putative selected populations.
Our method could be extended to allow xs to vary among
populations and to do model choice of the selected populations,
however for simplicity we do not pursue those applications here.
We estimate the composite likelihood of free parameters s and tb

given the allele frequency data across populations (D) in a win-
dow around a candidate selected site by taking the product of
all likelihoods calculated at each locus to the left and right of
the candidate selected site as follows,

LCðs; tb; DÞ ¼
YLleft

i¼1

Pð~xi jri;F;AG; s; tb; xsÞ

�
YLright

j¼1

Pð~xj jrj;F;AG; s; tb; xsÞ;
(10)

where Lleft and Lright represent the number of polymorphic loci to
the left and right of the candidate selected site. We calculate

composite likelihoods among the proposed parameter combina-
tions of s and tb shown in Supplementary Table S3 in
Supplementary File S1.

The composite likelihood under the null model takes the same
form as selection; we simply replace FðSÞ with FðNÞ and remove
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Figure 4 Probabilities of coalescing between pairs of alleles at increasing
genetic distances from the selected site. Analytical predictions (lines)
closely match estimates averaged across 250 simulations (points). Here,
we show results for a case in which the Neanderthal-derived allele
became adaptive in the ancestors of Early Neolithic Farmers
immediately upon introduction (tb ¼ 0, red) and after 600 generations
(blue). The favorable allele experienced a selective advantage (s) of 0.01
and on average reached a frequency (xs) of 0.7 before becoming neutral
again. The genetic window corresponds to 1 Mb with a constant
recombination rate of 10�8. Partition B refers to alleles linked to the
beneficial Neanderthal allele, while partition b refers to alleles linked to
the non-Neanderthal counterpart at the selected site. We present
categories of population relationships in which probabilities of
coalescing vary the most with different waiting times until selection. See
Supplementary Figures S12 and S13 in Supplementary File S1 for more
population relationships, waiting times until selection, and final
frequencies of the selected allele.
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dependence on s, tb, and xs. Each partition site represents a poten-
tial selected site and thus differs in its genetic distance to each
neutral locus. Therefore, each partition site has its own set of
composite likelihoods for the null and selection models. We iden-
tify the “best” partition site for each region by selecting the site
whose ratio of its maximum composite likelihood under the se-
lection model to the null model is greatest, i.e., by maximizing
the level of support for selection at this site. From this partition
site, we identify the maximum composite likelihood estimates t̂b

and ŝ for the region. We note that in our application, these esti-
mates tended to be very similar among partition sites.

Our method focuses on inferring the history of selection from
haplotypes alone, and does not incorporate the distribution of
the selected allele frequency across populations (as in Racimo
et al. 2018; Refoyo-Martı́nez et al. 2019). We could incorporate into
our composite likelihoods the conditional probability of xs across
populations under a given parameterization of the selection
model, but here our focus is on the information about the timing
of selection contained in haplotype patterns.

We analyze bi-allelic sites that are polymorphic among our set
of samples. Because our multivariate normal approximation
works best when alleles segregate ancestrally at some inter-
mediate frequency, we remove sites polymorphic in only one
population with a minor allele frequency less than 0.01. In prac-
tice, we mean centered our observed allele frequencies, which
removes dependence on the ancestral allele frequency xal. We
provide more detail on mean centering, sample size correction,
and implementation in Appendix A3.

Distinguishing between immediate and nonimmediate
selection:
To assess the timing of selection relative to introgression we first
distinguish between immediate (tb ¼ 0) and nonimmediate
(tb > 0) selection. We do so by using the ratio of the maximum
composite likelihood under all parameter combinations to the
maximum composite likelihood when selection is immediate,

CLRtb>0 ¼
sups;tb

qCðs; tb; DÞ
sups

qCðs; tb ¼ 0; DÞ: (11)

The higher this ratio, the more support we have in favor of an
initial neutral period relative to immediate selection. Because
composite likelihoods ignore the correlation in allele frequencies
across loci due to linkage disequilibrium, we cannot use tradi-
tional statistical methods for model selection. Therefore, we rely
on simulations and reject the immediate selection case if the up-
per 97.5th percentile of CLRtb>0 from immediate selection simula-
tions does not exceed the observed value in a region. In other
words, we reject the null hypothesis of immediate selection if we
observe a value of CLRtb>0 high enough to be unlikely if selection
were truly immediate. The following sections contain more detail
on the simulation procedure used to reject immediate selection.

Validation:
We ran our method on simulated data to evaluate its perfor-
mance, using SLiM 3.0 for forward-in-time simulations (Haller
and Messer 2019). We simulated 2 cM (2 Mb) loci with the selected
mutation at the center of the locus. We simulated under the de-
mographic history shown in Figure 1, along with a divergence
time between the Yoruba and Eurasian populations of 2500 gen-
erations and a divergence time between modern humans and
Neanderthals of 16,000 generations. The Neanderthal population

was simulated with a population size of 3000, whereas all other
populations were simulated with a size of 10,000.

Our SLiM simulations generated tree sequences, onto which
we added neutral mutations and calculated population allele fre-
quencies using the same sample sizes as in our real data in
Python version 3.7.4 with msprime (Kelleher et al. 2016), tskit
(Kelleher et al. 2018), and pyslim (Haller et al. 2019). We ran our
method on these data in R version 3.4.4. The method assumed
the same demographic history that we simulated and used a
neutral F estimated from neutral allele frequency data, also pro-
duced by SLiM simulations under the same demographic history
as the selection simulations. See Appendix A1 for more simula-
tion details.

Our first goal was to determine our power to detect selection
that did not begin immediately, and so we established the signifi-
cance cutoff using simulations under the null model of immedi-
ate selection. Running the method on simulations of immediate
selection, we identified a positive correlation between xs, the av-
erage selected allele frequency among all putative selected popu-
lations, and CLRtb>0, the composite likelihood ratio quantifying
the method’s support for nonimmediate selection relative to im-
mediate selection (Supplementary Figure S1 in Supplementary
File S1). This relationship between xs and CLRtb>0 among our im-
mediate selection simulations does not differ among combina-
tions of the selection coefficient (s) and the duration of the sweep
(ts) (Supplementary Figure S1 in Supplementary File S1). Thus,
for each simulation of nonimmediate selection, we rejected im-
mediate selection if its CLRtb>0 was greater than the upper 97.5th
percentile of CLRtb>0 from the 500 immediate selection simula-
tions with the closest xs. We used a similar procedure to deter-
mine the significance cutoffs for the real data set.

Varying the onset time of selection in our simulations, we
found that the method’s power to reject immediate selection
increases with the true waiting time until selection (tb) and xs

(Figure 5). Our method has reasonable power to reject immediate
selection when selection begins >1000 generations after admix-
ture, suggesting that we should correctly identify many of the
regions that only recently contributed to adaptation. Overall, s is
not well inferred, likely because we deal with old selection
events. Therefore, while s appears in our selection model, we con-
centrate on inferring tb in our application. The method yields
somewhat biased estimates of the waiting time until selection
(Supplementary Figures S2–S5 in Supplementary File S1).
However, among the simulations in which the method rejected
immediate selection, the method does a good job tracking the
true waiting time until selection (Figure 6). This performance
decreases when fewer populations are considered to be selected,
but still, the method can identify that selection started much
later in time. For more details on method performance, see
Supplementary S2.1 in Supplementary File S1.

Data application to estimate the timing of
selection on Neanderthal alleles
Procedure for identifying selected site and
parameter estimates
For each region, we ran our method on the previously defined
windows in addition to 1 cM flanking them on each side, because
if selection is immediate with s¼ 0.01 it takes about 1 cM for the
signals of selection to almost completely decay. We used the
HapMap Project’s genetic map to identify the endpoints of geno-
mic analysis windows and recombination rates between each
neutral and selected site for the method (note that this means
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that we need to assume that recombination rates have been rela-
tively constant over this time period). We excluded sites without
Neanderthal allele frequency data from our analysis, as they are

less informative of introgression patterns and the method might
instead pick up on unrelated signals of selection at these sites.

We estimated the neutral F from putative neutral allele fre-
quency data genomewide. We chose regions at least 300 base
pairs long, at least 0.4 cM away from a gene, and with a minimum
per base pair recombination rate of 0:9� 10�8 using the “Neutral
Regions Explorer” (Arbiza et al. 2012). This led to 105,786 sites af-
ter filtering. While these sites may not be entirely unaffected by
linked selection, we can still use them to represent background
patterns of genetic diversity from which we distinguish strongly
altered patterns caused by adaptive introgression.

Among the ancestry informative sites in each region, we chose
partition sites (which represent potential selected sites) to be all
sites with at least two ancient populations with data and a
Neanderthal allele frequency � 20% in at least one European,
East Asian, or South Asian 1000 Genomes population. For a re-
gion, we looped over possible partition sites to run the method on
their corresponding data set, and then selected among these par-
tition sites. Then from the “best” partition site we selected among
parameter estimates of tb and s. For example, in Figure 7, we
show the profile composite likelihood surface of tb at the maxi-
mum composite likelihood partition site (relative to the null
model at this site) in the region OAS1, OAS3. The peak in this
surface corresponds to our estimate of tb, which in this region we
found to be very high. As the relationships among our popula-
tions are only partially understood, we ran the method with
the Altai Neanderthal sample included in the Neanderthal pop-
ulation (discussed in Supplement S2.2.1 and Supplementary
Figure S10 in Supplementary File S1) and with multiple plausi-
ble modifications to the admixture graph in Figure 1 (discussed
in Supplement S2.2.2 and Supplementary Figure S11 in
Supplementary File S1). To account for the uncertainty in our
imputation procedure, in each region we reran the method 40
times on bootstrapped data sets: rather than using the maxi-
mum likelihood genotype at the partition site to assign an
ancient sample to a genotype partition, in each bootstrap run
we randomly assigned the sample to one of the partitions
according to its posterior genotype probabilities provided by the
imputation algorithm (results shown in Supplementary Figure
S9 in Supplementary File S1).

Procedure for distinguishing between immediate
and nonimmediate selection
Among the regions in which the method estimated a nonimmedi-
ate waiting time until selection (t̂b > 0), we rejected immediate
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selection if their CLRtb>0 exceeded the upper 97.5th percentile of
those from the 500 immediate selection simulations with
the closest xs (the average selected allele frequency among all
putative selected populations). Recall that we can only identify
these significance thresholds with simulations. Because com-
posite likelihoods may be sensitive to the spatial distribution of
analyzed sites and their corresponding populations with known
allele frequencies, we sampled sites to analyze in the simulated
data using the same spatial patterning as the region of interest.
Specifically, we binned the genetic positions of analyzed
sites into 10�3 cM intervals to the left and right of the selected
site. For each of these sites, we sampled a site in the simulated
data from the same genetic distance bin and masked its
allele frequencies from populations with no data. We used the
same immediate selection simulations as in the Validation
section, except this time evaluating them over a larger 3 Mb
(3 cM) locus.

Of the 36 regions we ran our method on, our method esti-
mated t̂b > 0 in 26, and rejected immediate selection in 17
(Figure 8). Four of the regions in which we rejected immediate se-
lection had a standard deviation greater than 100 generations
of t̂b in their bootstraps over the imputation uncertainty:
CHRM2, chr1:193885932, chr2:154493544, and chr12:84903554
(Supplementary Figure S9 in Supplementary File S1). For the
remaining 13 regions in which we have greater confidence in our
estimated waiting times, nine of these regions have t̂b � 700,
whereas the remaining four have extremely high estimates:
SEMA7A, UBL7 has t̂b ¼ 1300 and CACNA1S, ASCL5; OAS1, OAS3;
and chr4:189187062 have t̂b ¼ 1500.

As with many selection scans, the function of alleles underly-
ing adaptation is obviously unknown. Among the set of regions
with a shorter initial period at low frequency, BNC2 is a better-
studied candidate of adaptive Neanderthal introgression, where
the likely selected Neanderthal variant is associated with lighter
skin pigmentation (Dannemann et al. 2017). As for the other
regions with early selection, mutations in EYS affect the develop-
ment and maintenance of photoreceptors in the retina (Abd El-
Aziz et al. 2008; Collin et al. 2008; Alfano et al. 2016), proteins
encoded by EVC are involved in the regulation of Hedgehog sig-
naling and mutations in this gene affect patterning during devel-
opment (Ruiz-Perez et al. 2000; Blair et al. 2011; Caparrós-Martı́n
et al. 2013; Pusapati et al. 2014), proteins encoded by CRMP1 may
be involved in the development of the nervous system and epi-
thelial sheets (Nakamura et al. 2014; Yu-Kemp et al. 2017), and
SLC7A10 contributes to synaptic regulation in the central nervous
system (Ehmsen et al. 2016; Pala�cin et al. 2016; Mesuret et al.
2018). HELZ2 is involved in regulating the differentiation of adipo-
cytes and could thus play a role in metabolism (Katano-Toki et al.
2013). PLA2R1, ITGB6, and SLIT3 putatively play a role in tumor
suppression, however mutations at all of these loci are also
known to influence variation in other phenotypes (Marlow et al.
2008; Hezel et al. 2012; Guo et al. 2013; Bernard and Vindrieux
2014; Yu et al. 2014; Ng et al. 2018; Yoshikawa and Asaba 2020).
Most research on RHPN2 and PTK6 has focused on the role of their
expression in cancer progression (e.g., Zheng et al. 2010; He et al.
2015). The remainder of regions in this category is poorly studied
or intergenic and far from genes. As for the recently selected
regions, SEMA7A plays a role in both the immune and nervous
systems, regulating active T cells in the former and axon growth
and formation during development in the latter (Pasterkamp
et al. 2003; Suzuki et al. 2007; Gras et al. 2013). Polymorphisms at
this locus are also associated with variation in bone mineral den-
sity (Koh et al. 2006). UBL7 may play a role in ubiquitin signaling,
however little is known about the effects of variation at this locus
(Zhang et al. 2017). CACNA1S encodes a protein known to contrib-
ute to the structure of calcium channels involved in skeletal
muscle contraction (Tanabe et al. 1990; Ptá�cek et al. 1994; Ertel
et al. 2000) and in some cases can influence body heat regulation
(Beam et al. 2017). ASCL5 is less well studied, though mutations in
this gene have been implicated to affect tooth development (He
et al. 2019). OAS1 and OAS3 haplotypes can influence innate im-
munity, which we discuss in more detail later. Based on what we
currently understand about mutations in these genomic regions,
the nonimmediate benefits provided by Neanderthal alleles may
have varied widely and were perhaps associated with different
environmental factors.

Discussion
Here, we use patterns of linked selection to develop one of
the first model-based methods that infers the time at which
Neanderthal-introgressed alleles became adaptive. Our ap-
proach uses ancient DNA as well as the hitchhiking effect to in-
vestigate the temporal history of selection. We directly address
partial sweeps, which likely reflect most cases of human adap-
tation and perhaps adaptive introgression more generally, and
use them as a tool to time the onset of selection. While we
require a known demographic history among Neanderthal-
admixed populations, our method is robust to modifications in
these assumptions (see Supplement S2.2 in Supplementary File
S1 for discussion).
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Figure 8 Top: Distribution of estimated waiting times until selection (t̂b )
in the application of the method to 36 regions of adaptive introgression.
Blue bars represent cases in which the method did not reject immediate
selection, and orange bars represent cases in which the method did
reject immediate selection. Blue bars are stacked on top of orange bars
(they do not overlap). Bottom: Results among all regions with t̂b > 0.
These represent 26 out of 36 cases. Regions in which the method did not
reject immediate selection are colored blue, and regions in which the
method rejected immediate selection are colored orange (17 cases).
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We found that in most regions that we analyzed, we could not
reject a model of selection immediately favoring Neanderthal-
introgressed alleles upon admixture. In some of these regions,
East Asians and/or ancient populations do not contain signatures
of adaptive introgression. Obviously some of these cases may
represent our lack of power to rule out short onset times from
haplotypes alone and so our results should not be taken as indi-
cating that selection began immediately for many Neanderthal
haplotypes. In addition, the regions that we ran our method on
were identified from signals of unusual sharing with
Neanderthals (Racimo et al. 2017), and so we may be missing
some cases of recent selection on Neanderthal introgression that
dragged up only very short blocks of Neanderthal ancestry. We
also limited our analysis to regions with signatures of adaptive
introgression in European populations, so there may be cases of
recent selection in East Asian or other populations that we did
not identify. Among the regions in which we did reject immediate
selection, we estimated a wide range of waiting times until selec-
tion. From simulations, we found that we can generally classify
these cases into earlier (0 < t̂b � 800) and more recent (t̂b > 800)
selection. These time frames may be coarse, but with our esti-
mates of recent selection being far from the boundary between
early and recent selection, the transition between them possibly
marks the end of the last glacial period (�11:5 kya). Thus, we are
potentially distinguishing between adaptation to conditions dur-
ing the Upper Paleolithic versus later periods defined by warming,
technological innovation, the emergence of farming, and higher
population densities.

We modeled that the beneficial allele was at a low frequency
for some time followed by the onset of selection due to some en-
vironmental change. This initial period could correspond to the
Neanderthal allele being neutral or balanced at low frequency.
However, there are a few possibilities other than a truly delayed
onset of selection that could explain our rejection of immediate
selection. First, selection may have immediately favored an al-
lele, but the allele was recessive and thus took a long time to rise
in frequency. We chose to model additive selection because we
do not have information on dominance, but for recessive alleles
we may be timing its rise to intermediate frequency rather than
the selection onset (see Jones et al. 2020, for a possible dominance
related lag in an introgressed pigmentation allele in snowshoe
hares). Given that the method does a poor job estimating the se-
lection coefficient for these old sweeps from haplotype data
alone, we likely cannot distinguish among different models of
dominance. Second, selection may have immediately favored a
beneficial Neanderthal allele, but it was only able to rise in fre-
quency once it recombined off other tightly linked deleterious
alleles on its Neanderthal haplotype background. There are two
ways that this could lead us to incorrectly infer more recent se-
lection: (i) the beneficial allele could have recombined earlier
than expected, causing it to rise in frequency close to its intro-
gression time but on a shorter Neanderthal haplotype than we
predict under immediate selection, or (ii) a time lag between the
selection onset and the recombination event that allowed the al-
lele to rise in frequency could cause our timing estimates to mark
the recombination event rather than the selection onset. Some
studies have described the conditions in which an adaptive allele
could introgress and eventually fix given its linked deleterious
background upon introduction (e.g., Uecker et al. 2015), with some
investigation into the timescale in which recombination would
generate a haplotype with a net selective advantage (Sachdeva
and Barton 2018). Finally, the sweep of Neanderthal alleles up in
frequency may not be due to a beneficial Neanderthal allele, but

instead hitchhiking with a new beneficial allele that arose via
mutation more recently than the Neanderthal introgression, by
chance on the background of a Neanderthal haplotype. If
Neanderthal-introgressed alleles are at �2% frequency genome-
wide, then we should expect about 2% of recent sweeps from new
mutation to arise on a Neanderthal-introgressed background and
sweep them to high frequency.

We identify two regions as having clear statistical support for
very recent selection (OAS1, OAS3 and CACNA1S, ASCL5). These
regions have very high t̂b , which our simulations show are very
rarely estimated under cases of early selection. We are less con-
vinced of alternative explanations for their late rise in frequency
because they would need to be replicated in multiple popula-
tions. Specifically, given that the Neanderthal alleles rose in fre-
quency so late, and that in both of these regions Neanderthal
ancestry is at high frequency in present-day Europeans and East
Asians, this rise must have begun after Europeans and East
Asians diverged from each other, i.e., independently. The chance
that the Neanderthal alleles both recombined off of their deleteri-
ous background or both hitchhiked on a sweep in the region is ex-
tremely small. Thus, for OAS1, OAS3 and CACNA1S, ASCL5, we
have evidence that Neanderthal alleles were independently bene-
ficial in Europeans and East Asians, well after admixture with
Neanderthals.

In the CACNA1S, ASCL5 region, the estimated waiting time un-
til selection (t̂b ¼ 1500) implies selection began after the sampling
time of the West Eurasian Upper Paleolithic, however this popu-
lation does carry Neanderthal haplotypes at high frequency in
this region. The Neanderthal allele may have drifted away from
low frequency in this population after it diverged from the
European ancestry populations that we study, which our simula-
tions show happens reasonably often and does not confound our
method. Alternatively, selection may have started earlier in the
common ancestor of European ancestry populations and more
recently in East Asian ancestry populations. We reran our
method after removing East Asian samples but our estimates did
not change, which could either reflect a selection onset more re-
cent than when the West Eurasian Upper Paleolithic were sam-
pled or poor performance of the method in the absence of East
Asian samples. The latter possibility was beyond the scope of this
paper to investigate, however future applications could investi-
gate the effect of sampling and extend the method to allow for
different onset times when selection independently favors
alleles. In total, Neanderthal alleles in this region appear to have
been independently favored in the ancestors of East Asians and
the ancestors of Europeans, indicating that geographically sepa-
rated populations experienced similar changes in environmental
conditions, possibly at different times.

The selection pressure favoring the OAS1, OAS3 haplotype is
thought to be related to innate immunity. Indeed, a recent study
found that the Neanderthal haplotype at OAS1 is protective
against COVID-19 severity, hospitalization, and susceptibility
(Zhou et al. 2020; Zeberg and Pääbo 2021). It has previously been
suggested that this gene contributes to traits under balancing se-
lection because haplotypes at this locus have shown variable ex-
pression responses to different Flaviviruses (Sams et al. 2016) and
a separate Denisovan haplotype segregates at high frequency at
this locus in Melanesians (Mendez et al. 2012). Our recent date of
selection, and the fact that genomic samples dated closer to the
admixture time do not carry Neanderthal haplotypes in this re-
gion, are consistent with a recent onset of positive selection in a
long-term cycle of balancing selection. A number of other genes
known to influence immunity such as the TLR6-TLR1-TLR10
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cluster and HLA class I genes harbor candidates of adaptive intro-
gression, however, we did not analyze them as they contain both
Neanderthal and Denisovan haplotypes in Eurasian populations
(Abi-Rached et al. 2011; Dannemann et al. 2016). The timing of ad-
aptation for the OAS1, OAS3 region is at odds with the hypothesis
that the transfer of pathogens from Neanderthals to modern
humans necessitated rapid human adaptation using
Neanderthal-derived immunity alleles (Enard and Petrov 2018;
Greenbaum et al. 2019). However, it would be interesting to test
this idea more generally by attempting to date the start of adap-
tation for more of these introgressed, putative immunity-related
haplotypes.

Our investigation contributes to a growing model-based un-
derstanding of the genomic patterns of adaptive introgression.
Setter et al. (2020) introduced VolcanoFinder, a method that iden-
tifies cases of adaptive introgression by probing the recipient pop-
ulation’s patterns of heterozygosity around the selected site.
Using expected coalescence times and assuming fixation of the
selected allele, they predict very low diversity in a small window
around the selected site and very high levels of diversity at inter-
mediate distances. Our predicted within-population probabilities
of coalescing characterize similar patterns when combining
results from both partitions of a selected population (weighted by
their frequency in the population, i.e., the frequency of the se-
lected allele). However, the characteristic volcano pattern would
disappear as the frequency of the selected allele decreases or
waiting time until selection increases. Our work demonstrates
that both of these situations are frequent, and thus the continued
difficulty of developing relaxed tests for adaptive introgression
while avoiding false positives. Shchur et al. (2020) also use a coa-
lescent approach, in their case to model how adaptive introgres-
sion affects the distribution of introgression tract lengths. Fixing
the time until introgression and admixture proportion, they show
how stronger selection increases the introgression tract lengths.
While we do not explicitly model tract lengths, these patterns are
apparent in our coalescent predictions.

We implemented a flexible inference framework that could be
further modified to investigate the spatio-temporal history of ad-
aptation in modern humans and other systems, whether via in-
trogression or derived mutations. Future applications could
distinguish among groups of truly selected populations, allow the
frequency of the selected allele to vary among populations, or to
distinguish between drift and selection. Our models and estima-
tion method for the timing of adaptation via introgression can be
generalized to other organismal systems. In our current applica-
tion, we assume that the introgressed lineage coalesces with the
Neanderthal lineage due to the Neanderthal population’s low ef-
fective population size, as this allows us to side step modeling
the sweep in Neanderthals. However, in other systems, the donor
population cannot be assumed to have a very low effective popu-
lation size, but it should be simple to include the extra terms
modeling the sweep-induced increase in coalescence between
the recipient and donor populations close to the selected site.
The application of methods like this to other species would allow
a more general understanding of how often introgression is rap-
idly favored versus supplying genetic variation for future adapta-
tion.

Using a combination of ancient DNA and haplotype-based
timing, we documented spatially and temporally varying selec-
tion on Neanderthal alleles. Our results provide evidence that ad-
mixture between diverged populations can be a source of genetic
variation for adaptation in the long term. They also allow us to
better understand the historical and geographic contexts within

which selection favored Neanderthal introgression. As experi-
mental work begins to identify the specific alleles and pheno-
types potentially selected on, we can more fully flesh out how
interbreeding with archaic populations tens of thousands of
years ago has shaped the evolution of modern human popula-
tions.

Data availability
Scripts for imputation, simulations, and the method are provided
at www.github.com/SivanYair/selTime_neanderthal_AI. The
script that computes genotype likelihoods can be found at www.
github.com/mathii/gdc3/blob/master/apulldown.py.
Supplementary materials (Supplementary Files S1 and S2) are
available at figshare: https://doi.org/10.25386/genetics.14192909.
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Appendix A

A.1 Simulation details
A.1.1 Selection simulations
Keeping demography constant, we simulated different combina-
tions of tb, s, ts, and set of selected populations (Supplementary
Tables S4 and S5 in Supplementary File S1). After the divergence
between the ancestors of Neanderthals and modern humans, we
added a mutation with s¼ 0.025 to a single Neanderthal haplo-
type at the selected site. It became neutral before admixture with
modern humans. We restarted any runs in which the selected
mutation did not reach fixation in the Neanderthal population
prior to admixture, was not segregating in all selected popula-
tions at the onset of selection, was lost from any selected popula-
tion during the sweep, was not at greater than 20% frequency in
at least one selected population at the sweep finish, or was not at
greater than 20% frequency in either the European or East Asian
population sampled in the present day. The 20% frequency cut-
off was motivated by the same criteria with which adaptive intro-
gression candidates were identified (Racimo et al. 2017).

As frequency trajectories in SLiM are stochastic, we chose com-
binations of s and ts that would target different final frequencies
(xs) under a deterministic trajectory. For each s and target xs, we
calculated ts according to Equation (4) and assuming that the fre-
quency at the sweep start is the admixture proportion we used in

simulations (g¼ 0.02). However, because our simulations condi-
tion on the selected mutation segregating in all selected popula-
tions at the selection onset, the average starting frequency in our
simulations tended to be greater than g, and increased the later
selection began. Therefore, our chosen ts on average led to rather
high xs in cases of late selection, even when we targeted xs ¼ 0:2.
Alternative approaches to target a certain low xs in our simula-
tions would have led to many simulations where a target xs was
reached due to genetic drift rather than natural selection. Those
approaches are inappropriate for us, as we focus on understand-
ing the history of natural selection, rather than distinguishing be-
tween genetic drift and natural selection.

Of all polymorphic sites that were not filtered, we randomly
down-sampled the data set to 12,000 sites, which is close to
the number of sites analyzed for data in our application with
loci of the same size. As described in the main text, we used
a different sampling approach for simulations generated to
identify the CLRtb>0 boundary for the regions we analyzed in our
application.

A.1.2 Neutral simulations
We generated simulations under neutrality using the same de-
mographic history as the selection simulations so that we could
estimate the “genome-wide” neutral F. We simulated 2000 inde-
pendent trees by separately recording the tree sequences of 1 bp
loci and subsequently overlaying multiple mutations. From these
2000 independent “loci” we estimated the neutral F from 19,323
sites after filtering.

A.2 Estimating probabilities of coalescing
from allele frequencies
Using allele frequencies, we obtain unbiased estimates of F, our
genome-wide neutral probabilities of coalescing. Rearranging the
equation providing the covariance of the change in population al-
lele frequencies from the ancestral population, the probability a
pair of ancestral lineages coalesce before the root is

fij ¼
Cov½Dxi;Dxj�

xað1� xaÞ
: (A.1)

Since Dxi ¼ xi � xa, the above covariance equals El½xilxjl� � El½x2
al�.

In our scripts, we estimate fij using an equivalent expression that
directly averages over the two possible alleles at a locus,

fij ¼ 1�
El½xilð1� xjlÞ þ xjlð1� xilÞ�

El½2xalð1� xalÞ�
: (A.2)

The numerator of the fraction represents the probability of
sampling different alleles from population i and population j,
which we estimate by taking its average over all loci. When i and j
correspond to the populations that root the tree, this average
serves as the unbiased estimator of the denominator, 2xað1� xaÞ.
When i¼ j, such that the numerator represents the expected
heterozygosity within a population, we must account for how al-
lele frequencies change when we sample without replacement,
i.e., we must remove the finite sampling bias. If nil represents
the sample size of population i at locus l, then when i¼ j,

El½xilð1� xjlÞ þ xjlð1� xilÞ� ¼
1
L

XL

l¼1

nil

nil � 1
ð2xilð1� xilÞÞ: (A.3)
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When validating that our model predictions match the proba-
bilities of coalescing in our selection simulations, such as in
Figure 4, we repeated the above procedure for sets of loci binned
by genetic distance to the selected site.

A.3 Inference details
When we calculate likelihoods of population allele frequencies,
we need to account for the finite sampling bias in our estimates.
Previously, we described the variance in the true population al-
lele frequency due to genetic drift, however there is an additional
variance in our estimates due to sampling. Since the count of a
certain allele type in a sample is binomially distributed according
to the true allele frequency, then with sample size nil the variance
in allele frequency due to sampling is expected to be approxi-
mately xað1� xaÞ 1

nil
. Thus, the total variance in the population al-

lele frequency is xað1� xaÞðfii þ 1
nil
Þ. Therefore, when we calculate

the probability of population allele frequencies at a locus, we first
modify FðSÞ by adding 1

nil
along the diagonal for each population i.

Because we do not know the ancestral allele frequency at
each locus, we approximate it with the mean across our sampled
population allele frequencies,

xl ¼
1
kl

Xkl

i¼1

xil; (A.4)

where kl is the number of populations with allele frequency data
at locus l. We acknowledge that in our case xl will be biased to-
ward European allele frequencies. With allele frequencies now
distributed relative to each other, we accordingly modify the pop-
ulation allele frequencies and covariance matrix by mean-center-
ing them. The new population allele frequencies therefore

represent deviations from their mean, and a negative covariance
among pairs of populations implies that we predict their allele
frequencies to be on opposite sides of this mean. As xl uses infor-
mation from all populations, we lose a degree of freedom and
thus drop information from a single population. Our resulting
mean-centered allele frequencies are

~xl
0 ¼ Tl~xl (A.5)

and our mean-centered covariance matrix is

FðSÞ0 ¼ TlF
ðSÞTT

l ; (A.6)

where Tl is the kl � 1 by kl matrix with kl � 1
kl

on the diagonal and
� 1

kl
elsewhere. Therefore, we calculate the probability of mean-

centered allele frequencies at a locus as

P ð~xl
0jrl; F;AG; s; tb; xsÞ

�N
�
~xl
0j0; xl ð1� xl ÞFðSÞ0ðrl;F;AG; s; tb; xsÞ

�
:

(A.7)

We take the same approach when calculating probabilities
under the null model.

To allow for computational efficiency, we first bin each site’s
absolute genetic distances to the selected site into 10�3 cM inter-
vals. Each bin’s midpoint value is then used as the representative
recombination rate to predict FðNÞ and FðSÞ for each parameter
combination. When we calculate the probability of allele
frequencies at each site, we use its bin’s representative F and
remove the rows and columns corresponding to unsampled
populations at the site prior to sample size correction and mean
centering.
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