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Exome sequence analysis suggests genetic burden contributes 
to phenotypic variability and complex neuropathy
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Abstract

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal 

symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated 

families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified 

apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are 

proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of 

mutation data revealed a significantly increased number of rare variants across 58 neuropathy 

associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy 

cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy 

genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in 

families were shown to interact genetically in a zebrafish assay exacerbating the phenotype 

established by the suppression of single genes. Our findings suggest that the combinatorial effect 

of rare variants contributes to disease burden and variable expressivity.

Introduction

Charcot-Marie-Tooth (CMT) disease, first described clinically in 1886 [Charcot and Marie, 

1886; Tooth, 1886], is a common hereditary peripheral neuropathy with an estimated 

prevalence of 1/1200 [Braathen, 2012] to 1/2500 [Skre, 1974] individuals. The disease is 

characterized by distal symmetric polyneuropathy (DSP) with progressive muscle weakness 

and atrophy, and sensory loss. Two major clinical types are distinguished by 

electrophysiologic and neuropathologic studies and the type of cells (glia or neurons) 

primarily affected. CMT1 affects the glia-forming Schwann cells and presents with nerve 

conduction velocities (NCV) of <38 m/s; CMT2 affects the axons of neurons and usually 
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presents with NCVs of >38m/s or slightly reduced motor NCVs but with diminished 

amplitudes. Other forms of CMT with additional clinical features have been described, 

including an intermediate form with overlapping demyelinating and axonal CMT features 

[Nicholson et al., 2006] and one in which CMT occurs in conjunction with 

glomerulonephritis [Boyer et al., 2011].

Observed inheritance patterns include: autosomal dominant, autosomal recessive and X-

linked (dominant and recessive) forms [Allan, 1939; Rossor et al., 2012]. Nevertheless, most 

patients present with apparent sporadic disease, attributable partially to the extreme clinical 

variability and age dependent penetrance of the phenotype. New mutation, however, is often 

the cause of sporadic CMT, with the de novo CMT1A duplication of 17p11.2 being 

responsible for 76–90% of sporadic cases [Raeymaekers, et al., 1991; Lupski et al., 1991; 

Hoogendijk et al., 1992; Nelis et al., 1996]. Locus-specific screening for mutations in known 

CMT genes concludes a molecular diagnosis for approximately 70–80% of patients [Szigeti 

and Lupski, 2009; DiVincenzo et al., 2014]. More than 40 genes are known to be causative, 

but it has been estimated that 30–50 ‘CMT genes’ remain to be discovered [Braathen, 2012; 

Timmerman et al., 2014].

CMT1A [MIM #118220] is caused by a recurrent 1.4 Mb duplication that encompasses the 

dosage sensitive myelin gene PMP22 [Lupski et al, 1991; Hoogendijk, 1992; Patel et al., 

1992; Lupski et al., 1992], an essential component of compact PNS myelin [Li et al, 2012]. 

The reciprocal deletion of the identical 17p11.2 region causes hereditary neuropathy with 

liability to pressure palsies (HNPP) [MIM #162500] [Chance et al, 1993; Chance et al., 

1994]. A recent study of 17,000 patients with neuropathy established a molecular diagnosis 

in 18.5% of these; ~80% of molecular diagnoses were either duplication or deletion CNV of 

PMP22 [DiVincenzo, et al. 2014]. Point mutations and indels in PMP22 have also been 

found in patients with CMT1A or HNPP without duplication or deletion [Roa et al., 1993 

(a); Nicholson et al., 1994], and in the more severe early-onset phenotype of hypertrophic 

neuropathy of Dejerine-Sottas [MIM #145900] [Dejerine and Sottas, 1893; Roa et al., 1993 

(a); Roa et al., 1993 (b); Li et al., 2012]. Additionally, non-recurrent and complex 

rearrangements can account for the missing heritability in CMT1A and HNPP, including 

upstream CNVs that do not include PMP22 coding sequence [Zhang et al., 2010; Weterman 

et al., 2010].

The second most common form of CMT is CMTX1 [MIM #302800] caused primarily by 

point mutations that occur in almost every amino acid of GJB1/connexin32 [Kleopa et al., 

2006; Scherer et al., 2012]; gene deletions have also been described [Gonzaga-Jauregui et 

al., 2010]. GJB1 encodes a gap junction protein involved in the formation of connexon 

hemichannels that facilitate the communication and exchange of ions and other small 

molecules between Schwann cells and axons [Scherer et al., 2012].

The third most common cause of CMT, and the most common form of CMT2, are 

heterozygous mutations in MFN2 (CMT2A; [MIM #609260]) [Ben Othmane et al., 1993; 

Züchner et al., 2004; Verhoeven et al., 2006], essential for mitochondrial fusion and 

function [Kijima et al., 2005] and maintenance of mitochondrial morphology. Mutations in 

MFN2 lead to mitochondrial dysfunction due to mtDNA depletion [Vielhaber et al., 2013]. 
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Mutations in GDAP1 cause a recessive form of CMT, which can be either demyelinating 

(CMT4A; [MIM #214400]) [Cuesta et al., 2002], axonal (CMT2K; [MIM #607831]) [Nelis 

et al., 2002] or intermediate (CMTRIA; [MIM #608340]) [Senderek et al., 2003] and have 

been reported to affect mitochondrial fission in Schwann cells and neurons [Niemann et al., 

2005].

Known CMT genes encode proteins that span a wide range of functions, from GTPases 

(RAB7, DNM2), lipid phosphatases (FIG4, MTMR2), to structural myelin proteins (MPZ, 

PMP22) and gap junction channel components (GJB1). Cellular functions include myelin 

assembly (PMP22, MPZ, PRX, Cx32), membrane and endocytic trafficking (MTMR2, SBF2, 

FIG4, SH3TC2) and mitochondrial dynamics (MFN2, GDAP1) [Niemann et al., 2005; 

Azzedine et al., 2012]. Another predominant contributing gene group is that of aminoacyl-

tRNA synthetases, an essential class of enzymes that ligate amino acids onto cognate tRNA 

molecules [reviewed in Wallen and Antonellis, 2013].

Other complex forms of CMT2 (e.g. spinocerebellar ataxia with axonal neuropathy, 

SCAN1) have been associated with mutations in TDP1, important for DNA single strand 

break repair (SSBR) [McKinnon et al., 2007; Caldecott, 2008]. Mutations in SETX, a 

helicase involved in transcriptional termination and RNA maturation, cause recessive ataxia 

ocular motor apraxia type 2 (AOA2; #606002) [Moreira et al., 2004] possibly due to 

transcriptional/translational defects [Anhelm et al., 2012], also disturbing DNA SSBR 

[Caldecott, 2008]. SETX mutations have been associated with familial amyotrophic lateral 

sclerosis (ALS), susceptibility that recently was also associated with heterozygous FIG4 

mutation carrier states [Chow et al., 2009].

Substantial genetic and clinical heterogeneity of CMT neuropathy makes it challenging for 

molecular diagnosis by single gene and gene panel testing; the diagnostic utility of genome-

wide sequencing approaches has been demonstrated [Lupski et al., 2010; Montenegro et al., 

2011; Choi et al., 2012; Lupski et al, 2013]. We performed whole exome sequencing (WES) 

in a cohort of 40 patients with peripheral neuropathy from 37 unrelated families in whom 

extensive genetic evaluation had failed to identify a causative mutation or establish a 

molecular diagnosis (Table 1). Analysis of WES data was performed in two stages: a first-

pass analysis that focused on known or novel variants in known CMT and related 

neuropathy genes, and a second stage analysis to search for rare variants in likely novel 

candidate genes (Supplementary Figure 1). Our rare variant analyses revealed potential 

neuropathy candidate ‘disease genes’. Surprisingly, we uncovered evidence for a mutational 

burden in affected individuals versus a large sample of unrelated control individuals. We 

show experimentally that genetic interactions implicated by burden contribute to phenotypic 

variability and potentially to susceptibility to common neuropathies beyond the well 

characterized Mendelian forms.

Results

Known alleles in known neuropathy genes

We identified known disease-causing alleles in six of the 37 index patients (see 

Supplementary Information for detailed clinical information). Two represented phenotypic 
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expansions of CMT2 caused by mutations in MFN2 (Figure 1A), where the clinical 

presentation made screening for MFN2 unlikely. One family showed two separate 

segregating causes of CMT [Verny et al., 2004], one X-linked and the other caused by 

compound heterozygous mutations in MED25. A novel, likely disease causing allele was 

found in trans with the only known disease causing allele in this gene [Leal et al., 2001; 

Leal et al., 2009]. In a proband with autosomal dominant neurosensory deafness and axonal 

neuropathy we found a recently reported mutation in MYH14 [Choi et al., 2011]. Finally, in 

a consanguineous family, we detected a 14kb homozygous deletion CNV encompassing 

exon 1 of ABHD12 segregating with the complex neuropathy phenotype observed in the 

proband and affected siblings [Fiskerstrand et al., 2010] (Supplementary Figure 2). An 

additional homozygous GDAP1 novel variant was also identified in some affected 

individuals of this family posing the possibility of an additive contribution from intragenic 

deletion CNV plus SNV variation.

Novel alleles in known neuropathy genes

Rare non-synonymous, frameshifting, or splicing variants were identified in known CMT/

neuropathy disease genes, illustrating the complexity that can underscore ‘simple’ 

mendelian conditions (see Supplementary Information for detailed clinical information). We 

identified a patient with mutations in both MFN2 and GDAP1, both of which are involved in 

mitochondrial dynamics. Concurrent mutations in these genes have been reported, 

suggesting the possibility of epistasis or modifying effects [Cassereau et al., 2011; Vital et 

al., 2012]. In a family with three generations affected by autosomal dominant intermediate 

CMT, we sequenced two individuals and identified a novel variant in YARS affecting a 

residue previously reported to be mutated in disease [Jordanova et al., 2006] (Figure 1B). 

Functional analyses revealed that the identified YARS allele is a functional hypomorph, 

unable to complement fully deletion of the endogenous yeast gene, TYS1, in growth 

complementation assays (Supplementary Figure 3), supporting a pathogenic role for this 

mutation in CMT. A male patient with Sotos syndrome [MIM #117550] due to NSD1 

deletion, plus clinical neuropathy was found to carry several predicted deleterious variants in 

different CMT genes in addition to a novel potentially pathogenic variant in the X-linked 

AIFM1 gene [Rinaldi et al., 2012]. Compound heterozygous truncating mutations in SURF1 

were identified in a proband with demyelinating CMT. Loss of function mutations in SURF1 

were recently described in patients with autosomal recessive severe demyelinating 

neuropathy of childhood onset [Echaniz-Laguna, 2013], consistent with this patient’s 

clinical and molecular findings.

Genetic and functional evidence for potential candidate CMT genes

We identified variant alleles implicating three potential new candidate neuropathy genes, 

PMP2, SPTLC3, and DNAJB5, in 3 different families. In a family with a clinical diagnosis 

of autosomal dominant demyelinating CMT1 neuropathy, we found a candidate missense 

variant in myelin protein P2, PMP2 (c.T128A; p.I43N) as the most likely disease causing 

variant. We confirmed this variant in the proband and his affected father, and its absence in 

both unaffected mother and sister (Figure 1D). PMP2 is a major stabilizing component of 

the myelin sheath that insulates the axons in the PNS [Majava et al., 2010], but to date has 

not been associated with any genetic peripheral neuropathy. PMP2 is predominantly 
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expressed in myelinating Schwann cells, with specific expression in sciatic nerve 

endoneurium and dorsal root ganglia [Zenker et al, 2014]. Homozygous knockout 

(Pmp2−/−) mice have significantly reduced temporal motor nerve conduction velocities, 

although no major structural changes in the myelin sheath and peripheral nerves were 

observed [Zenker et al, 2014].

In vivo modeling experiments interrogated the potential impact of PMP2 loss of function 

and of this specific novel variant. Two orthologues exist in zebrafish; suppression of either 

using morpholino (MO) knockdown led to a motor neuron phenotype, including failure of 

the motor neuron axons to extend from the notochord, as well as pathfinding errors where 

the axons failed to innervate the myotomes appropriately (Figure 2A–B). These phenotypes 

could be rescued by co-injection of the MO with wild-type human PMP2; however contrary 

to wild-type, human mRNA carrying the variant identified in our proband failed to restore 

the MO induced phenotype (Figure 2A–D and E). Upon overexpression, wild-type human 

mRNA induced a phenotype similar to the one observed with MO alone in >50% of injected 

embryos, suggestive of a dosage-sensitive transcript, similar to PMP22. Overexpression of 

human mutant (p.I43N) PMP2 mRNA exacerbated the phenotype significantly (~20% 

increase; p=0.0003 Figure 2E–F); consistent with a dominant-negative mechanism of 

pathogenesis for this allele.

Of note, antibodies against PMP2 fragments were identified initially in experimental allergic 

neuritis, an autoimmune peripheral neuropathy in animals like rats and rabbits, and a model 

for Guillain-Barre syndrome (GBS) [Ishaque et al., 1981; Ishaque et al., 1982]. One of the 

main characteristics of GBS is the autoimmune attack to the peripheral nerves’ myelin 

sheath causing demyelination. Antibodies against myelin protein zero (MPZ, P0) and most 

significantly to myelin protein 2 (PMP2, P2) have been detected in patients with GBS and 

chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) characterized by 

primary demyelination and lymphocytic infiltration of the peripheral nerve [Inglis et al., 

2007]. Thus, discovery of this mutation in a CMT patient suggests a potential mechanistic 

link between auto-immune neuropathy and inherited neuropathy.

We identified a novel variant in SPTLC3 (c.T448C; p.W150R) changing a highly conserved 

residue and predicted to be damaging by bioinformatic algorithms in a patient; no parental 

samples were available. The proband presented with neuropathy with a marked sensory but 

no apparent autonomic involvement. SPTLC3 is the third subunit of the serine 

palmitoyltransferase enzyme (SPT) involved in the de novo biosynthesis of sphingolipids 

[Hornemann et al., 2009]. Heterozygous mutations in subunit 1 of SPT, SPTLC1, were first 

identified as the cause of hereditary sensory and autonomic neuropathy type 1A [HSAN1A; 

MIM #162400] [Dawkins et al., 2001]. Both genes encoding the additional subunits of SPT, 

SPTLC2 and SPTLC3, were screened for mutations in a cohort of typical HSAN patients. 

Heterozygous missense mutations were identified in SPTLC2 in a fraction of patients but no 

mutations were found in SPTLC3 [Rotthier et al., 2010]. Consistent with a neuropathy 

‘disease gene’, suppression of the sptlc3 orthologue in zebrafish embryos showed motor 

neuron axon defects that phenocopied suppression of other known CMT genes (Figure 2H–

I). The specific phenotype could be rescued by co-injection with SPTLC3 wild-type human 

mRNA (Figure 2H–L). Injection of human mRNA carrying the variant identified in the 
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proband was unable to rescue the phenotype, supporting the contention that the missense 

variant represents a hypomorphic or possible loss of function allele (Figure 2H–L).

In a large family with an inheritance pattern consistent with an autosomal dominant 

myopathy/neuropathy, we identified 10 shared variants in three affected individuals, of 

which 9 did not segregate with the disease. A novel variant in DNAJB5 (c.C43T; p.P15S) 

was the only rare variant that co-segregated with the phenotype (Figure 1C). This rare 

variant was observed in four other independent individuals in our exome database of ~3,000 

individuals; however no phenotypic information is available for these individuals. The 

variant is also present in the heterozygous state in a single individual in the Exome 

Aggregation Consortium (ExAC) compiled dataset (MAF=0.00004858). This DNAJB5 

variant affects a highly conserved amino acid in the DnaJ domain of the protein. A 

homozygous mutation in DNAJB2 was identified in a large family segregating recessive 

distal hereditary motor neuropathy of early adulthood onset [Blumen et al., 2012]. Mutations 

in DNAJB6 have also been implicated in autosomal dominant myopathy [Harms et al., 2012; 

Sarparanta et al., 2012] and have a dominant negative toxic effect increasing the stability of 

the cytoplasmic form of the protein and interfering with its chaperone function [Sarparanta 

et al., 2012]. These three genes encode members of the HSP40/DNAJ family of molecular 

co-chaperones which protect proteins from irreversible aggregation during protein synthesis 

or molecular stress. Functional testing of this gene by MO knockdown in zebrafish showed 

abnormal peripheral nerve axonal architecture supporting a role of this gene in peripheral 

nerve pathophysiology but had no apparent effect on muscle architecture (Supplementary 

Figure 4). We propose DNAJB5 as a potential candidate for myopathy/neuropathy based on 

its relationship with previously reported genes involved in similar phenotypes; HSPB8 

(HSP27) and HSPB1 (HSP22) are known genes associated with peripheral neuropathy 

[Evgrafov et al., 2004; Irobi et al., 2004].

Rare variant contributions to phenotypic manifestations – evidence for a mutation burden

WES of neuropathy patients often identified more than one rare variant in a neuropathy gene 

within a given personal genome (Table 2). As described above, we identified the 

predominant highly penetrant Mendelizing variants (HPMV) in multiple patients, as 

evidenced by co-segregation with disease or de novo appearance in sporadic neuropathy. 

However, we also identified potential contributing or modifying rare variants in other 

neuropathy associated genes (Figure 3). These latter rare variants are not likely the 

mutations predominantly responsible for trait manifestation because they are inherited from 

an unaffected parent or do not conform to Mendelian expectations (i.e. exceptions to co-

segregation with neuropathy in the family). For example, we observed a higher than 

expected heterozygous carrier frequency of the reported MED25 (p.A335V) mutation in our 

cohort (10% of patients; MAF = 5.0%) compared to that observed in the NHLBI ESP study 

sample (65/6498 individuals; MAF=0.5% [P-value=0.001]), a group of 266 controls (2/266 

individuals; MAF=0.375% [P-value=0.003]), and the ARIC European-American (ARIC-

EA) study participants (80/ 5748 individuals; MAF=0.7%[P-value=0.003]). Although in 3 

of 4 cases in our patient cohort there is no ‘second hit’ in MED25 to cause the CMT2B2 

phenotype, we cannot discount the possibility of a second pathogenic non-coding variant not 
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captured by WES or the potential contribution of this mutation in a mutational aggregation 

model to the overall phenotype of these patients.

Of note, we identified an average of 2.3 nonsynonymous rare variants per individual in 58 

known neuropathy-associated genes in the entire patient cohort (37 samples) versus 1.3 

nonsynonymous rare variants in 5748 ARIC-EA control individuals (P < 0.0001; Figure 

4A). Cases with a definitive molecular diagnosis had an average of 2.9 variants per 

individual (including the HPMV) while the undetermined cases had an average of 1.8 

variants per individual. After implementing a stringent filter where we subtracted the HPMV 

of each molecularly defined case, we still found an average of 1.8 variants in the CMT 

cohort vs. 1.3 in controls (P=0.007), similar to the average of mutations in only the cases 

without a yet definitive HMPV (Supplementary Figure 5). These data suggest that the 

mutation burden in CMT genes remains the same between patients with a known versus 

unknown HMPV and is significantly greater than the background load in unaffected 

controls.

As a further test of this mutational burden observation, we calculated repeatedly the average 

number of rare, nonsynonymous variants in the 58 neuropathy genes in 40 randomly 

selected individuals from the BHCMG_EU sample set compared to the 5748 ARIC_EA 

controls. Upon conclusion of 100 resamplings (with replacement), we only found three 

instances in which the p-value was lower than the p-value observed in our original US CMT 

(subtracting the HPMV) vs. ARIC_EA analysis;. These data reinforce the notion that the 

background mutation load in these 58 neuropathy genes is specific to the population of 

neuropathy patients.

To further investigate our observation of neuropathy gene mutation burden in neuropathy 

patients, we analyzed WES data from an independent cohort of 32 patients (30 families) 

from Turkey with a clinical diagnosis of CMT. When compared to population-matched 

unrelated Turkish controls, the Turkish neuropathy cohort had a mutation burden of 2.1 vs. 

1.6 (P = 0.013) nonsynonymous rare variants per individual, lending further credence to the 

mutation burden hypothesis (Figure 4B, Supplementary Figure 5). The smaller difference in 

the number of rare variants per individual may also reflect a greater number of private 

variants in the Turkish population (particularly recessive alleles) or the contribution of 

consanguinity in this population.

Functional testing of the mutation burden hypothesis

We hypothesized that the ‘mutation burden’ observed in the CMT cohorts would be 

reflected in the functional consequences of CMT gene knockdown, and combinations 

thereof, in a zebrafish model. This functional assay evaluated the integrity and innervation 

of motor neuron axons along the body axis (Figure 5). A subset of genes was tested for 

potential genetic interactions and mutation burden effects on phenotype based on our initial 

cohort’s observed mutation events. Specifically, we suppressed each of mfn2, gdap1, 

abhd12, med25, hspb1, and wnk1 separately and in pair-wise combinations of sub-effective 

doses and tested the functional consequences of the genetic interactions between the selected 

CMT genes. Consistent with our hypothesis, we observed increased severity in the 

phenotype of aberrant axon extension, branching, pathfinding, and morphology of peripheral 
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neurons in our zebrafish model when we injected pairwise combinations of these genes 

(Figure 5). In each case, we observed likely multiplicative effects, although the magnitude 

of interaction was unique for each pairing. For example, sub-effective co-injection of MOs 

against mfn2 and gdap1, which by themselves gave no phenotype at the dose tested, yielded 

a milder exacerbated phenotype (Class I/II motor neuron pathology in 80–100% of embryos 

tested); whereas co-suppression of mfn2 and med25 yielded 80–100% affected embryos, 

with 1/3 of the embryos affected severely (Class III/IV). These data support the prediction of 

genetic interaction for loss of function events in bona fide CMT genes. To assess the 

specificity of our in vivo model we also tested for genetic interaction between GDAP1, a 

bona fide CMT driver, and 3 genes that have not been associated previously with peripheral 

neuropathy. Two of those are expressed in the CNS and cause other neuropathologies (SIX6: 

optic nerve atrophy [Carnes et al., 2014]; RP1L1: retinal degeneration and cerebellar 

disorganization [Davidson et al., 2013]), and the third is expressed ubiquitously and causes 

VACTERL (ANKRD6; unpublished data). We injected sub-effective doses of each of the 

tested genes alone and also in pair-wise combinations (Supplementary Figure 6). Though 

RP1L1 yields a 20% increase in the percentage of embryos with abnormally formed 

peripheral neuronal axons when injected alone, we observed no exacerbation of the 

phenotype when each of those genes was suppressed in combination with GDAP1.

Discussion

Whole exome sequencing (WES) allows genome-wide assessment of SNV coding variation 

in the fraction of the human diploid genome that we can potentially interpret. However, even 

in genetic conditions with known associated genes, interpretation can be complicated by the 

presence of novel variants in more than one causative gene [Yang et al., 2013; Yang et al., 

2014]. Additionally, the contribution of variants in a multiplicity of genes for a single 

condition within an individual personal genome and how variation in these can contribute to 

or modify the phenotype has rarely been assessed.

We identified the apparent HPMV and likely primary disease driver of the neuropathy 

phenotype in 17/37 (45.9%) families studied and suggest a potential candidate gene for 3 

additional families. We discovered a mutational burden of 2.3 damaging variants in CMT 

patients versus 1.3 in controls for the 58 neuropathy associated genes examined (P < 

0.0001). After a highly stringent additional filter consisting of subtraction of the HPMV, 

neuropathy patients carry a mutation burden consisting of an average of 1.8 rare variants in 

neuropathy-related genes, as compared to an average of 1.3 rare variants in a control 

population (P=0.007). A mutation burden (P = 0.013) was replicated in a second, ethnically 

distinct CMT cohort in comparison to ethnically matched controls. This mutation burden 

may well influence the phenotype, contributing to the clinical heterogeneity and the 

spectrum of severity observed in the disease [Haldane, 1941]. We explored this hypothesis 

in vivo examining phenotypic consequences of genetic interaction between select pairs of 

neuropathy genes. We observed increased severity of the phenotype in zebrafish consistent 

with potential additive and positive genetic interactions between neuropathy genes.

Our cohort has an intrinsic bias since individuals had previous extensive clinical and 

molecular screening for disease causing variation in the most common CMT genes prior to 
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consideration for WES. As anticipated, we found a low frequency of known mutations as 

these samples were previously screened for such variants. We found variants in known CMT 

or neuropathy genes in 17 cases; including one (MFN2) showing phenotypic expansion in a 

CMT1 family. By expanding our candidate list to include additional neuropathy-associated 

genes, we achieved a 45.9% (17/37) mutation detection rate. Furthermore, we identified 

likely candidate genes PMP2, SPTLC3, and DNAJB5 in an additional 3 families potentially 

providing molecular insights into 20/37 (54.1%) of the families. We also provide functional 

evidence for the pathogenicity of the identified variants in PMP2 and SPTLC3 (Figure 2) 

and the effect of dnajb5 suppression on motor neurons (Supplementary Figure 4). However, 

conclusive proof for these genes representing bona fide ‘neuropathy disease genes’ will 

require the identification of pathogenic variants in additional patients.

Analysis of the WES data from this neuropathy cohort illustrates limitations of clinical 

phenotyping. Detailed phenotypic information is required for correlating potential disease 

causing variants to the clinical phenotype of patients. As illustrated in 12 of the study 

subjects, 8 from the initial cohort and 4 from the Turkish cohort originally referred for a 

presumptive clinical diagnosis of CMT, after a molecular diagnosis by WES and upon 

retrospective re-evaluation of clinical records, the broader spectrum of additional clinical 

features suggested other disorders associated with neuropathy. Moreover, these further 

refined phenotypes were consistent with the molecular findings from WES in each of the 

identified genes (Supplementary Table 1). The phenotype driven paradigm for clinical 

diagnosis is limited by the: i) presentation of the patient at the given time, ii) individual 

examiner and iii) underlying assumption of a singular unifying diagnosis; the latter 

potentially not applicable to either a mutation aggregation model or a mutation burden 

hypothesis.

In 29/40 (72.5%) patients we identified additional ‘carrier status’ mutations in other CMT or 

neuropathy associated genes besides the apparent HPMV (Table 2). These additional 

variants might contribute to the variability of expression of the clinical phenotype [Haldane, 

1941]. Furthermore, in the cases where specific HPMVs were not identified, novel loci 

potentially await to be recognized as main disease drivers (Supplementary Table 2), but the 

mutation burden may still contribute to variable expressivity of the neuropathy phenotype. It 

is possible that mutation burden and combinatorial effects of rare variants in genes that 

interact genetically in the same biological pathways, such as those of tRNA biogenesis, 

endocytic recycling or mitochondrial dynamics, modify the phenotype due to synergistic 

(exemplified by MFN2 and GDAP1 co-occurring mutations in the same patient) or 

counteracting effects [Klassen et al., 2011; Davis and Katsanis, 2012]. Alternatively, or 

additionally, the cumulative mutation burden in genes dispersed across various biological 

pathways or ‘networks’ might interplay to destabilize or compensate the system and thus 

modulate the penetrance and/or expressivity of the overall phenotype. Although robust, the 

capacity of biological networks to buffer perturbations may be limited if various mutational 

events are coincident in a personal genome. Studies of the human disease network [Goh et 

al., 2007; Hidalgo et al., 2009] at the genomic scale will likely contribute to our 

understanding of both disease and homeostatic states in human biology.
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Genome-wide approaches have shown that rare variants are more common than previously 

thought [Coventry et al., 2010; Marth et al., 2011]; a robust observation for both SNV and 

CNV disease associated alleles [Boone et al., 2013]. The overall phenotype of a given 

individual may to a greater extent represent contribution of either de novo or more recent 

and private mutational events with bigger effects on the whole system function, the ‘driver’ 

genes that occurred in the recent ancestors of the individual or clan [Lupski et al., 2011], 

rather than more distributed common variants shared in a population or throughout several 

populations. This mutation burden hypothesis and its role in clan genomics is further 

illustrated in CMT1A duplication families wherein a phenotypic outlier in the family is 

recognized when the duplication becomes a triplication [Liu et al., 2014] or a CMT1A 

duplication is ‘homozygosed’ in a severe neuropathy patient born to heterozygous affected 

parents [Lupski et al., 1991].

Interestingly, within peripheral neuropathies, several disorders once thought to be mostly 

caused by environmental factors, have been subsequently shown to have a genetic 

susceptibility component. A key example is provided by CNV at the PMP22 locus. The 

reciprocal to the CMT1A duplication, deletion of 17p11.2, causes Hereditary Neuropathy 

with Liability to Pressure Palsies (HNPP) [Chance et al., 1993]. Trait manifestation is 

usually associated with an environmental insult, trauma to a specific nerve and often those 

that come anatomically close to the surface (e.g. the ulnar nerve responsible for the ‘funny 

bone’ phenomena of numbness and tingling upon hitting the elbow). Locus-specific 

molecular studies revealed the majority of individuals that carry the HNPP deletion go 

undiagnosed [Turner et al., 2008] due to phenotypic variability or lack of clinical symptoms 

[Kumar et al., 1999]. However, association of the deletion carrier status with susceptibility 

to developing carpal tunnel syndrome (CTS) has been documented [Cruz-Martinez and 

Arpa, 1998; Potocki et al., 1999; Del Colle et al., 2003]. Additionally, 24 of 51 patients 

diagnosed with multifocal neuropathies, not considered a genetic disease, were found to 

carry the HNPP deletion. Moreover, 37% of mutation positive subjects had no family history 

of neuropathy [Tyson et al., 1996]. Consequently, haploinsufficiency of the dosage sensitive 

PMP22 gene, either by HNPP deletion (CNV) or loss of function point mutations 

[Nicholson et al, 1994; Shy et al., 2006], has been associated with susceptibility to milder 

forms of neuropathy. Furthermore, haploinsufficiency of the CMT SH3TC2 gene can also 

confer subclinical neuropathy phenotypes in heterozygous carriers, including subclinical 

axonopathy and median nerve mononeuropathy associated with susceptibility to CTS 

[Lupski et al., 2010].

From this perspective, our identification of a PMP2 variant, a gene whose product has been 

linked to experimental autoimmune neuropathy and both Guillain-Barre syndrome (GBS) 

and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), in one family 

suggests a potential genetic susceptibility to autoimmune neuropathy. Haploinsufficiency of 

other CMT or neuropathy genes can also contribute to susceptibility to multifactorial 

neuropathies. Moreover a recent study to survey possible underlying genetic contribution to 

developing chemotherapy induced peripheral neuropathy (CIPN) due to allelic variability in 

known CMT genes identified an association of PRX heterozygous variants in individuals 

that developed CIPN versus controls similarly exposed [Beutler et al., 2014]. Additionally, 
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three common SNPs in ARHGEF10 were also associated to different outcomes of protection 

and susceptibility to CIPN in the same cohort [Beutler et al., 2014]. These findings support 

and highlight one of the main hypotheses from the present study; the mutation burden of 

carrier status, for neuropathy-associated rare variant recessive alleles, in clinically 

unaffected individuals can poise the organism to develop other types of complex 

neuropathies later in life upon gene-environment interactions (GxE). External insults, 

chemical or mechanical; other pathologic processes like diabetes or infection; or ageing with 

concomitant prolonged exposures, and/or reduced biological function of cells (e.g. SSBR, 

gene transcription, protein processing and folding, etc.) or functional units like the neuron 

can be the critical factor for the system to express the disease later in life. This might also be 

true for other traits thought to be complex and having a major environmental influence with 

a reduced genetic component that have been elusive to other approaches. Rather than single 

locus strong associations across populations, each individual with such a given complex 

disorder can carry a handful of rare/private variants in a variety of genes in their personal 

genome that are important for the development of the disease process and that through an 

oligogenic model confer susceptibility to the individual to develop the disorder upon 

additional factors such as diet, exposures, ageing, etc.

In summary, our studies of rare genomic variants in neuropathy identify known pathogenic 

alleles, novel variants in known disease genes, and further document phenotypic expansion 

for disease gene traits. We identified 3 potential novel candidate neuropathy ‘disease genes’ 

as supported by both genetic and functional studies. Moreover, we provide evidence that 

genome-wide studies and molecular diagnosis can further assist interpretation of a clinically 

based differential diagnosis. Of note, systematic analyses of genes implicated in neuropathy 

reveal a mutation burden in patients compared with unaffected control populations and 

zebrafish model organism studies show gene interactions for genes implicated by mutation 

burden in individual families. This mutation burden is consistent with the concept of clan 

genomics (Lupski, et al 2011) contributing significantly to both Mendelian and common/

complex disease trait manifestation.

Experimental Procedures

Samples

We performed WES through the Baylor-Hopkins Center for Mendelian Genomics 

(BHCMG). Written informed consent from all participating subjects was obtained for DNA 

and genetic analyses though a Baylor College of Medicine Institutional Review Board 

approved protocol, also approved by the BHCMG ELSI committee for inclusion into the 

BHCMG sequencing project. Some of these samples had been collected and stored over 

decades; thus, DNA of parents or other family members was not always available for 

additional testing and co-segregation analyses.

Exome sequencing

We performed whole-exome next-generation sequencing according to previously published 

methods [Lupski et al., 2013; see Supplementary experimental methods for details], 

producing an average of 9.25 Gb of raw data per exome and achieving ~93.5x average depth 
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of coverage (median coverage = 97x) per sample with >90% of the captured bases covered 

at 20x (Supplementary Table 3). Variant data generated will be released and deposited into 

the NCBI database of Genotypes and Phenotypes (dbGaP: http://www.ncbi.nlm.nih.gov/

gap) as part of the Centers for Mendelian Genomics research initiative.

Variant annotation pipeline

Variant calling from the aligned BAM files was performed using the ATLAS [Shen et al., 

2010] and SAMtools suites [Li et al., 2009]. Annotation was performed using Sacbe, an in-

house developed annotation pipeline [Gonzaga-Jauregui et al., 2013] based on ANNOVAR 

[Wang et al., 2010] and custom scripts (see Supplementary experimental methods for 

details).

Data analysis

We performed an initial analysis focusing on a list of 74 CMT and other neuropathy 

associated genes (Supplementary Table 4). Additionally, we interrogated a list of candidate 

CMT genes (Supplementary Table 5) based on first degree interactors of known CMT genes 

and performed a second pass analysis in those cases where we did not identify candidate 

mutations in CMT genes.

The number of rare (i.e., minor allele frequency of ≤1% in TGP, NHLBI ESP, and the 

European subset of NHLBI ESP) nonsynonymous variants in 58 well-established CMT 

genes (Supplementary Table 6) was computed for each sample of the neuropathy cohort and 

for 5748 Europeans from the ARIC (Atherosclerosis Risk in Communities study) cohort, a 

large population-based study of cardiovascular disease and its risk factors. The average 

number of rare nonsynonymous variants was then compared between the neuropathy and 

ARIC study samples using a non-parametric Mann-Whitney-Wilcoxon test. A permutation 

procedure with 100,000 iterations was performed to determine statistical significance. For 

the second CMT cohort of Turkish descent, a set of 472 Turkish controls was used that was 

sequenced and analyzed using identical protocols, platforms, and standards to those of the 

cases.

Functional experiments

See Supplementary experimental methods for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pedigrees of CMT/neuropathy patients and segregation of causative mutations. A. Pedigree 

showing de novo occurrence of the known p.V244M MFN2 mutation in proband. B. 

Dominant pedigree of a dominant intermediate form of CMT and segregation of the 

identified novel variant p.E196Q in YARS. Mutation was inherited to the affected proband 

and affected sister from the affected mother. C. Pedigree of a dominant form of CMT and 

segregation of the mutation in candidate gene PMP2 (p.I43N). The affected proband 

inherited the mutation from his affected father, while both unaffected mother and sister do 
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not carry the mutation. D. Pedigree of a dominantly inherited myopathy-neuropathy 

phenotype in a family with multiple affected individuals where a novel variant in DNAJB5 

(p.P15S) was identified.
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Figure 2. 
Suppression of pmp2 and sptlc3 in zebrafish causes defects in motor axon pathfinding and 

outgrowth. A–F. Lateral views of a control embryo, an embryo injected with pmp2 

morpholino (MO) and embryos injected with pmp2 MO+PMP2_WT and pmp2 MO

+PMP2_I43N, PMP2_WT and PMP2_I43N cocktails, respectively, at 2dpf (days post 

fertilization). Controls showed even spacing and normal branching of the motor neuron 

axons (A). In the pmp2 MO injected embryos the spacing of neuronal axons is perturbed by 

exiting the periphery but failing to extend (asterisks) or presenting pathfinding errors 

(arrows; B). Co-injection of pmp2 MO with human PMP2_WT resulted in restoration of the 

normal neuronal phenotype (C), but PMP2_I43N did not (D). Overexpression of human 

PMP2_WT causes mild pathfinding errors (E), suggesting dose sensitivity for PMP2. 

However, the human PMP2 mutant p.I43N, was significantly more severe than PMP2_WT 

when overexpressed (F) and had similar effects to suppression of pmp2 by MO knockdown. 

G. Percentage of normal versus abnormal embryos under the conditions being evaluated 

above. H–K. Wild type embryos (H) and sptlc3 morphants (I) in which secondary axons fail 

to migrate appropriately (white arrows). The phenotype induced by suppression of sptlc3 

could be rescued by co-injection with SPTLC3_WT (J) but not SPTLC3_R150W (K). L. 

Quantification of normal embryos vs. embryos with motor neuron axon defects. For 

statistical analyses χ2 -tests were performed.
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Figure 3. 
Neuron schematic of the localization or site of action of the main CMT/ neuropathy gene 

products. Legend on left shows patient identifier numbers and causative and possibly 

contributing mutations identified by WES. Full shapes correspond to rare presumed 

causative mutations deemed Highly Penetrant Mendelizing Variants (HMPVs); while empty 

shapes correspond to rare variants that may be contributing to the mutation burden in 

neuropathy patients. Each personal genome is distinguished by a unique color/shape. In bold 

are some of the canonical CMT genes.
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Figure 4. 
Rare variant distribution in studied individuals suggests high carrier frequency for rare 

alleles in neuropathy genes in exome sequenced neuropathy cohort. A different extended 

cohort of 5748 Europeans from the ARIC-EA study was observed to have a tendency 

towards zero or one rare variants in recessive neuropathy genes.
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Figure 5. 
Functional assessment of mutation burden hypothesis in a zebrafish model. First and second 

column panels show representative images of acetylated-tubulin (α-AcTub) staining of 

peripheral neurons in 2-day MO knockdown, single or in pair-wise combinations, zebrafish 

larvae. Third column panel shows qualitative assessment of morphant fish evaluated as 

defects in peripheral neuron axon extension, branching or pathfinding according to the 

scoring system developed. For pair-wise combinations, sub-effective concentrations of each 

of the gene-specific MOs were injected as shown in the graphs by the number of abnormal 

larvae in each category. However, when injected together increased severity in the 

phenotype was observed for all the pair-wise combinations, suggesting in vivo epistatic 

effects between these pairs of genes as observed in the α-AcTub fluorescence images and 

quantified in the graphs. Asterisks highlight some evidently affected axons.

The scoring system used for assessing PNS defects in zebrafish was developed ad hoc and 

implemented here in order to best reflect the observations resulting from our experiments. 

Class I category refers to single axon defects; Class II category refers to two or more axons 

exhibiting defects with the presence of some normal axons; Class III category refers to 

generalized axonal defects; Class IV category refers to complete absence of axonal 

extension.
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