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Maternal-fetal cellular trafficking
(MFCT) during pregnancy leads

to the presence of maternal cells in the
fetus and of fetal cells in the mother.
Since this process may be altered in cases
of pregnancy complications, we asked
whether open fetal surgery leads to
changes in microchimerism levels. We
analyzed maternal and fetal microchimer-
ism in fetuses who underwent open fetal
surgery for repair of spina bifida and
compared their levels to patients who had
postnatal repair and to healthy controls.
We found that maternal microchimerism
levels were increased in patients who had
open fetal surgery compared with con-
trols. In contrast, patients who had fetal
intervention at the time of delivery did
not demonstrate increased microchimer-
ism. These results suggest that open fetal
surgery may alter trafficking. Given the
importance of MFCT in maternal-fetal
tolerance, we discuss potential implica-
tions for the field of preterm labor and
transplantation tolerance.

Maternal-fetal cellular trafficking (MFCT)
during pregnancy results in bidirectional
passage of cells between the mother and
the fetus, resulting in maternal cells in the
fetus1,2 (maternal microchimerism, MMc)
and fetal cells in the mother3-6 (fetal
microchimerism, FMc). While the
mechanisms of this trafficking are not
known, it has been suggested that the
presence of microchimeric cells in the fetus
leads to the generation of fetal regulatory
T cells that suppress an immune response
against maternal antigens.7 Thus, MFCT
may be a component of maternal-fetal
tolerance.

With advances in prenatal diagnosis and
improvements in fetal surgical techniques,
there are now increasing indications to
perform fetal interventions for severe
congenital anomalies.8 While the field
started as a way to treat severe, fatal
anatomic abnormalities, with improve-
ments in fetal surgical techniques and
outcomes, it has expanded to include the
repair of spina bifida (myelomeningocele),
which is the first non-fatal disorder for
which open fetal surgery has been per-
formed. However, the field remains
severely limited by preterm labor (PTL),
as demonstrated by multiple clinical
trials.9,10 Recently, we participated in a
multi-center randomized clinical trial to
compare fetal surgery to post-natal repair
of spina bifida.9 This trial demonstrated
that prenatal repair of the neural tube
defect led to a decrease in the need for
ventriculoperitoneal shunting (which car-
ries significant morbidity) as well as an
improvement in motor function and
mental development. However, there was
an increased risk of chorioamniotic mem-
brane separation and of spontaneous
membrane rupture, with an overall
increased risk of preterm delivery in the
fetal surgery group.9 Since this trial
examined a disease that did not cause fetal
hemodynamic distress and included
patients who underwent either pre- or
post-natal repair, it was the ideal setting in
which to also analyze the effects of open
fetal surgical intervention on MFCT.

To determine the effects of open fetal
surgery on MFCT, we collected maternal
and cord blood samples at the time of
birth from fetuses with spina bifida who
underwent prenatal repair (n = 5), as well
as those with spina bifida who were
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randomized to postnatal repair (n = 6).
Both of these groups were delivered by
Cesarean section and healthy term patients
who were delivered by Cesarean section
served as controls (n = 9). We also
examined trafficking in another important
control group: fetuses with congenital
anomalies who had an intervention at the
time of birth to assist with stabilization:
the ex utero intrapartum treatment (EXIT)
procedure (n = 6).11 This procedure
involves a maternal hysterotomy under
general anesthesia, with delivery of the
fetus after securing the airway and obtain-
ing vascular access. Four of six EXIT
patients had also undergone minimally
invasive fetal intervention prior to the
EXIT procedure. To quantify MFCT, we
used a well-established method of quant-
itative PCR12 to amplify non-shared
maternal alleles in fetal blood (maternal
microchimerism) and non-shared fetal
alleles in maternal blood (fetal
microchimerism).

Although the sample size for this study
was small, and there was a variation in the
amount of MMc in healthy control
samples, we nonetheless found a signific-
ant increase in MMc in fetuses with spina
bifida who underwent a prenatal repair
compared with all other groups. This
observation may be because of increased
recruitment of maternal cells or increased
proliferation of existing maternal cells in
the fetus after the surgery. Alternatively,
there may be increased turnover of
maternal cells in fetal blood in the control
groups. In addition, we found that patients
who underwent the EXIT procedure
uniformly had low levels of MMc, suggest-
ing that surgery on placental support does
not immediately alter trafficking and that a
subsequent period of gestation is likely
necessary. These results are consistent with
our finding of increased maternal cells
after fetal intervention in mice13 and we
are currently exploring whether such
alterations in microchimerism impact
maternal-fetal tolerance during pregnancy.

Our results are consistent with pub-
lished studies on MMc. For example, it
has been reported that there is a variable
range of MMc in cord blood samples from
healthy controls.1 HLA compatibility may
be an important factor in determining
MMc: a study of 120 maternal-fetal pairs

found MMc to be associated with the
HLA-DQB1 allele, suggesting that specific
fetal and maternal compatibility may
trigger the trafficking of maternal cells
into the fetus,14 a variable that we did not
study in this small series. Another factor
that may contribute to increased micro-
chimerism may be fetal distress or inflam-
mation since the production of cytokines
and chemokines in this context may alter
trafficking. We are currently examining
trafficking and other parameters in cohorts
of fetuses with congenital anomalies that
cause hemodynamic compromise to
address this point.

Changes in trafficking after fetal inter-
vention have also been examined by
several investigators, with an emphasis on
detection of fetal DNA in maternal blood.
Wataganara and colleagues reported
increased levels of circulating fetal DNA
in maternal circulation after laser ablation
of inter-twin vessels for twin-twin trans-
fusion syndrome (TTTS).15 In particular,
longer operation time, the total number of
chorionic vessels ablated, and in utero fetal
demise of at least one twin were associated
with elevated levels of fetal DNA at 24 h,
suggesting that detection of circulating
fetal DNA is a possible marker for
trophoblast injury.15 However, a sub-
sequent study of circulating free mRNA
levels after fetoscopic procedures (includ-
ing laser ablation for TTTS and tracheal
occlusion for congenital diaphragmatic
hernia) were not elevated.16 It is possible
that differences in the kinetics of free
DNA and mRNA may account for the
discrepancy between these results. In our
study, we did not detect increased levels of
fetal microchimerism in mothers of any
group. This may because the signals
leading to increased trafficking (or
increased proliferation of trafficked cells)
may be uni-directional, or that it is
difficult to detect small changes in fetal
cells among the larger maternal blood
volume.

While the description of altered micro-
chimerism levels is interesting, we are most
interested in deciphering the possible
functional significance of these findings.
One potential area of impact is in living-
related transplantations in which the
mother serves as the donor for her child.
For example, patients with posterior

urethral valves undergo prenatal interven-
tions for diagnosis and therapy and some
of these patients require renal transplanta-
tion postnatally,17 sometimes from a
parental donor. Although a national study
of renal transplantation did not show a
survival benefit with maternal transplanta-
tion,18 there is improvement in graft
survival with sibling transplantation if the
donor expresses non-inherited maternal
antigens.19 A potential benefit of maternal
organ transplantation may be discerned in
other transplantation settings with milder
rejection. For example, we recently
reported that patients with biliary atresia
(who have increased MMc at baseline20)
have improved survival with maternal liver
transplantation compared with paternal.21

For hematopoietic stem cell (HSC) trans-
plantation, it has been reported that
transplantation of maternal HSC improves
survival22 and decreases the risk of graft vs.
host disease.23 Thus, it is possible that
elevated levels of MMc may improve
tolerance to maternal tissues in some
settings. However, microchimerism may
be tolerizing or sensitizing to non-
inherited maternal antigens24-26 and it is
possible that increased MMc may instead
lead to heightened rejection of maternal
organs, especially if increased maternal
trafficking occurs in the setting of surgical
inflammation. Thus, the study of the
effects of fetal intervention on maternal
microchimerism may have vital clinical
significance for prenatally treated diseases
that may require postnatal solid organ or
hematopoietic stem cell transplantation.

Another unanswered question is
whether alterations in MMc can contrib-
ute to preterm labor. In our study, the
gestational age at delivery of the fetal
surgery group was significantly lower than
that of the postnatal control group (34 ±
2.5 weeks vs. 37 ± 0.9 weeks, p = 0.02).
However, several patients in the EXIT
group also had PTL but did not exhibit
high MMc, indicating that even if there is
some association of trafficking with PTL,
it is not absolute. It is possible that certain
situations (such as open surgery, mem-
brane separation, prenatal infection and
HLA disparity between the mother and
fetus) may predispose to increased MMc.

Understanding the implications of
trafficking will ultimately depend on

70 Chimerism Volume 3 Issue 3

©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



determining the mechanisms that con-
tribute to trafficking, the cell types that
cross and their interactions with compo-
nents of the maternal-fetal interface that
usually limit trafficking.27 Such studies
are possible in the murine model, using
tools such as GFP transgenic mice28,29 or
congenic alleles of CD4513 to identify the

lineage of trafficked maternal cells, in
combination with transgenic and knock-
out models to identify molecular
mechanisms. However, given the differ-
ences in placental anatomy between
mouse and humans, murine observations
will need to be confirmed in patient
specimens. Ultimately, a more refined

understanding the potential link between
fetal surgery, cellular trafficking, and
preterm labor may lead to new therapies
for preterm labor.
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