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In human brain imaging studies, researchers have predominantly used the correlation method

to estimate the “functional connectivity”. However, spurious correlations can be measured between

two brain regions without even having direct connection or interaction between them. This high

correlation can be due to the strong interactions of the two brain regions with common input from a

third region which may or may not be observed. One previously proposed solution to this problem

is to use a sparse-regularized inverse covariance matrix or precision matrix (SRPM) when all

the regions are observed. The SRPM method yields partial correlations to measure strong direct

interactions between pairs of observed regions while simultaneously removing the influence of the

rest of the observed regions thus identifying observed regions that are conditionally independent.
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However, in most brain studies, especially in electrocorticography (ECoG), simultaneously recording

all brain regions is a near impossible task using existing imaging technologies. Hence researchers

have recently proposed to use a sparse-plus-latent-regularized precision matrix (SLRPM) when

there are unobserved or latent regions interacting with the observed regions. The SLRPM method

yields partial correlations of the conditional statistics of the observed regions given the latent regions

thus identifying observed regions that are conditionally independent of both the observed and latent

regions.

In the first contribution of the thesis, we evaluate the performance of the SRPM and SLRPM

methods using simple artificial networks. In the second contribution of the thesis, we demonstrate

the application of the SRPM method for estimating brain connectivity during stage 2 sleep spindles

from human ECoG recordings from a patient with complex partial epilepsy. We only consider

sleep spindles occurring in long seizure-free periods. Sleep spindles are automatically detected

using delay-differential analysis (DDA), then analyzed with SRPM and the Louvain method for

community detection (LMCD). The performance of the SLRPM method is found to be similar to

that of the SRPM method for this application. In the third contribution of the thesis, we demonstrate

the application of the SLRPM method to estimate brain connectivity during epileptic seizures from

human ECoG recordings. Seizures from 12 patients having complex partial epilepsy were analyzed

using SLRPM and brain connectivity has been quantified using modularity index (MI), clustering

coefficient (CC), and eigenvector centrality (EC). These applications will enhance our understanding

of the global connectivity pattern of the human brain and may help us in finding better treatments in

epilepsy.
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Chapter 1

Introduction

1.1 The caveat in the correlation, precision matrix (PM) and

sparse-regularized precision matrix (SRPM) methods

The correlation method is the most widely used method for estimating brain functional

connectivity (Biswal et al., 1995; Uddin et al., 2009; Vertes et al., 2012; Rubinov et al., 2010; Zhou

et al., 2009; Anand et al., 2005; Siegle et al., 2007; Smith et al., 2011; Chu et al., 2015; Shafi et al.,

2014; Lynall et al., 2010). Researchers (Biswal et al., 1995; Xiong et al., 1999; Cordes et al., 2000)

have analyzed the functional connectivity of the resting state human brain from functional magnetic

resonance imaging (fMRI) data using the correlation method and found functionally connected

regions in the primary sensory motor cortex. Other studies (Greicius et al., 2003; Fox et al., 2006,

2005) of the resting state human brain using the correlation method have shown that the posterior

cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC) are functionally connected

within themselves and also with each other. In (Uddin et al., 2009), researchers have identified

positively correlated and anticorrelated brain networks with PCC and vACC by using the correlation

method on resting state data and found significant heterogeneity within the default mode network.

Authors in (Anand et al., 2005) have carried out a study, by using the correlation method, to explore

the effect of antidepressant on the functional connectivity of human brain from fMRI data and found
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that antidepressant treatment increases corticolimbic connectivity in depressed patients. In another

study (Hampson et al., 2002) of the human brain functional connectivity in low frequency using

the correlation method, researchers have found existence of connection between Broca’s area and

Wernicke’s area in healthy subjects at rest. The authors in (Supekar et al., 2008) have analyzed

brain functional connectivity in Alzheimer’s disease (AD) from fMRI using the correlation method.

They collected task-free fMRI data from 21 AD patients and 18 controls and found relatively low

small-world properties in AD patients as compared to the healthy controls indicating disrupted

organization of functional brain networks in AD.

Connectivity estimation using the correlation method can be misleading or wrong since brain

regions might show high correlation due to a common input, which may or may not be measured or

observed, and not due to strong physical connections between themselves (Stevenson et al., 2008;

Wang et al., 2016). In a recent study (Glasser et al., 2016) of the multi-modal magnetic resonance

images from 210 healthy young adults in the Human Connectome Project (HCP), researchers have

been able to identify many new areas in the human cortex using a machine learning classifier. Pairs

of these areas with a high degree of functional connectivity also received common input from other

areas of the human brain. The authors in (Honey et al., 2009) measured the functional connectivity

from fMRI in 5 individuals using the correlation method and several brain regions showed high

degree of functional connectivity without having direct connections. This provides further evidence

that brain regions can have high correlations due to common inputs rather than direct interactions.

Due to this major drawback of the correlation method, researchers have suggested to use

partial correlations to measure strong direct interactions between pairs of brain regions while simul-

taneously removing the influence of the rest of the brain regions (Whittaker, 1990; Lauritzen, 1996;

Dempster, 1972; Das et al., 2017) assuming all the regions can be measured. Partial correlations

help identify pairwise brain regions which are conditionally independent given all the other brain

regions. When the output of the brain regions follows a multivariate Gaussian distribution, the

inverse covariance matrix (ICM) or precision matrix (PM) can be used to calculate these partial

correlations (Dempster, 1972). A value zero or very close to zero in the PM will indicate that the
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two brain regions are conditionally independent given the rest of the brain regions. Researchers

(Salvador et al., 2005; Marrelec et al., 2007) have previously used the PM to estimate the human

brain functional connectivity from fMRI.

However, a major drawback of the PM method is that, under the regime of relatively small

number of time samples, the sample covariance matrix might not be directly invertible. Even if

there are sufficient number of samples such that the sample covariance matrix is invertible, the

estimated PM might produce large errors in connections in a given brain network since the sample

covariance matrix is a poor estimator of the eigenvalues of the covariance matrix (Das et al., 2017).

Hence researchers have proposed to use a sparse-regularized precision matrix (SRPM) to calculate

the pairwise partial correlations (Friedman et al., 2008). The SRPM X can be estimated by solving

the following L1 regularized optimization problem

argmin
Xs.t.X�0

[− logdet(X)+ tr(SX)+λ‖X‖1] (1.1)

where λ is the regularization parameter balancing the error in the maximum likelihood estimate

(MLE) of the precision matrix and the sparsity (The MLE of the precision matrix is the inverse of

the sample covariance matrix according to the invariance principle) and S is the sample covariance

matrix. The effect of the L1 regularization term λ‖X‖1 is twofold. First, it helps make the estimation

of the precision matrix problem well posed since direct inversion of the sample covariance matrix is

ill-posed when finite number of time samples is available as mentioned before. Second, since it

promotes sparsity, it can incorporate this assumption while estimating the human brain network

which is known to be sparse (Steriade et al., 1993; Laughlin et al., 2003). Observe that the

optimization problem in (1.1) is a convex optimization problem and several algorithms (Friedman

et al., 2008; Banerjee et al., 2008; Hsieh et al., 2011, 2013; Yuan et al., 2007; Oztoprak et al., 2012;

Rothman et al., 2008; Scheinberg et al., 2010) have been proposed in literature for solving this

optimization problem. For the analysis in this thesis, we use the QUIC algorithm (Hsieh et al., 2011,

2013) to estimate the SRPM.
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Researchers in (Hsieh et al., 2011, 2013) have applied the SRPM method on a voxels data

set collected from the human brain. After applying modularity-based clustering (Newman et al.,

2004, 2006; Brandes et al., 2008; Blondel et al., 2008; Reichardt et al., 2006; Ronhovde et al., 2009;

Sun et al., 2009; Sporns, 2010) to the regularized precision matrix, they found strong functionally

connected regions in gray matter regions in the human brain along with identification of resting-state

networks such as “default mode” and sensorimotor networks. The modules detected by the SRPM

method were similar to those identified using independent components analysis (ICA) on the same

dataset. In another study (Ryali et al., 2012), researchers have applied the SRPM method to resting

state fMRI data and found a modular architecture characterized by strong inter-hemispheric links,

distinct ventral and dorsal stream pathways, and a major hub in the posterior medial cortex. The

authors in (Varoquaux et al., 2010) analyzed human brain functional connectivity using the SRPM

method and after clustering, found regions corresponding to important brain areas such as the

primary visual system (medial visual areas), the dorsal visual pathway, the occipital pole and the

intra-parietal areas comprising the default mode network, the fronto-parietal networks, the ventral

visual pathway, the lateral visual areas, and the inferior temporal lobe. Researchers in (Monti

et al., 2014) have analyzed human brain functional connectivity using the SRPM method in healthy

patients and found that the Right Inferior Frontal Gyrus and the Right Inferior Parietal lobe play a

key role in the attention and executive function during cognitively demanding tasks and may be

fundamental in regulating the balance between other brain regions. Researchers (Rosa et al., 2015)

also have applied the SRPM method to distinguish patients with major depressive disorder from

healthy control subjects by analyzing brain functional connectivity from fMRI data. The authors

in (Allen et al., 2012) have analyzed brain functional connectivity using SRPM and clustering

algorithms from resting state data in young adults and found connections between regions in lateral

parietal and cingulate cortex. They also found that the dynamic functional connectivity of the

human brain was markedly different than the stationary brain connectivity. The SRPM method

has also been used to estimate the brain functional connectivity at a neuronal level in the mouse

visual cortex in (Yatsenko et al., 2015) where it found more biologically plausible brain networks
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than the correlation method. In another research (Wang et al., 2016), the authors have applied the

SRPM method to estimate human brain functional connectivity from fMRI data and compared

it with the same estimated by the correlation method. They found that the SRPM method was

able to remove considerable between-module connections which were estimated by the correlation

method. In particular, 34% of the significant connections found in the correlation method became

insignificant after calculating the partial correlations from the SRPM method. Recently, (Glasser

et al., 2016), using multi-modal magnetic resonance images of the human cerebral cortex from 210

healthy young adults, found 97 new cortical areas, along with 83 previously existing cortical areas,

using the SRPM method. The authors concluded that their study presents a picture of the structural

and functional organization of the human cerebral cortex and its variation across individuals and in

development, aging, and disease.

Even though the application of the SRPM method to identify functionally connected net-

works in the human brain is promising, one major shortcoming of this method is that it assumes that

all the brain regions are measurable or observed. This assumption might lead to incorrect estimation

of brain connectivity since most brain regions remain unobserved (also known as latent regions)

using current imaging technologies, especially in electrocorticography (ECoG) recordings, which

are used in our analysis.

1.2 Proposed method – the sparse-plus-latent regularized pre-

cision matrix (SLRPM) method

Hence researchers (Chandrasekaran et al., 2012) have recently proposed to use a sparse-

plus-latent-regularized precision matrix (SLRPM) when there are unobserved or latent regions

interacting with the observed regions which is typical of brain imaging. The SLRPM method yields

partial correlations of the conditional statistics of the observed regions given the latent regions

thus identifying observed regions that are conditionally independent of both the observed and

latent regions. Here we assume that the observed and latent variables jointly follow a multivariate
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Gaussian distribution. Also assume that we have p number of observed variables and h number of

latent variables. Let the covariance matrix ΣΣΣ of this joint distribution be represented by

ΣΣΣ =

 ΣΣΣP ΣΣΣP,H

ΣΣΣH,P ΣΣΣH

 (1.2)

where ΣΣΣP is of dimension p× p representing the covariances of the observed variables, ΣΣΣP,H is of

dimension p×h representing the covariances between the observed and latent variables, and ΣΣΣH is

of dimension h×h representing the covariances of the latent variables. Let the inverse ΣΣΣ
−1 of this

covariance matrix be represented by

ΣΣΣ
−1 , K =

 KP KP,H

KH,P KH

 (1.3)

where KP is of dimension p× p representing the dependencies of the observed variables, KP,H

is of dimension p× h representing the dependencies between the observed and latent variables,

and KH is of dimension h×h representing the dependencies of the latent variables. The marginal

precision matrix ΣΣΣ
−1
P of the observed variables can be given by the Schur complement w.r.t. to KH

as (Chandrasekaran et al., 2012)

K̃P , ΣΣΣ
−1
P = KP−KP,HK−1

H KH,P. (1.4)

The matrix KP is the precision matrix of the conditional statistics of the observed variables given

the latent variables. Hence if the underlying brain network is sparse, then KP is a sparse matrix. The

matrix KP,HK−1
H KH,P summarizes the effect of marginalization over the latent variables. Note that

the rank of KP,HK−1
H KH,P can be at most h and hence it will be of small rank if the number of latent

variables is relatively small. Thus the marginal precision matrix K̃P is not sparse, in general, due

to the presence of the term KP,HK−1
H KH,P and the SRPM method for the observed variables might

not be able to correctly identify the brain connectivity. Since from (1.4), the marginal precision
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matrix is decomposed as a sum of a sparse matrix and a low rank matrix, we will impose the L1

norm on the precision matrix of the conditional statistics (also known as the SLRPM) and nuclear

norm on the low rank matrix. The SLRPM X can be estimated by solving the following regularized

optimization problem

argmin
X,Ls.t X−L�0,L�0

[− logdet(X−L)+ tr(S(X−L))+α‖X‖1 +β tr(L)] (1.5)

where α and β are the regularization parameters balancing the error in the likelihood and the sparse

and low rank terms and S is the sample covariance matrix. In (1.5), X provides an estimate of

the sparse matrix KP and L provides an estimate of the low rank matrix KP,HK−1
H KH,P. The L1

regularization term α‖X‖1 imposes sparsity on the underlying brain connectivity and the trace

or nuclear norm regularization term β tr(L) imposes low rankness on the common inputs from

the latent or unobserved brain regions. Furthermore, these regularizations make the optimization

problem well behaved when we have finite number of samples. Observe that the optimization

problem in (1.5) is a convex optimization problem and we use the alternating direction method of

multipliers (ADMM) (Ma et al., 2013) to estimate the SLRPM for our analysis. Note that the SRPM

and SLRPM have to be normalized to obtain the partial correlations (Whittaker, 1990).

1.3 Prior research on human brain connectivity estimation us-

ing the SLRPM method

Research on the application of the SLRPM method on brain functional connectivity esti-

mation has been limited and the author of this thesis is not aware of any comprehensive analysis

on the application of the SLRPM method for human brain connectivity estimation. To the best of

the author’s knowledge, the only comprehensive analysis of the SLRPM method has been done by

researchers in (Yatsenko et al., 2015) where they have applied the method to infer connectivity in

the mouse visual cortex. Their simulation results showed that the SLRPM method has the potential
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to outperform both the correlation method and the SRPM method. However, there was a major flaw

in their simulations. They generated the data from the same optimization problem that they solved

to estimate the connectivity matrix for the SRPM and SLRPM methods. A more reasonable way to

these analyses is to generate data independently of the methods and then validate the methods by

estimating the connectivity matrices from the data. This was the approach taken in our simulations

for validating the methods. From the experimental analysis using 3D random-access laser scanning

microscopy of calcium signals in the mouse visual cortex, the authors found more physiologically

interpretable functionally connected brain regions by the SLRPM method than the correlation and

SRPM methods. Our effort in this thesis on the use of the SLRPM method to characterize brain

connectivity in humans from ECoG recordings is the first.

1.4 First contribution – simple artificial networks to evaluate

the performance of the methods

In the first contribution of the thesis, we evaluate the performance of the SRPM and SLRPM

methods via simulation using simple artificial networks. We first demonstrate conditions under

which the SRPM method can indeed find the true physical connection between a pair of nodes

using synthetic data from two physical models: (i) a mechanical model which considers a cascade

connection of a number of springs and masses, and (ii) an electrical circuit model which consists of

resistors (R) and capacitors (C), assuming that all the nodes can be observed. The purpose here is to

demonstrate that the connectivity pattern of the spring-mass model can be obtained from the SRPM

associated with the displacements of the masses and the connectivity pattern of the RC circuit model

can be obtained from the SRPM associated with the voltages measured at the nodes. The SRPM

method is shown to give superior performance compared with the correlation and PM methods and

is also able to find the ground truth connection. In other words, it is shown that the correlation

and PM methods may not be able to recover the true connectivity of the associated network in the

simulated models in contrast to the SRPM method. Note that PM and SRPM have to be normalized
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to obtain the partial correlations (Whittaker, 1990). The recovery of the connectivity structure via

the SRPM method can be explained by energy models using the Boltzmann distribution. This shows

that theoretically if PM can estimate the connectivity structure between regions under consideration,

then the SRPM method should be used to estimate the regularized version of PM to avoid false

positive and false negative connections when a finite number of samples is available.

We next test the performance of the SLRPM method by using the spring-mass example

and assuming that there can be some nodes which cannot be observed thus constituting the latent

variables in the example. Several different cases have been considered including both sparse and

dense connections, short-range and long-range connections, and varying the number of latent

variables. For comparison, we consider the correlation, PM, and SRPM methods. The SLRPM

method is shown to have superior performance compared with the other methods.

1.5 Second contribution – application of SRPM in analyzing

brain connectivity in presence and absence of sleep spindles

In our second contribution, we demonstrate the application of the SRPM method for estimat-

ing brain connectivity during sleep spindles from human ECoG data using an 8×8 electrode array.

The ECoG recordings that we analyzed were from a male patient of age 32 with long-standing

pharmaco-resistant left temporal lobe complex partial epilepsy. Sleep spindles have a major role

in learning and memory consolidation. Our purpose in this thesis is to find and understand the

functional organization of the brain areas in the presence and absence of sleep spindles. We find that

the brain connectivity during the spindles are highly spatially localized in contrast to the case when

sleep spindles are not present. We believe that this can give us further insight into the functioning of

brain areas during spindles in stage 2 sleep. We can find the connectivity pattern in the presence

and absence of sleep spindles by the SRPM method.

For the detection of sleep spindles, we employ a novel method called DDA (Kremliovsky

et al., 1997; Lainscsek et al., 2013; Sampson et al., 2015; Lainscsek et al., 2015). DDA is a time
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domain classification framework based on embedding theory in nonlinear dynamics. Given a

recording (here ECoG data) from some unknown dynamical system (here the brain), an embedding

will reveal the nonlinear invariant properties of the system, even from a single time series. The

embedding in DDA provides a low-dimensional nonlinear functional basis onto which the data are

mapped. Since this basis is built on the dynamical structure of the data, preprocessing of the data

(such as filtering) is not necessary. DDA yields a low number of features (around 4), as compared

with traditional spectral techniques, which greatly reduces the risk of overfitting. Frequency-based

approaches which have often been used for detecting spindles are sensitive to certain artifacts

involving transient increases in spectral power in the band of interest; with DDA, we train on the

real data to find the relevant dynamical features for spindle identification.

1.6 Third contribution – application of SLRPM for epileptic

seizure analysis

Epilepsy is the world’s one of the most common brain disorder, characterized by sudden

occurrence of unprovoked seizures, affecting more than 50 million people worldwide. There is

plenty of evidence of significantly altered brain connectivity during epilepsy, especially during

seizure periods, in the human brain (Stam, 2014; Diessen et al., 2013; Kramer et al., 2012). However,

research on characterization of human brain functional connectivity during epileptic seizures have

only been limited to the use of the correlation method. These results might be flawed since

existing brain imaging technologies cannot simultaneously record from the entire human brain

and brain regions which are observed can receive common inputs from latent or unobserved brain

regions. Furthermore, it is known that there can be dopaminergic, norepinephrine or cholinergic

fiber projections to the cortex, from which electroencephalography (EEG) or ECoG recordings are

usually taken, during seizures (Krimer et al., 1998; Lado et al., 2008; Sato et al., 1992; Attwell

et al., 2002; Giorge et al., 2004) and these neuromodulatory projections serve as common latent

inputs to the cortex and induce spurious correlations among the EEG or ECoG electrodes. But
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the SLRPM method calculates the precision matrix of the conditional statistics of the observed

brain regions given the latent brain regions and this helps to remove the influence of common

observed and latent inputs on the EEG or ECoG recordings. In this way, we may be able to find

more accurate brain connectivity from the recordings and this will help us analyze the brain activity

during epileptic seizures. In our third contribution, we demonstrate the application of the SLRPM

method to estimate brain connectivity during epileptic seizures from human ECoG recordings.

Continuous ECoG recordings from 12 patients with long-standing pharmaco-resistant complex

partial epileptic seizures were analyzed using SLRPM and brain connectivity was quantified using

modularity index (MI), clustering coefficient (CC), and eigenvector centrality (EC).

1.7 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we test our methods using simple

artificial networks. In Chapter 3, we first describe the DDA method for automatically detecting

sleep spindles from human ECoG data and then proceed on to the application of SRPM to recover

the connectivity among the brain regions during sleep spindles. In Chapter 4, we demonstrate the

application of the SLRPM method for estimating brain connectivity during epileptic seizures from

human ECoG recordings. Implication of the results of this thesis are given in Chapter 5.
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Chapter 2

Simple models to evaluate the performance

of the methods

2.1 Evaluation of the sparse-regularized precision matrix

(SRPM) method

We first demonstrate conditions under which the sparse-regularized precision matrix (SRPM)

method can indeed find the true physical connection between a pair of nodes using synthetic data

from two physical models: (i) a mechanical model which considers a cascade connection of a

number of springs and masses, and (ii) an electrical circuit model which consists of resistors (R)

and capacitors (C), assuming that all the nodes can be observed. The purpose here is to demonstrate

that the connectivity pattern of the spring-mass model can be obtained from the SRPM associated

with the displacements of the masses and the connectivity pattern of the RC circuit model can be

obtained from the SRPM associated with the voltages measured at the nodes.
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Figure 2.1: The spring-mass model. The black dots denote continuation of springs and masses.

2.1.1 The spring-mass model

The spring-mass model that we use in our simulation is shown in Figure 2.1. We assume

that we can measure the displacements of the masses in the model. There are 50 equal masses

m connected in cascade via springs each of which has a spring constant k. The leftmost and the

rightmost springs are connected to a rigid wall. For our simulation (hereafter all units are in mks),

we use m = 0.1 and k = 1. We assume that this spring-mass model is subject to thermal perturbation.

In addition, we also assume that each spring is subjected to external force and we model this external

force as a white noise process with variance σ2. For our simulation we use σ2 = 0.000025. We

denote the displacements of the masses as x1,x2, . . . ,x50 and the external forces associated with

each of them as w1,w2, . . . ,w50 respectively. Using Newton’s second law of motion and Hooke’s

law, we can write the displacement equations of the masses as

mẍ1 =−kx1 + k(x2− x1)+w1

mẍ2 =−k(x2− x1)+ k(x3− x2)+w2

...

mẍ50 =−k(x50− x49)− kx50 +w50. (2.1)
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Figure 2.2: The connectivity matrix or the ground truth matrix C for the spring-mass model.

In matrix-vector form, the above set of equations can be written as

m



ẍ1

ẍ2

ẍ3

ẍ4

...

ẍ50


= k



−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

0 0 1 −2 · · · 0
...

...
...

... . . . ...

0 0 0 · · · 1 −2





x1

x2

x3

x4

...

x50


+



w1

w2

w3

w4

...

w50


. (2.2)

In compact form, (2.2) can be represented as

mẍ = kCx+w (2.3)

where x is the displacement vector, w is the white noise vector and C is the connectivity (or ground

truth) matrix and is shown in Figure 2.2. Using a second order approximation of the double

derivative on the left hand side in (2.3), we have

m
[

x(t +h)−2x(t)+x(t−h)
h2

]
= kCx(t)+w(t) (2.4)

where h is the step size and t denotes the time instant. We use a random initialization of x with

variance σ2
x = 0.000001. We then solve (2.4) repeatedly to generate N samples of the displacement

vector x corresponding to N consecutive time points. For our simulation, we choose h = 0.007 and
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(a) (b) (c)

(d)

Figure 2.3: Results of the estimation methods for the spring-mass model. (a) The ground truth
matrix. (b) The estimated connection matrix from the correlation method (16% error). (c) The
estimated connection matrix from the PM method (53% error). (d) The estimated connection
matrix from the SRPM method (0% error). In each panel (a), (b), (c), and (d), black denotes either
a diagonal element or a connectivity between two masses via a spring and white denotes no
connectivity.
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N = 50000. We use these N samples to form the sample covariance matrix.

We next apply the correlation, PM, and SRPM methods to recover the connectivity pattern

of the spring-mass system. The value of λ for the SRPM method is chosen to be 0.0009. The results

are shown in Figure 2.3. Note that the ground truth matrix in Figure 2.3 is binarized such that a

one denotes either a diagonal element or a connectivity between two masses via a spring and a

zero denotes no connectivity. For all three methods, we first estimate the connection matrix and

choose the M largest elements (in absolute value) in the estimated connection matrix where M is

the number of nonzero elements in the ground truth matrix. In Figure 2.3, for each method, we

denote these M largest elements as ones and the rest as zeros. The binarization is done for clarity

and better visualization. The error percentage in the figures for a particular method is calculated

as the fraction of false positive and false negative connections between the binarized ground truth

matrix and the binarized estimated connection matrix for that method.

From Figure 2.3(b) we note that the correlation method is not able to fully recover the true

connectivity structure of the spring-mass system. Since the sample covariance matrix is a poor

estimator of the true covariance matrix, the PM method is even worse than the correlation method

and results in a large number of false positive and false negative connections. The SRPM method is

able to recover successfully the true connectivity pattern of the spring-mass model.

Explanation for the recovery of the connectivity structure via the SRPM method in the spring-

mass model

Assuming that the spring-mass model is only subject to thermal perturbation, i.e., if we

assume w = 0 in (2.3), then the probability distribution of the displacement vector x can be given

by the Boltzmann distribution (MacKay, 2002) as

P(x) =
1
Z

exp[−βE(x)] (2.5)
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where β = 1/(kT ), k is the Boltzmann constant and T is the temperature, and Z is a normalization

factor. In (2.5), E(x) is the energy of the spring-mass system. For the model in Figure 2.1, the

energy E(x) can be written as

E(x) =
1
2

kx2
1 +

1
2

k(x2− x1)
2 +

1
2

k(x3− x2)
2 + · · ·+ 1

2
kx2

50

=
1
2

xT C̃x (2.6)

where xT denotes the transpose of x and C̃ =−C. Hence we have

P(x) =
1
Z

exp[−βxT C̃x]. (2.7)

We note that P(x) in (2.7) is a multivariate Gaussian distribution in x whose PM differs from C̃ only

by a scalar multiple, implying that the PM in (2.7) is just a scaled version of the connectivity matrix

C in (2.3). Hence PM can recover the connectivity structure of the cascade connection of springs

and masses given in Figure 2.1.

Since the sample covariance matrix is a poor estimator of the eigenvalues of the covariance

matrix, the inverse of the covariance matrix or PM produces a large number of false positive and

false negative connections as shown in Figure 2.3(c). In contrast, since the connectivity structure is

sparse, we can use the SRPM method to recover the connectivity pattern of the spring-mass system.

Remark 1

The performance (in terms of error percentage) of the correlation method, the covariance

method, and the SRPM method in the spring-mass model does not change under different types of

noise distributions. We have tested the performance of these methods under Gaussian, Poisson, and

uniform distributions and have obtained similar performance to that given in Figure 2.3 for the three

methods.
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Remark 2

The performance (in terms of error percentage) of the three methods in the spring-mass

model does not change for signal-to-noise ratio up to 30 dB and the performance is very similar to

that given in Figure 2.3 for the three methods.

These two results are not surprising. Note that in the spring-mass model, we model the

noise as an external force. So no matter how “forcefully” (noise variance) or in what way (noise

distribution) we wobble the spring-mass system, the connectivity pattern won’t change. Noise is not

responsible for the connectivity pattern and the connectivity patterns for different methods shown in

Figure 2.3 are due to the methods themselves.

2.1.2 The RC circuit model

The RC circuit model is taken from (Sojoudi et al., 2014) which applied the graphical

LASSO algorithm for the SRPM method. Two different network topologies are considered: (i) the

tree network, and (ii) the mesh network. We assume that the voltages at the nodes are available for

measurement and estimate the connectivity by the three methods from these measured voltages. An

edge between a pair of nodes denotes a parallel resistor-capacitor (RC) circuit as shown in Figure

2.4(a). We assume that the circuit is activated only by the thermal current (i.e., there is no supply of

external current) and each node is subject to thermal current as shown in Figure 2.4(b). We model

this thermal current as white noise known as the Johnson-Nyquist noise. These stochastic currents

produce stochastic voltages at the nodes which in turn cause the charging and discharging of the

capacitors in the network.

The tree network

This network is shown in Figure 2.5 where the nodes are denoted as numbers and each

edge represents a parallel RC circuit as in Figure 2.4(a). We consider a total of 10 nodes in this

example. Let v denote the vector of voltages at the nodes and i denote the vector of stochastic
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Figure 2.4: Elements of the RC circuit model. (a) Parallel RC circuit between a pair of nodes. (b)
Thermal current associated with a node.

Figure 2.5: The tree network.

currents injected to the nodes by some external device. Using Kirchoff’s law, we have,

Av̇ =−Gv+ i (2.8)

where A is the capacitance matrix and G is the conductance matrix (see (Sojoudi et al., 2014)

regarding how to construct the matrices A and G). For our simulation, we assume that each of

the values of the capacitances and conductances denoted as edges in Figure 2.5 has a value of 1.

Moreover, the node 5 of the circuit is grounded through a parallel RC circuit and for this, the values

of both the capacitance and the conductance are taken to be 4. Hence, in this case, A≡G and we

call A or G the connectivity matrix or the ground truth matrix of the RC circuit. Note that the values

of the capacitances and conductances in the tree network are chosen such that the connectivity

matrix A (≡G) is positive definite. The connectivity matrix for the given tree network is shown

in Figure 2.6. Assuming that the current vector i is due to the stochastic currents from the white
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Figure 2.6: The connectivity matrix or the ground truth matrix A (≡G) for the tree network.

thermal noise, we can write (2.8) as (Sojoudi et al., 2014)

Av̇ =−Gv−G
1
2 w (2.9)

where G
1
2 is the square root (not the elementwise square root) of the matrix G. For our simulation

we choose variance σ2 = 4 for the white noise process w in (2.9). Using a first-order approximation

of the derivative on the left hand side in (2.9), we have,

A
[

v(t)−v(t−h)
h

]
=−Gv(t)−G

1
2 w(t) (2.10)

where h is the step size and t denotes the time instant. For our simulation we choose h = 0.5. We

use a random initialization of v with variance σ2
v = 0.0001. As done in the spring-mass example,

we solve (2.10) iteratively to generate N samples for the voltages. For our simulation we choose

N = 282.

We next apply the correlation, PM, and SRPM methods to recover the connectivity pattern

of the tree network. The value of λ for the SRPM method is chosen to be 0.01. The results are

shown in Figure 2.7. As done in the spring-mass example, we show only the binarized results for

better visualization.

We note that the correlation and PM methods are not able to recover the true connectivity

pattern of the tree network. The correlation method in particular has having a large percentage

of false positive and false negative connections. This is due to the fact that node 5 is connected
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(a) (b) (c)

(d)

Figure 2.7: Results of the estimation methods for the tree network in the RC circuit model. (a)
The ground truth matrix. (b) The estimated connection matrix from the correlation method (29%
error). (c) The estimated connection matrix from the PM method (7% error). (d) The estimated
connection matrix from the SRPM method (0% error). In each panel (a), (b), (c), and (d), black
denotes either a diagonal element or a connectivity between two nodes and white denotes no
connectivity.
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to ground via a parallel RC circuit with relatively high conductance and capacitance. Thus the

grounded node and its neighbors will have low correlation and the ungrounded nodes and their

neighbors will have high correlation even though they are not connected (Sojoudi et al., 2014). In

contrast, the SRPM method is able to recover successfully the ground truth of the tree network.

Explanation for the recovery of the connectivity structure via the SRPM method in the tree

network

Since we have assumed that the tree network is only subject to thermal perturbation, the

probability distribution of the voltage vector v can be given by the Boltzmann distribution as

P(v) =
1
Z

exp[−βE(v)] (2.11)

where E(v) is the energy of the capacitors in the tree network and Z is the corresponding normaliza-

tion factor. For the given tree network in Figure 2.5, the energy E(v) can be written as

E(v) =
1
2
[
(v5− v1)

2 +(v5− v2)
2 +(v5− v3)

2

+(v5− v4)
2 +4v2

5 +(v5− v6)
2 +(v6− v7)

2

+(v6− v8)
2 +(v6− v9)

2 +(v6− v10)
2]

=
1
2

vT Av (2.12)

where vi denotes the voltage at the ith node, i = 1,2, . . . ,10 and A is the connectivity matrix of the

tree network given in (2.15). Hence we have

P(v) =
1
Z

exp[−βvT Av] (2.13)

which is a multivariate Gaussian distribution in v whose PM differs from A only by a scalar multiple.

Hence PM can recover the connectivity pattern of the tree network given in Figure 2.5. But since

the sample covariance matrix is a poor estimator of the eigenvalues of the covariance matrix, the
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inverse of the covariance matrix or PM produces false positive and false negative connections as

shown in Figure 2.7(c). In contrast, since the connectivity structure is sparse, the SRPM method is

able to recover successfully the connectivity pattern of the tree network.

The mesh network

Figure 2.8: The mesh network.

This network is shown in Figure 2.8 where the nodes are denoted as numbers and each

edge represents a parallel RC circuit as in the tree network. We consider a total of 24 nodes in this

example. Equations (2.9) and (2.10) remain the same for this network with the corresponding A, G,

and v. For our simulation, we assume that each of the values of the capacitances and conductances

denoted as edges in Figure 2.8 has a value of 1. Moreover, all the nodes indexed from 1 to 18

of the circuit are grounded through parallel RC circuits as is done for node 5 in the tree network

and the value of both the capacitance and the conductance are taken to be 5 for each parallel RC

circuit connected to ground. Hence in this case A ≡G and this is the connectivity matrix or the

ground truth matrix for the mesh network. Once again note that the values of the capacitances and

conductances in the mesh network are chosen such that the connectivity matrix A (≡G) is positive

definite. The connectivity matrix for the given mesh network is shown in Figure 2.9. We again

choose σ2 = 4 for the white noise process w in (2.9). The value of step size is chosen to be h = 0.5.

We also use a random initialization of v with variance σ2
v = 1. As done in the tree network, we solve

(2.10) iteratively to generate N samples for the voltages and in this case, we choose N = 2000.

We again apply the correlation, PM, and SRPM methods to recover the connectivity pattern
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Figure 2.9: The connectivity matrix or the ground truth matrix A (≡G) for the mesh network.

(a) (b) (c)

(d)

Figure 2.10: Results of the estimation methods for the mesh network in the RC circuit model. (a)
The ground truth matrix. (b) The estimated connection matrix from the correlation method (40%
error). (c) The estimated connection matrix from the PM method (11% error). (d) The estimated
connection matrix from the SRPM method (0% error). In each panel (a), (b), (c), and (d), black
denotes either a diagonal element or a connectivity between two nodes and white denotes no
connectivity.
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of the mesh network. The value of λ for the SRPM method is chosen to be 0.005. The results are

shown in Figure 2.10. As done in the tree network, we show only the binarized results.

We note that the correlation and PM methods are not able to recover the true connectivity

pattern of the mesh network with the correlation method having a large percentage of false positive

and false negative connections. We also observe that the ungrounded nodes and their neighbors

have high correlation even though they are not connected. Once again, the SRPM method is able to

recover successfully the ground truth of the mesh network.

Explanation for the recovery of the connectivity structure via the SRPM method in the mesh

network

Following the procedure in the tree network, if we assume that the mesh network is only

subject to thermal perturbation, it is straightforward to show that the voltage vector v in the mesh

network follows a multivariate Gaussian distribution whose PM differs from the connectivity matrix

A of the mesh network shown in Figure 2.8 only by a scalar multiple. Hence PM can recover the

connectivity pattern of the mesh network. Once again, the direct inverse of the covariance matrix

produces false positive and false negative connections as shown in Figure 2.10(c). In contrast,

since the connectivity structure is sparse, the SRPM method is able to recover successfully the

connectivity structure of the mesh network.

Also note that for the voltage vector v to follow a multivariate normal distribution whose PM

differs from the connectivity matrix A only by a scalar multiple, the RC circuit network need not be

one of the specific structures (tree and mesh) given in Figure 2.5 and Figure 2.8. It is straightforward

to show (following the steps as before via the Boltzmann distribution) that PM can recover the

connectivity pattern of an arbitrarily connected RC circuit network in the limit as the number of

samples increases to infinity.
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Remark 1

The performance (in terms of error percentage) of the correlation method, the covariance

method, and the SRPM method in the tree network and the mesh network does not change under

different types of noise distributions. We have tested the performance of these methods under

Gaussian, Poisson, and uniform distributions and have obtained similar performance to that given in

Figure 2.7 for the tree network and in Figure 2.10 for the mesh network for the three methods.

Remark 2

The performance (in terms of error percentage) of the three methods in the tree network and

the mesh network does not change for signal-to-noise ratio up to 30 dB and the performance is very

similar to that given in Figure 2.7 for the tree network and in Figure 2.10 for the mesh network for

the three methods.

Once again, these two results are not surprising. Note that in the RC networks, we have

modeled the noise as stochastic current from white thermal noise. If current goes up and down

or changes direction, the connectivity pattern won’t change. Noise is not responsible for the

connectivity pattern and the connectivity patterns for different methods shown in Figure 2.7 and

Figure 2.10 are due to the methods themselves.

2.2 Evaluation of the sparse-plus-latent regularized precision

matrix (SLRPM) method

We next test the performance of the SLRPM method by using the spring-mass example

and assuming that there can be some nodes which cannot be observed thus constituting the latent

variables in the example. Several different cases have been considered including both sparse and

dense connections, short-range and long-range connections, and varying the number of latent

variables.
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2.2.1 The spring-mass model

Consider once again the spring-mass model shown in Figure 2.1. We assume that we can

measure the displacements of the masses in the model. Also assume there are 200 equal masses

m connected in cascade via springs, i.e., the ith mass is connected to its neighbors i−1 and i+1,

via springs. First consider each spring to have a restoring force characteristics (RFC) of the form

kx, where k is the spring constant and x is the amount by which the spring is displaced from its

relaxed position. Note that the RFC is linear in this case. The leftmost and the rightmost springs

are connected to a rigid wall. For our simulations (hereafter all units are in mks), we use m = 0.1

and k = 1. We assume that this spring-mass model is subject to thermal perturbation. In addition,

we also assume that each mass is subject to external force and we model this external force as a

white noise process with variance σ2. For our simulation we use σ2 = 0.000025. We denote the

displacements of the masses as x1,x2, . . . ,x200 and the external forces associated with each of them

as w1,w2, . . . ,w200 respectively. As before, we can write the displacement equations of the masses

as

mẍ1 =−kx1 + k(x2− x1)+w1

mẍ2 =−k(x2− x1)+ k(x3− x2)+w2

...

mẍ200 =−k(x200− x199)− kx200 +w200. (2.14)
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In matrix-vector form, the above set of equations can be written as

m



ẍ1

ẍ2

ẍ3

ẍ4

...

ẍ200


= k



−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

0 0 1 −2 · · · 0
...

...
...

... . . . ...

0 0 0 · · · 1 −2





x1

x2

x3

x4

...

x200


+



w1

w2

w3

w4

...

w200


. (2.15)

In compact form, (2.15) can be represented as

mẍ = kCx+w (2.16)

where x is the displacement vector, w is the white noise vector and C is the connectivity (or ground

truth) matrix of the entire spring-mass network. Using a second order approximation of the double

derivative on the left hand side in (2.16), we have

m
[

x(t +h)−2x(t)+x(t−h)
h2

]
= kCx(t)+w(t) (2.17)

where h is the step size and t denotes the time instant. We use a random initialization of x with

variance σ2
x = 0.000001. We then solve (2.17) repeatedly to generate N samples of the displacement

vector x corresponding to N consecutive time points. For our simulation, we choose h = 0.0007

and N = 50000. We can use these N samples to form the sample covariance matrix of the entire

spring-mass network.

However, we assume that we can observe only a part of the entire network, i.e., some

of the displacements are not available for measurement. Hence, the only available data is the

sample covariance matrix of the displacements which are available for measurement. From this

sample covariance matrix, we wish to recover the connectivity of the observable masses using the

correlation method, the precision matrix (PM) method, the SRPM method and the SLRPM method.
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We study the recovery performance of the methods by varying the number of observable variables

p (hence varying the number of latent variables h). The values of p are taken to be 60, 100, and

150 for this example. This example is shown in Figure 2.11. The connections in the ground truth

matrix of the observed network are shown in black dots. We choose the M largest elements (in

absolute value) in the estimated connection matrix from each method, where M is the number of

connections in the ground truth matrix, and check whether the estimated connection corresponds

to the connection in the ground truth matrix. For each method, we show a correctly identified

connection in black dot and an incorrectly identified connection in red dot in Figure 2.11. The

error percentage for a particular method is the percentage of incorrectly identified connections

expressed as a fraction of the total number of connections in the ground truth matrix. The value of

the regularization parameter λ for the SRPM method and the values of the regularization parameters

α and β for the SLRPM method are also mentioned in Figure 2.11. These values were fine tuned

for this example. From this figure, we observe that the PM method, which directly inverts the

sample covariance matrix, results in extremely poor performance for the three cases considered.

The SLRPM method has comparable or better performance than the other methods for the three

cases considered in Figure 2.11.

Next, we consider an example with a non-linear RFC of the form kx+ γx3. Non-linear RFC

is considered since brain dynamics during seizures is well known to be highly non-linear (see Stam

(2005) and the references therein). We vary the number of observable masses and keep the other

parameters the same as the previous example. The value of γ is set to 1 for our simulations. The

results of the application of different methods for this example is shown in Figure 2.12. Note that

the SLRPM method has comparable or better performance than the other methods for varying

number of observed variables. We also have considered a non-linear RFC of the form kx+ γx9 and

in that case too, the SLRPM method was able to outperform the correlation and SRPM methods

(results not shown here). In Figure 2.13, we have also plotted the performance of the methods in

terms of number of samples N for p = 100. We note that the performance of the correlation, SRPM,

and SLRPM methods does not improve with increase in N with the SLRPM method outperforming
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Figure 2.11: Results of the estimation methods for the spring-mass model of 200 masses when
only a part of the network is observable and a linear RFC is considered. Connections in the
observed network (ground truth matrix) are shown in black dots. For the methods, correct
identification of a connection is shown in black dot and incorrect identification of a connection is
shown in red dot. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 2.12: Results of the estimation methods for the spring-mass model of 200 masses when
only a part of the network is observable and a non-linear RFC is considered. Connections in the
observed network (ground truth matrix) are shown in black dots. For the methods, correct
identification of a connection is shown in black dot and incorrect identification of a connection is
shown in red dot. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 2.13: Plot of error percentage of the estimation methods vs. N with p = 100 and when a
non-linear RFC is considered.

the correlation and SRPM methods. The correlation and SRPM methods also have comparable

performance. It is also worth noting that even though the SLRPM method performs much better and

the PM method is the worst when the sample size is small, the PM method is able to outperform all

the other methods when we increase the sample size.

In the previous two examples, the considered network was sparse (all masses were connected

only to their immediate neighbors). For an epileptic human brain, this sparseness assumption might

not remain valid (Steriade et al., 1993). Hence, we now consider relatively denser networks and

evaluate the performance of the methods. In the next two examples, we will consider the spring-mass

network to have long range connections. First assume that this range is 40n, where n is a natural

number, i.e., the ith mass, besides being connected to its immediate neighbors i+1 and i−1, is

now also connected to masses with indices i+40, i−40, i+80, i−80, and so on. Note that, even

though mechanically such connections are not possible for one dimensional spring-mass motion,

we make such hypothetical connections for simulation purposes. We also assume a linear RFC

for this example. Using Newton’s second law of motion and Hooke’s law, we can easily write the

displacement equations of the masses for this modified spring-mass network as done for the two

previous examples in (2.14). We can then iteratively solve these equations to generate N samples of
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the displacement vector. We assume N = 100000 samples for this example. All other parameters

are same as before. Like the previous examples, the values of observable masses p are taken to be

60, 100, and 150. The performance of the methods for this example is shown in Figure 2.14. The

values of the regularization parameters are also indicated in that figure. We note that the SLRPM

method is able to outperform the other methods. It is also worth noting that the SRPM method is

able to have comparable performance to that of the SLRPM method.

Next, assume that the range is 20n, i.e., the ith mass, besides being connected to its immediate

neighbors i+1 and i−1, is now also connected to masses with indices i+20, i−20, i+40, i−40,

and so on. We vary the number of observable masses and keep the other parameters the same as the

previous example. The performance of different methods for this example is shown in Figure 2.15.

The SLRPM method is able to outperform the other methods. Furthermore, in Figure 2.16, we have

plotted the performance of the methods in terms of number of samples N for p = 100. Note that the

PM method is not able to estimate the observable network resulting in large errors. The SLRPM

method is able to perform better than the correlation and SRPM methods. It is also worth noting

that the correlation and SRPM methods have comparable performance.

In the next example, we still consider relatively dense connections, but we assume the spring-

mass network to have short range connections. We assume a neighborhood of 3, i.e., the ith mass, is

now connected to masses with indices i+1, i−1, i+2, i−2, i+3, and i−3. Once again, even

though mechanically such connections are not possible for one dimensional spring-mass motion,

we make such hypothetical connections for simulation purposes. We also assume N = 100000

samples and a linear RFC. As before, the values of observable masses p are taken to be 60, 100,

and 150. The performance of the methods for this example is shown in Figure 2.17. The values of

the regularization parameters are also mentioned in that figure. We note that the SLRPM method

is able to outperform the correlation and PM methods and has comparable performance to that of

the SRPM method. We have also plotted the performance of the methods in terms of number of

samples N for p = 100 in Figure 2.18. The PM method is not able to have any useful estimate of

the observed network. The SLRPM method is able to outperform the correlation method and have

33



Mass Index

M
as

s 
In

de
x

Ground Truth Matrix

20 40 60

20

40

60

Mass Index

M
as

s 
In

de
x

Correlation Method (% Error = 23.53)

20 40 60

20

40

60

Mass Index

M
as

s 
In

de
x

PM Method (% Error = 49.41)

20 40 60

20

40

60

Mass Index

M
as

s 
In

de
x

SRPM Method (% Error = 20.00)

20 40 60

20

40

60

Mass Index

M
as

s 
In

de
x

SLRPM Method (% Error = 18.82)

20 40 60

20

40

60

restoring force characteristics: kx
range: 40n
total number of masses: 200
total observable masses: 60
total latent masses: 140
total samples: 100000
λ = 0.020, α = 0.020, β = 0.500

(a)

Mass Index

M
as

s 
In

de
x

Ground Truth Matrix

20 40 60 80 100

20

40

60

80

100

Mass Index

M
as

s 
In

de
x

Correlation Method (% Error = 30.39)

20 40 60 80 100

20

40

60

80

100

Mass Index
M

as
s 

In
de

x

PM Method (% Error = 70.10)

20 40 60 80 100

20

40

60

80

100

Mass Index

M
as

s 
In

de
x

SRPM Method (% Error = 24.02)

20 40 60 80 100

20

40

60

80

100

Mass Index

M
as

s 
In

de
x

SLRPM Method (% Error = 22.55)

20 40 60 80 100

20

40

60

80

100

restoring force characteristics: kx
range: 40n
total number of masses: 200
total observable masses: 100
total latent masses: 100
total samples: 100000
λ = 0.020, α = 0.020, β = 0.500

(b)

Mass Index

M
as

s 
In

de
x

Ground Truth Matrix

50 100 150

50

100

150

Mass Index

M
as

s 
In

de
x

Correlation Method (% Error = 34.38)

50 100 150

50

100

150

Mass Index

M
as

s 
In

de
x

PM Method (% Error = 57.38)

50 100 150

50

100

150

Mass Index

M
as

s 
In

de
x

SRPM Method (% Error = 24.46)

50 100 150

50

100

150

Mass Index

M
as

s 
In

de
x

SLRPM Method (% Error = 22.76)

50 100 150

50

100

150

restoring force characteristics: kx
range: 40n
total number of masses: 200
total observable masses: 150
total latent masses: 50
total samples: 100000
λ = 0.020, α = 0.020, β = 0.500

(c)

Figure 2.14: Results of the estimation methods for the spring-mass model of 200 masses when
only a part of the network is observable and there are long range connections with range 40n.
Connections in the observed network (ground truth matrix) are shown in black dots. For the
methods, correct identification of a connection is shown in black dot and incorrect identification of
a connection is shown in red dot. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 2.15: Results of the estimation methods for the spring-mass model of 200 masses when
only a part of the network is observable and there are long range connections with range 20n.
Connections in the observed network (ground truth matrix) are shown in black dots. For the
methods, correct identification of a connection is shown in black dot and incorrect identification of
a connection is shown in red dot. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 2.16: Plot of error percentage of the estimation methods vs. N with p = 100 and densely
connected network with long range connections of range 20n.

comparable performance to the SRPM method.

Remark 1

Even though for each case we have considered only one random subset of network to be

observable, considering different random subsets of network (but fixing all the parameters) to be

observable does not change the trends of the results reported here and the SLRPM method is able to

outperform the other methods for different random subsets observed variables.

Remark 2

The performance (in terms of error percentage) of each method for network recovery in the

spring-mass model does not change under different types of noise distributions. We have tested the

performance of these methods under Gaussian, Poisson, and uniform distributions and each method

has similar performance under these different noise distributions.
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Figure 2.17: Results of the estimation methods for the spring-mass model of 200 masses when
only a part of the network is observable and there are short range connections with a
neighborhood of 3. Connections in the observed network (ground truth matrix) are shown in black
dots. For the methods, correct identification of a connection is shown in black dot and incorrect
identification of a connection is shown in red dot. (a) p = 60. (b) p = 100. (c) p = 150.
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Figure 2.18: Plot of error percentage of the estimation methods vs. N with p = 100 and densely
connected network with short range connections of neighborhood 3.

Remark 3

The performance (in terms of error percentage) of each method for network recovery in the

spring-mass model does not change for change in signal-to-noise ratio up to 30 dB.

Remarks 2 and 3 are not surprising. Note that in the spring-mass model, we model the

noise as an external force. So no matter how “forcefully” (noise variance) or in what way (noise

distribution) we wobble the spring-mass system, the connectivity pattern won’t change. Noise is

not responsible for the connectivity pattern and the connectivity patterns estimated by the different

methods shown here are due to the methods themselves.
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electrocorticography recordings with unobserved inputs”. The author of this thesis is the primary

author of this material.
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Chapter 3

Application in estimating brain connectivity

during sleep spindles from human

electrocorticography (ECoG) recordings

3.1 The significance of sleep and sleep spindles

During sleep, our brains are highly active. The low-amplitude, high-frequency activity in

the neocortex characteristic of the awake state is replaced with a sequence of distinct phases with

generally high-amplitude, low-frequency activity. Soon after the onset of sleep, brief episodes

of 10-14 Hz synchronized spindling occur in the thalamus and cortex, producing large-scale

spatiotemporal coherence throughout the forebrain. Throughout the night, the cortex alternates

between periods of slow-wave sleep in the 2-4 Hz range and episodes of rapid eye movement sleep

(REM), characterized by sharp waves of activity in the pons, the thalamus and in the occipital cortex,

while also passing through intermediate nonREM sleep stages (Sejnowski, 1995; Sejnowski et al.,

2000).

Activity in the sleeping brain is largely hidden from us because very little content of the

brain activity that occurs during sleep directly enters consciousness. Hence it becomes important
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to understand the patterns of electrical activity of neurons that occur in the brain during sleep. It

has been suggested that the important functions of sleep are adaptive strategies, physical recovery,

energy conservation, and information processing among others. There is also evidence supporting

the role of sleep in learning and memory consolidation, and neuronal plasticity (Sejnowski, 1995;

Sejnowski et al., 2000; Stickgold et al., 2005, 2007).

In (Fogel et al., 2007), researchers have made effort concerning the functional significance

of the considerable interindividual differences in sleep spindles. The pattern of the sleep spindles

within individuals is quite stable and varies little from night to night. Because of the remarkable

intra-individual stability in sleep spindles from night to night, it was hypothesized that sleep spindles

may serve as a “fingerprint” to account for inter-individual differences.

Three separate studies were performed to broadly examine the relationship between spindles

and learning potential as measured by an intelligence quotient (IQ) test. In all the three studies,

it was found that the number of sleep spindles was positively correlated with Performance IQ.

Power in the 12−18 Hz frequency band, a more objective indicator of the level of stage 2 spindle

activity displayed even stronger correlations with Performance IQ. These results indicated that

Performance IQ can be predicted simply by knowing the number of spindles and sigma power. This

suggested that sleep spindles and sigma power may be biological markers for the specific abilities

that are assessed by Performance IQ. This relationship might reflect the efficiency of information

processing that is dependent on thalamocortical communication. In other words, richer cortical

representations would require more thalamocortical interconnectedness. Maintenance and encoding

of new information in a more complex system may require more thalamocortical activity or a

more efficient thalamocortical system. This efficiency or added complexity may be reflected in the

higher number of sleep spindles in the cortical areas underlying perceptual or analytical abilities in

individuals with a higher Performance IQ.

In (Fogel et al., 2006), a study examined the learning-dependent changes in sleep, including

stage 2 sleep spindles where subjects went through an intense period of simple motor procedural

learning. Overall, the results from the study supported the hypothesis that sleep spindles are
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intimately involved with the consolidation of simple motor procedural memory and may be important

for the off-line reprocessing of recently acquired simple procedural tasks. It was found that there was

an increase in the density of sleep spindles. Furthermore, it was found that the overall improvement

on the motor tasks was positively correlated with the increase in sleep spindle density. In addition,

there was an increase in the duration of stage 2 sleep following new learning. The magnitude of this

change was very large: overall, there was a 15.8% increase in stage 2 sleep. The increase in the

duration of Stage 2 sleep would be expected to increase the total number of sleep spindles alone.

However, in addition to the increased duration of stage 2 sleep, there was an increase in spindle

density. This suggested that motor learning-dependent changes in sleep spindles are independent of

the time spent in stage 2 sleep. To determine if the changes to sleep following simple procedural

memory were limited to stage 2 sleep and sleep spindles, REM density was also considered in this

experiment. It was found that the duration of REM sleep did not change following new learning, nor

did the density of REM, which suggested that the changes to sleep following new simple procedural

learning affected only stage 2 sleep, and is specific to sleep spindles.

In (Schabus et al., 2004) researchers studied the functional significance of stage 2 sleep

spindle activity for declarative memory consolidation. This study measured spindle activity during

stage 2 sleep following a (declarative) word-pair association task as compared to a control task.

Participants performed a cued recall in the evening after learning (160 word pairs) as well as in

the subsequent morning after 8 hours of undisturbed sleep with full polysomnography. Overnight

change in the number of recalled words correlated significantly with increased spindle activity

during the experimental night. The results also suggested that the increase in spindle activity cannot

simply be accounted for by changes in (stage 2) sleep architecture, or subjects’ tiredness. They

found that the relationship between memory performance and spindle activity was not an indirect

effect of sleep-stage durations. Even when all sleep stages were controlled, the correlation between

memory performance and spindle activity changes remained significant. Thus their findings provided

evidence for the involvement of sleep spindle activity in memory consolidation as measured by the

declarative memory task performed before and after the experimental night. The fact that spindle
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activity was only related to changes in memory performance (increase or decrease over the night)

was consistent with the hypothesis that spindle activity is specifically related to the consolidation

of recently established memory traces. In other words, the findings of the study were in good

agreement with the role of sleep spindles for memory consolidation. Several other researchers (Gais

et al., 2002, 2004; Marshall et al., 2007) also have reported similar results.

Researchers in (Walker et al., 2002) found that improvement in motor skill performance

in humans was due to sleep. They found evidence that continued improvement on a motor skill

task occurs only across a night of sleep, while an equivalent period of wake offers no significant

benefit to performance. Furthermore, more than half the variance in overnight improvement was

explained by the amount of stage 2 sleep obtained during night. The authors further speculated that

the enhancement in motor skill was due to the sleep spindles which are thought to cause massive

calcium entry into pyramidal cells of the cerebral cortex, triggering intracellular calcium-dependent

mechanisms required for synaptic plasticity (Sejnowski et al., 2000) and have been shown to

increase following training on a motor task (Fogel et al., 2007, 2006) as described previously. These

implications become most significant in the broader context of acquiring real life skillful actions

duch as learning motor patterns required for movement based sports, learning a musical instrument,

or developing artistic movement control. All such learning of new actions may require sleep before

the maximum benefit of practice is expressed.

The authors in (Smith et al., 1994) have found impaired motor memory for a pursuit rotor

task following stage 2 sleep loss in college students. Among the subjects considered, one group was

subjected to REM sleep deprivation and the other group was subjected nonREM sleep deprivation

following acquisition of a pure motor task, the pursuit rotor. Results showed that the REM sleep

deprivation group had excellent memory for the task whereas the nonREM sleep deprivation group

had a deficit in memory for the task. It was concluded that stage 2 sleep (where sleep spindles

occur) rather than REM sleep was the important stage of sleep for efficient memory processing of

the pursuit motor task. In other words, the newly acquired pure motor skill was most efficient when

post-training stage 2 sleep was allowed and was impaired when this stage of sleep was reduced or
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interrupted in the sleep night following the training session.

In (Meier-Koll et al., 1999), researchers have tried to link the storing of spatial information

and episodic memory to sleep stages. Two city mazes, a simple and a complex one, were created by

means of a computer program and were presented to the subjects on a TV screen. The task was to

find various end points and to find the way back to the starting point via the help of a PC mouse.

After the task, the subjects slept and the sleep stages were measured polygraphically. The subjects

exposed to this experiment had significantly enhanced sleep spindle activities in comparison to

subjects who had experienced neither maze. It was concluded that there is a functional linkage

between stage 2 sleep spindles and learning or information processing in cortical areas.

Furthermore, because of its well-organized and consistent structure, sleep can be a valuable

instrument for the investigation of neurological disorders such as Alzheimer’s disease, progressive

supranuclear palsy, REM sleep behavior disorder, Parkinson’s disease, dementia with Lewy bodies,

multiple system atrophy MSA, Huntington’s disease and Creutzfeldt-Jakob disease (Petit et al.,

2004). For example, the researchers in (Ferrarelli et al., 2007) have investigated whether sleep

spindles differ between schizophrenia subjects, healthy individuals, and a psychiatric control group

with a history of depression. The authors found a decrease in sleep spindle number, amplitude,

duration, and integrated spindle activity in schizophrenia patients. Furthermore, integrated spindle

activity had an effect size corresponding to 93.0% or 90.2% separation of the schizophrenia from

the comparison or depression group. Since sleep spindles are generated by the thalamic reticular

nucleus in conjunction with specific thalamic nuclei and are modulated by corticothalamic and

thalamocortical connections, it was concluded that the deficit in sleep spindles in schizophrenia

subjects may reflect dysfunction in thalamic-reticular and thalamocortical mechanisms and could

represent a biological marker of illness. Hence finding the functional pattern in the brain during

sleep spindles can provide valuable information for understanding the pathophysiology and for

assisting the diagnosis of neurodegenerative diseases.

From these studies, it is quite clear that sleep and sleep spindles play a vital role in memory

and learning and in investigation of neurological disorders in the human brain. Thus finding
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connectivity during sleep will surely give us insights into the strong activity regions in the brain areas

and how they are organized which may be responsible for information processing. Unfortunately,

there has been very little research regarding the brain connectivity pattern during sleep. Moreover,

researchers have termed the correlation of brain activity between brain regions as “functional

connectivity” and have drawn conclusions based on that. These conclusions are flawed since the

correlation method fails to identify the true connectivity pattern of a physical network as we have

shown via extensive simulations using artificial networks.

3.2 Prior work in analyzing human brain connectivity during

sleep spindles

In (Spoormaker et al., 2010), researchers have characterized the human functional brain

network during nonREM sleep by using the correlation method on functional magnetic resonance

imaging (fMRI) recordings. In this study, the authors used the correlation method to explore

how physiological changes during sleep are reflected in functional connectivity and small-world

network properties of a large-scale, low-frequency functional brain network. They observed that in

the transition from wakefulness to light sleep, thalamocortical connectivity was sharply reduced,

whereas corticocortical connectivity increased; corticocortical connectivity subsequently broke down

in slow-wave sleep. Local clustering values were closest to random values in light sleep, whereas

slow-wave sleep was characterized by the highest clustering ratio (gamma). The authors claimed

that the changes in consciousness in the descent to sleep are subserved by reduced thalamocortical

connectivity at sleep onset and a breakdown of general connectivity in slow-wave sleep, with both

processes limiting the capacity of the brain to integrate information across functional modules.

The authors in (Larson-Prior et al., 2009) studied the cortical network functional connectivity

during sleep using the correlation method. They examined the functional connectivity using

conventional seed-based analyses in 3 primary sensory and 3 association networks as normal young

adults transitioned from wakefulness to light sleep. They found that functional connectivity in
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nonREM sleep was maintained in each network throughout all examined states of arousal. Further,

these networks were consistent across subjects. The authors were surprised that they did not find

any evidence of change in functional connectivity in the sensory (visual, auditory, and somatomotor)

or cognitive (dorsal attention, default and executive control) networks examined.

In (Andrade et al., 2011), the authors also have investigated the functional connectivity

between the hippocampal and neocortical regions of the human brain in nonREM sleep using

the correlation method. They found increased connectivity between hippocampal and neocortical

regions of the brain during stage 2 sleep spindles suggesting an increased capacity for global

information transfer during sleep spindles.

Though the results of these studies are interesting, further experimental validation is neces-

sary to support their claims and to derive a more thorough physiological interpretation. A flaw in

these analyses is the use of the correlation method to characterize the brain functional connectivity

pattern during sleep since two brain regions might show very high correlation even if there is not

strong physical connection between them, rather the correlation could be due to a common input.

Hence the motivation for the application of the sparse regularized precision matrix (SRPM) method

in connectivity estimation during sleep.

3.3 Automatic detection of sleep spindles using delay differen-

tial analysis (DDA)

In order to detect sleep spindles reliably in the ECoG data, we used DDA. In Figure

3.1(a), DDA is introduced as a time domain classification framework based on embedding theory

in nonlinear dynamics (Kremliovsky et al., 1997; Lainscsek et al., 2013; Sampson et al., 2015;

Lainscsek et al., 2015, 2013). Given a recording (here ECoG data) from some unknown dynamical

system (here the brain), an embedding will reveal the nonlinear invariant properties of the system,

even from a single time series (Takens, 1981). The embedding in DDA provides a low-dimensional

nonlinear functional basis onto which the data are mapped. Since this basis is built on the dynamical
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Figure 3.1: Delay Differential Analysis (DDA). (a) For an unknown dynamical system (such as
the brain) from which we can record the value of a single variable over time (such as ECoG data),
embedding theory states that we can recover the nonlinear invariant properties of the original
system. DDA combines delay and differential embeddings in a functional form which allows
time-domain classification of the data. (b) Performance of DDA model forms is evaluated with
repeated random subsampling cross-validation. The data is repeatedly divided at random into
training and testing sets. (c) Applying the weights (set by SVD) to the DDA features transforms
from the feature space to a one-dimensional distance from the hyperplane of separation. This
value is used as a measure of performance for classification.

structure of the data, preprocessing of the data (such as filtering) is not necessary. DDA yields a

low number of features (around 4), as compared with traditional spectral techniques, which greatly

reduces the risk of overfitting.

Another way of viewing DDA models is as sparse Volterra series (Volterra, 1887, 1959). A

general nonlinear real-valued function can be expressed as a Taylor series expansion of functionals

of increasing complexity around a fixed point. When the function represents the behavior of a

dynamical system the expansion becomes a Volterra series. DDA restricts the complexity of the

analysis by using a low-dimensional sparse delay differential equation model. In such a model,

linear and nonlinear data components are analyzed in an interconnected manner. This reduces the

computational load, and, leaving some of the non-relevant dynamics unmodeled highly reduces the

effect of artifacts and other signals unrelated to those we aim to detect.

All of these properties make DDA well-suited to the problem of spindle detection. Frequency-

based approaches which have often been used for detecting spindles are sensitive to artifacts
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involving transient increases in spectral power in the band of interest and parameters often have

to be adjusted to fit individual subjects. In DDA, we train on real data from a single subject and a

single electrode and find the relevant dynamical features for spindle identification that are highly

generalizable to a wide class of subjects and recordings.

In practice, DDA (see Figure 3.1(a)) combines a differential embedding with a delay

embedding by relating them in a polynomial function

ẋ(t) =
I

∑
i=1

ai

N

∏
n=1

x(t− τn)
mn,i for τn,mn,i ∈ N0 (3.1)

where I is the number of monomials in the model, N is the number of delays in each monomial,

and mn,i is the order of the nth term in the ith monomial. The time derivative of the data, ẋ(t), is

computed with a five-point center derivative (Miletics et al., 2005). The estimated coefficients ai

for the model, as well as the least-squares error, form the low-dimensional feature space used for

classifying the data (here, for detecting spindles). The least-squares error is defined as

ρ =

√√√√ 1
K

K

∑
k=1

(
ẋ−

I

∑
i=1

ai

N

∏
n=1

xmn,i
τn

)2

(3.2)

where K denotes the number of time points, ẋ denotes ẋ(t), and xτn denotes x(t− τn).

The particular form of the polynomial in (3.1) was chosen after an exhaustive search

of all model forms subject to the following constraints: model forms were constrained to two

delays (N ≤ 2), three terms (I ≤ 3), and third-order nonlinearity (∑n mn,i ≤ 3), and the delays were

constrained to values up to 150 time points (τn ≤ 150). For model selection, we used a training data

set with human expert-scored spindles in stereoelectroencephalogram (SEEG) data sampled at 500

Hz. As shown in Figure 3.1(b), the best-performing model was selected using repeated random

subsampling cross-validation (Kohavi, 1995). This method involves repeatedly dividing the data at

random into training and testing sets. Each random split assigns 70% of the data to the training set

and 30% to the testing set. The model form and values of the delays τ1 and τ2 in (3.3) were chosen

to maximize the separation between spindle and non-spindle epochs. For spindle detection, we used
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Spindle Detection in ECoG Data
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Figure 3.2: DDA spindle detection. The top panel shows a spectrogram of the ECoG data for a
four-second time period in which two sleep spindles are detected. The middle panel shows the
same data in the time domain after the application of a 60 Hz notch filter for visualization. The
bottom panel shows the spindle detection index from DDA, higher values above the set threshold,
in red, correspond to the presence of spindles.

the model

ẋ = a1xτ1 +a2xτ2 +a3x2
τ1

(3.3)

with τ1 = 19 δt and τ2 = 12 δt, where δt = 1/ fs = 2 ms. Different values of the delays would

be selected for a different sampling rate. From the cross-validation procedure, we obtain weights

using singular-value-decomposition (SVD), which we apply to the four features from this model,

a1,a2,a3, and ρ, to transform the four-dimensional feature space to a one-dimensional distance from

a hyperplane of separation. This transformation is illustrated in Figure 3.1(c). The small number

of features is a general feature of DDA, which has the advantages of minimizing overfitting and

reducing the influences of artifacts in the recordings. DDA is also more sensitive than traditional

methods based on frequency analysis and thresholding, allowing spindles to be detected in most

electrodes.

After selecting the model based on the SEEG training data, its performance was evaluated
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on a set of twenty recordings from SEEG, ECoG, and laminar electrodes. Across this data set, our

DDA-based spindle detector agrees with the expert scoring with a mean area of 0.84 under the

receiver operating characteristic (ROC) curve and a mean F1 score of 0.9. This is comparable to

or better than typical inter-rater agreement between human experts. Researchers in (Warby et al.,

2014) found a mean F1 score of 0.75 for marked-spindles for a group of 24 experts as compared

with the group consensus (designed to maximize mean individual F1 score). This finding is similar

to those of other studies of human-expert sleep-scoring, where typical inter-rater agreement is in the

range of 72% (Basner et al., 2008; Danker et al., 2009; Iber et al., 2007).

For detecting the spindles used in this analysis, we treat each channel separately, and use

sliding windows of 0.25 seconds, with a 0.05 second step size. In each window we obtain a distance

from the hyperplane as described above, which serves as an index indicating the presence of a

spindle when it exceeds a set threshold. The threshold was set to maximize agreement with human

scoring in the training data, as measured by area under the ROC curve. Figure 3.2 shows, for

two example spindles, the output detection index from DDA along with the raw waveform and

spectrogram for reference from one channel of ECoG data.

It is important to note that DDA is used here only to identify spindle epochs for study, and

the outputs of DDA are not used in any of the subsequent analysis.

3.4 Sparse connectivity estimation using SRPM during sleep

spindles

ECoG recordings from a male patient of age 32 with long-standing pharmaco-resistant left

temporal lobe complex partial epilepsy were analyzed. Recordings were performed using a standard

clinical recording system (XLTEK, Natus Medical Inc., San Carlos, CA) with a 500 Hz sampling

rate. The reference channel was a strip of electrodes placed outside the dura and facing the skull at

a region remote from the other grid and strip electrodes. Subdural electrode arrays were placed to

confirm the hypothesized seizure focus and locate epileptogenic tissue in relation to essential cortex,
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Table 3.1: Medication information of the patient.

Day Medication
Home medications Keppra 1000 bid

Day 1 Levetiracetam 1000 bid
Day 2 Levetiracetam 1000 bid
Day 3 Levetiracetam 500 bid
Day 4 Levetiracetam 500 bid
Day 5 off
Day 9 Levetiracetam 1500 qhs, lorazepam 1mg IV

Day 10 Levetiracetam 1000 bid

thus directing surgical treatment. The decision to implant, the electrode targets, and the duration of

implantation were made entirely on clinical grounds with no input from this research study. All

data acquisition was performed under protocols monitored by Institutional Review Board of the

Massachusetts General Hospital according to National Institutes of Health guidelines. Data selected

for use in this study were exclusively from stage 2 sleep, during time periods when no seizures

were occurring. The medication information for the patient is given in Table 3.1. The recordings

analyzed here are from Day 10.

After detecting the sleep spindles for each channel (see Figure 3.3) as described above, we

selected only those time windows in which spindles were present in a relatively large number of

channels. We selected 10 such time windows in total and estimated the SRPM for each of them. The

average number of channels in which sleep spindles were present in the selected time windows was

found to be 32.10±6.78. We then applied the Louvain method for community detection (LMCD)

(Newman et al., 2004, 2006; Brandes et al., 2008; Blondel et al., 2008; Reichardt et al., 2006;

Ronhovde et al., 2009; Sun et al., 2009; Sporns, 2010) on the SRPM to cluster similar electrodes

together. The regularization parameter λ in the SRPM method was chosen to be large enough to

minimize the inter-cluster connectivity after applying the LMCD, thus clustering the brain regions

with the strongest connectivity. The range of values of λ used for the analysis was between 0.035

and 0.054. The SRPM method was found to be fairly robust to the regularization parameter and

small changes in the values of the regularization parameters did not significantly alter the results
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reported here. Figure 3.3 shows the clustered brain regions in the 10 time windows considered. Note

that in all the panels in Figure 3.3 the clusters are spatially localized, indicating spatially localized

connectivity among brain regions. The average modularity index (MI) Q across the 10 panels was

found to be 0.41 defined as
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Figure 3.3: Estimating brain connectivity during sleep spindles from human ECoG data by the
SRPM method in 10 epochs from a patient. Circles denote electrode locations and clusters (of
strongest activity) put together by the LMCD have the same color. For example, in the left top
panel, there are three clusters of strongest activity denoted by red, blue, and green.
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Figure 3.4: Estimating brain connectivity during absence of spindles from human ECoG data by
the SRPM method in 4 epochs from a patient. Circles denote electrode locations and clusters (of
strongest activity) put together by the LMCD have the same color. For example, in the left top
panel, there are five clusters of strongest activity denoted by red, blue, green, yellow, and cyan.
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Q =
1

2M ∑
i, j

[
Bi j−

sis j

2M

]
δ(σi,σ j) (3.4)

where Bi j denotes the strength of connectivity (obtained from the SRPM) between brain regions

i and j, si = ∑ j Bi j denotes the sum of connectivity strengths between brain region i and the rest

of the brain regions, σi denotes the cluster to which brain region i belongs to, M = 1
2 ∑i j Bi j, and

δ(σi,σ j) is 1 if σi = σ j and 0 otherwise (Blondel et al., 2008; Reichardt et al., 2006). Also, the

number of clusters is not the same in the panels. Also, observe that in different panels, different

brain regions show the strongest connectivity.

We next analyzed the time windows in which sleep spindles were not present in any of

the 64 channels. We selected 21 such time windows in total and observed that the clustered brain

regions were not as spatially localized as that of the time windows where sleep spindles were present.

Figure 3.4 shows the clustered brain regions in 4 time windows in which there were no spindles.

The average modularity across all the nonspindle time windows (including those not shown here)

was found to be 0.49. The number of clusters is not the same in the panels, and in different panels,

different brain regions show the strongest connectivity.

In order to quantify the degree of spatial localization in spindle and nonspindle cases, we

calculated the average relative surface area (ARSA) for both the cases. The ARSA for the spindle

case was defined to be the average of the relative surface areas (RSAs) of all clusters across all

time windows in which spindles were present and the ARSA for the nonspindle case was defined

similarly. The RSA of a cluster was defined as

RSA =
SA

TA×NA
(3.5)

where SA denotes the surface area spanned by the cluster, TA denotes the total surface area spanned

by all the electrodes, and NA denotes the number of electrodes in that particular cluster. The ARSA

for the spindle case was found to be 0.010±0.006 and the ARSA for the nonspindle case was found

to be 0.031±0.009 which is significantly higher than that of the spindle case. This indicates that
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the brain networks during sleep spindles are highly spatially localized in comparison to that during

absence of spindles.

Moreover, we applied the correlation method and almost all brain regions showed very

strong connectivity after applying the LMCD on the correlation matrix indicating that the correlation

method does not result in sparse connectivity between brain regions.

3.5 Discussion

The correlation method cannot find true physical connections in a network since two brain

regions might show very high correlation even when the two regions are not directly connected,

rather the high correlation could be due to the strong interaction of the two regions with common

input from a third region. Even though past research has primarily focused on the correlation

method and conclusions have been drawn based on the results, those experiments need to be

repeated using our proposed approach to validate the correctness of the findings. Researchers have

proposed solutions to this problem and have suggested using SRPM assuming that the connectivity

structure is sparse. This method yields partial correlations to measure strong direct interactions

between pairs of regions while simultaneously removing the influence of the rest of the regions thus

identifying conditionally independent regions. Even though the SRPM and PM methods have been

previously applied in brain research to identify functionally connected networks in the human brain

and conclusions have been drawn regarding how the brain processes information, more experimental

analyses are necessary to verify these claims.

Thus we generated simple artificial networks via simulation and demonstrated through

extensive analysis that the SRPM method can indeed find the true physical connection in a network.

The spring-mass model and the two network topologies in the RC circuit model were used to

evaluate the performance of the SRPM method. We showed successfully that, as long as the

connectivity structure is sparse, the SRPM method has the potential to outperform the correlation

and PM methods. For these two linear problems, SRPM recovered the exact network connectivity.
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This result is in contrast to the results in (Sojoudi et al., 2016, 2014) where the correlation and

PM methods gave equivalent or better performance than the SRPM method, although a different

algorithm was used to solve the optimization problem in SRPM. Even though the algorithm in

(Sojoudi et al., 2016, 2014) promoted sparsity, it did not successfully recover the connectivity

pattern in a physical network.

The superior performance of the SRPM method on the artificial networks encouraged us

to apply the same for analyzing the human brain. We applied the SRPM method for estimating

brain connectivity during sleep spindles from human ECoG data using an 8×8 electrode array. For

sleep spindle detection we used DDA, which is a time domain classification framework based on

embedding theory in nonlinear dynamics. After obtaining the SRPM during the sleep spindles, we

clustered similar brain regions of strongest activity together using the LMCD and found spatially

localized brain networks during spindles. Moreover, analyzing the time windows in which sleep

spindles were not present, we found that the clusters were not as compact compared with that of the

time windows where sleep spindles were present. These findings suggest that regional interactions

in the cortex are stronger during sleep spindles. Moreover, this gives us insight into the local

information processing during spindle activity in brain. During sleep spindles, the connectivity

pattern in the brain was transiently synchronized thus providing evidence for globally organized

coherence patterns. These findings on spatial localization during spindles provide us with new

insights into how sleep spindles have a major role in learning, memory consolidation, and neuronal

plasticity.

Furthermore, the clusters shown in Figure 3.3 obtained during sleep spindles were large and

in 7 out of the 10 epochs, there was a cluster that included regions of both the temporal and prefrontal

cortices. This suggests that some of the connectivity underlying the clustering are association fiber

bundles that project between the major cortical lobes. It is worth noting that the comparison we

are making is between spindle epochs and all other epochs during this recording of stage 2 sleep.

These non-spindle epochs, then, can be quite heterogeneous, with various other phenomena such as

K-complexes or other slow oscillations occuring at different times throughout. As such, we expect
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that the connectivity pattern to change accordingly throughout these periods. By including a number

of different non-spindle epochs in our analysis then, we establish a broad baseline for connectivity

during stage 2 sleep that we can then compare to the specific connectivity patterns observed during

spindles. Although the data was from a patient with epilepsy, the recordings we analyzed were

during long seizure-free periods. Nonetheless, there is concern that the cortical sleep states may not

be normal and further work is needed to confirm our results in healthy control subjects. Another

issue is that, the ECoG recordings that we analyzed were from a single patient and hence there is

a need to test our methods in a large number of epileptic patients. It is important to note that the

inputs from the thalamus also act as common inputs to the cortex and constitute latent (unobserved)

variables in our analysis. In order to estimate the connectivity by modeling the latent inputs, we

have also applied the SLRPM method (Chandrasekaran et al., 2012) on the same ECoG recordings

shown here and found very similar results to the SRPM method which is surprising. The author of

this thesis does not have an explanation for the similar performance of the two methods for sleep

spindle analysis.

In a recent work (Brunton et al., 2016), the authors used the dynamic mode decomposition

algorithm and clustering methods to characterize brain networks during sleep spindles. Similar

to our results, the researchers found that the brain networks during sleep spindles are spatially

localized. However, no results were reported in the absence of sleep spindles. Other researchers

(Andrillon et al., 2011) also have found similar results. In a recent study (Muller et al., 2016), by

analyzing the phase coherence, we have found that sleep spindles are associated with traveling

waves which provide further support for our findings.

The analytical and experimental advances made in this thesis on sleep, learning and infor-

mation processing in the brain are exciting because they suggest a possible resolution to one of

the greatest mysteries in biology, the nature and function of sleep. The experimental results so

far are incomplete and tentative, but they should lead us toward further advances that will widen

our understanding of sleep. Additional analysis is needed to test these conclusions and these are

reserved for future research.
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Finally, the same SRPM method we have used to analyze ECoG recordings could also be

applied to single unit recordings, local field potentials, and fMRI data.
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Chapter 4

Application in estimating brain connectivity

during epileptic seizures from human

electrocorticography (ECoG) recordings

Epilepsy is the world’s one of the most common brain disorder, characterized by sudden

occurrence of unprovoked seizures, affecting more than 50 million people worldwide. There is

plenty of evidence of significantly altered brain connectivity during epilepsy, especially during

seizure periods, in the human brain (Stam, 2014; Diessen et al., 2013; Kramer et al., 2012). However,

research on characterization of human brain functional connectivity during epileptic seizures have

only been limited to the use of the correlation method.

4.1 Prior work in analyzing human brain connectivity during

epileptic seizures

The authors in (Vega-Zelaya et al., 2015) have estimated the brain functional connectivity

during partial seizures from foramen ovale electrode (FOE) and electroencephalogram (EEG)

recordings in 22 temporal lobe epilepsy (TLE) patients using the correlation method. Brain network
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connectivity was characterized using average clustering coefficient (ACC) and modularity index

(MI). The ACC increased and the MI decreased after the seizure onset. Researchers in (Kramer

et al., 2010) have analyzed brain functional connectivity in 48 seizures from electrocorticography

(ECoG) recordings in 11 epilepsy patients using the correlation method. They found that the ACC

increased after the seizure onset. A research study in (Ponten et al., 2007) have characterized, via

the correlation method, the functional connectivity from EEG recordings in 7 patients suffering from

mesial TLE (MTLE) and reported increase in ACC after seizure onset. In another study (Schindler

et al., 2008), researchers have carried out an analysis of the brain activity from EEG recordings in

100 epileptic seizures from 60 patients using the correlation method. They characterized functional

connectivity by ACC and found that it increased after seizure onset. Furthermore, in (Burns et al.,

2014), researchers have characterized brain functional connectivity in terms of eigenvector centrality

(EC), from ECoG recordings in 12 patients before and after seizure onset via the correlation method.

They found that the brain functional connectivity significantly changed before and after seizure

onset and they were able to successfully localize the seizure onset zones by analyzing this change in

connectivity (EC) of the ECoG electrodes.

As mentioned previously, these results of the human brain functional connectivity during

epileptic seizures measured using the correlation method might be flawed since existing brain imag-

ing technologies cannot simultaneously record from the entire human brain and brain regions which

are observed can receive common inputs from latent or unobserved brain regions. Furthermore, it is

known that there can be dopaminergic, norepinephrine or cholinergic fiber projections to the cortex,

from which EEG or ECoG recordings are usually taken, during seizures (Krimer et al., 1998; Lado

et al., 2008; Sato et al., 1992; Attwell et al., 2002; Giorge et al., 2004) and these neuromodulatory

projections serve as common latent inputs to the cortex and induce spurious correlations among the

EEG or ECoG electrodes. But the SLRPM method calculates the precision matrix of the conditional

statistics of the observed brain regions given the latent brain regions and this helps to remove the

influence of common observed and latent inputs on the EEG or ECoG recordings. In this way,

we may be able to find more accurate brain connectivity from the recordings and this will help us
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analyze the brain activity during epileptic seizures.

We demonstrate the application of the SLRPM method to estimate brain connectivity during

epileptic seizures from human ECoG recordings. These recordings are analyzed using SLRPM and

brain connectivity has been quantified using modularity index (MI), clustering coefficient (CC), and

eigenvector centrality (EC).

4.2 Epileptic seizure analysis from human ECoG recordings

using SLRPM

4.2.1 ECoG data acquisition and protocol

Continuous ECoG recordings from 12 patients (see Table 4.1 for details) with long-standing

pharmaco-resistant complex partial epileptic seizures were analyzed. Recordings were performed

using a standard clinical recording system (XLTEK, Natus Medical Inc., San Carlos, CA) with

a 500 Hz sampling rate. The reference channel was a strip of electrodes placed outside the dura

and facing the skull at a region remote from the other grid and strip electrodes. Subdural electrode

arrays were placed to confirm the hypothesized seizure focus and locate epileptogenic tissue in

relation to essential cortex, thus directing surgical treatment. The decision to implant, the electrode

targets, and the duration of implantation were made entirely on clinical grounds with no input from

this research study. All data acquisition was performed under protocols monitored by Institutional

Review Board of the Massachusetts General Hospital according to National Institutes of Health

guidelines.

4.2.2 Preprocessing and referencing

ECoG recordings were first low pass filtered at 125 Hz using a 6th order Butterworth filter

to remove high frequency artifacts. Line frequencies 60 Hz and 120 Hz were then notch filtered

using a 4th order Butterworth filter. Next, to reduce the signals from the reference electrode, at

62



Table 4.1: Patients’ details.

Patient Age Sex (Male (M)/Female (F))
1 46 F
2 55 F
3 29 M
4 45 F
5 25 M
6 23 M
7 28 M
8 35 M
9 32 M

10 23 F
11 19 F
12 32 M

each time point, the average signal of all electrodes was subtracted from each electrode (Nunez

et al., 2006; Kramer et al., 2010; Cimenser et al., 2011) (this process is also known as the common

average referencing (CAR)). Finally, recordings were z-scored (mean-variance normalization) for

each channel (Varsavsky et al., 2010).

After the preprocessing steps, we can now apply our methods on the ECoG recordings for

comparison. We used MI, CC, and EC to quantify brain connectivity. These three measures are

widely used for characterizing activity in brain imaging studies. These three measures are described

next. All these measures are directly applied on the estimated connectivity matrix from the methods

considered. In order to calculate the measures, we used the brain connectivity toolbox (BCT)

(Sporns, 2010).

4.2.3 Description of brain connectivity measures

Modularity index (MI)

For clustering of brain regions, we use MI (Newman et al., 2004, 2006; Brandes et al., 2008;

Blondel et al., 2008; Reichardt et al., 2006; Ronhovde et al., 2009; Sun et al., 2009; Sporns, 2010),

which was also previously used in sleep spindle analysis. We define it here again for completeness.
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MI Q is defined as

Q =
1

2M ∑
i, j

[
Bi j−

sis j

2M

]
δ(σi,σ j) (4.1)

where Bi j denotes the strength of connectivity (obtained from the methods) between brain regions

i and j, si = ∑ j Bi j denotes the sum of connectivity strengths between brain region i and the rest

of the brain regions, σi denotes the cluster to which brain region i belongs to, M = 1
2 ∑i j Bi j, and

δ(σi,σ j) is 1 if σi = σ j and 0 otherwise. Note that MI measures the fraction of the strengths of

the connectivities belonging to the same cluster minus the probability of the strengths of random

connectivities belonging to the same cluster. Hence, in order to have positive MI, the strengths of

the connectivities belonging to the same cluster has to be better than random. Extraction of brain

networks is based on MI optimization and we use the Louvain method for community detection

(LMCD) (Newman et al., 2004, 2006; Brandes et al., 2008; Blondel et al., 2008; Reichardt et al.,

2006; Ronhovde et al., 2009; Sun et al., 2009; Sporns, 2010), which is a fully automatic method, for

this optimization. In other words, LMCD maximizes the strengths of connectivities within clusters,

and minimizes the strengths of connectivities between clusters. Clustering of brain regions based

on MI optimization is a widely used method in human brain imaging data analysis (Rubinov et al.,

2010; Bassett et al., 2011; Meunier et al., 2010; Zuo et al., 2012; Rubinov et al., 2011; Bassett et al.,

2010; Sporns, 2011; Cole et al., 2014; Bruno et al., 2017).

Clustering coefficient (CC)

The CC (Onnela et al., 2005; Saramaki et al., 2007) of a brain region in a network quantifies

how well its neighboring brain regions are connected. CC Ci of the ith brain region is defined as

Ci =
1

ki(ki−1)∑
j,h
(Bi jB jhBhi)

1/3 (4.2)

where ki is the number of neighboring brain regions of the ith brain region and Bi j is the strength of

connectivity (obtained from the methods) between brain regions i and j. The average CC (ACC) C
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of an entire brain network can be defined as

C =
1
M ∑

i
Ci (4.3)

where M is the total number of observed brain regions. CC is also a widely used measure in human

brain imaging data analysis (Vega-Zelaya et al., 2015; Kramer et al., 2010; Ponten et al., 2007;

Schindler et al., 2008; Rubinov et al., 2010; Wang et al., 2017; Bruno et al., 2017).

Eigenvector centrality (EC)

The EC (Newman et al., 2010) is a measure of the influence or importance of a brain region

in the entire brain network. This is based on the concept that a brain region more strongly connected

to high influential brain regions will have relatively higher EC. Mathematically, the relative EC ei

of the ith brain region can be written as

ei =
1
κ

∑
j

Bi je j (4.4)

where Bi j is the strength of connectivity (obtained from the methods) between brain regions i and j

and e j is the relative EC of the jth brain region. In matrix-vector notation, the above set of equations

can be compactly written as a eigenvector equation as

Be = κe (4.5)

where B is the estimated connectivity matrix from the methods and e is its eigenvector which

contains the relative influences of the brain regions. Hence, the relative ECs can be found by solving

the eigenvector equation in (4.5). But note that (4.5) has multiple solutions. The relative ECs are

always assumed to be non-negative. The following two theorems help us find EC from (4.5). These

theorems are valid for an estimated connectivity matrix B which is real, symmetric, and with all

elements non-negative (we take the absolute values of the elements of the estimated connectivity
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matrix to make them non-negative).

Theorem 1. The largest positive eigenvalue κ1 of B is always greater than or equal to the magnitude

of its most negative eigenvalue.

Proof: See p. 346 in (Newman et al., 2010).

Theorem 2. There exists an eigenvector with eigenvalue κ1 all of whose elements are non-negative.

Proof: This follows from Theorem 1. See p. 347 in (Newman et al., 2010) for details.

And since there can be at most one eigenvector with all elements non-negative, the eigen-

vector corresponding to the largest positive eigenvalue contains the relative ECs of the brain regions.

The optimization problem in (4.5) can be solved by using the power method (Newman et al., 2010).

The EC measure has been previously used by researchers to quantify connectivity in human brain

imaging studies (Burns et al., 2014; Zuo et al., 2012; Lohmann et al., 2010; Joyce et al., 2010).

4.2.4 Seizure analysis

After preprocessing of the ECoG recordings, the methods are applied on 4 s non-overlapping

time-windows and brain connectivity is then quantified using the described measures. Total 25

minutes time-segment has been analyzed for each seizure which includes 10 minutes preictal

time-segment. Note that even though it is difficult to characterize the preictal period of seizures

which vary from seizure-to-seizure within a patient and in seizures from different patients (Rozman,

2015), we define the 10 minute preseizure period as our preictal period for all seizures in all patients.

Information regarding the number and type of seizures analyzed for each patient is given in Table

4.2 (total 214 seizures out of which 133 were clinical seizures).

The regularization parameter λ in the SRPM method was set to 0.02 and the regularization

parameters α and β in the SLRPM method were set to 0.02 and 0.2 respectively for all seizures

and all patients. The SRPM and SLRPM methods were found to be robust to changes in the

regularization parameters and small changes in the values of these did not change the results and

implications of the thesis.
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Table 4.2: Number and type of seizures for each patient. Clinical and sub-clinical seizures are
denoted by “C” and “SC” respectively.

Patient Number of seizures analyzed
1 5 C and 2 SC
2 5 C
3 7 C
4 3 C
5 62 C
6 10 C
7 1 C and 2 SC
8 7 C and 4 SC
9 19 C
10 10 C
11 1 C and 4 SC
12 3 C and 69 SC

Table 4.3: Medication information of patient 1.

Day Medication
On admission Trileptal 300 tid + 150mg OD, Clonazepam

0.25mg tds
Day 1 Trileptal 300 bid; Clonazepam 0.25mg tds
Day 2 Trileptal 300 od; Clonazepam 0.25mg tds
Day 3 Clonazepam 0.25mg tds
Day 4 Clonazepam 0.25mg bid
Day 5 Clonazepam 0.25mg od

Day 6−9 no AEDs
Day 10−11 and on discharge Trileptal 300 tid + 150mg OD, Clonazepam

0.25mg tds

Patient 1

Medication information of this patient is shown in Table 4.3. Electrode locations are shown

in Figure 4.1. As shown, there were two grids, one over the anterior temporal and fronto-parietal

region and the other was placed over the posterior temporal-parietal region. There were three strips

placed in the frontopolar region, the subfrontal region and the subtemporal region. There were also

depth electrodes inserted in the inferior frontal, and the anterior and posterior temporal regions. We

analyzed 5 clinical seizures and 2 sub-clinical seizures from this patient. Among the five clinical
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Figure 4.1: Electrode locations in patient 1.
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Figure 4.2: MI plots for the three methods for seizure 1 in patient 1. Green line denotes the
seizure onset time.

seizures, seizure 1 corresponds to day 7, seizures 2 and 3 correspond to day 8, and seizures 4 and 5

correspond to day 9. Among the two sub-clinical seizures, seizure 1 belongs to day 7 and seizure 2

belongs to day 9 respectively.

The MI plots for the three methods for clinical seizure 1 are shown in Figure 4.2. This

seizure lasted for approximately 90 seconds (this was determined by the clinician). Observe that the

MI estimated by the SRPM and SLRPM methods during the seizure are relatively lower than the

preictal and post-ictal MI estimated by the same methods respectively. Furthermore, the preictal

and post-ictal MI in the SLRPM method are relatively higher than those in the SRPM method

respectively and both methods have higher MI than the correlation method. Since the SLRPM
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Figure 4.3: CC plots for the three methods for seizure 1 in patient 1. Green line denotes the
seizure onset time.
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Figure 4.4: EC plots for the three methods for seizure 1 in patient 1. Green line denotes the
seizure onset time.
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Figure 4.5: Plot of the latent inputs estimated by the SLRPM method for seizure 1 in patient 1.
Green line denotes the seizure onset time.
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Figure 4.6: MI plots for the SLRPM method for clinical seizures 2, 3, 4, and 5 (shown in (a), (b),
(c), and (d) respectively) in patient 1. Green lines in all plots denote the seizure onset time.

71



Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

0.3

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(d)

Figure 4.7: CC plots for the SLRPM method for clinical seizures 2, 3, 4, and 5 (shown in (a), (b),
(c), and (d) respectively) in patient 1. Green lines in all plots denote the seizure onset time.
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Figure 4.8: EC plots for the SLRPM method for clinical seizures 2, 3, 4, and 5 (shown in (a), (b),
(c), and (d) respectively) in patient 1. Green lines in all plots denote the seizure onset time.
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Figure 4.9: Plots of the latent inputs estimated by the SLRPM method for clinical seizures 2, 3, 4,
and 5 (shown in (a), (b), (c), and (d) respectively) in patient 1. Green lines in all plots denote the
seizure onset time.
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Figure 4.10: MI plots for the SLRPM method for the two sub-clinical seizures in patient 1. Green
lines in all plots denote the seizure onset time.
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Figure 4.11: CC plots for the SLRPM method for the two sub-clinical seizures in patient 1.
Green lines in all plots denote the seizure onset time.
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Figure 4.12: EC plots for the SLRPM method for the two sub-clinical seizures in patient 1. Green
lines in all plots denote the seizure onset time.
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Figure 4.13: Plots of the latent inputs estimated by the SLRPM method for the two sub-clinical
seizures in patient 1. Green lines in all plots denote the seizure onset time.
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method estimates brain connectivity by considering both the common observable and latent inputs, it

removes considerable between module connectivity and the estimated brain network by this method

is highly modular. Also note that the MI shown in the correlation method slightly increases during

the seizure and then decreases for the first few seconds of the post-ictal period. These dynamics

estimated by the three methods can be more clearly interpreted if we visualize the latent inputs to the

electrodes from which brain activity was recorded. In order to have a measure for the latent inputs,

we calculate the sum of the eigenvalues of the low rank matrix estimated by the SLRPM method.

This plot is shown in Figure 4.5. We see that the latent inputs are relatively low in the ictal period

than the preictal period, but are relatively high in the post-ictal period. For the first few seconds of

the post-ictal period, the latent inputs start increasing and make the observed brain regions more

correlated and hence we see a decrease in MI in the correlation method for this period. Also, since

the effect of the latent inputs is relatively higher in the preictal and post-ictal periods than the ictal

period, it becomes essential to estimate the precision matrix of the conditional statistics in order to

remove the influence of these inputs on the recorded activity. SRPM and correlation methods have

lower MI in preictal and post-ictal periods than the SLRPM method since they cannot model the

latent inputs and might produce erroneous connections among the brain regions hence resulting in

an erroneous estimate of MI.

The low MI values in the SRPM and SLRPM methods can be explained by the CC and EC

plots for the individual electrodes which are shown in Figure 4.3 and 4.4 respectively. Note from

the CC and EC plots of SRPM and SLRPM methods that the brain regions are uniformly active

in the ictal period in contrast to the preictal and post-ictal periods. This relatively more uniform

activity explains the lower MI shown in these two methods since during the ictal period the entire

brain network behaves as one big module. For both CC and EC measures, the SLRPM method

shows relatively more sparse activity than the SRPM and correlation methods during the preictal

and postictal periods which is again a consequence of the ability of the SLRPM method to model

the latent inputs. The estimates by the SRPM and correlation methods in these periods might be

erroneous due to the inability of these two methods to capture the effect of the latent inputs on
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the observed brain regions. For the first few seconds of the post-ictal period, the EC measure in

the correlation method shows that the electrodes are relatively highly active. This phenomena is

also observed in the CC measure of the correlation method to some extent in which we see that a

relatively large number of electrodes are uniformly active. These probably are erroneous estimates

due to the presence of the common inputs as explained before. In contrast, examining the CC and

EC measures in the SLRPM method during this period, we see that relatively few electrodes are

active. All these results demonstrate the superior ability of the SLRPM method to capture brain

dynamics which might be the closest to the ground truth.

Plots of MI, CC, EC and latent inputs measures from the SLRPM method for the other 4

clinical seizures are shown in Figures 4.6, 4.7, 4.8, and 4.9 respectively. Clinical seizures 2, 3, 4,

and 5 are shown in (a), (b), (c), and (d) in each of the Figures 4.6, 4.7, 4.8, and 4.9 respectively.

Each of these seizures lasted for approximately 90 seconds. We note that ictal dynamics for all

these seizures for each measure are very similar to each other and seizure 1 and can be explained as

before.

Plots of MI, CC, EC and latent inputs measures from the SLRPM method for the 2 sub-

clinical seizures are shown in Figures 4.10, 4.11, 4.12, and 4.13 respectively. Sub-clinical seizures

1 and 2 are shown in (a) and (b) in each of the Figures 4.10, 4.11, 4.12, and 4.13 respectively. MI

for sub-clinical seizure 1 was relatively high for a relatively large period of time after seizure onset.

However, no obvious ictal dynamics was seen in the MI plot of sub-clinical seizure 2. In the CC

and EC plots of sub-clinical seizure 1, electrodes 77 and 85 were relatively more active than the

other electrodes in the preictal period and electrode 85 was marked as one of the onset channels by

the clinician. In the CC plot of sub-clinical seizure 2, electrodes 67 and 72 were relatively more

active than the other electrodes in the preictal period and in the EC plot of sub-clinical seizure 2,

electrodes 67, 71, and 72 were relatively more active than the other electrodes in the preictal period.

But none of these electrodes were marked as onset channels by the clinician. Ictal dynamics can be

seen in the first few seconds after seizure onset in the CC and EC plots in sub-clinical seizure 2

where a relatively large number of electrodes became uniformly active, however no such dynamics
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can be seen in those plots for sub-clinical seizure 1. However, there was change in activity in a

relatively large number of electrodes after the onset of sub-clinical seizure 2 as can be seen from its

CC and EC plots. From the plots of the latent inputs, we see that they were relatively high for a

relatively large period of time after sub-clinical seizure 1 onset and were relatively low for the first

few seconds of sub-clinical seizure 2 onset like the clinical seizures.

Due to the consistency of dynamics of all 5 clinical seizures in the SLRPM method, we were

able to write a seizure detection algorithm for this patient. For seizure detection, we considered

the latent inputs measure. Overall, we found this measure to be the most sensitive to seizures from

the analysis of all seizures from all patients and hence used it for seizure detection. We used both

threshold criterion, i.e., when the latent inputs become lower than a specified threshold and duration

criterion, i.e., when the duration of the latent inputs lower than the specified threshold is higher than

some specified lower limit and lower than some specified higher limit. We declare that a seizure is

detected when the latent inputs satisfy both of these criteria. Using these criteria, we were able to

detect all 5 clinical seizures with zero false positives.

Patient 2

Medication information of this patient is shown in Table 4.4. Electrode locations are shown

in Figure 4.14. As shown, there were depth electrodes inserted in right and left anterior temporal

regions, right and left posterior temporal regions, right and left cingulate regions, and right and left

subfrontal regions. We analyzed 5 clinical seizures from this patient. Seizures 1 and 2 correspond

to day 2, seizure 3 corresponds to day 3, and seizures 4 and 5 correspond to day 8.

Plots of MI, CC, EC and latent inputs measures from the SLRPM method for 5 seizures

of this patient are shown in Figures 4.15, 4.16, 4.17, and 4.18 respectively. From the MI plots of

these seizures, ictal dynamics is visible, to varying extent, by the relative lowering of MI for the

first few seconds of seizure onset and this phenomena is similar to the ictal dynamics seen in patient

1. A relatively large number of electrodes are uniformly active for the first few seconds of seizure

onset in each of the CC and EC plots which is similar to those observed in patient 1. It is also
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Table 4.4: Medication information of patient 2.

Day Medication
Home doses Levetiracetam 1500−1500, Oxcarbazepine 600−600, Clon-

azepam 0.25−0.25
Day 1 Levetiracetam 1500−1500, Oxcarbazepine 600−600, Clon-

azepam 0.25−0.25
Day 2 Levetiracetam 1500−1500, Oxcarbazepine 300−300, Clon-

azepam 0.25−0.25
Day 3 Levetiracetam 1500−1500, Oxcarbazepine 300−600, Clon-

azepam 0.25−0.25
Day 4 Levetiracetam 1500−1500, Oxcarbazepine 600−600, Clon-

azepam 0.25−0.25
Day 5 Levetiracetam 1500−750, Oxcarbazepine 600−300, Clon-

azepam 0.25−0.25
Day 6 Levetiracetam 750− 750, Oxcarbazepine 300− 0, Clon-

azepam stopped
Day 7 Levetiracetam stopped, Oxcarbazepine stopped, Clon-

azepam stopped
Day 8 Levetiracetam 750− 750, Oxcarbazepine stopped, Clon-

azepam stopped
Day 9 Levetiracetam 1500−1500, Oxcarbazepine 600−600, Clon-

azepam 0.25−0.25

(a) (b)

Figure 4.14: Electrode locations in patient 2. (a) Left hemisphere. (b) Right hemisphere.
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Figure 4.15: MI plots for the SLRPM method for seizures 1, 2, 3, 4, and 5 (shown in (a), (b), (c),
(d), and (e) respectively) in patient 2. Green lines in all plots denote the seizure onset time.
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Figure 4.16: CC plots for the SLRPM method for seizures 1, 2, 3, 4, and 5 (shown in (a), (b), (c),
(d) and (e) respectively) in patient 2. Green lines in all plots denote the seizure onset time.
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Figure 4.17: EC plots for the SLRPM method for seizures 1, 2, 3, 4, and 5 (shown in (a), (b), (c),
(d), and (e) respectively) in patient 2. Green lines in all plots denote the seizure onset time.
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Figure 4.18: Plots of the latent inputs estimated by the SLRPM method for seizures 1, 2, 3, 4, and
5 (shown in (a), (b), (c), (d), and (e) respectively) in patient 2. Green lines in all plots denote the
seizure onset time.
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Table 4.5: Medication information of patient 3.

Day Medication
Home doses Keppra 1500−1500, Lamotrigine 200−200, Zonegran 300−300

Day 1 Keppra 1500−1500, Lamotrigine 200−200, Zonegran 300−300
Day 2 Keppra 750−750, Lamotrigine 100−100, Zonegran 200−200
Day 3 Keppra 375−375, Lamotrigine 50−50, Zonegran 100−100

Day 4−8 Off medications

noteworthy that the number of preictal active electrodes is relatively more sparse in the EC plots

than those in the corresponding CC plots. We also observe the relative lessening of the latent inputs,

to varying extent, after seizure onset, a phenomena which is also observed in patient 1. We also

used the threshold and duration criteria on the latent inputs measure for seizure detection in this

patient (the threshold and duration values for this patient were different from those selected for

patient 1) and were able to detect all 5 seizures with zero false positives.

Patient 3

Medication information of this patient is shown in Table 4.5. Electrode locations are shown

in Figure 4.19. As shown, there were depth electrodes inserted in right and left anterior temporal

regions, right and left posterior temporal regions, right and left cingulate regions, right and left

subfrontal regions, and right and left posterior frontal regions. We analyzed 7 clinical seizures from

this patient. Seizure 1 corresponds to day 2, seizures 2, 3, 4, and 5 correspond to day 7, and seizures

6 and 7 correspond to day 8.

Plots of MI, CC, EC and latent inputs measures from the SLRPM method for 7 seizures of

this patient are shown in Figures 4.20, 4.21, 4.22, and 4.23 respectively. Ictal dynamics is clearly

visible from these plots and similar to that in patients 1 and 2. Using the threshold and duration

criteria on the latent inputs for seizure detection in this patient, we were able to detect all 7 seizures

with two false positives.
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Patient 4

Electrode locations are shown in Figure 4.24. As shown, there were depth electrodes inserted

in anterior temporal, posterior temporal, subfrontal, cingulate, and parietal regions. We analyzed 3

clinical seizures from this patient.

Plots of MI, CC, EC and latent inputs measures from the SLRPM method for 3 seizures of

this patient are shown in Figures 4.25, 4.26, 4.27, and 4.28 respectively. Ictal dynamics is clearly

visible from these plots and similar to that in patients 1, 2, and 3. Large variation in MI and latent

inputs plots is also observed starting from the 700 s mark and lasting for a few seconds in seizure

3 and seizure 2 to some extent. From all plots for seizure 1, we also see that the duration of ictal

dynamics is relatively large as compared to those for the other two seizures. Using the threshold

and duration criteria on the latent inputs for seizure detection in this patient, we were able to detect

all 3 seizures with zero false positives.

Patient 5

The patient’s hospital medications included phenobarbital, carbamazepine, ativan, and

vimpat. Electrode locations are shown in Figure 4.29. As shown, there were two grids, one

placed over the posterior inferior frontal, posterior inferior parietal, superior temporal, and superior

posterior temporal regions and the other covered the posterior inferior frontal, inferior parietal,

and superior parietal lobe regions. There were two strips placed over the subtemporal and parietal

regions. There were also depth electrodes placed into the anterior temporal lobe, the posterior

temporal lobe, the superior parietal lobe and encephalomalacia noted on MRI, and through the

posterior frontal lobe to reach the cingulate gyrus. We analyzed 62 clinical seizures from this

patient.

Among the 62 seizures, 54 seizures showed very similar characteristic and we define them

as characteristic seizures. Plots of MI, CC, EC and latent inputs measures from the SLRPM method

for 4 of these characteristic seizures are shown in Figures 4.30, 4.31, 4.32, and 4.33 respectively. We

note that ictal dynamics is not obvious from the MI plots, but can be seen, to varying extent, in the
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Table 4.6: Medication information of patient 6.

Day Medication
Home doses Lamotrigine 200 mg-300mg, Lacosamide 100 mg bid

Day 1 Lamotrigine 200 mg-300 mg, Lacosamide 100 mg bid
Day 2 Lamotrigine 200 mg-300 mg, Lacosamine 100 mg am
Day 3 Lamotrigine 200 mg-150 mg
Day 4 Lamotrigine 100 mg-75 mg
Day 5 Lamotrigine 150 mg pm
Day 6 Lamotrigine 150 mg-300 mg, Lacosamide 100 pm
Day 7 Lamotrigine 200 mg-300 mg, Lacosamide 100 am and 200 pm
Day 8 Lamotrigine 200 mg-300 mg, Lacosamide 100 mg pm
Day 9 Lamotrigine 200 mg-300 mg, Lacosamide 100 mg bid

Day 10 Lamotrigine 200 mg-300 mg, Lacosamide 100 mg bid

CC plots where a relatively large number of electrodes become uniformly active. Clear change in

preictal dynamics in the EC plots also demonstrate the capability of the SLRPM method to capture

ictal dynamics. The latent inputs measure appears to be the most sensitive among all measures

in this patient. Ictal dynamics is very clear by relative lowering of the latent inputs followed by

a sharp increase. Using the threshold and duration criteria on these 54 seizures, we were able to

detect 52 seizures with 2 false positives and 6 were not marked clinically, but showed clear signs of

ictal dynamics in the latent inputs plots (and in plots of other measures not shown here) in Figure

4.34 (2 seizures in Figure 4.34 (a) and one each in Figures 4.34 (b)-(e)). This shows the potential of

the SLRPM method to detect seizures which were possibly missed by the clinician. The other 8

seizures, which we define as non-characteristic seizures, showed characteristic different to those in

characteristic seizures and it was not possible to write a detection algorithm for them. Plots of latent

inputs for these seizures are shown in Figure 4.35.

Patient 6

Medication information of this patient is shown in Table 4.6. Electrode locations are

shown in Figure 4.36. As shown, there were depth electrodes surgically implanted into subfrontal,

prefrontal, cingulate, anterior temporal, and posterior temporal regions of both hemispheres. We

analyzed 10 clinical seizures from this patient.
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By observing the characteristics of the measures from the SLRPM method, we clustered the

seizures into three groups. Group 1 consisted of 5 seizures, group 2 consisted of 4 seizures, and

group 3 consisted of 1 seizure.

Plots of MI, CC, EC and latent inputs measures for the group 1 seizures of this patient are

shown in Figures 4.37, 4.38, 4.39, and 4.40 respectively. Seizures shown in (a), (b), (c), (d), and

(e) in each of Figures 4.37, 4.38, 4.39, and 4.40 belonged to day 5, day 5, day 6, day 6, and day

6 respectively. Ictal dynamics is clearly visible in Figures 4.37 (a), (b), and (d) in the MI plots

where the MI was relatively low for the first few seconds of seizure onset. In Figure 4.40 (c), MI

first increased and then decreased for a few seconds after seizure onset. In Figure 4.40 (e), ictal

dynamics can be seen a few seconds prior to the seizure onset marking. In the CC plots, ictal

dynamics can be seen for a few seconds after seizure onset (except for Figure 4.38 (e) where ictal

dynamics occurred prior to the seizure onset marking) when a relatively large number of electrodes

become uniformly active. Ictal dynamics can also be seen in the EC plots posterior to the seizure

onset marking (except for Figure 4.39 (e) where ictal dynamics occured prior to the seizure onset

marking) as change in the EC values of a relatively large number of electrodes. Ictal characteristics

are difficult to observe in the plots of the latent inputs.

Plots of MI, CC, EC and latent inputs measures for the group 2 seizures of this patient are

shown in Figures 4.41, 4.42, 4.43, and 4.44 respectively. Seizures shown in (a), (b), (c), and (d) in

each of Figures 4.41, 4.42, 4.43, and 4.44 belonged to day 4, day 5, day 6, and day 7 respectively.

From all the MI plots, we see that MI is persistently high after seizure onset in comparison to the

preictal period. Ictal dynamics is clearly seen in the CC and EC plots where the CC and EC values

of the electrodes were different posterior to seizure onset and the change is persistent in the 15

minute period shown after seizure onset. However, it is difficult to find any clear sings of ictal

characteristics from the plots of the latent inputs.

Plots of MI, CC, EC and latent inputs measures for the group 3 seizure of this patient are

shown in Figures 4.45 (a), (b), (c), and (d) respectively. This seizure belonged to day 4. The MI

was relatively high for the first few seconds prior and posterior to seizure onset. Ictal dynamics can
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Table 4.7: Medication information of patient 7.

Day Medication
Home doses Keppra 1500 mg twice a day, Dilantin 300 mg twice a day,

and p.r.n. Ativan
Day 1 Keppra 1000 mg BID, Dilantin 150 mg BID
Day 2 Keppra 500 mg BID
Day 3 None

Day 21 Home meds

also be seen to some extent in the CC and EC plots as indicated by the change in the activity of a

relatively large number of electrodes. However, no clear signs of ictal dynamics is present in the

latent inputs plot. Due to the highly heterogeneous nature of the seizures, it was not possible to

write a seizure detection algorithm for this patient.

Patient 7

Medication information of this patient is shown in Table 4.7. Electrode locations are shown

in Figure 4.46. As shown, there were depth electrodes surgically implanted into subfrontal, posterior

frontal, cingulate, anterior temporal, and posterior temporal regions of both hemispheres. We

analyzed 3 seizures from this patient. Seizure 1, which was a clinical seizure, corresponds to day 2

and seizures 2 and 3, which were sub-clinical seizures, correspond to day 7 and 14 respectively.

Plots of MI, CC, EC and latent inputs measures for the 3 seizures of this patient are shown

in Figures 4.47, 4.48, 4.49, and 4.50 respectively. The Seizure shown in (a) of Figures 4.47, 4.48,

4.49, and 4.50 is the clinical one, the other two are sub-clinical seizures shown in (b) and (c) of

these figures respectively. No obvious characteristic of the clinical seizure is seen in the plots of

its measures. It is also difficult to characterize the two sub-clinical seizures from the MI plots.

Sub-clinical seizure 2 can be seen in the CC plot as a relatively large number of electrodes became

uniformly active for the first few seconds of the seizure onset marking. In the EC plot in Figure 4.49

(b), electrodes 65−68 and 73−75 are relatively more active than other electrodes starting from

approximately 800 s and electrodes 65−68 and 73 were marked as onset channels by the clinician

for this patient. The same set of electrodes were relatively more active than other electrodes for the
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Table 4.8: Medication information of patient 8.

Day Medication
Home doses Trileptal 900 bid, Lamictal 225 bid, Keppra 1500 bid

Day 1 Trileptal 900 bid, Lamictal 225 bid, Keppra 1500 bid
Day 2 Lamictal 100 bid, Keppra 750 BID, Trileptal 900 BID
Day 3 Lamictal 100 BID, Keppra 500 BID, Trileptal 600 BID
Day 4 Lamictal 100 BID, Keppra 500 AM and off thereafter, Trilep-

tal 600 AM then 300 PM
Day 5 Lamictal 225 BID, Keppra 500 BID, Trileptal 900 BID
Day 6 Lamictal 225 BID, Keppra 500 BID, Trileptal 900 BID
Day 7 Lamictal 225 BID, Keppra 500 BID, Trileptal 900 BID

Day 8−11 Lamictal 225 BID, Keppra 1500 BID, Trileptal 900 BID

first few seconds of the seizure onset time for sub-clinical seizure 3 in Figure 4.49 (c). Due to the

heterogeneous nature of the seizures, it was not possible to write a seizure detection algorithm for

this patient.

Patient 8

Medication information of this patient is shown in Table 4.8. Electrode locations are

shown in Figure 4.51. As shown, there were depth electrodes surgically implanted into subfrontal,

prefrontal, cingulate, anterior temporal, and posterior temporal regions of both hemispheres. We

analyzed 7 clinical and 4 sub-clinical seizures from this patient.

Plots of MI, CC, EC and latent inputs measures for the 7 clinical seizures of this patient are

shown in Figures 4.52, 4.53, 4.54, and 4.55 respectively. Seizures shown in (a)-(f) of Figures 4.52,

4.53, 4.54, and 4.55 correspond to day 5 and the seizure shown in (g) in those figures corresponds

to day 7. From the MI plots, we observe that MI is relatively low for the first few seconds of seizure

onset. Ictal dynamics can be seen in the CC plots for the first few seconds after seizure onset when

a relatively large number of electrodes become uniformly active. Ictal dynamics can also be seen in

the EC plots posterior to the seizure onset marking as change in the EC values of a relatively large

number of electrodes. However, seizure dynamics is not obvious in the plots of the latent inputs.

Plots of MI, CC, EC and latent inputs measures for the 4 sub-clinical seizures of this patient
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Table 4.9: Medication information of patient 9.

Day Medication
Home Trileptal 600 bid, Keppra 1500 bid, felbamate 1200 mg PO

TID
Day 1 Trileptal 600 bid, Keppra 1500 bid, prcedex drip, propofol

drip, ativan 1mg q4h, felbamate 1200 mg PO TID
Day 2 prcedex drip, propofol drip, versed drip, ativan prn, Keppra

1500 bid, Trileptal 600 bid, felbamate 1200 mg PO TID
Day 3 prcedex drip, propofol drip, ativan prn, Keppra 1500 bid,

Phenobarbital 1400 mg x 1 and 30 mg qhs, Trileptal 600 bid,
felbamate 1200 mg PO TID

Day 4 propofol drip, Keppra 1500 bid, midazolam drip, prcedex
drip, Trileptal 600 bid, felbamate 1200 mg PO TID

Day 5 Trileptal 600 bid, Keppra 1500 bid, felbamate 1200 mg PO
TID, midazolam drip, prcedex drip

Day 6 Trileptal 600 bid, Keppra 1500 bid, felbamate 1200 mg PO
TID, midazolam drip, prcedex drip

Day 7 Trileptal 600 bid, Keppra 1500 bid, felbamate 1200 mg PO
TID, midazolam drip, prcedex drip

Day 8 Trileptal 600 bid, Keppra 1500 bid, felbamate 1200 mg PO
TID, propofol , and versed drips

are shown in Figures 4.56, 4.57, 4.58, and 4.59 respectively. Seizures shown in (a)-(b) of Figures

4.52, 4.53, 4.54, and 4.55 correspond to day 3, the seizure shown in (c) in those figures corresponds

to day 6, and the seizure shown in (d) in those figures corresponds to day 8. These seizures were

similar in characteristic to the clinical seizures. Due to the heterogeneous nature of the seizures in

this patient, it was not possible to write a seizure detection algorithm.

Patient 9

Medication information of this patient is shown in Table 4.9. Electrode locations are shown

in Figure 4.60. As shown, in addition to the grid, there were three strips placed in the frontopolar,

subtemporal, and posterior regions. There were also depth electrodes inserted in the occipital,

prefrontal, and the anterior and posterior temporal regions. We analyzed 19 clinical seizures from

this patient. Based on the observed dynamics of these seizures from the measures, we divided them

into 3 groups.
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Plots of MI, CC, EC and latent inputs measures for the 7 group 1 seizures of this patient are

shown in Figures 4.61, 4.62, 4.63, and 4.64 respectively. All these seizures belong to day 1. From

the MI plots, we note that MI first relatively increases and then relatively decreases for the first

few seconds of seizure onset. Ictal dynamics can be seen in the CC and EC plots for the first few

seconds after seizure onset when brain activity changes in a relatively large number of electrodes.

However, plots of the latent inputs were highly heterogeneous for these seizures and seizures are

not obvious in these plots.

Plots of MI, CC, EC and latent inputs measures for the 7 group 2 seizures of this patient are

shown in Figures 4.65, 4.66, 4.67, and 4.68 respectively. Plots of seizures 1−7 in this group are

shown in (a)-(g) in each of the Figures 4.65, 4.66, 4.67, and 4.68 respectively. Seizure 1 corresponds

to day 2, seizures 2−4 correspond to day 3, seizure 5 corresponds to day 4, and seizures 6 and 7

correspond to day 5. The MI plots were highly heterogeneous and ictal dynamics cannot be clearly

seen from these plots. Ictal dynamics can be seen in the CC and EC plots for the first few seconds

after seizure onset when brain activity changes in a relatively large number of electrodes. Moreover,

for the first few seconds of the seizure onset, electrodes 89−93 and 97−101 were relatively more

active than the other electrodes. These electrodes corresponded to the onset channels as marked by

the clinician. However, plots of the latent inputs were highly heterogeneous for these seizures and

seizures are not clearly seen in these plots.

Plots of MI, CC, EC and latent inputs measures for the 5 group 3 seizures of this patient

are shown in Figures 4.69, 4.70, 4.71, and 4.72 respectively. All these seizures belong to day 8.

From the plots of all the measures, we can see that ictal dynamics is highly heterogeneous for these

seizures. Also, in the EC plot in Figure 4.71 (a), electrodes 78−80 and 89−90 were relatively

more active than the other electrodes in the post-seizure period. The same set of electrodes were

also relatively more active in the EC plots in Figures 4.71 (c) and (d) in both before and after seizure

onset. These electrodes corresponded to the onset channels as marked by the clinician. Due to the

highly heterogeneous nature of the seizures in this patient, it was not possible to write a seizure

detection algorithm.
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Table 4.10: Medication information of patient 10.

Day Medication
Home doses Lamictal 300 mg b.i.d., Topamax 400 mg b.i.d.

Day 1 Home medications
Day 2 Topamax 200 BID, Lamictal 300 BID
Day 3 Topamax 100 AM and 0 PM, Lamictal 150 BID
Day 4 Lamictal 75 AM
Day 5 none
Day 6 none
Day 7 none in am, home medications in PM

Day 8−11 Home medications

Patient 10

Medication information of this patient is shown in Table 4.10. Electrode locations are shown

in Figure 4.73. As shown, there were depth electrodes surgically implanted into orbitofrontal,

prefrontal, cingulate, anterior temporal, and parietal regions of both hemispheres. We analyzed

10 clinical seizures from this patient. Based on the observed dynamics of these seizures from the

measures, we divided them into 2 groups.

Plots of MI, CC, EC and latent inputs measures for the 7 group 1 seizures of this patient are

shown in Figures 4.74, 4.75, 4.76, and 4.77 respectively. Seizures 1−7 are shown in (a)-(g) in each

of Figures 4.74, 4.75, 4.76, and 4.77 respectively. Seizure 1 belongs to day 5, seizures 2, 3, 4, and 5

belong to day 7, and seizures 6 and 7 belong to day 8. From the MI plots, we can see the relative

lowering of MI for all seizures, except seizures 6, for the first few seconds of seizure onset. Ictal

dynamics can be seen in the CC and EC plots for the first few seconds after seizure onset when a

relatively large number of electrodes become uniformaly active. However, plots of the latent inputs

were highly heterogeneous for these seizures and seizures are not obvious in these plots.

Plots of MI, CC, EC and latent inputs measures for the 3 group 2 seizures of this patient are

shown in (a) and (b) in each of the Figures 4.78, 4.79, 4.80, and 4.81 respectively. From the plots of

these measures, we can see that the seizures are highly heterogeneous and it is difficult to observe

ictal dynamics. Due to the heterogeneous nature of the seizures in this patient, it was not possible to
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Table 4.11: Medication information of patient 11.

Day Medication
Home GBP 2000/1600/2000, LTG 300/300, LEV 1000/1500,

LAC 100/100 (tapered to 50 qhs prior to admission)
Day 1 GBP 2000/1600/2000, LTG 300/300, LEV 1000/1500
Day 2 GBP 2000/1600/2000, LTG 300/300, LEV 1000/1500,

LAC 50qhs
Day 3 GBP 2000/1600/2000, LTG 300/300, LEV 1000/1500,

LAC 50qhs
Day 4 GBP 2000/1600/2000, LTG 300/300, LEV 1000/1500,

LAC 50qhs

write a seizure detection algorithm.

Patient 11

Medication information of this patient is shown in Table 4.11. Electrode locations are

shown in Figure 4.82. As shown, there was a grid placed over the lateral temporal cortex. In

addition, there were eight strips placed in the anterior subtemporal, middle subtemporal, posterior

subtemporal, temporal polar, inferior frontal, superior frontal, parietal, and temporo-occipital

regions. We analyzed 5 seizures from this patient. Seizure 3, which was a clinical seizure and

lasted for approximately 70 seconds, corresponds to day 2 and seizures 1, 2, and 4, which were

sub-clinical seizures, correspond to day 2, 2, and 3 and lasted for approximately 19, 54, and 55

seconds respectively. Seizure 5, which was a sub-clinical seizure, corresponds to day 4.

Plots of MI, CC, EC and latent inputs measures for the 5 seizures of this patient are shown in

Figures 4.83, 4.84, 4.85, and 4.86 respectively. Plots (a)-(e) in each of the Figures 4.83, 4.84, 4.85,

and 4.86 correspond to seizures 1−5 respectively. MI was relatively high for a few seconds before

and after seizure 1 onset. For seizure 2, MI is relatively high for approximately 650 seconds to 700

seconds. For the clinical seizure, MI first increased for a few seconds and then decreased for a few

seconds after its onset. MI was relatively high for approximately 750 seconds to 800 seconds in

seizure 4. Ictal dynamics is not visible from the CC plots for the three sub-clinical seizures, but can

be clearly seen for the clinical seizure where a relatively large number electrodes become relatively
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more active than preictal and post-ictal periods. Electrodes 33− 38 were relatively more active

during ictal periods in the EC plots and these electrodes correspond to the onset channels. From the

plots of the latent inputs, we note that latent inputs were relatively high for a few seconds before and

after seizure 1 onset. For seizure 2, latent inputs were relatively high for approximately 650 seconds

to 700 seconds. For the clinical seizure, latent inputs first increased for a few seconds and then

decreased for a few seconds after its onset. Latent inputs were relatively high for approximately

750 seconds to 800 seconds in seizure 4. No definite ictal characteristics were observed in the plots

of the measures for seizure 5. Due to the heterogeneous nature of the seizures in this patient, it was

not possible to write a seizure detection algorithm.

Patient 12

We have previously used recordings from this patient for sleep spindle analysis (see Chapter

3). Medication information of this patient is shown in Table 3.1. Electrode locations are shown in

Figure 4.87. As shown, there was a grid covering the frontal-temporal-parietal regions. There were

four strips placed in the frontopolar, subfrontal, anterior subtemporal, and posterior subtemporal

regions. There were also depth electrodes surgically implanted into the anterior temporal and

posterior temporal regions. We analyzed 72 seizures from this patient out of which 3 were clinical

seizures and the rest were sub-clinical.

Plots of MI, CC, EC and latent inputs measures for the 3 clinical seizures of this patient

are shown in Figures 4.88, 4.89, 4.90, and 4.91 respectively. Plots (a)-(c) in each of the Figures

4.88, 4.89, 4.90, and 4.91 correspond to the clinical seizures 1−3 respectively. These three clinical

seizures correspond to day 3, 6, and 8 respectively. For clinical seizure 1, MI was relatively high

for the first few seconds prior and posterior to seizure onset. For clinical seizures 2 and 3, relative

lowering of MI can be seen for the first few seconds of seizure onset similar to those in patients

1−4. Ictal dynamics can be seen in the CC and EC plots for the clinical seizure 1 as change in

activity in a relatively large number of electrodes prior and posterior to seizure onset. Furthermore,

electrodes 65−67 in the EC plot were relatively more active than the other electrodes for a few
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seconds after clinical seizure 1 onset. Among these electrodes, 65 and 66 were the onset channels

as characterized by the clinician. Ictal dynamics can also be seen in the CC and EC plots when a

relatively large number of electrodes became uniformly active post seizure 2 and 3 onset. Moreover,

in the EC plot of clinical seizure 3, electrodes 73 and 74, which also were characterized by onset

channels by the clinician, were relatively more active than the other electrodes from approximately

630 seconds to 660 seconds. Latent inputs for the clinical seizure 1 were relatively high for the first

few seconds prior and posterior to seizure onset. For clinical seizures 2 and 3, relative lowering of

latent inputs can be seen post seizure onset similar to those in patients 1−4.

Plots of the measures of the sub-clinical seizures were highly heterogeneous and it was not

possible to draw a uniform conclusion regarding their characteristics. EC measure was relatively

more sensitive than the CC measure to the onset channels. Onset channels were relatively more

active than the other electrodes for a few seconds prior (see Figure 4.92 (a)-(b) for two example

seizures) and posterior (see Figure 4.92 (c)-(d) for two example seizures) to seizure onset. Due to

the highly heterogeneous nature of the seizures in this patient, it was not possible to write a seizure

detection algorithm.

4.3 Heterogeneity analysis

From the results presented for the preictal dynamics, we observe that there is considerable

variability in the preictal dynamics of the seizures in some patients. These findings are consistent

with findings from other researchers (Kuhnert et al., 2010; Kramer et al., 2010; Rozman, 2015;

Truccolo et al., 2011). Researchers in (Kramer et al., 2010) have analyzed 48 seizures from ECoG

recordings in 11 epilepsy patients and they found that there is relatively more variability in the

preictal period than in the ictal period for seizures within a patient, however no results were reported

for variability of seizures in the preictal period for the patients. The authors in (Kuhnert et al., 2010)

have analyzed 75 seizures in 13 epilepsy patients and reported significant variability of preictal

activity of seizures from patient-to-patient, however, no results were reported regarding variability
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of seizures within patients. Rozman (2015) in his doctoral dissertation have analyzed 39 seizures

from ECoG recordings in 12 patients suffering from complex partial epilepsy. He analyzed the

power spectrum of the recordings of the individual electrodes in the preictal period and found

high heterogeneity of seizures within patients. Heterogeneity analysis of preictal activity within

patients is important because it might help us for predicting seizures and eventually lead to better

understanding of how seizures initiate (Truccolo et al., 2011).

In order to calculate the degree of heterogeneity in the preictal period of seizures for a

patient, we first calculated the normalized time-average EC in the preictal period of each seizure and

then averaged the resulting ECs across all seizures for that patient. We then found the M most active

electrodes from the resulting average EC, where M is the number of onset channels marked by the

clinician. We next calculated the coefficient of variability (ratio of standarad deviation to mean)

of each active electrode across all seizures for that patient (Truccolo et al., 2011). We define the

average coefficient of variability across all active electrodes as the degree of heterogeneity (DH) for

the patient. Furthermore, we also reported how many of the active electrodes corresponded to the

onset channels marked by the clinician. We also denote “A/O”, where “A” stands for active and “O”

stands for onset as the ratio of the number of active electrodes corresponding to the onset channels

identified by the clinician to the total number of onset channels identified by the clinician. We

also express the values of DH as percentage. For heterogeneity analysis, we only considered those

seizures for which the 10 minutes preictal time-segment did not contain another seizure. Hence we

had to exclude some seizures from the lot shown in Table 4.2 from analysis. The details about the

number of seizures analyzed (total 185 seizures out of which 116 were clinical seizures) for each

patient for heterogeneity analysis are shown in Table 4.12.

Table 4.13 shows the heterogeneity statistics for all patients. We observe that DH for

SLRPM is higher than that for SRPM for all patients except one (patient 4) and DH for SRPM is

higher than that of correlation for all patients. This clearly emphasizes the importance of taking the

latent inputs in to consideration while estimating connectivity of brain regions. The relatively low

DH in the SRPM and correlation methods is attributable to the common latent inputs. Furthermore
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(a) (b)

Figure 4.19: Electrode locations in patient 3. (a) Left hemisphere. (b) Right hemisphere.

Table 4.12: Number and type of seizures analyzed for each patient for heterogeneity analysis.
Clinical and sub-clinical seizures are denoted by “C” and “SC” respectively.

Patient Number of seizures analyzed
1 5 C and 2 SC
2 5 C
3 7 C
4 3 C
5 46 C
6 10 C
7 1 C and 2 SC
8 7 C and 4 SC
9 19 C
10 9 C
11 1 C and 4 SC
12 3 C and 57 SC
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Figure 4.20: MI plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7 (shown in (a), (b),
(c), (d), (e), (f), and (g) respectively) in patient 3. Green lines in all plots denote the seizure onset
time.
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Figure 4.21: CC plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7 (shown in (a), (b),
(c), (d), (e), (f), and (g) respectively) in patient 3. Green lines in all plots denote the seizure onset
time.

98



Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.1

0.2

0.3

0.4

0.5

(d)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(e)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(f)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

E
ig

en
ve

ct
or

 c
en

tra
lit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(g)

Figure 4.22: EC plots for the SLRPM method for seizures 1, 2, 3, 4, 5, 6, and 7 (shown in (a), (b),
(c), (d), (e), (f), and (g) respectively) in patient 3. Green lines in all plots denote the seizure onset
time.
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Figure 4.23: Plots of the latent inputs estimated by the SLRPM method for seizures 1, 2, 3, 4, 5,
6, and 7 (shown in (a), (b), (c), (d), (e), (f), and (g) respectively) in patient 3. Green lines in all
plots denote the seizure onset time.
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Figure 4.24: Electrode locations in patient 4.
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Figure 4.25: MI plots for the SLRPM method for seizures 1, 2, and 3 (shown in (a), (b), and (c),
respectively) in patient 4. Green lines in all plots denote the seizure onset time.
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Figure 4.26: CC plots for the SLRPM method for seizures 1, 2, and 3 (shown in (a), (b), and (c),
respectively) in patient 4. Green lines in all plots denote the seizure onset time.
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Figure 4.27: EC plots for the SLRPM method for seizures 1, 2, and 3 (shown in (a), (b), and (c),
respectively) in patient 4. Green lines in all plots denote the seizure onset time.
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Figure 4.28: Plots of the latent inputs estimated by the SLRPM method for seizures 1, 2, and 3
(shown in (a), (b), and (c), respectively) in patient 4. Green lines in all plots denote the seizure
onset time.

Figure 4.29: Electrode locations in patient 5.
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Figure 4.30: MI plots for the SLRPM method for four characteristic seizures in patient 5. Green
lines in all plots denote the seizure onset time.

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

20

40

60

80

100

120

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

20

40

60

80

100

120

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

20

40

60

80

100

120

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

20

40

60

80

100

120

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

(d)

Figure 4.31: CC plots for the SLRPM method for four characteristic seizures in patient 5. Green
lines in all plots denote the seizure onset time.
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Figure 4.32: EC plots for the SLRPM method for four characteristic seizures in patient 5. Green
lines in all plots denote the seizure onset time.
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Figure 4.33: Plots of the latent inputs estimated by the SLRPM method for four characteristic
seizures in patient 5. Green lines in all plots denote the seizure onset time.
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Figure 4.34: Plots of the latent inputs estimated by the SLRPM method for 5 characteristic
seizures in patient 5 in which ictal dynamics is also observed at time instants (2 in (a) and one
each in (b)-(e)) which were not classified by the clinician as seizure onset times. Green lines in all
plots denote the seizure onset time.
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Figure 4.35: Plots of the latent inputs estimated by the SLRPM method for the 8
non-characteristic seizures in patient 5. Green lines in all plots denote the seizure onset time.
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(a) (b)

Figure 4.36: Electrode locations in patient 6. (a) Left hemisphere. (b) Right hemisphere.
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Figure 4.37: MI plots for the SLRPM method for the five group 1 seizures in patient 6. Green
lines in all plots denote the seizure onset time.
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Figure 4.38: CC plots for the SLRPM method for the five group 1 seizures in patient 6. Green
lines in all plots denote the seizure onset time.
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Figure 4.39: EC plots for the SLRPM method for the five group 1 seizures in patient 6. Green
lines in all plots denote the seizure onset time.
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Figure 4.40: Plots of the latent inputs estimated by the SLRPM method for the five group 1
seizures in patient 6. Green lines in all plots denote the seizure onset time.
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Figure 4.41: MI plots for the SLRPM method for the four group 2 seizures in patient 6. Green
lines in all plots denote the seizure onset time.

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

(d)

Figure 4.42: CC plots for the SLRPM method for the four group 2 seizures in patient 6. Green
lines in all plots denote the seizure onset time.
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Figure 4.43: EC plots for the SLRPM method for the four group 2 seizures in patient 6. Green
lines in all plots denote the seizure onset time.
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Figure 4.44: Plots of the latent inputs estimated by the SLRPM method for the four group 2
seizures in patient 6. Green lines in all plots denote the seizure onset time.
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Figure 4.45: Plots of the four measures estimated by the SLRPM method for the one seizure
whose characteristic was different from the two groups of seizures in patient 6. Green lines in all
plots denote the seizure onset time.

(a) (b)

Figure 4.46: Electrode locations in patient 7. (a) Left hemisphere. (b) Right hemisphere.
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Figure 4.47: MI plots for the SLRPM method for 3 seizures in patient 7. Green lines in all plots
denote the seizure onset time.
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Figure 4.48: CC plots for the SLRPM method for 3 seizures in patient 7. Green lines in all plots
denote the seizure onset time.
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Figure 4.49: EC plots for the SLRPM method for 3 seizures in patient 7. Green lines in all plots
denote the seizure onset time.
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Figure 4.50: Plots of the latent inputs estimated by the SLRPM method for 3 seizures in patient 7.
Green lines in all plots denote the seizure onset time.
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(a) (b)

Figure 4.51: Electrode locations in patient 8. (a) Left hemisphere. (b) Right hemisphere.

Table 4.13: Heterogeneity statistics for seizures in each patient for the SLRPM, SRPM, and
correlation methods.

Patient DH for
SLRPM

A/O for
SLRPM

DH for
SRPM

A/O for
SRPM

DH for
correla-
tion

A/O for
correla-
tion

1 68.51 0/10 55.42 0/10 5.93 0/10
2 42.51 7/9 31.17 6/9 2.08 0/9
3 30.99 2/10 18.04 3/10 6.27 0/10
4 4.89 0/2 9.93 0/2 0.30 0/2
5 32.05 4/9 11.76 0/9 2.92 0/9
6 15.96 1/12 10.61 1/12 3.63 1/12
7 21.72 1/13 10.43 1/13 7.24 3/13
8 48.10 1/6 25.48 3/6 1.72 0/6
9 53.37 12/28 35.53 6/28 13.31 17/28

10 57.53 0/8 36.50 2/8 4.45 0/8
11 11.32 0/8 8.85 0/8 6.31 0/8
12 24.02 0/4 18.36 0/4 2.67 0/4
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Figure 4.52: MI plots for the SLRPM method for the 7 clinical seizures in patient 8. Green lines
in all plots denote the seizure onset time.
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Figure 4.53: CC plots for the SLRPM method for the 7 clinical seizures in patient 8. Green lines
in all plots denote the seizure onset time.
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Figure 4.54: EC plots for the SLRPM method for the 7 clinical seizures in patient 8. Green lines
in all plots denote the seizure onset time.
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Figure 4.55: Plots of the latent inputs estimated by the SLRPM method for the 7 clinical seizures
in patient 8. Green lines in all plots denote the seizure onset time.
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Figure 4.56: MI plots for the SLRPM method for the 4 sub-clinical seizures in patient 8. Green
lines in all plots denote the seizure onset time.

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.02

0.04

0.06

0.08

0.1

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.02

0.04

0.06

0.08

0.1

0.12

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

0.3

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

(d)

Figure 4.57: CC plots for the SLRPM method for the 4 sub-clinical seizures in patient 8. Green
lines in all plots denote the seizure onset time.
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Figure 4.58: EC plots for the SLRPM method for the 4 sub-clinical seizures in patient 8. Green
lines in all plots denote the seizure onset time.
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Figure 4.59: Plots of the latent inputs estimated by the SLRPM method for the 4 sub-clinical
seizures in patient 8. Green lines in all plots denote the seizure onset time.
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Figure 4.60: Electrode locations in patient 9.
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Figure 4.61: MI plots for the SLRPM method for the 7 group 1 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.62: CC plots for the SLRPM method for the 7 group 1 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.63: EC plots for the SLRPM method for the 7 group 1 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.64: Plots of the latent inputs estimated by the SLRPM method for the 7 group 1 seizures
in patient 9. Green lines in all plots denote the seizure onset time.

127



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.35

0.4

0.45

0.5

0.55

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.35

0.4

0.45

0.5

0.55

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(b)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.35

0.4

0.45

0.5

0.55

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(c)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(d)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.4

0.45

0.5

0.55

0.6

0.65

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(e)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.45

0.5

0.55

0.6

0.65

0.7

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(f)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.4

0.45

0.5

0.55

0.6

0.65

Time (seconds)

M
od

ul
ar

ity
 In

de
x

 

 

SLRPM method

(g)

Figure 4.65: MI plots for the SLRPM method for the 7 group 2 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.66: CC plots for the SLRPM method for the 7 group 2 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.67: EC plots for the SLRPM method for the 7 group 2 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.68: Plots of the latent inputs estimated by the SLRPM method for the 7 group 2 seizures
in patient 9. Green lines in all plots denote the seizure onset time.
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Figure 4.69: MI plots for the SLRPM method for the 5 group 3 seizures in patient 9. Green lines
in all plots denote the seizure onset time.

132



Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.05

0.1

0.15

0.2

0.25

(d)

Time (seconds)

E
le

ct
ro

de
s

SLRPM method

 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

10

20

30

40

50

60

70

80

90

100

110

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e)

Figure 4.70: CC plots for the SLRPM method for the 5 group 3 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.71: EC plots for the SLRPM method for the 5 group 3 seizures in patient 9. Green lines
in all plots denote the seizure onset time.
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Figure 4.72: Plots of the latent inputs estimated by the SLRPM method for the 5 group 3 seizures
in patient 9. Green lines in all plots denote the seizure onset time.

(a) (b)

Figure 4.73: Electrode locations in patient 10. (a) Left hemisphere. (b) Right hemisphere.
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Figure 4.74: MI plots for the SLRPM method for the 7 group 1 seizures in patient 10. Green lines
in all plots denote the seizure onset time.
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Figure 4.75: CC plots for the SLRPM method for the 7 group 1 seizures in patient 10. Green
lines in all plots denote the seizure onset time.
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Figure 4.76: EC plots for the SLRPM method for the 7 group 1 seizures in patient 10. Green
lines in all plots denote the seizure onset time.
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Figure 4.77: Plots of the latent inputs estimated by the SLRPM method for the 7 group 1 seizures
in patient 10. Green lines in all plots denote the seizure onset time.
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Figure 4.78: MI plots for the SLRPM method for the 3 group 2 seizures in patient 10. Green lines
in all plots denote the seizure onset time.
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Figure 4.79: CC plots for the SLRPM method for the 3 group 2 seizures in patient 10. Green
lines in all plots denote the seizure onset time.
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Figure 4.80: EC plots for the SLRPM method for the 3 group 2 seizures in patient 10. Green
lines in all plots denote the seizure onset time.
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Figure 4.81: Plots of the latent inputs estimated by the SLRPM method for the 3 group 2 seizures
in patient 10. Green lines in all plots denote the seizure onset time.

Figure 4.82: Electrode locations in patient 11.
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Figure 4.83: MI plots for the SLRPM method for the 5 seizures in patient 11. Green lines in all
plots denote the seizure onset time.
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Figure 4.84: CC plots for the SLRPM method for the 5 seizures in patient 11. Green lines in all
plots denote the seizure onset time.
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Figure 4.85: EC plots for the SLRPM method for the 5 seizures in patient 11. Green lines in all
plots denote the seizure onset time.
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Figure 4.86: Plots of the latent inputs estimated by the SLRPM method for the 5 seizures in
patient 11. Green lines in all plots denote the seizure onset time.

Figure 4.87: Electrode locations in patient 12.
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Figure 4.88: MI plots for the SLRPM method for the 3 clinical seizures in patient 12. Green lines
in all plots denote the seizure onset time.
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Figure 4.89: CC plots for the SLRPM method for the 3 clinical seizures in patient 12. Green lines
in all plots denote the seizure onset time.
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Figure 4.90: EC plots for the SLRPM method for the 3 clinical seizures in patient 12. Green lines
in all plots denote the seizure onset time.
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Figure 4.91: Plots of the latent inputs estimated by the SLRPM method for the 3 clinical seizures
in patient 12. Green lines in all plots denote the seizure onset time.
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Figure 4.92: EC plots for the SLRPM method for 4 sub-clinical seizures in patient 12. Green
lines in all plots denote the seizure onset time.

we see that the SLRPM method is able to identify a relatively more number of onset channels (28)

from the preictal active electrodes in all patients than the SRPM (22) and correlation (21) methods.

For SLRPM and SRPM methods, in 5 patients, the preictal active electrodes did not correspond to

any of the onset channels whereas for the correlation method, this number increased to 9. Also for

SLRPM, only 28 preictal active electrodes corresponded to the onset channels whose total number

was 119 in all patients. This suggests that not all preictal activity leads to seizure onset. We also

have analyzed 1, 2, and 3 hours preictal segments for these patients and observed high DH in some

patients. We also notice that there is no direct relationship between DH and A/O for SLRPM. For

example, in patient 4, there is a relatively low DH and none of the active electrodes corresponded

to the onset channels. But in patients 2 and 9, for which the seizures have a relatively high DH,

7 and 12 active electrodes corresponded to the onset channels respectively. The DH estimated

by SLRPM covered a relatively wider range than those estimated by the SRPM and correlation

methods indicating that the local cortical connectivity, after excluding the effect of the common

latent inputs, can be highly heterogeneous.
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4.4 Effect of preprocessing

Here, we study the effect of two of the most important preprocessing steps that we applied

on our ECoG recordings. The first is CAR and the other is z-scoring.

4.4.1 Effect of CAR

In our CAR, we subtracted the average signal of all electrodes from each electrode at each

time point. However, since the dynamics of the seizure onset electrodes might be different from

those of the non-onset electrodes, we tested the SLRPM method by considering only the non-onset

electrodes for CAR. We also tested SLRPM by considering a random subset of 40 non-onset

electrodes for CAR. We considered the EC measure applied on seizure 1 in patient 1 as an example

to test these two CAR procedures and the results are shown in (a) and (b) of Figure 4.93 respectively.

For comparison, the EC plot of SLRPM method in Figure 4.4 is reproduced in Figure 4.93 (c) in

which we use all electrodes for CAR. We note that both these CAR approaches have minimal effect

on the preictal, ictal, and post-ictal dynamics and the dynamics look similar to that in Figure 4.93

(c).

4.4.2 Effect of normalization

For our analysis, we z-scored each channel for the entire 25 minutes time-segment to have a

relatively less biased estimation of mean and standard deviation. However, some researchers also

use z-scoring in each time-window rather than the entire data (Varsavsky et al., 2010). To test the

effect of normalization in each time-window on SLRPM, we considered the EC measure applied

on seizure 1 in patient 1 as an example. Figure 4.94 (a) shows the result of this normalization

procedure. For comparison, the EC plot of SLRPM method in Figure 4.4 is reproduced in Figure

4.94 (b) in which normalization was applied for the entire time-segment. We note that the preictal

dynamics (also see Figure 4.95 for the plot of only the preictal period of Figure 4.94 (a)) in Figure

4.94 (a) is significantly different than that in Figure 4.94 (b) and the ictal and post-ictal dynamics
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Figure 4.93: Analysis of effect of CAR on SLRPM method for seizure 1 in patient 1. Green lines
in all plots denote the seizure onset time. (a) Non-onset electrodes are used for CAR. (b) A
random subset of 40 non-onset electrodes are used for CAR. (c) All electrodes are used for CAR.
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are relatively more similar for these two normalization procedures. Moreover, we have applied

z-scoring only on the 10 minutes preictal recording and the result is shown in Figure 4.94 (c). Note

that, even though the values of the EC measures for the electrodes are different for the preictal

period in Figure 4.94 (b) and Figure 4.94 (c), electrodes which were relatively more active than

others, can be seen in both. However, both of these are markedly different than the EC measures for

the electrodes in the preictal period in Figure 4.94 (a). This shows that two different normalization

methods can produce different results and care need to be taken while interpreting the results.

4.5 Discussion

Researchers (Vega-Zelaya et al., 2015; Kramer et al., 2010; Ponten et al., 2007; Schindler

et al., 2008) have previously reported increase in ACC after seizure onset. However, in our analysis

we do not consider ACC since we found that, in the preictal period, some electrodes are relatively

more active than other electrodes and averaging CC across electrodes in this period and comparing

the result to that in the ictal period does not provide the picture of the dynamics for individual

electrodes. The relative decrease in MI after seizure onset in some seizures is consistent with

findings from (Vega-Zelaya et al., 2015). Similar to the authors in (Burns et al., 2014), we also

observed change in brain connectivity from the EC measure after the onset of some seizures. There

is also evidence of decreased cortical-subcortical interaction during epileptic seizures (Blumenfeld

et al., 2012) which explains the relatively decreased latent inputs during the ictal period estimated

by the SLRPM method in some seizures.
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Figure 4.94: Analysis of effect of normalization on SLRPM method for seizure 1 in patient 1.
Green lines in (a) and (b) denote the seizure onset time. (a) Window-wise z-scoring. (b) Z-scoring
the entire time-segment. (c) Z-scoring only the preictal time-segment.
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Chapter 5

Final remarks

Extensive research work exists in literature in which brain activity has been estimated using

the correlation method. However, as we have shown in our thesis, latent inputs can have a significant

impact in the inferred connectivity in the cortex. The sparse-plus-latent regularized precision matrix

(SLRPM) method provides a way to calculate the local cortical connectivity by conditioning on

the latent inputs. The methods that we used in this thesis to analyze electrocorticography (ECoG)

recordings could also be applied to single unit recordings, local field potentials, and functional

magnetic resonance imaging (fMRI) data. Results and discussions in this thesis may help SLRPM

to be used as a standard in brain connectivity analysis in neuroscience applications and provide

new insights in to the cortical activity of the human brain which will possibly lead us to find better

treatments in epilepsy.
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Yatsenko, D., Josić, K., Ecker, A. S., Froudarakis, E., Cotton, R. J., & Tolias, A. S. (2015). Improved
Estimation and Interpretation of Correlations in Neural Circuits. PLoS Computational Biology,
11 (3), e1004083.

Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model.
Biometrika, 94 (1), 19–35.

Zhou, D., Thompson, W. K., & Siegle, G. (2009). MATLAB toolbox for functional connectivity.
NeuroImage, 47 (4), 1590–1607.

163



Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M.
P.(2012). Network centrality in the human functional connectome. Cerebral Cortex, 22 (8),
1862–1875.

164




