UCSF

UC San Francisco Electronic Theses and Dissertations

Title

Hyperpolarized 13C Magnetic Resonance Spectroscopy: Probing Enzymatic Activity, Cellular
Transport, and Oncogene Activation

Permalink
https://escholarship.org/uc/item/0xb0m5wg
Author

Leon, Christine

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0xb0m5wp
https://escholarship.org
http://www.cdlib.org/

FHyperpolarized 'C Magnetic Resonance Spectroscopy:
Probing Inzymatic Activity, Cellular Transport. and Oncogene Activation

by

Christine Leon Swisher
PIHSSERTATION
Submitted m partial satistaction of the requirements for the degree of
DOCTOR OF PHHH.OSOPHY
in
Bioengineering

in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

AND

UNIVERSTTY OF CALIFORNIA. BERKELEY




Copyright 2014

by
Christine Leon Swisher

ii



Acknowledgements

[ would never have been able to finish my dissertation without the guidance of my
committee members, my co-workers, help from friends, and support from my family

and my husband. There are almost too many to list. But I'll give it a shot.

[ would like to express my deepest gratitude to my advisor, Dr. Dan Vigneron, for
teaching me everything thing I know about conducting scientific research, for
providing an excellent atmosphere for doing research, and for constantly
challenging me to be a better scientist. [ owe him the greatest debt for my success in

my graduate work.

[ would also like to thank Dr. Peder Larson for his guidance, caring demeanor,
saintly patience and for sharing his brilliant insights with me, Dr. Sarah Nelson, who
has mentored me as if [ was her own student and is a great role model for all women
in science, and Dr. John Kurhanewicz, for his infectious enthusiasm for science as
well as for all of his guidance over the years. Indeed, I am truly blessed to have been
a part of the talented people in the Surbeck Lab and incredibly grateful for their

support.

In the surbeck lab, [ want to give a special thanks to Dr. Robert Bok for teaching me
about cancer biology, his help with my numerous animal experiments, and his
saintly patience, Dr. Subramaniam Sukumar for his help with pulse sequence

programming, Dr. Jason Crane for all of his help with the development of kinetic

iii



modeling algorithms and his patience as I struggled to learn C, Dr. Emma Essock-
Burns for her mentorship, Romelyn Delos Santos for her help with experiments and
her unfailing kindness, Mark Van Criekinge for keeping the polarizers running and
his patience, Jenny Che and Cathy Devine for being the most helpful administrators
of all time, Drs. Adam Kerr and John Pauly for all their input on MAD-STEAM, Lucas
Carvajal for help with the coils, Peter Shin, Dr. llwoo Park, Justin Delos Santos, Hong
Shang, Hsin-Yu Chen, Zihan Zhu, and Eugene Milshteyn for their help with
experiments, Dr. Jermey Gordon for many helpful discussions, Drs. Galen Reed and
Cornelius Von Morze for their friendship and support over the years, and Drs.
Bertram Koelsch and Renuka Sriram for valuable insights, help with experiments,

and for being great collaborators.

Many thanks also go to Dr. Klaus Kruttwig for the many hours he has dedicated to
our liver cancer project, Dr. Andrei Goga for serving on my quals and dissertation
committee, and Dr. Michael Lustig for serving on my quals and dissertation

committee and for mentoring me in the art of teaching.

[ would like to take this opportunity to thank the Dr. Christian Frezza and the
members of his group at the MRC Cancer Unit, whose lab I worked at for a short
duration but with whom I forged a special bond. I am very thankful for his
encouragement and for teaching me about cancer metabolism and molecular

biology and sharing his inspiration love of science with us.

iv



[ also want to thank my undergraduate advisor Dr. Brent Vernon and the members
of his group for believing in me and motivating me to pursue a career in academia.
Drs. Brent Vernon, Ryan McLemore, Bee Hoon Lee, Michael Caplan, Vincent
Pizziconi, and Alex McLaren gave me a much-needed early push as an
undergraduate that continues to propel me forward - for that I owe them a special

debt.

[ am also deeply grateful for all the faculty, staff, and students of the UC Berkeley -
UCSF Graduate Program in Bioengineering who have provided me with a
tremendous graduate education. They have taught me how to think about science;
provided me with numerous opportunities and economic support; shown me how to

approach my work as a scientist; and how to think about the big picture.

But most of all, [ want to thank my family, whose unconditional love and support has
helped me the most: to my grandparents, who have inspired me to pursue this
career path, the whole Menking Clan, who are always my biggest cheerleaders, my
father who always believes in and encourages me, instilled a love of science, and
showed me the value of hard work, my mother and step-father who have supported
me in every way imaginable, and finally my husband, Matt, for his love and sacrifice,
for patiently proofreading every paper and listening to every talk, and his unfailing

support.



Thanks to you all!

Christine Leon Swisher

June 2014

vi



Hyperpolarized 13C Magnetic Resonance Spectroscopy:
Probing Enzymatic Activity, Cellular Transport, and

Oncogene Activation

Abstract

Magnetic resonance spectroscopy (MRS) of hyperpolarized (HP) substrates is a
powerful tool to investigate tissue metabolism in vivo. Recently, a first-in-man
clinical trial of this technology showed feasibility, safety, and great promise for
noninvasive diagnosis of cancer via the detection of previously unobservable
phenomena such as the Warburg Effect. However, the acquired signal is a
combination of flow, perfusion, diffusion, and relaxation in addition to metabolism.
To isolate these effects and provide improved measurement of metabolic alterations
in cancer, I designed tailored acquisition and reconstruction techniques. These
techniques rely on the phase accumulation from stimulated echoes to "tag"
metabolites and compressed sensing data undersampling to optimize acquisition
time and resolution, thus allowing for the accurate, non-invasive measurement and
localization of enzymatic activity, cellular transport, and oncogene activation.

Specifically, we detected high enzymatic activity of lactate dehydrogenase (LDH) in

high-grade regions within primary tumors and metastatic lesions in a transgenic

vii



prostate cancer tumor model. We also observe increased efflux of lactate via
monocarboxylate transporter 4 (MCT4), which is upregulated in aggressive subsets
of a number of cancers and may correlate with metastatic potential. We also
detected the presence of the h-Ras oncogene in a switchable oncogene-driven model
of liver cancer, which expresses altered oncogene-induced signaling pathways
between c-Myc and h-Ras driven cancer models. Notably for oncology in particular,
these new techniques have great biomedical and clinical significance, as they could
be used to better identify particularly aggressive regions within tumors, monitor

cancer progression, follow response to therapy, and improve treatment planning.
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Chapter 1: Introduction

Nuclear Magnetic Resonance (NMR) is one of the most prolific fields of the past century -
resulting in six Nobel prizes in the past 50 years from the discovery of the magnetic
moment and the first recordings of atomic nuclei to the imaging of human diseases. NMR

continues to evolve, changing the face of many different scientific disciplines.

Since its introduction only three decades ago, magnetic resonance imaging (MRI) has
become a very powerful and widely used imaging modality due to its safety, flexibility, and
high soft tissue contrast. Clinically, MRI acquisitions provide a breadth of information
including anatomical imaging, angiography, diffusion mapping, functional brain imaging,
guided intervention, and spectroscopic imaging, to name a few. The disease application
areas are just as wide-ranging including cancers, orthopedics, neurologic disorders,

cardiovascular disease, hepatobiliary disease, vascular disorders, and many more.

Typically, MRI images are acquired with proton (1H) signals from water molecules in the
body. This provides high SNR as the 'H isotope has a high abundance of ~100% and as well
as high concentration as the body is primarily made up of water. Proton Magnetic
Resonance Spectroscopic Imaging (MRSI) not does not have this advantage as it reports on
non-water low concentration metabolites. However, the information on biochemical
profiles allows for differentiation of disease and normal tissues that are often not be
possible with conventional MRI techniques. Carbon-13 MRSI would provide for an even
wider range of metabolites but the SNR further suffers due to a low natural abundance of

1.1%, reduced gyromagnetic ratio, and low concentrations of important metabolites in vivo.

Recently the technological breakthrough of dissolution dynamic nuclear polarization has



allowed for unprecedented increases in SNR of greater than 10,000 fold. This allows for the
detection of carbon-13 signals, which were previously unobservable. This new technology
has gathered great excitement as it enables the ability to monitor uptake and conversion of

key metabolites in disease.

This new technique has the potential to become a major new metabolic imaging technique
providing valuable information on previously-inaccessible aspects of biological processes
and has even been translated into the clinic with the first-in-man clinical trial of this new
imaging modality at UCSF. Not only does this new technology provide unprecedented
clinical information, it also gives us a new means to investigate the real-time processes of

cells for the first time.

The scientific work presented in this dissertation adds to the current literature on
hyperpolarized 3C imaging specifically to both the understanding the underlying causes
and effects of alterations in metabolism and their connection with cancer as well as the
development of tools that utilize aberrant cancer metabolism as a biomarker of disease. My
dissertation includes four main Bioengineering contributions in Chapters 3-5,7 each of
which is a minor adaptation of either an already published, peer-reviewed manuscript or
one in the process of being published. Chapters 6 and 8 are from peer-reviewed work
submitted to the Proceedings of the International Society of Magnetic Resonance in

Medicine.

Chapter 3 details the application of kinetic modeling to the acquisition and reconstruction
method MAD-STEAM (metabolic activity decomposition with stimulated echo acquisition
mode). This technique doubles the information via the direct detection of exchanging

spins. This greatly enhances the sensitivity to flux and exchange mediated by the Lactate



Dehydrogenase enzyme (LDH), which is often upregulated in cancer.

In Chapter 4, the topic of Metabolic Activity Decomposition is revisited with the addition of
a spectroscopic imaging readout and the necessary post-processing reconstruction
algorithm. With the addition of localization and the imaging of the distribution of exchange,
the specificity of the technique to detect elevated enzymatic activity indicative of cancer

was validated.

In Chapter 5, the topic of Metabolic Activity Decomposition is revisited with the addition of
a variable diffusion weighting. With the addition of varied diffusion weighting, it is possible

to acquire exchange, relaxation and diffusion parameters within a single acquisition.

In Chapter 6, the principles of Metabolic Activity Decomposition were adapted to rapidly
acquire 2D EXchange SpectroscopY (EXSY) spectra of hyperpolarized substrates. The
results highlight the importance of investigating bidirectional exchange in the study of

metabolism as well as show its potential to be used as a diagnostic tool.

In Chapter 7, cancer metabolism is further investigated with hyperpolarized carbon-13,
whereby the effect cancer on pyruvate metabolism is investigated with the activation of
both the Myc and Ras oncogenes. Here we show that h-Ras and c-Myc activation can be
differentiated via the presence pyruvate-to-alanine conversion in a switchable model of
liver cancer. We show for the first time that a hyperpolarized carbon-13 labeled substrate
can be used as metabolic imaging agent for non-invasive, in vivo monitoring of the presence
of h-Ras and more generally for the differentiation of oncogenes via metabolic

reprogramming.

In Chapter 8, kinetic modeling algorithms were developed to aid in the interpretation and



visualization of hyperpolarized signals, which are key to the translation of the technology

into the clinic.

Finally, in Chapter 9, I conclude by giving a summary of the technique development and
preclinical cancer applications presented in this dissertation and discuss clinical prospects

and future directions for hyperpolarized 13C technology.



Chapter 2: Background

This chapter will focus on Magnetic Resonance Imaging (MRI) and Magnetic Resonance
Spectroscopy (MRS) fundamentals that are necessary for accomplishing and understanding
the developments undertaken in this dissertation project. In particular, the background on
STEAM and EXSY pulse sequences are necessary for the understanding of the
advancements made in chapters 3-6. Following the introduction of MRI/MRS, a brief
introduction will be given on hyperpolarization and its application in the field of
hyperpolarized carbon-13 MR. Then a broad introduction is included on the metabolic
adaptations in cancer. Briefly oncogenes will be introduced as background for Chapter 7.
Finally, enzyme kinetics and monocarboxylate transporters will be introduced, as they are

key to understanding the significance of the findings in Chapter 3-5.

2.1 Fundamentals of Magnetic Resonance Imaging

2.1.1 Spin, Magnetic Moment, Magnetization Vector, and Polarization

Atoms with an odd number of protons and neutrons possess a nuclear spin angular
momentum and thus exhibit nuclear magnetic resonance (MR) phenomenon'?.
Qualitatively, these nuclei can be described as spinning charged spheres, which results in a
small magnetic moment or “spin”12. In living things, protons (1H) are the most abundant
MR visible nuclei due to a high natural abundance and a large percentage of living tissue is
made up of Hz0. Thus, 'H is the most widely studied for MRI scanning. Other biologically
meaningful nuclei have non-zero “spin”, such as 13P (with 15 protons + 16 neutrons) and
13C (with 6 protons + 7 neutrons). The spin angular momentum can be expressed as a

vector quantity



S=_1I (2.1)
where h is Planck’s constant (h = 6.62606957 x 10-3* m? kg / s) and I is the spin operator
in quantum mechanics. This gives rise to a magnetic dipole moment u = yS that is
dependent on the gyromagnetic ratio y that is an inherent property of each atomic nuclei
species3. In the presence of a magnetic field, a magnetization moment M = ), u will be

produced in the direction of the applied field (Figure 2.1b).

Anti-Parallel, BO ’& $ $Tm
High Energy '& /&

A Thermal Equilibrium B Potential Energy C Magnetic Field

o £ ¢ F‘ | z P £

Figure 2.1: (a) Random orientation of spin at thermal equilibrium. (b) There are two states a nuclei can be in
either parallel (low energy) or anti-paralle I(high energy). (c) In the precense of a static magnetic field a net
magnetization vector m will arise. The lowest energy configuration is for the dipole magnetic moment to be
parallel with the static magnetic field, B, (Adapted from Hu, S 2010).

The total equilibrium magnetization is equal to the net difference between the nuclei

aligned and anti-aligned with the applied field, B,,.

Nu(I;+1)B,
Mo = #ST (22)

Therefore, the magnetization is proportional to the applied B,. Where u is the magnetic
moment of a single nucleus and N is the number of nuclear spins per unit volume.
Polarization can be understood with a quantum mechanical description. The potential
energy, E, of a magnetic moment, y, in the presence of a B field isE = —u-B = —u,B, =
—vyS,B,- The difference between the two energy states can be written as?

AE = h-B, (2.3)



for spin % particles. The signal comes from the difference between the two populations
(red spin shown in the Figure 2.2), one parallel (n:) and the other anti-parallel (n-). The
tendency is to occupy the minimum energy state. Therefore, the n. population is favored as
it is of lower energy (shown in Figure 2.1). When thermal energy exceeds the energy
separation spins can occupy both energy states. The ratio the two populations is dependent
on the Boltzmann distribution?:

Bo = gmAB/kT (2.4)

ny
k denotes the Boltzmann constant (1.3806488 x 1023 m? kg s2 K1), and T is the
temperature in Kelvin. Typically, this ratio is approximately 0.999993 per Telsa for
conventional proton MR. Only 7 out of 106 will be in excess in the parallel state3.
Macroscopically, this minute excess accounts for all of the polarization that observed with
NMR and MRI. The polarization, P,

ng—n_ e~ AE/RT _4

ny+n_ e LE/kT4q

P= (2.5)

describes the fraction of the spins aligned with the B, vector. Using Eq 2.5 with a magnetic
field of 3T and at body temperature (310K), the polarization of 13C is 2.49 x 10-%, meaning
that out of a million spins, only a few more are parallel to the magnetic field than

antiparallel.
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Figure 2.2 Thermal polarization from population difference of nuclear spin
energy states.
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This small magnetization is the basis of detected signal in MRI. For 1H, the polarization is
moderately improved at 9.88 x 10-¢ albeit still very small. However, high signal-to-noise
ratio (SNR) is achieved due to the high concentration of water molecules in vivo and high
natural abundance of the 'H isotope (>99.9%)3. 13C has neither of these advantages.
However, SNR can be dramatically improved with a technique called dissolution dynamic

nuclear polarization (DNP)# (described in Section 2.3).

2.1.2 RF Excitation
The NMR signal arises from precession of the net magnetization, M, which is originally
aligned with a main magnetic field, B. When M is tipped away from B, M will precess about

B similar to a spinning top. This precession is described by the following equation>:

aM

Solving equation 2.1, the precession of M about B occurs at the angular frequency

w, =yB, rad/s, namely the Larmor frequency. Each nuclei will have a specific

gyromagnetic ratio that is inherent to that specific isotope (shown in Table 2.1)3.



Table 2.1: Natural Abundance and gyromagnetic ratio for several isotopes commonly observed with NMR
and MRI. (Adapted from Levitt 2001.)

Isotope Spin All)\llfl?(;;ilce Gyromagnetic Ratio
H 1/2 ~100% 267.5x 10°rad s'1T-1
2H 1 0.015% 41.1x10%rad s'1T-1
13C 1/2 1.1% 67.3x10°rad s'1T-1
31p 1/21 ~100% 251.8x106rad s'1T-1

Z3Na 3/2 ~100% 70.8 x 106rad s1T 1
F 1/2 ~100% 108.4 x 10rad s1T 1
129X e 1/2 26.44 % 74.0 x 10°rad s1T-!

To detect the magnetization, an oscillating magnetic field, Bi(t) at the Larmor resonant
frequency is applied to the aligned nuclei by transmitting with Radio Frequency (RF) coils.
Because the frequency of the oscillating applied magnetic field matches the nuclei’s
resonant frequency, the nuclei absorb the energy, their magnetic moment changes
orientation, and they are excited3. This results in a change in their net magnetization after

which the nuclei begin precession.

Transverse plane

Fourier
Transform
X

: Spectrum
S(t) Free Induction Decay
Yy

Figure 2.3 Schematic of signal detection at coil. Magnetization is tipped away from the static
main magnetic field, B,, into the transverse plane where it can be detected by an induced voltage
in a nearby radiofrequency coil.

Excitation occurs when the magnetic moment of the nuclei is tipped away from the static
field, into the transverse plane. Followed by precession about the axis of the static magnetic
field3. The duration of the RF pulse applied determines the angle between net

magnetization of the spins and the static magnetic field and at this angle the spins will



precess around the longitudinal axis.

The excited nuclei are now in the higher energy state from the absorption of energy from
the applied magnetic field. Because the tendency is to occupy the lower energy state they
will eventually return to the equilibrium state aligned parallel with the main magnetic field.
As the spins precess, energy is emitted at the Larmour frequency producing a detectable
signal called free induction decay (FID). The FID is a result of the voltage induced in nearby

receiving RF coils!.

The amplitude of s(t) is a function of the net magnetization and flip angle:
s(t) « M,e~?"fotsin () (2.7)

where 6 is the RF pulse flip angle determined by the intergal of the applied oscillating

magnetic field3.

T
6 =y [, Bi(t)dt (2.7)
For a B, field with a constant amplitude, namely a non-selective excitation, the angle of

excitation is given by:

6 == ]/Bl nt (2.7)
Once magnetization is tipped from the longitudinal axis (z), aligned with B,, it can be
observed in the transverse plane (x, y). Thus, the signal strength from the transverse

component of the magnetization, m,,, is given by the sine of the flip angle, 8. The

Xy
unexciting magnetization can be stored in the longitudinal axis, m,. Itis given by the cosine

of the flip angle. Such that for a m/2 flip angle, m,, = M,sin (6) = M, and

10



m, = M,cos(0)= 0. For hyperpolarized applications, where the magnetization does not
recover, the flip angle should be much less than m/2 to preserve magnetization for

dynamics and imaging.

A Non-Selective Excitation

B1 amplitude over time

RF I_HB‘
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frequency
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Figure 2.4: (a) Non-selective excitation can be achieved with a hard pulse. Its Fourier transform give a
sinc shaped frequency response. (b) The flip angle is determined by Eqn. 2.7. (c) To excite only a slice
from a volume, a sinc pulse and a gradient in the slice select direction are applied. The Fourier
transform of the sinc pulse will excitate a bandwidth of frequencies encoded by the gradient. (d) Only
spins in the excitation bandwidth, Aw, which are located in Az are excited. (Adapted from Hu, S 2009
and Nishimura, D 1996).

The non-selective, “hard” pulse shown in Figure 2.4a will excite the entire volume3. Slice
selection can be achieved with the application of a sinc shaped B, (t) pulse and a gradient
applied on the axis of the desired slice. The gradient imparts a linear variation in the
frequencies, f(z) = %(BO + Gz), in space such that the slice can be chosen by with a
frequency selective RF excitation pulse. Only the slice which contains Larmor frequencies
that match the frequencies of the oscillating magnetic field will be excited3. The slice
thickness can be altered by varying the and the amplitude of the slice selection gradient or

by changing the the bandwidth of the selective pulse, thickness = 2w BW /yG3.

11



The excitation profile of a B;(f) is the Fourier transform of B;(t) for small flip angles

(<90°). The Fourier transform of the applied sinc, B;(t) = BW sinc(BW - t), is a rect
B:(f) =n (#) with an excitation bandwidth BW. Of course an infinitely long sinc pulse is

theoretically impossible and thus a windowed sinc is applied resulting in an imperfect slice
selection profile. Optimizing the shape of the RF pulse in time can be used to improve

spatial selectivity.

2.1.3 Relaxation

The signal acquired after excitation is easily described by a Larmor frequency oscillation
term and a decay term. The decay is a result of a inherent decay constant, T, or spin-spin
relaxation, and another term that is dependent on the homogeneity of the sample?. This

term is called T;, and is defined as

_:l+l:i+yABo (2.8)
T,

T, T, T,

where T, o« AB, is proportional to the inhomogeneity of the field strength AB,.

12



A Free Precession B T, Spin-Lattice Relaxation C T,Spin-Spin Relaxation

-0
m
t=0 —_— t>T,
After Excitation Spins Return Lower Phase Coherence Loss of Phase Coherence
Energy State

Figure 2.5: Precession and relaxation. (a) When tipped from the z-axis, the magnetization vector
precesses about the static magnetic field direction (z-axis). (b) After being tipped away from the z-axis,
the magnetization along z gradually returns (T relaxation). (¢) Without local variations in magnetic field,
all spins in a volume precess at the same rate and have phase coherence. Dephasing occurs when there are
local variations in magnetic field, called T relaxation. (Adapted from Hu, S, 2009).
This spin-spin relaxation mechanism occurs in the transverse plane?. Following an
excitation, T, relaxation can be observed. Initially, all of the spinning dipoles within the
excited sample are precisely in phase. Quickly, they will begin to lose coherence as some
spin slightly faster than the others!2 due to heterogeneity within their micro-enviroments®.
T, relaxation occurs in a inhomogeneous magnetic field whereby energy can be transfered
from dipoles aligned with and opposed to the main magnetic field. This transfer results in a

change in the energy state of the dipoles?. This rate at which energy is transferred is

proportion to the variations of the local magnetic field.

13
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Figure 2.6: Relaxation versus correlation time. (Adapted from Levitt, MH 2001).

T> spin-spin relaxation is related to the rate of rotation and translation (correlation time,
7.) of the adjacent dipoles. The dipole-dipole interaction is also increased as the strength of
the local field increases and is also dependent on the proximity of the adjacent dipoles?2.
Therefore in pure water T, is long, about 3-4 seconds. Protons in pure move much faster
than the Larmor frequency2. However, in solutions of macromolecules and tissues the

spin-spin relaxation rate is much faster, i.e., the T, time is shorter!2.

In the presence of a "perfectly" uniform magnetic field and with an object without
susceptibility effects, T, and T; would be equal. In reality, T, relaxation occurs because of
the static field non-uniformity, AB,, within each voxel which results from both
imperfections in the static magnetic field as well as from magnetic susceptibility effects in

sample inside the field or even in the patient.
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The acquired signal is s(t) = M,e~?™fote=t/T2 because m,, decreases in amplitude over

time according to3:

dmxy . _w

TR (2.9).
The solution to Eqn. (2.9) is:

My (£) = M,e ™t/ (2.10).

A long T, and minimization of AB, is optimal for hyperpolarized experiments providing

increased SNR and the ability to acquire increased spatial resolution.

The other relaxation mechanism is T; relaxation, also called longitudinal relaxation and
spin-lattice relaxation. After M is tipped away from the +z axis, the remaining m,
component is less than the original magnetization along +z, which is denoted M,. m, will

recover back to M, over time according to3:

amz _ _mz—Mo (2.11).

dt Ty

The solution to Eqn. (2.11) is:

m,(t) = M, + (m,(0) — M,)e t/T (2.12).
T, relaxation is a result of induced field fluctuation due to molecular motion, whereby the
local fielded experienced by a nuclei changes when the molecular reorients!2. Spin-lattice
relaxation is governed by a number of mechanisms including dipolar coupling, quadrupolar
coupling, paramagnetics, scalar coupling, chemical shift anisotropy (CSA), and spin
rotation. Similarly to T,, T; relaxation depends on the correlation time, .. Using the

Bloembergen-Purcell-Pound theory (BPP theory), which takes into account the effect of

15



tumbling motion of molecules on the local magnetic field disturbance, T; relaxation can be

derived from the following relationship”:

i_ Tc 4T,
Ty - K[1+a)(2,r§ + 1+4a)(2)1'g] (213)
3u3 h%y* . . . .
where K:mmwﬁ for a spin-1/2 nuclei. The theory is in good agreement with

experiments on pure substances, but can not handle more complicated systems such as the

human body.

T, of a hyperpolarized substrate is very important as it determinates the acquisition time of
the experiment. Unlike thermally polarized systems where signally averaging is possible, a
long T; is desirable for hyperpolarized experiments as it allows for increased acquisition
time. Increased acquisition time can be used to acquire higher resolution images as well as

investigate the dynamics of chemical exchange over time.

2.1.4 Magnetization Dynamics and Exchange
Combining the effects of precession (Eqn. (2.6)), transverse relaxation (Eqn. (2.9)), and

longitudinal relaxation (Eqn. (2.12)) gives the Bloch equation>:

M myi+m,j m,—My)k
i Mx,yB _ X - y _( Z 0)
dt T, T1

(2.14).

The Bloch equation is a phenomenological description of magnetization vector dynamics

and is extremely valuable for understanding MRI.

To describe chemical exchange, a phenomenon often observed in hyperpolarized carbon-

13 spectroscopy, the Bloch equations must be adapted to include terms that take into

account relaxation as a result of chemical exchange. Chemical exchange describes any

16



process in which a nuclei exchange between at least two environments resulting in a
change of NMR parameters such as chemical shift, coupling, or relaxation rate. These can
be intramolecular such as protein folding or conformational isomerism or intermolecular

such as enzyme catalyzed reactions, binding, and protonation.

The Bloch equations for a spin that can be in state A; or 4, in the absence of exchange can

be described by the following8?°:

aM
_dtl = MiXyBy — R{(My — Myy) (2.15)
aM

_dtz = MyXyB; — R,(M; — M) (2.16)

where R; and R, are the full relaxation matrixes for the spin in state A; or A,, respectively.
Assuming that exchange from A; to A, and vise versa is instantaneous, the equations can be

modified to include exchange with the addition of a first order kinetics term®.

aMq

” =M XyBy — R{(My — Myq) + k(M — M,) (2.17)
aM
d_::sz)’Bz—Rz(Mz—M20)+k(M1—M2) (2.18)

These equations a very helpful in the analysis of slow, intermediate and fast chemical
exchange. Fast exchange, k < |6; — §,|, is characterized will result in a single resonance
shifted by the weighted average of two chemical shifts, §,,; = f;8; + f,9,. For intermediate
exchange, k = |6; — §,| coalescence resulting in line broadening will be observed. In the
case of slow exchange k > |6; — §,|, separate lines are observable for each state. Each line
will be broadened by ALW = k/m. However, many other factors can affect line shape.
Additionally, the difference between the coupling constants, /, and T,s determines the

exchange regime.
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Figure 2.7: Appearance of spectra for two resonances
exchanging in fast, intermediate, and slow exchange regimes.

2.1.5 K-space and Imaging Principles

The received signal observed from the transverse component, m,,,, of M is

s (t) = [ fy J, My (x,y,2,t) e7otdx dy dz (2.19)
where the baseband, demodulated received signal is

s(t) = |, fy J, Mmyy(x,y,2,t) dx dy dz (2.19)

ignoring relaxation3. Without gradients all spins will resonance at w, = yB, however with
the addition of spatially varying gradients spatial localization can be achieved by encoding
the spatial locations by varying their frequencies, w(x) = w, + Aw = y(B, + Gyx) .
Including the precession due to the application of a constant, linear gradient for a single

dimension Eqn. (2.19) becomes

s(t) = [, My (x,t)e Vo dx (2.20)3.
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Thus the acquired signal is the combination of the magnetization multiplied by phase,

which maps the spatial locations. By supplementing k. (t) = % G,t, Eqn. (2.20) becomes

s@®) = [, My, (x)e~2mkx(D% g (2.21)
such that the received signal is just the Fourier transform of m,, (x, t)3.
s(8) = I{myy ()} = My (ky (1)) (2.22)

More generally, k(t) = %fot G (1)dT for cases when G is not constant3. In two dimensions

s(t) = fx fy My (, y)e - i2m@x+(ky (DY) gy dy (2.23)

and
s(®) = I{myy, (x, 1)} = My (ki ky) (2.24).
The most basic sequence acquire an MRI image is the 2DFT shown in Figure 2.8. Whereby
k-space is transversed via the running integral of the gradients. For this pulse sequence, an
entire k, line is acquired and this repeated with varying phase encode amplitudes G, to
cover a grid in k-space. The image is the 2D Fourier transform. Fourier theory?, states that

the object Field-of-View (FOV) is determined by the sampling rate Ak
1
Fov = — (2.25).

Thus to achieve a higher FOV more lines of k-space must be acquired, requiring a longer
scan time. In k,,, reducing Ak, is costly. Increasing the FOV, by n requires n times number
of phase encodes resulting in n fold increase in scan time for the same spatial resolution. In
k,, small Ak, is easily achieved as this is limited by the hardware, which is very fast.
Nyguist sampling requires FOV > 2Ak however an anti aliasing filter can be applied in the

readout direction due to the high sampling!0. The spatial resolution is determined by
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§=——=— (2.26).

Kmax “nAk

Kpnax is the extend in k-space is determined by the number of samples n and the Ak10.
Decreased resolution, §, will result in improved image quality at the cost of SNR loss or

increased scan time. SNR is determined by

SNR ~ 6, 6y S, V tap total f(p,T1,Ty,..) (2.27).

The parameter typ ¢orq; is the total time the receiver is acquiring data. This parameter can

be broken down as
tAD,total = tADX NPE X Navg (228)

where t,p is the data acquisition time in a single TR, Npg is the total number of phase
encodes, and Ny, is the number of signal averages. For simplicity, the transverse decay
effects are ignored, as increasing the acquisition time in a single TR will not provide any
SNR benefit once the signal has decayed. This relationship demonstrates that improving
SNR is costly in scan time. For instance a 2-fold improvement in resolution in two
dimensions will result in an 4-fold decrease in resolution. To gain back this SNR, a 16-fold

(4?) increase in scan time is required.

The acquistion time in a single TR (t4p) is can be described in terms of the receiver

bandwidth (BW), which is inversely proportional the single-sample time t, as

BW =+ (2.29)
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such that

N
tap = NXtg=——= —— (2.30)

where BWPP is the bandwidth-per-pixel3. The SNR can also be improved by increasing the

BWPP.

2.2 Fundamentals of Magnetic Resonance Spectroscopy

2.2.1 Chemical Shift

Chemical shift is a result of the electron density, electronegativity of nearby groups, and
anisotropic induced magnetic field effects?. Electron density can cause a chemical shift a it
shields a nucleus from the external field. Nuclei in the vicinity of an electronegative atoms
experience a reduction in electron density resulting in deshielding of the nuclei?.
Anisotropic induced magnetization field effects are the result of an induced magnetic field
as a result of the electron cloud revolving about the nucleus. This can result in either a
paramagnetic effect when it is parallel to the applied field or diamagnetic when it is

opposed?.

These phenomena result in a change in the local magnetic field resulting in a change in

frequency.

w=yB,(1—-0) (2.30)3.
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Figure 2.8: (a) A typical hyperpolarized 13C spectrum is shown with the chemical shifts. (b)
Chemical shift results from an induced magnetic field that changes the magnetic field experienced
by the nuclei, B,ss = B, + AB. This results in a molecule dependent shift of the Larmor frequency.
(Adapted from Hu, S 2009).

2.2.2 Exchange Spectroscopy

EXchange SpectroscopY (EXSY) is used to quantify dynamic processes of time scales from
milliseconds to minutes. Physical processes include slow conformational changes including
domain movement, ligand binding and release, topological interconversion or secondary
structure and cis-trans isomerization112. Additionally, EXSY is used to quantify and detect

chemical reactions and enzymatic conversions. EXSY requires that the k < |Aw]|.
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Figure 2.9: Timescales for molecular motions and NMR experiments that can be used to study them.

In one-dimensional NMR, the signal is recorded as a function of one time variable and then
it's Fourier transformed is taken to obtain the spectrum. In two-dimensional NMR, the
signal is recorded as a function of two time variables, t; and t,. The two-dimensional

spectra is acquired by two-dimensional Fourier transformed of two frequency variables?3.

evolution — detection
7 mixing 7

1 2

Figure 2.10: General scheme for two-dimensional spectroscopy.

— preparation

To acquire two-dimensional spectra the pulse sequence shown in Figure 2.10 can be used.

First, the magnetization is prepared with preparation pulses. The resulting magnetization
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is then allowed to evolve for the first time period, ti, storing the desired information in the
longitudinal plane. This is followed by a mixing time as shown in Figure 2.10. After the
mixing time the signal is recorded as a function of the indirect time variable, t,. The exact

design of the preparation and time periods determines the type information acquired?!3.
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Figure 2.11: Schematic for interpretation of 2D NMR spectra.

To interpret two-dimensional spectrum consider a case where a peak appears at w1 = 20
Hz, w2 = 80 Hz (Figure 2.11a). This peak corresponds to spins resonate frequency was 20
Hz during the evolution time, t; (Figure 2.10). Then during the mixing time these same
spins changed their resonance frequency evolving at 80 Hz during t, (Figure 2.11) is called

a cross-peak.

Similarly, if there is a peak at w1 = 20 Hz, w2 = 20 Hz (Figure 2.11b) This spin was
unaffected by the mixing period and thus continued to evolve at 20 Hz during ¢,. In Figure
2.9¢, a third case is considered where there are two peaks, one at w1 =20Hz, w2 =80Hz and
another at w1 = 20Hz, w2 =20Hz. The means that a percentage of the spins were unaffected
by the mixing period, continuing to evolve at 20 Hz during t; and the other percentage

when changed their resonance frequency to 80 Hz during the mixing time
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Figure 2.12: Basic pulse sequence for EXSY. To acquire the 2D spectra t;
is varied. In the EXSY acquisition all pulse have 90° flip angles.

In the Exchange Spectroscopy (EXSY) experiment, a cross-peak arises from chemical
exchange. The basic pulse sequence is shown in Figure 2.12. To acquire the full spectra the
sequence is repeated with varying values of t; to sample the indirect dimension. The
number of repetitions determines the spectral resolution in the indirect dimension based

on Fourier theory and thus more time consuming similar to phase encoding.

spectral width .
Sairect = P - - time = t, (2.31)
number of spectral points

spectral width

5indirect - number of repetitions - time = reps X t2 (232)
Often 2D spectra are acquired with varying mixing times, TMs, to generate build-up curves
from the measured intensities. This data can then be fit to an exchange model to extract

kinetic rates of conversion. For two-site exchange, the following three equations describe

the three unique build-up curves.

Lia(t) = Py(Py + PgeFext)e=t/T (2.31)
Igp(t) = Pg(Pg + Pye kext)e=t/Tn (2.32)
Lip(t) = P4Pg(1 — Pye kext)e=t/Tn (2.33)

These equations assume that the relaxation is the same in each state and solves for the

effective rate of exchange rather than solving for each direction independently.
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2.2.3 STimulated Echo Acquisition Mode (STEAM)

STimulated Echo Acquisition Mode (STEAM) is a sequence often used in spectroscopy. It
consists of a train of same three 90° pulses described in the (EXSY) acquisition shown in
Figure 2.13. The sequence is very useful for single voxel spectroscopy, as it conveniently
has three 90° pulses whereby slice selective pulses can be played on each axis for 3D

localization.

90° 90° 90°

StimuAated
|<— T—>|< ™ e
Bl

Figure 2.13: Schematic of a simplified STEAM sequence.

The sequence timings are chosen such that T, > tfor SNR,TM > T, or with a large
crusher gradient during the mixing time such that the transverse magnetization fully
decays during that time. This prevents parasitic magnetization in the stimulated echo. Here

we will assume that T; > TM and T; > 1, which is the case for hyperpolarized substrates.

The magnetization, M (T), after the third pulse (T = TM + 27) can be solved with rotation,
R, (m/2), followed by free precession, another rotation from the second 90° pulse, another
period of free precession, and finally a 90° followed by free precession. The derivation is
shown below. Magnetization following first 90° pulse is given by

. . 0 0 —11[01 [-M,
M(0+)=Ry(n/2)M(0_)=[0 1 0”0]=[ 0 ] (2.34).
1 0 ollm, 0

This is followed by a period of free precession

. . cos(wt) sin(wt) 0][—M, —M,cos(wr)
M) = R,(wt)M(0") = [—sin(wr) cos(wT) 0] [ 0 ] = [ M,sin(wt) ](2.35).
0 0 1L 0 0
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The second 90° pulse results in the following magnetization

B . 0 0 —1][—M,cos(wT) 0
M(z*) =R,(m/2)M(x™) = [0 1 0 ] [ M,sin(wt) ] [ M,sin(wt) ] (2.36).
10 0 0 —M,cos(w1)
During the mixing time, TM, all of the magnetization in the transverse plane decays;
intuitively this will result in a 50% signal loss.
B 0
M(TM™) = [ 0 ] (2.37).

—M,cos(wT)

The third 90° pulse followed by a period of free precession gives M(T)

B B 0 0 -1 0 M,cos(w)
M(TM*) = Ry(T[/Z)M(TM_) = [0 1 0 ] [ 0 ] = [ 0 ] (2.38)
1 0 0/JLl—-M,cos(wt) 0

cos(wt) sin(wt) 0] [Mocos(a)r)]

M,cos?(wT)
M(T) = R,(wD)M(TM™*) = [—sm(a)r) cos(wt) 0 [ ]

0 =|—-M,cos(wt)sin(wt)
0 0 1 0 0
(2.39).
Signal is just the integral of the spins over the volume.
M,cos?(wT)
s(T) = f [ M, Cos(wr) sm(a)r)] (2.40)

Assuming the variation in Aw is sufficiently high across the voxel volume, V, in other words
¢ (x) ranges from — to . Aw in the absence of gradient would be due to inhomogeneity (T,

line broadening, imperfect shimming) the imagery term integrates to zero.
s(T) = f_nn M, cos(p(x)) sin(p(x))dx — if_nn M,cos?(p(x))dx = %MO (2.41)
The real and imaginary components of the signal are the following

Re{s(T)} = M, and  Im{s(T)} =0 (2.42)

27



with ¢ = 0. However if a spin, went through exchange during the mixing time, w.;, TM. The

magnetization time T would be following:

. . M,cos(w,T)cos (w.sT)
M(Tcs) = Rz(a)csT)M(TM+) = —MOCOS((,()OT)SL'TL((UCST) (243)
0

Integrating over the volume
s(T) = [ M, cos(p(#)) sin(pes (£))d% — i [ M, cos(p(%)) cos(@es(£))dE = - M,ei2¢(@ores)
(2.44)

yields the following real and imaginary components of the signal

Re{s(T)} = %Mosin(mp(wa, wy)) and  Im{s(T)} = %Mosin(A(p(a)o,wcs)) (2.45).

By choosing t such that the cumulative phase shiftis + /2,
AP (0o, Wes) = (Wes = Wo)T = 21 (fos = f)TE/2 = m/2 + km (2.46)
all spins undergoing exchange will be observed solely in the imaginary signal channel415:
Re{s.(T)} =0 and  Im{se,(T)} =M, (2.47).
If the acquired signal consists of both exchanging and non-exchange spins the acquired signal
would be
Stoe(T) = M,(1 — a) + iaM, (2.48).
where a is the percentage of spins that have gone through exchange. This is the basis for the
metabolic activity decomposition (MAD) method. As mention previously sufficient spatial
variation is key to the execution of this technique. To ensure adequate modulation
dephasing/rephrasing gradients can be added as shown in Figure 2.14. This is very important

in its application to hyperpolarized substrates where measured T2s are long.
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Figure 2.14: Diffusion-weighted stimulated echo sequence (STEAM) which can also be
used for in “phase tagging” for Metabolic Activity Decomposition (MAD) reconstruction.
Different b-values can be achieved by varying the amplitude of G.

The gradients are added to ensure “phase tagging” via frequency modulation in space as shown

in Figure 2.15.

After First 90° After Evolution Time, T At Echo

Imag

Imag Imag

Real
Real

B ag(z) =0 —\_ :

B A9(2) = (0,0

Aw(z) = w,+YGz Ap(z) = (w,+YGz)T

Figure 2.15: Phase “Tagging”: The application of a G imparts a linear modulation Aw(z) = w.+yGz. After the
evolution time, 7, A@(z) will be accrued. The second and third 90° pulses flip the direction of the rotation.
Similar to a spin echo the spins angular frequency will reverse direction and will thus rephrase TE/2. If a spin
goes through chemical exchange it will rotate at a new angular frequency, w. resulting in phase accrual,

A@ (z) = (Wot+YGZ)T -(WesHYG2Z)T = (Wo-Wes) T

The STEAM sequence is also used in diffusion MRI. The spatial variation, w(z) = w, +
yGz, imparted by the gradients shown that results in a stimulated echo (Figure 2.14) can also

be used for diffusion imaging.
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Figure 2.16: Schematic of a stationary and a diffusing spin.

Consider a spin #1 shown in Figure 2.16. After the first 90°, spin #1 will have an angular
frequency of w = w, + yGz, and following the first period of phase accrual, 7, the phase of spin
#1 will be ¢4(7) = (w, + YGz,)t. After the third 90° and a period of phase accrual, 7, spin #1
will have and angular frequency —w giving

@1(T) = (wo +¥G2,)T — (W, +¥G2,)T =0 (2.49)
where T =TM + 2t.
Spin #2 however will have an angular frequency of w = w, + yG(z, + d) after the third 90°
pulse. This will result in the following phase

0,(T) = (w, +yG(z, + d))T — (W, + ¥Gz,)T = yGdT (2.50).

Comparing an ensemble of spins #1 to an ensemble of spin #2 with randomly varying diffusion
distances, d. The spins in group #1 will have no signal loss due to dephasing. However the spins
in group #2 will signal loss, attenuation, due to incoherent dispersion of phasing from this

motion.

The Bloch equation accounts for decay via precession, T relaxation, and T; relaxation but
must be modified for signal attenuation due to diffusion with the application of a spatially
varying gradient. The modified Bloch equation, has a diffusion term based on Fick’s First

Law and mass conservation. The Bloch-Torrey Equation?, is:
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am myi+my,j  (my—My)k
e MX]/B _ X - Yy, ( 4 O)
dt T, Ty

+V-DVM (2.51)

where D is the diffusion tensor. In the most simple case, which is the only case addressed in
this dissertation is isotropic diffusion where the diffusion tensor is a multiple of the

identity matrix1é:

1 0 0
D=D-I=D|0 1 0 (2.52).
0 0 1
In this case, the solution to the Bloch-Torrey Equation is:
_1.2,243 _
M = Myjocpe” 3" ot ~Mpocne P (2.53).

This D is theoretical and the measured value, which is a result of the addition of diffusion
sensitizing gradients, is called to as the apparent diffusion coefficient (ADC). My, ,cn is the
magnetization without diffusion weighting from the bloch equation and b — value refers to
the pulse sequence parameters that provide sensitivity to diffusion!’”. With increased

sensitivity to diffusion there is a loss in SNR described by the following equation!”:

)
S(TE) = S,e " ¢*8*-3)an¢ (2.54)
where A is the diffusion time, § is the duration of the gradient, G is the gradient strength,

and S, is the signal intensity without diffusion weighting.

2.2.4 Chemical Shift Imaging

Chemical shift imaging (CSI) also called magnetic resonance spectroscopic imaging (MRSI)
is an extension of MR spectroscopy. CSI allows for the detection of the distribution of
multiple metabolites in an excited region. With the addition of a spectroscopy dimension,

the following baseband, demodulated signal is received®:

s(t) = fx fy fz Myy o€ 2ot + my e "2 AL my, e 2Tty dx dy dz (2.55)

31



Thus, a k-space interpretation can be applied in the spectral domain where
ke =t (2.56).
Unlike k, and k., kf is not traversed with the application of gradients but rather in the
absence of the gradients as with traditional NMR. The addition can be costly in scan time
where the total scan time for simple 2DFT imaging acquisition, pulse sequence and k-space
trajectory show in Figure 2.15, is
total scan time =~ t.,NpgNgygtprep TR (2.57)
Where t,, is the readout time, Npg is the number of phase encodes, N4 is the number of
averages and t,,., is a preparation time that varies between pulse sequences. With the
addition spectroscopy the total scan time becomes
total scan time ~ typNpgNppNgygtprepTR (2.58)
Where t,, is the data acquisition time for spectroscopy. The addition results in a factor of
Nrg, the number of frequency encodes (readout dimension), increase. In Figure 2.17d
shows the additional lines of Ky line that must be sampled. Thus the addition of
spectroscopy is time intensive. Echoplanar spectroscopic imaging (EPSI) is a fast
alternative, although there are many others where both Kyand Kr are sampled during t,,

as shown in figure 2.17e and 2.17f.
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Figure 2.17: (a) Pulse sequence and (b) k-space trajectory for a simple 2DFT (Only three phase encodes
are shown). (c) Pulse sequence and (d) k-space trajectory with the addition of spectroscopy (Only three
phase encodes are shown). (e) Pulse sequence and (f) k-space trajectory for echoplanar spectroscopic
imaging (EPSIN (Onlv one phase encode is shown) .

By Fourier theory19, the spectral resolution is governed by

spectral resolution (Hz) = ti (2.59)
AD

where t,p, is the acquisition duration and the spectral width as called the spectral FOV

spectral width (Hz) = L= (2.60)

Atg tap
where At is the time between samples and n is the number of samples. Similar to k-space
principles discussed previously, improved spectral resolution requires increased scan

times and a larger spectral width requires finer sampling, At; which reduces k.

2.3 Hyperpolarization

2.3.1 Dynamic Nuclear Polarization

NMR/MRI is a very powerful across a wide range of disciplines and in the clinic. However,
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its inherent low sensitivity is a major challenge. This is due to the small magnetic moment
of the nuclei resulting in a very small polarization as shown in section 2.1.1. Therefore to
detect low concentration metabolites and nuclei with low natural abundance or low
gyromagnetic rations, time intensive signal averaging is required to obtain an acceptable

SNR.
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Figure 2.18: (a) Hyperpolarization provides dramatic increases in the difference between aligned and
anti-aligned nuclei resulting in >10,000 fold increases in SNR. (b) Dynamic nuclear polarization (DNP)
transfers polarization to nuclei of interest. This is accomplished by placing nuclei in the proximity of
electrons and transferring energy via microwave irradiation at low temperature in a high magnetic field.
13C1 -Pyruvate molecules near a molecule containing a free radical, which provides the electron. (Adapted
from Schroder, M 2011).

Dynamic nuclear polarization (DNP) can overcome these challenges in polarization
resulting in dramatic increases in SNR (>10,00 fold)*. DNP is the transfer of spin
polarization from electrons to nearby nuclei. The nuclei to by hyperpolarized are placed in
the proximity of electrons provided with the addition of a free radical. Energy is

transferred via microwave irradiation at low temperature in a magnetic field.
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Figure 2.19: Temperature dependence of the electron, carbon and proton nuclear spin reservoir
polarization at high magnetic field. At low temperature and high magnetic field the polarization of
an electron is near 100% making ideal for high efficiency transfer

The alignment of electron spins is described by the Boltzmann distribution (Section 2.1.1)
under the thermal equilibrium?. Electrons have an inherently much higher polarization
shown in Figure 2.17. For instance, the polarization of protons at 90 K is 0.016%
meanwhile the polarization of electrons is 10.541% - 660 fold increase Furthermore, the
polarization of the electrons in also increased by placing the sample in a high magnetic field

and at low temperature?.

2.3.2 Past and Recent Work on Carbon-13 Hyperpolarized MR

Magnetic resonance spectroscopy (MRS) of hyperpolarized substrates shows great promise
in the development of new clinically relevant diagnostic indicators of diseasel8-22. 13C MRS,
in conjunction with DNP, is a highly promising method to detect alterations in tissue
metabolism. Hyperpolarization allows the detection of phenomena, such as in vivo pyruvate-to-
lactate conversion?324, by increasing signal-to-noise ratio by a factor of >10,000 (described in
Section 2.3.1), allowing for the detection of carbon-13 probes of endogenous, nontoxic,
nonradioactive substances in vivo. Thus, this method provides a powerful tool to investigate

tissue metabolism in vivo. The value of this powerful new technology for cancer diagnostics
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was first shown by Golman et al.?4and it has been applied in a large number of studies for
detecting cancer presence, progression, and response to therapy providing unprecedented

new information18-22,

[1-13C] Pyruvate is the most widely studied of the hyperpolarized 3C probes because of its key
role in metabolism at an important juncture between glycolysis and the citric acid cycle?>26
and its ability to report on the Warburg effect observed in many cancer cells. Moreover, [1-13C]
pyruvate has superb properties for DNP as it has a long longitudinal relaxation time T;, a high
level of polarization providing adequate SNR, and is readily taken up by cells. In preclinical
studies, [1-13C] pyruvate has been used to monitor tumor progression, formation, and response
to therapy!8-22.27-29, Following these promising preclinical studies, the technology has been
translated into a clinical trial using HP [1-13C] pyruvate in prostate cancer patients, which

showed feasibility, safety and great promise for hyperpolarized carbon-13 technology?9.

2.3.3 Past and Recent Work on Hyperpolarized [1-13C]-Pyruvate

Hyperpolarized [1-13C]-pyruvate, in particular, has shown great promise as a potential
probe for the presence of disease and its response to treatment!8-2227-31 Pyruvate is an
important product of the glycolytic pathway, playing a central role in cellular
metabolism32. In most normal tissues under aerobic conditions, pyruvate dehydrogenase
catalyzes the decarboxylation of a significant fraction of pyruvate to produce acetyl-
coenzyme A, which is then used in the tricarboxylic acid cycle (TCA). Alternatively,
pyruvate can be reduced to lactate in the reaction catalyzed by lactate dehydrogenase
(LDH). In the presence of disease, however, the relative fluxes through these enzymes can

be significantly altered. For instance, even under aerobic conditions, the glycolytic flux in
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tumors is often upregulated?¢, which leads to higher concentrations of lactate and an acidic

tumor microenvironment32,

2.4 Adaptations in Cancer

2.4.1 Cancer Metabolism

Metabolism has been associated with cancer since the early days of cancer research where
Otto Warburg observed aerobic glycolysis in cancer cell?¢. At this time it was believed that
metabolic signatures seen in cancer were solely response to damage of the mitochondria.
However, recent work has shown that in fact cancer cells reprogram their metabolic
network to support proliferation, survival, and migration32. Recently, it has been shown
that oncogenes initiate a cascade that lead to dramatic rewiring of metabolic signaling
pathways. Moreover, certain metabolites, such as 2-hydroxyglutarate (2-HG)3334 and
fumarate3>-37, have been shown to be oncogenic themselves. Thus, it is no longer believed

that aberrant metabolism is a passive result but that it is a key hallmark feature that drives

cancer formation, progression, and invasion32.

Oxidative Phosphorylation ~ Anaerobic Glycolysis Aerobic Glycolysis
Glucose Glucose Glucose
Pyruvate Pyruvate Pyruvate
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Lactate Lactate Lactate
CO CO2 co2

Differentiated, + O,

Differentiated, -0,

Cancer and Proliferative, 0,

Figure 2.20: (left) In normal, differentiated tissue pyruvate is primarily metabolized in the
mitcondria via oxidative phosphorylation and only in hypoxia (lack of oxygen) is pyruvate converted
to lactate, namely anaerobic glycolysis. However, in proliferative tissue and tumors pyruvate is
readily and preferentially converter to lactate even in the presence of oxygen by aerobic glycolysis
(Adapted from Vander Heiden 2009).
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There are a number of key characteristic attributes of the tumor metabolome. The most
notable is the Warburg effect whereby high amounts of lactate are produced from aerobic
glycolysis (Figure 2.20). In normal, differentiated tissue pyruvate is primarily metabolized
in the mitocondria via oxidative phosphorylation and only in hypoxia (lack of oxygen) is
pyruvate converted to lactate, namely anaerobic glycolysis?6. However, in proliferative
tissue and tumors, pyruvate is readily and preferentially converter to lactate even in the
presence of oxygen by aerobic glycolysis. This is called the Warburg effect, which a key
marker that distinguishes cancer cells from normal cells. The majority of the work in the
hyperpolarized carbon-13 MR field has focused on trying to both understanding this

phenomenon and utilize it as a diagnostic tool.

The Warburg effect can often inhibit glycolysis, which is also known as Pasteur effect38. The
Pasteur effect is a result of a dysfunctional mitochondria and the reduced efficiency in ATP
production per unit of glucose consumed. Additionally, because cancer cells often utilize
glucose for anabolic processes3? (Figure 2.21) to produce nucleic acids and proteins
necessary for proliferation, cancer cells tend to have an abnormally high rate of glucose and

glutamine uptake to meet their increased metabolic needs*0.
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Figure 2.21: Cancer Metabolism: Glucose and Glutamine are the primary fuel sources for
cancer cells. Glucose and Glutamine pathways shown in red and blue, respectively.
Pyruvate, the end product of glycolysis is converted to lactate via the Warburg effect.
Glucose and glutamine are used for anabolic processes producing nuclei acid and
proteins necessary for proliferation. Glutamine can also supplement the TCA cycle
(Adapted from Debardinis, R] et al. 2010).

2.4.2 Oncogenes

An oncogene is a gene that has the potential to cause cancer. In cancer cells, an oncogene is
often mutated or upregulated. Most oncogenes require an additional step to drive cancer
such as the upregulation of another gene or environmental factors for cancer to occur4l.
The first oncogene, src, was discovered in 1970 and it was then demonstrated that
oncogenes are activated proto-oncogenes discovered by Varmus and Bishop in 1976

leading to a Nobel Prize*.

A proto-oncogene can become an oncogene by a small modification of its original function.

There are three mechanisms of oncogene activation shown in Figure 2.22. The first is
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mutation of the proto-oncogene or within a regulatory region*3. A mutation can cause a
change in the protein structure, which could result in oncogenic change in protein activity
or loss of regulation (no change in protein expression levels)*3. Another mechanism for
oncogene activation is gene amplification. Misregulation or gene duplication can cause
increased protein expression. Increases mRNA stability can also prolongs the proteins
presence in a cell. The third mechanism is chromosomal rearrangement. Translocation
events that move a proto-oncogene to a new site can lead to activation. Translocation
events can also lead to the fusion of a proto-oncogene to another protein that together has

oncogenic activity4344,
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Figure 2.22: There are three mechanisms for the activation of a proto-oncogene. A mutation via
deletion of point mutation in a coding sequence can produce a hyperactive protein expressed in normal
levels. Gene Amplification can cause overexpression of the normal protein. Chromosomal rearrangement
can cause nearby regulatory sequences to overexpression normal protein or fusion to an actively
transcribed gene overexpressed the fusion protein or the fusion protein can be hyperactive (Adapted
from Barillot, E et al 2012).

In this dissertation, the Myc and Ras oncogenes are studied. Both Ras and Myc are two of

the most frequently found alterations in cancer. Ras is a regulatory GTPase found on the

cellular membrane#. It is involved in signaling that leads to cell proliferation. Specifically,

Ras is a key regulator of the MAPK/ERK Pathway, which can be treated with targeted

therapies such as Sorafenib#6-48. Myc is a transcription factor found in the nucleus. Myc
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regulates the transcription of genes that induce cell proliferation4®59. One of the hallmarks
of Myc is its ability to promote cell-cycle progression. CDK inhibitors have been able to
which has been effectively treat Myc induced cancers®l. Thus the diagnosis of oncogene
activation in cancer is highly significant as it could used in treatment planning, ultimately

leading to improved patient outcomes.

2.4.3 Enzyme Kinetics and Lactate Dehydrogenase

Enzymes are typically proteins that manipulate other target molecules, called substrates.
Substrates bind to an enzyme's active site are transformed into new molecules termed
products>2. The enzymatic mechanism describes the steps that the enzyme takes to
produce its products®3. Enzyme Kkinetics is the study of the reaction rate of these
mechanisms and how various conditions can affect this rate. Enzyme kinetics provides

information on the enzymes role in metabolism and how it will behave in a living organism.
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Figure 2.23: Schematic of enzyme saturation: At low concentrations there are plenty of
active sites on the enzymes for the substrate molecules (pink circles) to interact. If
more of the substrate is added and there are still plenty of active sites the rate of
reaction will increase. However, when the substrate concentration outweighs the
number of available active sites. The reaction rate will have reached its maximum, Vyax

As the concentration of substrate increases, the enzyme, E', will become saturated. Thus the
rate of reaction, v, is not a linear response to the substrate concentration, [S], upon
saturation. Eventually, the rate will reach a maximum, Vmex (shown in Figure 2.23)53.

Graphically, saturation is depicted in Figure 2.24.

Michaelis-Menten kinetics is the most widely used model to describe enzyme kinetics due

to its simplicity and robustness. In this model the enzyme, E, binds with the substrate, S, to
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form the ES complex. The ES complex is then converted to the product, P, and the enzyme,

E>4,
k+ kcat
E+SSES—E+P (2.61)
k_

Where k, and k_ are rate constants that describe the enzyme-substrate binding which is

reversible and k., describes the catalytic step. The actual enzymatic mechanism for

k
ES=%E+P can be quite complex. However, this is usually one rate-determining
enzymatic step allowing for the reaction to be modeled with a single rate constant. The

model also assumes no inhibition or cooperatively>+.
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Figure 2.24: (a) Relationship between substrate concentration and reaction rate. (b) For ease of
interpretation kinetic data can be shown on a Lineweaver-Burk (double-reciprocal) plot (Adapted
from Mathews et al. 1999).

The Michaelis-Menten equation is

v, = tmaxls] (2.62).

Kp+[S]
It describes how the reaction rate, v,, depends on model shown in Eqn. 2.61. The constant
Vinax describes the maximum velocity and relates to Eqn. 2.61 by

Vnax = kcat[Eleot (2.63).

43



K, describes the how quickly the enzyme is saturated, time to reach half the maximum and
is given by

Ky & % (2.64)54,

The lactate dehydrogenase enzyme (LDH) is clinically significant because it is activity is
augmented in a number of diseases>>56. Noncancerous conditions that can raise LDH levels
such as heart failure, anemia, or muscle fatigue>’. In cancer, LDH is involved in tumor
initiation and metabolism due to cancer cells’ increased reliance on aerobic glycolysis to

meet high energetic demands32.

The LDH enzyme is a tetramer (four subunits) composed of M and H protein subunits
encoded by the LDHA and LDHB genes, respectively®8. There are five isoenzymes. In cancer,
fermentative glycolysis is catalyzed by the A form of LDH, whereby cells convert the
majority of their glucose into lactate regardless of oxygen availability. LDH catalyzes the
interconversion of pyruvate and lactate with concomitant interconversion of NADH and
NAD*. Thus, the availability of co-factors, NADH and NAD*, can affect the enzyme-catalyzed
conversion of pyruvate to lactate. For instance, NAD* is involved in pathways that regulated
transcription, DNA repair, cell cycle progression, apoptosis, proliferation, and survival and

is altered in cancer metabolism54.

2.4.4 Monocarboxylate Transporters and Their Clinical Significance
As discussed previously, cancer cells produce high levels of the metabolite lactate due to a

dysfunctional mitochondria and aerobic glycolysis. Lactate can then be transferred to other
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cells as fuel sources. In normal physiology this occurs between in skeletal muscle and the
brain, called “lactate shuttle” and within the brain between energy producing astrocytes
and high energy consuming neurons, called “neuron-glia metabolic coupling”>?-61, Cells
possess mono-carboxylate transporters (MCTs), that transfer lactate between cells. MCTs
have varying affinities for different metabolites. For instance, MCT1 and MCT2 (found in
mice) primarily transport lactate into the cell, but actually have a higher affinity for
pyruvate®2-65. MCT4 on the other hand preferentially exports lactate out of the cell. MCT4
expression can be induced by hypoxia. This is regulated by the HIF1-a (hypoxia inducible

factor)6%67, a direct target of Myc.

While it was known that in cancer cells MCT4 regulates the excretion of lactate produced
by glycolysis, it has recently been shown that MCT4 is involved in tumor growth and
infiltration®®. Moreover, it has been shown that MCT4 expression is indicative of an
aggressive phenotype in a number of cancers®8-70. High MCT4 export has a major role in
creating the high lactate levels that correlate with corresponding increased metastasis,
tumor recurrence, and poor outcomes. Recently, lactate has emerged a crucial regulator of

cancer development, regulation, and metastasis’172.

45



Chapter 3: Quantitative Measurement of Cancer
Metabolism Using Stimulated Echo
Hyperpolarized Carbon-13 MRS

The following chapter is adapted from: Swisher CL et al. “Quantitative measurement of
cancer metabolism using stimulated echo hyperpolarized carbon-13 MRS” in Magnetic

Resonance in Medicine, 2013.

Magnetic resonance spectroscopy of hyperpolarized substrates allows for the observation
of label exchange catalyzed by enzymes; thereby providing a powerful tool to investigate
tissue metabolism and potentially kinetics in vivo. However, the accuracy of current
methods to calculate kinetic parameters has been limited by T: relaxation effects,

extracellular signal contributions, and reduced precision at lower signal-to-noise ratio.

To address these challenges, we investigated a new modeling technique using metabolic
activity decomposition-stimulated echo acquisition mode. The metabolic activity
decomposition-stimulated echo acquisition mode technique separates exchanging from
nonexchanging metabolites providing twice the information as conventional techniques.
This allowed for accurate measurements of rates of conversion and of multiple 71 values
simultaneously using a single acquisition. The additional measurement of T values for the
reaction metabolites provides further biological information about the cellular
environment of the metabolites. This new technique was investigated through simulations
and in vivo studies of transgenic mouse models of cancer demonstrating improved
assessments of kinetic rate constants and new Ti relaxation value measurements for

hyperpolarized 13C-pyruvate, 13C-lactate, and 3C-alanine.
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3.1 Background

3.1.1 Motivation

Hyperpolarized (HP) MRS is advantageous over conventional radionuclide imaging in that
it detects not only the injected substrate, but also the products of its biochemical reactions
providing additional biologically important information?!. Prior to the introduction of HP
MRS, noninvasive measures of flux through specific enzyme-catalyzed reactions have been
limited by low SNR73. Measurement of these fluxes could profoundly aid in the
understanding of physiology and clinical medicine. The 10,000 fold sensitivity
enhancement gained by hyperpolarization of 13C nuclei offers the possibility to non-
invasively measure fluxes through individual enzyme-catalyzed reactions in vivo and in

real-time#28.74,

3.1.2 Challenges in Kinetic Modeling with HP [1-13C]-Pyruvate

Recently, time-resolved methods have been used to observe kinetics providing improved
sensitivity to altered metabolism’4-82. In ex vivo experiments, hyperpolarized 13C
substrates have been used to measure flux through single enzyme-catalyzed steps’3. In
vivo, however, the acquired signal is affected by flow, perfusion, diffusion, and membrane
transport, in addition to metabolism?475>77. To address these confounding factors, the
stimulated echo acquisition mode (STEAM) approach included a diffusion preparation
scheme, which can suppress signals from the vasculature and improve contrast for tissue

metabolism82:83,
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Even with isolation of the signal to stationary tissue, robustly quantifying metabolism with
kinetic parameters using HP MRS in vivo is difficult due to the lack of complexity of the
dynamic curves and the number of free parameters that need to be estimated. This
problem arises from spin-relaxation occurring concurrently with exchange, making it
difficult to differentiate metabolic conversion from relaxation’8. This allows for linear
dependency between parameters, which can contribute to poor conditioning for least
squares minimization (LSM), and ultimately leading to reduced accuracy in estimation of

rates of conversion and spin-relaxation.

Furthermore, the precision and accuracy of the quantitative analysis deteriorate as the
signal-to-noise ratio (SNR) decreases®. This is important even in the field of
hyperpolarized MRS, in which spatial resolution and time constraints in vivo may lead to
lower SNR. Recently, saturation or inversion magnetization transfer (MT)7879, has been
applied to hyperpolarized carbon-13 MR to improve accuracy in the measurement of rates
of conversion and observe real-time conversion. MT adds more linearly independent

equations, requiring at least one extra excitation.

3.1.3 MAD-STEAM and Kinetic Modeling

Here, we applied a new modeling technique using Metabolic Activity Decomposition for
reconstruction and a STEAM sequence for acquisition (MAD-STEAM). MAD-STEAM can be
used to directly detect real-time conversion and separate exchanging from non-exchanging
metabolites within a single acquisition!*. The additional information from the MAD-STEAM

experiment has the potential to improve the accuracy and precision of Kkinetic

48



measurements even with low SNR by adding more linearly independent equations. The
goal of this study was to investigate this new approach in both simulations and in vivo

animal studies with quantitative comparisons to prior methods.

The increased flux through the LDH enzyme resulting from the Warburg Effect is
presumably responsible for the increased labeling of lactate observed in tumors, as
compared to the normal surrounding tissue, following injection of hyperpolarized [1-13C]-
pyruvate?12485 Recently, it has been shown that there is a reduction in HP lactate detection
in tumors responding to therapy823.86_It is widely accepted that these changes observed in
lactate labeling are due to flux and exchange through the LDH enzyme?!l. To accurately
quantify these changes in metabolism, a new modeling method was developed utilizing the

extra information available with MAD-STEAM.

In addition to the high conversion to [1-13C]-lactate observed in many tumors, increased
[1-13C]-alanine has been observed during tumor formation in a Myc-driven liver cancer
model?2. While it is well known that most cancers depend on a high rate of aerobic
glycolysis for survival and proliferation. Additionally, some cancers display glutamine
addiction, having high glutamine uptake into the cell despite the fact that glutamine can be
produced from glucose®”. The conversion of [1-13C]-pyruvate to [1-13C]-alanine via alanine
transaminase (ALT) is affected by the availability of the glutamate cofactor, produced from
conversion of glutamine via glutaminase inside the cell. Using the new information
available with MAD-STEAM, we sought to investigate the rate of conversion of pyruvate-to-
alanine for the first time during disease progression in a Myc-driven model, in which both

the Warburg effect and glutamine addition have been reported?2250,
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This project was designed to increase specificity and accuracy in the measurement of spin-
relaxation and multiple conversion pathwaysby applying MAD-STEAM to kinetic
modeling and then evaluate the new information gained in transgenic models of cancer. A
key benefit of measuring kinetics with the additional information from MAD-STEAM is that
spin-relaxation and multiple rates of conversion can be measured simultaneously within a
single acquisition. The additional parameters provided, such as the T1 spin-relaxation for
the reaction metabolites, may yield further information about the cellular environment
experienced by the metabolites. This new technique is also desirable since it improves
accuracy by reducing sensitivity to background noise and moving spins within the
vasculature. In this study, we applied our new modeling technique to measure real-time
metabolic conversion and T; spin-relaxation as kinetic markers of malignancy in vivo in

transgenic mouse cancer models.

3.2 Theory

3.2.1 The MAD-STEAM Experiment
Recently Larson et al. showed that STEAM in the presence of metabolic conversion creates
a phase shift that depends on the resonance frequency shift and echo time (TE),

A =27Af(TE /2)[19]. By choosing A¢p =+x/2, the metabolic conversion and exchange

during a mixing time (TM) can be directly detected within a single acquisition!4. The pulse
sequence is shown in Figure 3.1. MAD-STEAM, which only uses a single acquisition, is
advantageous for detecting hyperpolarized signals in vivo because magnetization cannot be
renewed making it difficult to acquire multiple encoding steps. Ultrafast 2D NMR88-90 could

also be used to acquire similar information, however spatial inhomogeneity in vivo may
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cause distortion of the datal4.

T Mixing Time T

Crush

Dephase Rephase
G [\ / \ [\

Figure 3.1: Metabolic activity decomposition with stimulated echo acquisition
mode (MAD-STEAM) pulse sequence (t =TE/2).

The MAD-STEAM experiment can be viewed as an extension of a 2D Exchange
Spectroscopy (EXSY) NMR experiment!4°1. The EXSY experiment also uses a stimulated-
echo from three 90° pulses, in which the time between the first two 90° pulses, ti, is
incremented to sample a entire 2D spectrum!4. Instead of acquiring multiple acquisitions
of incremented ¢; durations, the MAD-STEAM experiment only samples 7, =TE /2 such that
the phase shift between the resonances of interest is +;7/2 4. In other words, MAD-STEAM
acquires the projection of a 2D EXSY spectrum, storing cross peak information in phase.
The MAD-STEAM approach is similar to 1D EXSY experiment except that it stores cross
peak information in phase rather than interpreting spectra after an inversion. A spin is
“phase tagged” when there is an exchange reaction available and the acquired phase after

exchangeis Ap==7/2.

Here we used the “phase tagging” information encoded through the MAD-STEAM

experiment to separate the total signal of a metabolite, M (7), into the signal contributions
from spins that have not gone through exchange, Orig{M (¢)}, and spins that have gone

through exchange, New{M (¢)}, to improve Kkinetic measurements for the first time.
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Recently Chen et al. and Larson et al. showed that a stimulated echo based MRS approaches
could also be used to isolate signal in stationary tissue from spins within the vasculature,
providing improved observation of active cellular metabolic conversion for hyperpolarized

carbon-13 MR in vivo.

3.2.2 Kinetic Models
Previously, it has been shown that the lactate and pyruvate peak intensities can be fit to a

simple two-site exchange model to give apparent rates of conversion?3.7476.79,

i ‘MPyr (t)‘ _ —Pry = Kpyarae +K eapyr ‘MPy)'(t)‘

(3.1)
dt| M) tKpyorae  "Prie ™ Kigeryr || [M (1)

where M, and M, denote the pyruvate and lactate peak integrals, ¢ is time, p,,, and

and K

Lacpy ar€ the

P, are pyruvate and lactate spin-relaxation rates, 1/7, .. K

Pyr—Lac

pyruvate and lactate apparent rates of conversion. Using MAD-STEAM the two-site

exchange system can be described by the following equation:

Orig{M,, (1)} ~Pry ~Kpyrae 0 0 0 Orig{M,, (1)}

d NeW{MPyr (t)} _ O _pPyr +KLaz?—>Pyr O NeW{Mpyy(t)}

dt| Orig{M,, (1)} 0 0 ~pu=Kiep, 0 || Orig{M,, (t)}

New{M, (1)} +K ot 0 0 0 || New{M, ()}
(3.2)

Where Orig{M,,(t)} and Orig{M (1)} denote the pyruvate and lactate peak integrals with
no phase shift Ap=0. New{M, ()} and New{M (1)} denote the pyruvate and lactate

peak integrals of z-magnetizations with phase shifts Ag=-7/2 and Ap=+7/2 ,

respectively. The =7 /2 phase shift will put the Orig{M, (1)} and Orig{M (1)} in the real
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channel and the New{M, ()} in the imaginary channel, such that they can easily be

Lac
separated during reconstruction. For all models we assume that pyruvate and lactate are at
steady state such that there is no significant influx into the slab. This is a valid assumption
because the vascular component was suppressed by the STEAM sequence®392, and the

acquisition was started after the arrival of pyruvate into the tissue.

This technique can be expanded to a three-site exchange system, such as the conversion of
pyruvate to either lactate or alanine. Using the total signal from the peak areas for each

metabolite, the following equations can be used to describe the system:

d ‘M o (t)‘ _pPyr - KP}"’—)LaC - KPyr—>Ala 0 O ‘M Pyr (t)‘
E |M Lac (t)| = +KPyr—>Lac _pLac O |M Lac (t)| : (33)
|M Ala (t)| +KPyr—>Ala 0 _pAla |M Ala (t)|

Because pyruvate generated from lactate and pyruvate generated from alanine are in small
amounts in the liver relative to the forward reactions, they were assumed to be negligible,

and thus New{M, (t)}is not part of the model. This constrains the number of free

Pyr
parameters to the number of linearly independent equations per time point to a 1:1 ratio.
Using MAD-STEAM, the three-site exchange system can be described by the following

system of equations:

Orig{M ,, (1)} ~Ppy = Kpypie = Kpyona - 0 0 0 0 Orig{M ,,, (1)}
4 Orig{M (1)} 0 P O 0 0 Orig{M , ()} (3.4).
7 New{M ,, @)} |= +K py o rac 0 —Prae 0 0 New{M , (1)}

Orig{M ,,, (1)} 0 0 0 -p, O Orig{M ,,,(t)}

New{M ,,,(t)} +K oyt 0 0 0 —pu, || NewiM ,, (O}

The Orig{M ,,,(t)} and New{M ,, (1)} were calculated based on the complex alanine peak
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integral and separated using the phase shift, Ag,,, ., ,, =-7/2.21 at 3T and TE=14ms, using

the equations below:

Orig{M , } =Re{M , } + — 2 Mu} (3.5)
tan(A(pPyr%Ala)
and
New{M,,} =-— M} | (36)
Sln(A(pPyreAla )

3.2.3 Parameter Estimation

Common methods, such as Gauss-Newton algorithm (GNA), Levenberg-Marquardt
algorithm (LMA), the Newton method and Generalized Gradient Descent, to estimate
parameters from non-linear systems use the Jacobian Matrix, J , iteratively to linearize the

least squares problem Jx =b, where x is the matrix of parameters to be solved and b is

e [ Ll

i 1 .
||e|| —HJ_leu , is large (eis error),

the data. When the condition number, x =

=W

even a small error in b (noise) may cause a large error in the solution,x. Thus, if the
Jacobian becomes ill-conditioned, the least squares estimate amplifies the noise by a factor

of k', and results may be grossly inaccurate®394,

Linearization has been used to simplify calculations in exchange systems. Linearization
could also be used along with MAD-STEAM to simplify calculations. In these comparisons,
linearization was not used to avoid error in sum of squares minimization. Because the
error on the linearized data is different than the error on the actual data, the linear least
squares solution to linearized models minimizes the sum of squares of residuals for the

nonlinear form of the dependent variables rather than the actual dependent variable.
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The number of parameters a system can estimate reproducibly and accurately is related to
the number of unique eigenvalues of the matrix K from the general equation,

dM (1)
dt

= KM (t). The following matrix was obtained with using only the total peak area of
the data (Eqn 3.1),

- -K +K
p Pyr Pyr—Lac Lac—Pyr

" (3.7)

Pyr—Lac _pLac - KLac—)Pyr

This matrix has two distinct real eigenvalues for the following range of parameters:

K =005-05s" , K =0.001-0.05s" , T,,, =10-50s , and T, =10-50s .

Pyr—Lac Pyr—Lac
Meanwhile, the following matrix obtained from using Metabolic Activity Decomposition

(Eqg. 3.7) has four distinct real eigenvalues:

_p Pyr - K Pyr—Lac O O O
- r +K c—Pyr 0
p Py Lac—Py (3 . 8)
O O _pLac - KLac%Pyr O
+K Pyr—Lac O O _p Lac

This matrix should be much more reliable for the prediction of more parameters because it

has more unique eigenvalues.

3.3 Methods

3.3.1 Data Fitting
To solve the non-linear inverse problem, an iterative LMA was used in Matlab (The
MathWorks Inc., Natick, MA), which interpolates between the method of gradient descent

and the GNA. This algorithm uses a trust region such that a reasonable approximation is
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always produced. Reasonable starting parameters, such as 7;, =20s, K =0.05s"", and

Pyr—Lac
-1 . . .
K, —p, =001s", were used to speed up computation and improve convergence. A single

simulation and fit are shown in Figure 3.2. All dynamic curves were normalized to the total

carbon during the experiment not including 13C-Urea.

Conventional Metabolic activity decomposition

10 Pyruvate . Lactate _10 ‘\ Original pyruate New pyruate
3 € we* 3
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g 5 SN g‘ 5
@ * et @ et | .
w . R Y . e xay N*"—‘”m"!

0 5 1 15 200 5 1 15 20
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ACTUAL: Thpyr=15  Tiiac=11  Kpyrartac=0.2  Kiacaryr=0.05

Conventional: T, , =4.45 T,,,=50.0 K,,.,=0.081 K, p,,=0.067
Magnitude with assumptions: T,=8.99 Kpyrarac=0.107
Metabolic activity decomposition: T, =13.6 T,,,512.6 Kpyy1a=0.227 K, 4p,,=0.073

Figure 3.2: Single simulation data and fitting results with metabolic activity decomposition and
simple two-site exchange with and without assumptions. Two-site exchange with assumptions
assumes that inline image and inline image.

3.3.2 Simulated Data
Data were simulated for a 20s experiment over a range of parameters:

K

Pyr—Lac

=001-0.1s" , K

Lac—Pyr

=0.002-0.02s" , K,, ., =0005-0.1s", T, =10-40s ,

T,

Loy =10-40s, and 7} ,, =10-40s. Each combination was simulated over a range of SNRs

(25-250 with five iterations each). The SNR was determined using the average signal of

pyruvate at the first time point and dividing by the noise root mean square (rms) for both
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simulated data and in vivo data.

3.3.3 Hyperpolarization of [1-13C |-Pyruvate and 13C -Urea

[1-13C]-Pyruvate mixed with the trityl radical 0X063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yljmethyl sodium salt, Oxford
Instruments, Abingdon UK) and 13C-urea mixed with the trityl radical 0X063 were
simultaneously hyperpolarized®> for phase correction!* using conventional dynamic
nuclear polarization (DNP) methods and a HyperSense DNP polarizer (Oxford Instruments,
Abingdon, UK) operating at 3.3T and a temperature of 1.3K. This yields more than 40,000
fold increases in the pyruvate and urea signals*. The sample was dissolved to produce
solutions with 80mM pyruvate and 80mM urea and a biologically appropriate pH (~7.4)

with TRIS/NaOH/EDTA dissolution media.

3.3.4 Acquisition and Reconstruction

All data were acquired with a STEAM sequence slab selection, TE = 14ms, TMs starting at
50ms, 20 acquisitions, 1s temporal resolution, 256 spectral points, 2.5 kHz spectral
bandwidth, a progressive flip angle scheme, and an adiabatic double spin echo?. A
symmetrically sampled full echo was acquired to preserve phase information. Co-polarized
13C-urea was used as a phase reference to correct for phase shifts caused by homogeneous,

bulk motion such as respiration, which would affect all metabolites!4.

For animal experiments, a 3T MRI system (GE Healthcare, Waukesha, WI, USA) was used
with a dual-tuned mouse birdcage coil based on a design used previously8>°7. Given the

main field of 3T, the echo time TE=14ms was chosen. With TE=14ms, the phase of pyruvate
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to lactate conversion will be Ag,,, . =+7/2 such that the new and original lactate are in

quadrature. Since new and original alanine are not exactly in quadrature, the magnitude

was broken into its components (Eqn. 3.5 and 3.6) based on Ag,, ., =-7/2.21 in order to

separate original and new alanine. This information was used for modeling three-site

exchange in the liver cancer model, in which there is known high alanine production.

3.3.5 Animal Experiments
All animal studies were performed under a protocol approved by the UCSF Institutional

Animal Care and Utilization Committee. Mice were anesthetized with 1-1.5% isoflurane

and placed on a pad heated to 37°C during the MR experiment. Transgenic prostate cancer
(TRAMP) mouse models®> (described in further detail in Chapter 4) at different stages of
progression (n=5) and normal mice (n=5) were imaged for the two-site exchange study.
Data were acquired from a slab containing predominately the tumor or from a 20mm slab
of the abdomen for normal mice. In the reproducibility study, data were acquired from a
slab containing the liver of a normal mouse. For the three-site exchange study, a switchable
transgenic liver cancer model was used (n=5). Following a baseline scan and
hyperpolarized 13C study, doxycycline was removed from the diet to allow induction of
expression of the human oncogenes Myc 5128 or Myc and Ras transgenes®? and initiation of
tumorigenesis. Data were acquired from a slab containing the entire liver but excluding the
lungs and abdomen. During each study, 350 uL of the hyperpolarized [1-13C]-pyruvate
solution was injected into the mouse over a 12s period, followed by a 0.15 mL normal
saline flush. To reduce artifacts from the inflow of pyruvate, data acquisition began 25-30s

following the start of injection of pyruvate. Axial, coronal, and sagittal T>-weighted fast
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spin-echo (FSE) images were acquired as anatomical references.

3.3.6 Enzyme Assays

LDH activity was measured in the transgenic liver cancer model (n=5) by observing the
decrease in absorbance of reduced nicotinamide adenine dinucleotide (NADH) at 340 nm
using a spectrophotometrical microplate reader (Saphire, Tecan, Maennesorf,
Switzerland). Multiple samples from tumor and adjacent tissue were frozen in liquid
nitrogen and homogenized in modified RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM Na(l],
0.5 % Na-deoxycholate, 1% Triton X 100, 0.1 % SDS, 2mM EDTA). Protein determination
was performed using a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). For
determination of LDH activity, a standard curve was acquired using L-LDH from bovine
heart (1000 units x mL-1, Sigma-Aldrich, St. Louis, MO, USA). Activity was measured in the
presence of 0.15 mM NADH (Sigma-Aldrich) and 0.8 mM pyruvate (Sigma-Aldrich) in 50

mM Tris-HCl, pH 7.4 for 5 min.

3.4 Results

3.4.1 Simulations

Conventional two-site exchange yields four unknowns but only two equations at each time
point, causing unstable conditioning of the Jacobian matrix (Figure 3.3). When using
conventional modeling, the condition number of the Jacobian matrix dramatically
worsened when both the forward and backward rates are slow and the relaxation rates are
similar, suggesting linear dependency between parameters. Intuitively, in these parameter
ranges, conventional modeling is unable to distinguish forward from backward conversion

and relaxation. Simulated data, shown in Figure 3.3 and Table 3.1, demonstrated that using
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only the total peak areas for a two-site exchange and three-site exchange model results in a
miscalculation of the rate of conversion and is less accurate in calculating multiple effective
Tis even when the model fits the data well (coefficients of correlation > 0.8). For these

nonlinear systems, goodness of fit does not necessarily correlate with accuracy.

a Two-site exchange b Three-site exchange
Metabolic activity Conventional ? Metabolic activity Conventional
-} decomposition | | ,| decomposition
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Figure 3.3: Comparison of stability and condition of (a) two-site exchange using the total metabolite signal
and two-site exchange using metabolic activity decomposition and (b) three-site exchange using the total
metabolite signal versus three-site exchange using metabolic activity decomposition. Comparison is over a
wide range of parameters and all combinations in a physiological expected range. The condition number
comes from Jacobian matrix at the solution, x.

60



Table 3.1: Accuracy in Estimated Kinetics Parameters obtained using Metabolic Activity Decomposition and
other Approaches to Kinetic Modeling.

Two-Site Exchange Three-Site Exchange
Metabolic Conv;?tt’ional Metabolic
Activit;_/ ) Conventional Assumptions Activit;_/ ) Conventional
SNR = 25 Decomposition a Decomposition
%Difference: K, ., 8.7% 338.6% 43.7% 2.9% 30.8%
9o Difference : K, _.p,, 21.9% 570.7% - i )
% Difference : K, ., - - - 8.1% 65.6%
% Difference T, ,, 11.6% 31.7% - 4.4% 25.7%
% Difference T, ,,, 15.4% 36.% - 3.1% 16.6%
%Difference T, ,,, - - : 4.6% 22.7%
SNR = 50
% Difference : K, ., ,. 5.0% 258.6% 44.3% 1.4% 19.0%
% Difference: K, _.p, 11.6% 351.2% - i )
% Difference : K., ., - - - 4.0% 41.1%
% Difference T, 5, 7.3% 26.2% - 2.4% 15.6%
% Difference T, ,,, 8.6% 27.4% - 1.5% 11.4%
%Difference T, ,,, - - - 2.3% 15.0%
SNR =100
% Difference: K, ., ,. 2.7 % 113.2% 44.7 % 1.0% 13.2%
%Difference : K, .p, 6.4 % 205.6% - | )
% Difference : K., ., - - ; 2.1% 25.9%
% Difference : T, ., 4.5% 19.4% - 1.1% 9.5%
%Difference T, . 5.3% 26.8% - 0.7% 7.2%
% Difference T, ,,, - - : 1.2% 10.0%
“Assumes T, , =T, . and K pepy =0-

bData is reported as average percent difference error between actual value and estimated value. Two-site
exchange with Metabolic Activity Decomposition used Eq. 2 and conventional modeling used Eq. 1. Three-site
exchange with Metabolic Activity Decomposition used Eq. 3 and conventional modeling used Eq. 4. The
average percent difference, was found for n=5 simulation experiments per parameter combination, and SNR =
25-250 and without noise.

cComparison was over a range of physiologically expected parameters and all combinations in that range:
K =001-0.1s",K,,..p, =0002-0.02s7", K, ., =0005-0.1s"",and 7;, =10 -40s.

dEven small errors in the back reaction may appear large when the denominator is small: %Difference =
(JActual -Estimated|) /Actual)* 100%

Pyr—Lac
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To improve the fit, the number of free parameters can be constrained by assuming

Tl,Pyr = Tl,Lac and K

Lac—py =0 2. However, in the case of low SNR, this approach can often

underestimate the conversion rate K

woiec COMpensating with inaccurate relaxation rates
which do not describe the actual kinetics of the system, as shown in Table 3.1. At SNRs
values typically seen in vivol* using Metabolic Activity Decomposition, the precision of

quantitative analysis is high as shown in Table 3.1. Even at very low SNRs, the error

measured was less than 20%.

3.4.2 Two-Site Exchange In Vivo

Using Metabolic Activity Decomposition, higher production of lactate in the tumor was
detected in the time series data, as shown in Figure 3.4. We observed high rates of
conversion of pyruvate to lactate in a murine prostate tumor (0.110+0.014s1) versus the
abdomen of a normal mouse (0.033+0.008s'1). In vivo, calculations with MAD-STEAM

yielded apparent K,, ;.. values with a larger effect size compared to conventional

modeling (Table 3.2). Decreased apparent K, rates of conversion were also observed

ac—Pyr
in tumors suggesting an increased unlabeled lactate pool-size and a high availability of
NADH. Not only were the rates of conversion different in tumor tissue, but also, the

effective 7}, s were different in tumors as shown in Table 3.2.
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Table 3.2. Comparison of Rates on Conversion in Tumors Versus in Normal with Metabolic Activity
Decomposition and Conventional Two-Site Exchange.

Ko orac Tumor Normal P-value
MEtabOIlCACf"_”ty 0.110 £ 0.014 0.033 £0.008 0.005*
Decomposition:
Conventional with Assumptions®: 0.068 +0.011 0.054 + 0.008 0.385
Conventional: 0.150 + 0.061 0.264 + 0.069 0.164
KLac—>Pyr
MEtabOIlCACf"_”ty 0.001 £ 6.11x10+ 0.025 + 0.007 0.028*
Decomposition:
Conventional: 0.153 + 0.073 0.264 +0.145 0.080
Ti,Pyr
Metabolic Activity 0.120 £ 0.020 0.198 £ 0.035 0.123
Decomposition:
Conventional: 0.197 £ 0.033 0.169 + 0.020 0.271
’1-1,Lac
MEtabOIlCACf"_”ty 0.105 = 0.009 6.13x10-2+ 0.007 0.026*
Decomposition:
Conventional: 0.038 £ 0.009 5.26x10-2 +0.027 0.500
T,

1,Both

Conventional with

Assumptions®: 0.137 £ 0.011 0.170 £ 0.027 0.274

aData is reported as the mean + mse with units s-1.

b — —_
Assumes KLac%P\'r =0 and ’Tl,Pyr - 7].Lac

cTwo-sided unpaired students t-test (n=5,a=0.05). *Denotes significant differences (p-value < a).

4 Comparison of rates on conversion in tumor versus normal with Metabolic Activity Decomposition and conventional Two-site
Exchange from slabs in the abdomen of TRAMP mice and normal mice. With this small sample size, significant differences were only
detected when using Metabolic Activity Decomposition.

Multiple MAD-STEAM experiments were acquired in a single normal mouse liver using

two-site exchange. This data showed reduced intrasubject variance in estimating L—
using Metabolic Activity Decomposition (Mean = 0.079, ¢ = 0.012, Percent Error = 16.7%)
versus using the magnitude of the spectra (Mean = 0.077, o = 0.039, Percent Error =
50.2%) or the magnitude of the spectra with assumptions (Mean = 0.051, o = 0.024,
Percent Error = 46.9%). Large percent errors in parameter estimation in the three

modeling techniques were attributed to the low SNR of lactate in normal tissue. Even with

the lower SNR, Metabolic Activity Decomposition demonstrated improved reproducibility.
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Figure 3.4: Comparison of Rates on Conversion in Tumors Versus in Normal with Metabolic
Activity Decomposition and Conventional Two-Site Exchange with and without the assumptions
that there is no conversion of lactate-to-pyruvate and the T; for lactate and pyruvate are equal.

3.4.3 Three-Site Exchange In Vivo

Representative data from a MAD-STEAM experiment and three-site exchange using
Metabolic Activity Decomposition are shown in Table 3.2. Using Metabolic Activity
Decomposition, real-time alanine conversion can be detected as seen in Figure 3.6D and
3.6F. Using Metabolic Activity Decomposition, changes in the rate of conversion of [1-13C]-
pyruvate to [1-13C]-alanine were observed in addition to conversion to [1-13C]-lactate as

shown in Figure 3.7. In this mouse model experiment, a three fold increase in K was

Pyr—Ala
observed following oncogene expression in the pre-tumor state compared to baseline and
a further three fold increase was detected when the tumor was at a late stage (baseline =
0.046, pre-tumor = 0.131, late tumor = 0.398). There was a 37.3% decrease in the effective
T1,410 from baseline to the pre-tumor state and a 26.8% increase in the effective T741. from
the pre-tumor to late state as shown in Figure 3.7. Additionally, there was a 17.3%

decrease in the T7,1qc from baseline to the pre-tumor stage.
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Figure 3.5: (a) Sample spectra from tumor and normal regions and their corresponding slab
locations. (b) Dynamic curves from metabolic activity decomposition showing increased conversion
of lactate to pyruvate and faster decay of the original lactate signal in TRAMP tumors versus normal
tissue. Data was normalized to total carbon, excluding 13C-urea (n=5).

As supporting data, K, , , measurements were compared to enzymatic assays. K

measured with Metabolic Activity Decomposition (R? = 0.809) demonstrated a higher
correlation with LDH activity than modeling with the total signal of each metabolite (R? =

0.343). K,,,_,,, measured with Metabolic Activity Decomposition also had a higher

correlation to LDH activity assays than metabolite ratios such as the lactate-to-total carbon
ratio (R? = 0.530) excluding 13C -urea and the lactate-to-pyruvate ratio (R? = 0.662) over
the entire dynamic experiment and the lactate-to-pyruvate (R? = 0.687) after perfusion of

the pyruvate bolus (t=3s after start of acquisition, acquisition started at 30 seconds after

start of pyruvate injection).
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3.5. Discussion & Conclusions

Metabolic Activity Decomposition kinetic modeling of hyperpolarized MR data
demonstrated improved precision in estimation of both rates of conversion and relaxation
rates (Table 3.1). This improvement is attributed to additional information from the
Metabolic Activity Decomposition method, which provides a well-conditioned system and
reduces sensitivity to linear dependency from Metabolic Activity Decomposition method,
which provides a well-conditioned system and reduces sensitivity to linear dependency
from similar parameters (Figure 3.3). There is some bias in the data for all methods
presented due to fitting to the data magnitude. The magnitude was used for fitting in vivo
data because it is commonly used in the literature’”.”°, and a main goal of this work was to
compare to previous approaches. This bias could be removed by using complex data

instead of using the magnitude.
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Figure 3.6: (a) T:-weighted axial anatomical image within the slab where data was acquired. (b)
Schematic of the three-site exchange system. Stacked plots of the successively acquired (c) magnitude
spectra, (d) real (Ap=0) and imaginary (A¢@=m/2) spectra from a MAD-STEAM pulse sequence with
TE=14 ms. The areas under the curve from (e) the magnitude spectra with the corresponding three-site
exchange fit Eq. using only the total amount of each metabolite and (f) the areas under the curve from
the real and imaginary spectra with the corresponding three-site exchange fit to Eq. using original and
new metabolite information provided by metabolic activity decomposition.

Simulations over a wide range of relaxation and conversion rates demonstrated that this
new modeling technique not only more accurately calculated these parameters, but it also
was robust to noise with SNRs down to 10:1. Even though all models showed high
goodness of fit, a good fit did not necessarily correlate with accurate estimates, suggesting

that caution should be taken when evaluating the accuracy of these nonlinear models
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Figure 3.7: T,-weighted axial and coronal anatomical images
showing progression in a switchable oncogene driven model of liver
cancer and the corresponding rates of conversion calculated from
three-site exchange using MAD-STEAM and Eq. at each time point:
baseline, 2 weeks (pretumor), and five weeks (late tumor) off
doxycycline. Yellow lines contain the liver where data was acquired.

Even with the inherent 50% loss in SNR using a STEAM sequence compared to some other
acquisition strategies®3, the accuracy gained from new “phase tagging” information with
Metabolic Activity Decomposition far overcame any loss of accuracy from decreased SNR.

For instance, at an SNR=100 the average error in estimation of K, . for the two-site

exchange was 113.0% with conventional modeling, but only 2.7% using Metabolic Activity
Decomposition both with simulated data. Using only the conventional modeling, accuracy

=0and T,

was improved to 44.7% error by assuming K, Ly

=T ,.- Even at a 50%

c—>Pyr
lower SNR (SNR=50) using Metabolic Activity Decomposition, the average error was far
less than all conventional approaches, 5.0%, as shown in Table 3.1. Similarly, the average

error in estimation of K, for three-site exchange model was 13.21% at an SNR=100

using conventional modeling, but only 1.4% at an SNR=50 using Metabolic Activity
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Decomposition. Also, alternate preparation schemes have been shown improve SNR for the
stimulated echo acquisition® and thus could substantially reduce such losses for

MADSTEAM experiments as well.

In a comparison of tumor versus normal, using Metabolic Activity Decomposition to solve
for rates of conversion and relaxation times had a larger effect size in both conversion and
relaxation rates, allowing the new method to better distinguish changes in metabolism and

cellular environment. In tumors, the measured K, values were significantly higher

than normal, which agrees with prior findings that cancerous tissues have higher LDH-A
expressionl0l. Interestingly, effective T7.qc was shorter in tumors compared to normal
tissues suggesting an altered cellular environment for lactate in the tumors. Because the b-
value increases during the experiment, the effective T1s measured in these experiments are
a combination of both diffusion weighting as well as the longitudinal relaxation.

Improved reproducibility was also observed. The K measured using Metabolic

Pyr—>Lac
Activity Decomposition had an improved correlation with the measured enzyme activity
compared to conventional modeling. This suggests that the new technique more accurately
reflected enzymatic activity. Even with isolation of the detected signal to stationary tissue
and “phase tagging,” other factors such as membrane transport were not accounted for in
this model. Prior studies have isolated intracellular and extracellular metabolites and have
shown that membrane transport can play a role in the measured rate of conversion®%76.
The combination of this work with these methods would provide even further specificity
for enzyme activity. Another future direction is the minimization of the voxel volume,

which would allow for improved localization of tissue areas and could enable the study of
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smaller tumors and smaller regions of normal tissues.

When the modeling technique was used in a liver cancer model known to have high
pyruvate conversion to alanine in the pre-tumor stage??, the two-site exchange model is no
longer valid. Here, the conversion rate of [1-13C]-pyruvate to [1-13C]-alanine was
investigated for the first time during tumor formation. Because the phase shift of [1-13C]-
pyruvate to [1-13C]-alanine with a 14ms echo time at 3T is approximately -z /2, Metabolic
Activity Decomposition could be used to model the three-site exchange system to obtain

improved measurements of K, _,, . In a transgenic oncogene-driven liver cancer model,

changes in K, ., were observed between baseline, two weeks (pre-tumor), and two

months (late tumor) off doxycycline in addition to changes in K during progression,

Pyr—Lac

as shown in Figure 3.7.

This technique improved accuracy, simultaneously measured conversion rates and
effective T;s, and suppressed vascular effects, thus providing new quantitative measures of
relaxation and conversion rates. The ability to quantify rates of conversion with increased
accuracy can improve current hyperpolarized kinetic models and could aid in the
understanding of metabolic alterations in diseases including cancer. Meanwhile the T
relaxation measurements obtained in this approach provide additional parameters for the

investigating the effects of the intracellular environment on the metabolites of interest.

In vivo, the increased accuracy resulted in a larger effect size between tumors and normal

tissue. K, ,,,. increased in tumors, the back reaction K, ., decreased, and Tirac Was

70



shorter in tumors suggesting an altered cellular environment in the tumors. Moreover, the

ability to detect changes between different stages of progression suggests that K may

Pyr—Ala

also be valuable in addition to K,, ., in investigating metabolism alterations with

disease, particularly in case of liver cancer. Since it provided better measures of tumor
kinetic parameters, this new acquisition and modeling technique demonstrated biomedical

potential for monitoring cancer progression and response to therapy.
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Chapter 4. Localized, Non-invasive In Vivo
Measurement of Enzymatic Activity

The following chapter is adapted from: Swisher CL et al. “Localized, Non-invasive In Vivo
Measurement of Enzymatic Activity using MAD-STEAM Hyperpolarized Carbon-13 MR

Spectroscopic Imaging” which is in revision for Magnetic Resonance in Medicine, 2014.

Traditionally, measurements of enzymatic activity require invasive biopsy, and
inaccuracies can occur since the tissue is frozen, lysed, and cannot account for cellular
membrane transport. Recently, we showed that using MAD-STEAM single-voxel acquisition
and reconstruction with hyperpolarized carbon-13 magnetic resonance spectroscopy, real-
time conversion can be directly observed, which suggested increased specificity for monitoring
intracellular enzymatic activity. Extending the method to Magnetic Resonance Spectroscopic
Imaging (MRSI) provides improved localization of those changes, which can better
differentiate tumor versus normal and was necessary to verify that MAD-STEAM is, in fact,
measuring intracellular enzymatic activity. In transgenic models of cancer, real-time
generation of lactate was observed in a prostate tumor model, which was used to construct

parametric maps.

MAD-STEAM MRSI was developed to provide a simple and robust method for parametric
mapping with increased specificity to cellular exchange without concomitant signals from
arterial input or T1longitudinal relaxation. We found that the results using this technique were
significantly correlated with enzymatic activity (Spearman: p = 0.943 and p-value = 0.017) and

can be used to non-invasively measure enzymatic activity in vivo and identify aggressive
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regions with high LDH enzymatic activity (p-value = 0.003). Kinetics maps revealed variations
within the tumor that were not visible with TW anatomic imaging and secondary metastatic
regions. In the field of oncology in particular, this new technique has great biomedical and
clinical significance, as it could be used to better identify particularly aggressive regions within

tumors, monitor cancer progression, and follow response to therapy.

4.1 Background

4.1.1 Warburg Effect and Lactate Dehydrogenase

Tumor cells have an altered metabolic phenotype characterized by increased glycolytic flux
and high cellular lactate production catalyzed by the lactate dehydrogenase (LDH)
enzyme?632102 [.DH catalyzes the interconversion of pyruvate and lactate with concomitant
interconversion of NADH and NAD*. In most normally differentiated cells, the LDH enzyme
converts pyruvate, the final product of glycolysis, to lactate only in hypoxia conditions and
thereby relies on mitochondrial oxidative phosphorylation to produce ATP. In contrast, many
cancer cells rely on aerobic glycolysis called the Warburg effect, whereby they have adapted to
derive ATP from metabolism of glucose to lactate in the cytosol, even in the presence of oxygen.
At high concentrations of lactate, the LDH enzyme exhibits feedback inhibition, and the rate of
conversion of pyruvate to lactate is decreased. However, many cancerous cells secrete lactate
rapidly out of the cell via monocarboxylate transporters such as MCT4¢68103, thus limiting

feedback inhibition.

LDHA (lactate dehydrogenase A) overexpression is inducible in hypoxic conditions'%4,and in
many cancers. High LDHA levels have been linked to a poorer prognosis in many cancers>>56.

Moreover, high concentrations of lactic acid produced from flux through the LDH enzyme is a

73



hallmark of cancer metabolism32. While expression can report that the protein is in fact
expressed, it does not report on actual enzyme functionality i.e. correct folding of the enzyme,
presence of required cofactors, proper targeting, protein transport, and if there are mutations
crucial to catalytic residues; whereas measurements of enzymatic activity account for all of
these factors. As such, measurement of enzymatic activity should provide a more accurate
description of aberrant cancer metabolism and increased sensitivity to abnormal tissue.
Conventional measurements of enzymatic activity require invasive biopsy. Here we developed
a non-invasive localized tool to measure enzymatic activity with hyperpolarized 13C magnetic

resonance spectroscopic imaging (MRSI).

4.1.2 Motivation

In medical imaging, there is a growing need to better detect and characterize abnormal tissue
and disease processes. However, since most imaging techniques rely on physical parameters to
generate image contrast, specific molecular information such as protein expression or
enzymatic activity cannot often be obtained or is of limited value. Recently, it has been shown
that the Metabolic Activity Decomposition technique provided more accurate quantitative
measures of conversion rates!> for hyperpolarized (HP) 13C1>MR by removing confounding
signals from the vasculature®3, allowing for direct observation of real-time exchange and flux1#4,
and measuring T1 relaxation times simultaneously!®. Using Metabolic Activity Decomposition
with Stimulated Echo Acquisition Mode (MAD-STEAM) single-voxel acquisition and
reconstruction, real-time conversion and exchange were directly observed. In this project, we
developed a MAD-STEAM spectroscopic imaging sequence to obtain spatially localized
parametric maps of exchange kinetics in preclinical cancer models and to correlate these data

with subsequent ex vivo biochemical enzymatic activity assays of resected tissue samples.
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4.2 Materials and Methods

4.2.1 MAD-STEAM Acquisition and Reconstruction
As shown by Larson et al.,, Stimulated Echo Acquisition Mode (STEAM) in the presence of
metabolic conversion creates a phase shift dependent on the resonance frequency and the

echo time (TE/2), Ap = 2nf %, which can be used to “phase tag” metabolites (Ap = tm/

2) and directly observe real-time metabolism. Using metabolic activity decomposition
(MAD), exchanging versus non-exchanging spins can then separated based on their “phase
tag.”141> For a main field of 3T, the echo time TE=14ms was chosen such that the phase of

pyruvate to lactate conversion will be A@p,,,, 4. = /2 and the generated and original lactate

(Denoted as Lacsrom pyr and Lacp, change, respectively) are in quadrature, shown in Figure

4.2a.
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Figure 4.1: Dynamic Metabolic Activity Decomposition with Stimulated Echo Acquisition Mode (MAD-STEAM)
pulse sequence with flyback echo planar spectroscopic imaging (EPSI). All data were acquired with 20mm slab
selection in z, 59 spectral points, two repetitions, a progressive flip angle scheme, and adiabatic double spin
echo?0. A symmetrically sampled full echo was acquired to preserve phase information 2°.

Co-polarization with 3C-urea provided a phase reference to correct for phase shifts caused by

homogeneous, bulk motion such as respiration, which would affect all metabolites!*. Two
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adiabatic double spin echoes were used to extend the echo time, reduce sensitivity to phase
errors, and improve spectral quality®®. Flyback Echo Planar Spectroscopic Imaging was added
to the MAD-STEAM pulse sequence, shown in Figure 4.1, to localize and image enzymatic

conversions of hyperpolarized pyruvate throughout the tumor and normal tissues.

4.2.2 Kinetics Maps of Metabolism

Data from MAD-STEAM can be used to describe the following system,

KPyr—»Lac
Pyr — Lac

T, ! T
where Kpyr_14c is the net flux of pyruvate to lactate during a mixing time and T, is the
longitudinal relaxation of both metabolites!3. We also assume that the backwards reactions,
to pyruvate and Kp,,_, 4;, Outside of the liver are negligible compared to the conversion of

pyruvate to lactate, Kpy,pqc-

Because of the additional information provided by MAD-STEAM, parametric maps can be
prepared from only two images with the following simple, algebraic equations traditionally

used in exchange spectroscopy (EXSY)°1:

1 1 Lac(0)?>-Pyr(0)?
Jr, = log ( ) 4.1)

Lacno change=PYTno change

Lacgrom pyr*€Xp (TM/Tl) >

Lacno change*PYTno change

1
Kpyrrac = ﬁlog <1 - (4.2)

where TM is the mixing time between the first and second acquisition. Lac(0) and Pyr(0) are

the initial images of lactate and pyruvate acquired from the first image and Lacsrom pyr.
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PyTfrom Lac) LACno changer ANA PYTy4 change (Figure 4.2b) are acquired from the second image

using MAD.
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Figure 4.2: (a) Reconstruction of real and imaginary spectra into (b) metabolite maps, which were used to
prepare Kinetic parametric maps with Eq 1 and Eq 2 from two coronal MRSI of images using MAD-STEAM in a
transgenic model of prostate cancer (reps = 2, Az = 20mm, TE=14ms).

4.2.3 Animal Experiments

For animal experiments, a 3T clinical MRI system (GE, Waukesha, WI, USA) was used with a
dual-tuned mouse birdcage coil based on a design used previously8>?7. All animal studies
were performed under a protocol approved by the UCSF Institutional Animal Care and
Utilization Committee. Mice were anesthetized with 1-1.5% isoflurane and placed on a pad
heated to 37°C during the MR experiment. During each study, 350uL of the hyperpolarized
[1-13C]-pyruvate and 13C-Urea solution was injected into the mouse over a 12s period. To
allow perfusion of pyruvate into the tissue, data acquisition began 20 sec following the
start of injection of pyruvate. Axial and coronal Tz-weighted fast spin-echo (FSE) images

were acquired as anatomical references.
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A Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) was used for this study.
TRAMP mice will develop progressive forms of prostate cancer with distant site metastasis
and exhibit various forms of disease from mild intraepithelial hyperplasia to large
multinodular malignant neoplasia. Activation of probastin at maturation, allows for the
expression of the SV40 T antigen initiating tumor formation as shown in Figure 4.3.

—)(—»A—»

| Probasin | SV40 T antigen| [Probasin | SV40 T antigen |

Figure 4.3: Schematic of transgenic adenocarcinoma of the mouse prostate (TRAMP)
mechanism for tumor initiation where activation of probastin occurs at maturation,
allowing for the expression of the SV40 T antigen initiating tumor formation.

4.2.4 Polarization of [1-13C] Pyruvate and 13C-Urea

[1-13C]-Pyruvate mixed with the trityl radical 0X063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yljmethyl sodium salt, Oxford
Instruments, Abingdon, UK) and 13C-urea mixed with the trityl radical 0X063 were
hyperpolarized®> using conventional DNP methods and a HyperSense DNP polarizer
(Oxford Instruments, Abingdon, UK) operating at 3.3T and a temperature of 1.3K. All
samples were dissolved to produce solutions with 80mM pyruvate and 80mM urea and a

biologically appropriate pH (~7.4) with TRIS/NaOH/EDTA dissolution media.

4.2.5 Enzymatic Assays
LDH activity was measured through an NADH-linked spectrophotometric method by

observing the decrease in absorbance of NADH at 339nm after addition of varying
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concentrations of pyruvate. Approximately 7.5mg of frozen tissue was thawed in lysis
buffer (830uL) containing 50mM Tris (pH 8.2), 2ZmM DTT, 2mM EDTA, and 1% Triton x-
100. The tissue was homogenized for 30 sec and centrifuged for 5 min at 7000rpm at 4°C.
The supernatant was removed and diluted appropriately so that the reduction of NADH
was linear over the first 10 min of the assay. In microplate wells, 3ml of cell lysate was
mixed with 147ml reaction buffer containing varying concentrations of pyruvate, 80mM

Tris (pH 7.2), 200mM NacCl, and 200mM NADH, which was heated to 30°C.

The assay was conducted immediately by monitoring the decrease in NADH absorbance, at
339nm, for 10 min with an Infinite M200 spectrophotometer (Tecan) Each pyruvate
concentration was assayed in triplicate. The reaction rate was normalized to total protein
concentration (Quick Start Bradford Protein Assay, Bio-Rad). Each sample was assayed in
triplicates, at 595nm, after incubating at room temperature for at least 5 min. The
absorbance of the sample was then recorded, and protein concentration was calculated
with a gamma-globulin standard curve. Once the sample’s protein concentration had been
acquired, it was used to calculate LDH reaction rates for the varying pyruvate
concentrations. The LDH reaction rate, measured in mM NADH/min/[protein], was plotted
against pyruvate concentrations according to Michaelis-Menten kinetics. The maximum
velocity (Vmax) and substrate concentration at which the reaction rate is half of the

maximum (K»,) values were then calculated with the Lineweaver-Burk plot.

4.2.6 Protein Expression
PCR was conducted in triplicate with 20 mL reaction volumes of 1X Tagman buffer (1X

Applied Biosystems PCR buffer, 20% glycerol, 2.5% gelatin, 60nM Rox as a passive
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reference), 5.5 mM MgCl;, 0.5 mM each primer, 0.2 mM each deoxynucleotide triphosphate
(dNTP), 200 nM probe, and 0.025 unit/mL AmpliTaq Gold (Applied Biosystems) with 5 ng
cDNA. A large master mix of the above-mentioned components (minus the primers, probe,
and cDNA) was made for each experiment and aliquoted into individual tubes, one for each
cDNA sample. cDNA was then added to the aliquoted master mix. The master mix with
cDNA was aliquoted into a 384-well plate. The primers and probes were mixed together
and added to the master mix and cDNA in the 384-well plate. PCR was conducted on the
ABI 7900HT (Applied Biosystems) using the following cycle parameters: 1 cycle of 95° for
10 minutes and 40 cycles of 95° for 15 seconds, 60° for 1 minute. Analysis was carried out
using the SDS software (version 2.3) supplied with the ABI 7900HT to determine the Ct

values of each reaction.

Ct values were determined for three test and three reference reactions in each sample,
averaged, and subtracted to obtain the ACt [ACt = Ct (test locus) - Ct (control locus)]. PCR
efficiencies were measured for all custom assays and were greater than or equal to 90%.
Therefore, relative fold difference was calculated for each primer/probe combination as 2-

ACtx 100. L19 (Applied Biosystems) was used as the control.

4.2.7 Statistical Analysis

The Spearman correlation coefficient was used to assess the linear correlation between
LDH activity and Kp,,_,4c along with linear regression and goodness of fit. High-grade
tumors (>60% poorly differentiated cells) were compared to normal adjacent tissue with a
two-sided student’s t-test being used to test for statistical significance. The effect size was

calculated using Cohen'’s D.
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The a priori minimum sample size was calculated to be 9 using Mead’s Resource Equation
(E =N - B - T), where the blocking component B = -1, the treatment component T = 0, and
N is total number of units minus one such that the error component E was between 10 and
20. For six animals studied, N =12 (n = 6) and E = 13. A post hoc sample size test required a
minimum of 5 animals (n = 4.05) for Kp,,_, 4. using the following test:

_ 20°(Zp+Zay2)® (4.3)

%1 —%2|
where Zg is the desired power (0.84 for 80% power), Z, , is the desired level of statistical
significance (1.96, 95% confidence interval, @ = 0.05), X; and X, are the means of both
groups, and o is the standard deviation of the outcome variable. Power was calculated
using the following critical value:
|%1—%X2|

ZPower -

_Za/z (4)

standard error(xqj—x1i)

where Power is the area to the right of Zp,,,., 0n a standard normal distribution.

Table 4.1: MAD-STEAM MRSI derived parameters in the liver, adjacent normal, and tumor (n = 5, high
grade only). Effect size (Cohen’s D), power (percent area less than Zp,,, on standard normal
distribution), and significance (two-sided, paired student’s t-test) are reported between tumor and
adjacent normal tissue. *Denotes p-value < 0.05.

Tumor Adjacent Normal Liver Effect Size = Powe  Significance
KPyr—»Lac 0.49 £ 0.04 £ 0.03st 0.22 £ 0.13s1 1.316 100% 0.003*
Lactyom pyr/PYTromrac  438+57.0 138+ 240 0.31+0.30 0373 97.3% 0.157

4.3 Results

4.3.1 Correlation with Activity and Expression

Kpyr1ac Was highly correlated with the maximum reaction velocity, Vimay of LDH (Spearman: p

= 0.943 and p-value = 0.017, Figure 4.5) with a slope A = 5.71 nmol NADH/mg protein (R? =
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0.962), suggesting that at 80mM hyperpolarized 13C;-pyruvate saturates the LDH enzyme and

thus measures the maximum velocity of the enzyme (n = 6).
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Figure 4.4: (a) LDH activity (Vimay) was highly correlated with K p,,_,, ,, measured with tumor voxel. *Denotes
statistical significance with o = 0.05. (b) Schematic of primary factors affecting the rate of conversion of
hyperpolarized pyruvate-to-lactate. () mRNA expression of LDHA, which encodes the M subunit, and LDHB,
which encodes the H subunit of the lactate dehydrogenase enzyme, and mRNA expression of monocarboxylate
transporters MCT1 and MCT4, which shuttle pyruvate into and lactate out of the cell, respectively. Data are
shown as relative fold differences from the house keeping gene, L19, and compared to K p,,_, ,. values also

measured within primary tumor in transgenic model of liver cancer in the region where tissue was taken for
LDH activity assays.

4.3.2 Localization of Regions with High LDH Activity

Statistically significance increases in Kp,,_,;4 Were observed within tumors in a transgenic
model of prostate cancer compared to adjacent normal tissue using the MAD-STEAM MRSI
sequence (n = 5, Figure 4.5, Table 4.1). MAD-STEAM images showed improved contrast to
metabolism by suppressing signal from flowing spins. Additionally, the improved localization
of Kpyr1qac demonstrated higher rate constants for prostate cancer than adjacent normal
tissue (p-value = 0.003, Table 4.1, high-grade tumors with >60% poorly differentiated cells),

demonstrating high contrast-to-noise between the tumor and normal adjacent tissue (Table
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4.1). Moreover, parametric maps of Kp,,,_,; 4. revealed heterogeneity within tumors as shown

in Figure 4.5 and Table 4.2.

TABLE 4.2. Tumor grade (PD - poorly differentiated, WMD - well or moderately differentiated, and N -
normal) and MAD-STEAM Kp,,,._, ;. derived parameter within ROI (region of interest).

Animal Kpyr.1ac LDHA LDHB LDHA-to-LDHB Grade Ki67 Metastatic

1 0.950 58.41 0.06 973.50 99.9% PD, 0.1% WMD 99 % No

2 0.890 46.79 0.22 212.68 100% PD 99 % No

3 0.690 27.83 0.03 911.47 99% PD, 1% WMD 95 % Yes
0.237 - - - 7 % PD, 93 % WMD 40 %

4 0.620 - - - 100 % PD 99 % Yes
0.168 16.89 0.93 18.13 25%N, 75% WMD 15%

5 0.655 33.76 0.01 3376 99 % PD 99 % No

6 0.341 13.68 0.63 21.71 95 % WMD, 5 % PD 30 % No

4.4 Discussion & Conclusions

The advantage of the dynamic MAD-STEAM MRSI approach is two-fold. First, it improves
sensitivity to metabolism by removing signals within the vasculature and the need to correct
for arterial input. Secondly, it provides a robust and simple method for parametric mapping
with increased specificity to cellular exchange, which can be used to identify regions with high
enzymatic activity. Using MAD-STEAM, high-grade cancerous regions with high LDH activity
were detected. Moreover, Kp,,_, o maps revealed heterogeneity within tumors and secondary

metastatic nodules.
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Figure 4.5: K p,,, ,. reveals heterogeneity within tumors and a large metastatic para-aortic lymph node mass
(vellow arrow, verified with pathology). High K p,,_,; .. values with corresponding high enzymatic activities of
LDH were observed in high-grade regions (PD - poorly differentiated, WMD - well or moderately
differentiated, and N - normal). The primary tumors are encircled in red. White arrows indicate approximate
regions where tissue was collected for LDH activity assays and tumor grading. LDH activity Ve is reported in
x10-3umol NADH/min/[protein] and K is reported in mmol Pyruvate.

This technique is not limited to the measurement of LDH activity and could be used to measure
other enzymes’ activity such as alanine transaminase (ALT/GPT1), where there is a known
increase in conversion of pyruvate-to-alanine during tumor formation??, or to measure the
activity of isocitrate dehydrogenase 1 (IDH1) via the conversion of a-ketoglutarate to 2-
hydroxyglutaratel®. In the field of oncology, this new technique of non-invasively measuring in
vivo, enzymatic activity has great medical research and clinical significance, as it could be
used to identify particularly aggressive regions within tumors, monitor cancer progression,
and follow response to therapy. Outside of the field of oncology, the technique has broad
applications including the diagnosis of metabolic diseases and tool for the study of

biochemistry in vivo.
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Chapter 5. Simultaneous Measurement of
Carbon-13 MR Spin-Relaxation, Facilitated
Diffusion, and Exchange

The following chapter is adapted from: Swisher et al. in the Proceedings of International

Society for Magnetic Resonance in Medicine, 2013.

In this work, we present a new MR spectroscopy approach for measuring exchange,
diffusion, and relaxation, simultaneously. This new approach employs the Metabolic
Activity Decomposition - Stimulated Echo Acquisition Mode (MAD-STEAM) method
whereby exchange can be directly observed through “phase tagging”. Moreover, this new
approach was designed for hyperpolarized (HP) substrates such that it is rapid and does
not require magnetization renewal. Diffusion weighting from stimulated echoes was
isolated from relaxation by varying the dephasing gradient. While varying the dephasing
gradient imparts variable diffusion sensitivity, the decay route caused by relaxation

remains unchanged.

In this project we measured exchange, diffusion, and relaxation of hyperpolarized
substrates simultaneously for the first time in vivo and in vitro. Potential applications are
broad including measurement of diffusion-controlled reactions, relaxation in exchanging
systems, cellular transport, enzyme activity, molecular interactions, and studying the
cellular environment. In addition to having increased accuracy in the measurement of
reaction rates and enzyme activity, this new approach is also particularly sensitive to
facilitated transport, which could be used to measure activity of cell membrane

transporters.
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5.1 Background

5.1.1 Motivation

MRS of HP substrates has shown clinical potential when applied to a variety of other
pathologies such as cardiovascular diseasel05-109, inflammation3?, and type 2 diabetes31.
Recently, HP substrates have been developed as biomarkers of redox!19, pH1l, and
vascularity!12113, It has also been used to study a number of different phenomena in
chemistry including rapid chemical reactionship!!4, molecular interactions, such as ligand-

receptor interactions!1°-117, and low-population reaction intermediates!18.

However, in all of these applications the acquired signal is a combination of the substrate’s
environment, exchange and relaxation. In vivo the acquired signal is further complicated by
cellular membrane transport, the cellular environment, perfusion, and agent delivery.

Previous methods do not offer the ability to measure 7, relaxation and transport directly

for exchanging spins. The goal of this work was to overcome this limitation by developing a
new method to separate and measure concomitant relaxation, diffusion, and exchange of

hyperpolarized substrates.

5.1.2 MADSTEAM Measurements of Relaxation and Diffusion

Metabolic Activity Decomposition - Stimulated Echo Acquisition Mode (MAD-STEAM) is a
recently introduced approach to directly detect exchange, metabolic conversion, or more
generally, any frequency shift during a mixing time can be directly observed through

“phase tagging”1415>, MAD-STEAM is similar to conventional approaches such as exchange
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spectroscopy (EXSY), but is advantageous in that it only requires a single encoding step!*.
Moreover, it is ideal for studying in vivo metabolism because the stimulated echo sequence
can concurrently remove signals from bulk flowing spins, providing improved contrast to

cellular metabolism83.92,

Using MAD-STEAM the effective spin-relaxation, Ty g¢, of multiple metabolites can be
quantified with improved accuracy by separating newly generated metabolites from
metabolites present during encoding. Recently, we showed that that the T; g¢ of lactate
observed after infusion of hyperpolarized pyruvate was significantly shorter in tumors,
suggesting a different cellular environment of lactate, in addition to increased conversion
of pyruvate-to-lactate, Kpy_ac1°. However, the T;grrof lactate as measured using the
existing method is subject to both spin-relaxation and diffusion effects. Here, we modified

the MAD-STEAM approach to separate diffusion weighting from T; relaxation effects.

5.1.3 Cellular Membrane Transport and Hypervascularization in Cancer

This new technique is particular relevant to the field of oncology where both leaky
vasculature and high vascularity are a result of sustained angiogenesis, a hallmark of
cancer'l®, and may alter the T; of metabolites. Meanwhile, expression of membrane
transporters such as Slc16a family moncarboxylate transporters MCT1 and MCT4 (Slcl6al
and SLc16a3, respectively), which shuttle pyruvate and lactate between the intracellular
and extracellular space, may affect the diffusion of metabolites. This has clinical
implications because stromal MCT4 has been shown to predict clinical outcome®? in triple
negative breast cancers’?. Another study in patients with glioblastomas (GBM) showed that

upregulation of MCT4 correlated with a significantly shorter survival and an aggressive
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mesenchymal subset of GBM in comparison to patients with intermediate expression!20.
Birsoy et al. showed that MCT1 expression correlates with glycolysis upregulation in
cancer cells which may be a marker of sensitivity to anticancer therapies that target

glycolytic enzymes, such as 3-bromopyruvate (3-BrPA)121.

In this work we present a new method to separate and measure both relaxation and
diffusion, in addition to exchange, to provide unprecedented biologic information about the
cellular environment in vivo. To better investigate cell transport such as the facilitated
transport of lactate out of the cell via MCT4, as shown in Figure 5.1, long diffusion times on
the order of transport were used because of their added sensitivity to boundaries rather
viscosity. Potential applications are broad including the measurement of diffusion-
controlled reactions, molecular interactions, relaxation in exchanging systems, cellular
transport, enzyme activity, and studying the cellular environment. This technique maybe
particularly valuable in the field of oncology because of the unique biological information it
provides where both the rates cellular membrane transport and enzyme catalyzed
reactions can be separated and measured. For instance, the hyperpolarized [1-13C]-lactate
signal following the injection of [1-13C]-pyruvate is an affected by both MCT4 and lactate
dehydrogenase (LDH), both known to be up regulated in cancer and associated with
prognosis, can now be measured independently and simultaneously within a single

acquisition.
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Figure 5.1: Schematic of hyperpolarized [1-13C]-pyruvate uptake into the cell, conversion to
hyperpolarized [1-13C]-lactate, and efflux of lactate out of the cell via MCT4 and Multiparametric
parameters that describe the exchange, Kp,_, ¢, and AfDCiac fr pyr-

5.2 Theory

5.2.1 Diffusion and Relaxation

Diffusion weighting can be isolated from relaxation by varying the gradient strength
between the first two 90° pulses in a repetition of the MAD-STEAM, as shown in Figure 5.2.
While varying the diffusion gradient imparts variable diffusion sensitivity, the decay route
caused by relaxation remains unchanged. Such that when the trains of FID's are acquired,
they will decay with the same T; relaxation and the difference in their signal attenuation
will be due variable gradient strength alone. With this information, diffusion can be

separated from T; relaxation effects.

Mathematically, the signal can de described by the following equation:

S(t) e e—t/Tle—b(t)ADC — Sa*e—t/Tl e—t(yG&)ZADC (51)

_ o (YG®2(DADC , . . :
Where S, = e 3 for a square gradient and is a constant that describes the signal

attenuation present during the experiment. y is the gyromagnetic ratio and § is the

89



dephasing gradient duration. Thus, the T, .¢r can be described by T; /(1 + T, (yG8)*ADC),

such that ADCs and T; s can be estimated by varying diffusion gradient strength.

5.2.2 Exchange and Flux

As shown by Larson et al.,, STEAM in the presence of metabolic conversion creates a phase
shift dependent on the resonance frequency and dephasing-rephasing time (7), Ap = 2nft
which can be used to “phase tag” metabolites (A@ =~ +m/2 ) and directly observe real-time
metabolism!415, In the single case of a single repetition, the dephasing-rephasing time (7)

equals half the echo time, T = TE /2.

The first 90° - 90° encoding and crusher result in the following encoding along M,,.

M encoten (%, fonc) = Mocos (G, %) + ¢ (fonc))Z (5:2)
Where spatial encoding,t/;((?,a?) = -y fOT(f(t)dt, results from the dephasing-rephasing
gradients and spectral encoding, ¢(f) = 2n(f — f,)7, results from precession during the
dephasing-rephasing time. f is the precession frequency of an isochromat, and f, is the
center frequency of the RF pulses and receiver'#. The effect on the magnetization by the
third pulse, which rotates the magnetization into the transverse plane and the first
rephrasing gradient, can be described by multiplication with the following rotation

matrix14:

R(G.Zf) = exp (i (w(G.%) + 6(N))) (5.3)
If a small tip angle is used, the magnetization left in z will not rephase, such that the

magnetization stores the original “phase tag”. The magnetization following the third 90° in

the first repetition is given by1#:

Mrep,l (3?' f:enc' fl) = Mz,encode,l (2' fenc)R(Gali f' fl) (54)
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= Mycos ((Gy, %) + ¢(fene)) xexp (i (¥(G1, %) + (H))) (55)

1

=2 M, [exp(i (200(Gr, %) + 9 (1) + S (fone) ) + exp (($() — d(fend)))]  (5:6)

The first terms integrates to zero giving the following resulting signal is given by:

Srep1(fones 1) = 5 Moexp (((Ap (func: f1) ) (5.7)

Similarly, the magnetization along M, following a 90° - 90° encoding and crusher for all

subsequent repetitions, n, is given by:

Mz,encode,n(f' f:enC' fn—l) = Mrep,l(f' fenc' fn_l)COS (IIJ(Gn + Gn—lﬂ-’?) + ¢(fn—1)))2 (58)
The third pulse rotates the magnetization into the transverse plane, such that the
magnetization is given by:

Mrep,n(f' fencr fn) = Mz,encode,n(fr fenc; fn—l)R(En;f: fn) (59)

M, [exp (i (W(Gn + Gass 2) + (G %) + Bfat) = $fond) + (D) ) +

exp(((@(fur) = O Uenc) + 0 () = ¢ (fu-))))] (5.10)

The first terms integrates to zero and ¢ (f;,_;) subtracts such that the resulting signal is

given by:

Srep,l (f:enc' fn—l) = zinMoeXp (i(A¢(fenc' fn—l) ) (511)

This includes the 50% signal loss at each repetition. To improve SNR, alternate preparation

schemes could be implemented?3.
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Figure 5.2: Schematic of the Multiparametric MAD-STEAM Pulse Sequence and Diffusion and Exchange
Measurement Regimes.

5.2.3 Parameter Estimation

The new multiparametric MADSTEAM sequence can be used to describe the following
system,

—AfDCp KpL AfDCy,
——> Pyr «— Lac —

Where Kp; describes the net flux of pyruvate to lactate during the mixing time and the
AfDC is similar to the apparent diffusion coefficient (ADC), measured in conventional
diffusion weighted MRI. However, AfDC is derived from very long mixing times, on the
order of transport, and uses small gradients to improve SNR. We also assume that the
backwards reaction, K p, is negligible compared to the forward reaction and with the added
diffusion weighting there is decreased sensitivity to this small flux. Because we assume that
there is no net conversion of lactate back to pyruvate during the experiment, we only
measure the AfDCp of the original pyruvate. However, because there are two significant
lactate populations, AfDC; can be separated to solve for both the diffusion of lactate

molecules that have not gone through exchange, AfDC ¢ fr Lac » and the diffusion of lactate
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molecules that started as pyruvate and were converted into lactate via the LDH enzyme,

AfDCLaC fr Pyr:

To improve sensitivity to Kp;, the carbon-13 nuclei on pyruvate and lactate were “phase
tagged” using MAD-STEAM. Thus, at each mixing time we were able to determine which
metabolites that were originally pyruvate, Pyry,;4(t), and which were originally lactate,
Pyr;,.(t). We denote Pyry,., (t) as the pyruvate that was tagged as originally having been
lactate and Lacy,, (t) as the lactate that was tagged as originally having been pyruvate.
This provides four signals for measurement, compared with two signals when “phase

tagging” was not used.

The system dynamics can be described by following equations where G varies with time.

(5.12)
Pyr()rig (t) _kpl - RP - (yGa)z AjDCP 0 0 0 Pyr()’ig (t)
Pyry,, (1) 0 -R, -(yG6)' AfDCk, 0 0 Pyry, (1)
Lac,,, (1) 0 0 -R, - (yGS)* AfDC, 0 Lac,,, (1)
Lac,,,(t) +k,, 0 0 -R, -(yGS'ADC, || Lacy,, (@)

with initial condition

Pyr,,..(0) P,
Pyrye, () | | 0
Lac,,,(0) L,
Lac,,,(0) 0

Where R = 1/T1 is the inverse of the longitudinal relaxation. In order to perform least

square estimate of the parameters, (5.12) can be rewritten in terms of the unknown

parameters
] N ]
Pyr,, (1) =Pyro () =Pyr,, (1) 0 =Pyr,,. (1) 0 R (513)
d| Pyr., (1) 0 —Pyry,, () 0 —Pyry,, (1) 0 RP
dr| Lac,, (1) | 0 0 ~Lac,, (1) 0 —~Lacg,, (1) AfDLC
Lacy,, () Pyry,, (1) 0 -Lacy,,(t) 0 -Lacy,,(t) AD CZ
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For each measurement, we get an equation of the form (13), which are stacked to form

B = A6 (5.14)
_Perrig(ll) _Per)'ig(tl) 0 _Perrig(tl) 0 r N 1
(@,
0 =Pyry,, (1) 0 —Pyry,,, () 0 Pyr()rlg( )
0 0 _LaCOrig(ll) 0 _LaCOrig(ll) i erew(tl)
Pl Lacy,, (1))
Pyr,,. (1) 0 -Lacy,, () 0 -Lacy,, (1) R L )
: : ’ acy,,, (4
A=P.()P ) 0 Pyr, (&) 0 o= R -4 :
Vg (8,) =YL, —PYloyi, (1, )
Orig Orig Orig A]DCP dt Pyroﬂg (l‘“)
0 —Pyry,,(t,) 0 —Pyry,,(t,) 0 AfDC
VDC, Pyr, (t,)
0 0 —Lac,,,,(t,) 0 ~Lac,,,(t,) e )
C, ..
-P Yorig (tn) 0 —LGCN(,W(IN) 0 _LacNmu(tn) L o (t")
AC e, 1,
where
The entries of B can be estimated using the approximation
dx x(tjr1)—x(t;i—
_(tl) — l+1) 15 1). (5.15)
at tiv1—li-1

Then the vector of parameters, 8, can be found with a simple linear least squares fit on

equation (5.14).

5.3 Methods

5.3.1 Simulations

To validate the feasibility and optimize the pulse sequence to yield the desired spin
isochromats, the sequence was simulated with a Bloch simulator (SpinBench, Heartvista, Palo
Alto, CA). To evaluate the accuracy of parameter estimation of various diffusion weighting
schemes, data was simulated over a range of parameters: Kp; = 0.01 — 0.5s T; = 20 — 50s
and AfDC = 1x10™* — 2x1073mm?2s~1. Each combination was simulated over a range of
starting SNRs (20-100) with § = 0.1ms, TR = 1s, N = 20, and iterations = 20 for the

following three combinations of gradient strengths: (1) G; =1 % and G, = 3 i, b=05-
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cm

85s'mm™2, (2) G, = 2£and G,=8—b=12-608s'mm™2, and (3) G, = 10iand

G, =15 i, b = 45 — 2138 s'mm™2. The SNR was determined using the average signal of

pyruvate at the first time point and dividing by the noise root mean square (rms).

5.3.2 Hyperpolarization of [1-13C |-Pyruvate and 13C -Urea

[1-13C]-Pyruvate mixed with the trityl radical 0X063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yljmethyl sodium salt, Oxford
Instruments, Abingdon UK) and !3C-urea mixed with the trityl radical 0X063 were
simultaneously hyperpolarized?®> for phase correction using conventional dynamic nuclear
polarization (DNP) methods and a HyperSense DNP polarizer (Oxford Instruments,
Abingdon, UK) operating at 3.3T and a temperature of 1.3K. All samples, for both in vivo
and in vitro experiments, were dissolved to produce solutions with 80mM pyruvate and

80mM urea and a biologically appropriate pH (~7.4) with TRIS/NaOH/EDTA dissolution

media.

5.3.3 Phantom Validation Studies

HP [1-13C] Pyruvate prepared by dissolution DNP was placed into a syringe under varying
conditions. To validate the ability of this new technique to detect changes in T1relaxation
gadolinium (MAGNEVIST, gadopentetate dimeglumine, Bayer HealthCare Pharmaceuticals
Inc.), was added. To validate contrast to diffusion, samples were cooled to ~5°C. Finally, to
investigate rate of conversion, the pH was lowered to 4.0 to alter the rate of pyruvate

hydration.
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5.3.4 Animal Experiments

All animal studies were performed under a protocol approved by the UCSF Institutional
Animal Care and Utilization Committee. Mice were anesthetized with 1-1.5% isoflurane and
placed on a pad heated to 37°C during the MR experiment. Data were acquired from a slab
in z. During each study, 350 pL of the hyperpolarized [1-13C]-pyruvate solution was
injected into the mouse over a 12s period, followed by a 0.15 mL normal saline flush. To
reduce artifacts from the inflow of pyruvate, data acquisition began 20s following the start
of injection of pyruvate. Axial, coronal, and sagittal T.-weighted fast spin-echo (FSE) images

were acquired as anatomical references.

5.3.5 Acquisition and Reconstruction

All data were acquired with a STEAM sequence slab selection, TMs starting at 1s, 20
acquisitions including 2 repetitions of the MAD-STEAM preparation with varying
dephasing gradient strengths, 1s temporal resolution, 20° flip angle, and an adiabatic
double spin echo?’” and 256 spectral points, 2.5 kHz spectral bandwidth at 3T and 64
spectral points, 4006 Hz spectral bandwidth at 14T. A symmetrically sampled full echo
was acquired to preserve phase information!®. Copolarized 13C-urea was used as a phase
reference to correct for phase shifts caused by homogeneous, bulk motion such as

respiration, which would affect all metabolites??.

For animal experiments, a 3T MRI system (GE Healthcare, Waukesha, WI, USA) was used
with a dual tuned mouse birdcage coil based on a design used previously85°7. For validation

experiments, given a main field of 3T TE=13ms was chosen such that A@p,,,_pyq = T/2 to

investigate pyruvate and pyruvate-hydrate’s relaxation and diffusion. In vivo experiments
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were performed on the 3T with both TE = 14ms such that A@p,,,14, = /2 and TE=13ms
such that A@py,_yq = /2. In vivo experiments performed on the 14T were acquired at

TE=17.30ms for A@py,r_1qc = /2.

5.4 Results

5.4.1 Simulation

Three gradient combinations were evaluated over a range of possible parameters at
SNR=20, 50, and 100 with simulated multiparametric MAD-STEAM data. Two small
gradients produce the optimal SNR but may be sensitive to perfusion and flow and have
reduced diffusion sensitivity. Two large gradients yielding high b-values would attenuate
the signal thus reducing the accuracy of the estimated parameters. One small and one
modestly large gradient was chosen as the optimal gradient combination. This combination
reduces signal attenuation, improving parameter estimation whilst retaining diffusion
sensitivity. Additionally the contrast between the two curves will be maximized improving
sensitivity to differences in the effective T; due to diffusion. Percent error in estimated

versus actual value in simulated data is shown in Table 5.1.

Table 5.1. Comparison of percent error in simulated data and estimated parameters for three
gradient schemes (n=5, T;=20-50s, ADC = 1e-4-1e-3 mm?2s1).

SNR

Two Small Gradients: b = 20-900 s/mm? 200 100 50 25
ADC 1.6810.54% 3.14+2.25% 10.32+5.70% 11.78+12.17%
T; 117+054% 1.37+0.56% 8.79+2.54%  11.14+943%
Two Large Gradients: b = 90-1400 s/mm?
ADC 3.7213.84% 7.88+3.70% 11.51+8.18% 42.26+22.24%
T; 6.13+953% 8.07+495% 12.74+9.51% 69.82+81.06%
Small & Large Gradients: b = 20-2000 s/mm?
ADC 1.1310.63% 2.47+055% 6.91+6.60%  11.39+5.48%
T; 0.71£095% 3.74+2.28% 4.14+341%  11.83+6.02%

97



Total Pyruvate

N Tl,eff @ Gl

\
\
AN Tl,eff @ GZ

Original Pyruvate-Hydrate

~

—G1 --G1 Fitted
—G2 -- G2 Fitted

J\N

S

|I T

~

I LI %= _L"'ll-'ll )
14

New Pyruvate-Hydrate

A-1-
-’ ~

1.

s

TM (sec)

>

5.4.2 In Vitro

Dynamic time series data of the hydration of pyruvate acquired with multiparametric MAD-
STEAM in vitro is shown in Figure 5.3. As shown in Table 5.2, we observed a decrease in the
T; relaxation measurements with the addition of gadolinium, a decrease in the ADC values

at cooler temperatures, reduced exchange with high pH, and increased exchange with low

pH.

TM (sec)
Figure 5.3: Dynamic curves showing the hydration of pyruvate (TE = 13ms, TR =1s, and A@p,r

Lac = m/2). Signal normalized to total pyruvate.

TM (sec)

Table 5.2. Diffusion, relaxation, and conversion parameters of pyruvate in water (TE=13ms, b-
values: 65-1734s/mm?2, pH = 7-8 unless otherwise indicated). *This experiment was performed
first, so pyruvate and pyruvate-hydrate may not have reached equilibrium causing increased

exchange.
KPyr—>Hycl AD CPyr Tl,Pyr AD CHycl Tl,Hycl
Room Temperature (~24°C) 0.047s1*  245x104mm2s! 59.0s 25.0x104 mm?2s1 50.0s
Cooled (~5°C) 0.016st 8.07x104mm2st  524s 10.0x10-4 mm2s-1 450s
With Gadolinium (5% vol)  0.014s1 24.0x104mm?s1  150s  17.1x10*mm?s1 13.0s
LowpH (4.0) 0.030s? 19.3x104mm?s! 58.1s 21.4x10“4mm?s! 57.7s

5.4.3 In Vivo Feasibility

HP carbon-13 diffusion coefficients, T; relaxation, and rates of conversion and exchange

were measured simultaneously in vivo as shown in Figure 5.4. The showed feasibility of the

technique in vivo.
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’m‘ Kpyr—lac =0.017 s

T1,pyr= 37.5 S
| T1,IGC = 35.0 S

ADCpy = 13.3x10* mm?/s
ADC,.=11.7x10* mm?/s

| AfDC

Lac fr Pyr =13.3

Kpyr—1ac =0.012 s
Tipyr=38.0s
T1,Iac =354s
ADC,,,=7.00x10* mm?/s
ADC,,.=8.36x10* mm?/s

b-values: 65-1734s/mm? | AfDC, ¢ py, =9.64

Figure 5.4: Feasibility of Multiparametric MAD-STEAM acquisition in vivo.

5.5 Discussion & Conclusions

Methods were developed to measure exchange, diffusion, and T; relaxation of HP
substrates simultaneously. In general, this multiparametric approach to MAD-STEAM can
be used to study any system where spins experience a frequency shift. Potential
applications are broad including measurement of diffusion-controlled reactions, relaxation
in exchanging systems, cellular transport, enzyme activity, molecular binding, and studying
the cellular environment. In the field of oncology, this method has applications for
describing both the rates of cellular membrane transport such as MCT4 and enzyme
catalyzed reactions such as LDH, which are known be highly expressed in cancer and

associated with poor prognosis.
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Chapter 6. Dynamic UltraFast 2D EXchange
SpectroscopY (UF-EXSY) of Hyperpolarized
Substrates

Two-dimensional (2D) NMR is an important tool for revealing molecular structure and dynamics.
However, the technique is limited by the inherent low sensitivity, resulting in typical acquisition
times for 2D NMR spectra ranging from minutes to hours®°. In Carbon-13 NMR, this is particularly
pronounced whereby only ~1% of carbon atoms are 13C isotope. Hyperpolarization can be used to
boost NMR's sensitivity, including capable of yielding signals that exceed those currently afforded
by the highest-field spectrometers by several orders of magnitude, providing the sensitivity

equivalent of ~10° scans*.

However, its nonrenewable longitudinal magnetization and short lived signal makes it
incompatible with conventional 2D NMR acquisitions. Here, we present a new UltraFast method
for acquiring dynamic 2D EXchange SpectroscopY (UF-EXSY) that reconstructs 2D EXSY spectra
from 1D spectra based of phase accrual during the echo time. Unlike conventional approaches to
acquire 2D EXSY data, the UF-EXSY reconstruction utilizes a simple STEAM encoding sequence,
requiring only a single encoding step within a single shot, which does not require renewable
longitudinal magnetization making it well-suited for hyperpolarized substrates. Furthermore, it
requires only a single shot to acquire high-resolution 2D EXSY spectra making ideal for dynamic

detection of many exchange pathways.

We validated this method in simulations and hyperpolarized phantom experiments observing the
hydration of pyruvate. We also applied this technique in cell studies where both forward and

backward exchange of pyruvate-lactate and pyruvate-hydrate were resolved in time. Most,
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significantly increased conversion of lactate-to-pyruvate was observed with decreased expression
of the Moncarboxylate Transporter 4 (MCT4), which regulates the efflux of lactate out of the cell is

known to indicative a more aggressive phenotype in a number of cancers.

6.1 Background

6.1.1 2D-NMR

In the fields of chemistry and biology, multidimensional NMR acquisitions, which
differentiate and correlate the resonances arising from individual sites onto multiple
frequency axes are commonly used to study structure, dynamics, reaction state, proteins,
the chemical environment of molecules, or any other sample that contains nuclei
possessing spinl?2. These experiments are intrinsically longer than their conventional one-
dimensional (1D) counterparts, and thus the SNR can suffer from reduced time for signal
averaging. Increased sensitivity can be gained with increase the magnetic field, but this

leads to only modest returns despite large investments on higher field strengths.

Not surprisingly, there has been an increased interest in developing alternatives that
prepare nuclei in 'hyperpolarized' states, whose spin population differences depart
significantly from the usual =10-5 Boltzmann distributions. DNP yields over a 10,000-fold
increase in SNR* which is greatly larger than what can be achieved by multiscan signal
averaging. Using hyperpolarization with its inherent dramatic increases in sensitivity

provide a unique opportunity to probe previously undetectable NMR phenomena.
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6.1.2 2D-NMR and Hyperpolarized Substrates

However, the detection of hyperpolarized substrates requires sequence modifications to
overcome challenges such as non-renewable longitudinal relaxation, T;, and short
acquisition times on the order of T;. The non-renewable longitudinal relaxation makes
conventional acquisitions schemes for multidimensional NMR impossible which are based
on collection an array of scans that are identical to one another except for the serial
incrementing of evolution delays. Similar to Frydman and Blazina, the serial indirect
domain t; encoding of 2D NMR is replaced by a parallelized procedure endowing different
positions within a sample of length with inequivalent evolution times8’, but uses a
symmetric slice selective excitation rather than a gradient acting in combination with a
frequency-swept excitation for preparation and small dephasing and rephrasing gradients

rather than an oscillating field gradient.

The acquisition and reconstruction presented here relies on principles of phase accrual
used with the 1D acquisition, Metabolic Activity Composition with Simulated Echo Acquisition
Mode (MAD-STEAM)!4. The main advantages are the simplicity of the sequence and
reconstruction, the RF and gradient requirements allow this sequence to be implemented
on clinical MRI scanners, and the use of larger sampling regions can also reduce error from
turbulence from rapid injection of hyperpolarized substrates. Furthermore, this is first
application of 2D EXchange SpectroscopY (EXSY) in the hyperpolarized Carbon-13 field.
This is significant, where cell both preclinical animal studies of hyperpolarized
substrates?1.6976123 35 well as the first-in-man clinical trial??, have focused heavily on the

exchange of hyperpolarized metabolites as markers of disease.
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6.1.3 Motivation

MRS of hyperpolarized substrates is a powerful tool for investigating tissue metabolism and
kinetics in vivo’”-124, In addition to detecting increased conversion of pyruvate-to-lactate, Kpr_4c,
in tumors using MAD-STEAM, we recently showed that the backwards reaction of lactate-to-
pyruvate, K;4c_.pyr, Was significantly smaller in tumors compared to normal tissue with a
transgenic model of prostate cancer?5, consistent with a decreased LDHB expression and increased
MCT4 and LDHA expression. However, the K| 4., p, as measured previously can be corrupted by
alanine-to-pyruvate and hydrate-to-pyruvate conversion, warranting a method to separate these

signals.

In metabolism, flux and exchange often occur in both directions examples include reductive
carboxylation12>126, lipogenesis and its regulation of citrate and o-ketoglutarate!??, glutamine
addiction?2-50.87.128  gluconeogenesis, and the isoenzyme composition of LDH. Detection of these
pathways have great diagnostic and biomedical research potential. For instance, the directionality
of reactions within the citric acid cycle has become an area of increased interest as reductive
carboxylation has been shown to support tumor growth!25. However, the signal from
hyperpolarized experiments reports on only the bulk spin-exchange and cannot differentiate

concomitant spin-exchange.

In this work a simple Ultra Fast method to acquire and reconstruct hyperpolarized 2D EXchange
SpectroscopY (UF-EXSY) dynamically is developed. This new approach could provide improved
specificity to cancer metabolism, provide directionality of metabolic pathways, and shed light

on exchange and flux of hyperpolarized substrates.
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6.2 Theory

6.2.1 Acquisition

Conventional Dynamic EXSY requires the third RF pulse to be 90° necessitating renewable
longitudinal magnetization not available in hyperpolarized substrates and many repetitions to
obtain the entire indirect spectral direction (Figure 6.1a). The dynamic UF-EXSY pulse sequence is
rapid and does not require renewable longitudinal magnetization making it ideal for
hyperpolarized substrates (Figure 6.1b). Key features include the symmetric slice selection
gradient played with the first 90° RF pulse, gradients blips, which rephrase echoes sequentially,
and a small flip angle, which allows for dynamic acquisition of 2D EXSY spectra. This data can be
used to measure build up curves for multiple measured signal intensities that can be fit to an

exchange model to extract kinetic rates of interconversion (Figure 6.1c,d).
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Figure 6.1: (a) Conventional Dynamic EXchange SpectroscopY (EXSY) requires the third RF pulse to be 90°
necessitating renewable longitudinal magnetization not available in hyperpolarized substrates and many
repetitions to obtain the entire indirect spectral direction. (b) Dynamic UltraFast EXSY (UF-EXSY) pulse sequence is
rapid and does not require renewable longitudinal magnetization making it ideal for hyperpolarized substrates.
Data was acquired with Neao = 3, Noy = 5-20, slab selection in Az = 3mm, At = 8.575ms, 20° flip, 1-2sec temporal
resolution, 64 spectral points, and 4006Hz spectral bandwidth. (¢) Schematic of dynamic 2D exchange spectra and
(d) simulated build up curves from four measured signal intensities in (c) which can be fit to an exchange model to
extract kinetic rates of interconversion. Arrows denote time points shown in 2D spectra (c).
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6.2.2 Reconstruction

Time Domain 2D Spectra
1
B—A !
) . BB
T - [ J
9
£ ‘g 2D Fourier g :
3 E Transform ‘g :
> [ S 1
E |
e AA | A—B
o - nnn oo
]
1
Th; fa fs
Direct f Direct
© 1
9 I
Q - B—A L. BB
€ = ®
£ < e o
» 1
S
(7] i !
-] Y] 2 1
::, % & g :
> & han !
Q 1
2 AA | A—>B
T 5 [ [ MR N o
: - e
Q 1
2 I
Th: .fA fB
Direct fDirect
1D Fourier
Transforms Least Squares
X=A"b
g o J\ A
sl ° \V4
e T T T
= 1e [ 2 () 3e L]
s A A Setup 2D Spectr:
will ©
c o Real
O|If T o Ve
olff 2+ . ° o [ ) °
[} e
M| Threshold Imaginary .
Real
Ve L )
0 J\x A Y
) _~\ b
Imaginary
f s
A fDirect

Figure 6.2: Schematic of Ultra Fast EXchange SpectroscopY (UF-EXSY) reconstruction. Using conventional EXSY
the 2D spectra can is reconstructed from the magnitude of the 1D spectrum but requires many T repetitions.
Using the UF-EXSY reconstruction the entire 2D spectra can be reconstructed from a few echoes with high
spectral resolution in the indirect frequency direction equal to that of the direct frequency direction. For each
frequency, f;, with a signal greater than the noise threshold in the direct frequency direction the cross peaks are
calculated using Equation 6.1 or with linear least squares based on the phase accrual and frequency difference
between the Ap = 2mAf1 between every other frequency with a signal also greater than the noise threshold.
By using the real and imaginary spectra rather than the magnitude only, the 2D spectra can be reconstructed
from a single acquisition. Multiple 7 times are used to correct for concomitant exchange pathways at a single
resonance and for 7; where Ap (Af) = 0 and the number of echoes is greater than the number of concomitant
exchange pathways at a single resonance.
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Using conventional EXSY reconstruction from the magnitude of the data requires many t
repetitions to reconstruct the 2D spectra. By choosing the T repetitions wisely, only a few
repetitions can be used to acquire the entire 2D spectra. Using the UF-EXSY reconstruction, shown
in Figure 6.2, the entire 2D spectra can be reconstructed from only a few echoes with high spectral

resolution in the indirect frequency direction equal to that of the direct frequency direction.

The reconstruction relies on the phase accrual, Ap = 2mAf7, of exchanging spins with a resonance
frequency difference, Af, at each echo time, TE = 27, which has been used to directly observe flux
and exchange of a single reaction in real-time!#. For each frequency, f; with a signal greater than

the noise threshold in the direct frequency direction the cross peaks are calculated using the

following equation:
Imag{s(fl,fz)}
[maguelulz)) fi # f2
__ ) sin@r(fi—f2)7)
S(fl) fZ) = RefS _ Imag{S(fi.f2)} _ (61)
e{S(fi, o)} = B h=f

tan(2n(fi—fPv)’

By using the real and imagery spectra rather than the magnitude only, the 2D spectra can be
reconstructed from a single echo utilizing the phase accrual, A¢p = 2mAft, between all other
frequencies with a signal greater than the noise threshold. However, multiple 7 times need to be
used to correct for concomitant exchange pathways at a single resonance with the acquisition of
multiple echoes where A varies from Af between the different exchange pathways (Figure
6.3e,f). Additionally it is required that for at least one t; Ap(Af) # 0,m, 2, ... . As the number of t;
increases, the accuracy will increase. To ensure accuracy at least onet; is required for each
concomitant spin exchange. For instance in the renal cell carcinoma models, UMRC6 and UOK262,

there are three concomitant spin exchanges at pyruvate’s resonance, namely lactate-to-pyruvate,
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hydrate-to-pyruvate, and alanine-to-pyruvate. Because alanine SNR is below the noise threshold,

we only need two 7; to accurately reconstruct the data shown in Figure 6.3.
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Figure 6.3: Schematic of phase dependence of the (a) first and (b) second echo and their
corresponding raw dynamic imaginary spectra from UOK262 renal cell carcinoma cell-
filled alginate microspheres (TR=1s).  Alternate phase schemes could be used to
maximize SNR in imaginary spectra (specifically to increase hydrate SNR). Up to an 83%
increase in SNR can be recovered in the 2D spectra after reconstruction.

Of course, each t; repetition will result in a loss in SNR. However, much of the original SNR can be

recovered as is function of 7;where the SNR of a cross peak is defined by

SNR(Af) = = (et ) (6.2)

no \sin(Ap(r1) = sin(Ap(zz)) = sin(Ap(tn))
where n is the number of 7;. As stated previously, to detect a cross peak it is necessary that for at

least one echo, Ag is between 0 and +m with sufficient SNR.

More generally, the entire spectra can be described by the following equations:
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cross peaks: X = A"la (6.3)

diagonal: Y =b—3};XB (6.4)
where
[sin (P171)  sin (@y72) - Im{S(z,)}
A= |sin (¢271) sin (@2:2) a = |Im{S(t;)} (6.5)
[COS (@1,11)  €OS (P12)
B = [cos (¢271) ¢€0S (P212) b = Re{S(t1)} + Re{S(t)} + - (6).
Such that the 2D reconstructed spectra can be described by the following equation:
2D Spectra = X + diag(Y) (6.7)
where
New{S(f; = fo)}
X(f}) = |New{S(f; = 1)} (6.8)
and '
Y(fi) = Orig{S(f)} (6.9)

For more complex spectra than shown in this work noise amplification occurring near each
crossing, can be reduced with Tikhonov Regularization,
min IAX — a||? + |ITX]|? (6.10)

such that the cross peaks can be found using the following least square operation

_[AT e
x=1yl Lol (6.11)
Alternatively, SNR can be optimized and error due to noise amplification can be reduced by

choosing t based on a priori knowledge of cross peak locations. The UF-EXSY reconstruction

workflow is summarized in Figure 6.4.
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Figure 6.4: Workflow of Ultrafast EXchange SpectroscopY (UF-EXSY) reconstruction.

6.3 Methods

6.3.1 NMR Experiments

These studies were conducted on a 14.1T wide-bore microimaging spectrometer equipped with
100G/cm gradients and a 10mm broadband probe (Agilent Technologies). The sequence shown in
Figure 1b was acquired with At = 8.575ms, tphase = 52 uS, Gphase = 5 G/cm, teush = 10 ms, Gerush = 15
G/cm, Necno = 3, TM = 1-2 sec temporal resolution, Nty= 5-20 repetitions, Az = 3mm, 20° flip, 64
spectral points, and 4006Hz bandwidth. Noise was subtracted to remove cross peak artifacts. T
signal loss between echoes was small and considered negligible because of the long Tzs of the
hyperpolarized'2°. However, in the case of short Tzs, signal loss between echoes be can corrected

in the reconstruction.
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6.3.2 Polarization of [1-13C] Pyruvate and 13C-Urea

[1-13C]-Pyruvate mixed with the trityl radical 0X063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yljmethyl sodium salt, Oxford
Instruments, Abingdon UK) was hyperpolarized using conventional DNP methods and a
HyperSense DNP polarizer (Oxford Instruments, Abingdon, UK) operating at 3.3T and a
temperature of 1.3K. For validations studies, [1-13C]-Pyruvate was copolarized?> with 13C-
urea mixed with the trityl radical 0X063. All samples were dissolved to produce solutions
with 80mM pyruvate and 80mM urea and a biologically appropriate pH (~7.4) with

TRIS/NaOH/EDTA dissolution media.

6.3.3 Cell Studies

UMRCE cells are representative of localized human clear cell RCC'¢, and were a gift from Dr.
Bart Grossman (MD Anderson Cancer Center, Houston, TX; obtained January, 2010;
authenticated using STR profiling, October 2012). UOK262 cells are derived from a
metastasis of the highly aggressive hereditary leiomyomatosis RCC (HLRCC), which is
characterized by mutation of the TCA cycle enzyme fumarate hydratasel’”. UOK262 cells
were a gift from Dr. W. Marston Linehan (National Cancer Institute, Bethesda, MD; obtained
May, 2010; authenticated using STR profiling, October 2012). All cells were grown in
Dulbeco's Modified Eagle's Medium (DMEM) with 4.5 g/L glucose. The cells were passaged
serially and were used for assays and magnetic resonance experiments between passages 2
to 10 and at 60% to 80% confluency. These two cell lines were chosen because of their
differential expression of the monocarboxylate transporter 4 (MCT4), which regulates

lactate efflux out of the cell and similar lactate dehydrogenase (LDH) activity®®.
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6.3.4 Hyperpolarized 13C magnetic resonance bioreactor experiment

Cells were electrostatically encapsulated into 2.5% w/v alginate microspheres as
previously described®® and then loaded into a magnetic resonance-compatible bioreactor.
Approximately 800 pL of microspheres were perfused in the bioreactor with DMEM H-21
media at a flow rate of 0.5 mL/min. During acquisition the flow was turned off during
acquisition. The media was kept at 37°C with water-jacketed perfusion lines and was
maintained at 95% air/5% CO: via gas exchanger. All bioreactor studies were conducted on
the 14T Varian Inova NMR microimaging system (Agilent Technologies) with a 10 mm,

triple-tune, direct-detect, broadband probe at 37°C.

6.3.5 MCT4 Inhibition

The inhibitor 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS) was chosen based on its
specificity for MCT4¢%2. UF-EXSY experiments with hyperpolarized 13Ci-Pyruvate were
acquired before and 40 minutes after the administration of 1mM DIDS in a UOK262 cell line

in a bioreactor.

6.3.6 In Vivo

To show feasibility a UOK262 cell line was implanted in the renal capsule of Rag2
immunocompromised mouse. 24 pL of 13C;-Pyruvate co-polarized with 55 pL of 13C-Urea.
80mM HP 13C;-Pyruvate and 13C-Urea buffered solution (pH ~ 7.4) was injected over 15
seconds. Acquisition started at 20 seconds after the start of injection. 8mm x 8mm x 8mm
voxels were acquired in both the normal and abnormal kidney. The pulse sequence was
adapted to be able to select multiple voxels with the addition of slice selection gradients

played during the second and third RF pulses (shown in Figure 6.7a).
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6.4 Results

6.4.1 Validation

Using MAD-STEAM single-voxel acquisition and reconstruction, real-time conversion and
exchange can be directly observed for a pathway specified by the echo time (TE)!4. Similarly, we
utilize the phase accrual from a set of paired 90° STEAM preparation pulses and a dephasing
gradient to observe multiple exchange pathways rapidly and simultaneously all within a single

acquisition as shown in Figure 6.5.
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Figure 6.5: (a) dynamic EXSY spectra of pyruvate hydration co-polarized with 13C-Urea, (b) 2D sum spectra and
(c) time course of pyruvate-lactate and pyruvate-hydrate from forward and reverse reactions in MR-compatible
bioreactor using UOK262 renal cell carcinoma cell-filled alginate microspheres.
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The method was validated with a Bloch simulator (SpinBench, Heartvista, Palo Alto, CA) and with
hyperpolarized phantom experiments where the hydration of pyruvate was observed dynamically
(Figure 6.5a). We have also applied this technique to cell studies where both forward and
backward exchange of pyruvate-lactate and pyruvate-hydrate was resolved and acquired

dynamically (Figure 6.5 b and c).

This technique reconstructs 2D EXSY spectra from 1D spectra based on phase accrual during each
echo time. This acquisition has similarities to previous ultrafast 2D NMR techniques with the major
difference being that simple STEAM encoding of discrete slices is used instead of frequency-sweep
excitation pulses!?2. The reconstruction is advantageous as it can be used to yield high spectral
resolution in the indirect direction without parsing the signal for the indirect direction and is thus

more sensitive to low SNR cross peaks.

6.4.3 Cell Studies of Flux and Transport

The HP flux of lactate-to-pyruvate in the aggressive, metastatic UOK262 cell line was less than in
the less aggressive UMRC6 cell line supporting the hypothesis that lactate efflux reduces the
conversion of lactate-to-pyruvate, Ky ¢, py- MCT4 inhibition with the DIDIS inhibitor in UOK262
cell line resulting in a statistically significant decrease (95% Confidence Interval, paired students t-
test) in the, Kpyr_1qc , cOnversion of lactate-to-pyruvate conversion as shown in Figure 6.6. This
new method revels high MCT4, which are known mutations in aggressive cancers via

modulated exchange of lactate and pyruvate.

113



45 0
A HP Pyr to LacFlux B
07 ,,. 2
< 9]
S
%06 * K20 &’ BUMRC6
E mUMRCE =)
8 s o BUOK262
& %9 L a BUOK262 =
] g 15 g 25
=
g o4 ;5<- 220
< =5 =
=03 o 10 Z s
3 S S
t02 g * E 10
& o 5 << s
> 01 o= °
g o
o I K v
UMRC6 UOK262 UOK262 + DIDS LDH-A MCT1 MCT4 LDH-B w m max
HP Lac to Pyr Flux C Eyruvate, Pyruvate

N
by

c, N
_* OH OH
*

[e]
5
1 b4 o
Lactate
MCT4

E

& os

<

g Lactate
£ 02 NADH NAD+ o o NADH NAD+ o

& sc, LOH C, C, c, LDH °C,
: W&}H NLPANY K NV &) W&H NCPAN
S04 o OH ¢ OH o} OH H
N

UMRC6 UOK262 UOK262 + DIDS
High MCT4 Low MCT4

Figure 6.6: (a) Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of Hyperpolarized Substrates
detects high MCT4 in metastatic renal cell carcinomas and revels decreased conversion of lactate back to
pyruvate with the efflux of lactate out of the cell. (c) Analysis of relevant enzyme expression/activity and
transporter expression in the two cell lines (Adapted from Keshari et al. 2013). LDH activity as measured
by Km (umol pyruvate/106 cells) and Vmax (umol NADH/s/106 cells) in the two cell lines (N = 6 each)
mRNA expression of LDHA and monocarboxylate transporters 1 and 4 (MCT1 and MCT4), relative to
internal (-actin expression, in the two cell lines (N = 6 each).. All values are reported as mean * SE. *,
significant difference (p < 0.05). (c) Schematic of pyruvate and lactate exchange with high and low MCT4.
Pie charts indicate the percentage of the label that is generated after encoding, “New”, shown in blue and
the percentage that were present during encoding, “original” shown in black.

In the normalized (Total Carbon) dynamic time curves, decreased pyruvate from lactate was
observed in the UOK262 cell line compared to the UMRC6 cell line and UOK262 cell line with DIDS,
a MCT#4 inhibitor. The signal of pyruvate from lactate was not different between the UMRC6 cell
line and the UOK262 cell line with DIDS. As it expected the the UMRC6 cell line, which has a
reduced LDH-A to LDH-B ratio in conjunction with reduced low MCT4, had both high pyruvate

from lactate signal and a low lactate signal not going through exchange (Figure 6.7).
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Figure 6.7: Dynamic time course from 2DEXSY spectra of (a) cross-peaks (spins that have gone through
exchange) and (b) diagonals (spins that have not gone through exchange). Data was normalized to the
total carbon signal excluding Urea.

6.4.5 In vivo Feasibility
Finally, the sequence was adapted to acquire multiple voxels (Figure 6.8a). Feasibility of the
technique was shown in vivo in the comparison of a normal kidney and a kidney with implanted

UOK262 cell line under the renal capsule (Figure 6.8b-d).
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Figure 6.8: In vivo feasibility (a) Multivoxel pulse sequence for in vivo studies. (b) Location of voxels on
T2W anatomical image. One voxel was acquired in a UOK262 implanted tumor and the other was acquired
in the contralateral normal kidney. Both voxels were acquired within a single acquisition. (¢) Dynamic 2D
spectra data and (d) Dynamic traces with corresponding fitted kinetic parameters show contrast between

kidneys.

6. 5 Discussion & Conclusions

In this work, we present a new UltraFast method for acquiring dynamic 2D EXchange
SpectroscopY (UF-EXSY) within a single acquisition using principles of MAD-STEAM!4. The
presented dynamic UF-EXSY pulse sequence is rapid and does not require renewable longitudinal
magnetization making it ideal for hyperpolarized substrates. Overcoming the three main
challenges associated with 2D NMR of hyperpolarized substrates, which are 2D NMR experiments

are time intensive, longitudinal magnetization is not renewable, and the signal decays quickly

requiring fast acquisition.
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The simple reconstruction based of phase accrual makes it ideal for dynamic detection of many
exchange pathways. This new approach could provide improved specificity to cancer metabolism
in particular providing directionality of metabolic pathways. Outside of the field of oncology, the
potential applications of this technique are broad including applications such as solvent hydrogen-
exchange, protein interactions, protein folding, and conformational changes such as cis-trans

isomerizations and domain movements as wells as to investigate multistep chemical reactions.

Here we applied this technique in cell studies where both forward and backward exchange of
pyruvate-lactate and pyruvate-hydrate were resolved in time. The technique provided insights
on the effect of transporters on exchange. Moreover, this work showed the potential using
bidirectional exchange as a marker of MCT4, which h has been shown to be indicative of
aggressive disease in a number of cancers®8120.130. More generally, this work highlights the
importance of investigating bidirectional exchange, which could have applications including
the investigation of directionality in gluconeogenesis, effect of pyruvate kinase isoenzymes,
and reductive carboxylation. It can be used with other carbon-13 hyperpolarized substrates
such as [2-13C]-Pyruvate or 13C- a-Ketoglutarate. Or more broadly the utilization of phase in 2D
NMR acquistions could be adapted to quickly acquire sparse 2D spectra for other nuclei such

as 1H, 15N, 31P, and 129Xe.

117



Chapter 7. Hyperpolarized 13C-pyruvate imaging
reveals metabolic differences between
oncogene induced signaling pathways

Tumor cells have an altered metabolic phenotype characterized by increased utilization of
glutamine as a fuel source>%49, dysfunction metabolism of citric acid cycle metabolites131,
and diminished oxidative phosphorylation132133, A single oncogene can directly target
many enzymes associated with metabolism causing dramatic reprogramming of the
metabolic network3240.133.25 The goal of this project was to detect oncogene activation with
hyperpolarized !3C-pyruvate magnetic resonance spectroscopic imaging (MRSI) via
oncogene-induced metabolic reprogramming in separate switchable models*® of Myc-

driven versus Ras-driven liver cancer.

These results demonstrate that metabolic imaging can be used to differentiate oncogene
induced metabolic signaling pathways. Specifically this proof-of-concept study detected
changes in hyperpolarized pyruvate-to-alanine conversions as a result of alternate
utilization of cofactors a-ketoglutarate and glutamate and ultimately glutamine metabolism
in c-myc versus h-ras driven liver tumors. We show for the first time that a hyperpolarized
carbon-13 labeled substrate can be used as metabolic imaging agent for non-invasive, in
vivo monitoring of the presence of h-Ras and more generally for the differentiation of

oncogenes via metabolic reprogramming.
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7.1 Background

7.1.1 Motivation

Hepatocellular carcinoma (HCC), the most frequent form of primary liver cancer, is the
third most common cause of cancer mortality worldwide34. In Europe, North America and
Australia, the incidence of HCC has doubled since 1983 even though the prevalence of
hepatitis B (HBV) infection has been declining?3>. The median survival of HCC is short, less
than 12 months from diagnosis, resulting from both late diagnosis and lack of effective
treatments’3. In most cases, by the time the diagnosis is made, the patient is beyond the
stage of resection with only 10-20% of HCCs are resectable!3’. Of those patients who are
eligible for resection only 10-20% have a 5-year recurrence-free survivall38, Therefore,
most HCC patients will eventually develop advanced disease. Clinical trials cannot
recommend a systemic therapy that can be considered the standard for all patients with

advanced HCC!3%. However, targeted therapies have shown promise.

7.1.2 Targeting Oncogene-Induced Signaling Pathways

Sorafenib, for instance, targets the RAF kinase in the MAPK/ERK pathway, and is the first
FDA approved effective systemic therapy for liver cancer*¢. More generally, in many
cancers, a defect in the MAPK/ERK pathway leads to uncontrolled growth140. About 25% of
all human cancers have a defect in this pathway!41. There is a clear need to identify patients
who would be successfully treated with compounds that can inhibit steps in the MAP/ERK
pathway. Here we study upregulation of h-Ras which activates the protein kinase activity of
RAF kinase followed by RAF kinase phosphorylating and activating MEK!41-143, The ability
142-145141-144111-114 yarp oo

to detect Ras has important implications outside of liver cancer

Ras, a key player in the MAPK/ERK pathway, is one of the most common oncogenes in
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human cancers. Moreover, this work has implications outside of liver cancer, because
Soraenib has antitumor activity against a variety of tumor types including renal cell

carcinomas!46-148 hepatocellular caricnomas4?, and thyroid cancer*’.

Similarly, CDK inhibitors which target cell-cycle progression, a hallmark of Myc
upregulation, have been successfully used to treat c-Myc driven models of breast cancer19,
and more generally selective CDK inhibition may provide therapeutic benefit against
certain human neoplasias which require specific interphase CDKs for proliferation!>1. CDK

inhibitors have been used to treat a variety of neoplasias!°2.

7.1.3 Anatomical Imaging and Treatment Planning

The non-invasive identification of patients who would benefit from targeted therapies
using conventional imaging methods such as magnetic resonance imaging (MRI) or
computerized axial tomography (CT) remains a challenge. 'TH MRI and CT are mostly
limited to the detection of gross anatomical changes, which occur after changes in
metabolism. Moreover, in a single patient there can be great heterogeneity within a tumor.
Using MRI and CT to guide biopsy location has had great success. However, metabolic
imaging would add additional beneficial information revealing particularly aggressive sites
within the tumor that might not be detectable with conventional imaging techniques, thus
guiding biopsy locations. Hyperpolarized 13C MR in conjunction with DNP, would allow for
the imaging of aberrant metabolism such as the Warburg effect?. In the present study we
have further investigated the potential utility of 13C MRSI using HP [1-13C] pyruvate for

detecting metabolic reprogramming after oncogene activation.
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7.1.4 Metabolic Reprogramming and Oncogene Activation

A single oncogene can directly target many enzymes associated with metabolism causing
dramatic reprogramming of the metabolic network. Oncogenes alter the utilization of
glutamine and glucose, the two main fuel sources for tumors, which provide precursors for
nucleic acids, proteins and lipids, the three classes of macromolecules needed to
proliferate*?. Glutamine metabolism also supplements the pyruvate pool, which is
predominantly formed from glucose?>. As a consequence of the rapid metabolism of these
two nutrients, lactate, alanine and NH4+* are secreted by the tumor#0. Pyruvate sits at a
pivotal point in that its metabolism is a result of interactions from both glutamine
metabolism and glucose metabolism (catabolism and anabolism). We sought to exploit
metabolic reprogramming, specifically altered utilization of glutamine, to detect oncogene

activation.

The ability to detect activation of an oncogene non-invasively has clinical implications as it
could be used to identify patients that would benefit most from a targeted therapy. In
hepatocellular carcinoma (HCC) specifically, the detection of the upregulation of the Ras
oncogene is clinically significant because Ras is associated with a poorer prognosis and
could be effectively treated with Sorefinib therapy!4>. This novel application of HP 13C MR
to detect oncogene activation could be used to predict prognosis, for more robust image-

guided biopsies, and to guide treatment decisions.
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7.2 Theory

7.2.1 Compressed Sensing

Compressed Sensing is a method to provide accelerated MRI acquisitions to enable
improved spatial coverage and or resolution within a given time period>3. Theoretically,
compressed sensing will perfectly reconstruct a sparse data sets. Then, with very high
probability, the original signal is recoverable with high accuracy with a convex

minimization.

To apply compressed sensing three criteria must be met: (1) the signal must be sparse in
some domain, although it does not have to be in the image domain, (2) the aliasing artifacts
must be incoherent or noise-like, and (3) a nonlinear reconstruction must be applied that
reinforces sparsity of the object or image domain. To meet criterion (2), random sampling
in k-space can be utilized to produce incoherent aliasing in image space and improving

sparsity123.

7.2.2 Compressed Sensing and Hyperpolarized Carbon-13 MR Spectroscopy

Spatial resolution in hyperpolarized carbon-13 experiments is limited by short acquisition
times and in ability to signal average. Logically, the implementation of compressed sensing
in this field has had a number of benefits including improved spatial resolution, increased

SNR, and implementation of 3D dynamic spectroscopic pulse sequences.

The most obvious implementation is to undersample in ky and k,. The typical
hyperpolarized 13C scan is 16x8. Therefore for an increase in speed by a factor of 2, 154 only

8x8 data points can be acquired!55. However, it has been shown that small sample sizes do
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not provide enough sparsity in in wavelet simulations!>4155, Fortunately, the spectral

domain sampled in hyperpolarized 13C experiments is inherently sparse.

Alternatively, an improved approach would utilize the sparsity in the spectral domain by
undersampling in the kr dimension. Implementation of undersampling in the time domain
has been previously described by Hu et al. 2010. Compressed sensing was combined with
another rapid imaging technique, echo-planar spectroscopic acquisition, whereby krand kx
where both undersampled. Unlike kyand kj, kr = t making it more challenging to designa
pulse sequence that randomly undersamples k;. By alternating between ky and ks in a
flyback acquisition undersampling in both the spectral and spatial domain can be

achieved?53.

7.3 Methods

7.3.1 Hyperpolarization of [1-13C |-Pyruvate and 13C -Urea

[1-13C]-Pyruvate mixed with the trityl radical 0X063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yljmethyl sodium salt, Oxford
Instruments, Abingdon UK) was hyperpolarized* using conventional dynamic nuclear
polarization (DNP) methods and a HyperSense DNP polarizer (Oxford Instruments,
Abingdon, UK) operating at 3.3T and a temperature of 1.3K. All samples were dissolved to
produce solutions with 80mM pyruvate and a biologically appropriate pH (~7.4) with

TRIS/NaOH/EDTA dissolution media.
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7.3.2 Animal Experiments

All animal studies were performed under a protocol approved by the UCSF Institutional
Animal Care and Utilization Committee. Mice were anesthetized with 1-1.5% isoflurane and
placed on a pad heated to 37°C during the MR experiment. During each study, 350 pL of the
hyperpolarized [1-13C]-pyruvate solution was injected into the mouse over a 12s period,
followed by a 0.15 mL normal saline flush. To reduce artifacts from the inflow of pyruvate,
data acquisition was started 20s following the injection of pyruvate. Axial, coronal, and

sagittal Tz-weighted fast spin-echo (FSE) images were acquired as anatomical references.

The oncogene’s expression was regulated via the tetracycline operator (tet-0). Specifically,
the tetracycline-controlled transactivator protein (tTA) regulates the expression of either
the c-Myc or h-Ras protein and is regulated with doxycycline (dox) as shown in Figure 7.1a.
Two switchable oncogene-driven models were studied and compared to the control (Figure

7.1b).

A

Vo TET-0-Oncogene LAP-TTA B TET-0-MYC LAP-TTA
G [TRE] Oncogene | x [LAP I;m;activatoq ' ‘ Myc: | TRE x | LAP | Tet-Transactivator |

z TET-0-RAS LAP-TTA

Ras: m x [ LAP | Tet-Transactivator |
/\ ——> ‘,—x—» LAP-TTA
TRE [[FRE| Oncogene | [FRE] Oncogene | Control: [LAP | Tet-Transactivator|

Figure 7.1: Schematic description of models (a) Switchable oncogene-driven model (b) MYC, RAS, and
Control models used in this study.
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7.3.3 Acquisition and Reconstruction

All experiments were performed on a General Electric 3T (Waukesha, WI) MRI scanner
equipped with 40 mT/m, 150 mT/m/ms gradients, and a broadband RF amplifier. The RF
coil was a custom built, dual-tuned H/13C transmit/ receive design used previously®>. T2-
weighted proton fast spin-echo (FSE) images were acquired and used as the anatomical
reference on which 13C spectra were overlaid and co-registered. The axial FSE imaging
parameters were as follows: FOV = 8 cm, 192 x 192 matrix, 2 mm slice thickness, and NEX =
6. Carbon-13 hyperpolarized spectra were acquired as a volumetric grid with a compressed
sensing 3D-MRSI sequencel>>. Acquisition parameters were as follows: variable flip angle,
TE = 140 ms, TR = 215 ms, 16 x 16 in-plane phase encodes, center out phase encode order,
2.5 mm x 2.5 mm in-plane resolution, flyback readout in z with 16 points and 5.4 mm

resolution, 581 Hz spectral bandwidth, and 9.8 Hz spectral resolution.

The 13C 3D-MRSI scan was started 30 s after injection of the hyperpolarized 13C-pyruvate
and lasted 16 s. To quantify metabolism in the 13C spectra, the areas under the 13C-lactate,
13C-pyruvate-hydrate, 13C-alanine, and 13C-pyruvate resonances (total carbon-13 defined as
the sum of all four) in magnitude spectra were calculated. The ratios lactate area to total
carbon area (Lac/tCar) and alanine area to total carbon (Ala/tCar) were computed for each
voxel and then averaged over all voxels of interest for each mouse to derive the final
lac/tCar and ala/tCar values for statistical analysis. To further compare the myc and ras
voxels displaying the Warburg effect, high Lactate regions within the tumor were defined

and the ala/tCar values were determined for statistical analysis.
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7.3.4 Statistical Analysis

For the 13C MRSI statistical analysis, experimental data were divided into three groups, Tet-
0-RAS/LAP-tTA, Tet-0o-MYC/LAP-tTA, and control (LAP-tTA). Both the Myc and Ras groups
were imaged at baseline (Myc or Ras off [n = 6]) and at progression (Myc or Ras on [n = 6],
when tumor was clearly visible on a T;W anatomical imaging scan). These results were
compared to normal liver (Tet transactivator control mice [n = 6]). Groups were compared

with unpaired, two-sided student’s t-test.

7.4 Results

7.4.1 Molecular Characterization of Models

Molecular characterization showed that Myc and Ras were significantly upregulated in the
animals studied (Figure 7.2b). Histology and increased alpha-fetoprotein (AFP), a marker
for hepatocellular carcinoma (HCC), confirmed the progression (Figure 7.2a, 7.2b). Kaplan-
Meier survival curves showed decreased survival in both oncogene-driven models as
compared to controls as well as a shorter survival for the ras-driven compared to the myc-
driven model (Figure 7.2c). Furthermore, differential mRNA expression in liver tumors
driven by Myc and Ras have gene signatures derived from transgenic models cluster tumor
and non-tumor patient samples (p<0.0001) demonstrating striking segregation of normal
and tumor samples suggesting the models share gene expression chances with human liver
cancers, and are thus a relevant tool to study metabolic changes associated with

tumorigenesis (Figure 7.2d).
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Figure 7.2: Molecular characterization of the tumor models. (a) Histology, (b) Verification of
expression of oncogene activation, (c) Kaplan-Meier survival curves, and (d) Hierarchical clustering
of human data with transgenic models.
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7.4.2 Hyperpolarized 13C-pyruvate imaging reveals metabolic differences between
oncogene induced signaling pathways

HP carbon-13 conversion of pyruvate to alanine reveals metabolic differences between
oncogene induced signaling pathways as shown in Figure 7.3. In the h-Ras driven model,
the alanine-to-total carbon remained significantly higher at progression unlike the c-myc
driven model (Figure 7.3b) indicative of an alternate signaling pathway shown in Figure

7.3c.
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Figure 7.3: (a) Lactate (Lac/tCar) and alanine (Ala/tCar) over total carbon overlays and sample voxels
from switchable transgenic models of Myc and Ras driven liver cancer and Control (LT2) showed
increased conversion of [1-13C]-Pyruvate to [1-13C]-Alanine. (b) Alanine-to-Total Carbon in the Ras
driven model of liver cancer was significantly higher than in the Myc driven model or the Control, LT2
(*indicates p-value <0.05). (c) Schematic of conversion of Hyperpolarized [1-13C]-Pyruvate. The Ras
driven model favors conversion of pyruvate to alanine (shown in red) which was confirmed by (d)
inhibition of the oncogene h-Ras which reduced Lac/tCar (indicative of decreased Warburg effect) and
reduced Ala/tCar.
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Since the time to progression varied significantly between the Myc and Ras models and even within
the group. Only tumors greater than 1lcm were included and only the region abnormal by
anatomical imaging was included. We sought to investigate if the cause of increased alanine in the
Ras-driven tumors was in fact due to altered signaling pathways and not other factors such as
necrosis. Regions-of-interest that exhibited the Warburg effect in the Myc and Ras were compared
(Figure 7.4). Alanine-to-total carbon was statistically significant despite potential substrate

competition for the HP 13C-Pyruvate suggesting that the effect significant and is a result of altered

metabolism.
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Figure 7.4: Regions-of-interest that exhibited the Warburg effect showed increased conversion to
alanine. Comparison of alanine-to-total carbon in tumorigenic regions-of-interest (ROIs) defined by
high lactate-to-total carbon within the liver, abnormal ROI by a T,-weighted anatomical imaging and
regions with high lactate-to-pyruvate ratios.

Furthermore, inactivation of the signaling pathway led to a dramatic decrease of tumor relevant
metabolites in the h-Ras over-expression model as shown in Figure 7.3d with quantitative analysis
shown in Figure 7.5 which further demonstrated that increased alanine at progression is a result of

h-Ras activation.
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Figure 7.5: Analysis of inhibition of the oncogene h-Ras, which reduced Lac/Pyr (indicative of removal of the
Warburg effect). Reduced Lac/Pyr was used a marker of early regression. Ala/Pyr was also reduced with the
inhibition of the oncogene.

7.4.3 Increased Conversion of 13C-Pyruvate to 13C-Alanine in hRas is indicative of
alternate utilization co-factors a-Ketoglutarate and Glutamate

Enzymes most likely to be associated with increased pyruvate-to-alanine conversion such
as Gptl and Glud-1 were significantly upregulated. However, Gls-1 was significantly down
regulated in the h-Ras-driven tumors compared to the c-Myc-driven tumors (Figure 7.6a).
Other factors that could affect conversion such as MCT1 and MCT2, which are the primary
transporters for pyruvate’s entry into the cell, were not significantly different between the
models or control. MCT4, which drives lactate efflux out of the cell, was similarly
upregulated in both the Myc and Ras tumors (Figure 7.7c). Thus, the increased conversion
of 13C-Pyruvate to 13C-Alanine, which may report on the pool size!5¢ of the substrates and
cofactors in addition to enzymatic activity, is likely indicative of alternate utilization of

cofactors, a-ketoglutarate and glutamate.
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Figure 7.6: The Ras driven model favors conversion of pyruvate to alanine, which maybe due to (a) altered
oncogene-induced signaling pathway whereby (b) increased expression of Gpt-1/2 and Glud-1 coupled with (c)
decreased transport of glutamine into the cell via Slc1a5 and decreased conversion of glutamine into glutamate
via Gls in the Ras model in comparision with the myc model.

Meanwhile, genes associated with the PDH complex and PC were down-regulated in the h-
Ras model (Figure 7.7 and 7.8c) limiting pyruvate from entering the TCA cycle (Figure 7.8a).
Moreover, mRNA expression suggests that a number of genes associated with the
utilization of a-ketoglutarate were altered in the h-Ras model compared to the c-Myc
model including Slc5al which uptakes glutamine was upregulated in the c-Myc model only.
These results support a non-canonical glutamine pathway whereby a-ketoglutarate is

conserved in h-Ras in liver cancer!?8. These results also suggest the cause for alanine-to-
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total carbon remaining significantly high at progression in the h-Ras model unlike the c-

myc driven model is depicted in Figure 7.8a.
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Figure 7.7: Comparison of Myc and Ras signaling pathways in oncogene-driven models of liver cancer
found with Liquid Chromotography - Mass Spectrometry (LCMS) and mRNA expression. Red indicates
upregulation compared to control and blue indicates down-regulation compared to control. Cloud
indicates that metabolites is statistical different than control by LC-MS. Results suggests that the Ras
model has a reduced reliance of glutamine as a fuel source compared to the Myc model. In the Ras model,
pyruvate is not able to enter the TCA cycle as all of the genes associated with PC and PDK are down-
regulated leaving more pyruvate available to be converted to alanine in a hyperpolarized experiment.

Further topological analysis of HCC relevant pathways are summarized in Figure 7.7. There
are three important observations from this analysis, which support previous statements.
First, the results suggest that the h-Ras model has a reduced reliance of glutamine as a fuel
source compared to the c-Myc model. Secondly, the key difference associated with the
observed conversion of HP pyruvate-to-alanine between the h-Ras model and the control is
that pyruvate is not able to enter the TCA cycle in the Ras Model, where all of the genes
associated with PC and PDK are downregulated leaving more pyruvate available to be
converted to alanine in a hyperpolarized experiment. Thus, the h-Ras oncogene could be

detected via its unique alternate signaling pathway signature.
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Figure 7.8: Summary of Ras driven model altered signaling pathway which favors conversion of pyruvate to
alanine, whereby increased expression of Gpt-1/2 and Glud 1 coupled with (c) inhibition of pyruvate’s entry into
the TCA cycle increase conversion to alanine. (d) Moreover, decreased Agxt, an enzyme which converts
pyruvate-to-alanine in peroxisomes, is decreased in both Myc and Ras tumors. (b) Meanwhile, increased
conversion to alanine could be a result of altered utilization of the co-factors a-ketoglutarate (a-KG) and
glutamate (p-value = 0.007). This maybe driven by reduced reliance on glutamine as a fuel source as compared
to myc where the glutamine transport and glutamate production driven by Slc5al and Gls, respectively, are
downregulated (figure 7.6).

7.5 Discussion & Conclusions

The HP carbon-13 MR detected conversion of pyruvate-to-alanine revealed metabolic
differences between oncogene-induced signaling pathways. In the h-Ras driven liver cancer
model, [1-13C]-alanine remained high at progression indicative of an alternate utilization of

the co-factors glutamate and a-ketoglutarate.
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More generally, we show for the first time that HP MRSI can be used as metabolic imaging
agent for non-invasive, in vivo monitoring of the presence of an oncogene, h-Ras. This is a
novel application of HP MRSI to detect oncogene activation, which could be used to identify
patients that would benefit most from a targeted therapy, to predict prognosis, for more

robust image-guided biopsy, and to guide treatment decisions.
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8. Automated Kinetic Modeling of Perfusion and
Metabolism Based on Dynamic Hyperpolarized
Carbon-13 Data With Open-Source SIVIC

Software

Considerable attention has been dedicated to investigating the dynamics of real-time
exchange of  hyperpolarized signals to understand the underlying
pathophysiology?3.2429.85106,157-165 Derjvation of kinetics of exchange from a HP substrate
often requires a complex, multi-compartment model’684166, The results are prone to
misinterpretation and can be model-dependent’6.166, Moreover, as the technology moves
into the clinic, there is a clear need for standardization, simplification of complicated
workflows, and a format compatible with PACS. The present SIVIC open-source package
processes and quantifies dynamic HP spectroscopic data in two simple steps. In the first
step, the resonance of each metabolite is identified such that the program can produce a
time-series of images for each measured metabolite. These dynamic images represent the
time variation of the HP signals and are then processed to produce multiple parameters to
fully describe the pathophysiology including quantification of dynamics, perfusion, and
metabolic reaction rate kinetics. These can then be displayed readily in SIVIC, a free, open-

source software package.

8.1 Background

Magnetic resonance spectroscopy (MRS) of HP substrates is a powerful tool for
investigating tissue metabolism and kinetics in vivo20212324 In particular, HP [1-
BBC]pyruvate is extremely valuable for the study of cancer because the conversion of

pyruvate into lactate catalyzed via the lactate dehydrogenase (LDH) enzyme is highly
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elevated in tumor cells?6133, Real-time exchange of HP [1-13C]pyruvate to HP [1-13C]lactate
has shown great potential for the early diagnosis of tumor formation??, response to
therapy?3157.158 and progression in preclinical models of cancer192185157, Following these
promising preclinical studies, a pioneering first-in-man clinical trial using HP [1-
13C]pyruvate in prostate cancer patients was successfully completed¢’. Here we present a
free, open-source implementation of kinetic and perfusion models for processing dynamic

HP MRS data.

Considerable research effort has been dedicated to investigating the dynamics of real-time
exchange of  hyperpolarized signals to understand  the underlining
pathophysiology157576166,168169  Derjvation of reaction rate kinetics from a HP substrate
often requires complex, multi-compartmental models to describe dynamic data requiring a
complicated workflow1576, The results are prone to misinterpretation and model-
dependent. Moreover, as the technology moves into the clinic, there is a need for
standardization, simplification of complicated work-flows, and delivery of data to PACS.
The present open-source package processes and quantifies dynamic HP spectroscopic data
in a two-step scheme, shown in Figure 8.1. First each metabolite is quantified at each time
point to produce time series of maps. These dynamic images represent the time variation of
the HP signals that are then processed to produce multiple parameters to fully describe the
pathophysiology including quantification of dynamics, perfusion, and reaction rate kinetics.
The resulting model parameters can be represented as 3D maps which can be exported as

standard DICOM images.
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Figure 8.1: Two-step workflow for processing Hyperpolarized Spectroscopic data. First, spectral locations
of metabolites are defined in the SIVIC GUI. Then the command line tool is used to generate maps of
dynamics, perfusion, and metabolism.

8.2 Theory

8.2.1 Simplified Solver for Systems of Differential Equations

An equation of the form:
S M(t) = KM(2) (8.1)
can be more simply described in the form

M(t) = $(tIM(to) (8:2)

We define a matrix of exponential parameters, ¢(t) using the Laplace transform.

P(t) = EXt = [-1(sI — K)™1 (8.3)
Therefore any system of nonlinear differential equations of the form %M (t) = KM(t) can

be easily described with a simplified cost function. Using the symbolic toolbox in matlab,

we can solve for our cost function simply (script available in appendix).
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8.2.2 Metabolic Modeling
Hyperpolarized carbon-13 data can be described by the following system:

h’l’l r— Lac
Pyr ———— Lac
—

Tl,Pyr \L Jr Tl.Lac

Where Kp,r_qc describes the net flux of pyruvate to lactate during the mixing time. To

reduce the number of parameters and provide for a better conditioned system!5, we

assume that the backwards reaction, K 4..p,,, and pyruvate-to-alanine conversion,
Kpyr—aia, are negligible compared to the forward reaction. These assumptions are
reasonable as Kp,_, 4. reports on the net flux, Ki,.py, is typically at least an order of

magnitude lower than Kp,_,; 4. and Kpyr_ 414 is small outside of the liver.

The systems dynamics can be described by a simple two-site exchange model,

S M(t) = OM(t) (8.4)
where
KPyr—>Lac
M(t) = [ILJZ Zgg and 0 =|1/Topyr (8.5)
1/Tl,Lac

with the initial condition

(8.6)

[PyT(O) _ Pyr(thrPeak)
Lac(0)| — |Lac(tpyr pear)

In order to perform a linear least squares estimate of the parameters, Eqn. 8.4 can be

rewritten in terms of the unknown parameters.
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KPyr—>Lac

a [Pyr(0) [—Pyr(t) —Pyr(t) 0 ] 1
a = T
dt [Lac(O) Pyr(t) 0 —Lac(t) /Turpyr (8.7)
1/Tl,Lac
Such that for each measurement, we get an equation of the for,
B = A6 (8.8)
where
Pyr(t) —Pyr(t;) —Pyr(t,) 0
L | Lac(t) Pyr(t,) 0 —Lac(ty)
B = = : and A= : : : (8.9).
Pyr(tn) _Pyr(tn) _Pyr(tn) 0
Lac(ty,) Pyr(t,) 0 —Lac(t,)
The entries of B can be estimated using the following estimation:
d _ b(tiy1)-b(ti-1)
b)) =—"—"=" (8.10)

And the parameter matrix, 8, can be found using a linear least squares fit, 8 = B/A.
However, estimating three or more parameters with two curves can cause overfitting.
Often it is assumed that T;p,, = T; .4 Since they are in exchanging throughout the

experiment. Applying this assumption can improve Kp,,,_, .. estimates which are indicative

of the Warburg effect.
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K TRANS

Cblood(t)

Figure 8.2: (a) Two-site exchange and (b) Perfusion kinetic models for hyperpolarized carbon-13 MR
used in algorithm.

Alternatively, the kinetic model, % M(t) = KM(t), can also be solved with a nonlinear least

squares fit. The solution at each iteration is
ming|[Js — F(0)|3 (8.11).

Thus solving for the approximate normal equations:

J']s=-]'F (8.12).
The Jacobian matrix is defined as:
VF ()"
T
Jx) = |V () (8.13).
VFn(xk)T

Where the Jacobian is a vector based on the residuals, such that F(x) = %M () —K;M(t)a

the ith iteration of the parameter combinations. Similarly to the linear least squares % M(t)
can be approximated by

a _ m(tig1)-m(ti—q1)

Mt =— " —— (8.14).

The algorithm may converge slowly or not at all if the initial guess is far from the minimum
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or if the matrix J7J is ill-conditioned. In both linear and non-linear solving algorithms,
without correction for the bolus arrival and perfusion the metabolic kinetic model must

begin after the peak pyruvate signal and may have artifacts from perfusion.

8.2.3 Perfusion Modeling
Conventional ('H, thermal) perfusion data can be modeled!79%171 according to a single-

compartment model governed by the differential equation:

d EF

Ectissue (t) =EF Cblood (t) - V_TCtissue (t) (815)
Where Cy;s610 (t) is the tracer concentration in tissue (MR signal/mL) and Cp;,04(t) is the
arterial input function (MR signal/mL), while F is the tissue perfusion (mL/mL/s), E is the

extraction fraction of each agent (unitless), and V; is the distribution volume of each agent

(mL/mL). Perfusion curves can be fit by join nonlinear least squares to its solution,
EF
Ctissue (t) = (1 - vb)EF exp (_ V_T) ® Cblood (t) + v Cblood (t) (816)
which includes the blood volume v, (mL/mL). The extraction fraction, E, can be modeled as
a function of the vessel permeability surface (PS) product (mL/mL/s), by E = PS/(PS + F).

The gamma-variate arterial input function known to approximate the arterial

concentration curve for the injection procedure can be described by:
Chrooa(t = 0) = A,(t —t,)%exp (— %) (8.17).

This is typically measure in a major artery.

Alternatively, Eqn. 8.15 can be described by the following simplified model, which accounts

for the non-renewable T; signal decay of a hyperpolarized substrate:

d
E Ctissue (t) = _KTRANS Cblood (t) - k2 Ctissue (t) (818)

Where Kipgans describes the perfusion in both vascularity and leakiness of the vesels and
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k, is a combination of T; relaxation and the uptake of the tracer back into the vasculature,

112,113,168
Kep .

8.2.4 Combined Metabolic and Perfusion Modeling
Eqn. 8.18, which describes perfusion that is of, is now in the form Eqn. 8.1, which can be
used in the symbolic solver and then implemented in the command-line tool. Moreover,

this can be combined with Eqn. 8.4, which describes metabolism to get the following:

d —_— —_—

EM(t) = KipeeM(t) + Kper F(0) (8.19).
Where M (t) is a matrix containing the dynamic metabolic data of size m x t, metabolites x
time. K, is @ matrix of parameters that describes metabolism and K., describes the
perfusion of the input function into the tissue pyruvate pool. F(t) is an input function

which can be measured arterial input function, simulated based on the total carbon signal,

or the urea signal in the voxel. Eqn. 8.19 describes the model shown in Figure 8.3.

I_ —————— -—
| I
: I
: I
: . KTRANS I KPL
Sl
. T Glt) | «— | )
| < KLP
! Kep !
I
|
| : Tl,P
: I
e - - = o
F

Figure 8.3: Combined perfusion and metabolism kinetic models for hyperpolarized carbon-13 MR.

If urea is used as the input function, K" no longer describes the movement of the tracer

from the major vasculature to the tissue but instead describes the movement of pyruvate

143



into cells. Designing the model for the Phase 1 clinical trial data, the total carbon signal was
used to simulate an arterial input function as there was no measured arterial input and HP

13C-urea is not yet approved for human use, although urea has been show to be very safe

— P(t
even at high doses. Therefore, M(t) = [Lgtg and the parameter matrices are
_ _KPL - 1/T1,P 0 _ Ktrans
K, = K., » /Tl,L] and Kpers = [ . ] (8.20).

8.3 Implementation

The three kinetic models were implemented in C++ in the open-source SIVIC package. The
models were tested for accuracy and sensitivity to noise in matlab. The source code, as well
as a command line tool (svk_mrs_kinetics) and GUI (SIVIC) application are freely available
for download. The SIVIC package reads several vendors MRS data formats and can also
read, visualize and fit dynamic metabolite maps encoded as DICOM MR Image Storage SOP
instances. The SIVIC C++ class (svkMRSKinetics) can easily be extended to support other

kinetic models.

For flexibility, particle swarm optimization (PSO) was used. PSO uses population-based
approach that finds a solution to an optimization problem in a search space. PSO allows for
non-linearity making it more adaptable to any model. Additionally, PSO allows for upper
and lower bounds constraints preventing physiologically impossible parameter estimates
that may result in a local minimum. As with many other solvers, it minimizes the residual

and thus makes no assumptions about the model (Figure 8.4).
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Figure 8.4: Optimization algorithm flow. The optimization does not
utilize a jacobian and does not require linearity of the model.
Therefore it is independent of input model allowing for flexibility.

8.4 Results

The processing procedure is shown in Figure 8.5. MRSI data is converted to dynamic
metabolic images in the SIVIC GUI (Figure 8.5a). Then (Figure 8.5b) the algorithm produces
maps of parameters describing the dynamics and (Figure 8.5c) maps of metabolic and
perfusion kinetic parameters are produced all within a single step. Kinetic models were

validated in matlab (Figure 8.5c¢).
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Figure 8.5: Output from processing of dynamic MR spectroscopic imaging from Phase I clinical trial. (a)
MRSI data is converted to dynamic metabolic images. Then (b) maps of parameters describing the
dynamics are produced and (c) maps of metabolic and perfusion kinetic parameters are produced all

within a single step.

Values can be overlayed on

Simple Two-Site Two-Site Exchange Trace or Spectra
Exchange with Perfusion

The sample kinetic maps from the combined model are shown in Figure 8.6. Fitted traces
can be displayed with experimental data for validation and to prevent false positives from

modeling errors.

A Metabolism: K, Validation Perfusion: KTRANS Validation

N

Figure 8.1: Sample maps from processing of dynamic MR spectroscopic imaging from Phase I clinical
trial with combined (a) metabolism and (b) perfusion kinetic model. Dynamic traces with fitted curves
are shown which estimate value for each voxel. This display allows the user to debug the model and aids
preventing false positives.
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8.5 Discussion & Conclusions

Within a single step, dynamic volumetric images are masked to total carbon (tCar) signal-
to-noise (SNR) above an input threshold. Then, the algorithm creates volumetric maps
quantifying the dynamics, which includes the maximum signal (Peak), area under the curve
(AUC), full width half max (FWHM), and mean time (MT) for each metabolite, which
provides information on uptake, perfusion, retention, and vascularization. It then produces
maps of the metabolic kinetics (Figure 8.4a) which includes the rate of conversion of
pyruvate-to-lactate (Kpy,_.qc), but can be extended to include pyruvate-to-alanine
conversion (Kp,r_ 4;4) Or lactate-to-pyruvate conversion (K 4c-pyr), as well as maps of the
longitudinal relaxation of pyruvate (T;p,,), lactate (T ,4c), alanine (Ty4,), and urea
(T yreq)- Finally, with a reference voxel, perfusion maps (Figure 4b) can be produced
including the transport rate constant from blood to tissue (K;z4ns), and can be extended to

include the rate constant between extracellular extravascular space (k,).

The two-step workflow for processing data is shown in Figure 8.2. Whereby dynamic
spectra can be easily converted to dynamic images and displayed with anatomical images.
Dynamic images can then be processed with a single command line tool to produce
multiple parametric maps. Parametric maps can be displayed simultaneously with spectra,
dynamics, and anatomical images. The produced maps describe many aspects of
pathophysiology including quantification of uptake, perfusion, flow, and reaction rate

kinetics.

For the initial demonstration, we implement three kinetic models (1) a two-site exchange
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model of metabolism (2) a perfusion model and a (3) new combined perfusion and
metabolism model. These were implemented on this platform that is easily extended to
other models and is freely available. A key motivation for this work is standardization
Because consensus has not been made on what is the best model and acquisition strategy,
flexibility is still needed. However, once standardized protocols are accepted in the field,
this tool will allow such a model to be widely accessible and easily to implemented across
sites. The tool presented here also addresses the need for simplification of complicated
workflows, and delivery of data to PACS, both necessary as this technique moves into the

clinic.
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9. Summary

This dissertation presents several contributions to the new and growing field of
hyperpolarized carbon-13 magnetic resonance, a subset of magnetic resonance imaging.
This work shows both developments in acquisition and reconstruction MR methods as well

as the application of this new technology to study biological alterations in cancer.

Chapter 3 focuses on the application of metabolic activity decomposition (MAD) with
stimulated echo acquisition mode (STEAM) to kinetic modeling of hyperpolarized
substrates. Because MAD-STEAM allows for direct detection of exchange it provides twice
the information and thus provides much more accurate quantitative markers of cancer
metabolism. Chapter 4 presents an extension of the MAD technique, which allowed for
visualization of the distribution enzymatic activity. Moreover, this localization allowed for
the validation of the technique to be able to accurately detect changes in enzymatic activity
in vivo. ~ Chapter 5 built upon the foundations made in Chapter 3 with the addition of
variable diffusion weighting. The addition of varied diffusion weighting allowed for the
possibility to acquire exchange, relaxation and diffusion parameters within a single
acquisition. In Chapter 6, MAD is adapted to rapidly acquire 2D NMR EXchange
SpectroscopY (EXSY) spectra of hyperpolarized substrates. The preliminary results
highlight the importance of investigating bidirectional exchange in the study of metabolism
as well as show its potential to be used as a diagnostic tool. The technique has broad
applications including other substrates and other pathways that may be altered due to the

presence of disease and even other nuclei.
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The research presented in Chapter 7 demonstrated that metabolic reprogramming can be
used to detect and differentiate oncogene activation in liver cancer. This is a novel
application of HP MRSI to detect oncogene activation, which could be used to identify
patients that would benefit most from a targeted therapy, to predict prognosis, for more
robust image-guided biopsy, and to guide treatment decisions. Finally in Chapter 8, kinetic
modeling algorithms for a single command line tool were developed to aid in the
interpretation and visualization of hyperpolarized signals, to facilitate translation and

multisite clinical trials of hyperpolarized technology.

Hyperpolarized Carbon-13 MR has many advantages, including high SNR metabolic
imaging, use of safe agents with out the risk of ionizing radiation and without the toxicity
associated with other contrast agents, high specificity due to the lack of background
signals, and speed. Future work could be focused on other agents, although this this
work. For instance, flux of a-ketoglutarate to its products is associated with a number of
important in cancer metabolism pathways such as reductive carboxylation, IDH mutations,
glutamine addiction, lipogenesis, and Ras expression as shown in Chapter 7. The
directionality of its exchange could both provide insights on how cancer cells metabolize
fuel sources with a dysfunctional mitochondrial as well as be used a diagnostic tool marker
of cancer metabolism. Moreover, the study of how exchange and flux is affected in different
cancer types, grades, after treatment, and even other diseases is certainly a major research
focus in the future. Finally the optimization of pulse sequences to gain improved resolution,
speed, SNR, and spatial coverage would greatly strengthen the advantages of using

metabolic activity decomposition, which we have shown is a very powerful technique.
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In summary, hyperpolarized carbon-13 is a rich, emerging field with great biomedical
research and clinical potential. Already, the technology has been translated into the clinic
with the first-in-man clinical trial, which showed both safety and efficacy. Moreover, both
the breadth and depth of preclinical studies have demonstrated the power of this
technology to aid in understanding of disease as well as its clinical potential. This

dissertation presents a small contribution to this paradigm-shifting field.
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11. Appendix

11.1 Symbolic solver for kinetic models

function [solution sim sol] = findsymbolicsolution()
[solution sim sol] = function findsymbolicsolution()

3
3
3
% Simplifies DX(t)=AX to x(t)=phi(t,t=0)*x(t=0)
% where phi(t)=exp(A*t)=inverselaplace((sI-A)"-1)
3

% Written by Christine Leon Swisher

% define symbolic syms

syms pL pP pU Kpl Ktrans K2 Rlall

syms s LacO0 PyrQO Urea0

% initial condition
Mo=[Pyr0,Lac0,Ureal];

% metabolites
mets = {'pyr', 'lac', 'urea'};

% parameter matrix

K = [ -Rlall-Kpl, 0, 0;...
Kpl, -Rlall, 0;...
0, 0, -pUJ;
% solve
I=eye(3,3);
sI=s*I;

inv(sI-K);
solution=ilaplace(inv(sI-transpose(K)))

% further simplify solution
$sim sol=Mo*simplify(solution)

sim sol=Mo*simplify(solution)

end

This gives the following simplified solution:

Pyr(t) = Pyr(0)*exp(-t*(Kpl+Rlp))

Lac(t) = Lac(0)*exp(-t*R1l)-(Kpl*Pyr(0)*(exp(-t*(Kpl+Rlp))-exp(-t*R11l)))/Kpl-
R11+R1p)

Urea(t) = Urea(0)*exp(-t*R1lu)

11.2 Automated Kinetic Modeling Tool
Models shown in Chapter 8 were implemented in C++ with an open-source Spectroscopic

Imaging Visualization and Computing (SIVIC) package. The source code, as well as a
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command line tool (svk_mrs_kinetics) and GUI application are freely available for
download. The SIVIC C++ class (svkMRSKinetics) can easily be extended to support other

kinetic models.

Available at: http://sourceforge.net/apps/trac/sivic/

Demo available: http://www.ismrm.org/14 /program_files (Abstract #3793)

sion 0.9.11
k_met_kinetics --11 name --12 name --13 name
[ -——mask name ] -0 root [ -t output_data_type ] [ -h ]

name Name of dynamic pyr signal file
name Name of dynamic lac signal file
name Name of dynamic urea signal file
name Name of mask file
root Root Name of outputfile. Will write:
root_pyr_fit.dcm
root_lac_fit.dcm
root_urea_fit.dcm
Target data type:
3 = UCSF IDF
> = DICOM_MRI
5 = DICOM_ENHANCED_MRI (default)
Print this help mesage.

Fit dynamic MRSI to metabolism kinetics model

morgan.8> ~/sivic_svn/trunk/applications/cmd_line/Linux_x86_64/svk_met_kinetics --11 pyr_ma
g_demo.dcm --12 lac_mag_demo.dcm --13 tCarbon_mag_int.dcm --mask mask_demo.dcm -o demo

Figure 11.1: Screenshot of command-line tool.
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