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ABSTRACT OF THE DISSERTATION

Securing Statically and Dynamically Compiled Programs using Software Diversity
By
Andrei Homescu
Doctor of Philosophy in Computer Science
University of California, Irvine, 2015

Professor Michael Franz, Chair

Code-reuse attacks are notoriously hard to defeat, and many current solutions to the problem focus
on automated software diversity. This is a promising area of research, as diversity attacks one
cause of code reuse attacks—the software monoculture. Software diversity raises the costs of an
attack by providing users with different variations of the same program. However, modern software
diversity implementations are still vulnerable to certain threats: code disclosure attacks and attacks

targeted at JIT (just-in-time) compilers for dynamically compiled languages.

In this dissertation, we address the pressing problem of building secure systems out of programs
written in unsafe languages. Specifically, we use software diversity to present attackers with an
unpredictable attack surface. This dissertation contributes new techniques that improve the secu-
rity, efficiency, and coverage of software diversity. We discuss three practical aspects of software
diversity deployment: (i) performance optimization using profile-guided code randomization, (ii)
transparent code randomization for JIT compilers, and (iii) code hiding support for JIT compil-
ers. We make the following contributions: we show a generic technique to reduce the runtime
cost of software diversity, describe the first technique that diversifies the output of JIT compilers
and requires no source code changes to the JIT engine, and contribute new techniques to prevent
disclosure of diversified code. Specifically, we demonstrate how to switch between execute-only

and read-write page permissions to efficiently and comprehensively prevent JIT-oriented exploits.

1X



Our in-depth performance and security evaluation shows that software diversity can be efficiently
implemented with low overhead (as low as 1% for profile-guided NOP insertion and 7.8% for JIT
code hiding) and is an effective defense against a large class of code reuse and code disclosure

attacks.



Chapter 1

Introduction

Borrowing a term from biology, we refer to the prevalent practice of shipping identical binaries
to all customers as the software monoculture. Dating back to 1993, Cohen [28] identified this as
a practice with detrimental effects on computer security. Software diversity is a biology-inspired
response to this problem. Whereas users would run identical copies of a program under a mono-
culture, each user runs a different version in a diversified environment. Previously, the attacker
could study a program and build a single instance of an attack that would run on all instances of
the program, but diversification forces the attacker to customize the attack for every target. Conse-
quently, software diversity increases the costs for attackers, ultimately rendering them too costly.
Due to a particularly malign class of attacks—known as code reuse attacks—community interest

recently surged around protections using automated software diversity.

Code randomization is one concrete embodiment of the idea of software diversity. There are many
different code randomization techniques. The main one we discuss is NOP insertion [60] (termed
“garbage code insertion” by Cohen). This transformation inserts NOP instructions between regular

native machine instructions in the program. While naive insertion has a positive impact on security,



it can adversely affect performance. This is not surprising, because truly random NOP insertion is

indifferent towards frequently executed code.

Software profiling changes this: it allows us to diversify liberally over most of the program, and
also reduce diversification overhead in code where the performance impact is most severe. Feed-
back directed or profile-guided approaches have long been a major line of research in compila-
tion, in particular for generating and optimizing native machine code, starting with the work of
Knuth [67, 68]. A profiling run separates frequently executed—or hot—parts of code from infre-
quently executed—or cold—parts. Subsequently, a second compilation run uses this information
to optimize the generated code, e.g., by co-locating frequently executed basic blocks [95]. Similar
use of software profiling has led to successful research in the areas of code compression [39] and
hardware error detection [64]. Whereas profiling is most commonly used to enhance code opti-
mizations to increase their performance benefits, it can also be used to reduce the performance
cost of program transformations that slow down the program. In this dissertation, we investigate
the use of profiling to reduce the cost of NOP insertion. In Chapter 3, we present the design and
implementation of profile-guided NOP insertion using the LLVM 3.1 compiler and its profiling

infrastructure.

Unfortunately, existing approaches to artificial software diversity do not protect dynamically emit-
ted code from a just-in-time compiler. In Chapter 4, we address this challenge by describing the
first fully automatic technique to diversify existing JIT compilers in a black-box fashion. Similar
to the successful frontend-backend separation in traditional compilers, our proposed black-box ap-
proach has the advantage over a white-box solution—where developers would manually add diver-
sification directly to JIT compiler source code—of not requiring duplicated work for every existing
JIT compiler. Besides the obvious savings in implementation time, the black-box approach allows
for patches to be released earlier, without having to rely on vendors to supply patches to known
vulnerabilities. Another benefit is the added security for legacy JIT compilers available only in

binary form, where extra defenses cannot be added by changing the source code.



As a reaction to the increased popularity to software diversity, attackers are increasingly relying
on information disclosure attacks to counter randomization. One defense is to hide randomized
code from the attacker, so they are unable read the code. XnR [6], HideM [49] and Readactor [34]
use different technical approaches to solve the same problem: preventing the attacker from reading
code. Of all these solutions, Readactor is the only one that extends protection to dynamically
generated code, such as code generated by a JIT compiler. In Chapter 5, we describe the challenges
encountered in modifying Readactor and a popular JavaScript JIT compiler—V8—to support JIT

code hiding.

1.1 Contributions

This dissertation makes the following contributions, organized by chapter:

Chapter 3

e We introduce a technique that uses profiling information to optimize away overhead intro-

duced by automated software diversity.

e We describe a heuristic formula controlling randomization based on basic block execution

frequencies.
e We present the results of a thorough evaluation of our implementation. Our results indicate:

Performance We are able to reduce overhead of probabilistic NOP insertion for SPEC CPU
2006 down to a negligible 1% performance overhead. This is an important result al-
lowing us to use stronger diversifying transformations without sacrificing performance,

which is a key barrier to software diversity adoption.



Security We briefly describe a way to objectively measure the success of diversifying a bi-
nary. Our profiling-driven optimization preserves the security properties of code layout

randomization. In addition, we show that our transformation thwarts concrete attacks.

Chapter 4

e We present librando, the first automated software diversity solution for hardening existing
JIT compilers in a black box fashion. Our solution implements two popular diversifying

transformations: NOP insertion and constant blinding.

e We describe two optimizations (the Return Address Map and optional white box diversification—

taking advantage of compiler cooperation) to improve the performance of librando.

o We demonstrate applicability of black box diversification on two pervasive industrial-strength
JIT compilers: Oracle’s HotSpot (used in the Java Virtual Machine) and Google’s V8 (used
in the Chrome web browser). We then report the results of our analysis of librando perfor-

mance. We show that we successfully protect:

HotSpot (a JIT compiler for Java—a statically typed language) with an overhead of 15%.

V8 (a JIT compiler for JavaScript—a dynamically typed language) with a slowdown factor

of 3.5x.

Chapter 5

e We discuss the challenges encountered when adding support for code hiding to a popular
industry-strength JIT compiler—V8. Our work consists of changes to both V8 (to add sup-
port for non-readable code cache pages), and to Readactor (to efficiently support frequent

changes to page permissions).



e We discuss and evaluate two different virtual-to-physical page mapping strategies for JIT

code cache pages on a system running Readactor.

e We evaluate the performance and security of our changes to V8. We show that, with our
changes and running under Readactor, V8 is resilient to code disclosure attacks and the

average performance overhead of our approach is 7.8%.



Chapter 2

Background

2.1 Arbitrary Code Execution Attacks

For performance and practical reasons, a large part of the modern software stack is written in
low-level systems programming languages. Since the programmer is assumed not to make any
mistakes, little error checking happens at run-time. Consequently, even simple programming mis-
takes can lead to security vulnerabilities for attackers to exploit. Exploiting these vulnerabilities
generally allows the attacker to take control of the target machine or program, i.e., execute arbitrary
code under the attacker’s control on the target. While the attacker can also have other goals, such as
leaking secret information from the target or performing denial-of-service attacks, arbitrary code

execution on the target machine is still highly valuable.

2.1.1 Code Injection

Originally, attackers would perform arbitrary code execution by injecting a binary payload (for

example, x86 code) into a vulnerable application running on the target, then use some other vul-



nerability in the application to force it to execute the payload. For example, the attacker would
overwrite the return address on the program stack using a stack buffer overflow [3], causing the
program to execute the payload when returning from the current program function. This approach
requires that the application be able to write data to a buffer, then execute code from that same
buffer. In other words, the processor has to be able to (or be allowed to) execute instructions from
an area of memory that the application can directly write to. However, modern processors allow

for a page to be marked as non-writable or non-executable.

Modern operating systems use this feature to prevent code injection attacks. A page cannot be
both executable and writable at the same time, unless specifically requested by the application.
This restriction is known under several names: W& X (implemented by the PaX [92] kernel patch
on Linux), DEP (Data Execution Prevention), NX (No-eXecute), and XN (eXecute Never). In
practice, WX renders most code injection attacks ineffective. Since the payload is stored in a
writable but non-executable buffer, the processor cannot execute its contents. In addition, some

operating systems disallow execution of unsigned code.

2.1.2 Code Reuse Attacks

To bypass WX, a new class of attacks against applications surfaced and gained popularity: code
reuse attacks. These attacks circumvent anti-code injection restrictions by reusing code from the
application itself to perform the attack. Shacham [106] introduced Return-Oriented Programming
(ROP), a code reuse attack that uses small code snippets (called gadgets in the ROP paper) from
the executable section of the program as the attack payload itself. A gadget is any valid sequence
of binary code that the attacker can execute successfully (the gadget decodes correctly and does
not contain invalid instructions) and that ends in a control flow transfer instruction. The original
version of ROP uses only gadgets that end in a RET instruction (encoded by the C3 byte on x86);

the attacker places addresses of gadgets on the stack on consecutive stack slots, so that each gadget



Program Memory
MOV EAX, EDX RET

89 d0O 3

POP ECX RET

40 c3

ROL[ECX], 1 RET
dl 01 c3

ESP —»

Figure 2.1: Return-oriented programming attack example.

The attack proceeds in several steps: (i) the attacker locates gadgets in the program code; (ii)
the attacker puts the gadget addresses on the stack, overwriting the return address; (iii) when the
attacked function returns, it executes the first gadget; (iv) each gadget executes the following one
by returning to it.

proceeds to the next one using a return. A gadget can start anywhere inside the generated code
(including in the middle of a proper instruction) and spans one or more of the original instructions
emitted by the compiler. Figure 2.1 shows a high-level example of a return-oriented programming
attack. Later variations of ROP, such as JOP [15] (jump-oriented programming), ROP-without-
returns [21], and sigreturn-oriented programming [16], lift the requirement that gadgets end

in a return and extend the approach to other control flow instructions.

ROP uses gadgets to implement the instructions of a virtual machine (VM). The attacker writes
their payload as a program written in this virtual machine, then converts each VM operation into
the address of the equivalent gadget. The ROP VM usually offers a significant number of useful
operations, like simple arithmetic, memory loads and stores, and conditional jumps. In the original
ROP design, the operations formed a Turing-complete set, providing an attacker with a simple
and effective way to perform arbitrary computations inside the target. However, it is possible to
successfully launch an attack with even a restricted subset of operations, without providing Turing-
completeness. Often, the attacker only needs to call some system function (like mmap), store a

payload into a memory area and then redirect control flow to that memory region. The borrowed



code chunks attack by Krahmer [70] (which preceded ROP by several years) and microgadgets [56]

are two simplified code reuse attacks that call the sy stem system call to obtain a system shell.

Early variations of code reuse attacks mainly targeted the x86 instruction set, as the leading desktop
processor architecture. With the increasing popularity of other architectures (such as ARM for
phones), researchers also demonstrated code reuse attacks against ARM [69, 38], SPARC [99],
Zilog 780 [22] and Atmel [44]. As a practical example, we note that ROP was successfully used

to jailbreak an earlier version of the iPhone [124].

While ROP initially used short and simple gadgets ending in returns, code reuse attacks are feasible
even with longer and less restricted sequences. Return-into-lib(c) [83] attacks (introduced several
years before ROP) redirect the program’s execution to a function (usually system) in a system
library (such as libc), after manipulating the stack so the attacker controls the function parameters.
Later work [114] implements a Turing machine using libc functions, proving that return-into-lib(c)
is Turing-complete and therefore able to perform arbitrary computations. Another whole-function
code reuse attack—COOP [103]—uses C++ class methods chained using counterfeit object in-

stances to perform arbitrary computations.

Control-flow integrity (CFI) defenses have been proposed as a viable mitigation strategy against
code reuse attacks. The main idea of CFI is to restrict the control flow graph of the program
exclusively to intended transitions, i.e., instrument indirect branches and returns to validate the
target of the branch, as attackers often rely on replacing code pointers with gadget addresses to
hijack program execution. In return-oriented programming, for example, attackers replace return
addresses on the stack with gadget addresses. CFI defends against ROP by checking that each
return address on the stack is the address of a valid return site (the instruction immediately suc-
ceeding a function call). This requires that the CFI implementation builds a conservative list of
valid targets for every indirect branch in the program (including returns), either at compile-time or
through analysis of the program binary. Due to the difficulty of building this list, as well as the

high performance overhead of enforcing strict control flow integrity, a less strict version of CFI



has been proposed: coarse-grained CFI. In a coarse-grained implementation, any return instruction
can return to any return site (but only a return-site), and indirect function calls can call all valid
function entry points. However, new variations of ROP [51, 35, 104, 20] have been presented
that work even under these restrictions. Restricting the set of gadgets to entry-point (EP) gadgets
(contiguous code sequences starting from a valid function entry point and continuing up to the
first indirect call/return) and call-site (CS) gadgets (gadgets starting immediately after a function
call) still allows the attacker to perform a successful attack against a program secured by a coarse-
grained CFI solution. This leaves ROP attacks (and code reuse attacks in general) as a potent class

of attacks, requiring stronger defenses than coarse-grained CFI.

2.2 Software Diversity

The idea of software diversity was originally explored as a way to obtain fault-tolerance in mission
critical software. Approaches to software fault-tolerance are broadly classified as single-version
or multi-version techniques. Early examples of the latter kind include Recovery Blocks [98] and
N-Version programming [5] that are based on design diversity. The conjecture of design diversity
is that components designed and implemented differently, e.g., using separate teams, different
programming languages and algorithms, have a very low probability of containing similar errors.
When combined with a voting mechanism that selects among the outputs of each component, it is

possible to construct a robust system out of faulty components.

Obfuscation to prevent reverse engineering attacks [29, 31] is closely related to diversity and relies
on many of the same code transformations. Diversity requires that program implementations are
kept private and that implementations differ among systems; this is not required for obfuscation.
Pucella and Schneider perform a comparative analysis of obfuscation, diversification, and type

systems within a single semantic framework [97].

10



Software diversity is a powerful tool in the defense against code reuse attacks. All code reuse
attacks have one trait in common: the attacker obtains and uses knowledge of the program code
itself. In some cases, the attacker does not have such knowledge a priori, but they can gain obtain
it dynamically (we discuss this case in greater detail in Section 2.4). Any interaction between the
program and attacker may help the attacker, and they frequently take advantage of this to obtain
information on program internals (such as contents of data structures or program instructions).
One practical restriction is that an attacker can only use code from the executable sections of the
program, due to W X. Therefore, one way to defend against code reuse attacks is to prevent the
attacker from gaining any useful information about the program itself, such as the addresses of

known gadgets inside the program.

Cohen [28] proposes the following strategy to defend against attacks:

The ultimate defense is to drive the complexity of the ultimate attack up so high that

the cost of attack is too high to be worth performing.

Cohen proposes program evolution as a defense strategy, where programs “evolve” into different,
but semantically equivalent versions, of the original program. He then demonstrates several dif-
ferent evolution techniques, such as equivalent instruction replacement, instruction reordering and
garbage insertion. As these techniques all change the program code in different ways, by either
adding new instruction or shifting the existing ones around, they have a potentially large impact
on both the locations and order of instructions in the program. Since code reuse attacks require the
attacker to have knowledge of the contents of the binary, performing such attacks becomes much

more difficult.

Many arbitrary code execution attacks require the attacker to redirect the execution of the program
from its regular path to some malicious behavior under the attacker’s control. Often, the attacker
does this by overwriting a memory location controlling an indirect branch. In return-oriented pro-

gramming, for example, the attacker overwrites the return address of the current function and all

11



following stack locations. Often, attackers use a buffer overflow vulnerability to overwrite these
locations, by writing past the end of a buffer stored in a function frame. Stack frame randomiza-
tion [43] is an implementation of software diversity targeted at stack-based attacks, using variable

reordering and stack frame padding to diversify the binaries.

With the growing popularity of code reuse attacks, the need arises for mitigations against this
class of attacks. One such mitigation is software diversity focused on the program’s binary code.
By preventing the attacker from having a priori information about the code layout of a program,
we significantly raise the cost of a code reuse attack. In practice, one way we achieve is code
layout randomization. This can be done in several places: in the compiler (by randomizing the
code inside the compiler [63, 50]), in the operating system loader (disassembling the program and
applying diversifying transformations to it; also, it can be done by replacing the loader) [54] or
in between, as a separate step [90]. These implementations use techniques similar to the ones
described by Cohen and show that code layout randomization is very effective at preventing code

reuse attacks, preventing many ROP attacks currently at large.

Modern operating systems also implement a form of code layout randomization called Address
Space Layout Randomization (ASLR). This works by randomizing the base addresses of objects
in the program, like the stack, heap, program code, and dynamic libraries. However, as this ran-
domization changes the location of most program objects, the operating system loader must now
perform a significant number of relocations. An alternative implementation, currently used in
Linux, changes the program so that it does not require fixed locations for any of its objects; in-
stead, the program determines its own randomized base address at run time, then accesses all its
objects by offsets from the base address. This approach has a performance penalty on 32-bit x86
systems [93], so it is currently disabled for most applications. Consequently, the code section of
a program is always loaded at the same address (0x8048000 on Linux), and only libraries are

loaded at random addresses.
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Another weakness of ASLR is that it only diversifies the base addresses of program objects, such
as code and data sections. There is no diversity inside the sections. If an attacker were to gain this
base address by some information leak, they would have all the code layout information for a code
reuse attack (assuming attackers also possess a copy of the binary). On 32-bit systems, ASLR also
suffers from lack of entropy; recent work [107, 100] shows that ASLR can be defeated in a matter
of minutes. However, ASLR has been successful at raising the bar for attackers, illustrating the
effectiveness of randomization against attacks. On the other hand, it has also shown the effect low

entropy can have on randomization, emphasizing the importance of high-entropy defenses.

2.3 Just-in-Time Compilers

Our computing infrastructure depends on high performance delivered by just-in-time (JIT) com-
pilers to a large degree. Efficiently executing JavaScript is a prerequisite for complex Web ap-
plications. Similarly, Java’s success rests on performance delivered by efficient dynamic code
generation. To achieve this, a JIT compiler transforms a program written in a high-level language
(HLL), such as Java or JavaScript, generating native code as needed during program execution.
The compiler emits native code into a code cache, after parsing and optimizing HLL source code.
The compiler itself is most often written in another programming language, which we call the host
language (which is C or C++ in most cases). JIT compilers also contain a language runtime, which
is a library of functions that are written in the host language and provide or manage access to
system resources. Some examples of such resources are files, networks, operating system threads
and complex data structures such as maps and trees. When compiling a HLL program, the JIT
compiler emits native calls into the runtime whenever the program uses these resources. Figure 2.2
shows a high-level structure of a JIT compiler and its interactions with the generated code. After
emitting all or part of the native code (usually enough code to start execution of the program), the

compiler branches to the entry point of the HLL program. The generated code continues execution,
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Figure 2.2: High-level structure of a JIT compiler.

calling into other generated functions or the language runtime. The HLL program continues until

termination, making repeated calls into the runtime whenever needed.

2.3.1 Attacks on JIT Compilers

Security-wise, JIT compilers have one characteristic that is important in our context: predictability.
Current JIT compilers are generally deterministic. When presented with the same HLL code many
times repeatedly, a compiler will emit the same native code; attackers can use this characteristic to
their advantage. This is not a problem specific to JIT compilers, but compilers in general; however,

predictability of JIT compilers has not been fully explored.

JIT spraying [13] is one recent attack that relies on predictability of JIT compilers. This attack
is a form of code injection targeted at dynamically generated code. In its original form, it relies
on one unintended behavior of many JIT compilers: HLL program constants reach native code
unmodified, therefore becoming part of the executable code. The attacker injects short sequences
(32-bit constants in the original paper), and later jumps to the injected sequence through a separate
attack vector. Figure 2.3 shows an example of code injected using constants. For the attack to work,

the attacker must also predict the remaining bytes inserted between the controlled sequences, and
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Guest Code
(e.g. JavaScript)

a = (0x3C90cC031
~ 0x3C907DBO

~ 0x909080CD) ;

, 31C0 XOR EAX, EAX
Attack entry point 90 NOP
3c35 CMP AL, 0x35
MOV EAX, 0x3C90C031 B8 31 CO 90 3C BO7D MOV AL, 0x7D

XOR EAX, 0x3CO07DB0 === 35 BO 7D 90 3C «mpp 20  NOP
, , 3c35 CMP AL, 0x35

XOR EAX, 0x909080CD 35 CD 80 90 90 CD80 INT 0x80

Generated Emitted JIT Spray
Assembly in Memory Payload

Figure 2.3: JIT spraying example.

The 32-bit constants from HLL code (shown in red and blue) appear inside native code, in little-
endian form.

use those bytes as part of the payload; this is often possible in practice, due to the predictability
of the compiler. This allows the attacker to execute arbitrary native code, even when running
on a compiler that runs the generated code in a sandbox (with restricted access to memory, for
example). The original JIT spraying attack targeted x86 systems, but Lian et al. [75] later extended

this approach to JITs targeting ARM processors.

As an additional threat, code reuse attacks are even more potent in the presence of a JIT compiler, as
an attacker that controls HLL code can emit an arbitrary amount of native code containing gadgets
(by emitting as much HLL code as needed to generate all the gadgets for the attack); Figure 2.4
illustrates how HLL code sequences become gadgets. For example, this can be a problem for
web browsers that include a JavaScript compiler, as many web pages include JavaScript code
from unreliable (or hostile) sources. Another problem is that current anti-ROP defenses [74, 88,
90, 54, 60, 55] target ahead-of-time compilers or binary rewriters, but do not offer protection to

dynamically generated code.
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Guest Generated Hex

Code Assembly Encoding
foo () | - emee-a .
return 0; XOR EAX, EAX :31 co !
} RET | C3
e e e e e - 1
bar(a, b) { : [
return a + b; —> ADD EBX, EAX ,01 C3
} - T TT
_____ 1
baz (x) { Lo
x++; INC EBX |_F_F_Ci3_ |
return;
} Gadgets

Figure 2.4: JIT code reuse example.

The compiler transforms HLL code into native code containing ROP gadgets. The C3 byte encodes
the RET instruction at the end of a gadget.

2.4 Information Disclosure

All code reuse attacks have one trait in common: the attacker must have knowledge of the program
code itself. The original threat model of software diversity-based defenses made one significant
assumption: that once the code is diversified, the attacker cannot gain access to it. Later research
proved this assumption to be false under certain circumstances. In some cases, the attacker can gain
gain information about code layout and contents dynamically. JIT-ROP [110] is an advanced attack
that counters code randomization by reading code pages at run-time. This attack has two main
requirements: (i) that the target program offers the capability to run sandboxed Turing-complete
code (written in a HLL) under the control of the attacker, e.g., run JavaScript in a browser or Java
code in the JVM, and (ii) that the target contains some memory read vulnerability that allows a
HLL script provided by the attacker to read (and possibly write) arbitrary memory locations inside
the target (even those outside the sandbox). Using an arbitrary memory read coupled with a control

flow hijack, the attacker locates all required gadgets and builds a ROP attack at run-time. With the
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growing popularity of the JavaScript language for client-side web development, browsers have

become a significant target for ROP attacks.

In other cases, the attacker does not need to leak the contents of code pages. Instead, they can
just de-randomize the location of known gadgets through brute force or side channels. Blind
ROP [12] starts from the assumption that any Linux program always contains certain gadgets and
libc functions, and finds their addresses by sequentially trying all addresses in a contiguous range.
This attack works against a specific set of programs: networked servers that restart to a known fixed
state after a crash (this is a common property of Linux server programs that use the fork system
call for multi-processing, such as Apache and nginx). When the attacker puts a bad address on the
stack, the server crashes and closes the network connection, but also restarts in an identical state
and accepts new connections. The attacker simply reconnects and tries the next address. Using
this approach, Blind ROP successfully finds enough gadget addresses to perform a system call,
leading to further arbitrary code execution, even if the program has been diversified using code

randomization or ASLR, unless the program is re-diversified upon restart.

Another viable attack against diversified programs are memory access timing attacks. The main
requirement of their attack is that the target program contains a loop whose iteration count is
read from memory. In other words, the running time of the loop is proportional to some value
read from a memory address. The attacker can point this address to a code location, and deduce
the contents of that location from the duration of the loop (assuming the duration of the loop is
directly proportional with the memory value). Figure 2.5 shows an example of such a loop. Siebert
et al. [109] implement such an attack and evaluate it against several forms of diversity. Their
attack requires a modest amount of time to defeat ASLR (30.58 seconds), but fine-grained code
randomization is more resilient (it takes them 2.2 hours to attack a program randomized using NOP

insertion).

Information disclosure attacks significantly raise the bar for defenders, but do not completely de-

feat software diversity defenses. Instead of assuming that the attacker cannot read code, defenders
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struct S {
int n;
}s

void foo(struct S xp) {
for (int i = 0; i < p—>n; i++) {

}
}

Figure 2.5: Example of loop with memory-controlled counter.
The duration of the loop is directly proportional with the value of p—>n, which the attacker can
change by redirecting the pointer p.
must now take measures to hide the code. XnR [6], HideM [49] and Readactor [34] all suc-
cessfully make program code unreadable, preventing attacks such as JIT-ROP. In Chapter 5, we
discuss code hiding for the code cache of a JIT compiler. Increasing entropy and re-randomizing

code frequently are viable defenses against brute force and timing attacks.
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Chapter 3

Profile-guided Automated Software

Diversity

While modern diversification techniques successfully protect against code-reuse attacks, they suf-
fer from performance impacts ranging from negligible (1-5%) to significant [72] (as high as 30-
50% for realistic approaches and an extreme of 287x for the slowest solution). Interestingly, this
spectrum blends well with the security guarantees of the approaches, i.e., the slower ones have the
strongest security properties. Taking a closer look at the implementations of automated software
diversity, we notice that many of them use a “one-off”” design: they take an input program and di-
versify it in one pass. This resembles the state-of-the-art in compiler construction before the advent
of profile-guided optimizations triggered by Pettis and Hansen’s profile guided code positioning of

1990 [95].

Feedback-directed, or profile-guided, approaches have been a major line of research in compila-
tion, in particular for generating and optimizing native machine code. A profiling run separates

frequently executed—or hot—parts of code from infrequently executed—or cold—parts. Subse-
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quently, a second compilation run uses these information to optimize the generated code, e.g., by

co-locating frequently executed basic blocks.

Previous research focuses almost exclusively on optimizing the hot code parts. Our idea is to com-
bine profiling information with automated software diversity. By doing so, we substantially reduce
the costs of even expensive diversifying transformations. One such transformation inserts NOP in-
structions in between intentionally emitted native machine instructions, a technique known as NOP
insertion. To add software diversity to an input program, we have to insert NOPs probabilistically,
i.e., depending on some random information, we decide whether to insert a NOP instruction or
not. While blind insertion has a positive impact on security, it also affects performance. This is
not surprising, because the random NOP insertion trial has no information about the whereabouts
of frequently executed code. Profiling information gives us these clues: it tells us that we can
diversify as much as we want to in cold code, and reduce diversification overhead in hot code. A
similar insight led to successful research in the areas of code compression [39] and hardware error
detection [64]. In this chapter, we discuss the use of profiling information to drive decisions taken

by a randomized NOP insertion algorithm.

3.1 Our Approach

In this dissertation, we mainly use randomized NOP insertion to randomize the code layout of
a program. Cohen [28] discusses this approach under the name “garbage code insertion™; later,
Jackson et al. [60] discuss the practical details of implementing NOP insertion, and implement and
evaluate its performance overhead [59]. We build upon their ideas and extend their work with an

optimization that significantly improves overhead.
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Figure 3.1: Effect of NOP insertion on program code.

A NOP ! is an instruction that the processor fetches and executes without any effect on the proces-
sor register or machine memory. Compilers insert NOPs in programs for various purposes: (i) to
enforce alignment of basic blocks, functions or other code blocks (for performance and security);
(i1) to add timing delays to code fragments (for contention mitigation) [113]; (iii) to compensate

for microarchitectural limitations, such as those in the branch predictor [57].

At each program instruction, we insert a randomly chosen number of NOPs (zero or one in our
current implementation), so that all following instructions are displaced by a random number of
bytes. As the algorithm inserts NOPs through the program, the displacements accumulate, so that

later instructions are pushed forward by increasingly larger amounts (Figure 3.1).

For every assembly instruction in the program, we decide whether to prepend a NOP before the in-
struction, with probability pxop of success. In case a NOP is inserted, we then pick one of the NOP
candidates at random. Consequently, there are two sources of randomness in this transformation:

whether to insert and what to insert. Algorithm 1 shows the algorithm in pseudocode.

Table 3.1 shows a list of eligible NOP instructions. We picked only instruction candidates that
preserve the processor state at all times (as opposed to a weaker version of NOPs which change
some minor part of processor state, e.g., an operation that adds zero to a register, not affecting

registers or memory but changing the CPU flags). Second, we selected candidates with return-

'NOP is the x86 architecture mnemonic for a “no-operation” instruction.
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Data: The list I List of instructions. The probability of insertion pxop. NOPTable, the list
of candidate NOPs.

Result: The list I List with NOPs inserted.

begin

numNOPs < [NOPTable|

for: € IList do

roll <— random (0.0, 1.0)

if roll < pnop then
nopIndex < random (0,numNOP's)
insert(i, NOPTable [nopIndex])

end

end

end

Algorithm 1: NOP insertion algorithm.

Second Byte

Instruction Encoding  Decoding
NOP 90 —

MOV ESP, ESP 89 E4 IN
MOV EBP, EBP 89 ED IN
LEA ESI, [EST] 8D 36 SS:
LEA EDI, [EDI] 8D 3F AAS
XCHG ESP, ESP 87 E4 IN
XCHG EBP, EBP 87 ED IN

Table 3.1: NOP insertion candidate instructions.

oriented programming in mind, carefully picking those that minimize the likelihood of creating
new gadgets. In the case of the two-byte instructions, the second byte decodes to an operand
or opcode that the attacker cannot use for nefarious purposes. For example, the IN instruction
causes the processor to read from an input/output port. However, IN requires the processor to be

in privileged mode to work correctly, causing unprivileged software to fault.

Table 3.1 shows seven NOP instructions that can be inserted as padding, but our implementation
only uses five of them. The two XCHG-based NOPs, while perfectly suited to our goals, have a
larger performance impact than the others. This is because, on current implementations of the x86

architecture, the XCHG instruction locks the memory bus [58]. None of the other NOPs require
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this, so we use them in our insertion pass. The two extra NOPs provide some extra diversity in the

generated code, so they can be enabled at compile-time.

While our goal is to displace the original program instructions by random amounts, these NOPs
also have another useful side effect. The x86 architecture is highly irregular, with instructions as
short as 1 byte and as long as 20 bytes. Therefore, inserting one or two extra bytes inside an x86
instruction can change its decoding significantly, in many cases even changing the instruction’s
length. This effect is even more pronounced on ROP gadgets, where changing the decoding of
one instruction can cause the next one to start at a different location. This offset propagates to the
return instruction (encoded as the C3 byte) so that the gadget no longer ends in this instruction.
This effectively removes that gadget from the binary. Figure 3.1 illustrates this. NOP insertion not
only meets our original design goal of displacing instructions by a random offset, but also has the

added benefit of removing some gadgets entirely.

3.1.1 Profile-guided Diversification

The approach to NOP insertion described in Section 3.1 uses the same probability for all instruc-
tions. The technique inserts the same expected number of NOPs inside loops and other frequently
executed parts of code as in the rest of the program. In practice, most of a program’s execution
time is spent in a very small part of the code, usually a loop. Therefore, it makes much sense to
alter the NOP insertion strategy for these regions, to minimize the performance impact of the extra
instructions. To change the probability of NOP insertion according to the execution frequency of

the current code region, we need a source of information for that frequency.

Run-time profiling is one source of execution counts. When optimizing using this approach, the
compiler generates a special, instrumented version of the input program. The developer then runs
this instrumented version on a training set of inputs. The purpose of this run is to collect execu-

tion statistics from the training run. These statistics include values such as execution counts for
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control flow edges and histograms for variable values. The compiler later uses this information for

optimizations during a second compilation.

Most modern compilers support some form of run-time profiling and profile-guided optimization.
In every case, the profile contains per-basic-block execution counts, or similar information. LLVM,
for example, only inserts counters for the minimal required subset of edges on the control flow
graph [86]. The compiler derives all basic block execution counts from that minimal set of per-

edge counters.

This approach provides accurate information on which parts of the code are executed most fre-
quently, assuming that the training set is a proper sample of real-world usage of the input program.
Note that per-basic-block execution counts are sufficient for our purpose; all instructions in a ba-
sic block are executed the same number of times. Therefore, we propagate basic-block execution
counts to all instructions, and use the same probability of inserting a NOP for all instructions
inside a basic block. More frequently executed blocks will correspond to lower NOP insertion

probabilities.

To achieve this, we replace the singular NOP insertion probability with a range of probabilities.
The hottest basic blocks get the lowest value in this range, while the coldest blocks get the high-
est probability. Blocks between these extremes need some probability linked to their execution

frequency. The simplest way to model this is a linear function:

X
PNoOP (J]) = Pmaz — (pmaac - pmm) -

max

where z is the execution count of the current basic block, z,,.. 1s the maximum execution count in
the program and [p,in, Pmaz) 1S the probability range. The compiler uses this function to compute

the NOP insertion percentage of each basic block.
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Maximum Block Maximum Block
Benchmark Execution Count || Benchmark Execution Count
403.gcc 14,294,732 || 447 .dealll 1,031,411,560
444 namd 98,877,833 || 483.xalancbmk 1,210,195,955
433.milc 101,025,792 || 482.sphinx3 1,268,512,791
453.povray 132,687,016 || 445.gobmk 1,772,254,272
450.soplex 215,314,492 || 473.astar 2,072,966,645
470.lbm 390,000,000 || 464.h264ref 2,769,429,824
429.mcf 437,284,625 || 458.sjeng 3,629,257,134
400.perlbench 651,734,032 || 401.bzip2 3,703,065,891
462.libquantum 681,771,008 || 456.hmmer 4,024,737,000
471.omnetpp 768,762,446

Table 3.2: Most executed basic block for each SPEC CPU 2006 benchmark.

We collected this data from one SPEC CPU run in t rain mode.

This is a simple and effective heuristic that improves our NOP insertion strategy. However, in
practice, execution counts of basic blocks are not distributed linearly. Not only do loops often
have large number of iterations, but inner loops are occasionally contained in one or more outer
loops. In the latter case, the total number of iterations is the product of the iterations of the inner
and outer loops. This means that the counts grow exponentially in the number of loops, while the
base itself can be a large number. A linear function would simply polarize the probabilities toward
either the maximum or the minimum, since the maximum execution count has a very large value.
For example, our measurements on a profiled run of SPEC CPU 2006 show that the maximum
execution count ranges from 14 million (for 403.gcc) to 4 billion (for 456.hmmer), as Table 3.2
illustrates. Also, for many applications, the execution counts are spread out between the minimum
and maximum count. The 473.astar benchmark is one example of this: the median of all basic

block execution counts is 117, 635, well under the maximum of 2 billion.

This means that a linear function is not an appropriate fit; a logarithm-based function serves our

purpose much better. The updated function for our profile-guided NOP insertion is:

log (1 + )

(pmax - pmm) m

PNoP (SL’) = Pmaz —
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Figure 3.2: Life of a program from source code to execution.

We can insert NOPs at several stages of this process.

Using this function, the numerator and denominator of the fraction become much smaller. For an
ZTmaz Of 4 billion and a logarithm base of 10, the denominator is approximately 10. Therefore,
intermediate values get much smaller logarithms as well (in our case, logarithms range between
0 and 10). This also guarantees that counts that are smaller than the maximum by several orders
of magnitude are still placed well inside the probability interval, not toward the minimum. The
median from 473.astar, for a probability range of [10, 50|, now gets an approximate probability
of pyop & 50 — 40 x = = 30% instead of pyop =~ 50 — 40 * 110% ~ 50%. Therefore, using log-
arithms offers us a much better distribution of probabilities inside the interval, given the particular

distribution of the execution counts gathered from profiling.

3.2 Implementation

One major design choice in the implementation of NOP insertion is the stage of the compilation
process at which to insert the extra instructions. Figure 3.2 shows the stages a program goes
through, from source code to final image in process memory. Most modern compilers take a pro-
gram as source code, parse it into an abstract syntax tree, then flatten that tree into an intermediate
representation (IR). One such IR is the LLVM IR used by the LLVM compilation framework [73].

The compiler performs a suite of optimizations on this IR, then lowers the IR into a lower-level
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representation (LR), such as the Register Transfer Language from GCC [46]. After performing
even more optimizations (such as register allocation), the compiler generates native code directly
from the LR, into an object file. A linker later links one or more object files together into the final

program binary. The operating system loader loads the program into memory and executes it.

It is theoretically possible to perform NOP insertion during any of these steps. However, each
choice comes with its particular set of disadvantages. Inserting NOPs inside native code, either
in object files or in the final program binary, requires complete information about the locations of
all program instructions. As modern processors allow for read-only data to be mixed with code
in the same stream, accurate disassembly has been proven impossible in the general case [28].
Another option is to use debug information, but that requires the program to be compiled with
such information present. Inserting NOPs too early also presents a similar challenge: some IR
operations might be lowered to more than one native instruction, while some other operations
might disappear completely. Fortunately, most LR operations in a compiler have a one-to-one
correspondence to the native code instructions in the object files. Therefore, our strategy is to
insert NOPs into the lower-level representation, after the compiler performs all optimizations and

just before it emits native code.

Our profiling-based randomization uses execution counts for basic blocks to tune the probability
that a NOP is inserted. We derive the per-basic-block information from edge execution counts
generated through instrumentation. Fortunately, LLVM currently implements a profiling frame-
work which provides instrumentation for profiling [86]. At present, LLVM does not perform any
optimizations that use the profiling information, but such optimizations can be easily added. The
profiler adds a counter to each control-flow graph edge, and the counter is incremented at run-
time each time that path is taken during program execution. Using this profiling framework, we

implemented NOP insertion as a new backend pass in LLVM 3.1.
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3.3 Evaluation

We performed all our tests on a 2.66 GHz Intel Xeon 5150 with 4GB of memory. We used Ubuntu

12.04 as the host operating system, running Linux kernel version 3.2.0.

3.3.1 Performance Evaluation

To evaluate the performance impact of our technique, we built and ran the SPEC CPU 2006 bench-
mark suite with our diversifying compiler. We used the test system described above to run the
benchmarks. We compiled all tests using the —~O2 optimization level. For the profile-guided diver-
sification tests, we collected profiling information by running SPEC on the train input set.These

inputs were designed specifically to provide an accurate profile for each program.

As the NOP insertion process uses a random number generator, there is some potential noise in
the measurement due to the performance differences between different randomized versions. To
account for this, we evaluated five different versions of each individual benchmark. We ran each

version three times and averaged the results.

Figure 3.3 shows the performance impact of NOP insertion, with and without using profiling in-
formation and for a few combinations of probability parameters. First, we evaluated pxop = 50%,
as this is the parameter that offers the maximum diversity; the number of possible versions of a
program is maximized at this value. However, smaller values of pxop can also provide sufficient
diversity, while also lessening the performance impact. For this reason, we also ran our tests with
pnop = 30%. To measure the impact of profiling, we evaluated three sets of probability ranges
for the profile-guided version of NOP-insertion: pxop = 25 — 50%, pnop = 10 — 50% and
pnop = 0 — 30%. In each range, the first parameter is the minimum probability that a NOP is
inserted, while the second parameter is the maximum probability. We used the logarithm-based

function to derive the per-basic block probability from the execution count.
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Figure 3.3: SPEC CPU 2006 performance overhead of NOP insertion.

Our results confirm that profiling has a significant impact on the performance overhead of NOP
insertion. The performance overhead is around 8% for pyop = 50% and a little less than 5%
for pnop = 30%, but profile-guided randomization reduces that to 2.5% for pxop = 10 — 50%
and 1% for pxop = 0 — 30% (a reduction factor of 5x compared to naive NOP insertion). For
the benchmarks where the NOP insertion overhead is highest (400.perlbench and 482.sphinx3),
profiling also has the highest impact. For the latter, the impact is reduced from 25% to 5% (for
prxop = 10—50%) or as low as 1% (for pyop = 0—30%). The 470.lbm benchmark has the smallest
overhead from NOP insertion; our measurements actually showed a very small performance gain
from NOP insertion (under 0.5%), which we attribute to measurement noise. As LLVM does
not currently perform any profile-guided optimizations, the performance gains come solely from

inserting fewer NOPs in frequently executed code.

Our results also show that both ends of the probability range have an equally significant impact on
the performance overhead of NOP insertion. A side-by-side comparison of pxop = 10 — 50% and
pnop = 25 — 50% shows that reducing the minimum probability from 25% to 10% decreased the

average overhead by half, as Figure 3.3 shows.
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3.3.2 Security Impact

We evaluated the security impact of our diversifying compiler by examining how it affects gad-
gets in diversified executables. We measured this by counting how many functionally equivalent
gadgets remain at the same location in the binary after diversification. Our comparison algorithm
(called Survivor) extracts the . text sections from executables after diversification and compares
them to the . text sections in unmodified original executables. Survivor scans through the sec-
tions, looking for common instruction sequences—candidate matches—ending in free branches
such as returns, indirect calls, or jumps. A candidate match is a pair of instruction sequences
with identical offsets; one from the original binary and one from the diversified one. For each
candidate, we ensure that both sequences decompile to valid x86 code having no control-flow in-
structions except a free branch at the end. The algorithm then compensates for the effects of our
diversifying transformations by removing all potentially inserted NOP instructions from both in-
struction sequences. Since this step potentially makes the two instruction sequences more similar,
our algorithm conservatively overestimates the number of gadgets surviving diversification. If the
normalized instruction sequences are equivalent, then the algorithm has identified the candidate as

a surviving gadget.

Using this strategy, we determined how many functionally equivalent gadgets exist at the same
location in a pair of executables. These two properties are a requirement for a code reuse attack
like ROP to work on multiple executables without modification. Because we used . text section
offsets and not absolute addresses, we were able to perform our analysis in an environment where

protections such as address space layout randomization (ASLR) [92] do not interfere with results.

We ran our surviving gadgets algorithm on 25 different versions of each SPEC CPU benchmark.
Table 3.3 shows the results of our scans. The benchmarks are sorted by total number of gadgets
in the original binary (the Gadgets Baseline column). Our scans show that, as the binary gets

larger and contains more gadgets, the effectiveness of randomization also increases. On the largest
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benchmark, 483.xalancbmk, which contains over half a million gadgets, only 0.05% of the origi-
nal gadgets survive (a reduction in gadgets of around 2000 ). The impact of profiling on surviving
gadgets is small, with the percentage of extra gadgets between 1% and 30% (473.astar is an out-
lier, as pxop = 0 — 30% gains a massive 254% extra gadgets; this is due to the large difference
between pxop = 50% and pnop = 30%, not from the profiling optimization itself). However, the
increase in surviving gadgets is 30% out of 0.05% of the gadgets available in the original undi-
versified binary. Finally, we note that 407.lbm is very small; the undiversified C library assembly
code is comparatively large to the program itself, increasing the relative percentage of surviving
gadgets. This could be easily fixed in practice by also diversifying the C library code. Overall, the

absolute impact of profiling on the number of surviving gadgets is negligible.

In practice, it is possible that the attacker is satisfied with successfully attacking some subset of
targets. To that end, they will try to find the largest subset of gadgets common to as many binaries
as possible, ignoring the undiversified program. To determine how much diversity there is in the
binaries, we measured how many gadgets survive at the same location in at least 2 (10% of the

population), 5 (20%) and 12 (50%) of the 25 versions. Table 3.4 shows the results of our scans.

The data provide several interesting insights. First, there are more gadgets in total in at least two bi-
naries than there are in the original, undiversified binary. This is because a gadget at offset O in the
original binary can be displaced to offset O; in some subset of binaries and to offset O, in another
subset. Therefore, the same baseline gadget is counted several times in the diversified population,
once for each offset. Second, adjusting pxophas a significant impact on gadgets surviving in at
least two binaries (for example, for 400.perlbench, going from pxop = 50% to pxop = 0 — 30%
increases the number of gadgets from 6,827 to 11,117, an increase of 62%). However, this is less
significant when looking at a larger subset of the population; although 471.omnetpp shows an
increase from 113 to 390 gadgets (a large percentual increase) surviving in at least five versions,
this is a very small increase compared to the initial number of gadgets in the binary. Third, we

observe that the number of gadgets surviving in at least half the binaries is essentially constant,
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regardless of the program size or diversification parameters. The remaining gadgets (around 40 in
total) come from the small C library object files that the linker adds to the binary (which we can

also diversify, given their source code).

To verify that profile-guided NOP insertion is effective against a concrete attack, we tested our
diversification on a vulnerable application. We picked a popular network-facing application (PHP
version 5.3.16) and ran two separate ROP gadget scanners to build ROP attacks against the undiver-
sified PHP binary. We used two publicly documented ROP attack frameworks: ROPgadget [102]

and microgadgets [56].

As a preliminary step, we verified that the undiversified PHP binary is indeed vulnerable to both
these attacks; with both scanners, the program contained enough gadgets to allow the attacker
to execute arbitrary code. Next, we built 25 diversified versions of the PHP interpreter, using
the highest-performance, lowest-security setting: pxop = 0 — 30%. We ran Survivor on each
diversified version, then re-ran both ROPgadget and the microgadgets scanner on the surviving
gadgets to verify the feasibility of an attack. On all diversified versions of PHP, a ROP-based
attack was no longer possible, as the remaining gadgets did not provide the required operations for

the attack.

Since there exists no standard profiler-friendly training input for PHP, we profiled several different
PHP programs, then built 25 diversified versions for each profile. We used several benchmarks
from the Computer Language Benchmarks Game [47]: binarytrees, fannkuchredux, mandel-
brot, nbody, pidigits, spectralnorm and fasta. Each benchmark stresses different parts of the
PHP interpreter (function calls, arrays, loop operations). None of the profiles produced any binary

that we could successfully attack, using either ROPgadget or microgadgets.
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Chapter 4

Librando: Transparent Code

Randomization for Just-in-Time Compilers

From their early beginnings, JIT compilers focused on producing code quickly. Usually, they
achieve this by optimizing the common case and forgoing time-intensive optimizations altogether.
As a result, this leads to highly predictable code generation, which attackers exploit for malicious
purposes. This is evidenced by the rising threats of JIT spraying [13] and similar attacks on sand-
boxes in JITs. The former is particularly interesting: JIT spraying relies on JIT compilers emitting
constants present in input source code directly into binary code. Due to variable length encoding,
attackers can encode and subsequently divert control flow to arbitrary malicious code arranged this

way.

This attack vector is innate and specific to JIT compilers. From a security perspective, the state-
of-the-art in the field is to address JIT spraying by encrypting and decrypting constants. This
addresses the code injection part of JIT spraying, but attackers can fall back on code-reuse tech-
niques. Specifically, return-oriented programming [106] for JIT compiled code is problematic. In-

stead of finding gadgets in statically generated code (as they would do an a generic return-oriented
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programming attack), an attacker uses the JIT compiler to create new binary code containing the
necessary gadgets by supplying specially crafted source code. The ubiquity of JIT compilers am-

plifies this security risk to such a degree that JITs become a liability.

Software diversity addresses code-reuse attacks by attacking its foundation: the software monocul-
ture. By diversifying the binary code, attackers cannot construct reliable attack code, because the
binary code layout differs for each end-user. Consequently, diversity increases the costs for attack-
ers, ultimately rendering them too costly. Unfortunately, existing approaches to artificial software
diversity do not protect code emitted dynamically by a just-in-time compiler. We address this
challenge by describing the first fully automatic technique to diversify existing JIT compilers in a
black-box fashion: librando. Similar to the successful frontend-backend separation in traditional
compilers, this black-box approach has the advantage over a white-box solution—where devel-
opers would manually add diversification directly to JIT compiler source code—of not requiring
duplicated work for every existing JIT compiler. Besides the obvious savings in implementation
time, the black-box approach allows for faster time-to-market for patches, without having to rely
on vendors to supply patches to known vulnerabilities. Another benefit is the added security for
legacy JIT compilers available only in binary form, where extra defenses cannot be added by

changing the source code.

4.1 Design

The librando library diversifies code generated by a JIT compiler. It reads all code emitted by the
compiler, disassembles the code, randomizes it, and then writes the randomized output to memory.

Figure 4.1 shows the structure of dynamically generated code, as a function call graph.

The library diversifies dynamically generated code under one of the following models (illustrated

in Figure 4.2):
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Figure 4.2: Black and white box diversification architecture.

Black box diversification with no assistance from the compiler (the compiler is a black box and
the library has no knowledge of compiler internals). The library attaches to the compiler and

intercepts all branches into and out of dynamically generated code, without requiring any

changes to compiler internals.

White box diversification with some assistance from the compiler (the library has some knowl-
edge of compiler internals). The code emitter notifies librando through an API when it starts
running undiversified code. The library provides the diversified code addresses to the com-
piler, and the compiler executes diversified code directly. We change all compiler branches
into emitted code to use the addresses returned by librando. This approach is intended as a

middle ground between the previous model and a manual implementation of randomization

for each compiler, and it requires that compiler source code is available.

As the first security measure, librando prevents execution of all code generated dynamically by the

compiler. Instead, the library disassembles the code into a control flow graph, diversifies every
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Undiversified

@0x100 CMP RAX, QWORD PTR [R13 - 40]
@0x104 JNE Ox11le6

@0x10A MOV RAX, 0x200

@0x114 JMP 0x120

Diversified

@0x30A CMP RAX, QWORD PTR [R13 - 40]
NOP [90]

@0x30F JNE 0x323

@0x315 MOV RAX, 0x200
NOP [66 90]

@Q0x321 JMP 0x330

Figure 4.3: Block contents and diversification example.

basic block in this graph, and then writes the diversified blocks to a separate executable area. All
branches (including function calls and returns) to the original undiversified code are redirected to
the diversified code (Figure 4.3 shows an example of a diversified block). While the undiversified
code remains available and writable, the compiler or HLL program cannot execute it anymore. The
library intercepts all memory allocation functions (the mmap function family on Linux) that return
executable memory, then removes the executable flag on all intercepted allocation requests. The
library also keeps an internal list of all memory allocated by these requests, and uses this list to

distinguish between accesses to undiversified code and all other memory accesses.

In the black box diversification model, the library transparently intercepts all branches to protected
blocks. To do this, we protect all undiversified code pages against execution, then catch all attempts
to execute these protected pages. The library installs a handler for the segmentation fault signal
(SIGSEGV in Linux), which is raised whenever a processor instruction attempts to access memory

it does not have permission for. Whenever the processor attempts to execute a non-executable
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page, it triggers a page fault in the MMU. The operating system handles this fault and calls our

SIGSEGV signal handler. The library then redirects execution to diversified code.

While static disassembly of binary code accurately is impossible in the general case [28] (due to
the need to distinguish code from data), dynamic disassembly is much simpler for one reason: we
only disassemble bytes that we are certain represent code. Our use of signals guarantees this: the
signal handler is always called when the JIT compiler executes an undiversified instruction at some
address, so the bytes at that address (and the entire block starting at that address) are guaranteed to
be code. The same is true for all blocks in the control flow graph containing that instruction, since

we follow direct branches to find more code.

We make a few simplifying assumptions about the emitted code that reduced our implementation

effort significantly:

No stack pointer reuse On the x86 architecture, the stack pointer register (RSP) is available as a
general-purpose register. The x86 64-bit ABI reserves this register for its intended purpose,
as stack register. However, compilers only need to follow the ABI when calling into external
libraries and system code; they can ignore its guidelines inside emitted code. Code emitted
by a JIT compiler might use another register to keep track of the HLL stack, and re-use RSP
for another purpose. Generally, JIT compilers do not do this in practice, so we assume that
this register always points to the top of a valid native stack. This allows both code emitted by
the compiler and by librando to use several stack manipulation instructions, such as PUSH,

CALL and RET.

No self-modifying code While it is possible for a JIT compiler to emit code that modifies itself,
this is usually not the case. We assume that only the compiler can modify code. Once emitted
code starts executing, it remains unchanged. This assumption simplifies our implementation,

as we only have to detect code changes originating in the compiler itself; therefore, we can
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safely discard old versions of modified code, without the risk of having to continue execution

inside discarded code.

Calls paired with returns Compilers often use the CALL x86 instruction for calls and RET for
the corresponding returns, but not always. The former pushes the return address on the
native stack and branches to a function, while the latter pops the return address and branches
to it. There are equivalent instruction sequences with the same behavior which a compiler
can use instead, perhaps to push/pop the return address to another stack. However, there
is a performance penalty from using these sequences, as modern processors use an internal
return address stack to improve branch prediction for CALL/RET pairs, and only for those
pairs. A compiler optimized for performance always uses this combination for function calls,
simplifying our implementation as well. Consequently, librando only needs to analyze and

rewrite these instructions when redirecting function calls.

Our technique diversifies code by relocating emitted code blocks, rewriting the code, and inserting
instructions. To preserve HLL program semantics, a diversification library must be transparent
to both the compiler and the compiled program. We identified several pieces of program state
which librando must preserve when rewriting code (related work [17, 76, 105] identifies a superset

of these for general-purpose dynamic binary rewriters):

Processor register contents including the flags register. The library inserts instructions that hold
intermediate values in registers. Also, some inserted instructions (like ADD and XOR) modify
the processor flags register. The library attempts to only add instructions that do not change
any registers or flags; where this is not possible, it temporarily saves the register(s) to the

stack, performs the computation, then restores the register(s).

Native stack contents Some JIT compilers use the native stack for HLL code, while others switch
to a separate stack when branching to HLL code. To support the former, the library must

preserve all contents of the native stack inside diversified code. This must be true not only
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during execution of dynamically generated code, but also during calls into the runtime, as
the runtime itself may read or write to the native stack. For example, the V8 runtime walks
the native stack during garbage collection to find all pointers to data and code. Changing
any such pointer or any other data on the stack leads to program errors and crashes. There-
fore, native stack contents must be identical when running with and without librando. This
includes return addresses; when a diversified function calls another diversified function, the
former must push the undiversified address on the stack. Figure 4.4 illustrates this transfor-
mation. The original call pushes the address of the next instruction on the stack, then jumps
to the called function. We replace it with a PUSH/JMP pair that pushes the undiversified
return address. There is one exception to this restriction: we consider any memory past the

top of the stack (below RSP) to be unused, so we use it to save registers.

Undiversified code instructions JIT compilers frequently emit code with temporary placehold-
ers, then later replace them with other instructions. The compiler usually uses fixed instruc-
tion sequences for these placeholders, so it first checks their contents before patching. In
other cases, certain instruction sequences are used to flag properties of emitted code. The
library cannot modify any of the original, undiversified code in-place, as it cannot distin-
guish between regular code and these placeholders. Even if the compiler never reads back
the former, it may read back and validate the contents of the latter, then crash or execute in-
correctly. The library is required to preserve the undiversified code at all times, as originally

emitted by the compiler.

POSIX signals Some JIT compilers (such as HotSpot) intercept POSIX signals and install their
own handlers. We intercept the SIGSEGV signal to catch execution and write attempts on
undiversified code, but pass all other signals (including SIGSEGV we do not handle) back

to the JIT compiler.
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Undiversified Diversified

@0x123456 foo: @QOxABCDEF foo':
@0x123784 CALL bar  __ __--- PUSH 0x123789
Q0x123789 .. 4---" JMP bar'

Q0x345678 bar: QOxBCDEF(Q bar':

Figure 4.4: Rewriting the CALL instruction.

4.1.1 Code Relocation

In our control flow graph, a block is a maximal continuous run of instructions, so that the block
ends in an unconditional branch instruction, but contains no such instruction inside. We also break
blocks at function calls (the CALL instruction) and returns, but not at conditional branches; a basic
block can have one or more conditional branches inside. However, we use one heuristic to split
blocks: whenever a block contains a number of consecutive zeroes over a given threshold, we
break the block after a small number of those zeroes. This is needed because compilers sometimes
emit code only partially (or lazily), initializing the remainder with zeroes. The compiler emits the
rest of the code at a later moment, after some event triggers generation of the missing code. We

implemented this heuristic to support the V8 compiler, which uses lazy code generation.

Many JIT compilers perform garbage collection on generated code, discarding unused code and
reusing that space for new code. The compiler will write and later execute this new code in place
of the old version. This happens frequently in the modern JIT compilers we investigated. We
detect such changes, discard the diversified versions of old blocks, then read the new blocks and

integrate them into the existing control flow graph. To detect all changes to a block, librando marks
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it read-only after diversification using the mprotect function on Linux. If the compiler writes to

the block later, the library allows the write to succeed, but marks the block as dirty.

The mprotect function has one significant restriction: it can only change access rights on zones
aligned to hardware pages; on x86, a page is 4096 bytes by default. There are several issues to
consider when using mprotect to protect a block. First, a single page may contain more than
one block. Second, a block may be spread across several consecutive pages. Third, for each page,
one or two blocks might cross its boundaries, one at each end. Figure 4.6 shows examples of all
three cases. Instead of marking a block as read-only, librando actually marks all pages containing
that block as read-only. However, those pages may contain other blocks that the compiler might

never modify.

After librando marks a page as read-only, the operating system starts notifying the library of all
writes to read-only pages. We also use POSIX signals to receive these notifications. The operating
system calls the SIGSEGV signal handler each time a processor instruction tries to write to a
protected page, as long as the page is protected. However, this occurs before the actual instruction
writes the data; we have to either emulate the instruction itself (while keeping the page read-
only), or make the page writable and allow the original instruction to execute. As emulating
x86 instructions correctly requires significant development effort, we choose the latter solution.
However, once we allow writes to a page, there is no way to catch each write to that page separately;
the processor will allow all writes to succeed without generating a page fault. At this point, the only
information available to librando is that at least one byte in that page may have been modified, but
nothing more. Therefore, we mark all blocks contained in a writable page as dirty. The next time
librando intercepts a branch to undiversified code, it checks all dirty blocks to verify that the VM
has actually modified their contents. The library only discards and re-diversifies changed blocks,
keeping unchanged blocks as they are. Figure 4.5 shows this process per block, in the form of a

finite state machine.
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Branch to block
Write to block Contents changed

. 7\

Clean Block Dirty Block Discarded Block
Read-only Readable+Writable No Rights

~~

Branch to block
Contents match

Figure 4.5: Per-block finite state machine that handles block changes.

- = - - ———— - = - - = —— - em wm = = = = —— - = - - ——

Page N-1 BN

Figure 4.6: Blocks spanning several memory pages and crossing page boundaries.

To check whether a block has been modified, the library compares the new contents of the block
against its original contents. However, this requires that two copies of each block be stored: the
original and current code. To save memory space, we do not store both copies in memory; instead,
each block stores a hash code of its original contents. Every time librando checks if a block has
been modified, it hashes the current contents of the block and compares the hash code to the one
stored in the block. If the hash codes match, librando assumes that the block has not been changed;
otherwise, it discards the block. While there is a very small possibility of collision (where the
contents of a block change, but the hash remains the same), we performed all our experiments
and benchmarks successfully with this optimization. A librando user has the option of disabling

hashing and verifying the entire contents of blocks, which guarantees correctness.

The user attaches librando to a JIT compiler in one of several ways: either by linking it (statically

or dynamically) to the compiler, or through the LD_PRELOAD environment variable on Linux. The
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latter mechanism preloads a library into a process at program start-up time, allowing the library to
override some of the program’s symbols. We used the latter approach in our evaluation, but the

former is preferred in an actual deployment for increased security.

4.1.2 Diversification

The main security benefits from librando come from rewriting the generated code. We propose two

rewriting techniques that harden the generated code against attacks.

NOP Insertion For our first randomization technique, we once again used Algorithm 1 from
Chapter 3. In contrast with 3, we used another set of instructions: the smallest three NOPs from
the set of canonical NOPs recommended by the Intel architecture manual [58]: 90, 66 90, and
OF 1F 00. This changes makes the distribution of the NOP-induced displacement (how far from
its original location an instruction is) more uniform, at a minor cost in security (the attacker can

now jump into the middle of the 2- and 3-byte NOPs).

Constant Blinding We previously described JIT spraying as an example of a code injection at-
tack against JIT compilers. In general, these attacks rely on the compiler emitting native code that
contains some binary sequence from the source-program as-is. In the particular case of JIT spray-
ing, this sequence is a set of 32-bit constants emitted as immediate operands to x86 instructions.
Recently, JavaScript compilers have started to implement their own defensive measures particular
to this attack [101]. There are two ways that a HLL program value winds up in the executable
code region: the compiler stores the value either close to the code (without executing it as code),
or as an immediate instruction operand. In the former case, NOP insertion shifts the location of
the value by a random offset, making its location hard to guess. For the latter case, there is one

simple solution based on obfuscation: emit each immediate operand in an encrypted form, then
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Undiversified
MOV EAX, 0x12345678

Diversified Randomized value
PUSH RS8

MOV EAX, O0xBlAABS59C
MOV R8D, 0x6089A0DC
LEA R8D, [R8D + EAX]
MOV EAX, RS8D

POP RS8

{ Randomization cookie

Figure 4.7: Blinding the immediate operand of an instruction.

12345678h is replaced with BIAAR59Ch+6089A0DCh (modulo 23?).

decrypt its value at run-time using a few extra instructions. We pick a random value (a cookie) for
every operand, blind the operand using the cookie, emit the original instruction with the blinded
immediate, then emit the decryption code. While other implementations use an XOR operation for
encryption, we do not use it since it alters the arithmetic flags, so librando would have to save them.
Fortunately, the processor provides an addition instruction that leaves the flags intact: LEA. There-
fore, we blind the original value by subtracting the cookie from it, then add an immediate-operand

LEA to add the cookie back. Figure 4.7 shows an example of this transformation.

The x86 architecture supports 8-, 16-, 32- and 64-bit immediate values for many instructions. We
encountered only the latter two types in most code we analyzed, so we implemented only these
sizes; the others can be trivially added. Table 4.1 shows all x86 instructions that accept a 32-
bit immediate. There is only a single instruction that accepts a 64-bit immediate (the REX.W +
B8 encoding of MOV). Every time librando encounters one of these instructions, it transforms the

instruction to the equivalent encrypted sequence. Each instruction from Table 4.1 was sufficiently
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Operation Form Opcode

MOV MOV EAX, imm32 B8
MOV ECX, imm32 B9
MOV EDI, imm32 BF
MOV reg, imm32 c7
PUSH PUSH imm32 68
IMUL IMUL reg, reg, imm32 69
TEST TEST EAX, imm32 A9
TEST reg, imm32 E7
Arithmetic op reg, imm32 81
ADD EAX, imm32 05
OR EAX, imm32 0D
ADC EAX, imm32 15
CMP EAX, 1imm32 3D

Table 4.1: x86 instructions with 32-bit immediate operands.

The arithmetic class contains ADD, ADC, SUB, SBB, AND, OR, XOR and CMP.

different from the others, so we implemented different blinding code manually for each type of

instruction.

4.1.3 Optimizations

Intercepting branches to all generated code and rewriting their contents has a cost in program
performance, as our evaluation will show. We propose several optimizations to our approach to

reduce this cost as much as possible.

The Return Address Map One of the restrictions of our design was transparency of the na-
tive stack. Even when executing diversified code, the native stack must have the same contents
as it would have under undiversified code. We meet this requirement through one change: we
rewrite call instructions to push undiversified return addresses on the stack, as shown in Figure 4.4.

However, this has one significant drawback: the later RET matching the replaced call pops the

48



Undiversified Diversified

# Load return address into RDI
MOV RDI, DWORD PTR [RSP]
CALL RAM lookup

# If lookup did not return a diversified address

# then keep the original
RET —> CMP RAX, RDI
JE return

# otherwise, replace the undiversified return address
MOV DWORD PTR [RSP], RAX

return:
RET

Figure 4.8: Rewriting the RET instruction to use the Return Address Map.

undiversified address and branches to it. Since this address is now non-executable, this generates
a page fault and a call to our signal handler. As the STGSEGV handler is called after the processor
interrupts the execution of another instruction, the operating system saves a lot of processor state
before calling the handler; this makes signal handlers very slow. For this reason, RET instructions

in diversified code are also expensive.

To improve performance, we prevent the STGSEGV signal from being triggered. We rewrite return
instructions, adding code to handle the case when the return address is in undiversified code that
also has a corresponding diversified address. In as few instructions as possible, the diversified
RET instruction now looks for the return address in a data structure that maps undiversified to
diversified addresses (we call this data structure the Return Address Map). 1f an entry is found,
execution continues in diversified code; otherwise, the original address is used as-is. Figure 4.8

shows how this optimization rewrites the RET instruction.

We store the address mapping in a hash map. We require a data structure that supports three
operations: lookup, insertion and removal. The library adds the addresses of a block to the map
whenever it diversifies the block, then removes the addresses when it discards the block. One

significant factor in the choice of data structure is that lookups are far more frequent than the other
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operations (every RET performs a lookup), so the data structure implementation must perform the
former as efficiently as possible. We use a cuckoo hash map for this goal [89], as it provides both
fast constant-time lookups (we implemented a lookup function in 28 lines of assembly code) and

good memory utilization.

As returns are essentially just indirect branches (a pop followed by a branch to the popped value),
we also use this data structure to optimize all other indirect branches. We extend the map to all
basic block addresses (not just return addresses), then prepend hash map lookups to all branches
with unknown targets (where the target is not a direct address, but one loaded from a register or

memory).

White Box Diversification With the Return Address Map handling all diversified-to-diversified-
code indirect branches, and the rewriting of all direct branches to target diversified code, the signal
handler only intercepts branches entering or exiting the diversified code (mainly the compiler and
the language runtime). Some HLL programs make many calls to the runtime (either explicitly as
function calls, or implicitly through language features or inline caches), so the overhead from the
signal handler remains significant. This overhead is difficult to reduce without making changes
to the compiler itself, so the next step in optimization is white box diversification. Under this
model, librando provides an interface to the compiler, which the latter uses to notify the former of
branches to generated code, with the goal of avoiding the signal handler. JIT compilers frequently
have one or a few centralized places in their source code that all jumps to generated code pass
through; by manually inserting calls to librando in these few places, we can significantly reduce
the overhead of compiler-to-undiversified-code jumps. For example, we identified a single function
in V8 (called FUNCTION_CAST) that returns the memory address of a JavaScript function; by
inserting a single line that calls librando from FUNCTION_CAST, we completely intercepted all

indirect jumps and function calls from V8 to generated code.
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Function Description

rando_redirect (addr) Diversifies (if needed) the code starting at addr
and returns the diversified address

rando_hash_return () Checks the return address of the current function
and replaces it with the diversified equivalent

Table 4.2: Application Programming Interface provided by librando.

In many cases, functions in the language runtime are implemented in a host language such as
C; generated code calls these functions directly (using the CALL instruction), and control flow
returns from the runtime to generated code not through explicit branches, but through function
returns. A host language compiler (gcc, for example) generates these returns automatically, so we
cannot manually insert calls to librando for all of them. Also, programs written in a higher-level
language usually do not have direct access to the native stack, so they cannot change the return
address through host language code. For this reason, we implemented a compiler-level extension
for LLVM that adds a new function attribute—-rando_hash_return. The compiler adds calls to
librando at the return sites of all functions marked with this attribute; whenever such a function
returns, librando checks whether the function returns to undiversified code or not. As there is no
automatic analysis that can determine whether a runtime function is called from the runtime or not,
the librando user has to find all functions that can be called from generated code and manually add

this flag to all of them'.

Table 4.2 shows the two operations that librando provides to the compiler. Using only this small

API, most (if not all) invocations of the signal handler disappear.

"Most such functions in V8 are defined using a macro called RUNT IME_FUNCTION, so we easily added the flag
by searching for all uses of this macro.
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4.2 Evaluation

We implemented librando as a dynamic library for Linux and loaded it into compilers using the
LD_PRELOAD mechanism. We evaluated the performance impact of librando on two JIT compilers:
V8 (the JavaScript compiler included in the Google Chrome browser) and HotSpot (the Java client
compiler from Oracle). We ran all benchmarks on a 2.2GHz Intel Xeon E5-2660 system with 32

GiB of memory, running Ubuntu Linux with kernel version 3.2.0.

First, we benchmarked V8 using the benchmark suite included with the compiler. These bench-
marks stress different parts of the compiler (integer operation optimizations, floating points op-
timizations, inline caches, regular expression implementation) differently, and the overhead of
librando varies accordingly. We sought to determine the performance impact of control flow rewrit-
ing (without diversification), our proposed optimizations, as well as the diversification techniques.
We first tested librando under the black box model without optimizations or randomizations, and
gradually added them one by one in the following order: the Return Address Map (RAM),
NOP insertion, then constant blinding. We then implemented white box randomization by manu-
ally changing V8 to interact with librando (we changed 70 lines of code in total), then ran all the

benchmarks again to measure the effects of this interaction.

Figure 4.9 shows the results of our tests. The benchmark suite reported both a per-test score, as
well as the geometric mean of all benchmarks (the Total column). The overall impact of librando
on the V8 benchmark suite is around 3.5x, with all optimizations and randomizations enabled;
without randomizations, this overhead is approximately 2.7x. This overhead is not uniform across
all benchmarks; NavierStokes, for example, shows an overhead between 1.2x and 1.4x. The
fastest benchmarks (as well as the second best-performing one, Crypt o) have a similar structure
where the impact of our approach is small: nested loops of primitive numeric operations, where
the types of variables are mostly static (either integers or numbers). Most of the time spent in

these benchmarks is in a highly-optimized loop that does not branch or call outside the loop.
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The V8 compiler emits very well optimized code once for such structures, then executes it for a
substantial amount of time. Primitive operations are implemented directly as native instructions,
so they contain very few calls to the runtime. Compared to Chapter 3, 50% NOP insertion on V8
has a larger overhead of about 30%. This is more consistent with the SPEC CPU results for the
400.perlbench benchmark, which is also an implementation of a dynamically typed language.
This leads us to believe that profile-guided NOP insertion could also have a significant impact on

V8.

Second, we benchmarked the HotSpot client compiler for Java, using the Computer Language
Shootout Game benchmarks [47]. Figure 4.10 shows the per-benchmark slowdown factor for each
benchmark, as well as the geometric mean over all four tests. Note that the overall slowdown
is smaller for HotSpot; the main cause for this is that Java is a statically typed object-oriented
language, where the data types of values are known ahead-of-time. While Java object instances
can have different types at runtime (based on the program class hierarchy), primitive values have
fixed types and primitive operations can be emitted very efficiently on the first attempt. HotSpot
needs to collect substantially less type information than V8, as so much is already available, so
it requires a lot less time to fully optimize a program. In our Java benchmarks, we see the same
behavior we saw in the NavierStokes test for V8. We see an average slowdown of about 1.08 x
(a percentual slowdown of 8%) for rewriting and around 1.15x (15%) with full diversification (a
total NOP insertion overhead under 7% is comparable to our results from Chapter 3). However,
as the impact of rewriting is now much smaller, we start to notice a significant impact from NOP
insertion. Since so much of the benchmarks’ execution time is now spent in a very small loop (a
few instructions in length), every extra instruction starts to count. On fannkuchredux, NOP

insertion at pyop = 0.5 almost triples the overhead (from 15% to almost 40%).

In addition to these tests, we also ran the same benchmarks on V8 and HotSpot without the Return
Address Map optimization. V8 showed an average slowdown factor of 50x (with a maximum

of 232x for EarleyBoyer), much higher than the 2.7x slowdown for the optimized version.
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Figure 4.10: HotSpot benchmark results for librando.

The impact on HotSpot is less severe (about 1.6x slowdown without RAM as opposed to 1.08 x
with it), but still substantial. The Return Address Map optimization is crucial to librando
performance. However, we leave further enhancements to our choice and implementation of data
structure (cuckoo hash with hand-implemented lookup) to future work, as some of our experiments
showed that there is still room for some improvements. We ran the Language Shootout benchmark
binarytreesredux (arecursive binary tree implementation in Java that makes extensive use
of function calls) on HotSpot and observed a slowdown of approximately 70x, even with the RAM
optimization enabled. Further profiling of both this benchmark and all V8 benchmarks showed
that around 25% of time spent inside librando takes place inside the RAM lookup function, even

with our optimized implementation (28 assembly instructions in total).

Overall, the performance impact depends greatly on the structure and goal of the HLL program,
but also on features of the HLL. As we have shown, a statically typed but just-in-time-compiled
language has much lower diversification overhead than a dynamically typed program. Another

factor to account for is the ratio of time spent in generated code versus time spent in the compiler
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or runtime. This technique has higher overhead when new code is generated with high frequency
(as is the case with dynamically typed languages), and on other transitions from generated code to
the outside. However, synthetic CPU-bound benchmarks are not completely representative of the
average workload of a JIT compiler; these benchmarks perform very little input/output operations,
and the time spent in the few such operations is small. In contrast, real-world code interacts much
more with the rest of the system, and also makes much more use of external libraries. When the
execution time of a program is dominated by input and output, or by calls to libraries, the overhead
should be much smaller. Our results show an upper-bound for this overhead. This upper-bound
is also not necessarily significant in a real-world application; for example, we linked the Chrome
browser to librando and used it to visit various web pages, some only containing static content and

some using JavaScript heavily. We observed no noticeable degradation in browsing experience.
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Chapter 5

Readactor: Execute-only Pages for JIT

Compilers

Dynamically generated code, either from a JIT compiler like V8 or from a dynamic rewriter like
librando, changes frequently. As Figure 2.2 shows, code generators allocate their code cache with
RWX page rights to avoid having to frequently change page permissions. This creates a significant

security hole that attackers can exploit [111].

Another problem presents itself in information disclosure attacks. Even if the attacker cannot di-
rectly tamper with the code cache, he or she can direct the compiler to compile attacker-controlled
source code which generates predictable native code. Applying diversification on this native code,
e.g., using librando as presented in Chapter 4, is not sufficient against an attacker who can sim-
ply read the code and undo all diversifying transformations (especially when the attacker can run
arbitrary HLL code, such as JavaScript). Therefore, the next step to securing JIT-compiled code
against attackers is to hide the code from the attacker, allowing the execution of this code but pre-
venting anyone from reading it. Researchers have recently proposed several approaches to hiding

executable code from attackers—XnR [6], HideM [49] and Readactor [34]. These approaches
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mainly (but not exclusively) focus on hiding statically compiled code, leaving dynamically com-
piled code as future work. In this chapter, we present the design and implementation of code hiding

for the code cache of the V8 JavaScript compiler, as part of Readactor.

5.1 Readactor Design

We implemented our work as part of the Readactor project, described in greater detail in [34].
Readactor is a code-hiding hypervisor that uses hardware virtualization extensions to prevent
read access to code pages, while still allowing their execution. Figure 5.1 shows the high-level
overview of this project, which consists of a modified ahead-of-time compiler that generates special
(readacted) hardened execute-only binaries, and a modified Linux kernel that runs these binaries.
Readactor completely separates read-only program data (such as global constants) from executable
code, and stores the latter in execute-only pages. The compiler also performs additional hardening
transformations, which are beyond the scope of this discussion. In this dissertation, we focus on
adding support for dynamically generated code to Readactor. To secure JIT compilers against
information disclosure attacks, developers must either manually add support to the compiler for

execute-only pages, or use a black-box approach such as librando.

The second component of Readactor, and the one that is relevant to our changes, is the hypervisor.
This is the operating system component that enforces execute-only permissions on code pages, pre-
venting attackers from accessing program code. Figure 5.2 shows the structure and operation of the
hypervisor. It sits between the operating system and the system memory management unit (MMU),
enforcing the execute-only permissions for protected pages on every memory access. When the
operating system (OS) loads a readacted program, the OS maps the data pages of the program as
regular pages, but maps the code pages as execute-only in collaboration with the hypervisor. We

later discuss how the hypervisor and operating system distinguish between regular and readacted

pages.
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The hypervisor is currently implemented as a Linux kernel module that implements a minimal
pass-through hypervisor. This design is required as Readactor uses a modern virtualization feature
in Intel processors called Extended Page Tables (EPTs)!. EPTs allow us to map pages as execute-
only, but they are only available under a processor mode known as VMX non-root mode (the mode
usually used to run guest virtual machines). At boot time, the processor starts in root (or host)
mode, so Readactor switches the entire system to non-root (guest) mode. Alternatively, Readactor
can be implemented as a modification to current hypervisors that support EPTs (such as Xen [120]

or VMWare [115]).

EPTs add an extra layer of translation during the translation process from virtual to physical ad-
dresses. After the MMU translates virtual addresses to physical ones (more specifically, guest
physical addresses), it performs a second translation from guest physical addresses to host phys-
ical addresses. The EPTs specify the details of this second-level translation. This is generally
useful for virtualization, but Readactor uses this feature for code protection. Unlike the regular
paging translation mechanism, which does not contain a readable/non-readable permission bit for
memory pages and thus force any accessible page to be readable, EPTs provide such a bit and
enforce it. If this bit is not set in an EPT for a memory page, then that page is not readable by

software. Figure 5.3 illustrates how the guest-to-host physical pages are mapped.

The OS-application interface of Readactor is simple: the operating system provides execute-only
pages to applications on demand, e.g., when the application calls mmap on Linux, as well as
allow the application to change page permissions at will. Existing OS interfaces trivially support
this, so no new system calls or other interfaces are required. However, since Readactor split page
permissions between the regular page tables and the EPTs, the operating system and the hypervisor
must collaborate to keep the two sets of tables synchronized, even when applications frequently

change permissions. We investigated two different ways of performing this synchronization:

' AMD processors implement a similar feature under the name Rapid Virtualization Indexing.
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Method A maps each guest physical pages to a single host physical page using the identity map-
ping. Whenever the OS needs to change permissions on a physical page, it asks the hypervi-
sor to update the EPT for that page and set or clear the readable bit. For every update, there
is a transition from the OS into the hypervisor and back (in Intel terminology, the system

switches to VMX root mode and back).

Method B maps each host physical page twice as two guest physical pages (one with full access
rights, and one execute-only), and let the OS pick between the two. More specifically, we
map the entire host physical address space once in the guest with full rights and once as an
execute-only space. With this approach, the hypervisor never has to change the EPTs, so
no transitions between the OS and hypervisor are required. There is one disadvantage to
this approach: it reduces the maximum allowed system memory in half. Modern Intel pro-
cessors support physical addresses of 36/39/40/48 bits, which correspond to maximum sizes
of 64GB/512GB/1TB/256TB. While some older processors still use the smallest address
size and there are currently systems with enough physical memory to use all address bits,
newer processors support far more memory than any current system contains, so reducing

the address space in half is acceptable.

For statically compiled programs, early Readactor experiments showed the two approaches to
be identical in performance, as the only time a program changes the permissions on executable
pages is at loading time. However, JIT compilers frequently change page permissions on the code
cache (switching between writable and executable permissions), so the synchronization strategy
can have a large impact on performance. Section 5.3 discusses this impact and shows the results

of our evaluation on both approaches.

To support execute-only pages, dynamic code generators can use the existing memory alloca-
tion mechanisms, with only a small change in memory allocation policy. The following section
discusses all additional challenges we encountered when adding execute-only support to a JIT

compiler.

60



AN Readacted
Source Application @
Code -
Y A\
¢ Readactor Compiler Readacted Process
ead-write | Execute-only
B Read-write | E |
4 N\ |
Code-data separation Data | | Code
L ) page 1 1> <> page 1
p & < : : Trampolines :
o <>
Code diversification Data T Code
pagen | | page n
Code-pointer hiding Kernel with Readactor Patch
L ) using Page Table Virtualization (EPT)

Figure 5.1: Readactor system overview.

Our compiler generates diversified code that can be mapped with execute-only permissions and
inserts trampolines to hide code pointers. We modify the kernel to use EPT permissions to enable
execute-only pages.

5.2 V8 JIT Compiler Protection

To make Readactor practical and comprehensive, we extended our execute-only memory to sup-
port dynamically compiled code. This section describes how this was achieved for the V8 JavaScript
engine which is part of the Chromium web browser. We believe that the method we used gener-
alizes to other JIT compilers (this generalization could be performed manually for every JIT, or

automatically using a solution like librando).

Modern JavaScript engines are tiered, which means that they contain several JIT compilers. The V8
engine contains three JIT compilers: a baseline compiler that produces unoptimized code quickly
and two optimizing compilers called CrankShaft and TurboFan. Having multiple JIT compilers
lets the JavaScript engine focus the optimization effort on the most frequently executed code. This

matters because the time spent on code optimization adds to the overall running time.
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Figure 5.2: Readactor hypervisor overview.

Readactor uses a thin hypervisor to enable the extended page tables feature of modern x86 pro-
cessors. Virtual memory addresses of protected applications (top left) are translated to physical
memory using a readacted mapping to allow execute-only permissions whereas legacy applica-
tions (top right) use a normal mapping to preserve compatibility. The hypervisor informs the
operating systems of access violations.
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Figure 5.3: Relation between virtual, guest physical, and host physical memory.

Page tables and the EPT contain the access permissions that are enforced during the address trans-
lation.

JIT engines cache the generated code to avoid continually recompiling the same methods. Fre-
quently executed methods in the code cache are recompiled and replaced with optimized versions.
When the code cache grows beyond a certain size, it is garbage collected by removing the least
recently executed methods. Since the code cache is continually updated, JIT compilers typically
allocate the code cache on pages with RWX permissions. This means that, unlike statically gen-
erated code, there is no easy way to eliminate reads and writes to dynamically generated code

without incurring a high performance impact.

We apply the Readactor approach to dynamically generated code in two steps. First, we modify the
JIT compilers to separate code and data in their output. Other V8 security extensions [4, 87, 111]
require this separation as well to prevent code injection attacks on the code cache, and Ansel et
al. [4] also implement it. Second, with code and data separated on different pages, we then identify
and modify all operations that require reads and writes of generated code. The following sections
discuss these two steps in greater detail. Figure 5.4 shows the permissions of the code cache over
time after we modified the V8 engine. Our changes to the V8 JavaScript engine adds a total of

1053 new lines of C++ code across 67 different source files.
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Figure 5.5: Transforming V8 Code objects to separate code and data.

5.2.1 Separation of Code and Data

The unmodified V8 JIT compiler translates one JavaScript function at a time and places the results
in a code cache backed by pages with RWX permissions. Each translated function is represented
by a Code object in V8 as shown on the left side of Figure 5.5. Each Code object contains the

generated sequence of native machine instructions, a code header containing information about the

machine code, and a pointer to a Map object common to all V8 JavaScript objects.
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To store Code objects on execute-only memory pages, we move their data contents to separate data
pages and make this data accessible by adding new getter functions to the Code object. To secure
the code header, we move its contents into a separate CodeHeader object located on page(s) with
RW permissions. We add a getter method to Code objects that returns a pointer (code_hdr_ptr)
to the CodeHeader object. Similarly, we replace the map pointer (map_ptr) with a getter that
returns the map pointer when invoked. These changes eliminate all read and write accesses to
Code objects (except during object creation and garbage collection) so they can now be stored in

execute-only memory; a transformed Code object is shown on the right side of Figure 5.5.

5.2.2 Switching Between Execute-Only and RW Permissions

With this separation between code and data inside Code objects, we guarantee that no JavaScript
code needs to modify the contents of executable pages. However, the JIT compiler still needs
to change code frequently. As Figure 5.4 shows, execution alternates between the compiler and
JavaScript code, and changes to code can only come from the compiler. We have identified a

variety of reasons why V8 would make such changes:

Function optimization occurs when a function is frequently executed and the compiler is able
to gather significant execution information about it, V8 compiles a new, optimized version
of the function, using the collected information. The unoptimized function is replaced in
memory with the new version, and all references to the old function are updated. At some
later point, the compiler might have to resume execution of the unoptimized version of the
functions if an assumptions made during optimizations did not hold. This step is called de-
optimization. During optimization and deoptimization, the compiler patches the old version

of the function to transfer control to the new one, requiring write access to the former.

Garbage collection is a feature of many programming languages where the execution environ-

ment takes care of automatically releasing memory blocks when they are no longer used,
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as opposed to requiring the programmer to write code that releases them. For Code ob-
jects, V8 uses a mark-and-sweep [79] garbage collector. A mark-sweep collector operates
in two stages: the marking step iterates through all objects reachable from a known set of
roots, marking them as live, while the sweeping step frees all dead objects and relocates the
live ones to new code pages. In addition, the V8 collector uses a stop-the-world algorithm,
meaning that no JavaScript code can run during collection. This allows us to safely re-map
all executable pages as RW before garbage collection, run the collector, then re-map the

pages as execute-only.

Code aging is an additional memory optimization that V8 performs allowing it to save some of the
memory used by Code objects: code aging. Infrequently-run functions that survive several
consecutive collection cycles are collected and their entry points replaced with stubs that
trigger recompilation. The next time such a function is called, control flow transfers back to
the JIT compiler so it may compile the function on-demand. This optimization adds an extra
field to the Code object header for the code age of a function, and the garbage collection

uses this field to keep track of which functions to release.

Inline caches are an optimization frequently used by JIT compilers to speed up slow lookups [40].
Whenever generated code needs to perform a lookup for some property of an object, e.g., its
type or the implementation of a function, the JIT compiler optimizes this lookup by caching
the parameter and result of the last successful lookup, and reusing the cached value for the
next lookup if the parameter matches, avoiding a call to the expensive lookup function. In
most implementations of inline caches, both the parameter and result are stored directly in
the code (for performance reasons), so on every cache miss the lookup function has to patch
the inline cache code with the new values. The lookup functions are all located inside the
compiler runtime; we manually modified all of them to re-map the patched code as RW,

patch it, then map it back as executable.
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Relocation information relocates not only the object itself, but also other objects with addresses
embedded inside the current Code object. The latter information is modified during garbage
collection, as well as function optimization. Some of the relocatable addresses are stored as
immediates inside native instructions, so changing them requires modifying the code itself.
Whenever an object contains references that must be changes, we re-map it as writable and
make the needed changes. In most cases, these changes occur during garbage collection, so

all executable objects have already been re-mapped.

Debugging breakpoints are used by the integrated V8 JavaScript debugger and require patching
the generated code to stop execution at precise instructions and return control to the JIT

compiler.

Completely eliminating code writes from the compiler would require a significant refactoring of
V8 (due to extensive use of inline caches, relocations and recompilation, which are hard to com-
pletely eliminate), as well as incur a significant performance hit. Instead, we observe that the
generated code is, at any point in time, either executed or suspended so that it can be updated.
During execution, we map code with execute-only permissions, and when execution is suspended,
we temporarily remap it with RW permissions. For both performance and security reasons, we
minimize the number of times we re-map pages, as well as the length of time a page stays acces-
sible. Each time a Code object becomes writable, it provides a window for the attacker to inject

malicious code into that object.

67



5.3 Evaluation

5.3.1 Performance

We evaluated the performance impact of our changes to the V8 JavaScript engine, as well as
the overhead of running the JIT compiler under Readactor. To get a more accurate sample, we
benchmarked the V8 engine alone, outside of the browser. As we discussed in Section 5.1, there
are two different ways of implementing page permission operations at the hypervisor level. We

implemented and evaluated V8 performance for both approaches.

Table 5.1 shows the results of our evaluation when using Method A (forwarding changes to the
hypervisor, which modifies the EPTs for every change). The performance hit from this approach
proved prohibitive, with an average of 97x over all benchmarks and a maximum of 2015x for the
DeltaBlue benchmark. Further investigation showed two main sources of the overhead : repeated
transitions from the operating system to the hypervisor and back, which required two CPU mode
transitions (from non-root mode and back), and TLB flushes, which have a significant performance
impact on the entire system. This impact is not as severe for regular page tables, as changing one
entry only causes that entry to be flushed. On the other hand, changing an EPT entry causes the

entire TLB to be flushed.

After implementing Method B, we ran the performance benchmarks again. Figure 5.6 shows
the results of this evaluation. We see small to negligible overhead for most benchmarks, with the
exception of two benchmarks which put significant pressure on the memory allocator: EarleyBoyer
and Splay. Both benchmarks allocate large numbers of temporary objects and trigger frequent
garbage collection cycles, which become much more expensive due to our repeated re-mapping
of pages. For another benchmark—Richards—we observe a very small speedup of 1%, which we
attribute to measurement noise. Overall, the performance penalty of our changes comes to 6.2%

when running natively and 7.8% with Readactor enabled.
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Benchmark Vanilla Readactor Slowdown
Richards 17669 190.00 93x
DeltaBlue 33449 16.60 2015x
Crypto 18048 283.00 63x
RayTrace 32856 66.90 491x
EarleyBoyer 20776 577.00 36x
RegExp 2397 5.62 426x
Splay 1662 41.70 39x
NavierStokes | 16817 7306.00 2.3x
Total Score 12191 125.00 97x

Table 5.1: V8 benchmark performance impact of Method A.

40
;\3 Modified
S 30 BN Modified + Readactor
2
o
©
3
S 20
(O]
-
(4]
g 10
: | |
d'f 0 - - I .

U\ o o o
O(* Oe\\'& (\G 6@{\6(6\ ?\0\\( ?\eQ ?'\\Q\(\ %9660@

Figure 5.6: Performance of modified V8 running under Readactor.

Performance impact is relative relative to a vanilla build and to a modified build running natively.
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5.3.2 Security

Readactor prevents JIT-spraying as well as any attack that attempts to identify useful code in the
JIT-compiled code area through direct memory disclosure. We achieve this by marking the JIT
code area as execute-only and use V8’s built-in coarse-grained randomization (similar to ASLR).
Hence, the adversary can neither search for injected shellcode nor find other useful ROP code
sequences. On the other hand, given V8’s coarse-grained randomization, it is still possible for the
adversary to guess the address of the injected shellcode. To tackle guessing, as well as all other
attacks, we can either manually implement finer-grained randomization in V8 or use librando (we

leave this as future work).

To demonstrate the effectiveness of our protection, we introduced an artificial vulnerability into
V8 that allows an attacker to read and write arbitrary memory. This vulnerability is similar to a
vulnerability in V82 that was used during the 2014 Pwnium contest to get arbitrary code execution
in the Chrome browser. In an unprotected version of V8, the exploitation of the introduced vul-
nerability is straightforward. From JavaScript code, we first disclose the address of a function that
resides in the JIT-compiled code memory. Next, we use our capability to write arbitrary memory to
overwrite the function with our shellcode. This is possible because the JIT-compiled code memory
is mapped as RWX in the unprotected version of V8. Finally, we call the overwritten function,
which executes our shellcode instead of the original function. This attack fails under Readactor,
because the attacker can no longer write shellcode to the JIT-compiled code memory, since we
set all JIT-compiled code pages execute-only. Further, we prevent any JIT-ROP like attack that
first discloses the content of JIT-compiled code memory, because that memory is not readable.
We tested this by using a modified version of the attack that reads and discloses the contents of
a code object. Readactor successfully prevented this disclosure by terminating execution of the

JavaScript program when it attempted to read the code.

2CVE-2014-1705
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Chapter 6

Related Work

6.1 Software Diversity

Software diversity is one strategy to defend against code reuse attacks. Cohen was first to explore
program protection using diversity [28]. Forrest at al. [43] later demonstrated stack-layout random-
ization against stack smashing (an idea most recently revisited by the StackArmor project [25]).
DieHard [9] is an implementation of software diversity targeted at memory errors. By randomizing
the layout of the application heap, DieHard provides probabilistic protection against attacks like
heap buffer overflows and double frees. As memory randomization focuses on a different stage of

an attack from code randomization, the two techniques complement each other.

The idea of software diversity was originally explored as a way to obtain fault-tolerance in mission
critical software. Approaches to software fault-tolerance are broadly classified as single-version
or multi-version techniques. Early examples of the latter kind include Recovery Blocks [98] and
N-Version programming [5] that are based on design diversity. The conjecture of design diver-
sity is that components designed and implemented differently, e.g., using separate teams, different

programming languages and algorithms, have a very low probability of containing similar errors.
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When combined with a voting mechanism that selects among the outputs of each component, it
is possible to construct a robust system out of faulty components. Since design diversity is only
increased at the expense of additional manpower, these techniques are far too costly to see ap-
plication outside specialized domains such as aerospace and automotive software. The remaining
techniques we will discuss aim to provide increased security, and are fully automatic and thus rel-
evant to a greater range of application domains. This means that diversity is introduced later in the

software life-cycle by a compiler or binary rewriting system.

The life-cycle of most software follows a similar trajectory: implementation, compilation, linking,
installation, loading, executing, and updating. Variations arise because some types of software,
typically scripts, are distributed in source form. Some approaches are staged and therefore span

multiple life-cycle events; we place these according to the earliest stage.

The most convenient stage at which randomization can be perform is the compilation stage. At
that point in the program life-cycle, enough information about the program is available that a wide
range of randomizations can be performed, while much of this information is later lost. Jackson
et al. [60] discuss the many possible randomizations that a diversifying compiler can perform:
NOP insertion, instruction schedule randomization, basic block reordering, randomized register
allocation. However, this approach requires that program source code is available, and binaries

can be recompiled from this source.

Giuffrida et al. [50] evaluate a comprehensive, compiler-based software diversifier that allows live
re-randomization of an operating system micro-kernel. The resulting binaries contain pre-linked
LLVM bitcode as well as native machine code. During re-randomization, the host system periodi-
cally compiles a new program variant from the bitcode. The newly created variant includes meta-
data to migrate the program state from the old to new program variant. Finally, a re-randomization
daemon uses the meta-data to transfer the state from the old process to its newly spawned coun-
terpart. Frequent re-randomization may render any knowledge gleaned through memory disclo-

sure useless. However, the entire JIT-ROP attack can run in as little as 2.3 seconds while re-
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randomization at 2 second intervals add an overhead of about 20%. Moreover, it remains unknown
how well this approach scales to complex applications containing JIT compilers and modern oper-

ating systems with monolithic kernels.

In many cases, programs are available only in binary form (the source code may have been lost or
simply never received with the binary), so other software diversity implementations randomize the
binary itself directly. Address space layout permutation (ASLP) [65] is one such implementation.
ASLP randomizes the code layout at function granularity; adversaries must therefore disclose more
than one code pointer to bypass ASLP. They locate all program functions using a binary analysis

tool, then randomly shuffle program functions inside the on-disk representation of the program.

In-place diversification is an install-time-only approach that sidesteps the problem of undiscovered
control flow [90]. Code sequences reachable from the program entry point are rewritten with other
sequences of equal length. Unreachable bytes are left unchanged thus ensuring that the topology
of the rewritten binary matches that of its original. In-place rewriting preserves the addresses of
every direct and indirect branch target and thereby avoids the need for and cost of runtime checks
and dynamic adjustment of branch targets. The approach does have two downsides, however: (i)
undiscovered code is not rewritten and thus remains available to attackers and (ii) preserving the

topology means that return-into-1ibc attacks are not thwarted.

Load-time diversification approaches do not change the on-disk representation of programs. Rather,
they perform randomization as these are loaded into memory by the operating system. Several
approaches defer diversification by making programs self-randomizing [10, 11, 54, 117, 50]. De-
ferred diversification is typically achieved by instrumenting programs to mutate one or more im-

plementation aspects as the program is loaded by the operating system or as it runs.

Consequently, with deferred diversification, all instances of a program share the same on-disk
representation—only the in-memory representations vary. This has several important implications.

Deferred approaches remain compatible with current software distribution practices; the program
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delivered to end users by simply copying the program or program installer. When diversification is
deferred, the program vendor avoids the cost of diversifying each program copy. Instead the cost is
distributed evenly among end users. The end user systems, however, must be sufficiently powerful
to run the diversification engine. While this is not an issue for traditional desktop and laptop sys-
tems, the situation is less clear in the mobile and embedded spaces. Second, when diversification
is deferred, an attacker does not improve the odds of a successful attack with knowledge of the

on-disk program representation.

However, deferred diversification cannot provide protection from certain attacks. Client-side tam-
pering [30] and patch reverse-engineering [32] remain possible since end users can inspect the
program binaries before diversification. Software diversification can also be used for watermark-
ing [41]. If a seed value drives the diversification process and a unique seed is used to produce
each program variant, the implementation of each variant is unique, too. If each customer is given
a unique program variant, and the seed is linked to the purchase, unauthorized copying of the pro-
gram binary can be traced back to the original purchase. However, such use of diversity is also

hampered by deferred diversification.

Instruction location randomization (ILR) rewrites binaries to use a new program encoding [54].
ILR changes the assumption that, absent any branches, instructions that are laid out sequentially
are executed in sequence; instructions are instead relocated to random addresses by disassembling
and rewriting programs as they are installed on a host system. A data structure, the fallthrough
map, contains a set of rewrite rules that map unrandomized instruction locations to randomized
ones and to map each randomized instruction location to its successor location. To avoid the
need to separate code and data, rewrite rules are generated for all addresses in a program’s code
section. A process virtual machine—Strata [105]—executes the rewritten programs. At runtime,
Strata uses the fallthrough map to guide instruction fetch and reassemble code fragments before

execution; fragments are cached to reduce the translation overhead.
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Binary stirring [117] is also a hybrid approach that disassembles and rewrites binaries as they are
installed such that they randomize their own code layout at load time. Rather than using a process
virtual machine, randomization is done via a runtime randomizer that is unloaded from the process
right before the main application runs. This ensures that the code layout varies from one run to
another. Instead of trying to separate data from code, the text segment of the original binary is
treated as data and code simultaneously by duplicating it into two memory regions—one which
is executable and immutable and one which is non-executable but mutable. One duplicate is left
unmodified at its original location and marked non-executable. The other duplicate is randomized
and marked executable. Reads of the text segment go to the unmodified duplicate whereas only
code in the randomized duplicate is ever executed. All possible indirect control flow targets in
the unmodified duplicate are marked via a special byte. A check before each indirect branch in
the randomized duplicate checks if the target address is in the unmodified duplicate and redirects

execution to the corresponding instruction in the randomized duplicate.

Several load-time diversification approaches also have runtime components. Barrantes et al. [8],
for instance, randomizes the instruction set encoding as code is loaded and uses the Valgrind dy-
namic binary rewriter [85] to decode the original machine instructions as they are about to execute.
Williams et al. [119] similarly implement instruction set randomization atop the Strata process vir-
tual machine. Their approach even has a compile-time component to prepare binaries by adding
an extra “hidden” parameter to each function. This parameter acts as a per-function key whose
expected value is randomly chosen at load-time and checked on each function invocation. The
process virtual machine instruments each function to verify that the correct key was supplied; it
also randomizes the instruction set encoding to prevent code injection. Without knowledge of the
random key value, function-level code-reuse (e.g., return-into-1 ibc) attacks are defeated. Finally,
Shioji et al. [108] implement address-randomization atop the Pin [77] dynamic binary rewriter. A
checksum is added to certain bits in each address used in control flow transfers and the checksum

is checked prior to each such transfer. Attacker injected addresses can be detected due to invalid
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checksums. Checksums are computed by adding a random value to a subset of the bits in the

original address and hashing it.

In contrast to these hybrid approaches, Davi et al. [37] implement a pure load-time diversifica-
tion approach that randomizes all segments of program binaries. The code is disassembled and
split into code fragments at call and branch instructions. The resulting code fragments are used to
permute the in-memory layout of the program. The authors assume that binaries contain reloca-
tion information to facilitate disassembly and consequently omit a mechanism to compensate for

disassembly errors.

Unfortunately, these defenses remain vulnerable to memory disclosure attacks. The appearance
of JIT-ROP attacks convincingly demonstrated that probabilistic defenses cannot tacitly assume
that attackers cannot leak code memory layout at runtime [110]. Blind ROP [12], another way to

bypass fine-grained code randomization, further underscores the threat of memory disclosure.

In response to JIT-ROP, Backes and Niirnberger proposed Oxymoron [7] which randomizes the
code layout at a granularity of 4KB memory pages. This preserves the ability to share code pages
between multiple protected applications running on a single system. Oxymoron seeks to make code
references in direct calls and jumps that span code page boundaries opaque to attackers. Internally,
Oxymoron uses segmentation and redirects inter-page calls and jumps through a dedicated hidden
table. This prevents direct memory disclosure, i.e., it prevents the recursive-disassembly step in
the original JIT-ROP attack. However, Oxymoron can be bypassed via indirect memory disclosure

attacks.

Davi et al. [36] also propose a defense mechanism, Isomeron, that tolerates full disclosure of the
code layout. To do so, Isomeron keeps two isomers (clones) of all functions in memory; one isomer
retains the original program layout while the other is diversified. On each function call, [someron
randomly determines whether the return instruction should switch execution to the other isomer

or keep executing code in the current isomer. Upon each function return, the result of the random
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trial is retrieved, and if a decision to switch was made, an offset (the distance between the calling
function f and its isomer f’) is added to the return address. Since the attacker does not know which
return addresses will have an offset added and which will not, return addresses injected during a
ROP attack will no longer be used as is and instead, the ROP attack becomes unreliable due to
the possible addition of offsets to the injected gadget addresses. Since Isomeron is implemented
as dynamic binary instrumentation framework its runtime and memory overheads are substantially

greater than compiler-based solutions.

Instead of implementing diversification at the compiler level or in the compiled program itself,
the diversification functionality can be included in the operating system [92, 27]. This is exactly
how ASLR! is implemented. A compiler prepares the code for base address randomization by
generating position-independent code; the operating system loader and dynamic linker then adjust

the virtual memory addresses at which the code is loaded.

6.2 Integrity-based Defenses

Integrity-based defenses are the primary alternative to software diversity for protection against
code reuse attacks. Code reuse attacks (as well as some code injection attacks) redirect the proces-
sor program counter, at some point during execution, to an unintended value. In other cases, they
also redirect memory reads or writes to unintended addresses. The main idea behind integrity-
based defenses is to restrict all such operations (memory accesses and control flow) to intended
values. At present, control-flow integrity (CFI) [1, 2] is the most prominent type of integrity-based
defense. CFI constrains the indirect branches in a binary such that they can only reach a statically
identified set of targets. Since CFI does not rely on randomization, it cannot be bypassed using

memory disclosure attacks. However, it turns out that precise enforcement of control-flow prop-

" ASLR is an example of a diversification technique that required compiler customization to produce position
independent code. All major C/C++ compilers currently support this security feature.
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erties invariably comes at the price of high performance overheads on commodity hardware. In
addition, it is challenging (if not impossible) to always resolve valid branch addresses for indirect

jumps and calls.

G-Free [88], control-flow locking [14], control-flow integrity [1] and software fault isolation (SFI) [121,
78] take a combined compile- and run-time approach to security. The compiler adds code to the
program that restricts the control flow to the program’s original control flow edges, by instrument-
ing all branch instructions. While these techniques have proven effective at defending against ROP,
any inherent weakness they have can be exploited by attackers. Also, some are specifically targeted
at return-oriented programming, so are unable to defend against newer code reuse attacks. This
incurs a maintenance cost on whoever implements these techniques, as each implementation must

be updated for any new code reuse attack, if at all possible.

As aresult, researchers have traded off security for performance by relaxing the precision of the in-
tegrity checks. CFI for COTS binaries [123] relies on static binary rewriting to identify all potential
targets for indirect branches (including returns) and instruments all branches to go through a vali-
dation routine. CFI for COTS binaries merely ensures that branch targets are either call-preceded
or target an address-taken basic block. Similar policies are enforced by Microsoft’s security tool

called EMET [80], which builds upon ROPGuard [45].

Compact control-flow integrity and randomization (CCFIR) is another coarse-grained CFI ap-
proach based on static binary rewriting. CCFIR collects all indirect branch targets into a spring-
board section and ensures that all indirect branches target a springboard entry. Our code-pointer
hiding technique has similarities with the use of trampolines in CCFIR but the purposes differ. The
springboard is part of the CFI enforcement mechanism whereas our trampolines are used to pre-
vent indirect memory closure. Although the layout of springboard entries is randomized to prevent

traditional ROP attacks, CCFIR does not include countermeasures against JIT-ROP.
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Since CFI does not randomize the code layout, attackers can inspect the code layout ahead of time

and carefully choose gadgets that adhere to a coarse-grained CFI policy [51, 52, 20].

SafeDispatch [61] and forward-edge CFI [71] are two compiler-based implementations of fine-
grained forward CFI, which is CFI applied to indirect calls. The former prevents virtual table
hijacking by instrumenting all virtual method call sites to check that the target is a valid method
for the calling object. It offers low runtime overhead (2.1%) but only protects virtual method
calls. Forward CFI is a set of similar techniques which protect both virtual method calls and
calls through function pointers. It maintains tables to store trusted code pointers and halt program
execution whenever the target of an indirect branch is not found in one of these tables. Even
though both techniques add only minimal performance overhead, these approaches do not protect
against attacks that use ret-terminated gadgets. Moreover, as no code randomization is applied,
the adversary can easily invoke critical functions in complex programs that are also legitimately

used by the program.

A number of recent CFI approaches focus on analyzing and protecting vtables (used to imple-
ment virtual function calls in C++) in binaries created from C++ code [48, 96, 122]. Although
these approaches do not require source code access, the CFI policy is not as fine-grained as their
compiler-based counterparts. A novel attack technique for C++ applications, counterfeit object-
oriented programming (COOP), undermines the protection of these binary instrumentation-based
defenses by invoking a chain of virtual methods through legitimate call sites to induce malicious

program behavior [103].

Code-Pointer Integrity (CPI) was first proposed by Cowan et al. [33], then later revisited as an
alternative to CFI by Szekeres et al. [112] and implemented by Kuznetsov et al. [71]. CPI prevents
the first step of control-flow hijacking during which the adversary overwrites a code pointer. In
contrast, CFI verifies code pointers after they may have been overwritten. CPI protects control
data such as code pointers, pointers to code pointers, etc. by separating them from non-sensitive

data. The results of a static analysis are used to partition the memory space into a normal area
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and a safe region. Code pointers and other sensitive control data are stored in the safe region. The
safe region also includes meta-data such as the sizes of buffers. Loads and stores that may affect
sensitive control data are instrumented and checked using meta-data stored in the safe region. By
ensuring that accesses to potentially dangerous objects, e.g., buffers, cannot overwrite control data,
CPI provides spatial safety for code pointers. In 32-bit mode, CPI uses x86 segmentation to restrict
access to the safe region, the same is not possible in 64-bit mode so the safe region is merely hidden
from attackers whenever segmentation is not fully supported. Evans et al. [42] demonstrated that
(in the 64-bit mode of one of five existing implementations that relied on code hiding) the size of
the safe region is so large that an attacker can use a corrupted data pointer to locate it and thereby
bypass the CPI enforcement mechanism using an extension of the side-channel attack by Siebert
et al. [109]. Unlike our approach, it remains to be seen whether CPI can be extended to protect

dynamically generated code without degrading the JIT compilation latency and performance.

Opaque CFI (O-CFI) [81] is designed to folerate certain kinds of memory disclosure. O-CFI
combines code randomization and integrity checks. It tolerates code layout disclosure by bounding
the target of each indirect control flow transfer. Since the code layout is randomized at load time,
the bounds for each indirect jump are randomized too. The bounds are stored in a small table which
is protected from disclosure using x86 segmentation. O-CFI uses binary rewriting and stores two
copies of the program code in memory to detect disassembly errors. Apart from the fact that O-
CFI requires precise binary static analysis as it aims to statically resolve return addresses, indirect
jumps, and calls, the adversary may be able to disassemble the code, and reconstruct (parts of) the
control-flow graph at runtime. Hence, the adversary could dynamically disclose how the control-

flow is bounded.
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6.3 Code Hiding

Memory disclosure attacks, e.g., JIT-ROP [110], significantly raised the bar for software diversity
defenses. Whereas a defense solution could previously randomize program code once and assume
full security, this is no longer the case. So far, two main alternatives have been proposed to solve
this: live re-randomization [50] and code hiding. The latter works by hiding the diversified code

from attackers, preventing them from reading it and un-doing the randomization.

One defense against JIT-ROP, Execute-no-Read (XnR) by Backes et al. [6], is conceptually similar
to Readactor as it is also based on execute-only pages. However, it only emulates execute-only
pages in software by keeping a sliding window of n pages as both readable and executable, while
all other pages are marked as non-present. XnR does not fully protect against direct memory
disclosure because pages in execution are readable. Hence, the adversary can disclose function
addresses, and force XnR to map a target page as readable by calling the target function through an
embedded script. This can be repeated until the disclosed code base is large enough to perform a
JIT-ROP attack. It remains unclear how well XnR can protect against indirect memory disclosure,

as it only assumes a code randomization scheme without implementing and evaluating one.

HideM by Gionta et al. [49] also implements execute-only pages. Rather than supporting execute-
only pages by unmapping code pages when they are not actively executing, HideM uses split
translation lookaside buffers (TLBs) to direct instruction fetches and data reads to different physi-
cal memory locations. HideM allows instruction fetches of code but prevents data accesses except
whitelisted reads of embedded constants. This is the same technique PaX [92] used to implement
W&X memory before processors supported RX memory natively. However, the split TLB tech-
nique does not work on recent x86 hardware because most processors released after 2008 contain

unified second-level TLBs.
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Until Readactor, no code hiding solution explicitly addresses the problem of JIT code cache hiding.
This dissertation is, to the best of our knowledge, the first to discuss the challenges encountered

when implementing code hiding for a JIT compiler (V8 in this case).

6.4 Other Defenses

Other strategies rely on detection of code reuse attacks, or prevention or using static non-diversifying
compile-time techniques. Detection software runs alongside the program and attempts to detect
whenever a ROP or other code reuse attack is in progress, by looking for high numbers of return
instructions (or other branches) in a small amount of time. DROP [24] dynamically instruments a
running program to analyze the frequency of taken returns; whenever the number of returns taken in
a short amount of time exceeds a threshold, DROP considers a ROP attack is in progress and takes
measures against it. More recent support takes advantage of hardware support for this purpose. In
particular, x86 processors contain a last branch record (LBR) register which kBouncer [91] and
ROPecker [26] use to inspect a small window of recently executed indirect branches. However,

such approaches have been defeated shortly after being introduced [20, 52].

Another approach to preventing ROP attacks is to remove all return instructions (encoded by the C3
byte in x86 programs), or more generally remove all branch instructions. “Return-less kernels” [74]
target ROP attacks specifically during compilation, by reordering program instructions and re-
allocating registers so that free branch instructions never appear inside a binary. This defenses
successfully defeats the original ROP, but does not work against more generic and recent code reuse
attacks. G-Free [88] is a hybrid defense that works similarly: it uses CFI on intended (generated
intentionally by the compiler) returns and removes all unintended (accidentally occurring due to

instruction encoding) the same way as “return-less kernels”.
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6.5 JIT Protection

One way of improving JIT compiler security is manually adding security checks and diversity by
modifying the compiler. JITDefender [23] hinders JIT spraying attacks by marking all HLL code
pages as non-executable; the compiler changes these pages to executable on entry to the generated
code, and changes them back on return to the compiler or runtime. This effectively prevents an
attacker from redirecting any other branch (other than the intended ones) to dynamically generated
code. INSeRT [118] adds code randomization (concretely, it randomizes the operand of every
emitted instruction) through a white box approach, requiring manual changes to the native code
emitter inside the compiler. Both approaches successfully hinder most JIT spraying and code reuse
attacks against HLL code, but require changes to the compiler; they are not feasible when source
code is not available, or the modified code cannot be deployed. On the other hand, librando can

harden a compiler without requiring any cooperation from the compiler itself.

A similar line of research investigates JIT code generation from inside a sandbox (where control
flow is restricted, and code must follow certain restrictions). Native Client [121] is a sandboxed
execution environment which adds static checks to native code that enforces restrictions on branch
targets (such as 16-byte alignment for all targets). The original implementation of the system did
not allow dynamic code generation at all, but later work [4] added this feature. The JIT extensions
adds an API to the sandbox that a JIT compiler uses to generate new code; before executing that
code, the sandbox verifies that the new code respects all restrictions imposed by Native Client, and
therefore cannot break out of the sandbox. Another of their contributions was an in-depth analysis
on the different types of NOPs to insert, which they use to enforce basic block alignment; here,
we use NOPs for randomization. This is, in some ways, similar to our white box diversification

approach: librando can be viewed as the sandbox that the JIT compiler runs inside.

Recently, a new CFI solution has been proposed by Niu and Tan that also applies CFI to JIT-

compiled code [87]. Their Rock]JIT framework enforces fine-grained CFI policies for static code

83



and coarse-grained CFI policies for JIT-compiled code. Similarly to how we double-map physical
host pages in the guest physical space, RockJIT maps the physical pages containing JIT-compiled
code twice in virtual memory: once as readable and executable, and once as a readable and writable
for the JIT compiler to modify—a shadow code heap accessible only to the JIT. This protects JIT-
compiled code from code injection and tampering attacks, in addition to the protections provided
by CFI enforcement. However, since only coarse-grained CFI is applied, the adversary can still
leverage memory disclosure attacks to identify valid gadgets in JIT-compiled code and redirect
execution to critical call sites in static code (i.e., calls that legitimately invoke a dangerous API

function or a system call) to induce malicious program behavior.

In addition to preventing memory disclosure on the V8 code cache, our extensions to Readactor
also aim to prevent code injection attacks on the code cache. Ideally, we would achieve this by
making the code cache immutable or append-only. However, due to reasons presented in Chapter 5,
we are unable to complete remove writes to the code cache from the JIT compiler. These writes
create a small window of time when the attacker can inject arbitrary code into the code cache. Song
etal. [111] demonstrate that an attack during this window is feasible. They propose a defense based
on process separation, where the JIT compiler is located in a separate process from the untrusted
browser, and only the JIT process can write to the generated code, and implement this defense
in two dynamic code generators—the V8 JavaScript engine used by the Chrome browser, and
the Strata virtual machine. LOBOTOMY [62] is another implementation of this approach for the
Firefox browser. This successfully protects against code injection attacks against the code cache,
but not against disclosure of the generated code. In the untrusted process, the generated code is
mapped as read-only and executable, but could instead be mapped as execute-only for use with
Readactor. We believe this approach is fully compatible with and complementary to ours, and can

be used to protect the JIT from code injection.
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6.6 Profile-Guided Optimization

Most compilers use profiling information to optimize frequently used sections of code. This has
the goal and effect of increasing program performance and, in some cases, reducing program size.
However, there are other applications of profiling where the interest lies in infrequently executed
code. One such application is code compression. Debray and Evans [39] analyze the use of
profiling in tandem with binary code compression, using basic block execution frequency to decide
whether to compress particular regions of code. They showed that focusing compression on cold

code produces significant reductions in program size.

Another use case for identifying cold code is intentional code duplication. Recent research uses
this technique to identify computational errors due to transient faults in processors [64]. The work
by Khudia et al. duplicates values and instructions in a program, to account for transient processor
errors. The duplicates perform the same computations as the originals, so their results should
match. At specific points in the program, the duplicates are checked against the originals to detect
errors. The compiler uses edge profiling to reduce number of duplicated instructions, minimizing
the performance impact of this approach. When only duplicating cold instructions, they show a

reduction of 41% in overhead from previous techniques.

Profiling information is most often collected by running a special version of the profiled program
on carefully selected training input that is representative of most inputs that the program sees in
practice. This special version contains instrumentation code that collects the execution profile
and saves it when the run finishes. The program is then re-compiled using the collected profile.
However, this double-compilation model is difficult to use in practice, and its effectiveness heavily
depends on the choice of the training input. An alternative option is static profiling, which estimates
the hot/cold regions of the program from its structure, i.e., it assumes that deep loops are hot and

the rest of the code is cold. Murphy et al. [82] investigate the use of static profiling to optimize
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NOP insertion. Their results show that static profiling is close in effectiveness to dynamic profiling

when an ideal training input is available, and significantly better for a bad training input.

Most integrity-based defenses incur a larger overhead than our profile-guided NOP insertion tech-
nique. However, many of them rely on inserting expensive code in specific places. Therefore,
they can also benefit from profile-guided optimization, by inserting checks and guards selectively
to minimize the performance hit. ASAP [116] uses run-time profiling to reduce the performance
overhead of various security-focused instrumentations. Contrary to our NOP insertion algorithm,
where we profile a vanilla program then use the profile to insert the extra instructions, they first
insert the new instrumentation instructions, then use profiling to determine the most expensive
instructions. ASAP users specify an overhead budget, and all instrumentation that causes the per-
formance hit to exceed the budget is removed. They report a significant overhead reduction (down

to 5% or lower in many cases), while still providing most of the security of vanilla instrumentation.

6.7 Binary Rewriting

There is significant research into dynamic rewriting of program code at run-time. DynamoRIO [17],
PIN [76], Valgrind [84], and Strata [105] all intercept and rewrite program code at run-time, for
purposes such as instrumentation, profiling, identifying program errors and increasing security
The transparency restrictions in their designs are very similar to the restrictions we described for
librando. However, one difference that sets librando apart from other rewriters is the limited scope
of code rewriting: librando only intercepts and rewrites dynamically generated code, whereas all
other rewriters handle all of the application code. For static program code, we envision that a
compiler-level diversification solution is used on statically generated code; librando is only meant
to diversify code which ahead-of-time diversification solution cannot protect. Our approach allows
the JIT compiler and language runtime to run natively, only intercepting dynamically generated

code; all other solutions would intercept and rewrite everything, starting with the first instruction
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in the JIT compiler. Another difference is that dynamic rewriters are designed as frameworks
that allow arbitrary changes to the intercepted code, which increases their complexity significantly,
whereas the magnitude of our changes to the code is very small and security-focused (adding NOPs
and rewriting instruction operands). For example, Valgrind disassembles executed code and con-
verts it to an intermediate representation (IR), which all code transformations operate on. After all
transformations are done, Valgrind converts this IR back to x86 code; this two-way translation is

not needed by librando.

Existing dynamic binary rewriters have been used for security. Program Shepherding [66] (imple-
mented using DynamoRIO) and libdetox [94] add security checks before branches, function calls
and system calls by intercepting and rewriting program blocks. These checks only allow branches
to allowed code addresses, determined algorithmically or from a given list. This effectively defends
against code reuse attacks (and more), albeit using a different approach from diversification. Our
proposed solution has similar goals, but different methods: we randomize code layout, restricting
whatever knowledge the attacker possesses of program code. While deterministic techniques are
successful at hardening applications, they are also vulnerable in one regard: if an attacker finds a
flaw in such a technique, they are able to attack all hardened targets using this flaw. Randomiza-
tion, on the other hand, does not assume safety of the defense itself; instead, the goal is to restrict

any successful attack to only a small subset of possible targets.

Most current dynamic binary rewriters operate under the assumption that code, once emitted,
changes very rarely or not at all. This assumption is not true for dynamically generated code.
While rewriters such as DynamoRIO and PIN still support rewriting code emitted by JIT compil-
ers, they do so at significant overhead (as high as 15x on some benchmarks, significantly higher
than librando). Hawkins et al. [53] add support for JIT compilers to DynamoRIO and reduce the
JIT rewriting overhead to 2-2.5x (bringing DynamoRIO JIT performance close to librando), us-
ing a combination of manual JIT instrumentation, static analysis and dynamic detection of code

modifications. For the latter, they use a double page mapping similar to ours (which they call
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a Parallel Mapping), where a physical page is mapped once as readable+writable, and once as

readable+executable.
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Chapter 7

Conclusions and Future Work

Software diversity, in the form of code layout randomization, has a significant impact on the out-
come of code reuse attacks. Attacks against a sufficiently diverse program have a high chance of
failure. NOP insertion in particular is an effective form of code layout randomization. However,
a naive implementation suffers from a moderate performance overhead. Selective profile-guided
insertion of NOPs reduces this overhead by as much as 5x. NOP insertion is particularly efficient
against return-oriented programming attacks, reducing the number of available gadgets by a fac-
tor as high as 2000x. The remaining gadgets are, in practice, not sufficient for an attack. This
holds true even when using profile-guided NOP insertion. Our evaluation confirmed the positive
performance impact of profiling on software diversity, and we are confident that profiling can be

successfully applied to other diversifying transformations.

Traditional code injection attacks are becoming increasingly hard due to the widespread deploy-
ment of defenses—DEP, WX, NX and XN—against this class of attacks. This prompted the
evolution of attacks targeted at JITs: JIT spraying and code reuse attacks. librando is a binary
rewriting library that hardens JIT compilers, and generally any software that generates new code

at run-time, against these attacks. Our library supports randomization of code from a JIT compiler

89



without requiring any source code changes to the compiler, giving defenders a quick and compre-
hensive response. This approach is portable to any existing or new compiler, providing increased
security while saving development effort; instead of having to redo the effort of implementing
security measures on every JIT, developers may opt to use our library to secure their compiler.
The library can also be used as an interim measure, providing security at a temporary performance
penalty until security measures are implemented more efficiently in the compiler itself. In cases
where compiler source code is not available, or where recompilation and reinstallation are not fea-
sible, this penalty is preferable to the loss in security. If compiler source code is available, compiler
developers can improve diversification performance through white box diversification, by adding
calls from the compiler to librando. We also presented an optimization with substantial impact on
performance: the Return Address Map. We successfully tested our work on two industry-strength
JIT compilers, both widely used at present. Our evaluation showed that the impact of diversifica-
tion depends greatly on the workload; librando provides great security benefits at low performance
cost (around 15%) for statically typed languages (where it can be enabled at all times), and at a

larger cost (a 3-4x slowdown) for dynamically typed languages.

Most implementations of software diversity operate under the assumption of “memory secrecy”
and take no steps to prevent code disclosure. For this reason, code disclosure poses a signifi-
cant threat to such implementations. In the case of dynamic code generators, e.g., JIT compilers,
leaking the contents of a code cache can be equally dangerous, but more difficult to secure. We
designed and implemented a code hiding technique (execute-only code pages) for JIT code caches
on top of an existing execute-only hypervisor—Readactor. Additionally, we modified an existing
industry-strength JIT compile—V8—to use an execute-only code cache. Our evaluation showed
a performance hit of about 7.8% from our changes and that our approach successfully thwarts code

cache disclosure attacks.

In this dissertation, we have presented several complementary techniques that improve the security,

coverage, and practicality of code randomization defenses. We envision that a comprehensive
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defense based on software diversity would deploy all our proposed defenses in tandem, mitigating

a large variety of attacks.

7.1 Diversifying Transformations

The main code randomization technique in this dissertation is NOP insertion. librando also im-
plements a second randomization specific to JIT compilers: constant blinding. Based on our ex-
perience implementing the current randomizations, we believe new ones could be added without
much effort to the ahead-of-time compiler, librando and Readactor. Examples of possible random-
izations include: code cache address randomization, function reordering, basic block reordering,
equivalent instruction substitution, instruction reordering, register re-allocation and many more
(related work [50, 60, 90, 117, 59, 72] also discusses and implements some of these for statically

generated code diversification).

With the increased use of whole-function reuse attacks (return-into-lib(c), COOP), randomized
register re-allocation may prove to be the most important of all transformations, as it is one of
the few that can disrupt these attacks. The attacker chains together several functions, calling them
with counterfeit parameters. These parameters are often passed in registers, and so are the function
return values. By randomizing these registers, this transformation disrupts the function chains
used in the attacks, as each function’s registers no longer match up with the previous ones. Crane
et al. [34] implement this randomization (in tandem with stack randomization) for Readactor and

show that it successfully disrupts whole-function code reuse.
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7.2 Future Work

The main obstacle preventing librando from supporting other JITs has been multithreading. This
also raised some problems for our evaluation of HotSpot, as several benchmarks we attempted
to run required multiple threads. Presenting different threads [19, 4] and processes [18] with a
consistent view of the code cache is a known and well studied problem, yet it would require a

significant effort to implement in librando.

We have presented librando and the Readactor JIT support as two separate implementations with
different goals. However, as an alternative to manually modifying every JIT compiler to add code
hiding, we could modify librando to hide its code cache after diversifying it, while allowing the
attacker to read the original JIT code cache. This would be sufficient to provide the security
benefits of Readactor to any JIT compiler without making any changes, but with the downside of
the significant performance impact of librando. We leave this integration of the two techniques as

future work.

As an extra step in our Readactor security evaluation, we also tested whether indirect disclosure of
JIT-compiled code is feasible. Our experiments revealed that V8’s JIT code cache contains several
code pointers referencing JIT-compiled code. Hence, the adversary could exploit these pointers to
infer the code layout of the JIT memory area. To protect against such attacks, these code pointers
need to be indirected through execute-only trampolines (our standard jump trampolines). We can
store these trampolines in a separate execute-only area away from the actual code. To add support
for code-pointer hiding, we would need to modify both the code entry points emitted by JavaScript
runtime and all JavaScript-to-JavaScript function calls to call trampolines instead. This would

require a significant engineering effort, which we leave as future work.
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