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phononic topological insulators 
based on six-petal holey silicon 
structures
Ziqi Yu  , Zongqing Ren   & Jaeho Lee  

Since the discovery of the Quantum Spin Hall Effect, electronic and photonic topological insulators have 
made substantial progress, but phononic topological insulators in solids have received relatively little 
attention due to challenges in realizing topological states without spin-like degrees of freedom and with 
transverse phonon polarizations. Here we present a holey silicon-based topological insulator design, 
in which simple geometric control enables topologically protected in-plane elastic wave propagation 
up to GHz ranges with a submicron periodicity. By integrating a hexagonal lattice of six small holes 
with one central large hole and by creating a hexagonal lattice by themselves, our design induces zone 
folding to form a double Dirac cone. Based on the hole dimensions, breaking the discrete translational 
symmetry allows the six-petal holey silicon to achieve the topological phase transition, yielding two 
topologically distinct phononic crystals. Our numerical simulations confirm inverted band structures 
and demonstrate backscattering-immune elastic wave transmissions through defects including a cavity, 
a disorder, and sharp bends. Our design also offers robustness against geometric errors and potential 
fabrication issues, which shows up to 90% transmission of elastic waves even with 6% under-sized or 
11% over-sized holes. These findings provide a detailed understanding of the relationship between 
geometry and topological properties and pave the way for developing future phononic circuits.

The concept of topology1,2, or conserved properties under continuous deformation, has attracted much interest 
in recent years of condensed matter physics, since the discoveries of the Quantum Hall effect and Quantum Spin 
Hall effect3–5. The topological states have been first studied in electronic systems, and topological insulators are 
characterized by unique attributes of insulating bulk bands and conducting edge bands. These conducting bands 
are robust and protected by non-trivial topological states to support unidirectional propagation at the boundary 
with no backscattering even in the presence of defects, offering unmatched tolerance and unprecedented trans-
port capabilities. While most of the interest and efforts have been in topological electronics1,2 and photonics6,7 
due to the intrinsic spinning nature of the particles and the ease of breaking the time-reversal symmetry by 
the external magnetic field. Topological insulators based on bosonic systems have not been explored as much 
because of the lack of spin-like states. Moreover, the low group velocity, high density of states, and significantly 
dissimilar acoustic impedance between common materials induce backscattering, resulting in difficulties in 
achieving defect-immune wave propagations. Recently, investigations of topological insulators in mechanical8,9, 
acoustic10–13, and elastic14–21 systems have shown promising progress in tackling the challenges. The breaking 
of time-reversal symmetry was done by circulating fluid flow in the background10,22, external optomechanical 
excitation23, and periodically arranged local resonators21. Most success made on phononic systems have targeted 
on realizing symmetry protected edge states for acoustic waves possessing only one longitudinal polarization. 
Realizing helical edge states in elastic waves remains outstandingly challenging due to the fact that its three avail-
able polarizations (one longitudinal and two transverse) can easily be mixed at most solid interfaces precluding 
the formation of two degenerate states characterized by Dirac dispersions24,25. And most passive elastic materials 
generally conserve time-reversal symmetry, further impeding the fulfillment of chiral edge states in elastic sys-
tems24–26. Recent studies overcame these problems by utilizing chiral interlayer coupling to break the inversion 
symmetry12 or by emulating the Quantum Valley Hall effect to support edge states in artificially engineered elastic 
structures. The latter concept allows reduced geometrical complexities and can be extended to photonic27, acous-
tic28, and elastic systems29. The elastic analogue of the Quantum Valley Hall effect29, has been numerically demon-
strated by periodic structures with edge states within the bulk band gaps. Similar to the acoustic topological 
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system realized by a double Dirac cone30, a recent theoretical study has demonstrated an elastic topological sys-
tem with a double Dirac-cone by using subwavelength meta-structures24. Two recent studies demonstrated a 
snowflake porous structure to topologically guide the elastic wave at GHz ranges making it favorable for applica-
tions of phononic circuits14,31. Other studies show the possibility of realizing topological insulator by using perfo-
rated holes to enable elastic pseudospin transport19 and spiral-shaped pores to guide the flexural waves32. While 
there have been notable achievements in theoretical ends, there have been limited studies for elastic topological 
insulators especially in phonon frequency regimes of GHz and beyond and using a platform of silicon, which 
offers significant compatibility to semiconductor devices and fabrication feasibility. In this paper, we develop a 
novel design of elastic wave topological insulator based on six-petal holey silicon nanostructures which supports 
topologically protected wave propagation at frequencies up to GHz ranges when the unit cell periodicity reaches 
submicron scales even in the presence of geometric defects and potential fabrication issues. The circular pore 
shape provides higher tolerance to rounding effect in fabrication processes, making it competitive and desirable 
for the application of monolithic phononic circuits for information processing. The design also offers scalability 
from low- to high-frequency based on the periodicity, yielding the smallest neck size of ~20 nm in our current 
simulations and has been experimentally achieved in previous holey silicon nanostructure for thermal character-
ization33, opening up possibilities of feasible fabrication and experimental exploration.

Results
Design of six-petal holey silicon topological insulators. The designed structure is a planar qua-
si-two-dimensional phononic crystal with a hexagonal lattice of vacuum six-petal-shaped pores perforated in 
a silicon slab (Fig. 1(a), left). Each pore consists of a larger circle in the center surrounded equidistantly by six 
smaller circles (Fig. 1(a), right). The radii of the central and corner circles are ri and ro, respectively, and their 
center-to-center distance dio follows dio < ri + ro. Previous studies on snowflake-hole-based phononic waveguides 
had reported the edge-rounding effect and sizing errors in the fabrication process34,35. The rounding of sharp 
corners may dramatically change the mechanical response leading to discrepancies between numerical simula-
tions and experimental data36. Our design of six-petal pore significantly mitigates the negative effect from such 
fabrication imperfection by incorporating circles as the building block. Porous structures with circular features 
have been widely employed in various photonic and electronic systems. While noncircular or nonconventional 
geometries may provide better topological properties when fabrication inaccuracy is precisely controlled, our 
six-petal design offers excellent solutions against a wide range of uncertainties and high transmission via robust 
optimization, which is a unique approach fundamentally different from deterministic optimization. Our design 
opens up new pathways of achieving phononic topological insulators based on conventional platform having 
circular holes.

Band folding and band inversion. As the first step to designing a topological insulator, we create a single 
Dirac cone for in-plane elastic waves, whose existence has been demonstrated previously for the graphene-like 
hexagonal-lattice25,32. We choose a hexagonal unit cell containing a single six-petal pore, exhibiting a C6 symme-
try (blue in Fig. 1(a)). To compute the dispersion properties of the unit cell, we solve the elastic wave equation for 
six-petal holey silicon using the finite element method in COMSOL Multiphysics with Floquet periodic boundary 
conditions. By optimizing the geometrical parameters to be (ri, ro, dio) = (65, 130, 169) nm, we can obtain a Dirac 
cone at f = 14.83 GHz (Fig. 2(a)). A thickness of 100 nm for the unit cell is selected to achieve a complete band gap 
for in-plane waves around the frequency f. To construct a double Dirac cone, we now consider an enlarged unit 
cell (red in Fig. 1(a)) with the original unit cell encircled by one-third of each of its six neighbors. This folds the 
original first Brillouin zone (1BZ) (blue in Fig. 1(b)) by a factor of 1/√3 and forms a two-fold degenerate Dirac 

Figure 1. (a) Left: Schematics of the six-petal holey silicon in a hexagonal lattice. Right: The original unit cell 
containing a single six-petal pore (light-red filled) and the enlarged unit cell (gray filled) with the original 
one surrounded by one-third of each its six neighboring pores in real space. Each six-petal pore is defined by 
dimensional parameters (ri, ro, dio). The thickness of the film is kept at 100 nm and the periodicity a is 866 nm. 
The close and open of the bandgap is realized by manipulating ro and dio, namely, modifying Δro and Δdio. 
When Δro and Δdio are zeros, the original hexagonal lattice has a discrete translational symmetry and we expect 
a double Dirac cone in the dispersion curve. When they are not zeros, the translational symmetry will be broken, 
and we expect the double Dirac cone to be replaced by band gaps in the dispersion curves. (b) Schematic of the 
first Brillouin zone for the original and enlarged unit cells in reciprocal space. The symmetry line for the original 
unit cell is Γ-M-K-Γ whereas the folded symmetry line for the enlarged unit cell is Γ-MS-KS- Γ.
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cone (Fig. 2(c)) at the Γ point by mapping the Dirac cone at K in the original 1BZ to the new one. To realize the 
band inversion, we remain the radii of all the one-third pores (ro) in the enlarged unit cell as they are and modify 
ri and dio. The breaking of the discrete translational symmetry, originally characterized by the lattice constant 
a = 500 nm, makes the enlarged unit cell be the smallest repeating cell with a pair of lattice vectors a1

 and a2 and 
a larger lattice constant of 500√3 nm (866 nm). Based on the geometrical parameters shown in Fig. 2(e) for the 
enlarged unit cell, we obtain two topologically protected band gaps at the Γ point in the dispersion curves for two 
phononic crystals (PnCs) (Fig. 2(b,d)), with inverted degenerate modes at both gap edges illustrated by mechan-
ical displacement (Fig. 2(e)). The quadruples ( −dx y2 2 and dxy) appear at the high frequency in the trivial PnC 
(Fig. 2(b)), whereas they move to the low frequency in the non-trivial PnC (Fig. 2(d)). We notice that the neck 
size, which is the smallest channel size between adjacent pores, reaches ~20 nm in the trivial PnC, which may 
pose challenges to potential experimental demonstration requiring high-frequency (i.e., GHz ranges) mechanical 
response with high-fidelity. The novel design of six-petal holey silicon allows the topologically protected edge 
state to scale from low to high frequencies via geometric control, which enables topological insulators to operate 

Figure 2. Elastic topological insulator design based on six-petal holey silicon nanostructures, which supports 
the required band inversion process at GHz ranges and offers high tolerance to processing defects. The 
dimensions of the enlarged unit cell are shown where we keep ro the same and change ri and dio. (a) Band 
structure of the original unit cell and the corresponding single Dirac cone at the point K. (b–d) Band structures 
of the enlarged unit cell and the corresponding topological phase transition from the zone-folding-induced 
double Dirac cone to bandgaps by modifying the geometry. (e) The quadruples (dx2−y2 and dxy) are found at 
higher frequencies whereas dipoles (px and py) are found at lower frequencies, which are trivial. When the band 
inversion occurs, the quadruples move to lower frequencies while the dipoles move to higher frequencies, which 
are considered non-trivial. The lattice constant a is kept at 866 nm. In the simulation, we consider the silicon 
with a Young’s modulus of 170 GPa, mass density of 2329 kg-m−3, and Poisson’s ratio of 0.28.
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over a wide range (See Supplementary Information Note 1). Piezo-electric transducers have been used to excite 
MHz-range elastic waves in out-of-plane37,38. For in-plane elastic waves considered in our simulation, interdigital 
transducer could be a practical candidate. The simulation results presented in the current work would still be 
applicable when experimental conditions are met and realized in the future.

emergence of topological states. At the interface between two topologically distinct domains, we expect 
to find the topologically protected edge states1,14,16. By connecting the trivial and non-trivial PnCs discussed 
above to form an interface, we demonstrate the existence of a topological state. We consider a supercell which is 
periodic along the x direction and finite in the y direction (Fig. 3(a)). We first calculate the dispersion curves for 
the supercells where the topologically identical PnCs are present on both sides of the interface. In Fig. 3(b,c), we 
can see the complete band gaps appearing in the bulk band structure except for bands (light-gray) confined at 
physical boundaries partially traversing the band gaps. They emerge due to the broken symmetry at the bound-
aries of the finite domain, which are neither related to the topological state at the interface nor protected by any 
symmetry14. When we have trivial and non-trivial PnCs on each side, the above band gaps are replaced by two 
crossing straight lines (Fig. 3(d)), indicating the emerge of topologically protected edge states highly localized at 
the interface (Fig. 3(e)). The bands confined at physical boundaries can also be observed, as displayed in Fig. 3(f). 
We further calculate the root-mean-square (rms) displacement of a system comprising of 6 abovementioned 
supercells placed adjacent to each other horizontally, which is shown in Fig. 3(g). The elastic wave excited at a 
frequency of 14.83 GHz, which is within the range of the bulk bandgap (Fig. 3(d)), propagates robustly from the 
left to the right demonstrating the topological protection. We notice that the elastic wave also penetrates into the 
bulk region but decays quickly, and the similar penetration has been observed in the previous study14.

Robust transmission against geometrical defects. As the most striking characteristic of topological 
insulators, the interface between trivial and non-trivial PnCs supports robust elastic wave propagation even in the 
presence of non-spin-mixing defects24,30,39. As the first case, we introduce a zigzag domain wall functioning as a 
waveguide with two sharp bends of the angles of 60°, and then we evaluate cases including a lattice disorder 
formed by exchanging trivial and non-trivial unit cells across the interface and a cavity formed by filling several 
six-petal pores19, schematics of all three cases are depicted in Fig. 4 (lower panel). To avoid any leakage of elastic 
energy through physical boundaries, we apply low-reflection boundary conditions surrounding the simulation 
domain. We apply point harmonic excitations on three points in a unit cell separated by a length of a and having 
a phase delay of π2

3
 between each two at the frequency of 14.83 GHz16,18,23,31. Similar multi-point excitation with 

carefully engineered amplitudes and phases can launch one-way elastic waves, which may favor applications that 
directional control is desired (See Supplementary Information Note 4). We then calculate the elastic energy den-
sity and show its distribution. The transmission of the elastic wave is quantified by taking the ratio of elastic 
energy densities at the source and the output. For the zig-zag waveguide case in Fig. 4(a), the elastic wave excited 
at the source is able to circumvent the sharp bends and arrive at the output with a transmission of 90% with no 
obvious backscattering. For the cases of lattice disorder and cavity (Fig. 4(b,c)), the elastic wave incident from the 
source maintains high transmission values of 88% and 90%, respectively, against these defects. The elastic wave 
propagation in all three cases localized closely in the vicinity of the interface and decays quickly into the bulk, 

Figure 3. (a) The supercell used for computing the bulk band structure which comprises trivial (yellow) and 
non-trivial (green) PnCs separated by an interface represented by the black dashed line. The depicted supercell 
contains 11 enlarged unit cells in total with 5 non-trivial ones on top of and 6 trivial ones on bottom of the 
interface. (b) Projected bulk band structure of the trivial PnC. The extra bands (light-gray) inside the bulk 
bandgap are localized on top and bottom boundaries (f). (c) Projected bulk band structure of the non-trivial 
PnC. (d) Projected bulk band structure of a supercell. Edge bands supporting the topologically protected elastic 
wave transport and their crossing at the point Γ is shown by the blue and purple lines. Two representative mode 
shapes associated with (e) the edge bands and (f) bands at physical boundaries. The latter bands arise from the 
breakage of symmetry on top and bottom physical boundaries due to the truncated simulation domain and they 
are not symmetry-protected. (g) Topologically protected edge state along the domain wall formed between two 
topologically distinct PnCs. The edge state is highly localized around the domain wall, with a penetration depth 
into the bulk which decays fast.
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indicating the insulating nature of the bulk region. In contrast, the results for the ordinary phononic waveguides 
with similar defects are drastically different (See Supplementary Information Note 2). We can clearly observe the 
occurrence of strong elastic resonances when the elastic wave runs into the cavity and lattice disorder, whereas the 
sharp bends along the zigzag domain wall inhibits significantly the elastic wave propagation by backscattering, 
resulting in a dramatic decrease of transmission down to less than 10%. The elastic transmission supported by the 
topologically protected edge state at the domain wall should theoretically equal to 100%, while our simulation 
results show some losses. This might be due to the limited simulation domain size we used to keep the computa-
tional effort manageable.

Robust transmission against potential fabrication errors. To demonstrate the robustness of six-petal 
holey silicon to geometric variations and potential fabrication imperfections, we study the possibility of sustain-
ing the topologically protected elastic wave transmission against sizing errors of holes, and the analysis shows 
that the six-petal structure offers high transmission for sizing errors up to 11% and −6%, respectively. The over-/
under-sizing is simulated by increasing or decreasing the diameters of central (ri) and corner circles (ro) by same 
thicknesses while maintaining the distance (dio) untouched based on the precisely-sized hole dimensions (Fig. 2). 
The simulation results of supercells in Fig. 5(a,c) show that the six-petal structure allows an over-sizing up to 
7.2 nm or an under-sizing down to 4 nm, which are equivalent to an 11% increase or a 6% decrease of hole sizes 
with respect to ro. Previous work regarding silicon nanoporous structures has achieved high-precision control 
on the fabrication inaccuracy down to ±2 nm40, which is well within the allowed range of sizing errors for the 
six-petal design. The topological edge states, indicated by two linear dispersion curves crossing at kx of 0, can be 
clearly observed inside bulk bandgaps (marked by light-purple boxes). We notice that the frequency correspond-
ing to the double Dirac cones in both over- and under-sizing cases deviate from that of precisely-sizing case 
(Fig. 2). And we could attribute these frequency shifts to the excessive or inadequate removal of materials resulted 
from potential fabrication-induced errors such as those in etchings or lithographical expose. The full-field 

Figure 4. Topologically protected elastic wave transmission in (a) a zigzag waveguide, (b) near the interface 
with a lattice disorder, and (c) a cavity. The normalized elastic energy density shows high elastic wave 
transmission from left to right of the domain in all three cases (upper panel). We compute the transmission as 
the ratio between the elastic energy density at the source and the output. The quantified transmissions read 90%, 
88%, and 90% for the zig-zag domain wall, lattice disorder, and cavity cases. As a comparison, we also simulate 
ordinary phononic waveguides with similar defects and the results indicate dramatically inhibited elastic wave 
propagation (transmission values are all less than 10%), which is in a distinct contrast to the high transmissions 
achieved by the topological insulators, due to the elastic resonance at the cavity and lattice disorder and 
backscattering at the sharp bends. The schematics depicting the zigzag interface in the waveguide, lattice 
disorders, and the cavity are displayed in the lower panel.
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simulations in Figure (b) and (d) demonstrate robust elastic wave transmissions up to 96.1% for over-sizing 
of 11% and under-sizing of 6% assuming the sizing errors are uniformly distributed. The high elastic energy 
density confined in the vicinity of the interface, which quickly decays into the bulk regions, implies the elastic 
wave propagation is topologically protected. Though our simulation results in Fig. 5(b,d) consider uniform dis-
tribution of sizing errors over the entire domain, in practical fabrication, the errors of varying percentages could 
randomly locate. For example, majority of holes in a domain might be over-sized by 2% while a few holes might 
be over-sized by 6%. The 6% over-sized holes could distribute randomly either near the interface or in the bulk 
regions. While the topological edge states and hence topologically protected elastic wave propagation could still 
be supported even when the randomness is present, the transmission would be impacted and further investiga-
tion would be desired (See Supplementary Information Note 3).

Conclusions
This work presents a holey silicon-based phononic topological insulator design that can demonstrate the topo-
logical states and the directional control of in-plane elastic waves up to 14.83 GHz when the periodicity of the 
unit cell is scaled to 866 nm. The six-petal design allows the C6 symmetry to form a double Dirac cone based on 
zone-folding and simple geometric control to break the discrete translational symmetry to achieve topological 
phase transition. This phase transmission can be easily shifted to low- and high-frequency by scaling up and down 
the periodicity. The simulations show robust elastic wave propagation with a transmission ratio up to 90% even 
in the presence of geometrical defects including a cavity, a disorder, and a zigzag domain wall with sharp bends. 
The six-petal design intrinsically avoids the potential rounding effect of sharp geometric features in fabrication 
which may deteriorate the performance of topological insulators. The design is also robust against the potential 
fabrication-induced errors such as under-sizing and over-sizing up to 6% and 11%, respectively; in both cases, we 
observe a shift of bandgap compared with that of the precisely-sized geometry and low-loss elastic transmission 
(up to 90%). These findings are promising for developing high-frequency phononic topological insulators and 
phononic waveguides and realizing large-scale phononic circuits for information processing.

Methods
Numerical simulations. Throughout this paper, the numerical simulations are performed by using the 
commercial Finite Element Analysis software COMSOL Multiphysics. Figures 2 and 3(a–f) are computed using 
the eigenfrequency study in the solid mechanics module. The Bloch periodic boundary conditions are imposed 
on the boundaries of the unit cell. Figures 3(g), 4 and 5 are computed by using the frequency domain study in the 

Figure 5. (a) Projected bulk band structure calculated for a supercell (11 unit cells with 6 trivial ones on top 
and 5 non-trivial ones on bottom of the interface) consisting of six-petal holes over-sized by 7.2 nm (an 11% 
increase of hole diameters with respect to ro). (b) Full-field simulation of elastic wave transmission excited at 
15.05 GHz with six-petal holes over-sized by 11%. The over-sizing errors is assumed to be uniformly distributed 
over the entire simulation domain. (c) Projected bulk band structure for a supercell consisting of six-petal holes 
under-sized by 4 nm (a 6% decrease of hole diameters with respect to ro). (d) Full-field simulation of elastic 
wave transmission excited at 14.72 GHz with six-petal holes under-sized by 6%. Again, the under-sizing error 
is assumed to be uniformly distributed. The hole dimensions suffering sizing errors are given in the schematics. 
The yellow and green correspond to trivial and non-trivial unit cells.
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solid mechanics module. Low-reflection boundary conditions are imposed on the boundaries of the simulation 
domain to avoid undesired elastic wave leakage.

Data Availability
The data supporting the findings in this paper are available from the corresponding author upon reasonable 
request.
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