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Abstract

Problem solving has been the study of a set of
phenomena rather than a set of theories. Newell &
Simon's (1972) concept of search has proved very
useful for describing problem solving but it is not a
testable theory. We point out that without testable
theories, thought about problem solving cannot
progress through the interaction of thesis and
antithesis. Problems solving requires theories and we
propose a specific form of multispace search theory.
The hierarchical three-space theory of problem solving
can be derived from existing literature, and proposes
that interactive search occurs in instance space (states
of the problem), rule space (possible rules that govern
the problem), and model space (the general
understanding of the problem). This theory could be
used to generate testable predictions regarding the
interaction of spaces and provides a way to try to unify
diverse phenomena.

Problem Solving: What is the theory?
Sixty years ago, Maier (1940) noted that problem solving

was frequently cited as a barren field of inquiry. He argued
that this blandness is due to the proliferation of
experimental tasks which render generalization difficult. It
is bland because there is a set of phenomena, but no
underlying explanation of them.

Has this blandness diminished since Maier wrote this? If
one examines the way the field presents itself to its first line
of consumers, undergraduates taking introductory courses
in cognitive psychology, then it is arguable that the same
problems identified by Maier (1940) continue to bedevil
problem solving research. When one picks up a typical
introductory cognitive psychology book and turns to the
sections on perception, attention, or memory, then one find
a lively description of competing theories and the evidence
used to support/discredit them. These are on-going debates
so different books present these debates in different ways
depending on the biases of the author. In contrast, there is a
remarkable similarity between different books when one
turns to the section on problem solving. Anderson (2000) is
a typical example. He covers procedural knowledge and
search, operators (including analogy), operator selection
(including means-ends analysis and the Tower of Hanoi),

representation (including functional fixedness), and set
effects. Other books may differ in their details, but cover
the same basic ground. What is noticeable by their absence,
are theories of problem solving.

There has been progress since 1940, in particular Newell
and Simon’s (1972) idea of problem solving as search of a
problem-space. This has been very valuable both for
psychological and computational approaches to problem
solving, but it is not a complete theory (as others have also
noted, such as VanLehn, 1989). As a language for thinking
about problem solving, search has proved to be useful and
enduring. However, it makes no testable predictions, so
there can be no competing theory.

Sternberg (1995) emphasizes the dialectical progression
of ideas in psychology. As described by Hegel (1807/1931),
the dialectic begins with a viewpoint that is proposed and
believed (a thesis), but in response a competing view arises
(an antithesis), and eventually the best features of both are
melded into a synthesis. Then the process starts again.
Sternberg argues that much of the history of psychology can
be seen in terms of the dialectic. This progression cannot
occur in the field of problem solving because there is no
thesis, therefore there can be no antithesis, and there can be
no synthesis. Anderson (2000) and other introductory
cognitive psychology books illustrate that we know quite a
lot about the phenomena of problem solving, but there is no
thesis for the phenomena. VanLehn (1989) provides a list
of robust empirical findings regarding problem solving.
(Space precludes us from taking on a related difficulty with
problem solving research, its definition. The definition has
varied from very narrow [essentially the study of solving
the Tower of Hanoi] to the very broad [every goal oriented
activity]. For the purpose of this paper we use VanLehn's
characterization of problem solving as multistep goal-
directed tasks that last a few minutes to a few hours.)

The aim of this paper is to try to present a thesis, or to at
least struggle towards that aim. In doing this we do not
wish to throw away the power of treating problem solving
as search, instead we want to try to wield it into a form that
presents a testable thesis. We do this by taking seriously
another part of Maier's (1940) paper, that problem solving
is not a single process, but a set of processes. This leads to
multispace search theories, and we propose a specific form
of a hierarchical three-space search theory of problem
solving. As may already be apparent this paper is



speculative and, merely uses existing ideas, but we wish to
show how these ideas can be put together in such a way that
a hierarchical three-space theory falls out.

Multispace Search
Problem Solving as Search. Newell and Simon (1972)
proposed that for every problem there exists a problem
space which is defined by three components: 1) the initial
state of the problem; 2) a set of operators that can
transform a problem state; 3) a test for whether a problem
state constitutes a solution (this may be a particular goal
state or set of goal states). Finding a solution is a process of
searching the set of states logically defined by the initial
state and the operators that can be applied, until a solution
is found. This terminology has proved to be useful for
describing a wide range of problem solving behavior.
However, to encompass a wider range of phenomena, this
framework has been extended in two ways. In order to
include induction and problem solving within the same
framework, Simon and Lea (1974) claimed that search
occurs in a dual-space. In order to capture the influence of
different representations, Hayes and Simon (1974) claimed
that an understanding process is required as well as a
search process.

Dual-Space Search. Simon and Lea (1974) proposed that
problem solving does not necessarily consist of search of a
single problem space. To encompass multiple spaces they
generalize the components of Newell and Simon’s (1972)
description of problem solving in the following way: 1) the
elements of a problem space are knowledge states; 2)
operators are generative processes that take a knowledge
state as input and produce a new knowledge state as output;
3) there are one or more test processes for determining
solution and for comparing knowledge states; 4) there are
selection processes for which of these generators and tests
to employ, on the basis of the information contained in the
knowledge states. Induction can then be related to problem
solving by allowing a dual-space search to be conducted.
The search for rules that describe a task is conducted in a
rule space, the states of which are all possible rules, and
the operators are processes for generating, modifying and
testing rules. Testing, however, requires movement within
instance space, consisting of all possible states of the task,
and the operators are processes allowed by the task for
moving between instance states. Thus the two problem
spaces are conceptually distinct, but intimately related; test
processes for rule space lead to the generation of instances,
whereas information that results from such instances leads
to movement in rule space.

Simon and Lea (1974) suggested that many induction
tasks can be described in this dual-space framework. For
example, in concept attainment tasks learners generate
possible rules from instances. They then test or select
between alternative rules by observing or creating relevant
instances. Thus concept attainment can be seen as a dual-
space search, in which the goal is in rule space.

Problem solving may involve search of instance space
only, but it is a dual-space search if a problem solver tries
to learn rules which can be generally applied to reaching

different goal states. Simon and Lea (1974) pointed out that
the Tower of Hanoi problem is usually thought of as search
of instance space: find a sequence of moves that transfers
all disks to the goal peg. This is a single space search. But
the task could be described as: find a rule for transferring
disks from one peg to another (e.g., the first move depends
on whether the number of disks is odd or even). This
requires a dual-space search.

Dual-space search has been extended to scientific
reasoning by Klahr and Dunbar (1988) in their Scientific
Discovery as Dual Search (SDDS) model. They proposed
that in scientific reasoning people have an hypothesis space
(similar to rule space) and an experiment space (similar to
instance space). Reasoners propose hypotheses, and test
them by conducting experiments. Klahr and Dunbar (1988)
and Dunbar (1993) found that subjects who tested
hypotheses performed a learning task better, a finding
which supports SDDS.

More evidence that dual-space search occurs in problem
solving was found by Vollmeyer, Burns, and Holyoak
(1996). They had participants learn to control a complex
system called biology-lab in which they could manipulate
inputs and observe the changes to the outputs. Ultimately
they had to bring the system to a set of output states, but
participants were not told the nature of the set of equations
linking inputs to outputs. Vollmeyer et al. manipulated the
goals of problem solvers by either telling them what the
goal state was before they started exploring the system (a
specific goal), or delaying informing them of the goal until
after they had explored (a nonspecific goal). They found
that a group given a specific goal learned less about the
structure of the biology-lab task and transferred more
poorly to a new goal, than did the nonspecific goal group.
The strategies of the specific goal group indicated search of
instance space (i.e., find a path to the goal), but the
nonspecific goal group instead appeared to test rules (i.e.,
search hypothesis space).

Understanding Processes. Before a problem solver can
attempt a problem, the problem instructions must be
understood. The importance of understanding processes in
natural language has been well illustrated (e.g., Bransford
& Franks, 1971). Hayes and Simon (1974, 1977) explored
the impact that understanding can have on problem
solving. Hayes and Simon (1977) gave subjects different
isomorphic versions of the Tower of Hanoi problem and
found a dramatic effect on solution ease from the ease of
understanding the problem description. The importance of
representation in problem solving was a point emphasized
long ago by the Gestaltists (e.g., Maier, 1930).

Hayes and Simon (1974) incorporated understanding into
Newell and Simon’s (1972) framework by proposing
understanding as a subprocess that cooperates with search
of the problem space. The search process is driven by the
result of understanding processes, rather than the problem
itself. However, it may not be that understanding processes
first produce a representation of the problem, and then
search takes over. The two processes may alternate or even
blend together (see Hayes & Simon, 1974). That
representations may be fluid and interact with attempts to



solve a problem, is a point also made by researchers
working within other frameworks (e.g., Burns, 1996;
Hofstadter, 1995).

A Hierarchical Three-space Theory
Integrating Understanding Processes. If understanding
processes create the representation of problem space, then
in a dual-space search theory these processes must create
the representation of not only the instance space, but of the
rule space as well. Thus understanding processes define the
instance states that can be searched, and do so via the
candidate rules that might govern instance states. The
research on functional fixedness (e.g., Maier, 1930) can be
seen in terms of the problem solver’s understanding
processes defining the wrong rule space. Similarly, the
research on how false assumptions can be a barrier to
solution can be viewed in this way. Weisberg and Alba
(1980) showed that problem solvers attempting the nine-dot
problem could only solve it when their assumption that they
could only draw lines within a restricted area was removed.
In our terms, they were searching the wrong rule space. Of
course, having the correct rule space does not guarantee
success (as Weisberg & Alba found) as having the correct
rule space to search is not equivalent to having the correct
rule.

Given that representations may change during problem
solving, understanding processes can be seen as conducting
a form of search. VanLehn (1989) suggested that schema
selection can be a form of search when a person is
uncertain as to which schema to select. For example,
Larkin (1983) gave expert physicists a straightforward, but
difficult, physics problem to solve. Although two of the five
physicists immediately selected the correct schema for
solving the problem, the other three physicists tried two or
more schemas. In this way, understanding processes can be
seen as operators that search a space consisting of different
representational states. These operators generate, modify,
and test the adequacy of representations. We see
representational states as encompassing more than just
what type of diagram is used, additionally they reflect the
problem solver’s current model of how a task works. Thus
we term this space model space.

Model Space. In our hierarchical three-space theory of
problem solving we propose that model space provides not
only the representation of instances, but also defines the
rule space to be searched. Which rules appear plausible will
depend on how a problem solver thinks the task works. For
example, if each component of a system is thought to be
independent, then rules proposing interactions will not be
considered. If the model changes, then interactions may
become part of states in rule space.

Current utility is the criteria for assessing one's state in
model space as there is no final goal state, a better
understanding of the task may always be possible. So
instead of a test for "solution", there may be tests for the
adequacy of a model state, that is, does this model seem to
work?

Although it violates our application of the term "problem

solving" to tasks completed within a few hours, for
expository purposes we will illustrate model space with the
debate over competing models of light. Two models of light
were proposed: a wave model and a particle model. The
hypothesis that a scientist would test depended on which
model the scientist believed. The wave model suggested
that light is a wave, therefore a relevant hypothesis to test
was whether light shows interference patterns. The particle
model suggested that light is a particle, therefore a relevant
hypothesis to test was whether light exerts pressure. Testing
these hypotheses led to movement in the model space for
light. Neither model was accepted as completely correct,
instead the competing models were synthesized into a
model in which light was both a particle and a wave.
Although this particular movement in model space was
slow, it still had the characteristics of a movement in a
problem space. There were clearly defined states (initially
two different models states, which expanded in number
when the possibility of combinations arose), and there were
processes for comparing and moving between states (driven
by search of rule space). There were no processes for
deciding whether the final goal state in model space had
been reached, only utility. The current model of light does
not rule out the possibility that a new model may emerge.

During problem solving, movement in model space may
occur much faster than did movement in the model space
for light. Whenever people are faced with a new task, it is
necessary to form a model of that task, the current state of
which may need to quickly and often be revised, just as
Larkin’s (1983) physicists did.

Search in rule space can drive movement in model space.
For example, if the rules suggested by a model fail, then
eventually the response will be to change the model. If the
rules make a false claim or mandate an impossible action,
then the problem solver can be said to have reached an
impasse (Brown & VanLehn, 1980). Such impasses require
repair procedures, such as when Larkin’s (1983) physics
experts changed their schemas when faced with a
contradiction. In our terms this is movement in model
space.

Success in rule space could also lead to movement in
model space. While less likely to result in wholesale change
to a model, success can lead to modification of the current
model, such as through elaboration. Elaborations (see
VanLehn, 1989) are assertions about the problem without
having any impact on previous assertions. Simply filling in
slot values in a schema is a form of elaboration, but so are
new statements about the representation of the problem
which may arise from the testing of rules through the
generation of instances.

The hierarchical three-space model of problem solving is
represented diagramatically in Figure 1. In this model, the
problem description provides the initial model state, which
in turn defines the rules space consisting of all possible
rules that the model suggests are plausible. The problem
solver's state in rule space defines what are the relevant
instances and how they should be represented in order to
test rules. Instances are then generated by invoking
experiments (i.e., interaction with the world) or from
memory. The results of generating instances can be used to



modify rules, that is, cause movement in rule space
(confirmation can be seen as a form of movement too in
that the confidence in the rule state would be enhanced).
Repeated failure for the rules in the rule space may lead to
modification of the model, either directly (e.g., the failed
rules may suggest different types of rules), or by evoking
search mechanisms in model space in order to overcome
the impasse. For each space, memory provides knowledge
that is used by the search processes.

Model
Space

Rule
Space

Instance
Space

TEST/
DEFINE

MODIFY
RULES

MODIFY
MODEL

DEFINE
POSSIBILITIES

problem
description

memory

memory

memory

results of
experiments

Figure 1. A hierarchical three-space theory of problem
solving

We can illustrate these spaces using Vollmeyer et al's
(1996) biology-lab task. Initially participants had to
construct a model of what sort of system they thought they
were faced with. Their model defines a rule space
consisting of all possible links between inputs and outputs.
If participants hit on the right model immediately, that
biology-lab is a straightforward linear system, then they can
solve it quickly. To test rules, instances are generated
consisting of particular sets of inputs. Such a model defines
a constrained, and thus quickly searchable, rule space.
However, most participants start out with less precise
models. For example, they have models that include the
possibility of interactions, or random effects. A model
including such possibility defines a larger rule space, and
searching these parts of the rule space are at best a waste of
time, and at worst confusing.

Search Processes. An advantage of treating problems
solving as search of multiple spaces, is that it suggests a
series of questions about the nature of the search processes.

For each space we have to ask Simon and Lea's (1974)
questions: 1) what are the knowledge states, 2) what are the
generative processes, 3) what are the test processes, 4) what
are the selection processes?

Table 1 is a proposal for the nature of the search
processes. Most of the processes invoked are processes
already studied. For instance space the processes are those
normally invoked for problem solving as search of a
problem space, but Table 1 also specifies relationships
between other processes, such as induction, hypothesis
testing, metacognition, and analogy. Table 1 suggests a
specific organization between different processes involved
in problem solving and learning from problems solving.
For rule space, induction and hypothesis testing are clearly
distinguished as the generative and test processes
respectively, and they are both distinguished from analogy.
Table 1 also highlights processes we know little about, in
particular, the selection processes for rule and model space.

It is clear from Table 1 that we understand least about
model space. This is not surprising given that it
encompasses the questions of "How do we form
representations?" Table 1 implies though a useful way to
think of research into analogy, a common topic in recent
years (see Holyoak & Thagard, 1995). If analogies give
people a new way of looking at a situation or problem (e.g.,
the water analogy for electricity) then they can be seen as a
generative process in model space. Analogies of this type
are therefore distinguished from induction.

Table 1: The four generalized problem space components
for each of the three spaces.

Instance space Rule space Model space

knowledge
states

states of a task hypothesized
rules

possible models of
the tasks

generative
processes

operators for
changing the state
of the task

operators for
generating rules
(e.g., induction)

operators for
generating new
models (e.g.,
analogy)

test
processes

evaluate how
close current state
of task is to its
goal state

hypothesis testing
(e.g., generate
critical instance)

evaluate how well
current model fits
(e.g., metacognitive
processes)

selection
processes

select operator or
evaluation
method

decide which rule
to test, or how to
generate a rule

select method for
evaluating or
generating new
model

Formalising a Hierarchy of Spaces. In Figure 1, the
hierarchical nature of the three-space theory is made clear.
We aimed to create a hierarchy because it makes the spaces
clearly distinct. We agree with the proposed constraint of
Baker and Dunbar (1996) that in multispace theories the
spaces at different levels of abstraction (e.g., rule and
instance space) should be isomorphic, whereas those at the
same level (e.g., different representational forms of the
same problem) should be homomorphic. Figure 1 presents
the spaces as hierarchical, and we can describe them as



being hierarchical, but to truly impose this constraint we
need to propose a formal definition that is hierarchical.

To give the spaces a formal definition, we start with the
claim that any task can be seen as defined by a set of inputs,
a set of outputs, and a set of rules relating those inputs to
the outputs. Productions can have this form, so the
generality of this claim is wide. In this formalism each
output can be seen as a function of the inputs and constants
associated with the inputs. Thus, a task with a set of X1 to
XM inputs and Y1 to YN outputs can be defined by the
following set of very general functions:

Y1 = f1(c10, c11, X11, c12, X12, c13, X13, .., c1M, X1M)
Y2 = f2(c20, c21, X21, c22, X22, c23, X23, .., c2M, X2M)
...
YN = fN(cN0, cN1, XN1, cN2, XN2, cN3, XN3, .., cNM, XNM)

The relationship between different hierarchical spaces
can be specified in terms of the different components of
these equations that a state in each space will specify. A
model state specifies a set of functions with constants left
unspecified; a rule state specifies a set of constants;
whereas a particular set of X values (with resulting Y’s)
represent instance states. For example, consider a task that
could be described as a single output with two inputs. This
would be defined by a single equation: Y = f(c0, c1, X1, c2,
X2). A model suggesting that inputs are additive specifies
the equation Y = c0 + c1X1 + c2X2. The rule that "X1 has
twice the effect of X2 but there is no constant effect," is
expressed by the equation: Y = 2X1 + X2. This hypothesized
rule could be tested by generating an instance with values
of 5 for X1 and 5 for X2 and testing if the resulting value of
Y is 15. Biology-lab fits easily into this framework as X
values can be seen as changes to inputs, constants define
particular possible links, and the shape of the functions are
the nature of possible rules. However our argument is that
any task could be seen in these terms, so applying the
hierarchy constraint when determining the exact nature of
the spaces for a task can be seen as requiring a specification
of how the task fits into this formalism. The mathematics of
this formalism are not in themselves insightful, but fitting
spaces to this formalism creates constraints on the
definitions of the search spaces.

Comparison to Other Approaches
Other Multisapce Models. Ours is not the only work on
multispace models. Another is the four-space model of
Schunn and Klahr (1996) for scientific discovery. This
model differs in various ways from the hierarchical three-
space theory, but there is not space here to fully explore the
differences. An important difference is that the four-spaces
are not constrained to be hierarchical. The scope of the
four-space model is not clear, but if it can be a general
model of problem solving, then we would welcome it as
another attempt to address the lack of theory in problem
solving research. Dialectic progress requires competing
alternatives.

How do multispace models in general relate to Soar
(Newell, Rosenbloom, & Laird, 1989) and ACT-R
(Anderson, 1993)? Soar and ACT-R are frameworks in

which detailed models of problem solving can be built.
Because Soar constructs a new problem space whenever the
need arises, Newell (1989) proposed that Soar could model
Klahr and Dunbar's (1988) theory, so by extension it can
model all multispace theories. Whereas it should be
possible to build multispace models in the Soar
architecture, they are not equivalent just because they both
involve multiple problem spaces. The spaces in multispace
models are conceptually distinct and interact in specified
ways, so a compatible model built in Soar would have to
incorporate these assumptions.

Anderson's (1993) ACT-R does not explicitly incorporate
the idea of interactive search of multiple spaces, but there
appears to be no reason why it could not model such
processes. The current goal in ACT-R is critical, because
subgoals encourage the firing of certain sets of productions.
Such sets could be considered to define different spaces, so
perhaps rapid transition between different subgoals could
simulate an interactive search between spaces. The
implications of such an approach are unclear.

Situated Cognition. We started by decrying the lack of
alternatives theories in problem solving research, but there
exists an approach to problem solving that does not focus
on search: situated cognition. Situated cognition places a
great emphasis on the context of cognition and denies (or at
least de-emphasizes) that symbolic processing (such as
search of a problem space) lies at the heart of cognition.
The extent to which situated cognition is an antithesis to
problems solving as search, is not clear. Vera and Simon
(1993) tried to place situated cognition into the symbolic
framework, but the replies to their article suggested that
researchers taking the situated cognition approach see it as
fundamentally different. However the problem with situated
cognition emerging as an antithesis to the thesis of problem
solving as search may be that neither the thesis nor the
antithesis is clear enough to begin with.

Like any clearly stated antithesis we would welcome the
emergence of a competitor such as situation cognition.
Within the three-space model, in general we could try to
explain the phenomena that cognition is often heavily
context dependent as the claim that movement in the model
space is difficult, and may usually define only a restricted
rule space. Perhaps this is the general condition, and the
implications of this would have to be worked out.

Conclusions
We have argued that a hierarchical three-space theory of
problem solving can be derived from existing studies and
ideas about problem solving. In constructing this theory we
have been guided by Schunn and Klahr's (1996) three
criteria for when to propose additional problem spaces in
multipspace search theories. The first criterion is logical,
do the spaces involve search of different goals and entities?
(We would also add, do they use different operators for
search?) The three spaces we propose clearly involve
different kinds of states, goals, and ways of searching that
space, so we think we meet this criterion. The second
criterion was, do the spaces differ empirically? There is



evidence from existing literature that different factors
influence behavior, so we think we can meet this criterion.
Schunn and Klahr’s third criterion was implementational,
spaces should be able to be represented distinctly in a
computational model that can perform the task. At the
moment we can do more than suggest how such a model
using the our theory would work, but constructing such a
model is an important aim.

To test the hierarchical three-space theory we intend to
examine the testable implications it has for how people may
best learn from encountering novel tasks. It suggests that
whether hypothesis testing will be a good strategy for
learners depends on the quality of the learner’s model.
Learners with a poor model may be disadvantaged by being
encouraged to test hypotheses. A current weakness with the
theory is that we may be able to define relatively what are
good and poor models in terms of some metric of the size of
the rule space the model state defines, but it may be hard to
define absolute model goodness. Specifying the distinction
between good and poor models precisely is an important
aim of future research, especially if we are to investigate
the practical implications of the theory. Also required is
further study into the reality and properties of the links
between spaces proposed by the theory.

Have we met our aim of proposing a theory for problem
solving? We are trying to develop the hierarchical three-
space theory so that it can generate predictions in terms of
the interactions between different spaces, and hope to make
the theory a tool for organizing the different processes
involved in problem solving. However, we recognize that
the theory requires more development, both
computationally and empirically, before it is truly more
than a framework. Such attempts by problem solving
researchers are necessary though because until there are
such theories, problem solving will remain just a set of
diverse and sometimes unrelated phenomena.
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