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Control of Gene Expression Noise in the Pheromone Response 

Pathway in Saccharomyces cerevisiae 

 

 

Abstract 

Cells must integrate signals from their environment and respond 

accurately in order to grow and divide properly.  However, the chemical reactions 

within single cells do not occur with deterministic certainty.  Rather, they occur 

with a probability due, in part, to the abundance of molecular components and 

their rates of synthesis and degradation.  Therefore, while an entire population of 

cells may respond appropriately to environmental cues, single cells may vary 

wildly in their output responses.  This phenomenon is called biological noise, and 

increasingly has been reported to be an important determinant for population 

heterogeneity, fitness, and development.  Although biological noise has been 

characterized in a variety of systems and cellular pathways, mechanisms that 

regulate cell-to-cell variability remain poorly understood.  In this work, we 

investigated the role of biological noise in the transcriptional output of the mating 

pathway, a canonical MAP kinase pathway in S. cerevisiae.  We identified a role 

in noise suppression for Dig1, a negative regulator of the transcription factor 

Ste12.  The removal of Dig1 causes an increase in intrinsic and extrinsic noise in 

the expression of Ste12 target genes.  In conjunction, Dig1 inhibits long-range 

interactions between Ste12 target genes in vivo.  Finally, we demonstrate a link 
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between fitness defects and the increased gene expression noise in dig1Δ cell 

populations.  These studies suggest that gene expression noise is an evolvable 

trait and that, when necessary, mechanisms can arise to modulate cell-to-cell 

variability. 
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CHAPTER 1 

 

Introduction 
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Evidence for non-genetic individuality in cellular behaviors was reported in 

early studies of bacterial persistence during antibiotic treatment (1), λ phage 

burst size (2) and bacterial chemotactic behavior (3).  Such phenotypic variability 

within a population has been termed “noise” and is thought to arise, in part, due 

to stochastic fluctuations in molecular reactions.  Cellular reactions are 

probabilistic in nature.  They involve discrete numbers of molecules and many 

depend on the rate of diffusion to bring reactant species together in space.  

Therefore, it is not surprising that fluctuations arise in the molecular input-output 

relationships of cellular processes.  These fluctuations have been attributed to 

small numbers of molecules present in the cell, as well as probabilistic synthesis, 

degradation and catalysis/reaction rates (4-9).   

 

The regime of small numbers 

 Fluctuations in the average output of a process are greater when the 

average is small.  Intuitively, we can think of the process of rolling a single fair die 

to understand why stochastic fluctuations have larger effects when the mean is 

small.  Whether rolling a die once or 100 times, the expected value of the 

average die roll is 

� 

1+ 2 + 3 + 4 + 5 + 6
6

= 3.5.  Since it is impossible to get 3.5 in a 

single roll, the value of one roll will be far from the expected value.  However, in 

the case of 100 rolls, the average of all throws is likely to be close to the 

expected value.  As the number of rolls increases, the average value of the rolls 

approaches the expected value of 3.5.  In probability theory, this is called the law 

of large numbers.  Many biological processes operate in the realm of small 
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numbers since both mRNA and proteins can be present at a few copies per cell 

(10, 11).  Consequently, stochastic fluctuations in levels or activities of molecules 

within these processes might be expected to significantly affect pathway output.  

Indeed, experimental and theoretical evidence suggest that noise in biological 

systems does arise, in part, from small numbers of molecules (4-9, 12-14). 

 

Noise in gene expression 

 There has been great interest in recent years in understanding the origins 

of noise in gene expression as well as the mechanisms by which it is controlled.  

The development of a dual-reporter assay that decomposes gene expression 

noise into intrinsic and extrinsic components has aided in the identification of the 

origins of noise within this process (15).  In this method, identical promoters are 

used to drive the expression of distinguishable fluorescent proteins in the same 

cell and measurements of the expression of each reporter gene are made at the 

single-cell level (15).  The uncorrelated variation in expression of these two 

genes has been termed intrinsic noise and is thought to reflect stochastic 

fluctuations in the process of gene expression itself.  In contrast, extrinsic noise 

is defined as the correlated variation in expression of the two genes and has 

been suggested to measure cell-to-cell variability in the global cellular state. 

Simple models of prokaryotic gene expression account for rates of 

transcription, translation and degradation of mRNA and protein species and 

suggest that intrinsic noise arises due to small numbers of molecules produced 

by these processes (4, 5, 7, 9, 14).  Specifically, these models predict that both 
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the rate of transcription and the translational burst size (the number of proteins 

produced from a single mRNA molecule) are important for determining intrinsic 

noise.  Experimental evidence in B. subtilis supports the notion that increasing 

the translational efficiency, or burst size, results in increased intrinsic noise (5).   

Intrinsic gene expression noise has also been studied in eukaryotic 

systems.  As predicted from prokaryotic models, proteome-wise studies illustrate 

that, in general, intrinsic gene expression noise in eukaryotes is greater when the 

mean expression is small (12, 13).  Using a two-reporter system, Raser and 

O’Shea investigated the source(s) of intrinsic gene expression noise for three 

genes in S. cerevisiae.  The intrinsic nose of two genes, GAL1 and PHO84, 

behaves as predicted by models of prokaryotic gene expression.  In contrast, 

intrinsic noise in PHO5 expression appears to originate from transcription-

independent chromatin remodeling during promoter activation.  By using mutants 

that affect the rate of chromatin remodeling at the PHO5 promoter, the authors 

were able to modulate the levels of intrinsic noise in PHO5 expression.  They 

conclude that promoter activation through chromatin remodeling may be an 

important source of intrinsic noise for some eukaryotic genes. 

Extrinsic gene expression noise is thought to arise in general cellular 

processes that affect the expression of all genes.  However, the origins of 

extrinsic noise are not well understood. Studies in yeast have established that 

cell cycle-dependent differences in cells contribute significantly to extrinsic gene 

expression noise, although the molecular nature of this effect has not been 

parsed (12, 16, 17).  Additionally, it has been suggested, but not proven, that 
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variable levels of general cellular factors such as RNA polymerase or ribosomes 

also give rise to extrinsic gene expression noise (18) as they impact the general 

expression capacity of the cell. 

 

Biological impact of noise 

Phenotypic diversity produced by noise in gene expression has the 

potential to be important for fitness.  Theoretical evidence from stochastic models 

suggest that population growth in fluctuating environments can achieve higher 

rates when the population is dynamically heterogeneous (19).  The theory of bet-

hedging offers a framework within which we can consider how noise can confer 

selective advantage to a population.  A bet-hedging strategy is one in which the 

production of phenotypically diverse offspring increases the probability that at 

least one offspring will survive in a given environment.  Such a strategy only 

proves advantageous in an unpredictably fluctuating environment since 

organisms cannot foresee what environmental stresses will present themselves.  

Phenotypic diversity usually does not benefit individual organisms under all 

environmental conditions, but instead bestows a growth advantage to the 

population as a whole under fluctuating conditions.  For example, heterogeneity 

may increase the likelihood that, in the event of environmental stress, some cells 

are poised to survive (20-22).  Bacterial persistence (1, 23) as well as sporulation 

and competence in B. subtilis (24-26), are reported to reflect such bet-hedging 

strategies.   
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Bacterial persistence during antibiotic stress was first reported in the 

1940s (1).  It was observed that a small number of bacteria cells within a 

population stochastically switch to a persistent state in which they do not grow or 

divide (1, 23).  Under ideal conditions, the persistent state does not benefit 

individual persister cells, since these cells do not divide.  However, the existence 

of a persistent population could prove advantageous during environmental stress 

with antibiotics since these cells survive and can stochastically switch out of the 

persistent state and repopulate after the sensitive cells die.   

Competence for DNA uptake and sporulation in B. subtilis are cellular 

differentiation programs initiated during harsh environmental conditions.  These 

processes appear to utilize bet-hedging mechanisms to maximize growth while 

ensuring population survival in fluctuating environments (24-26).  While growing 

exponentially, B. subtilis cells are not competent to take up DNA from the 

environment.  However, upon entering stationary phase, a small proportion of the 

population becomes competent and can acquire foreign DNA.   

Intrinsic fluctuations in the levels of a key pathway regulator ComK result in a 

small fraction of cells being driven into the competent state (25, 26).  While it is 

plausible that populations of cells harness noise in gene expression to generate 

phenotypic diversity in order to increase fitness, this notion is quite difficult to 

prove.  These examples of systems in which a small proportion of the population 

adopts a fate in preparation for a stressful environment are enticing.  However, it 

will be crucial to prove that the fitness of a population depends on phenotypic 

variability and the proportion of individuals that switch to the resistant state. 
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Gene expression noise has also been reported to be disadvantageous 

and to prove costly for cellular processes.  Pathways in which fidelity is required 

to maintain cellular housekeeping or to make crucial developmental decisions 

have been described to lack output variability (27).  Consistent with this, in a 

genome-wide study of gene expression noise, variability in the expression of 

genes involved in homeostasis, such as ribosomal protein genes, was lower than 

average (12).  More recently, it has been reported that increasing noise in a 

transcriptional network that specifies intestinal development in C. elegans results 

in significant phenotypic heterogeneity (28).  The authors found that increased 

noise in this network resulted in the failure of some worm embryos to develop 

intestinal cells, while other embryos developed normally.  The authors 

hypothesize that noise in gene expression may account for the incomplete 

penetrance of some mutant phenotypes in multicellular organisms (28).   

 

Noise in the yeast mating pathway 

 The pheromone-response pathway in S. cerevisiae has classically been 

used to study eukaryotic signal transduction and gene expression, but recently 

has been exploited to investigate noise in signaling cascades (16, 29).  The 

pathway contains a canonical MAPK cascade that transmits the signal produced 

by the presence of extracellular mating pheromone (a-Factor or α-Factor) from a 

G-protein coupled receptor to the nucleus to control transcription.  Unstimulated 

cells maintain a basal level of signaling through this pathway, perhaps through 

the dissociation of the heterotrimeric G-protein.  Upon activation by pheromone, 
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cells arrest in the G1 phase of the cell cycle and up-regulate transcription of 

target genes by relieving the inhibition of the transcription factor Ste12 by the 

redundant negative regulators Dig1 and Dig2.   

 Cell-to-cell variability in signaling through the mating pathway was recently 

investigated by Colman-Lerner et al (16).  To measure cell-to-cell variability in the 

output of the mating pathway, the authors constructed dual-reporter strains in 

which distinguishable fluorophores YFP and CFP were driven by identical 

pheromone-inducible promoters.  To distinguish noise specific to signaling 

through the mating pathway from that originating in the expression of the 

fluorophores, the authors also constructed strains in which YFP was driven by a 

pheromone-inducible gene and CFP was driven by a pheromone-independent 

promoter.  The authors found that cell-to-cell variability in signaling was 

dominated by extrinsic sources, specifically the cell cycle stage.  Interestingly, 

the total noise in the output of the mating pathway was unchanged when crucial 

redundant signaling components Fus3 and Kss1 were removed.  This suggests 

that noise in the mating pathway may be highly buffered and that systems may 

have evolved to constrain variability so that cells can function properly. 

The goal of this study was to investigate whether there are, indeed, 

mechanisms in place in the yeast mating pathway to reduce cell-to-cell variability 

in the pathway output.  Curiously, transcriptional activation by the transcription 

factor Ste12 is inhibited by redundant negative regulators Dig1 and Dig2 (30).  

These two proteins bind to distinct regions on Ste12; Dig1 to the activation 

domain and Dig2 to the DNA binding domain (31, 32).  Given that both Dig1 and 
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Dig2 are individually capable of inhibiting Ste12 activity, it is unclear why both 

proteins have been retained during evolution.  As previous studies of Dig1 and 

Dig2 have examined their roles on population-averaged phenotypes, it is 

possible that differential roles of Dig1 and Dig2 in quantitatively modulating 

pathway dynamics could have been missed.  This work describes the results of 

single-cell studies that reveal a distinct role for Dig1 in the control of noise in the 

transcriptional output of, and in preventing long-range physical associations 

between, Ste12 target genes.  Finally, by taking advantage of the biological 

consequences of disrupting the output of the mating pathway, we demonstrated 

a link between the increased noise phenotype displayed by dig1Δ cell 

populations and quantitative defects in growth and mating fitness. 
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ABSTRACT 

In the Saccharomyces cerevisiae pheromone-response pathway, the 

transcription factor Ste12 is inhibited by two MAP kinase-responsive regulators, 

Dig1 and Dig2.  These two related proteins bind to distinct regions of Ste12 but 

are redundant in their inhibition of Ste12-dependent gene expression.  Here we 

describe three unexpected functions for Dig1 that are non-redundant with those 

of Dig2.  First, the removal of Dig1 results in a specific increase in intrinsic and 

extrinsic noise in the transcriptional outputs of the mating pathway.  Second, in 

dig1Δ cells, Ste12 relocalizes from the nucleoplasmic distribution seen in wild-

type cells into discrete subnuclear foci.  Third, genome-wide iChIP studies 

revealed that Ste12-dependent genes display increased interchromosomal 

interactions in dig1Δ cells.  These findings suggest that the regulation of gene 

expression through long-range gene interactions, a widely-observed 

phenomenon, comes at the cost of increased noise.  Consequently, cells may 

have evolved mechanisms to suppress noise by controlling these interactions. 
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INTRODUCTION 

Cells respond to environmental fluctuations by transducing signals to 

networks of DNA-binding proteins.  Numerous transcriptional regulators, 

including p531, E2Fs2 and Smads3, 4, are subject to overlapping inhibitory 

mechanisms, yet the logic underlying these potential circuit redundancies 

remains poorly understood.  A well-defined example of such regulatory 

architecture occurs in the S. cerevisiae mating pathway in which the transcription 

factor Ste12 is inhibited by two MAP kinase-responsive regulators, Dig1 and 

Dig2.  These related proteins are redundant in their suppression of Ste12 activity 

since the removal from cells of both proteins is required to de-repress pathway 

activity5, 6.  Despite this redundancy Dig1 and Dig2 bind to distinct regions of 

Ste12; Dig1 to the activation domain and Dig2 to the DNA-binding domain7, 8.  

Ste12 lies at the terminus of a signal transduction pathway that is initiated 

by the binding of extracellular pheromones to a G-protein coupled receptor.  This 

ligand-sensing event triggers the activation of a MAP kinase (MAPK) cascade, 

which initiates a cytoplasmic response and transmits the mating signal to the 

nucleus to activate the transcription factor Ste12 (Fig. 1a).  Ste12 regulates the 

expression of a network of genes whose products are required for the process of 

mating.  Unstimulated cells display a basal level of signalling that increases upon 

stimulation with pheromone.  This system has been utilized recently as a model 

to measure variability, or noise, in a signal transduction cascade and to ascertain 

whether such noise is controlled9, 10.  Interestingly, it was found that removal of 

either of the MAPKs, Fus3 or Kss1, did not affect total output variability, 
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suggesting that this natural system may have evolved overlapping mechanisms 

that buffer against noise9.  Since the regulation of gene expression noise has 

been suggested to be important for appropriate input-output responses11-13, we 

reasoned that the investigation of noise in the output of the mating pathway might 

reveal mechanisms that underlie the redundant regulatory architecture controlling 

Ste12 activity. 

 

 

RESULTS 

Noise in Ste12-dependent gene expression outputs is limited by Dig1 

We constructed two Ste12-dependent reporter genes, pAGA1-YFP and pFUS1-

YFP.  Their output distributions in wild-type and dig1Δ cells overlapped less than 

5% with the background autofluorescence of yeast (Supplementary Information, 

Fig. S1).  The mean output of dig1Δ strains increased 1.4-fold over wild-type, 

while mean fluorescence levels in dig2Δ did not change measurably (Fig. 1b), 

confirming that Dig1 and Dig2 appear redundant in their inhibition of average 

Ste12-dependent transcription5, 6 when assayed in this manner.  As expected, 

deleting DIG1 and DIG2 resulted in a 19-fold and 9-fold increase in mean 

expression for pAGA1-YFP and pFUS1-YFP, respectively (Fig. 1b).  The mean 

output of a Ste12-independent reporter, pPMP1-GFP, was unaffected by deletion 

of DIG1 or DIG2 (Fig. 1b).   

 In contrast, examination of the single-cell output distributions of the Ste12-

dependent reporters revealed a non-redundant role for Dig1 that is distinct from 
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Dig2.  Deletion of DIG1, but not DIG2, significantly increased the variability as 

measured quantitatively by the coefficient of variation or CV (Fig. 1c), and 

qualitatively by the spread of the pAGA1-YFP and pFUS1-YFP distributions (Fig. 

1d).  The CVs of the pFUS1-YFP dig1Δ and pAGA1-YFP dig1Δ output 

distributions were 29.6% (P = 0.0003) and 12.5% (P = 0.0014) higher, 

respectively, than those of wild-type and dig2Δ (Fig. 1c,d).  Cell sorting 

experiments indicated that a cell population isolated from the middle of the dig1Δ 

output distribution could regenerate the entire distribution within 1-2 cell cycles 

(Fig. 2).  Thus, while the steady-state fraction of cells experiencing the high-

expression state at any given time point in the dig1∆ mutant is modest, the entire 

population of dig1∆ cells is likely to dynamically experience inappropriately high-

expression states over time.  The larger CV of dig1Δ output distributions was 

unexpected, and all the more significant, because the slight increase in mean 

output in dig1Δ cells might be predicted to generate a decrease, rather than an 

increase, in noise14.  Furthermore, the increase in noise in dig1Δ cell populations 

was independent of forward scatter and side scatter, flow cytometric surrogate 

measures of cell size and shape (Fig. 1e, see Methods).  As expected from the 

rise in mean expression, dig1Δdig2Δ double mutants displayed less variability 

than wild-type in mating pathway outputs (Fig. 1c).  The effect of deleting DIG1 

on noise is specific to outputs of the mating pathway, as the deletion of DIG1 or 

DIG2 did not affect the variability in three Ste12-independent reporters, pPMP1-

GFP, pYEF3-GFP and pAGP1-GFP (Fig. 1c,d, Supplementary Information, Fig. 
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S2).  Furthermore, the changes in noise cannot merely be due to changes in the 

mean expression or growth rate since the analysis of several additional mutants 

illustrate that increased mean output and decreased growth rate do not result in 

increased noise (Supplementary Information, Fig. S3). 

 

Both intrinsic and extrinsic noise increase in dig1∆ cell populations 

Gene expression noise can be decomposed into intrinsic and extrinsic 

components using a two-colour reporter gene system in which distinct 

fluorescent proteins are expressed from identical promoters in the same cell15.  

Intrinsic noise is defined as the uncorrelated cell-to-cell variation in levels of 

these two fluorescent proteins and is thought to reflect stochastic fluctuations in 

gene expression itself16-19.  Extrinsic noise is defined as the correlated variation 

in the levels of the two proteins.  Although extrinsic noise is thought to be 

impacted by cell-to-cell variability in the global cellular state, its origins and 

effectors are considerably less well-understood9, 11, 14. 

 Using a two-colour assay with strains containing GFP and mCherry driven 

by pAGA1 (Fig. 3a), we observed that both intrinsic and extrinsic noise increased 

in dig1Δ cell populations as compared to wild-type and dig2Δ cell populations.  

This result can be seen qualitatively by the reduced density of cells in the centre 

of the scatter plot of the data for the dig1∆ mutant relative to wild-type and dig2∆ 

(Fig. 3b), indicating an increased spread in fluorescence values.  Quantitative 

calculations also reveal increases in the CV measurements (Fig. 3c, 

Supplementary Information, Fig. S4).  The extrinsic noise (ηext) was 22.8% (P = 
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0.035) greater in magnitude in dig1Δ cells as compared to wild-type, while the 

intrinsic noise (ηint) was 14.9% (P = 0.009) higher (Fig. 3c).  These patterns of 

increased intrinsic and extrinsic noise in dig1Δ populations were independent of 

cell size and shape and were specific to Ste12-dependent outputs (Fig. 3d-f, 

Supplementary Information, Fig. S4d,e).   

 

Dig1 prevents formation of subnuclear foci of Ste12-GFP molecules 

 The increased extrinsic noise in dig1Δ cell populations could result from 

the breakdown of a mechanism in which Dig1 limits fluctuations in the levels of 

the transcription factor Ste12 through an autoregulatory feedback loop at the 

Ste12 promoter20-22.  However, this was not the case since replacing the Ste12-

dependent Ste12 promoter had no effect on noise (Fig. 4).  This posed the 

possibility that the mechanism by which Dig1 acts on Ste12-dependent genes to 

limit extrinsic noise is beyond correlations in upstream factors.  Extrinsic noise is 

typically measured by quantifying the correlated variability in the expression from 

two identical promoters, in this case pAGA1.  However, more generally, 

correlated or extrinsic noise in pAGA1 output would be expected to increase in 

dig1Δ cells if Dig1 limited the correlated expression of all Ste12 outputs in the 

cell.  One way for this to occur would be if Ste12 target genes co-localized in 

space in the absence of Dig1.  If this were the case, the spatial proximity of these 

genes could increase the dependence of the expression of one Ste12 target 

gene on the expression of another, perhaps due to increased local concentration 

of activators.  For example, if Ste12 target genes co-localized in space, the 
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induction of one gene could stimulate the induction of a neighbouring Ste12 

target gene.  Thus, it would be expected that the expression of such co-localized 

genes would be more correlated, in turn resulting in an increase in extrinsic 

noise.  Given that Ste12 has many known interacting partners and exhibits self-

cooperativity5, 6, 23-27, Dig1 may function to shield protein-protein interaction 

domains on Ste12 that would otherwise cause Ste12 to homo-dimerize or bind to 

other proteins.  Therefore, the loss of Dig1 might allow DNA-bound Ste12 

proteins to enable long-range interchromosomal interactions between Ste12 

target genes.   

Consistent with this possibility, Ste12-GFP molecules localized to 

subnuclear foci in dig1Δ cells (Fig. 5a, white arrowheads), while Ste12-GFP 

displayed granular nucleoplasmic staining in both wild-type and dig2Δ cells (Fig. 

5a).  Approximately 65% of dig1Δ cells showed one or more Ste12-GFP foci (Fig. 

5b).  These foci did not co-localize with the nucleolus (Supplementary 

Information, Fig. S5a) and focus formation could not explained by changes in 

total Ste12 protein levels since these levels were unaltered in dig1Δ and dig2Δ 

cells, as measured by quantitative immunoblotting (Supplementary Information, 

Fig. S5b).  dig1Δdig2Δ double mutants also exhibited Ste12-GFP foci, but a 

slightly higher nucleoplasmic accumulation of Ste12-GFP protein precluded 

accurate assessment and quantification (Supplementary Information, Fig. S5c).  

Focus formation in dig1Δ cells was specific to Ste12 as the transcription factor 
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Reb1-GFP displayed nucleoplasmic staining in wild-type, dig1Δ and dig2Δ cells 

(Fig. 5a).   

 

Focus-suppressing function of Dig1 is not controlled by MAPK signaling 

 In wild-type cells, stimulation with pheromone does not induce formation of 

Ste12-GFP foci (Fig. 5c), indicating that an increase in signalling and 

transcriptional output is not sufficient to induce their formation.  While it has been 

suggested that mating signalling inactivates Dig15, 6, we found that this protein 

remains physically associated with target genes (presumably via Ste12) in cells 

treated with pheromone (Fig. 5d).  Thus, consistent with our finding that Ste12-

GFP foci do not form in wild-type cells upon pheromone stimulation, not all 

activities of Dig1 are eliminated by signalling.  

 

  Increased long-range interactions between Ste12-target genes in dig1Δ 

cells 

 Using a genome-wide adaptation of the single-locus iChIP technique28, we 

examined interactions between the Ste12 target locus, pFUS1, and the rest of 

the genome in wild-type and dig1Δ cells (see Methods).  The locus efficiently 

immunoprecipitated as seen by the large peak centred on the FUS1 promoter on 

the left arm of Chromosome III (Fig. 6a).  No enrichment was observed at the 

pFUS1 locus in the absence of LacI (Supplementary Information, Fig. S6).  The 

5% of genes (269 genes) whose promoters displayed the largest differences in 

ChIP-chip signals between dig1Δ cells and wild-type were analyzed 
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(Supplementary Information, Table S1).  Remarkably, of the 203 gene regulators 

for which genome-wide localization data are available21, only targets of Ste12 

and Tec1 displayed a statistically significant increase in interactions with the 

FUS1 locus in dig1Δ cells (Fig. 6b, similar results obtained for 1%, 3% and 10% 

cutoffs).  Moreover, these physical interactions were dependent on the presence 

of Ste12 (Fig. 6c, Supplementary Information, Table S1).  Tec1 and Ste12 are 

known to interact and are found at promoters of genes involved in both mating 

and filamentous growth22, 27.  Well-studied genes implicated in these processes 

were prominently featured among those that displayed increased physical 

interactions with the FUS1 locus in dig1Δ cells (Fig. 6d).  We constructed 

promoter-YFP fusions for 11 of these Ste12-target genes and found that the 

mean expression increased for seven upon deletion of DIG1 (Supplementary 

Information, Fig. S7a).  Rigorous analysis of the changes in noise for these 

genes is complicated by the fact that the means increase significantly and the 

relationships between the means and CVs are unknown.  However, we note that 

the removal of Dig1 induces a broadening of the output distributions that is highly 

reminiscent of trends seen with the pFUS1-YFP and pAGA1-YFP reporter stains 

(Supplementary Information, Fig. S7b).   

 

Nonredundant roles for Dig1 in growth, mating, and gene induction kinetics 

 Under basal conditions, the mating pathway must appropriately balance 

the level of signalling to avoid cell cycle arrest and mating projection formation 

induced by pathway activation with a requirement for maintaining basal signalling 
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to express key pathway components29.  This balance might be expected to be 

disrupted in dig1Δ cells, with repercussions for growth under basal conditions 

and mating in the presence of a pheromone signal.  Therefore, cell-to-cell 

variability in outputs of the mating pathway could influence fitness.  We found 

that dig1Δ cells grow more poorly than wild-type or dig2Δ cells and this defect is 

rescued by the deletion of STE12 (Fig. 7a,b).  Additionally, dig1Δ cells display a 

kinetic defect in cell-cell fusion compared to wild-type and dig2Δ, as measured 

quantitatively using a fluorescent-based assay in which the accumulation of 

double-positive fluorescent cells was scored (Fig. 7c-e, Supplementary 

Information, Fig. S8, see Methods).  This defect is unlikely to be due to the slight 

increase in mean pathway output in dig1Δ cells since previous studies found that 

even large increases in basal signalling does not reduce mating efficiency30.  The 

defect in fusion between mating partners is mirrored by two quantitative changes 

in the induction of pheromone-inducible genes in dig1Δ cells (Fig. 8a).  First, 

dig1Δ cells display a larger proportion of cells that do not induce pAGA1-YFP or 

pFUS1YFP reporter genes in response to pheromone treatment (Fig. 8b).  

Second, the population of dig1Δ cells that does respond to pheromone displays a 

reduced dynamic range in the induction of pheromone inducible gene expression 

(Fig. 8c).  

 

DISCUSSION 
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Recent work has shown that DIG1 and DIG2 were derived from a single 

parental gene that existed prior to the whole-genome duplication (WGD) that 

occurred in the ancestor of S. cerevisiae 100-200 million years ago31.  Their 

continued presence in the genome suggests that their maintenance has an 

adaptive role.  Indeed, previous work indicates that Dig1 and Dig2 inhibit Ste12 

by interacting with distinct domains of the transcription factor, implying 

biochemical specialization 7, 8.  However, their genetic redundancy for inhibiting 

Ste12 was puzzling.  Studies presented here revealed three functions of Dig1 

that are not redundant with those of Dig2:  1) control of gene expression noise, 2) 

regulation of the intranuclear distribution of Ste12, and 3) the control of long-

range interactions between Ste12-target genes.  We discuss below how these 

three functions may be related and the broader implications of these findings. 

Dig1 is a well-studied regulatory protein that functions specifically in the 

pheromone response pathway and has only one reported biochemical function: 

to bind to a domain of Ste12 involved in protein-protein interactions5-8, 32, 33.  The 

loss of Dig1 is, therefore, expected solely to unshield protein-protein interaction 

domains on the Ste12 transcription factor.  Although indirect mechanisms are 

always difficult to rule out, we propose that this unshielding induces aggregation 

of Ste12 molecules and target genes, which results in increased cell-to-cell 

variability in the basal output of the pheromone response pathway.  Dig2, which 

binds the distinct DNA-binding domain of Ste127, 8, does not share these 

functions.  The aggregation of Ste12 molecules into one or two foci may create a 

domain within the nucleus where the transcription of Ste12-target genes can be 
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activated.  Our model suggests that the transcription of Ste12-target genes within 

the focus is more coordinated such that if one gene in the focus is transcribed, 

the others are, in turn, more likely to be expressed.  Thus, such correlated 

expression within a single cell would be expected to yield increased correlated 

cell-to-cell variability in the transcriptional output of the pathway.   

Transcriptional regulation that involves looping of DNA between distant 

sites via protein-protein interactions has been observed the lac operon34-38 and λ 

phage39, 40.  In the context of the results described here, it is notable that 

computational models of the lac system suggest that gene regulation by DNA 

looping can affect fluctuations in transcription41.  These models predict that for 

transcriptional activators, DNA looping should increase noise in transcriptional 

outputs.  Our model for the function of Dig1 is consistent with these theoretical 

predictions. 

Recently, inter- and intrachromosomal interactions have been detected in 

other systems42-45.  In erythroid cells, for example, Klf1-regulated genes, 

including Hba and Hbb globin genes, display long-range inter- and 

intrachromosomal interactions42.  Although such interactions tend to correlate 

with transcriptional regulation and sites of active transcription, their precise 

functions remain a matter of considerable debate.  Our observations suggest that 

while these long-range interactions could be important for gene expression, they 

may come at the cost of increased variability.  This notion is in concordance with 

an emerging view that, in some cases, such gene interactions can be deleterious 

and even mutagenic46.  It will be interesting to explore whether mechanisms of 
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noise regulation are pervasive among regulatory circuits that involve long-range 

DNA interactions and the extent to which gene localization is balanced with a 

need for limiting noise.  

While establishing the generality of the effect of aggregate formation on 

output variability will require further investigation, we note that subcellular protein 

and DNA aggregation is not uncommon in biology.  DNA replication and gene 

activation can occur in “factories” located at the nuclear periphery47-51.  Sites of 

DNA damage along with proteins that respond to DNA damage form nuclear foci 

in yeast52, 53.  Telomeres are also known to cluster in the nucleus54.  Cytoplasmic 

P-bodies are foci of proteins involved in mRNA degradation and translational 

inhibition55-57.  Given our data, these foci may serve, in some cases, to promote 

simultaneity in cellular transactions.  The development of assays that can 

distinguish between correlated and uncorrelated noise in these systems would 

allow the testing of such concepts. 

 

Methods 

Strains 

All yeast strains used are derived from BY4743, of the s288c background, and 

are described in Supplementary Information, Table S2.  Yeast knockouts were 

generated by conventional lithium acetate and polyethylene glycerol procedures.  

YFP, eGFP (from pFA6a-EGFP-HIS3MX) and mCherry (from pFA6a-mCherry-

HIS3MX or pFA6a-GFPtomCherry-URA3MX from J.S. Weissman) reporters for 

the mating pathway were constructed using methods as described58, while 
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pPMP1-fluorophore fusions were constructed using plasmids pFA6a-EGFP-

HIS3MX6 and pFA6a-GFPtomCherry-URA3MX from J.S. Weissman. 

 

Growth and fluorescence measurements by flow cytometry 

Single fluorescent strains used: YM1968, YM2091, YM2100, YM2105, YM2109, 

YM2112, YM3550, YM3593, YM3594, YM3760, YM3762, YM3763, YM3764, 

YM3766, YM3767, YM3769, YM3770, YM3771, YM3772, YM3773, YM3776-

YM3782 YM3804-YM3814.  Dual fluorescent strains used: YM2636, YM2871, 

YM2876 and YM3132.  Cells were grown in 1 mL cultures for 36 hr in 96-well 

deep pocket plates (Costar).  OD600 measurements were taken and cultures were 

diluted to an OD600 = 0.08 and grown for 10 hr.  A Becton Dickinson LSR-II flow 

cytometer was used, along with an autosampler device (HTS) controlled by 

custom software, to collect data over a sampling time of 7 sec11.  YFP and GFP 

were excited at 488 nm and fluorescence was collected through a 505-nm long-

pass filter and HQ530/30 and HQ515/20 band-pass filters (Chroma Technology), 

respectively.  mCherry was excited at 532 nm and fluorescence collected through 

600-nm long-pass filter and 610/20 band-pass filters (Chroma Technology).   

 

Data analysis 

All data analysis was done using custom MATLAB software.  Raw cytometry data 

were filtered to eliminate errors due to uneven sampling time and negative 

fluorescence readings.  Bulk calculations were done on these processed data.  

To control for cell aggregates, as well as cell size and shape, forward and side 
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scatter (FSC and SSC) data were expressed on orthogonal axes and 

subpopulations of cells were selected using circular gates of increasing radii 

centred on the median FSC and SSC values11.  Nineteen circular bins were 

created with radii of 6000, 9000, 104, 2*104, 3*104,…,17*104 arbitrary units were 

used.  Results are shown for data in bin 5, with a radius of 3*104.  Data were 

used if at least 5000 cells were in this bin, but on average between 20,000-

40,000 cells had FSC and SSC values within this gate.  The coefficient of 

variation (CV) was used as a measure of total noise, while intrinsic/uncorrelated 

and extrinsic/correlated noise were calculated as described15 using GFP and 

mCherry dual-colour strains (Supplementary Information, Table S2).  T-tests 

were used to calculate level of significance for increases in noise in the dig1Δ 

mutant strains. 

 

FACS sorting and expression dynamics 

YM2105 (pAGA1-YFP dig1Δ) were grown to mid-log phase.  The fluorescence 

distribution was determined.  A narrow gate cantered on the middle of this 

distribution was created and cells with expression levels within this gate were 

sorted using a Becton Dickinson FACSAria cell sorter.  Cells were spun down, 

resuspended in YPAD and grown at 30 C.  Aliquots were removed and the 

fluorescence distributions determined for 30,000 cells using a Becton Dickinson 

LSR-II flow cytometer.  Data was analyzed as described above.  

 

Microscopy 
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YM2910, YM3102, YM3103, YM3104, YM3722, YM3723, YM3724, YM3774 and 

YM3775 were grown overnight to saturation in YPAD.  Cultures were diluted 

back to an OD600 of 0.1 in YPAD and grown for 4 hr.  Microscopy was performed 

using a DeltaVision deconvolution microscope, which was outfitted with Olympus 

Plan Apo 60- and 100-X objectives.  Z-stacks were taken with 0.3 µm steps.  

DeltaVision deconvolution software was used to deconvolve and analyze these 

images.  For Ste12-GFP, a 1 s exposure was used and for Nup188-mCh, a 0.5 s 

exposure was used.  For Reb1-GFP, a 1.0 s exposure was used.  For the Ste12-

GFP and Nop7-mCherry co-localization experiments, a 0.5 s exposure was used 

for the FITC channel and a 0.2 s exposure was used for the rhodamine channel. 

 

Quantitative immunoblotting 

YM1953, YM2101, YM2315, and YM2102 were grown to log phase in YPAD and 

3 OD600 were collected by centrifugation and snap-freezing.  Pellets were re-

suspended in 100 µl 2X protein loading buffer and 1:100 Sigma phosphatase 

inhibitor cocktails 1 and 2 and 1:260 Sigma protease inhibitor cocktail.  Samples 

were boiled for 2 min and 50 µl Zirconia/silica beads (Biospec Products) were 

added.  Samples were then vortexed on a platform vortex for 2 min.  Samples 

were again boiled for 2 min and centrifuged at 14,000 x g for 10 min to remove 

cell debris.  The supernatants were pulled off, boiled for 3 min and resolved on a 

10% SDS-PAGE gel.  Proteins were then transferred to nitrocellulose and 

immunoblotting was performed as described in the Li-COR Odyssey manual 
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using αSte12 (1:1000, a gift from Ira Herskowitz), αTubulin (1:3000, AbCam), 

αRabbit-IR800 (1:1000) and αRat-IR680 (1:1000). 

 

Growth rate 

YM1953, YM2101, YM2315, YM2643, YM2248, YM3776, YM3777 and YM3778 

were grown to log phase overnight in YPAD.  These cultures were then diluted 

back to an OD600 = 0.2 (YM1953, YM2101, YM2315 and YM2643) or OD600 = 

0.05 (YM2248, YM3776, YM3777 and YM3778) at t=0 and OD600 measurements 

were taken every hour.  To avoid cultures reaching saturation and entering 

stationary phase, cultures were diluted periodically.  This dilution was accounted 

for in the subsequent OD600 calculations.  OD600 measurements at later time 

points were normalized to the OD600 at time = 0 min.  Best-fit lines were 

calculated using DeltaGraph 5 graphing software. 

 

Flow cytometry-based cell-cell fusion assay 

A MATa strain (YM2901) containing at the TRP1 locus a construct consisting of 

the N-terminus (AA 1-158) of eGFP fused to a leucine zipper dimerization 

domain59 was constructed.  MATα strains (YM2903, YM3085, YM3086 and 

YM3087) containing at the LEU2 locus a construct consisting of the C-terminus 

(AA 159-240) of eGFP fused to a leucine zipper dimerization domain59 as well as 

an mCherry marker driven by pTEF2 integrated at the LYS1 locus were also 

constructed. Strains were grown overnight to saturation.  The cultures were 

diluted to an OD600 of 0.07 and collected after a 5.5 hr outgrowth to perform the 
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mating assay.  At time 0, each MATa strain was mixed in 10-fold excess with a 

MATα strain to a final OD600 of 1.0. 750 ml were removed from each mating mix 

as the zero time point.  The rest of the mating culture was dispensed (200 

ml/well) into a 96-well Millipore Multi-screen Filter plate and spun in a Beckman 

centrifuge at 1700 rpm for 5 min to bind the cells onto the filter.  The filter plate 

was then placed on a pre-warmed Nunc OmniTray YPAD plate and incubated at 

30°C.  Samples were collected at the indicated time points in triplicate by adding 

TE to the well to resuspend the cells.  The samples were left at room 

temperature in TE overnight before flow cytometric analysis to ensure complete 

folding of any GFP molecules present in each sample.  Flow cytometry was done 

as described above in the two-colour assay and between 3,000 and 10,000 cells 

were analyzed for each time point.  Data analysis was performed using FlowJo 

8.7.1 using quadrants based on the zero time point. Diploids were visualized as 

GFP+/mCherry+ cells.  To determine mating efficiency, the fraction of diploid 

cells (GFP+/mCherry+) divided by the total number of mCherry+ cells (GFP+/-) 

was calculated for each time point in each mating experiment.  The average and 

standard deviation for the three replicates was then calculated for each time point 

(with the exception of the zero time point). 

 

Pheromone time-course assay 

YM1968, YM2091, YM2100 and YM2105 were grown into log phase over night in 

YPAD.  Cultures were diluted back to an OD600 = 0.4 and 50 nM α-Factor was 

added.  1 mL aliquots were removed at t = 0, 15, 30, 60, 90, 120, 150, 180 and 
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240 min, washed with water, resuspended in 1 mL TE pH = 8 and fluorescence 

distributions were measured by flow cytometry.  Data were analyzed as 

described above. 

 

ChIP 

Dig1-GFP ChIP was performed as described60, 61 with strains YM1731 and 

YM3747 using an anti-GFP antibody from AbCam (Ab290).  5 µM α-Factor was 

added to log phase cultures for 1 hr. 

 

Modified ChIP-chip method 

An 11 kb construct consisting of 240 tandem arrays of Lac operators62 and an 

associated HIS3MX marker was inserted 331bp upstream of the FUS1 ATG in 

strains containing a mCherry-LacI plasmid (BHM1336 adapted from pJH212, 

strains: YM3587, YM3588 and YM3687).  Cultures were prepared for ChIP-chip 

by overnight growth to saturation in –Ura medium.  Cultures were then diluted to 

an OD600 of 0.01 and grown for 4 hr in –Ura medium.  These cells were again 

diluted to an OD600 of 0.01 in YPAD and collected 4 hr later.  Chromatin 

immunoprecipitation was performed as described60, 61.  However, the protein 

crosslinker ethylene glycolbis (succinimidylsuccinate) (EGS) was added to a final 

concentration of 1.5 mM for 30 min before the addition of formaldehyde.  

Additionally, DNA was lightly sonicated in a Diagenode Bioruptor for 2x5 min on 

the low setting with 1 s on/ 0.5 s off pulses.  To immunoprecipitate mCherry-LacI, 

a polyclonal anti-DsRed antibody from Clontech (catalogue number 632496) was 
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used at a 1:100 dilution.  Following ChIP, strand displacement amplification and 

labelling were performed as described to generate DNA probes with incorporated 

aminoallyl-dUTP63.  Probes representing mCherry-LacI immunoprecipitates and 

whole cell extracts were differentially labelled with Cy fluorescent dyes and 

hybridized on Agilent yeast whole-genome tiling microarrays (G4491A).  

Hybridization and array washing were performed as described by Agilent 

Technologies (Version 9.2).  In addition, after the acetonitrile wash, slides were 

rinsed in Agilent Stabilization and Drying Solution (5185-5979).  Microarrays 

were scanned at 5 µm resolution on a GenePix 4000B scanner (Molecular 

Devices) using GenePixPro 6.0 software.  Microarray analysis was done using 

in-house software as described64.  For each strain (wild-type, dig1Δ and 

dig1Δste12Δ) data from four arrays were averaged by calculating the geometric 

mean of the intensities of each probe.  Averaged data were then smoothed using 

a moving average window over 11 probes and difference maps were constructed 

by subtracting the log2 values for each WT (YM3587) probe from the 

corresponding probe in dig1Δ (YM3588) and dig1Δ ste12Δ (YM3687) datasets.  

Given the broad peak (due to light sonication) centred on the FUS1 locus on the 

left arm of Chr. III, data from this region were removed from further analysis.  We 

extracted 500 bp of sequence upstream of each gene and subdivided these 

segments into 20 bins, each of which represented 25 bp of sequence.  Data from 

microarray probes were then assigned to the appropriate bin based on the 

genomic coordinate of the centre of a probe.  These gene promoter segments 

were then ordered relative to one another based on the median value of all the 
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probes in a segment.  The top 5% (269 genes) of differences from each dig1Δ - 

wild-type or dig1Δste12Δ - wild-type dataset were analyzed for enrichment of 

target genes for 203 transcription factors21.  Similar results were obtained using 

1%, 3% and 10% cutoffs.  A list of target genes for the 203 transcription factors 

was compiled from ChIP-chip data (P < 0.05) from Harbison and colleagues21.  

Next, we performed hypergeometric testing to determine whether the enrichment 

of transcription factor target genes in the top 5% of our datasets was statistically 

significant below a Bonferroni corrected P value of 0.05 (Supplementary 

Information, Table S1).  We also compiled a list of genes bound by Ste12 or 

Tec1 in the presence or absence of pheromone (P < 0.05)21.  We analyzed our 

list of genes with the top 5% of differences for an enrichment of these genes and 

calculated a P value using hypergeometric testing. 
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Figure 1: dig1Δ, but not dig2Δ, cells display increased noise in yeast mating 

pathway outputs.  a. Schematic of the yeast mating MAPK pathway.  Note: for 

simplicity the Ste12-target gene is illustrated as having one Ste12-binding site.  

b. Mean output for pFUS1-YFP, pAGA1-YFP, and pPMP1-GFP in wild-type 

(blue), dig1Δ (red), dig2Δ (green), and dig1Δdig2Δ (black) mutants in absence of 

α-Factor.  Error bars indicate the standard deviation of three replicate 

experiments.  The Y-axis is broken between 10,000 and 20,000 AU.  c. Bar 

graphs illustrating the coefficient of variation (CV) for each strain as in b.  The Y-

axis is broken between 0.7 and 0.8.  T-test was used to calculate P = 0.0003 for 

difference between pAGA1-YFP and pAGA1-YFP dig1Δ and P = 0.0014 for 

difference between pFUS1-YFP and pFUS1-YFP dig1Δ.  d. Probability density 

functions (PDFs) of wild-type (blue) dig1Δ (red) and dig2Δ (green) for each 

reporter: pFUS1-YFP (left), pAGA1-YFP (middle) and pPMP1-GFP (right).  Solid 

lines represent the average PDF for three replicates while the envelope indicates 

the standard deviation.  (b-d. Data shown is for gate 5, see Methods.)  e. CV vs. 

gate radius for pFUS1-YFP strains (left), pAGA1-YFP strains (middle) and 

pPMP1-GFP strains (right).  b-e.  See Methods for gate sizes and numbers of 

cells analyzed.  Error bars represent the standard deviation of three replicate 

experiments. 
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Figure 2: Sorted dig1Δ cells can regenerate the entire pAGA1-YFP output 

distribution.  dig1Δ cells expressing mean levels of pAGA1-YFP were sorted and 

re-grown over time.  At t = 0, 60, 120, 180, 240 and 300 min, cells were removed 

and the fluorescence distribution was determined. 
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Figure 3: Extrinsic and intrinsic noise in output of mating pathway increase in 

dig1Δ cell populations.  A. Schematic of two-colour experiment.  pAGA1-GFP is 

in the endogenous AGA1 locus, while pAGA1-mCherry-AGA1 3’UTR is inserted 

into the LYS1 locus.  B. Density plots of wild-type (left), dig1Δ (middle) and dig2Δ 

(right).  c. Quantification of intrinsic, extrinsic and total noise of wild-type (blue), 

dig1Δ (red), dig2Δ (green) populations.  Each value is the mean of three 

replicates and error bars indicate the standard deviation.  T-test was used to 

calculate P = 0.035 for increase in intrinsic noise and P = 0.009 for increase in 

extrinsic noise in dig1Δ mutant.  Total noise was calculated as 

� 

ηtot = ηext
2 + ηint

2 .  

d,e.  Plots of intrinsic (d) and extrinsic (e) noise vs. gate radius to control for cell 

size and shape.  Error bars indicate the standard deviation of three replicates.  f.  

Quantification of intrinsic, extrinsic and total noise in Ste12-independent reporter 

strain in which two fluorophores are driven by pPMP1 (inset). 
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Figure 4:  Increased noise in mating pathway outputs in dig1Δ cells is not due to 

feedback at the STE12 promoter.  a. Model for the increased noise in the mating 

pathway in dig1Δ cells.  b. pSTE12 was replaced with the Ste12-independent 

promoter pEAF3 (above).  PDFs of pAGA1-YFP strains containing pEAF3-

STE12 (below).  c. pSTE12 was replaced with the Ste12-independent promoter 

pTAF4 (above).  PDFs of pste12::pTAF4 strains (below).  b,c. wild-type in blue, 

dig1Δ in red and dig2Δ in green.  Solid line is the mean of three replicate 

experiments and the envelope reflects standard deviation of three replicates. 
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Figure 5:  Ste12-GFP forms nuclear foci in dig1Δ cells.  a. Fluorescence 

microscopy images of Ste12-GFP/Nup188-mCherry (left) and Reb1-

GFP/Nup188-mCherry (right) from top to bottom: wild-type, dig1Δ, and dig2Δ.  

Ste12-GFP forms nuclear foci in dig1Δ (see white arrow heads).  b. 

Quantification of foci seen in (a) n = 100 (wt), n = 116 (dig1Δ), n = 95 (dig2Δ).  

Distributions of foci in all mutants were compared to wild-type by the Chi-square 

test and only the distribution of foci in dig1Δ was statistically significant (P < 

0.001).  c. Ste12-GFP localization upon addition of 5 µm α-Factor for 1 hr.  d. 

Normalized ChIP signal of Dig1-GFP at AGA1, FUS1 and LYS1 promoters in 

absence and presence of 5 µM pheromone.  Scale bar for all images is 5 µm. 
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Figure 6:  ChIP-chip of Ste12-target locus reveals long-range interactions with 

other Ste12-target genes.  a. Experimental set-up.  LacI-mCherry was 

immunoprecipitated from cells and the FUS1 locus (green), marked with an array 

of Lac operators (light blue), was efficiently pulled down (see peaks centred on 

Lac operators in graph below) in wild-type (blue), dig1Δ (red) and dig1Δste12Δ 

(orange) cells.  The graph below illustrates the ChIP-chip signal along 

chromosome 3, where the array of Lac operators is inserted.  See Methods for 

experimental details.  b.  Difference maps were calculated and genes were 

aligned by increasing median value of the region spanning -500bp to 0bp, with 

respect to the translation start site.  The top 5% of differences (269 genes, 

Supplementary Information, Table S1) were analyzed for enrichment of target 

genes of 203 transcription factors21.  The dashed line indicates the Bonferroni-

corrected P value of 0.05.  c. Bonferroni-corrected P values for enrichment of 

Ste12- and Tec1-target genes in the top 5% of genes with the greatest 

differences in dig1Δ vs. WT and dig1Δste12Δ vs. WT (Supplementary 

Information, Table S1).  d. Ste12- and Tec1 target genes (in presence and 

absence of pheromone21) found in the list of 5% of genes with the largest 

differences in dig1Δ vs. WT datasets.  P values calculated by hypergeometric 

testing. 
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Figure 7: dig1Δ cells display defects in growth and cell-cell fusion.  a.  Log phase 

wild-type (blue squares), dig1Δ (red circles), dig2Δ (green triangles) and 

dig1Δste12Δ (orange diamonds) cells were grown for 9 hrs and OD600 was 

measured every hour.  b.  Error in growth.  OD600 of mutant (dig1Δ in red, dig2Δ 

in green and dig1Δste12Δ in orange) was compared to that of wild type by 

calculating: 1 – [OD600(mutant)]/OD600(wild-type)].  c.  Schematic for FACS-based 

cell fusion assay.  See Methods for details.  d.  Fraction of GFP+/mCherry+ cells 

over time for wild-type (blue), dig1Δ (red), dig2Δ (green) and fus3Δ (pink).  

Samples were analyzed at 0, 60, 90, 120 and 150 min.  Error bars indicate the 

standard deviation of three replicates.  e.  Cell-cell fusion error for mutants dig1Δ 

in red, dig2Δ in green and fus3Δ in pink was calculated in the following manner: 1 

– [(fraction mutant fused)/(fraction wild-type fused)]. 
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Figure 8:  Time course of induction of pAGA1-YFP and pFUS1-YFP after 

treatment with pheromone.  a.  Heat map of induction of pAGA1-YFP (left) and 

pFUS1-YFP (right) in wild-type and dig1Δ cells.  Samples were analyzed at 0, 15, 

30, 60, 90, 120, 150, 180 and 240 min.  b.  left: Probability density functions for 

150 min time point of pAGA1-YFP (dark blue), pAGA1-YFP dig1Δ (dark red), 

pFUS1-YFP (light blue) and pFUS1-YFP dig1Δ (pink).  The inset is a blow-up of 

the area marked by the grey-dashed line.  right: The percentage of cells in the 

low fluorescence population versus time.  c.  Mean fluorescence of the 

transcriptionally induced populations in part a versus time.  Transcriptionally 

induced and un-induced populations (see a) were separated and the means of 

the high expressing populations were calculated for each time point. The colours 

are as in part b.  a-c. Data shown are from a single representative experiment, 

but results have been replicated in three separate experiments. 
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Figure S1:  Cumulative probability density functions (CDFs) to measure overlap 

of fluorescent populations and autofluorescence.  a. CDFs for non-fluorescent 

strain (black), pAGA1-YFP (blue), pAGA1 dig1Δ (red).  b. Magnification of black 

box in (a).  c. CDFs for non-fluorescent strain (black), pFUS1-YFP (blue) and 

pFUS1 dig1Δ (red).  d. Magnification of black box in (c).  a-d. The gray dashed 

line indicates the maximum fluorescence value of non-fluorescent yeast 

(CDF=1.0).  pAGA1-YFP wild-type and dig1Δ distributions have CDF values of 

~0.05 for this fluorescence value (5% of distribution overlaps with 

autofluorescence).  pFUS1-YFP wild type and dig1Δ distributions have CDF 

values of <0.01 at this fluorescence value. 
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Figure S2:  Probability density functions for two Ste12-independent promoters, 

a. pYEF3  and b. pAGP1, driving YFP and GFP, respectively.  Wild-type is in 

blue, dig1Δ is in red, and dig2Δ is in green.  Solid line is the mean of three 

replicate experiments and the envelope reflects standard deviation of three 

replicates. 
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Figure S3:  High mean and slow growth are not sufficient to cause increased 

noise in the output of the pheromone response pathway.  a.  Mean output of 

pAGA1-YFP in wild-type (blue), dig1Δ (red), tus1Δ (turquoise), gyp6Δ (yellow), 

csn12Δ (purple) and ctk1Δ (orange).  Error bars represent the standard deviation 

of three replicates.  b.  CV of pAGA1-YFP output distributions.  Strains are in 

same colour as in a.  c.  Normalized OD600 versus time for wild-type (blue 

squares), dig1Δ (red circles), nsr1Δ (turquoise triangles) and rai1Δ (yellow 

diamonds).  Doubling times were calculated and are listed in the table.  d.  CV of 

pAGA1-YFP output distributions of same strains as in c. 

 

65



Ste12
GFP

mCherry
pAGA1

pAGA1

Ste12

a

AGA1-3’UTR

AGA1-3’UTR

b

4 6 8 10

10

8

6

4

4 6 8 10

10

8

6

4

4 6 8 10

10

8

6

4

30

20

10

0

ln(GFP Fluorescence)

ln
(m

C
h 

Fl
uo

re
sc

en
ce

) Wild type dig1∆ dig2∆

AGA1 locus

LYS1 locus

S
te

5

Ste11

Ste7

Fus3

Dig1 Dig2

Supplementary Figure S4 a,b

66



In
tr.

 N
oi

se
 (U

nc
or

r.)
E

xt
r. 

N
oi

se
 (C

or
r.)

c

d

e

C
V

1.4

1.2

1.0

0.8

0.6

0.4
Intr. Extr. Total

Wild-type dig1∆
dig2∆

B B B B B B B B B B B B B B B B

J J
J J J J J J J J J J J J J J

H H H H H H H H H H H H H H H H

0.5

0.7

0.9

1.1

Gate Radius (AU x 10  )3

20 40 60 80 100 120 140 160

B B
B
B
B
B B

B
B B

B B
B B B

B

J
J
J
J J

J
J J J

J J J
J
J
J J

H H
H
H
H H

H H
H H

H H
H H H

H

0.5

0.7

0.9

1.1

Gate Radius (AU x 10  )3

20 40 60 80 100 120 140 160

Supplementary Figure S4 c-e

67



Figure S4:  Two-colour experiment with the location of mCherry and GFP 

reversed.  a. In this strain, mCherry was inserted in the endogenous pAGA1 

locus while pAGA1-GFP-AGA1 3’UTR was inserted in the LYS1 locus.  b. 

Density plots of mCherry vs. GFP fluorescence values for wild-type (left), dig1Δ 

(middle) and dig2Δ (right).  c. CV vs. intrinsic, extrinsic and total noise.  Wild-type 

in blue, dig1Δ in red, and dig2Δ in green.  Total noise was calculated as in Fig. 

2c.  d,e. Intrinsic and extrinsic noise vs. gate radius (see Methods for exact gate 

radii).  Wild-type is in blue, dig1Δ is in red and dig2Δ is in green. 
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Figure S5:  a.  Ste12-GFP and Nop7-mCherry co-localization in wild-type (top 

two rows) and dig1Δ (bottom two rows) cells.  Scale: 5 µm.  b.  Ste12 levels 

normalized to tubulin in wild-type (blue), dig1Δ (red), dig2Δ (green) and 

dig1Δdig2Δ (black) as measured by quantitative immunoblotting (see Methods).  

c.  Ste12-GFP localization in STE12-GFP dig1Δdig2Δ double mutant strains.  

Scale: 5 µM. 

 

71



ChIP-chip
α-mCherry

0

2

4

6

-2
0

Chromosome III Coordinate (kb)

lo
g 

 In
te

ns
ity

2

100 200 300

LacO Array
pFUS1

FUS1
Ste12

wild type and dig1∆

WT
dig1∆

FUS1LacO

Supplementary Figure S6

72



Figure S6:  FUS1 locus does not immunoprecipitate in absence of mCherry-

LacI. 
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Figure S7:  Mean expression and PDFs for 11 reporter strains whose promoters 

were found to interact with the FUS1 locus.  a.  Mean fluorescence output for 

reporter strains in wild-type (blue) and dig1Δ (red) cells.  b.  PDFs of output 

distributions of 11 reporter strains.  Wild-type is in blue, dig1Δ is in red. 
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Figure S8:  FACS scatter plots of the mating time course assay.  GFP vs. 

mCherry data is plotted for each strain at three time points; 0 min, 60 min and 

150 min.  The quadrants in each plot separate wild-type unfused MATa GFP-

/mCh- cells, unfused wild-type or mutant MATα GFP-/mCh+ cells and fused 

GFP+/mCh+ cells.  The percentage of cells in each quadrant is listed in pink. 
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Table S1:  5% of genes with largest differences in ChIP-chip signals 
 
 

dig1Δ - wild type  dig1Δste12Δ - wild type 
Systematic 

Name 
Common 

Name  
Systematic 

Name 
Common 

Name 
YBL003C HTA2  YAL064W YAL064W 
YBL008W HIR1  YAL067C SEO1 
YBL016W FUS3  YAR003W SWD1 
YBL017C PEP1  YBL009W ALK2 
YBL026W LSM2  YBL010C YBL010C 
YBL029W YBL029W  YBL097W BRN1 
YBL067C UBP13  YBR005W RCR1 
YBL086C YBL086C  YBR018C GAL7 
YBR001C NTH2  YBR019C GAL10 
YBR040W FIG1  YBR028C YBR028C 
YBR058C UBP14  YBR058C UBP14 
YBR082C UBC4  YBR123C TFC1 
YBR083W TEC1  YBR129C OPY1 
YBR088C POL30  YBR148W YSW1 
YBR095C RXT2  YBR164C ARL1 
YBR096W YBR096W  YBR166C TYR1 
YBR123C TFC1  YBR167C POP7 
YBR153W RIB7  YBR168W PEX32 
YBR168W PEX32  YBR170C NPL4 
YBR211C AME1  YBR211C AME1 

YBR233W-A DAD3  YBR212W NGR1 
YBR250W SPO23  YBR216C YBP1 
YBR291C CTP1  YBR217W ATG12 

YCR095W-A YCR095W-A  YBR245C ISW1 
YDL013W SLX5  YBR246W YBR246W 
YDL076C RXT3  YBR247C ENP1 
YDL102W POL3  YBR254C TRS20 
YDL103C QRI1  YBR258C SHG1 
YDL127W PCL2  YBR275C RIF1 

YDL133C-A RPL41B  YCR018C SRD1 
YDL133W YDL133W  YCR042C TAF2 
YDL155W CLB3  YCR095W-A YCR095W-A 
YDL165W CDC36  YDL008W APC11 
YDL166C FAP7  YDL036C PUS9 
YDL176W YDL176W  YDL065C PEX19 
YDL179W PCL9  YDL084W SUB2 
YDR060W MAK21  YDL102W POL3 
YDR100W TVP15  YDL103C QRI1 
YDR162C NBP2  YDL146W LDB17 

YDR169C-A YDR169C-A  YDL147W RPN5 
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YDR177W UBC1  YDL148C NOP14 
YDR179C CSN9  YDL156W CMR1 

YDR179W-A YDR179W-A  YDL165W CDC36 
YDR181C SAS4  YDL218W YDL218W 
YDR204W COQ4  YDR012W RPL4B 
YDR217C RAD9  YDR014W RAD61 
YDR275W BSC2  YDR026C YDR026C 
YDR309C GIC2  YDR060W MAK21 
YDR336W YDR336W  YDR070C FMP16 
YDR395W SXM1  YDR081C PDC2 
YDR415C YDR415C  YDR140W MTQ2 
YDR416W SYF1  YDR160W SSY1 
YDR439W LRS4  YDR177W UBC1 
YDR459C PFA5  YDR183W PLP1 
YDR460W TFB3  YDR184C ATC1 
YDR464W SPP41  YDR204W COQ4 
YDR465C RMT2  YDR221W GTB1 
YDR466W PKH3  YDR244W PEX5 
YDR468C TLG1  YDR245W MNN10 
YDR496C PUF6  YDR247W VHS1 
YDR504C SPG3  YDR273W DON1 
YDR507C GIN4  YDR283C GCN2 
YDR522C SPS2  YDR315C IPK1 
YDR532C YDR532C  YDR318W MCM21 
YEL001C IRC22  YDR320C SWA2 
YEL042W GDA1  YDR321W ASP1 
YER051W JHD1  YDR369C XRS2 
YER056C FCY2  YDR370C YDR370C 
YER062C HOR2  YDR371W CTS2 
YER065C ICL1  YDR374C YDR374C 
YER069W ARG5,6  YDR414C ERD1 
YER071C YER071C  YDR416W SYF1 
YER072W VTC1  YDR439W LRS4 
YER122C GLO3  YDR468C TLG1 
YER123W YER123W  YDR469W SDC1 
YER139C RTR1  YDR484W VPS52 
YER140W YER140W  YDR503C LPP1 
YER166W DNF1  YDR523C SPS1 
YER168C CCA1  YEL042W GDA1 
YFL003C MSH4  YER054C GIP2 
YFL010C WWM1  YER107C GLE2 
YFR002W NIC96  YER115C SPR6 
YFR037C RSC8  YER134C YER134C 
YFR038W IRC5  YER139C RTR1 
YGL001C ERG26  YER173W RAD24 
YGL017W ATE1  YFL004W VTC2 
YGL045W RIM8  YFL049W SWP82 
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YGL067W NPY1  YFL050C ALR2 
YGL081W YGL081W  YGL016W KAP122 
YGL178W MPT5  YGL059W PKP2 
YGR005C TFG2  YGL095C VPS45 
YGR006W PRP18  YGL171W ROK1 
YGR014W MSB2  YGL213C SKI8 
YGR040W KSS1  YGL232W TAN1 
YGR071C YGR071C  YGR001C AML1 
YGR074W SMD1  YGR059W SPR3 
YGR076C MRPL25  YGR169C PUS6 
YGR162W TIF4631  YGR229C SMI1 
YGR188C BUB1  YHL012W YHL012W 
YGR194C XKS1  YHL013C OTU2 
YGR201C YGR201C  YHL046C PAU13 
YGR236C SPG1  YHR060W VMA22 
YGR253C PUP2  YHR111W UBA4 
YGR279C SCW4  YHR129C ARP1 
YHR016C YHR016C  YHR177W YHR177W 
YHR017W YHR017W  YHR191C CTF8 
YHR082C KSP1  YHR197W RIX1 
YHR084W STE12  YIL084C SDS3 

YHR086W-A YHR086W-A  YIL104C SHQ1 
YHR110W ERP5  YIL120W QDR1 
YHR122W YHR122W  YIL128W MET18 
YHR128W FUR1  YIL129C TAO3 
YHR184W SSP1  YIL130W ASG1 
YHR201C PPX1  YIL131C FKH1 
YIL053W RHR2  YIL139C REV7 
YIL104C SHQ1  YIL146C ECM37 
YIL117C PRM5  YJL046W AIM22 
YIL119C RPI1  YJL047C RTT101 
YIL123W SIM1  YJL049W YJL049W 
YIL130W ASG1  YJL085W EXO70 
YIL131C FKH1  YJL087C TRL1 
YIL139C REV7  YJL091C GWT1 
YIL146C ECM37  YJL097W PHS1 
YIL147C SLN1  YJL204C RCY1 
YIL158W AIM20  YJL205C NCE101 
YJL049W YJL049W  YJR010C-A SPC1 
YJL130C URA2  YJR025C BNA1 
YJL134W LCB3  YJR107W YJR107W 
YJL136C RPS21B  YKL001C MET14 
YJL179W PFD1  YKL002W DID4 
YJL180C ATP12  YKL011C CCE1 

YJR010C-A SPC1  YKL040C NFU1 
YJR010W MET3  YKL090W CUE2 
YJR025C BNA1  YKL105C YKL105C 
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YJR154W YJR154W  YKL108W SLD2 
YKL042W SPC42  YKL144C RPC25 
YKL060C FBA1  YKL166C TPK3 
YKL084W HOT13  YKL194C MST1 

YKL096W-A CWP2  YKL206C ADD66 
YKL104C GFA1  YKR004C ECM9 

YKL138C-A HSK3  YKR010C TOF2 
YKL183W LOT5  YKR051W YKR051W 
YKL207W LRC3  YKR084C HBS1 
YKR004C ECM9  YKR098C UBP11 
YKR010C TOF2  YKR103W NFT1 
YKR011C YKR011C  YLL042C ATG10 
YKR013W PRY2  YLR021W IRC25 
YKR039W GAP1  YLR083C EMP70 
YKR041W YKR041W  YLR102C APC9 
YKR091W SRL3  YLR127C APC2 

YKR095W-A PCC1  YLR128W DCN1 
YKR096W ESL2  YLR134W PDC5 
YKR103W NFT1  YLR165C PUS5 
YLL042C ATG10  YLR166C SEC10 
YLL056C YLL056C  YLR172C DPH5 
YLR018C POM34  YLR173W YLR173W 
YLR040C YLR040C  YLR188W MDL1 
YLR042C YLR042C  YLR195C NMT1 
YLR044C PDC1  YLR201C COQ9 
YLR046C YLR046C  YLR207W HRD3 
YLR128W DCN1  YLR209C PNP1 
YLR129W DIP2  YLR210W CLB4 
YLR165C PUS5  YLR234W TOP3 
YLR172C DPH5  YLR238W FAR10 
YLR173W YLR173W  YLR251W SYM1 
YLR209C PNP1  YLR284C ECI1 
YLR210W CLB4  YLR292C SEC72 
YLR240W VPS34  YLR293C GSP1 
YLR248W RCK2  YLR305C STT4 
YLR251W SYM1  YLR325C RPL38 
YLR264W RPS28B  YLR329W REC102 
YLR268W SEC22  YLR360W VPS38 
YLR271W YLR271W  YLR361C DCR2 
YLR305C STT4  YLR362W STE11 
YLR306W UBC12  YLR398C SKI2 
YLR309C IMH1  YLR411W CTR3 
YLR353W BUD8  YLR424W SPP382 
YLR362W STE11  YLR440C SEC39 
YLR369W SSQ1  YLR442C SIR3 

YLR412C-A YLR412C-A  YML017W PSP2 
YLR421C RPN13  YML018C YML018C 
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YLR433C CNA1  YML056C IMD4 
YLR443W ECM7  YML108W YML108W 
YLR452C SST2  YML109W ZDS2 
YML018C YML018C  YML110C COQ5 
YML043C RRN11  YMR059W SEN15 
YML056C IMD4  YMR060C SAM37 
YML092C PRE8  YMR061W RNA14 
YMR001C CDC5  YMR078C CTF18 
YMR016C SOK2  YMR084W YMR084W 
YMR038C CCS1  YMR097C MTG1 
YMR077C VPS20  YMR106C YKU80 
YMR100W MUB1  YMR140W SIP5 
YMR115W MGR3  YMR180C CTL1 
YMR144W YMR144W  YMR233W TRI1 
YMR192W GYL1  YMR234W RNH1 
YMR231W PEP5  YNL024C-A YNL024C-A 
YMR234W RNH1  YNL025C SSN8 
YMR274C RCE1  YNL119W NCS2 
YMR293C HER2  YNL121C TOM70 
YMR305C SCW10  YNL122C YNL122C 
YMR306W FKS3  YNL158W PGA1 
YNL024C-A YNL024C-A  YNL168C FMP41 
YNL038W GPI15  YNL191W DUG3 
YNL051W COG5  YNL246W VPS75 
YNL072W RNH201  YNL249C MPA43 
YNL087W TCB2  YNL259C ATX1 
YNL113W RPC19  YNL260C YNL260C 
YNL141W AAH1  YNL265C IST1 
YNL145W MFA2  YNL308C KRI1 

YNL146C-A YNL146C-A  YNR010W CSE2 
YNL154C YNL154C  YNR048W YNR048W 
YNL163C RIA1  YNR055C HOL1 
YNL191W DUG3  YNR061C YNR061C 
YNL216W RAP1  YNR063W YNR063W 
YNL246W VPS75  YOL017W ESC8 
YNL283C WSC2  YOL018C TLG2 
YNL289W PCL1  YOL023W IFM1 
YNR010W CSE2  YOL024W YOL024W 
YOL017W ESC8  YOL102C TPT1 
YOL018C TLG2  YOL137W BSC6 
YOL023W IFM1  YOR046C DBP5 
YOL070C NBA1  YOR068C VAM10 
YOL089C HAL9  YOR115C TRS33 

YOL159C-A YOL159C-A  YOR116C RPO31 
YOR046C DBP5  YOR150W MRPL23 
YOR060C YOR060C  YOR156C NFI1 
YOR081C TGL5  YOR177C MPC54 
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YOR083W WHI5  YOR188W MSB1 
YOR128C ADE2  YOR212W STE4 
YOR137C SIA1  YOR214C YOR214C 
YOR141C ARP8  YOR239W ABP140 
YOR142W LSC1  YOR270C VPH1 
YOR156C NFI1  YOR280C FSH3 
YOR175C ALE1  YOR281C PLP2 
YOR212W STE4  YOR284W HUA2 
YOR221C MCT1  YOR287C YOR287C 
YOR239W ABP140  YOR350C MNE1 
YOR246C YOR246C  YOR356W YOR356W 
YOR247W SRL1  YOR363C PIP2 
YOR291W YOR291W  YPL027W SMA1 
YPL016W SWI1  YPL054W LEE1 
YPL050C MNN9  YPL092W SSU1 
YPL054W LEE1  YPL109C YPL109C 
YPL055C LGE1  YPL119C DBP1 
YPL070W MUK1  YPL125W KAP120 
YPL071C YPL071C  YPL167C REV3 
YPL117C IDI1  YPL168W YPL168W 
YPL135W ISU1  YPL169C MEX67 
YPL137C GIP3  YPL180W TCO89 
YPL141C YPL141C  YPL184C MRN1 
YPL163C SVS1  YPL187W MF(ALPHA)1 
YPL179W PPQ1  YPL195W APL5 
YPL184C MRN1  YPL225W YPL225W 
YPL191C YPL191C  YPL232W SSO1 
YPL195W APL5  YPL266W DIM1 
YPL210C SRP72  YPR009W SUT2 
YPL270W MDL2  YPR027C YPR027C 
YPR035W GLN1  YPR057W BRR1 
YPR047W MSF1  YPR068C HOS1 
YPR104C FHL1  YPR073C LTP1 
YPR137W RRP9  YPR084W YPR084W 
YPR152C URN1  YPR117W YPR117W 
YPR153W YPR153W  YPR122W AXL1 
YPR155C NCA2  YPR176C BET2 
YPR156C TPO3  YPR178W PRP4 
YPR176C BET2  YPR187W RPO26 
YPR178W PRP4  YPR188C MLC2 
YPR180W AOS1  YPR189W SKI3 

 

84



Table S2: List of strains used in this study  
Strain # Genotype Source 
YM1731 MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 met15∆0  
YM1953 MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 met15∆0 bar1::NatMX4 This study 
YM1968 YM1953 aga1::YFP This study 
YM2091 YM1953 fus1::YFP This study 
YM2100 YM2091 dig1::KanMX4 This study 

YM2101 YM1953 dig1::KanMX6 This study 
YM2102 YM2101 dig2::HisMX6 This study 
YM2105 YM1968 dig1::KanMX4 This study 

YM2109 YM2105 dig2::HisMX6 This study 

YM2112 YM2100 dig2::HisMX6 This study 

YM2248 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 

This study 

YM2315 YM1953 dig2::HisMX6 This study 

YM2636 
MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 bar1::NatMX4 aga1::eGFP lys1::pAGA1-
mCherry-3’UTR AGA1 

This study 

YM2637 
MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 bar1::NatMX4 aga1::mCherry lys1::pAGA1-
eGFP-3’UTR AGA1 

This study 

YM2643 YM1953 dig1::KanMX6 ste12::His3MX6 This study 
YM2871 YM2636 dig1::KanMX6 This study 

YM2872 YM2637 dig2::KanMX6 This study 

YM2875 YM2637 dig1::KanMX6 This study 
YM2876 YM2636 dig2::KanMX6 This study 
YM2901 MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 eGFP(aa1-158)-TRP1-NatMX4 (eGFP 

fragment from W. Lim) 
This study 

YM2903 MATα  ura3∆0 his3∆1 leu2∆0 lys2∆0 eGFP(aa159-240)-LEU2 lys1::KanMX6-
pTEF2-mCherry (eGFP fragment from W. Lim) 

This study 

YM2910 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 STE12-eGFP-HIS3MX6 NUP188-
mCherry-URA3MX 

This study 

YM3085 YM2903 fus3::NatMX4 This study 

YM3086 YM2903 dig2::NatMX4 This study 

YM3087 YM2903 dig1::NatMX4 This study 

YM3099 YM1968 dig2::HIS3MX6 This study 

YM3101 YM2091 dig2::HIS3MX6 This study 
YM3102 YM2910 dig1::KanMX6 This study 
YM3103 YM2910 dig2::KanMX6 This study 
YM3104 YM3102 dig2::NatMX4 This study 
YM3105 YM1968 pSTE12::pEAF3 (-530bp to ATG removed upstream of STE12 and 

replaced with intergenic region upstream of EAF3) 
This study 

YM3106 YM1968 pSTE12::pTAF4 (-530bp to ATG removed upstream of STE12 and 
replaced with intergenic region upstream of TAF4) 

This study 

YM3108 YM3105 dig1::KanMX6 This study 

YM3109 YM3105 dig2::KanMX6 This study 
YM3110 YM3106 dig1::KanMX6 This study 
YM3111 YM3106 dig2::KanMX6 This study 

YM3132 YM2871 dig2::HIS3MX6 This study 

YM3133 YM2875 dig2::HIS3MX6 This study 

YM3545 
MATa ura3∆0 his3∆1 leu2∆0 lys2∆0 met15∆0 bar1::NatMX4 lys1::pYEF3-YFP-
3’UTR YEF3 

This study 

YM3546 YM3545 dig1::KanMX6 This study 
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YM3547 YM3545 dig2::HIS3MX6 This study 

YM3550 YM1953 pmp1::GFP-HIS3MX This study 

YM3552 YM1953 agp1::GFP-HIS3MX This study 

YM3587 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 STE12-eGFP-Hyg3MX LacO-HIS3MX6-
pFUS1 pRS316-mCherry-LacI   (LacO from pLAU43 and LacI from JH2129) 

This study 

YM3588 YM3587 dig1::KanMX6 This study 

YM3593 YM3550 dig1::KanMX This study 

YM3594 YM3550 dig2::KanMX6 This study 

YM3595 YM3552 dig1::KanMX6 This study 

YM3596 YM3552 dig2::KanMX6 This study 

YM3612 YM3593 dig2::Hyg3MX This study 

YM3628 YM3550 lys1::pPMP1-mCherry-URA3MX This study 

YM3629 YM3628 dig1::KanMX6 This study 

YM3630 YM3628 dig2::KanMX6 This study 

YM3631 YM3629 dig2::Hyg3MX6 This study 

YM3639 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 LacO-HIS3MX6-pFUS1 ( LacO from 
pLAU43) 

This study 

YM3640 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 LacO-HIS3MX6-pFUS1 dig1::KanMX6 ( 
LacO from pLAU43) 

This study 
 

YM3687 

MATa ura3∆0 his3∆1 leu2∆0 met15∆0 ste12::NatMX4  LacO-HIS3MX6-pFUS1 
dig1::KanMX6 pRS316-mCherry-LacI ( LacO from pLAU43 and LacI from 
JH2129) 

This study 
 

YM3722 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 REB1-eGFP-HIS3MX6 NUP188-mCherry-
URA3MX 

This study 

YM3723 YM3722  dig1::KanMX6 This study 

YM3724 YM3722  dig2::KanMX6 This study 

YM3747 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 DIG1-eGFP-HIS3MX6 NUP188-mCherry-
URA3MX 

This study 
 

YM3760 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSST2-YFP-3’SST2 This study 

YM3762 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pTEC1-YFP-3’TEC1 This study 

YM3763 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pGIC2-YFP-3’GIC2 This study 

YM3764 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pFUS3-YFP-3’FUS3 This study 

YM3766 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPRY2-YFP-3’PRY2 This study 

YM3767 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSVS1-YFP-3’SVS1 This study 

YM3769 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSTE4-YFP-3’STE4 This study 

YM3770 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPRM5-YFP-3’PRM5 This study 

YM3771 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPCL2-YFP-3’PCL2 This study 

YM3772 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPCL1-YFP-3’PCL1 This study 

YM3773 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pMFA2-YFP-3’MFA2 This study 

YM3774 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 STE12-eGFP-HIS3MX6 NOP7-mCherry-
URA3MX 

This study 

YM3775 
MATa ura3∆0 his3∆1 leu2∆0 met15∆0 STE12-eGFP-HIS3MX6 NOP7-mCherry-
URA3MX dig1::KanMX6 

This study 

YM3776 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 dig1::KanMX6 

This study 

YM3777 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 nsr1::KanMX6 

This study 

YM3778 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 rai1::KanMX6 

This study 

YM3779 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 tus1::KanMX6 

This study 

YM3780 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 gyp6::KanMX6 

This study 
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YM3781 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 csn12::KanMX6 

This study 

YM3782 
MATa can1::pSTE2-S.p.HIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 LYS2+ 
bar1::NatMX4 hygMX-pAGA1-YFP-3’AGA1-C.g.LEU2 ctk1::KanMX6 

This study 

YM3804 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSST2-YFP-3’SST2 dig1:::KanMX6 This study 

YM3805 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pTEC1-YFP-3’TEC1 dig1::HIS3MX6 This study 

YM3806 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pGIC2-YFP-3’GIC2 dig1::KanMX6 This study 

YM3807 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pFUS3-YFP-3’FUS3 dig1::HIS3MX6 This study 

YM3808 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPRY2-YFP-3’PRY2 dig1::KanMX6 This study 

YM3809 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSVS1-YFP-3’SVS1 dig1::KanMX6 This study 

YM3810 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pSTE4-YFP-3’STE4 dig1::HIS3MX6 This study 

YM3811 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPRM5-YFP-3’PRM5 dig1::KanMX6 This study 

YM3812 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPCL2-YFP-3’PCL2 dig1::KanMX6 This study 

YM3813 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pPCL1-YFP-3’PCL1 dig1::HIS3MX6 This study 

YM3814 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 lys1::pMFA2-YFP-3’MFA2 dig1::KanMX6 This study 
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CHAPTER 3 

 

Not all quiet on the noise front
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Abstract 

Phenotypic diversity exists even within isogenic populations of cells. Such 

nongenetic individuality may have wide implications for our understanding of 

many biological processes.  The field of study concerned with the investigation of 

nongenetic individuality, also known as the ‘biology of noise’, is ripe with exciting 

scientific opportunities and challenges. 

 

Commentary 

Cells are microscopic reactors where multitudes of chemical 

transformations occur simultaneously.  Small numbers of molecular species may 

be involved, making such intracellular reactions particularly vulnerable to thermal 

fluctuations.  Biochemical reactions are therefore probabilistic collision events 

between randomly moving molecules, with each event resulting in the increment 

or decrement of molecular species by integer amounts1,2.  The amplified effect of 

fluctuations in the number of a molecular reactant or the compounded effects of 

fluctuations across many molecular reactants (which is referred to as ‘molecular 

noise’) often accumulate as an observable phenotype, endowing the cell with 

individuality and generating nongenetic cell-to-cell variability in a population (Fig. 

1).   

Observations of nongenetic variation in bacteria date back to the 1940s, 

when researchers observed that bacterial cultures were not completely killed by 

antibiotic treatment—a small fraction of cells “persist”3.  The insensitivity to 

antibiotics exhibited by these persister cells was nonheritable4, and persister 
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cells spontaneously switched back to the nonpersistent state, regaining 

sensitivity to antibiotics.  Today, single-cell measurement methods such as 

fluorescent reporters, flow cytometry and microscopy give revealing snapshots of 

this individuality.  For example, when observed at the single-cell level, steady 

state tumbling frequencies and adaptation times among chemotaxing Escherichia 

coli cells grown in a homogeneous environment are variable5.  This variability is 

strongly influenced by the fluctuations in the relative amount of the 

methyltransferase CheR, which is present in low molecular numbers within the 

cell6.  Behavioral variation is elegantly linked with molecular noise—a link that is 

being unraveled by increasingly sophisticated single-cell measurement 

techniques. 

 

Noise in gene expression 

‘Biological noise’, or nongenetic individuality, is commonly thought to arise 

from mechanisms that are susceptible to (or that exploit) the stochasticity of 

related biochemical reactions.  Cell-to-cell variability in gene expression1,7,8 has 

been investigated in recent years as a representative of biological noise.  Gene 

expression noise is thought to arise in part from small numbers of molecules, 

such as mRNAs in yeast cells, half of which are present at a copy number of 10 

per cell or less9.  Additionally, theoretical modeling of gene expression in 

nondividing cells suggests that both the number of mRNAs and protein 

molecules, as well as the kinetics of the individual steps in gene expression (Fig. 

2), contribute to variability in protein output10.   
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Variability in gene expression, which is quantitatively captured by the 

coefficient of variation (defined as the standard deviation of the protein 

abundance distribution divided by its mean), is predicted to depend on promoter 

dynamics and the rates of transcription and translation, as well as the half-lives of 

the mRNA and proteins1,10.  Simple models indicate that increasing the 

transcription or translation rates or stabilizing the proteins and mRNA increases 

the average protein level while simultaneously decreasing the coefficient of 

variation10 (Fig. 2).  The intuitive interpretation is that removal or addition of a 

single molecule has a substantial effect in small systems and less of an effect in 

larger systems.  However, the numerous regulation points in gene expression 

allow this variability to be tuned independently of the average expression level—

for example by simultaneously manipulating mRNA turnover and transcription 

rate (Fig. 2).  Measurements of gene expression noise for large numbers of 

genes in yeast showed that, in general, the most abundant proteins have the 

least variable expression11.  However, the exceptions to this relationship point 

toward regulation of noise that is independent of expression level.  These 

exceptions, notably stress responses, should be valuable in evaluating the 

functional requirements imposed on these noisy genes and the mechanistic 

details involved in modulating their variability. 

 

Local noise, global noise and noise propagation 

Biochemical reactions generate their own local variability, but they are 

also subjected to variability from reactions that share substrates, enzymes or 
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molecular machinery.  This subjugation can be nested and scaled, propagating 

molecular variability through the cell.  The susceptibility of reactions to this local 

or global noise depends on genetic logic, reaction dynamics and feedback.   

A key breakthrough in decomposing variability into local and global 

components came from studies by Elowitz et al.7, who devised a two-color 

reporter gene assay for distinguishing different origins of noise.  The two different 

green fluorescent protein color variants were co-expressed in cells with identical 

promoters.  Uncorrelated variation between intensities of the two reporter genes 

in the same cell, termed ‘intrinsic noise’, reports differences in the output due to 

stochastic events particular to the gene’s expression.  The variation between 

different cells, termed ‘extrinsic noise’, reflects differences in cellular state7.  A 

study in budding yeast that used this experimental technique in conjunction with 

mathematical models found that the presence of an extrinsic noise floor in 

exponentially growing yeast cells resulted from the steady state structure (for 

example, cell size, shape, age, metabolic state) of the population12.  However, 

differences in population structure could not completely account for extrinsic 

variability, and it was speculated that the additional variability resulted from 

fluctuations in an upstream regulator12.  This further highlighted the fact that, in 

addition to variability stemming from global differences in cellular states, 

fluctuations propagated from circuit components or crosstalk with other circuits 

can be a major force in shaping noise in important pathway outputs. 

 

Biological consequences of nongenetic variability 
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Nongenetic variation can cause different cells in a population to exhibit all-

or-none expression of certain genes and to exist in different defined states, such 

as persistence or competence13-15.  Nongenetic variability can also generate a 

continuum of phenotypes, such as in the chemotactic behavior of E. coli6.  In all 

cases, such heterogeneous phenotypes in a population have biological 

consequences.  In unicellular organisms, special attention has been devoted to 

cell-to-cell variability generated by gene expression noise in stress response–

related genes11.  Stress genes were shown to be ‘noisy’ compared with the rest 

of the yeast genome.  These data have been used to lend support to the 

hypothesis that variability in protein content among cells might confer a selective 

advantage to the population.  Gene expression noise could broaden the range of 

stress resistance across the population and hence the likelihood that some cells 

within the population are better able to endure environmental assaults16.  Many of 

these scenarios have been invoked to suggest bet-hedging strategies where a 

fraction of the cells in a population enters into a phenotypic state of reduced 

fitness in anticipation of future environmental stresses, therefore forfeiting the 

immediate fitness of the population on average in favor of spreading risk.   

In contrast, many cellular functions require that cells transform information 

about their external environment into regulation of internal states to develop and 

maintain cellular homeostasis.  This often demands accurate environmental 

sensing and faithful transduction and propagation of signals to make appropriate 

regulatory decisions.  Thus, mechanisms to reduce variability in these signaling 

components may be necessary.  A particularly compelling example is light-
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dependent cell hyperpolarization in the retina.  Here, the basis for reproducible 

responses to single photons17 through signal-dependent multisite 

phosphorylation of rhodopsin and phosphodependent binding of the inhibitor 

arrestin plays a central role in reducing variability by inhibiting longer durations of 

rhodopsin activity characteristic of an exponential distribution.  The multisite 

nature of the inhibition is key, because it averages stochastic variations in the 

shut-off process.  Therefore, buffering mechanisms that reduce either the 

magnitude of noise in cellular networks or the phenotypic impact of such noise 

may exist.  The existence of regulatory mechanisms that switch these buffering 

mechanisms ‘on’ when they are needed (for example, when a population is well 

adapted to its environment) or ‘off ’ when they are less useful (for example, when 

environmental shifts occur) is an exciting prospect to consider. 

 

Biological noise at UCSF 

The issues of nongenetic individuality were recently the subject of a 

minicourse offered through the Integrative Program in Quantitative Biology 

(iPQB) at the University of California, San Francisco.  In this minicourse, a group 

of students with diverse scientific backgrounds surveyed and debated topics in 

the field of noise biology.  In the final days of the class, we paused to 

contemplate what understanding was palpably missing from the field and to 

reflect on the road ahead.  Our discussions resulted in three selforganized 

categories: basic science questions, the role of noise in the study of disease and 

drug discovery, and technology development.  These are not exhaustive of the 
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opportunities within the field.  Instead, they reflect our biases and preferences 

and should be further tested for statistical significance—the discussion involved 

11 people and is therefore in the noisy small numbers regime. 

 

Understanding nongenetic individuality: questions for the basic scientist 

Is it noise, or an artifact of complexity?  Aside from simple examples, 

our understanding of how variability is modulated by topology and biochemical 

parameters of cellular networks remains incomplete.  Such an understanding is 

essential for our ability to distinguish between phenotypic variations that result 

from noise and those that are due to other uncharacterized portions of complex 

processes.  Deterministic and stochastic dynamics have intricate and interlocking 

roles in shaping phenotype.  Unraveling these roles will require the combination 

of high-resolution measurements in a controlled cellular environment with 

techniques for modulating the input of a biological system in subtle and precise 

ways.   

Overall, to determine the accurate manifestations of nongenetic 

individuality, many challenges remain.  Can we use technologies such as 

microfluidic devices to adjust the local cellular environment and abolish potential 

effects of local cellular microenvironments?  Can we eliminate confounding 

effects by establishing assays that control for cell size and age?  Can we 

measure multiple network nodes simultaneously and dynamically in single cells?  

Can we organize this high-dimensional information into predictive computational 

frameworks that extract salient principles and generalizable rules about how a 
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cell modulates its internal fluctuations and responds to its environment?   

 

Are there common themes for nongenetic individuality in unicellular 

organisms and multicellular structures?  Researchers of ecology have 

described bet-hedging within a population as a method of survival through 

phenotypic variation18.  A classic example can be found in the larval hatching 

behavior of the desert bee Perdita portalis.  As part of its life cycle, P. portalis 

enters a hibernationlike diapause state in order to survive the arid conditions. 

Emergence from diapause is triggered by rainfall, but not all larvae emerge 

during a single rainy season.  Instead, P. portalis hedges its bets by staggering 

larval emergence over several rainy seasons, allowing a fraction of the 

population to survive should disaster strike in any given year19.   

Altruistic bet-hedging is perceived as a strategy in which individuals act in 

a manner that may not benefit themselves but profits the greater population20.  

Nongenetic variability can be used to signal genetically identical cells to engage 

in bet-hedging behavior.  In Bacillus subtilis, this mechanism is used in biofilm 

formation.  A small number of cells are stochastically designated as biofilm 

producers due to a bimodal distribution of Sinl expression in the population.  

These cells take a substantial reduction in their own individual survival potential 

but increase the safety of the entire population in the event of a significant 

stress20.  While it is understood that the bimodal distribution of Sinl expression 

designates biofilm producers, it is unclear how the weight of this distribution 

(what percentage of cells are in one population or the other) is determined.  The 
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ability to tune the weight of the distribution during various levels of stress is an 

appealing idea and could provide broad insights ranging from fractional killing of 

‘persister’ cells during antibiotic treatment to the evolution of stress responses.   

Given that bet-hedging strategies have been described in populations of 

unicellular organisms and in the communal behavior of multicellular organisms, it 

is intriguing to consider whether these strategies are also at play on the scale of 

tissue and organ development and maintenance.  If this is the case, these bet-

hedging tactics may have implications for differential drug and disease 

susceptibility in mammalian tissues.   

In understanding the molecular mechanisms driving collective community 

behaviors of unicellular and multicellular individuals, several key questions 

remain unanswered.   What is the exact quantitative relationship between bet-

hedging and biochemical noise?  What are the timescales for switching between 

phenotypic states?  Are the molecular bases of bet-hedging in unicellular 

organisms applicable to multicellular organisms?  Does bet-hedging drive 

evolution or vice versa?  Do identical cells within tissues hedge their bets in 

development and disease?  Is there any synergy between bet-hedging strategies 

and those that involve stochastic rearrangement of genetic material?   

 

How about ‘extremes’?  Noise in cellular processes reflects the effects of 

random thermal fluctuations on molecular events such as diffusion, catalysis and 

binding.  Thus, variability in ‘extreme’ organisms could provide a tool to measure 

the role of thermal fluctuations in biological noise.  Investigations of cell-to-cell 
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variability have focused on mesophilic organisms that have adapted to life at 

moderate temperatures (20–42 °C); there are no biological noise studies of 

psychrophiles or thermophiles—organisms that live under extreme temperature 

conditions (<15 °C and >45 °C, respectively).  Studies in such organisms have 

yielded insights into protein folding and enzymology, and have enabled 

development and optimization of technologies such as PCR.  Analyzing 

variability in gene expression in thermophiles and psychrophiles could therefore 

reveal new mechanisms of noise regulation and/ or tolerance, and may pinpoint 

which steps in the process (transcription, mRNA processing, translation) are 

most susceptible to the effects of noise as temperature changes.  Studies and 

comparisons of regulatory networks in these extremophiles could indicate 

whether different patterns of thermal fluctuations lead to the evolution of new 

architectures to dampen or exploit noise and could also reveal new methods of 

noise regulation in cellular processes.  For example, biofilm formation and 

sporulation processes in which cell-to-cell variability plays a role have been 

observed in thermophiles found in industrial dairy and paper production21.  Do 

thermophiles exploit noise levels differently than mesophiles during these 

processes? If noise levels differ in these processes in thermophiles and 

mesophiles, are these levels tuned particularly for survival in the two ranges of 

temperature? 

 

Diseases, drugs and health  

How do cells, tissues and organs shape the variability in their 
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environment, and how are they shaped by it?  Understanding how variability 

affects cells within tissues in multicellular organisms and vice versa could be vital 

to decoding mechanisms that regulate cell fate.  Environmental signals influence 

cellular processes in profound ways.  In multicellular organisms, cell-to-cell 

signaling, architecture and topology influence stem cell maintenance and 

differentiation22 and the overall tissue architecture.  Moreover, the cellular 

environment has been shown to affect the development of certain cancers23.  To 

understand the complex interactions between a cell and its environment, it is 

necessary to understand how cells respond to and create environmental 

variability and how stochastic fluctuations within a cell propagate to its neighbors 

(Fig.  3).  This becomes especially important in contexts where chemical 

gradients set by collections of cells hold crucial, but noisy, positional information.  

For example, in Drosophila melanogaster wing disk development, the morphogen 

Dpp is secreted into the cellular microenvironment to establish a precise gradient 

that determines the architectural features and boundaries of the tissue24.  A cell 

needs to decipher and filter this noisy signal in order to precisely orient itself.  

Understanding how much and what frequencies of noise cellular processes can 

afford should unravel key regulation mechanisms controlling cell fate.  It should 

also illuminate mechanisms by which cells achieve exquisite signal processing 

and discrimination capabilities that enable tissue and organ homeostasis.  How 

does intercellular signaling discern between environmental noise and relevant 

stimuli from other cells?  In what circumstances and how do cells actively 

regulate their environment’s chemical and electrical variability?  Can we explore 
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how cells adapt to and exploit environmental noise using artificial tissue 

engineering?   

 

Do we need to personalize medicine to individual noise levels?  The 

completion of the Human Genome Project, along with everincreasing knowledge 

of genes responsible for complex human diseases, has prompted the advent of 

pharmacogenomics—a shift away from generalized health toward individualized 

medicine.  Such a paradigm shift was propelled by the discovery that genetic 

differences strongly influence disease susceptibility and response to drugs.  

Recent studies have revealed yet another layer of complexity: nongenetic cell-to-

cell variability also affects drug efficacy25,26.  For example, the pro-apoptotic drug 

TRAIL kills only 22% to 78% of clonal cells depending on their cell type due to 

cell-to-cell variability in levels of regulatory proteins involved in receptor-mediated 

apoptosis25.  These observations underscore the need for rigorous single-cell 

studies that increase our understanding of how nongenetic variability influences 

drug efficacy.   

Specifically, a system-wide approach to understanding variability in 

cellular processes might be vital for improving individualized healthcare and 

facilitating the development of more efficient drugs.  How can we extrapolate this 

understanding to improve drug efficacies?  Are there ‘quiet’ signaling steps or 

pathways that could be more effective drug targets than ‘noisier’ steps and 

pathways?  Can we increase drug efficacy by combining drugs whose target 

pathways have complementary dynamics or noise?  These approaches would 
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require the development of tools to efficiently measure noise in vivo.   

 

Is aging a noise-susceptible process?  Recent studies show that aging 

is accompanied by an increase in cell-to-cell variability in gene expression across 

a population27-29.  However, it is unclear whether aging results in increased 

variability or whether variability causes aging through the asynchrony of vital 

pathways.  Several theories have been proposed to explain the relationship 

between increased variability and aging.  The ‘disposable soma’ theory predicts 

that aging in metazoans results from accumulation of unrepaired somatic DNA 

damage, the random nature of which may infuse the aging process with the 

observed stochasticity30.  Another theory postulates that genes that act in the 

postreproductive life stage experience less natural selection and therefore may 

be less tightly regulated than genes whose activity is required in the 

developmental and reproductive phases of life29.  Modeling efforts also suggest 

that aging might preferentially attack regulatory genes that are important for 

network stability31.  One or more of these theories could account for increased 

variability in aging.  However, solid evidence for a causal relationship is absent: 

is the change in variability a product of aging or is the change in variability driving 

the aging process?  It is reasonable to speculate that increased variability could 

promote aging.  For example, an increase in gene expression noise could cause 

a cell to digress from its normal functional state, fail to respond to external cues 

correctly or fail to coordinate with its neighboring cells in the context of a tissue.   

The involvement of noise and nongenetic variability adds a new dimension 
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and new questions to aging research.  What is the contribution of nongenetic 

variability to aging in unicellular and multicellular organisms?  Are there specific 

genes that control aging by influencing noise?  Are aging rates or lifespans 

dependent on patterns of variability?  Can the rate of aging be manipulated by 

modulating noise? 

 

The road ahead 

Above, we have proposed an incomplete but still daunting list of 

questions.  Answering these questions will require the development and 

maturation of many technologies.  We believe that two areas are crucially 

important for furthering our understanding of noise in biological systems: the 

ability to quantitatively tune nongenetic individuality and the ability to measure its 

manifestations in currently ‘hidden’ variables.   

The ability to manipulate variability—to be able to tune noise—will create 

new avenues for noise research.  Three applications would benefit from such an 

effort.  First, a toolkit of ‘noise modulators’ would allow us to (i) investigate the 

robustness of biological networks with respect to fluctuations, (ii) delineate 

topologies that are most resistant to the effects of noise and (iii) determine the 

limits of their functionality.  Second, noise modulators would enable the use of 

variability as a tool for network inference.  By inserting noise into cellular 

networks and observing its propagation, we could investigate the topology of 

these networks in a manner that mirrors system identification in manmade 

systems.  Third, noise tuning might lead to the development of new therapeutics.  
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For example, it might provide a solution to the antibiotic fractional killing 

problem15.  If antibiotic treatment is coupled to a drug that alters the frequency of 

switching of the bacterium to and from a persistent state, killing the entire 

bacterial population might be possible.   

Several approaches exist for developing the necessary technology to 

modulate noise by changing the total number of molecules.  One scenario 

relevant to drug action is to control the number of active molecules available for a 

given reaction.  This can be achieved either by regulating the sequestration or 

the release of proteins in their active forms or by altering the stoichiometry of 

complex formation.  The independence of events in stochastic processes can 

also be disrupted to affect variability within a system.  For example, substituting 

processive events for independent events should affect noise.  The number of 

noise-generating processes in a system could itself be altered by fusing together 

otherwise separate proteins or by splitting a protein into two pieces that must 

come together to be active.  Breakthroughs and developments in synthetic 

biology will certainly empower these efforts. 

Because our understanding of the dynamics of complex biological 

networks is incomplete, it remains difficult to predict how perturbations in the 

environment or system components will percolate through the network topology 

on their way to becoming a phenotype.  Therefore, it is possible that processes 

appear to be stochastic when in fact they are determined by pre-existing hidden 

variables.  Currently, most measurements of variability in gene expression focus 

on quantifying differences in protein levels using fluorescent protein reporters.  
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Although there has been some effort to directly quantify the number of mRNA 

molecules present in single cells8,32, few studies address how intermediate steps 

of gene expression (such as DNA states, mRNA processing and export, and 

protein folding) contribute to gene expression noise.  These processes remain 

‘hidden variables’, and quantification of their contribution to variability awaits the 

development of appropriate technologies.   

A good starting point may be to expand current technologies.  For 

example, methods that measure promoter DNA unwinding in real time in vitro 

would quantify noise in DNA transitions during transcription initiation if they could 

be applied in vivo33.  Similarly, techniques used to visualize single mRNA 

molecules in fixed cells32 could be applied to measure noise in mRNA processing 

pathways such as splicing and polyadenylation by designing several fluorescent 

in situ hybridization (FISH) probes that bind to specific sequences within the 

mRNA.  Moreover, developing a multicolor reporter system with this technology 

may allow one to tease apart the relative contributions of intrinsic and extrinsic 

noise to mRNA processing.  Although FISH does not allow for tracking mRNA 

processing in single cells over time, several other real-time mRNA visualization 

techniques exist8,34 and could be used to study noise in mRNA export.  Perhaps 

the hardest problem is to quantify intermediate states of protein folding, and 

radically new techniques might be needed.   

Beyond gene expression, protein targeting/localization and post-

translational modifications also affect variability.  Technologies need to be 

developed to precisely quantify protein localization and post-translational 
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modification states in single cells in real time.  This will be crucial for moving 

beyond gene expression to investigate variability and fidelity in complex signaling 

networks. 

 

Final synopsis 

Nongenetic individuality is a quantitative cellular phenotype that is 

increasingly being implicated in many biological phenomena.  In this 

commentary, we have presented a broad set of concepts and examples arguing 

that an understanding of nongenetic individuality can significantly influence our 

understanding of biological processes.  While we recognize that we have put 

forth numerous daunting tasks that may not be fully answerable, we contend that 

such directions are necessary to push the ‘biology of noise’ field forward. 
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Figures and Tables
Figure 1
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Figure 1: Biochemical noise percolates to cellular phenotypes through complex 

networks, generating nongenetic individuality.  As a result, individual genetically 

identical cells may have different sizes, shapes, states of their molecular 

constituents and responses to intracellular and extracellular cues. 
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Figure 2
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Figure 2: Different steps in gene expression modulate protein variability.  <P>, 

mean number of protein molecules. 

111



Figure 3
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Figure 3: Nongenetic individuality can have important consequences for cell-cell 

communication and cellular fates in multicellular structures. Because decisions 

made by a cell are influenced by extracellular cues, propagation of noise from 

neighboring cells (when coupled to intrinsic cellular variability) can lead to widely 

heterogeneous responses across a tissue. Purple, signal-emitting cells; green, 

responding cells. 
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Appendix A:  A genetic approach to understanding the 

mechanism of Ste12-focus formation in dig1Δ  cells 

 

As discussed in Chapter 2, we found that Ste12 forms nuclear foci in 

dig1Δ cells.  This is in contrast to the diffuse nucleoplasmic staining seen in wild 

type and dig2Δ cells.  Both Dig1 and Dig2 are known to bind to Ste12.  However, 

they bind to different regions; Dig1 to the activation domain and Dig2 to the DNA-

binding domain.  Given that Ste12 is known to bind to itself (1) as well as several 

to other proteins, we hypothesized that the removal of Dig1 from cells could 

expose a protein-protein interaction surface on Ste12.  In the absence of Dig1, 

this surface could participate in long-range protein-protein interactions, thereby 

resulting in Ste12 focus formation. 

To test this model genetically, we conducted a small-scale random 

mutagenesis screen to identify alleles of STE12 that phenocopy the noise 

phenotype of dig1Δ cells (as discussed in Chapter 2) and form foci in DIG1+ 

cells.  STE12 alleles were created using PCR mutagenesis with taq polymerase, 

which is estimated to create a mismatch every 10,000 bp (2).  Using in vivo 

recombination, we generated a library of these STE12 alleles (STE12*) tagged 

with GFP and a selectable marker and flanked by homology to the STE12 

promoter and 3’UTR (Figure 1).  This entire construct (pSTE12-STE12*-GFP-

HIS3MX-3’STE12) was excised from the plasmid and transformed into yeast 

containing pAGA1-mCherry ste12::GSHU (3).  Single colonies were picked and 

arrayed into 11 96-well plates.  In total, 907 mutants were isolated. 
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 Single-cell measurements of pAGA1-mCherry fluorescence were 

conducted for each mutant as described in Chapter 2.  The mean and coefficient 

of variation (CV) of the output distributions were calculated (Figure 2A).  Most of 

the STE12* strains have output distributions whose mean and CV follow a similar 

relationship to that of wild-type.  Approximately 12% of the mutants have output 

distributions that overlap with yeast autofluorescence, suggesting that the 

mutation in STE12 created an early transcription termination signal.  Inspection 

of the probability density functions (PDFs) of the STE12* mutant strains revealed 

13 mutants that displayed either a bimodal distribution (indicative of a mixed 

population) or a distribution similar to that of the dig1Δ strain (Figure 2B).  Six 

individual colonies were obtained from each of the 13 candidates and the output 

distributions were re-measured (Figure 3A,B).  Ten mutants recapitulated the 

distributions from the original screen.  The other three STE12* mutants (Plate 4 

F9, Plate 4 H6 and Plate 5 B9) displayed more than one output distribution 

among the six isolates, indicating that those particular wells contain a mixed 

population of STE12* mutants.  Isolate 1 for each mutant (see Figure 3) was 

sequenced.  The resulting mutations are listed in Table 1. 

Despite the increased noise in pAGA1-mCherry expression in our novel 

STE12 mutants, none displayed Ste12-GFP nuclear foci.  This small-scale 

mutagenesis screen was not saturating.  Only 907 STE12 mutants were 

analyzed and STE12 is 2066 bp (688 amino acids) long.  Additionally, in order to 

fully disrupt the Dig1-Ste12 interaction and form Ste12 foci, it may be necessary 

to mutate several residues simultaneously.  Further mutagenesis and analysis 
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would need to be performed to identify additional mutants.  Finally, it could be 

informative to combine the mutations from these STE12 alleles into a single 

allele to see if Ste12 now forms nuclear foci. 
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Figure 1: Outline of creation of ste12 mutant alleles.  500 bp of STE12 promoter, 

GFP, HIS3MX and 500 bp of STE12 3’UTR were amplified with the high fidelity 

polymerase Phu while STE12 was amplified using taq polymerase.  The 

individual pieces of DNA were transformed together with linearized pRS314 to 

create plasmids with mutant alleles of ste12.  The entire construct was cut out of 

the plasmid and transformed into yeast. 
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Figure 2: Results of the FACS-based screen.  A.  Plot of mean pAGA1-mCherry 

fluorescence vs CV2.  Replicates of wild type are in blue, dig1Δ is in red, ste12 

mutants are in gray and potentially interesting ste12 mutants are in green.  B.  

PDFs of ste12 mutants in green from part A.  No-fluor control is in black, wild 

type is in blue, dig1Δ is in red and the ste12 mutant is in green.  The dotted and 

solid lines represent independent replicates measured on the same day. 
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Figure 3:  Re-tested ste12 mutants were struck out to select for single colonies.  

Six colonies were picked and pAGA1-mCherry fluorescence was measured.  

A,B.  PDFs for six isolates of the re-tested ste12 mutants in Figure 2.  dig1Δ 

mutant is in red and the ste12 mutant is in green.     
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Table 1:  Mutations found in the ste12 gene from re-tested mutant strains in 

Figure 2B. 
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