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The grain-boundary (GB) mobility relates the GB velocity to
the driving force. While the GB velocity is normally associated
with motion of the GB normal to the GB plane, there is often
a tangential motion of one grain with respect to the other
across a GB; i.e., the GB velocity is a vector. GB motion can
be driven by a jump in chemical potential across a GB or by
shear applied parallel to the GB plane; the driving force has
three components. Hence, the GB mobility must be a tensor
(the off-diagonal components indicate shear coupling). Perform-
ing molecular dynamics (MD) simulations on a symmetric-tilt GB
in copper, we demonstrate that all six components of the GB
mobility tensor are nonzero (the mobility tensor is symmetric, as
required by Onsager). We demonstrate that some of these mobil-
ity components increase with temperature, while, surprisingly,
others decrease. We develop a disconnection dynamics-based sta-
tistical model that suggests that GB mobilities follow an Arrhenius
relation with respect to temperature T below a critical tempera-
ture Tc and decrease as 1/T above it. Tc is related to the operative
disconnection mode(s) and its (their) energetics. For any GB, which
disconnection modes dominate depends on the nature of the
driving force and the mobility component of interest. Finally,
we examine the impact of the generalization of the mobility
for applications in classical capillarity-driven grain growth. We
demonstrate that stress generation during GB migration (shear
coupling) necessarily slows grain growth and reduces GB mobility
in polycrystals.

materials science | thermodynamics | grain growth | grain boundary |
molecular dynamics

The most important dynamical property for the evolution of
polycrystalline microstructures (e.g., grain growth, recrystal-

lization) is the grain-boundary (GB) mobility. Normally, the GB
mobility is defined (1) as the ratio of the GB velocity v to
the thermodynamic driving force (per area) F in the limit of
infinitesimal driving force, M = limF→0 v/F . GB mobility has
been measured in many different metals [e.g., Zn (2), Pb (3), Al
(4), Au (5, 6), Cu (7), Fe-Si (8, 9), and Bi (10)] and ceramics [e.g.,
alumina (11)] and as a function of several variables (e.g., temper-
ature, bicrystallography, and solute concentration) in bicrystal
experiments with different types of driving forces [e.g., stress (2),
curvature (4–9), and magnetic field (10)], as summarized in ref.
12. More recently, molecular dynamics (MD) simulations have
been employed to study GB mobilities in bicrystals as a function
of many of the same variables (13–22) and driving forces (13,
15) [as well as driving forces only accessible in simulations (16)].
Olmsted and coworkers (17, 20) systematically studied the mobil-
ity of 388 GBs (different macroscopic, bicrystallographic degrees
of freedom) in Ni as a function of temperature. GB migration
may also be driven by the application of a shear across the GB
plane. Shear coupling has been reported in experiments for both
metals [e.g., Al (23–31) and Zn (2, 32)] and ceramics [e.g., cubic
zirconia (33)] and in a wide range of MD simulations (34–44).
The importance of shear coupling in microstructure evolution is
illustrated in experimental observations of stress-assisted grain
growth in nanocrystalline metals (27, 30).

Recent studies (42–45) suggest that, because of shear cou-
pling, GB mobility depends on the origin of the driving force for

GB migration (stress versus jumps in chemical potential across
a GB). This dependence contradicts the widely accepted notion
that GB mobility is an intrinsic GB property (independent of
the source of the driving force). However, if the GB mobility
does depend on the nature of the driving force, the notion of
a GB mobility should be expanded. The shear-coupling factor
(ratio of GB sliding and migration rates) also depends on the
nature of the driving force (44). Hence, GB motion is associated
with three orthogonal diplacements (and velocities): GB migra-
tion (perpendicular to the GB plane) and translations of one
grain with respect to the other (in two directions tangent to the
GB plane). Accordingly, there are three generalized forces (per
unit area) associated with these motions (variations of the free
energy with respect to three displacements). Assuming that the
displacements associated with the GB motion are overdamped
(an excellent approximation since GB velocities are small com-
pared with all speeds of sound), the proportionality constant
between the velocity and force vectors should therefore be a
3× 3 mobility tensor, M. If we establish a coordinate system
such that the GB normal is parallel to the e1 axis, then M11

is the traditional GB (migration) mobility, M1j (j 6= 1) compo-
nents describe shear coupling, and Mij (i , j 6= 1) describe GB
sliding. Since Mij/M11 is often not small, ignoring these non-
traditional mobility tensor components (i.e., replacing M with
the scalar MGB =M11) can be inappropriate. Also note that the
individual components of M may have different temperature
dependences.

Here, we employ MD simulations to examine the individual
components of the GB mobility tensor M and their temperature
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dependences for a Σ7 [111] (123̄) GB in face-centered cubic
(FCC) copper. We focus on this relatively simple, low-Σ
symmetric-tilt GB as an example to demonstrate the main
effects/principles (additional MD data, not reported here, sug-
gest that the same conclusions apply broadly). We then develop
a general statistical disconnection-based analytical model to
understand the temperature dependence of the GB mobility
tensor M.

Generalized GB Kinetics
Consider the bicrystal schematic in Fig. 1, where the GB sep-
arates grains A and B. The normal displacement of the GB
(i.e., the GB migration distance) is u1 in the x1 direction. The
displacements of grain A with respect to grain B along two
orthogonal directions in the GB plane (x2 and x3) are u2 and
u3, respectively. Thus, we define a generalized displacement
u = (u1, u2, u3) with a corresponding generalized velocity v = u̇.
The generalized driving force conjugate to the generalized veloc-
ity is F =−∂G/∂u, where G is the free energy per area of the
GB. The first component of F is F1 =−∂G/∂u1 =ψ, which is
the jump of chemical potential (free-energy density) across the
GB. The second and third components of F are F2 =σ12≡ τ2
and F3 =σ13≡ τ3, which are shear stresses along the x2 and x3

directions in the GB plane. The GB mobility tensor, relating v
and F, i.e.,

v = MF, [1]

is a second-rank tensor; more explicitly,v1

v2

v3

=

M11 M12 M13

M21 M22 M23

M31 M32 M33

ψτ2
τ3

. [2]

Since GB kinetics are overdamped, GB motion is consistent
with the maximum energy-dissipation rate, and, as required by
the Onsager relation (46), the GB mobility tensor M should be
symmetric and positive definite (see below).

The shear-coupling factor (the ratio of the shear velocity to
the GB migration velocity) has two components βk = vk/v1 cor-
responding to orthogonal shear directions. This factor can be
obtained by measuring v1 and vk under an applied shear stress
τk ; according to Eq. 2, such a factor is βk =Mkk/M1k . βk can
also be determined by measuring v1 and vk when GB migration
is driven by a jump in the chemical potential across the GB ψ

Grain A

Grain B

u1u2
u3

GB

x1

x2
x3

L2

L1

L3

Fig. 1. Bicrystal simulation cell with a symmetric-tilt GB (shaded yellow).
The tilt axis is parallel to x3, and the GB plane is nominally x2–x3. The cell is
periodic in the x2 and x3 directions, and a thin, rigid perfect crystal layer is
added to the top and bottom surfaces, which may displace freely.

(e.g., a synthetic driving force such as often employed in MD
simulations or associated with capillarity); the factor measured
in this way is βk =M1k/M11. Coupling factors βk measured in
these two manners are naturally different (44) (SI Appendix).

Simulation Methods
We performed MD simulations using the Large-scale Atomic/
Molecular Massively Parallel Simulator (47) and a copper
embedded-atom-method potential (48) for several different GBs
(44). While these simulations (44) show qualitatively similar
results, we focus on one particular GB in this paper; i.e., the
Σ7 [111] (123̄) symmetric-tilt GB. In these simulations, the tilt
axis is parallel to the x3 direction, and the cell dimensions are
L1∼ 100 nm, L2 and L3∼ 5 nm.

We construct GBs by fixing the misorientation of the two
grains and minimizing the energy with respect to atomic coordi-
nates and the relative translations of the upper grain relative to
the lower grain. We then rescale all atomic coordinates in accor-
dance with the temperature-appropriate lattice constant prior to
beginning the MD simulations. Before applying a driving force,
we equilibrate the bicrystal system at the temperature of inter-
est for 0.2 ns. In the simulations of stress-driven GB migration,
we apply a constant shear stress τ2 or τ3 by imposing forces
on the top and bottom surfaces of F2 or F3. Additional MD
simulations are performed in which GB migration is driven by
a jump in the chemical potential ψ; i.e., an additional energy
density ±ψ/2 was added to the atoms in grains A and B, respec-
tively [i.e., a synthetic driving force (16)]. Much larger driving
forces were employed to drive GB motion by using applied shear
stresses as compared with chemical potential jumps in order
to obtain reliable mobility measurements (as seen below, the
mobilities obtained for small and large driving forces are con-
sistent). All simulations were run for 7 ns at temperatures in
the 600 to 1,300 K range at a fixed number of atoms and tem-
perature (Nosé–Hoover thermostat on all but the fixed atoms).
The GB position is defined as the x1 position where the layer-
averaged centro-symmetry parameter (49) is maximum (50). The
GB migration velocity is the normal velocity of the mean GB
plane. The “error” bars in the GB mobility data depict the values
obtained from two identical simulations. All data are contained
in the main text and SI Appendix.

Simulation Results
Fig. 2 shows the temperature dependence of each of the GB
mobility components Mij . The magnitudes of these components
can vary by several orders; M11 >M1i >M22 >M33. The tem-
perature dependences of these GB mobility components also
differ widely. The components which involve the displacement
along the tilt axis (M31, M32, and M33) increase rapidly with
increasing temperature (Fig. 2 C, E, and F), while the other
components (M11, M12, and M22) decrease with increasing
temperature (Fig. 2 A, B, and D).

The observation that the diagonal components M11 and M22

decrease with increasing temperature seems counterintuitive.
But, such situations are, in fact, not unusual; in the MD dataset
of 388 distinct GBs, refs. 17 and 20 reported such behavior for
many GBs (they call this antithermal behavior). The origin of
this surprising temperature dependence of several GB mobility
components is discussed below.

Examination of Fig. 2 D–F clearly demonstrates that M12 =
M21, M13 =M31, and M23 =M32, as required by the Onsager
reciprocal relation (46). Coupling does not only exist between
GB migration and shear, but also between shears in different
directions; i.e., a shear stress in one direction may produce shear
displacement along the orthogonal direction, i.e., in general,
M23 6= 0. Note that in the symmetric-tilt GB example which we
focus on in this report, M23 is small compared with the other
mobility components.
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Fig. 2. Temperature dependences of the GB mobility components M11 (A), M22 (B), M33 (C), M12 (D), M13 (E), and M23 (F) (error bars indicate the range of
the simulation results). The data points represent the MD results, and the dashed lines are fits of these data to Eq. 5 for a single disconnection mode. For the
off-diagonal components of Mij (i 6= j), two sets of data points (blue circles and red squares) are shown corresponding to Mij and Mji ; the Onsager relation
suggests that these two sets of data are equivalent.

Statistical Disconnection Model
GB motion is accomplished through the glide of line defects
(i.e., disconnections) along the GB (45); such a disconnection
mechanism has been directly supported by the in situ experi-
mental observation of GB migration in polycrystals by Legros
and coworkers (28, 29, 31). Disconnections are constrained to lie
within the GB and are characterized by a Burgers vector b (dis-
location character) and a step height h (step character); both of
these are translation vectors of the displacement-shift complete
lattice (45, 51). For each GB with a particular bicrystallography,
there are multiple disconnection modes (bm , hm) (45) (the sub-
script denotes one of the disconnection modes allowed by the
bicrystallography).

Disconnections may be introduced into GBs via homogeneous
or heterogeneous nucleation and/or by the decomposition of lat-
tice dislocations. In this discussion, we focus on homogeneous
nucleation since, as in phase transformations, heterogeneities
often simply rescale the homogeneous nucleation energies. Since
disconnection formation and migration may be driven by dif-
ferent types of driving force which couple to the disconnection
(bm , hm), the disconnection dipole formation energy depends
on the disconnection mode. Following earlier discussions of
disconnection formation/nucleation (43–45), we can write the
disconnection formation barrier as

E∗=Q −W ≡ (Ab2 +B |h|+C )L−H ·FL2/2, [3]

where Q is the formation barrier without a driving force,
W is the work done by the driving force, H≡ (h, b2, b3),
and L=L2 =L3. The constants may be estimated (45) as
A=−2µ

[
(1− ν cos2 α)/4π(1− ν)

]
ln sin (πr0/L) and B = 2γ,

where γ is the step energy, µ is the shear modulus, ν is the
Poisson’s ratio, α is the angle between the Burgers vector and
the disconnection line direction, and r0 is the disconnection
core size. A describes the energy required to form a disloca-
tion pair and separate it to a distance of half the periodic unit
cell L/2 (45), and B describes the energy required to form a
pair of steps (43–45). C represents the disconnection migra-
tion barrier which depends on the GB structure and bonding
character; this is dominated by core-level phenomena and may

be determined via calculations on the atomic scale (52). We
emphasize that, in our approach, we view a flat GB as reference
configuration, and curvature is directly represented by a dis-
tribution of step/disconnection (pairs) along the reference GB.
While a macroscopically curved GB is appropriately viewed as
flat on the scale of MD simulations (except for nano-grained
microstructures), we still capture this macro-curvature driving
force as a jump of chemical potential (i.e., ψ as a compo-
nent of F); this is consistent with the classical Gibbs–Thomson
effect, where GB curvature induces a pressure driving force on
a GB—driving force and chemical-potential jump are simply two
equivalent approaches for describing the thermodynamics of GB
curvature-induced GB migration.

Since the disconnection formation barrier (Eq. 3) depends on
both b and h , disconnections of different modes have differ-
ent formation rates. We implicitly assume that the GB velocity
is disconnection-formation-controlled (i.e., the disconnection-
formation barrier is large compared with the migration barrier)
and describe the temperature dependence of the disconnection-
formation rates based upon Boltzmann statistics (43, 44) [this
is not always a good assumption (52)]. Hence, the GB veloc-
ity is obtained by superimposing contributions from different
disconnection modes, weighted by their Boltzmann factors:

v = 2f0
∑
m

H(m)e−Q(m)/kBT sinh

(
H(m) ·FL2

2kBT

)

≈

(
f0L

2

kBT

∑
m

H(m)⊗H(m)e−Q(m)/kBT

)
F, [4]

where f0 is the attempt frequency, the superscript m denotes the
m th disconnection mode, and the expression in the second line of
Eq. 4 is an expansion to leading order in FL2/T . Therefore, the
GB mobility tensor is

M =
f0L

2

kBT

∑
m

H(m)⊗H(m)e−Q(m)/kBT . [5]
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Table 1. Activation energy Q(m) and preexponential
c(m)

ij ≡ f0L2H(m)
i H(m)

j /kB for the mth mode for the mobility
component Mij , obtained by fitting Eq. 5 to the data in Fig. 2

M11 M12 M13 M22 M23 M33

ln(c(1)
ij /c0) 7.5 6.2 31 4.7 15 25

Q(1) (eV) ∼ 0 ∼ 0 2.8 ∼ 0 1.2 2.1
ln(c(2)

ij /c0) 8.8 8.3 — 5.9 — —
Q(2) (eV) 0.2 0.2 — 0.2 — —

The fit was performed assuming a single-mode expression for Mi3 (i =
1, 2, 3) and a two-mode expression for Mij (i, j = 1, 2). The preexponential
normalization is c0 = 1 K m s−1 MPa−1. The symbol — in the last two rows
indicate that a single-mode model was sufficient (no two-mode fitting was
performed).

Eq. 5 guarantees that M = MT ; the determinant |M|> 0; the
diagonal components M11, M22, and M33 are each positive;
and, generally, Mij 6= 0. We also note that because of the
temperature-dependent prefactor and the summation over
modes, Mij is, in general, non-Arrhenius. If only one mode is
active, Mij will reach maximum at T =Tc≡Q(1)/kB. For T <
Tc, Mij will be nearly Arrhenius, while for T >Tc, the temper-
ature dependence of Mij is dominated by the prefactor 1/T .
This suggests that Mij may decrease with increasing temperature
for T >Tc.

Since the [111] tilt axis is a close-packed direction in our mate-
rial (FCC copper), the modes with Burgers vector b parallel to
the tilt axis (x3) tend to have much larger values of |b| and, thus,
larger Q (Eq. 3) than the modes with b perpendicular to the tilt
axis (x2). The large difference in Q between the shears in the
directions parallel and perpendicular to the tilt axis makes the
investigated temperature range (600 to 1,300 K) smaller than Tc
for the former and larger than Tc for the latter. This results in
qualitatively different temperature dependences of the mobil-
ity components M3i (i = 1, 2, 3) and Mjk (j , k = 1, 2). For M3i

(shearing in x3), T <Tc such that M3i(T ) is nearly Arrhenius,
in qualitative agreement with the MD results (Fig. 2 C, E, and
F). For Mjk (shearing in x1 or x2), T >Tc such that Mjk (T )
scales approximately as 1/T , in qualitative agreement with the
MD results (Fig. 2 A, B, and D).

The dashed lines in Fig. 2 show fits to the MD data using
a single-mode expression (i.e., the first term in Eq. 5) for Mi3

(i = 1, 2, 3) and a two-mode expression (i.e., the first two terms
in Eq. 5) for Mij (i , j = 1, 2). The parameters obtained by fit-
ting are listed in Table 1. We find that the mobility components
which involve sliding along the tilt axis—i.e., Mi3 (i = 1, 2, 3)—
are associated with large activation energies (i.e., Q(1)∼ 2 eV
in Table 1) in comparison with the activation energies of the
other mobility components. This implies that the temperature
dependence of these components is dominated by the exponen-
tial factor in Eq. 5 (i.e., Arrhenius), and these are well-fitted by
the single-mode expression (Fig. 2 C, E, and F). However, for
the other mobility components—i.e., Mij (i , j = 1, 2)—the acti-
vation energy of the first mode is negligible (i.e., Q(1)∼ 0 eV in
Table 1), such that the temperature dependence is dominated
by the 1/T prefactor in Eq. 5. For these components, a second
mode is required to capture the high-temperature behavior. The
activation energy for the second mode is, of course, larger than
that of the first mode (i.e., Q(2) >Q(1) for M11, M12, and M22

in Table 1).

Discussion
The classical kinetic equation for describing capillarity-driven
GB migration is v⊥=mψ=mγκ, where γ is the GB energy,
and κ is the mean curvature of the GB plane. This descrip-
tion naturally led to a description of the growth of individual

n-sided grains in a two-dimensional (2D) polycrystal [i.e., the von
Neumann–Mullins relation (53, 54)]: Ṙ =mgγ/R, where R is the
grain size and g =n/6− 1 is a factor accounting for grain topol-
ogy, and we approximated the rate of change of the area of a
grain as RṘ. Integration leads to one of the classic laws for grain
growth: R2−R2

0 = 2mgγt , where R0 is the initial grain size. If
we incorporate the tensor character of the mobility, what are the
consequences for grain growth?

For the case of the growth/shrinking of a grain in a 2D
polycrystal, Eq. 1 can be simplified as(

Ṙ
−τ̇R/µ

)
=

(
M11 M12

M12 M22

)(
gγ/R
τ

)
. [6]

−τ̇R/µ is the shear across the GB assuming a linear elastic con-
stitutive relation (43). The numerical results are shown in Fig. 3.
The numerical values of the terms in the mobility tensor are
those extracted from the MD simulations. As expected, 12-sided
grains grow, while four-sided grains shrink. At late times, R2 is
a linear function of t , and grain growth is parabolic. However,
at early times, R2 is not a linear function, and grain growth is
not parabolic (Fig. 3A). Fig. 3B shows that the grain growth is
accompanied by the development of internal stress; for grow-
ing grains, this slowly decays with increasing grain size, while
for shrinking grains, it diverges as the grain size tends to zero.
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Fig. 3. Numerical results for square of the mean grain size R2 vs. time t (A)
and the shear stress τ vs. time t (B) at 1,000 K (blue), 1,100 K (green), and
1,200 K (red). The solid and dotted lines are for the case of n = 12 and 4,
respectively (n is the number of edges of a grain in a 2D microstructure). A
and B, Insets show the time evolutions for much longer times.
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If GB migration and shear are not coupled—i.e., M12 = 0—then
R2−R2

0 = 2M11gγt , and, obviously, no stress develops; this is
classical grain growth.

Eq. 6 shows that as R→∞, R2−R2
0 = 2m̃gγt , where the

effective mobility m̃ = |M|/M22 =M11−M 2
12/M22. Since M is

positive definite, m̃ is necessarily positive. Also, since m̃ <M11,
we see that the development of GB migration-induced internal
stresses always inhibit grain growth/shrinkage; the apparent GB
mobility measured in polycrystals will be smaller than that mea-
sured in bicrystals. We also note that m̃ does not necessarily
increase with increasing temperature (so-called “thermal” GB
migration in refs. 17 and 20). While in the large set of GBs
examined by MD (17, 20), thermal GB behavior was more com-
mon than antithermal behavior, we note that both possibilities
exist here, depending on the relative magnitudes of dM11/dT
and d(M 2

12/M22)/dT . While the relationship of m̃ vs. T tends
to be increasingly thermal with increasing T (shear coupling
is less effective at higher T ), there have been experimental
observations of antithermal behavior in grain growth at low
temperature (55).

While this analysis focused on 2D grain growth (the topolog-
ical nature of the von Neumann–Mullins result makes this case
simple), extensions to higher dimension are straightforward (56)
(SI Appendix).

Conclusion
Since GB migration and GB sliding are, in general, coupled,
we have extended the notion of the GB velocity-driving force

relation applied throughout the field to account for both this
coupling and the interrelation between the different types of GB
motion (migration and sliding). The natural extension is from a
scalar velocity-mobility-driving-force relation to one in which the
velocity and forces may be thought of as vectors and the mobility
as a second rank tensor. The kinetic equation suggests the defi-
nition of a GB mobility tensor, M. The diagonal components of
M correspond to the conventional GB mobility and GB sliding
coefficient (or the inverse of a GB viscosity). The off-diagonal
components of M reflect coupling between GB migration and
GB sliding. We determined the full GB mobility tensor and
its temperature dependence for a Σ7 [111] (123̄) symmetric-tilt
GB in copper via MD simulations. Surprisingly, we found that
some components of M increase with temperature, while others
decrease. We were able to explain this temperature dependence
as well as several general properties of the mobility tensor based
upon analysis of a disconnection model. These results were then
applied to analyze the effect of shear coupling on grain growth.
In particular, we showed that the effective GB migration mobility
will be smaller than that expected based upon bicrystal exper-
iments as a result of stress generation during grain growth in
polycrystalline systems.

ACKNOWLEDGMENTS. This research was sponsored by Army Research Office
Grant W911NF-19-1-0263. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research Office
or the US government. The US government is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright
notation herein.

1. D. Turnbull, Theory of grain boundary migration rates. JOM 3, 661–665 (1951).
2. C. H. Li, E. H. Edwards, J. Washburn, E. R. Parker, Stress-induced movement of crystal

boundaries. Acta Metall. 1, 223–229 (1953).
3. J. W. Rutter, K. T. Aust, Migration of 〈100〉 tilt grain boundaries in high purity lead.

Acta Metall. 13, 181–186 (1965).
4. H. Hu, B. B. Rath, “Influence of solutes on the mobility of tilt boundaries” in The

Nature and Behavior of Grain Boundaries, H. Hu, Ed. (Springer, New York, NY, 1972),
pp. 405–435.

5. W. Grünwald, F. Haessner, Thermisch aktivierte korngrenzenwanderung in gewalzten
Goldeinkristallen unter dem einfluss gelöster fremdatome. Acta Metall. 18, 217–224
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