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A B S T R A C T

Immunohistochemistry (IHC) is used to guide treatment decisions in multiple cancer types. For
treatment with checkpoint inhibitors, programmed death ligand 1 (PD-L1) IHC is used as a
companion diagnostic. However, the scoring of PD-L1 is complicated by its expression in cancer
and immune cells. Separation of cancer and noncancer regions is needed to calculate tumor
proportion scores (TPS) of PD-L1, which is based on the percentage of PD-L1-positive cancer
cells. Evaluation of PD-L1 expression requires highly experienced pathologists and is often
challenging and time-consuming. Here, we used a multi-institutional cohort of 77 lung cancer
cases stained centrally with the PD-L1 22C3 clone. We developed a 4-step pipeline for measuring
TPS that includes the coregistration of hematoxylin and eosin, PD-L1, and negative control (NC)
digital slides for exclusion of necrosis, segmentation of cancer regions, and quantification of PD-
L1þ cells. As cancer segmentation is a challenging step for TPS generation, we trained DeepLab
V3 in the Visiopharm software package to outline cancer regions in PD-L1 and NC images and
evaluated the model performance by mean intersection over union (mIoU) against manual
outlines. Only 14 cases were required to accomplish a mIoU of 0.82 for cancer segmentation in
hematoxylin-stained NC cases. For PD-L1-stained slides, a model trained on PD-L1 tiles
augmented by registered NC tiles achieved a mIoU of 0.79. In segmented cancer regions from
whole slide images, the digital TPS achieved an accuracy of 75% against the manual TPS scores
from the pathology report. Major reasons for algorithmic inaccuracies include the inclusion of
immune cells in cancer outlines and poor nuclear segmentation of cancer cells. Our transparent
and stepwise approach and performance metrics can be applied to any IHC assay to provide
pathologists with important insights on when to apply and how to evaluate commercial auto-
mated IHC scoring systems.

© 2024 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights are
reserved, including those for text and data mining, AI training, and similar technologies.
Introduction

Immunohistochemistry (IHC) is used to improve diagnostic
accuracy and resolve specific prognostic and treatment-related
questions.1 Glass slides are stained with antibodies that bind to
proteins in all cell types on the slide. In cancer tissues, the IHC-
ogy. Published by Elsevier Inc. All rights are reserved, including those
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Figure 1.
(A and B) Project workflow. (A) Schematic of model training and performance testing
for cancer segmentation. Programmed death ligand 1 (PD-L1) training and testing
cases. PD-L1 and corresponding negative control patches from cases in cohorts 1 (n ¼
14) and 2 (n ¼ 39) were used for training of cancer segmentation algorithms in slides
stained by PD-L1 immunohistochemistry. Cohort 3 (n ¼ 24) was reserved for external
testing. (B) Image analysis pipeline. (i) Image coregistration. hematoxylin and eosin,
negative control, and PD-L1 whole slide images were coregistered for each case. (ii)
Elimination of areas with necrosis. A U-Net model was trained on PD-L1 immuno-
histochemistry cases to outline necrotic cancer regions. (iii) Cancer segmentation.
DeepLab V3 was trained to identify cancer regions. (iv) Percentage of PD-L1-positive
cancer cells (tumor proportion scores). Viable cells in cancer regions are classified
into PD-L1-positive and -negative to calculate the tumor proportion score, that is, the
percentage of PD-L1-positive, viable cancer cells.
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targeted proteins are often expressed in benign cells in the tumor
microenvironment in addition to cancer cells. These benign cells
can be mistakenly included in the assessment of cancer regions
and increase false-positive rates in IHC staining results. To miti-
gate this problem, pathologists must visually separate cancer and
noncancer cells when reporting IHC results. However, when
software quantitates IHC, it is not always apparent whether and
how models distinguish IHC signals in cancer versus noncancer
cells. This issue is particularly serious in the context of pro-
grammed death ligand 1 (PD-L1) staining.2

The cell surface protein, PD-L1, is an inhibitor of T-cell cyto-
toxicity and a target for immunotherapy.3 Expression of PD-L1 is
usurped by cancer cells to evade the immune response.4 Under the
control of immunoregulatory cytokines, PD-L1 is mostly expressed
in cancer cells and macrophages. Multiple Food and Drug
Administrationeapproved or College of American Pathologists/
Clinical Laboratory Improvement Amendments (CAP/CLIA) (labo-
ratory developed test [LDT])-approved tissue staining assays
employ 22C3, 28-8, SP142, SP265, and 73-10 antibodies to visu-
alize PD-L1 expression as a companion diagnostic for treatment
with checkpoint inhibitors (pembrolizumab, nivolumab, atezoli-
zumab, duravalumab, and avelumab). Treatment decisions are
made in part on the tumor proportion score (TPSdpercentage of
positive and viable tumor cells) or combined positive score
(CPSdratio of positive, viable cancer and immune cells to viable
cancer cells).2

The PD-L1 IHC staining can be difficult to quantify through a
microscope. Pathologists benefit from additional training to
improve the accuracy and reproducibility of manual PD-L1
scoring, and challenging cases require a consensus of multiple
pathologists.5 To assist with the evaluation of PD-L1 expression,
multiple teams working in the field of pathology image analysis
developed algorithms for PD-L1 quantification.6-9 Machine
learning models, developed with digital slides from different
cancer types and antibody assays, work well when comparing
the concordance of computer-generated TPS with manual TPS
(mTPS). However, the performance of the models to distinguish
PD-L1 expression in cancer and immune cells at a cell level is
lacking. To gain the confidence of pathologists in the ability of
models to output accurate TPS or CPS scores, cancer cells and
immune cells need to be separated and individually analyzed.
This cancer segmentation step is challenging because it needs
to be performed in the absence of the Eosin stain in the slide.
Cancer cells may lack PD-L1 expression, leaving the hematox-
ylin channel as the only source of data for the detection of
cancer cells.

Pathologists follow a consistent and systematic workflow for
generating PD-L1 expression scores. They first identify the tu-
mor regions and then the areas of necrosis and the extent of
immune cell infiltration. To determine the TPS in a slide, pa-
thologists evaluate the percentage of tumor cells with PD-L1
membrane staining. We propose a pipeline for a machine
learning model that generates TPS for PD-L1-stained digital
slides and that is inspired by the workflow used by patholo-
gists. To facilitate clinical adoption and interoperability with
slide management systems, we utilized the Visiopharm soft-
ware package for the configuration of a 4-step pipeline. Due to
the importance of cancer segmentation accuracy in the overall
performance of PD-L1 quantification, we experimentally
examined multiple variables that affect the performance of the
cancer segmentation step. Except for the last step, which is a
rule-based code calibrated on PD-L1 cell surface expression,
our stepwise approach can be generalized broadly to evaluate
and optimize automated solutions for IHC quantification.
2

Methods

Cases, Programmed Death Ligand 1 Staining, Slide Scanning, and
Manual Annotations

A total of 77 lung cancer cases were included in this study
(Fig. 1A). All cases were stained in the CLIA/CAP laboratory using
the Food and Drug Administrationeapproved assay for staining
with the anti-PD-L1 antibody 22C3.10 In addition, an hematoxylin
and eosin (H&E)-stained and a negative antibody control (NC)
slide were available from the same tissue block as the PD-L1 slide.
Cases with tissue blocks from surgical resections or from large
core biopsies with a diagnosis of nonesmall cell carcinoma of the
lung, including both adenocarcinoma and squamous carcinomas,
were enrolled for analysis. Slides from endobronchial biopsies and
fine needle aspiration were excluded. Slides were scanned on the
Aperio AT2 slide scanner (Leica Biosystems, Inc). This study was
conducted under the oversight of IRB 00091019.

Manual annotations for training, validation, and testing were
generated in all digital PD-L1 and NC slides, whereas the H&E slide
was used as a reference for the identification of cancer regions.
Algorithms were trained using PD-L1 or NC slides separately or
together. Cancer segmentation results were evaluated by
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calculating the intersection over union (IoU) of computer-
generated versus manual cancer outlines. Digital TPS (dTPS) was
compared with the mTPS score using the percent accuracy as a
metric. The mTPS was abstracted from the pathology report used
as the reference standard.

Cases are divided into 3 separate cohorts for model
training, internal testing, and external testing (Fig. 1A). Cohort
1 consists of 14 cases (training set), cohort 2 of 39 cases
(training set or internal test set), and cohort 3 of 24 cases
(held-out test set). Two pathologists (B.S.K. and L.J.P.) anno-
tated the images. In cohort 1, the entire cancer region was
annotated in the NC whole slide image (WSI), whereas in the
PD-L1 slide, 2 patches were annotated in the cancer region. In
cohort 2, we annotated 2 patches after registration of NC and
PD-L1 for training and 1 patch for testing (Supplementary
Fig. S1). In cohort 3, we annotated 1 patch in the registered
PD-L1 and NC for testing. All patches possess the same size
and are obtained after coregistration of NC and PD-L1 WSIs,
providing samples of the same tumor region from 2 parallel
slides of the tissue block.
Visiopharm Software Application

All scanned WSIs are analyzed using commercial Visiopharm
software, which contains several pull-down options for the
application of deep convolutional neural networks (CNN) (Fig. 1B).
The analysis pipeline to calculate PD-L1 TPSs consists of 4modules
within Visiopharm. These include image coregistration (rule-
based), necrosis removal (CNN), cancer segmentation (CNN), and
PD-L1 scoring (rule-based).
Image Registration

For registration, we uploaded WSIs of PD-L1 IHC, NC, and H&E
from the same case to the Visiopharm coregistration module
called “Tissuealign” and digitally aligned 2 slides using an affine
registration algorithm (Tissuealign, Visiopharm A/S).
Necrosis Segmentation and Elimination of Necrotic Regions From
the Images

We trained a U-Netmodel to segment necrotic tissue regions in
PD-L1 WSI. Necrotic areas were identified in the H&E images, and
the outlines of necrosis were used to mark necrotic regions in the
registered PD-L1 IHC-WSI. Tiles of 256 � 256 pixels at 10� were
extracted within the annotated polygons from the 14 slides in
cohort 1 and used to train the U-Net model. The performance of
the model was visually evaluated.
Cancer Segmentation

We trained DeepLabV3 provided by Visiopharm for tumor
segmentation using tiles of 256� 256 pixels at 10�magnification.
The input into the model consisted of NC, PD-L1, or NC plus PD-L1
tiles. The cancer segmentation algorithms were trained using a
learning rate of 1.0e to 0.5 and applying a median filter for
smoothing the image features in the first layer. We used the IoU
with regard to the manual annotations to determine the perfor-
mance of the model.
3

IoU¼Area of overlap
Area of Union

An IoU ¼ 1 indicates a perfect overlap of manual and algo-
rithmic cancer outlines, whereas an IoU ¼ 0 indicates that there is
no overlap. The closer the IoU is to 1, the better the performance of
the model. To determine the heterogeneity of TPS in a subset of 14
cases in cohort 1, the cancer region was divided into 5 regions of
similar size, and separate TPS scores were obtained from each
subregion.
Programmed Death Ligand 1 Quantification and Tumor Proportion
Scores

The first step in the assessment of PD-L1 expression in
cancer cells involved a rule-based nuclear segmentation
within segmented cancer regions. The nuclear segmentation
uses the hematoxylin channel and relies on image-processing
methods such as blob detection, median filtering, thresh-
olding, and spatial domain linear filtering. After removing
the background noise with filters that encompass parameters
of cell morphology, nuclear outlines are dilated with a 3 � 3
kernel and eroded until a virtual cell outline is generated.
The cell outlines are overlaid with a PD-L1 mask in the
deconvoluted diaminobenzidine channel, and positive PD-L1
pixels are determined for each cell. A threshold is set visu-
ally for the number of PD-L1-positive pixels inside the
dilated cell outline to call a cell PD-L1-positive. PD-L1-
positive cells are marked by red nuclei, and PD-L1-negative
cells are marked by blue nuclei in Supplementary
Figure S2. The threshold numbers vary between labora-
tories performing PD-L1 staining. Therefore, a technical
expert from the Visiopharm support team helped determine
the optimized thresholds for quantifying positive PD-L1 cells
for the cases in this study. TPS is calculated by (PD-L1þ
Tumor Cells)/(Total Viable Tumor cells) *100 in the WSI or
for specific regions of interest.
Statistical Analysis

IoU was used as the performance metric to evaluate each
cancer segmentation algorithm. Violin plots were used to visualize
differences in IoU between algorithms.Within each violin plot, the
mean value is indicated by a white line. We also employed box
plots, in which the median value is represented by a white line,
and the edges of the box encompass the interquartile range (25th-
75th percentiles) of the data points. Heatmaps were used to
illustrate the concordance of dTPS and mTPS. The accuracy of the
dTPS was calculated based on the mTPS cutoffs of <1%, 1% to 50%,
and >50%. We used OriginLab Pro 2022b to generate all
visualizations.

To determine the significance of the difference in IoUs
between the 2 models, we calculated the mean of the paired
differences in IoUs and used a permutation test. Specifically,
in each case, we created a permutation by randomizing the
membership within each pair and calculated the mean of the
paired differences using the permuted data. We generated
1,000 permutations (D1, …, D1000) to approximate the null
distribution of the mean of the paired difference of IoUs. We
also calculated the P values based on the 2-tailed permuta-
tion test using the following formula:



Figure 2.
Comparison of digital tumor proportion scores (dTPS) and manual tumor proportion scores (mTPS) tumor proportion scores. (A) Comparison of dTPS with cancer
segmentation (dTPS/w cs) and without (dTPS/wo cs) cancer segmentation. TPS scores are obtained from glass slides (mTPS) and whole slide images (WSIs) (dTPS).
(B) Case-wise comparison of mTPS to dTPS generated with cancer segmentation by models trained on programmed death ligand 1 (PD-L1) or on PD-L1 plus
negative control (NC) patches from 53 cases for cancer segmentation. TPS scores are divided into 3 clinically relevant classes (<1%, 1%-49%, and �50%). The entire
tumor region segmented by the model is used for calculation of TPS. All the cases (n ¼ 77) are included for TPS measurements after cancer segmentation. (C)
Confusion matrix showing the concordance between mTPS and dTPS scores. The PDL1 þ NC cancer segmentation model was applied to generate the cancer
outlines. (D) Scatterplot of mTPS and dTPS (n ¼ 77). The Spearman correlation coefficient ¼ 0.84 between dTPS and mTPS. (E and F) Representative cases with a
discordance between dTPS and mTPS. Blue lines represent tumor outlines that are generated by the PD-L1 þ NC model. Green outlines indicate the background
pixels inside the cancer region. Solid red nuclei illustrate PD-L1-positive cancer cells, and blue nuclei mark PD-L1-negative cancer cells. (G) Effect of tumor
heterogeneity on TPS score. Tumor regions in each case were divided into 5 regions of interest (ROIs) of approximately the same area. dTPS scores were obtained
from each ROI. dTPS was also obtained from the WSI. The mTPS is from the pathology report. (H) Relationship between discrepancy between mTPS and dTPS in
the WSI and tumor heterogeneity as quantified by the coefficient of variation of dTPS measurements across the 5 ROIs from each case (n ¼ 14).
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S1000
i¼1 IðjD0j> jDijÞ

1000 , using 0.05 as a threshold for statistical
significance.

The accuracy of the dTPS score using the mTPS score as the
truth was calculated as the ratio of the number of correctly
classified cases to the total of cases under evaluation. Further-
more, we used the 2-way mixed effects intraclass correlation
coefficient (ICC) to assess reliability of the dTPS. Reliability re-
fers to the extent to which the digital scores replicate the mTPS
scores.11 We opted for the 2-way mixed effects models as they
account for correlation within a single scored case, considering
only the “raters”dthe digital tool and manual calldas the
raters of interest. We provide the estimate and 95% confidence
interval (CI) for the ICC.
4

Results
We determine whether cancer segmentation improves the
accuracy of PD-L1 TPS scores by comparing TPS scores with and
without cancer segmentation, using the mTPS score from the
pathology report as the gold standard. After grouping cases into 3
groups that are defined by TPS < 1%, 1% � TPS < 50%, and TPS >
50%, we observed greater accuracy (75% vs 57%) when using the
cancer segmentation module in the pipeline (Fig. 2A). As a next
step, we compared the training of the cancer segmentation algo-
rithmwith patches from PD-L1 stained digital slides versus PD-L1
plus NC patches for data augmentation. The TPS results weremore
accurate (75% vs 68%) using the cancer segmentation algorithm



Figure 3.
Performance testing for cancer segmentation in programmed death ligand 1 (PD-L1) stained digital slides. (A and B) Performance evaluation in internal test patches (A) and
external test cases (B). Four models, depicted on the x-axis, were tested on held-out patches, not used for training, from cohorts 1 and 2. Models were either trained on negative
control (NC) patches, PD-L1 patches, or on a combination of NC and PD-L1 patches. NC and PD-L1 patches from each case are coregistered and represent the same tumor area.
Labels above the violins indicate whether NC or PD-L1 patches were used for testing. NC cases are used as the baseline (black violin). (CeE) Tumor outlines in PD-L1-stained
patches. (C) Representative case with high agreement (intersection over union [IoU] ¼ 0.99) between manual (red line) and predicted (blue mask) cancer region. (D) Repre-
sentative case with medium agreement (IoU ¼ 0.82) between manual and predicted cancer region. (E) Representative case with low agreement (IoU ¼ 0.24) between manual and
predicted cancer regions.
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trained on NC plus PD-L1 patches compared with the segmenta-
tion algorithm trained only on PD-L1 patches (Fig. 2B).

After calculating the percentage of PD-L1-positive cells in
segmented cancer regions, we determined the accuracy of dTPS
scores using mTPS scores as the gold standard. As shown in the
confusionmatrix in Figure 2C, therewere accuracies of 97% and 83%
in the TPS >1% to 49% and TPS� 50% groups. However, 64% of cases
with mTPS < 1% were scored as > 1% by the dTPS pipeline. The
overall Spearman rank correlation for 3 categorial groups between
WSI dTPS andmTPS from the pathology report is 0.84 (95% CI: 0.74-
0.90) (Fig. 2D). In addition, a 2-way mixed effects ICC was used to
measure agreement between the manual and digital scores,
showing the agreement at 0.914 (95% CI: 0.867-0.944).

When examining the reasons for discrepancies between dTPS
and mTPS, we identified the following 2 major problems: (1)
incomplete nuclear identification and generation of cell bound-
aries (Fig. 2E) and (2) inclusion of immune cells in cancer outlines
(Fig. 2F). Case B18 is an example of poor nuclear segmentation
because DNA, in this case, was damaged during tissue processing
leading to weak hematoxylin staining. Despite optimized settings
of the rule-based nuclear segmentation code in Visiopharm to
improve the nuclear segmentation results (see methods), the B18
case revealed poor nuclear detection results. Another example,
case B40, illustrates the problem generated by inclusion of PD-L1-
positive immune cells in the cancer region, increasing the dTPS
compared with mTPS score.

PD-L1 staining can be affected by tumor heterogeneity and
heterogeneity of immune cell infiltration. To determine whether
5

tumor heterogeneity generates a bias in manual PD-L1 scoring by
pathologists, we compared the manual score of the WSI with 5
tumor regions of approximately equal size that were analyzed by
the digital pipeline. The results are shown in Figure 2G. Except for
cases 10 and 12, there is good agreement between manual and
digital PD-L1 assessment, suggesting that tumor heterogeneity of
PD-L1 expression does not introduce a bias in manual scoring. For a
quantitative evaluation of tumor heterogeneity, we calculated the
coefficient of variation (%CV) by dividing the standard deviation of
dTPS from the 5 regions of interest by the mean TPS score. The %CV
is plotted against the absolute difference between mTPS and dTPS
(Fig. 2H). Plotting the %CV against the difference in dTPS and mTPS
scores demonstrates an inverse correlation between the tumor
heterogeneity, ie, %CV, and the difference between dTPS and mTPS
scores. The negative slope indicates that the discrepancy between
digital and manual PD-L1 scores declines as PD-L1 staining het-
erogeneity increases. From this result, we conclude that the het-
erogeneity of PD-L1 expression in cancer does not introduce a bias
in manual PD-L1 TPS scoring in the cases from cohort 1.

Next, we further explored the cancer segmentation task
through a series of ablation studies. We questioned how well the
model trained on NC hematoxylin-stained digital slides general-
izes to patches from PD-L1-stained slides (Supplementary Fig. S3).
We employ the IoU between computer-generated and manual
outlines as the performance metric. Training on NC patches and
testing on NC patches is used as a reference (black violins in
Fig. 3A, B) with an average IoU of 0.84 (internal test set in Fig. 3A)
and 0.82 (external test set in Fig. 3B). When we applied the NC



Figure 4.
Cancer segmentation in the hematoxylin channel. (A) Effect of training case numbers on algorithm performance. A heatmap shows the intersection over union (IoU) for each case
from cohort 2 in a separate column (n ¼ 39). Cases used for algorithm training are indicated on the y-axis. (B) Comparison of IoU in testing data set using algorithms trained on 14
and 53 cases on external cases in cohort 3. (C and D) Effect of cancer area used for training on model performance. (C) Effect of cancer area size on IoU. Nonlinear fitting of
smoothed IoU to the cancer area that the algorithm is trained on. (D) Model performance in individual cases. Case-wise differences in performance between algorithms trained
on the entire cancer region from each case in cohort 1 versus the cancer region after size adjustment. IoUs were calculated using manual outlines as the reference.
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model to internal or external PD-L1 test patches that represent the
same tumor regions as in NC patches, the average IoU decreased
significantly (red violins). Therefore, we proceeded to train a
cancer segmentation model directly on the unmixed hematoxylin
channel of PD-L1 patches. Models trained on the hematoxylin
image from PD-L1 patches (blue violins) possess a greater average
IoU compared with models trained on NC patches. The best per-
formance (mIoU ¼ 0.79 on external data) is obtained when
models are trained on coregistered NC and PD-L1 patches,
demonstrating that augmentation of data through inclusion of NC
patches improves cancer segmentation accuracy in PD-L1 WSIs.

When inspecting whymodels fail (Fig. 3C-E), we observe both
false-positive stromal segmentation and lack of tumor segmen-
tation (Fig. 3D). In addition, we find that the models struggle
with immune cell regions, despite their training on 5 cases of NC
lymph nodes (negative for carcinoma). In summary, the most
accurate cancer segmentation in PD-L1 patches is obtained
through augmenting PD-L1 patches with patches from NC WSI
from the same cases, which are generated during the clinical
tissue staining process.

Finally, we systematically determined the amount of data that is
required to optimize the cancer segmentation taskwhen only using
the hematoxylin channel. In the first experiment, Deeplab V3 was
trained using only 1 case, and the training was repeated 5 times
with a different case from cohort 1. The trained models (1AdE-NC)
were applied to the same 39 manually annotated patches from
cohort 2 (not used for training). The results of IoUs for each case are
shown as a heatmap in Figure 4A and reveal significant differences
(analysis of variance, P <.001) in model performance depending on
which case was used for training. Next, we used 3 different batches
of 5 cases from cohort 1 for training and observed consistent mIoUs
6

on the 39 cases from cohort 2 (Supplementary Fig. S4). Then, we
compared models trained on 5, 10, or 14 cases from cohort 1. The
IoU improved with increasing numbers of cases used for training
(Fig. 4A). Finally, we compared the model trained on 14 cases from
cohort 1 with a model trained on 53 cases from cohorts 1 and 2.
When tested on the 24 held-out cases from cohort 3 (Fig. 4B), no
significant difference was observed in the performance of the 2
models (P ¼.29). However, the model trained on 53 cases general-
ized better as observed by the decrease in the variance of IoUs
among the 24 cases.

Next, we addressed whether the amount of data from each case
affected the performance of the algorithm.Whenwe compared the
cancer areas in the 14 cases from cohort 1, 2 cases had larger cancer
areas (Supplementary Fig. 5). When we reduced the cancer area in
the 2 cases and repeated the training of the 14-negative control
adjusted area model. The mIoU of this model significantly
decreased compared with the original 14-NC model (examples of
cancer tissue outline in Supplementary Fig. S6). This alerted us to
the possibility that the cancer area per case and not just the number
of cases mattered for training. To evaluate the role of the cancer
regions in a more systematic fashion, we plotted the smoothened
IoU against the cancer region used for training (Fig. 4C). The
resulting curve reached a plateau (80mm2), which corresponded to
a cancer area less than the sum of the cancer areas of the 14 cases in
cohort 1. Finally, we determined, using cases from cohort 2,
whether the decrease in performance between the 14-NC and 14-
negative control adjusted area models is case-specific or occurs
equally across all the cases. The greatest reduction in IoU amounted
to a difference in the IoU of 0.78. However, 6 cases experienced a
small increased IoU with the 14-negative control adjusted area
compared with the 14-NC model (Fig. 4D).
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Discussion

In our study, we illustrate a strong agreement between
manual and digital TPS, yet highlight the necessity for
improvement, particularly at the 1% cutoff of TPS, crucial for
determining the suitability of treatment with immune check-
point inhibition. Furthermore, we demonstrate that dTPS is more
accurate if cancer regions are outlined prior to measuring TPS.
Finally, we provide preliminary evidence that heterogeneity of
PD-L1 expression in tumor and immune cell regions does not
introduce a significant bias in mTPS in our practice of fellowship-
trained, subspecialized molecular pathologists. The augment
experiments demonstrate that the performance of outlining
cancer in the hematoxylin channel depends on the number of
cases as well as the area of cancer used for training. The results
from an unbiased consecutive number of lung cancer cases
demonstrate that the training of the DeepLab V3 model can be
accomplished with as few as 15 cases and does not improve
significantly when more cases are used. The machine-assisted
scoring of IHC increases the accuracy and reproducibility of
manual scoring and reduces the burden on pathologists. How-
ever, algorithmic scoring systems that are trained end-to-end to
output percentages of positive cells, while providing good per-
formance, are plagued by a lack of transparency. Our study
provides the following 3 novel insights that might increase
transparency and help with clinical adoption of IHC scoring al-
gorithms: (1) we explicitly demonstrate the benefits of cancer
segmentation to increase the accuracy of measuring IHC-positive
cancer cells inWSIs; (2) our results show that the performance of
the cancer segmentation algorithm can be improved through
augmentation of tiles from the IHC-WSI by NC tiles; and (3) we
also demonstrate that a surprisingly small number of cases are
needed to adapt a pretrained model to the unique characteristics
of cases of at our local site.

Although not a perfect biomarker, PD-L1 serves as the only
tissue marker, to date, to guide treatment decisions with immune
checkpoint inhibitors (ICIs). In lung cancer, 3 treatment groups
exist. Cases with less than 1% of PD-L1-positive cancer cells are in
general not treated with ICIs. These cases are easy to identify
because they have no or weakly detectable PD-L1 staining. Artifi-
cial intelligence models, in general, are more sensitive than pa-
thologists to identify PD-L1-positive cells. Therefore, using
retrospective clinical trial cases, Baxi et al6 proposed a 5% cutoff for
digital TPS to distinguish PD-L1-negative and -positive cases
instead of the 1% mTPS cutoff. On the other side of the spectrum,
cases with �50% PD-L1-positive cancer cells who may receive
single-agent ICI treatment frequently express PD-L1 in cancer and
immune cells. These cases are easy to identify because they exhibit
many PD-L1-positive cells with dark membrane staining in all
viable tumor regions, and an exact separation between cancer and
noncancer cells is not as critical. The main group benefiting from
computer-assisted scoring is the group with 1% to 49% PD-L1-
positive cancer cells. Lung cancer patients in this group are
treated with ICI plus chemotherapy. This intermediate group
possesses the greatest heterogeneity in cancer and immune cell
staining. The separation of cancer and immune cells can be learned
by an algorithm to help pathologists with challenging cases.

Several algorithms12-16 have been published that use machine
learning or deep learning models to calculate TPS in an automated
fashion and by applying 2 scoring strategies. The first strategy
comprises the end-to-end training of models pretrained on
ImageNet.7,17 A 3-stage model was developed to output the results
of intersected cancer and nuclear segmentation masks for
counting viable cells. Further superimposing of a positive pixel
7

mask identified PD-L1-positive cells for calculations of TPS.7

Considering the difference in scale between cancer nests and
nuclei, which are both segmented by the algorithm, a dual-scale
categorization-based deep learning method was proposed,
which employed 2 separate VGG16 neural networks for high and
low magnification. This method showed a concordance of 88%
with pathologists, which was higher than the 83% concordance of
a 1-scale categorization-based method.18 The second strategy for
PD-L1 TPS generation consists of transfer learning models
together with supervised machine learning steps using hand-
crafted features. An example of using this strategy is PD-L1 scoring
with the open-source QuPath application, which provided good
concordance with pathologists.19 Built-in cell detection and clas-
sification functions in QuPath were used to score PD-L1 levels in
urothelial carcinoma and resulted in a correlation with patholo-
gists of r ¼ 0.834 (P <.001).19 The latest study using multicentric
and multi-PD-L1 assay data showed moderately low agreement at
cell level PD-L1 expression, compared with 6 pathologists. How-
ever, the agreement on TPS quantification using ICC is at 0.796
(95% CI: 0.694-0.898).20 Our pipeline in Visiopharm also employs
a framework of transfer learning combined with steps that rely on
handcrafted features. It utilizes DeepLab V3 as the basic model for
cancer segmentation. A DeepLab V3 framework was also used by
others in the regional segmentation model, R-Net, and further
combined with C-Net to develop an automated TPS algorithm.
Surprisingly, the agreement between digital and mTPS scores was
higher at low compared with high cutoff TPS values,8 possibly
related to the multiscale nature of this model segmenting both
cancer nests and nuclei. Although the studies demonstrate the
feasibility of using both de novo training and transfer learning for
digital TPS generation, they did not evaluate the role of cancer
segmentation in the overall accuracy of TPS.

Our study focuses on optimizing aworkflow that is transparent
and reduces the annotation time of pathologists. As a starting
point, we use coregistered 40� tiles from H&E, IHC, and NC im-
ages, which are obtained from 3 parallel slides of the same tissue
block. Pathologists selected 3 small cancer tiles (1028 � 1028
pixels) of the same size in the WSI of the PD-L1 digital slide. Pa-
thologists also provided manual outlines of cancer regions in PD-
L1 and NC tiles, which is the most time-consuming task in the
project. H&E slides and tiles are available to help with difficult
cancer diagnoses. The rest of the workflow does not require the
domain expertise of a pathologist and, in our case, utilizes mod-
ules in Visiopharm software. However, the same modules also
exist in other software packages, such as in the open-source
QuPath package, making the workflow broadly applicable.

CLIA/CAP issued a recommendation in 2021 for digital primary
diagnosis.21 Guidelines for IHC are included in conjunction with
the primary diagnosis, which pertains primarily to increasing the
diagnostic accuracy of IHC. CLIA/CAP mandates a sample set of at
least 60 cases for 1 tissue preparation, for example, H&E-stained
sections of fixed tissue or frozen sections that are representative of
routine practice cases. They also recommend the inclusion of
another 20 cases such as IHC or other special stains if these stains
are needed for diagnosis and not included in the 60 cases. Because
reporting of IHC results does not fall under the purview of primary
diagnosis, case numbers for algorithmic IHC LDT validation are not
specified. Extending the recommendations for primary diagnosis,
a set of 60 to 80 cases would be considered adequate for algo-
rithmic IHC LDT validation. The cases would then be divided into
training and test sets. Our data suggest that for validation of a PD-
L1 IHC quantification algorithm on cases that were stained at the
same site but originated atmultiple different hospitals, a set of ~75
cases may be sufficient for algorithmic LDT validation. Of those, 15
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cases are used for training and 60 cases for testing of the TPS al-
gorithm. However, wewould like to caution that the exact number
of cases may depend on the cancer type and the IHC stain. In
addition, the accuracy of our pipeline does not reach the 95%
concordance between manual and algorithmic results that are
required according to CLIA/CAP.

The project has several limitations. (1) We enrolled cases
based on the size of tissue that was used for PD-L1 IHC. This
excluded 60% of lung cancer cases that were diagnosed based on
endobronchial biopsy or fine needle aspiration. Thus, there exists
an urgent need to develop algorithms for other types of tissue
preparation. (2) We are using a pretrained CNN model as a
starting point for training of a cancer segmentation model.
Recently, other pretrained models that utilize Transformer
network architectures and are trained on millions of pathology
images have become available.22-24 Applying these models to the
cancer segmentation task will likely improve the algorithmic
performance. (3) In our proposed framework, parameters were
adjusted for nuclear segmentation using the rule-based model in
Visiopharm software. A later version of the Visiopharm software
includes deep learning nuclear segmentation models that pro-
vide more consistent and accurate nuclear outlines. (4) A major
limitation of the current proposed model is its confusion of tu-
mor and immune cells that are adjacent to the tumor,25 in
particular, under conditions where both cell types are PD-L1-
positive. Models therefore rely on nuclear features for cancer
cell segmentation, which are not affected by PD-L1 staining.26

The training of cell type-specific models can be improved by
antibody staining with different chromogens for immune and
cancer cells preferably in the same tissue section to avoid cor-
egistration errors.27,28

In conclusion, we propose a systematic workflow to train and
test multistep models for analysis of tissues stained by IHC. IHC
tumor markers that are expressed in both cancer and cells within
the tumor microenvironment require the separation of tumor
regions from intervening benign areas. The accuracy of tumor
segmentation affects the overall accuracy of computer-assisted
IHC scoring solutions. The separation of an IHC scoring pipeline
into multiple steps allows us to determine which steps require
optimization and increase the transparency of the algorithmic
scoring system. In addition, a systematic process to evaluate the
accuracy of the IHC scoring pipeline increases the trust of end-
user pathologists and facilitates the deployment of software for
clinical practice.
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