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ABSTRACT OF THE DISSERTATION 

 

Geographic Information Systems (GIS) for Misaligned Variables: 

Advances in Small-Area Analyses for Environmental Health Sciences 

 

by 

 

Jonah Michael Lipsitt 

Doctor of Philosophy in Environmental Health Sciences 

University of California, Los Angeles, 2022 

Professor Michael Leo B. Jerrett, Chair 

 

 

Geospatial methods are increasingly used to evaluate environmental exposures in 

epidemiologic studies. Geospatial data are often acquired from different sources and time periods 

and at different spatial resolutions. This dissertation presents methods for combining datasets 

that do not overlap in space and, or time and are essential for the accurate quantification of 

metrics used in Environmental Health Sciences. In three chapters, we demonstrated and 

compared advances in small-area geospatial methods used to reduce misalignment and 

misclassification of key variables (e.g., exposure). 

 First, we showed how small-area analyses of COVID-19 can benefit from spatial 

aggregation to account for areal misalignment. In an analysis of the association between air 

pollution levels and COVID-19 incidence and mortality, we used residential building footprints to 

combine misaligned COVID-19 outcomes recorded at the neighborhood level, population 
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demographics recorded at the census-tract level, and NO2 interpolated surfaces recorded at 30-

meter grids. We found NO2 to be positively associated with COVID-19 incidence and mortality for 

neighborhoods in Los Angeles. 

 Second, we used data acquired through the PASTA-LA study to attribute daily green 

space exposure for physically-active spaces (PASs) where activity, location, and green space 

data were misaligned. We used tracking data from accelerometers and smartphones to attribute 

green-space exposure using 21 geospatial methods. We found that exposures attributed to home-

address buffers, a commonly used method, can result in exposure misclassification. We also 

found a large range in correlation depending on tracking device used and the way physical activity 

was categorized across the 21 methods, suggesting that the method selected is key to the 

findings.    

 Finally, third, also using PASTA-LA data, we studied the association between heat 

exposure and physical activity in which temperature, green space, and participant-level covariates 

were misaligned. We showed that heat exposure was associated with increased physical activity 

and that exposure to green space modified this association in only some models. In this chapter, 

and in all chapters of this dissertation, we demonstrated how choice in geospatial approach to 

spatiotemporal misalignment can yield different study results.  
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CHAPTER 1: INTRODUCTION AND OVERVIEW OF THE ORGANIZATION OF THE 

DISSERTATION 

 

1.1 OVERVIEW 

‘Big data’ is getting bigger, but it also provides many new opportunities for application in the 

field of Public Health. Not too long ago, utilizing datasets involving millions of observations 

required teams of analysts and thousands of dollars in computing hardware and software.  Now 

datasets often include exponentially more observations and are significantly more complex. Many 

‘big data’ datasets, however, can now be processed more quickly and for less cost. Cloud 

computing has allowed better access to previously cost-restrictive hardware.  

According to a review of ‘big data’ in Public Health, investigators identified five 

measurement-type data utilized for research: (1) biological (e.g., genomics), (2) contextual (e.g., 

descriptors of spatial surroundings), (3) administratively-collected (e.g., census data), (4) rapidly-

automated (e.g., GPS data), and (5) electronically-compiled data (e.g., data from social media) 

(Mooney and Pejaver, 2018). These data types can be even more useful in combination. For 

example, (2) contextual and (4) rapidly-automated information can be combined to describe 

momentary exposure.  

 Public Health data often come from multiple sources, in multiple formats, and are reported 

for regions or time periods that do not overlap, leading to challenges when combining these 

disparate and possibly non-interoperable datasets for research purposes. Aggregation is often 

used to combine the disparate data into one spatiotemporal scale for the purposes of subsequent 

statistical analyses. Spatial aggregation of misaligned areal datasets can, however, lead to areal 

unit problems, where individuals or values are assigned to more than one location. Furthermore, 

aggregation of misaligned exposure (gridded) datasets can lead to exposure misclassification. 
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This dissertation presents three case studies in which we demonstrate advancements in 

geospatial methods to account for spatiotemporal misalignment. We utilize contemporary 

geospatial methods for context or exposure quantification from spatiotemporally misaligned ‘big 

data’ datasets. In Chapter 2, COVID-19 was studied at a small-area population level, but the data 

utilized were from misaligned geographies—neighborhoods and census-tracts. The methods in 

this chapter demonstrate the use of residential building footprints to better aggregate these areal 

datasets. In Chapter 3, we were interested in evaluating methods used to quantify green-space 

exposure for individuals engaged in physical activity.  We demonstrate multiple methods for using 

misaligned contextual (green space) data, rapidly-automated (GPS, accelerometer, and 

smartphone) data, and electronically compiled (online questionnaire) data for attributing green 

space exposure to study participants based on their location and activity level. In Chapter 4, we 

were interested in examining how choices in the geospatial methods used for exposure attribution 

(i.e., presented in Chapter 3) could impact the results from exposure assessment health studies. 

We investigated the association between heat exposure (another misaligned contextual 

measurement) and physical activity as modified by green space exposure, and demonstrated how 

these different methods choices impacted results. 

 

1.2 SUMMARY OF AIMS 

This dissertation aims to assess GIS methods for combining misaligned datasets for use 

in Environmental Health Sciences. This is achieved by demonstrating methods used in three case 

studies.  In Chapter 2, we use spatial aggregation to account for data misalignment in our 

assessment of the association between air pollution and COVID-19. In Chapter 3, we compare 

multiple GIS methods for quantifying exposure within regions of physically active behavior by 

using activity and location data. And in Chapter 4, we demonstrate how these GIS exposure 

attribution methods are used in the study of the association of daily heat exposure and physical 
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activity.  In these case studies (Chapters 2-4) the dissertation aims to demonstrates how GIS can 

be used to avoid variable and exposure misclassification. These methods build on previous 

methods by taking advantage of advancements in software, hardware and data availability. 

Specifically, we aim to add to previous investigation of activity spaces and aim to develop new 

methods for the assessment of exposure within physical activity spaces.  The work presented 

may guide future health research efforts and offers discussion on how previous research may 

have been impacted by choices in GIS method. 

 

1.3 RESEARCH SETTING 

All three research chapters (Chapters 2-4) involve research situated in Los Angeles (LA) 

County. The population size of LA County is 10.0 million, spread across 4,057 square miles or 

10,508 square kilometers (US Census Bureau, 2020).  LA County is racially, ethnically, and 

socioeconomically diverse (51% White, 48% Latino, 15% Asian, and 8.3% Black) with a median 

income of approximately $64,000 dollars. LA County is comprised of 88 incorporated cities with 

separate city councils (Los Angeles County, 2018), each city council conducts its own land use 

and urban planning.  

LA County has considerable urban development and sprawl, with 38% of land considered 

impervious surface (e.g., concrete). This includes 21,825 miles of roads comprising 514 miles of 

interstates and freeways, 4,819 miles of high-capacity arterial roads, and 16,489 miles of lower-

capacity local roads (Caltrans, 2020). LA County has 10 of the top 25 most trafficked expressways 

in the US (by annual average daily traffic) (Federal Highway Administration, 2019). In 2018, the 

American Community Survey (US Census Bureau, 2018) showed that 78% of commuters in LA 

County used single-occupancy vehicles (drove alone), 10% used carpools, 6% used public transit, 

and less than 6% used forms of active transport (such as walking and biking) (Federico et al., 

2017). 
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LA County, however, also has a growing patchwork of mobility infrastructure (e.g., bike 

lanes, pedestrian walkways, e-scooters rentals); and numerous green spaces (e.g., local and 

state parks, playgrounds, and beaches). The County of Los Angeles: Bicycle Master Plan, 

implemented in March 2012, included intentions to add over 800 miles of bicycle infrastructure by 

2032 to the already existing 144 miles (Los Angeles County, 2012). The built and natural 

environments of LA are also designed for recreation, with 34% of the total land in LA County 

considered protected, including over 1,602 local parks such as Griffith Park—the largest urban 

park in the United States (Los Angeles County, 2018). In 2019, under the direction of Mayor 

Garcetti, the City of Los Angeles began to implement its “Green New Deal” sustainable city plan 

to improve its communities, targeting (to name a few) environmental justice, healthy buildings, 

active and public transit, air and water quality improvements, and quality green-space initiatives 

(Garcetti, 2019). 

1.4 AREAL MISALIGNMENT IN AN INVESTIGATION OF COVID-19 AND TRAFFIC-

RELATED AIR POLLUTION 

As of May 21st, 2022, there have been 2.9 million confirmed cases of COVID-19 in LA 

County, the most of any county in California—with 29,000 cases confirmed per 100,000 people 

(Mayo Clinic, 2022).  Although COVID-19 has been heavily researched, continued investigation 

is needed to determine how exposure risk factors may impact the disease.  Chapter 2 includes 

an investigation of the association between NO2 exposure and COVID-19 incidence, mortality, 

and case-fatality rates.  

NO2 is a gaseous pollutant that serves as a marker for traffic-related air pollution (TRAP) 

and demonstrates considerable intra-urban variation, especially in LA County (Su et al., 2020, 

2009; Zeldovich, 2015). Current literature suggests that exposure to TRAP is associated with 

respiratory morbidities and all-cause mortality (Bai et al., 2018; Dales et al., 2008; Franklin et al., 

2015; Jerrett et al., 2008, 2005a; Sydbom et al., 2001).  Emerging literature has reported an 
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association between NO2 (Liang et al., 2020b; Xiao Wu et al., 2020a) and COVID-19 outcomes, 

but only a few studies, as of yet, have conducted small-area analyses. For the first period of 

COVID-19, area-based aggregate counts of COVID-19 outcomes were the best-available data 

for researchers (Liang et al., 2020b; Xiao Wu et al., 2020a). As COVID-19 outcome data has 

become more available, other studies have been able to use individual-level outcomes (Yu et al., 

2022). These small-area studies are important because reductions in spatiotemporal 

misalignment may reduce possibility of misclassification when the exposure being measured has 

high spatial variability (i.e., traffic-related air pollution, green space) (Apte et al., 2017; Ma et al., 

2020). 

In Chapter 2, we used annual air pollution surfaces derived from land-use regression 

products (Su et al., 2020), which have a spatial resolution of 30 meters, COVID-19 cases and 

deaths reported at the neighborhood level, and demographic data reported by census tract.  

Neighborhoods and census tracts intersect, i.e., census tracts may overlap with multiple 

neighborhoods and neighborhoods may overlap with multiple tracts. The intention was to not 

count populations more than once, so population-level covariates from both tracts and 

neighborhoods were aggregated into one unified geography. In this Chapter, we used 

neighborhoods because they included the main outcome (COVID-19 case and death counts).   

To account for misalignment among geographies, most studies have used areal densities 

to aggregate partial counts between partial geographies (Auchincloss et al., 2009; Gething et al., 

2006). This aggregation technique can be problematic for geographies with substantial variability 

in population density (e.g., census tracts with both urban centers and rural suburbs). We 

demonstrate a method using residential building footprints (Holt et al., 2013) as an intermediate 

aggregation geography for dealing with the misalignment between where people live and the 

mapped area used to describe them.  
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In Chapter 2, we studied the relationship between TRAP exposure and COVID-19 

outcomes and compared the results from three adjusted models: a zero-inflated Poisson model; 

a zero-inflated negative binomial model; and a conditional auto-regressive Poisson model (that 

accounts for spatial variability).  Discussion of spatial methods utilized, including data aggregation 

and modeling methods, may inform similar research involving spatiotemporally misaligned data. 

1.5 SPATIOTEMPORALLY MISALIGNED DATA IN A COMPARISON OF PHYSICAL 

ACTIVITY SPACE METHODS FOR GREEN SPACE EXPOSURE ATTRIBUTION 

The built and natural environments heavily impact an individual's environmental 

exposures and their level of physical activity; however, measuring or quantifying the spatial 

context of activity can be challenging (Bowler et al., 2010b; Smith et al., 2017; Twohig-Bennett 

and Jones, 2018). Spatial context is most accurately quantified using repeated measurements of 

location and activity due to the natural mobility of most individuals (Almanza et al., 2012).  The 

study of physical activity has benefited greatly from advancements in location and activity tracking 

technologies—specifically geographic positioning system (GPS) and accelerometry-based 

sensor devices (Dons et al., 2015; Ku et al., 2018; Lee and Kwan, 2018; Trifan et al., 2019).  

Wearable devices, including smartphones, smartwatches, and research-grade devices, have 

made individual tracking easier and cheaper—allowing for more complete snap shots of location 

and activity.  Over 85% of American adults now own smartphones (Perrin, 2021), which have 

gyroscopes, accelerometers, and GPS sensors—all used for measuring location and activity 

(Lane et al., 2010; Shoaib et al., 2014). Whereas previous exposure attribution methods may 

have used only the home location to describe context (Dadvand et al., 2015; Olsen et al., 2019), 

these wearable sensors allow for continuous tracking and exposure assessment.  Although many 

studies have discussed incomplete exposure limitations when using home location to assign 

context or exposure for daily activity, few studies have investigated alternative assessment 
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methods and fewer have quantified differences in context or exposure assigned (Holliday et al., 

2017). 

In Chapter 3, we utilized tracking data from the Physical Activity through Sustainable 

Transport Approaches in Los Angeles (PASTA-LA) study.  Participants were equipped with 

Actigraph accelerometers, GlobalSat GPSs, and the MOVES smartphone app to assess location 

and activity and infer context. Actigraph and GlobalSat are commonly used for research purposes 

(Dunton et al., 2014), while the MOVES app, which has been less-commonly utilized (Donaire-

Gonzalez et al., 2013; Kooiman et al., 2015), was included to investigate the efficacy of using a 

cheaper, commercially available smartphone option.  To compare these data, methods 

accounting for spatiotemporal misalignments were needed as Actigraph accelerometers measure 

momentary acceleration at an epoch of 10 seconds, GlobalSats measures location at an epoch 

of 15 seconds, and the MOVES app recorded data at a variable epoch (between 5 seconds and 

over 6 hours), depending on a proprietary battery-conserving feature. Interpolation methods, data 

cleaning, and spatial aggregation were used to create overlapping datasets in both time and 

space. When combined with data describing the natural or built environment, these wearable 

sensors can be used to describe the context for regions of activity. In this study, we were 

interested in regions of moderate-to-vigorous levels of physical activity (MVPA), defined using 

GPS and accelerometry outcomes. We constructed these physical activity spaces (PASs), using 

seven discrete polygon-drawing approaches, and used them to quantify environmental context 

for study participants.  

Green space exposure was assigned to each PAS to demonstrate methods for 

environmental context or exposure quantification. Exposure to green space has been 

demonstrated to benefit human health (Almanza et al., 2012; Bowler et al., 2010a; Wolch et al., 

2014a), but there is little scientific agreement on the best practices for attributing exposure to 

green space (McCrorie et al., 2014).  Chapter 3 presents a comprehensive assessments of 
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geospatial methods for green space exposure attribution—possibly the only assessment for green 

space exposure attribution for physically-active regions (PASs). This study demonstrates how the 

selection between multiple geospatial methods may influence numerical quantification of context 

(green space) due to differences in spatiotemporal misalignment and limitations of each method. 

We compared and contrast the various PAS methods used and compare them the commonly 

used standard for exposure attribution using home addresses. Home addresses with circular 

buffers are commonly used for exposure attribution (Amoly et al., 2015; Dadvand et al., 2015; van 

den Berg et al., 2010). Our results may impact future decisions that researchers make regarding 

geospatial method selection and may help minimize exposure misclassification by allowing 

researchers better comparisons of best practices. 

1.6 SPATIOTEMPORALLY MISALIGNED DATA METHODS IN THE ASSESSMENT OF 

PHYSICAL ACTIVITY, HEAT, AND GREEN SPACE 

Studies of heat and green space exposure have been limited by the availability of activity- 

and location-tracking data and have often used home location to attribute daily exposure (Amoly 

et al., 2015; Dadvand et al., 2015, 2012b; Dzhambov et al., 2018; Fuertes et al., 2016; 

Klompmaker et al., 2018; Laurent et al., 2013). For the average US adult, more than half of daily 

activity is spent outside the home (U.S. Department of Labor, 2021); therefore, when studying 

physical activity, repeated measures of activity and location allow for better assessment of daily 

exposure. Methods to account for spatiotemporal misalignment of the combined tracking and 

exposure datasets should be considered in order to not introduce exposure misclassification.  

Due to climate change, daily temperatures in Los Angeles are likely to increase with the 

number of days exceeding 35°C (95° Fahrenheit) to increase from six, observed in 2015, to 54, 

projected for 2100 (Sun et al., 2015).  Although increases in extreme heat are expected to reduce 

physical activity rates (Stamatakis et al., 2013) and increase excess mortality (Hayhoe et al., 

2004), moderate increases in daily temperature are potentially associated with increased physical 
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activity (Obradovich and Fowler, 2017).  Furthermore, these changes in active behavior due to 

heat exposure may be modified by access to green spaces (Chan et al., 2006; Ho et al., 2021).  

In Chapter 4, we demonstrated how geospatial methods can be applied to activity and 

location tracking data to assess the relationship of heat exposure on physical activity and the 

effect modification by green space. We utilized the data produced and cleaned in Chapter 3, and 

in addition, implemented physical activity space (PAS) polygons to extract meteorological 

surfaces derived from satellite and ground-based sensor data. These extracted raster means 

were used to describe areal means of daily maximum temperature and green space (normalized 

difference vegetation index, NDVI).  We used 1,000-meter daily temperature rasters from the 

Daymet, version 4 product, which was interpolated from ground sensors (Oak Ridge National 

Laboratory and NASA, 2022; Thornton et al., 2020); and 60-centimeter annual NDVI rasters, 

derived from the U.S. Department of Agriculture’s National Agriculture Imagery Program (USDA 

NAIP) multispectral images (USDA NAIP GeoHub, 2022).  Given the difference in spatial and 

temporal resolutions between the temperature data and the green space data, exposure 

misclassification was likely when extracting raster means by the same PASs; however, as is 

shown in Chapter 3, the potential for misclassification was substantially reduced by using PAS 

polygons to quantify exposure compared to using home location buffers.  Chapter 4 

demonstrated how choices in methodology for attributing heat and green space exposure (as well 

as choices in method to quantify minutes of MVPA) can impact models of association when 

investigating the relationship between heat exposure and daily MVPA, as modified by exposure 

to green space.  

Chapters 3 and 4, combined, offer a framework for selecting geospatial methods intended 

to assess these or similar environmental factors influencing momentary behavior.  From data 

collection to modeling, with regards to geospatial methods, certain choices are more impactful on 
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results than others, so conclusions are meant to assist future researchers in prioritizing research 

protocols. 
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CHAPTER 2: SPATIAL ANALYSIS OF COVID-19 AND TRAFFIC-RELATED AIR 

POLLUTION IN LOS ANGELES 

 

(This chapter was published in Environment International, 2021, 153:106531. It has been 

updated to include a more recent literature review.) 

2.1 INTRODUCTION 

As of December 7th, 2021, more than 265 million people worldwide have been diagnosed 

with COVID-19, resulting in more than 5.2 million deaths (World Health Organization, 2021). 

Extensive investigation has been conducted on the etiology of COVID-19, yet researchers are still 

determining how exposure risk factors may influence COVID-19 incidence and mortality. Recent 

evidence from China, the United States, and Europe suggest that exposure to air pollution may 

play a role in COVID-19 incidence and deaths (Berg et al., 2021; Brandt et al., 2020; Coker et al., 

2020; Huang et al., 2021; Li et al., 2020; Lippi et al., 2020; Travaglio et al., 2021; B. Wang et al., 

2020; X. Wu et al., 2020; Yao et al., 2021; Zhang et al., 2020; Zhou et al., 2021; Zhu et al., 2020). 

These findings are consistent with prior research suggesting that air pollution, including traffic-

related air pollution (TRAP), is associated with many respiratory morbidities (e.g., asthma, chronic 

pulmonary disease, lung cancer, and respiratory tract infections) (Bai et al., 2018; Dales et al., 

2008; Franklin et al., 2015; Jerrett et al., 2008; Sydbom et al., 2001), hospitalizations (Neupane 

et al., 2010), all-cause mortality (Beelen et al., 2008; Jerrett et al., 2005b) and increased risk of 

respiratory viral infection (Ciencewicki and Jaspers, 2007; Wang et al., 2020). Nitrogen dioxide 

(NO2), a tracer of TRAP generated from tailpipe emissions (Quiros et al., 2013; Zeldovich, 2015), 

has been found to impair the function of alveolar macrophages and epithelial cells, thereby 

increasing the risk of lung infections (Neupane et al., 2010).  
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Other factors such as age, race/ethnicity, and other sociodemographic characteristics 

appear to increase risk for COVID-19 infection, severity, and associated death (Brandt et al., 

2020). For example, compared to non-Hispanic whites, cumulative COVID-19 hospitalization 

rates for Black and Latinx populations are approximately 4.7 and 4.6 times higher in the U.S., 

respectively (Centers for Disease Control and Prevention, 2020). Black and Latinx U.S. 

populations are disproportionately exposed to SARS-CoV-2, as they are more likely to serve as 

essential workers (Martinez et al., 2020; Rogers et al., 2020) and to live in crowded conditions 

(Burr et al., 2010; Memken and Canabal, 1994). A higher prevalence of metabolic disorders (such 

as hypertension, diabetes, and obesity) in these populations likely contributes to more severe 

disease (Commodore-Mensah et al., 2018; Divens and Chatmon, 2019) and death, including 

those from COVID-19 (Du et al., 2020). In addition, minority populations are more likely to live in 

areas where there is greater air pollution (Ailshire and García, 2018; Collaco et al., 2020; Gaither 

et al., 2019).  

 Building on past research demonstrating an association between Severe Acute 

Respiratory Syndrome (SARS) and air pollution (Cui et al., 2003), Wu et al. (2020) reported 

associations between county-level COVID-19 mortality rates in 3,089 counties through June 2020 

and long-term average (from years 2000 to 2016) PM2.5 concentration across the United States. 

They reported that each 1 µg m-3 increase in PM2.5 concentration was associated with an 11% 

increase in COVID-19 mortality rate (95% CI: 6% - 17%). In another study of COVID-19 in 3,122 

U.S. counties through July 2020, researchers found an increase in interquartile range (IQR) of 

4.6 ppb of NO2 to be associated with a 16.2% (95% CI: 8.7%, 24.0%) increase in mortality rate 

and an 11.3% (95% CI: 4.9%, 18.2%) increase in case-fatality rate (Liang et al., 2020b). In both 

U.S. studies, exposure estimates were based on concentrations at the county level and, therefore, 

could not account for variation in air pollution observable on a smaller scale within cities 

(Kulhánová et al., 2018; Wu et al., 2019). In addition, the quality and comparability of COVID-19 
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health outcome information may vary considerably across U.S. counties as reporting protocols 

may differ among jurisdictions at the local, state, and national levels (Bergman et al., 2020; Bialek 

et al., 2020), which may lead to case ascertainment bias. 

LA  became one of the only metropolitan cities globally to publicly report neighborhood-

level COVID-19 cases in March 2020 and mortality in June 2020 (LACDPH, 2020). These data 

afforded the opportunity to conduct spatial modeling for a large population with a smaller 

geographical area neighborhood unit of analysis. These smaller geographic areas allow for more 

accurate pollution exposure estimates than the county-level studies above. LA has a wide range 

of air pollution exposure levels with which to investigate intra-urban relationships with COVID-19.  

Furthermore, because the Los Angeles County Department of Public Health (LACDPH) governs 

all health statistics, LA County is likely to have consistent health reporting practices. This 

diminishes the possibility of case ascertainment bias that may have been present in the national 

studies comparing among more than 3,000 counties.  

Here, we aim to analyze the relationship between air pollution and COVID-19 case 

incidence, mortality, and case-fatality rates in neighborhoods of Los Angeles County, using high-

resolution exposure models.  We focus on NO2 because this gaseous pollutant serves as a marker 

for traffic pollution, which displays substantial intra-urban variation over small areas in Los 

Angeles and elsewhere (Su et al., 2020, 2009; Zeldovich, 2015). In California, where this study is 

situated, 62% of NOx emissions come from mobile sources such as vehicle traffic (Almaraz et al., 

2018). 
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2.2 MATERIAL AND METHODS 

2.2.1 Setting 

This study is situated in Los Angeles (LA) County. In 2019, LA County had a population 

size of 10,039,107 and was diverse in its racial, ethnic, and socioeconomic composition (U.S. 

Census Bureau, 2020).  For example, 51% are White, 48% are Latinx, 15% are Asian, and 8.3% 

are Black. The median income of LA County is $64,251 USD.  LA County is spread across a large 

geographic area of 4,057 square miles or 10,508 square kilometers. The sprawling landscape 

induces high levels of travel by automobile and attendant traffic-related air pollution (TRAP) (Su 

et al., 2009). In addition, the presence of two major seaports and associated goods movement 

infrastructure creates additional emissions from diesel vehicles (Kozawa et al., 2009; Su et al., 

2020, 2016). The first case of COVID-19 in California was identified on January 26th, 2020 

(LACDPH, 2020; Los Angeles Times, 2020), and the first community-acquired case in the United 

States was confirmed in California on February 26th, 2020 (CADPH, 2020; Heinzerling et al., 

2020). 

2.2.2 Data sources 

Table 2.1 summarizes the data sources and variables used. Cumulative COVID-19 case 

and mortality counts for March 16th to February 23rd, 2021 were accessed from the Los Angeles 

County Department of Public Health (LACDPH) COVID-19 dashboard website. These outcome 

data were split into two time periods: a main study period from March 16th to September 8th, 2020; 

and a secondary period for sensitivity analyses from September 8th, 2020 to February 23rd, 2021. 

These data are reported at a neighborhood statistical area unit geography. LACDPH reports 

infectious disease data for ‘Countywide Statistical Areas (CSAs)’, used by many LA County 

agencies to report data to the County Board of Supervisors, and which include mixed areal 

classifications such as ‘city’, ‘community’, ‘neighborhood’, or ‘unincorporated area’ (Harris, 2020; 
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LACDPH, 2021). This study refers to CSAs as ‘neighborhoods’.  Based on prior research (Su et 

al., 2020), a land-use regression model was used to produce an annual pollution surface of NO2 

across California at a spatial resolution of 30 m using data from 2016. This surface was used 

previously for another recent health study in Los Angeles (Wing et al., 2020).  The land-use 

regression model had an out-of-sample cross-validation R2 of 0.76. This average annual NO2 

surface was used to define the main exposure metric by neighborhood. 

Potential covariates were identified a priori based on existing literature on risk factors for 

disease or severity of disease (including death) for COVID-19 (Myers et al., 2020), other 

pneumonic infectious diseases (Neupane et al., 2010), and previous studies on air pollution and 

COVID-19 (Liang et al., 2020; Wang et al., 2020). Demographic covariates, including age, 

race/ethnicity, median household income, and household owner occupancy, were downloaded 

from the U.S. Census Bureau’s American Community Survey (ACS) 5-year moving estimate for 

2018 (U.S. Census Bureau, 2018). Population counts at the neighborhood level, and smoking 

and obesity prevalence at the census-tract level were downloaded from the LACDPH website 

(LACDPH, 2018). Population counts from LACDPH were compared to counts from the ACS to 

assess variable aggregation methods. Hospital and testing facility locations were acquired from 

the LA County’s GeoHub website for their potential association with case ascertainment (LAC, 

2014). Residential building footprints were also downloaded from the LA County Geohub website 

to facilitate these demographic data aggregations (LAC, 2014).  

We also considered hypertension and diabetes as health outcomes potentially associated 

with COVID-19 severity (Myers et al., 2020). These health outcomes were modeled in the U.S. 

Centers for Disease Control and Prevention’s (CDC) 500 Cities Project health dataset (Centers 

for Disease Control and Prevention, 2019). These covariates were included as sensitivity 

analyses due to incomplete spatial coverage. 

Uncertainties in the testing regime raise questions about potential case-ascertainment 
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bias. As testing became more widely available, rates of testing likely changed from testing only 

suspected cases to people potentially exposed as a result of occupational or social interactions. 

This could have affected the case rate and subsequently the case-fatality rates. It is also possible 

that in the earlier stages of the pandemic, there was more undercounting of the deaths, which 

would have diminished over time as medical professionals learned how to more accurately identify 

deaths resulting from COVID-19. 

To address the potential shifts in case-ascertainment, case-fatality, and mortality rates 

that could have occurred over time, we conducted further sensitivity analyses. Specifically, we 

extended our original study period which captured approximately the first six months of the 

pandemic (March 16th to September 8th, 2020), to the subsequent six months (September 8th, 

2020 to February 23rd, 2021). Thus, we replicated the analysis for the subsequent 6-month period, 

which had nearly four times the incident cases (875,368 cases) as the first period (230,621 cases).  

In the latter period, the County changed the neighborhood definitions to exclude or combine about 

13 neighborhoods, so the count of neighborhoods was less than in the original period (348 vs. 

335). Consequently, the two data sets are not uniformly constructed, but they are quite similar. 

2.2.3 Quantification of variables 

Very few spatial variables were available at the neighborhood geographies, as most 

environmental, health, and demographic areal data are published by postal ZIP code or census 

tract. Environmental Systems Research Institute’s (ESRI) ArcGIS 10.7 (ESRI, 2020) was used to 

summarize NO2 zonal mean by each of the N=348 neighborhoods (‘neighborhood’ statistical area 

geographies, as delineated by the LACDPH) in LA County. To account for misalignment in areal 

boundaries between COVID-19 case/mortality and selected covariates, all areal covariates were 

first reaggregated to residential building footprints (acquired from LA County’s Geohub website 

(LAC, 2014)) and then reaggregated to neighborhoods by using counts per area density-based 

raster surfaces. This intermediate step was taken to minimize the effect of geographies with highly 
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variable population densities (e.g., a large neighborhood with few total residents). Hospital and 

testing facility areal densities were calculated using a 10-mile radius kernel density process – 

generating a raster surface describing the number of hospitals or facilities per sq km within 10 

miles of each raster grid cell. History of hypertension and diabetes drawn from the 500 Cities 

Project covered only 61% (212 of 348) of neighborhoods; therefore, we imputed the global mean 

for the remaining 136 neighborhoods and report these results as sensitivity analyses. 

2.2.4 Statistical Modeling 

Extracted neighborhood NO2 concentrations were modeled in relation to incident case rate 

(cases/population), mortality rate (deaths/population), and case-fatality rate (deaths/cases). NO2 

concentrations from neighborhoods were scaled to the interquartile range to aid in interpretation 

of model results (Liang et al., 2020b; Xiao Wu et al., 2020b). We used three different statistical 

models to assess sensitivity of our results to model specification: (1) zero-inflated Poisson, (2) 

zero-inflated negative binomial, and (3) Bayesian conditional autoregressive (CAR) zero-inflated 

Poisson models. To assess incident case rate, all models treated the count of COVID-19 cases 

in the neighborhoods as the dependent variable and the total population as the offset. These 

models were also run for mortality counts with the total population as the offset (mortality rate) 

and for mortality counts with the total number of COVID-19 cases as the offset (case-fatality rate). 

Zero-inflated models were selected to account for a high number of neighborhoods with zero 

counts of cases or deaths and often low total populations; without zero-inflation, these low-count 

areas could disproportionately influence the model results.  We also employed a Bayesian zero-

inflated Poisson model whose spatial random effects were assigned a CAR prior distribution to 

account for potential spatial autocorrelation between neighborhoods. This model incorporated a 

spatial adjacency matrix of first-order neighbors and employed flat priors.  

All three models were run with and without adjustment for covariates. The final model 

included the following covariates: mean percent owner occupancy, mean median income, mean 



 

25 

percent above 65 years old, mean percent nonwhite; mean smoking prevalence, mean obesity 

prevalence, and mean hospital density per square mile within a 10-mile radius. Covariates 

selected for final model were identified a priori; however, in the event of highly correlated or 

colinear covariate pairs, the covariate with the highest bivariate association with the outcome was 

included. In all models, no covariates were found to be significant predictors of the zero-inflation 

component.  We used R version 3.6.3 to run all statistical analyses (R Core Team, 2020). 

 

2.3 RESULTS 

The average area of the 348 LA County neighborhoods was 44.7 sq km (SD=171.8 sq 

km), with the largest being 1,144 sq km (Antelope Valley) in the northern exurban areas of the 

county and the smallest being 0.67 sq km (San Pasqual) in a more densely populated area near 

Pasadena, north of downtown LA. The annual mean NO2 across the study region was 11.7 ppb 

(SD=7.3 ppb; range of 1.6 ppb to 31.3 ppb). Concentrations of NO2 derived from the 2016 land-

use regression surface are depicted in Figure 2.1A. The mean aggregated NO2 across 

neighborhoods was 15.6 ppb (SD=6.0 ppb) with an interquartile range of 8.7 ppb. Between March 

16th and September 8th, 2020, the LACDPH recorded 230,621 confirmed cases of COVID-19, and 

5,653 deaths due to COVID-19 were observed. In a population of 10.0 million, this translated into 

a case rate of 2.2% (Figure 2.1B), a mortality rate of 0.054% (Figure 2.1C), and a case-fatality 

rate of 2.5% (Figure 2.1D). The period from September 8th, 2020 to February 23rd, 2021 included 

875,368 cases and 13,344 deaths and was used as sensitivity analysis. 

Between neighborhoods (N=348), the mean percent owner occupancy was 54.7% 

(SD=22.0%); mean median income was $47,483 (SD = $68,898); mean percent above 65 years 

old was 13.9% (SD=0.1%); mean percent nonwhite was 45.2% (SD= 20.1%); mean smoking 

prevalence was 12.7% (SD=2.6%); mean obesity prevalence was 23.7% (SD=7.4%); and the 
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mean hospital density per square mile within a 10-mile radius was 1.2x10-4 (SD=1.4x10-4). The 

mean hypertension and diabetes prevalence were 18.7% (SD=9.6%), and 7.4% (SD=4.2%), 

respectively. Although median income was highly associated with the outcome in the crude 

model, it was highly correlated with owner occupancy (r = 0.89); therefore, owner occupancy was 

selected for inclusion as it demonstrated a larger bivariate association with all outcomes. 

Ordinary residuals from the zero-inflated Poisson and negative binomial models 

demonstrated significant spatial autocorrelation at the global (Moran’s I p-value <0.001) and local 

(Anselin hot-spots) levels; thus, we used a Bayesian zero-inflated Poisson model with a CAR prior 

on the random effects to account for spatial dependence of the residuals per neighborhood.  

Crude and adjusted model results for (1) zero-inflated Poisson, (2) zero-inflated negative 

binomial, and (3) zero-inflated Poisson spatial models are shown in Table 2.2. In the adjusted 

zero-inflated Poisson model, we found that the incidence rate ratio (IRR) of NO2 was 1.31 (95% 

CI: 1.29, 1.33) for the case rate. That is, we found that an increase of 8.7 ppb (IQR) in mean 

annual NO2 (2016) was associated with a 31% increase in COVID-19 incident case rate. The 

adjusted zero-inflated negative binomial and spatial models demonstrated a smaller effect of 16% 

(95% CI: 2%, 32%) and 18% (Credible Interval – CrI: 10%, 32%) increase in case rate, 

respectively (Table 2.2A). Adjusted models reduced residual uncertainty compared to the crude 

model estimates for case rate. The adjusted Poisson, negative binomial, and spatial models all 

demonstrated an increase in COVID-19 mortality of 35% (95% CI: 23%, 48%), 44% (95% CI: 

11%, 86%), and 60% (CrI: 37%, 88%), respectively, across the IQR exposure increment (Table 

2.2B). Again, these adjusted models improved residual uncertainty compared to crude model 

estimates for mortality rate. Finally, adjusted Poisson and negative binomial models showed 

positive yet non-significant results for the association between NO2 and COVID-19 case-fatality; 

however, the spatial CAR model demonstrated that an IQR increase in mean annual NO2 was 

associated with a 31% (CrI: 10%, 65%) increase in case-fatality. Sensitivity analyses, which 
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included the addition of history of hypertension and diabetes in the models, had comparable 

results across all three models. In comparing the two time periods, before and after September 

8th, 2020, we found that the results were largely consistent, despite very different case numbers, 

testing regimes, and improvements in classifying deaths. While some differences exist in the size 

of the effects, overall, the conclusions remain the same. The results of this sensitivity analysis 

give some assurance that the changes in testing, case ascertainment, and mortality classification 

over time are not having a substantial effect on the key conclusion that long-term air pollution 

exposure likely increases the risk of Covid-19 infection and death. Full model results, including 

incidence risk ratios for all covariates, are described in Appendix A for the main model, Appendix 

B for sensitivity analysis including hypertension and diabetes, and Appendix C for sensitivity 

analysis utilizing the period between September 8th, 2020 and February 23rd, 2021. 

 

2.4 DISCUSSION AND CONCLUSION 

We found annual NO2 to be associated with COVID-19 incidence and mortality in Los 

Angeles County neighborhoods while adjusting for selected confounders. These findings were 

consistent across statistical model specification, although risk estimates displayed some variation 

between models. In addition, we found in the CAR an association between NO2 and COVID-19 

case-fatality; other models also showed positive but insignificant associations. Covariates in the 

models largely had the expected sign of effect. Furthermore, our sensitivity analyses, which 

included the addition of hypertension and diabetes prevalence covariates, had a minimal impact 

on the effect size or interpretation of our model estimates for NO2 and COVID-19 outcomes. Our 

sensitivity analysis involving a second, approximately 6-month time period, with slightly different 

outcome reporting (N=348 vs N=335) also demonstrated comparable results to the main model 

and study period. 
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 Our findings are consistent with two previous studies demonstrating a relationship 

between air pollution and COVID-19 nationally at the county scale in the U.S.  One study 

investigated the association between NO2 and COVID-19, and they observed remarkably similar 

findings. Specifically, Liang et al. (2020) reported an increase of 4.6 ppb (IQR across all counties) 

NO2 to be associated with a 16.2% (CI: 8.7%, 24.0%) increase in mortality rate and an 11.3% (CI: 

4.9%, 18.2%) increase in case-fatality rate (Liang et al., 2020b). When we scaled to Liang et al.’s 

IQR of NO2, our models demonstrated similar results of 17.1% (CI: 11.3%, 23.2%), 21.3% (CI: 

5.9%, 38.9%), and 30.1% (CI: 12.4%, 50.6%) increases in COVID-19 mortality rate for our zero-

inflated Poisson, negative binomial, and CAR models, respectively. In comparison to the Wu et 

al. (2020) study, which observed that a 1 µg m-3 increase in air pollutant PM2.5 was associated 

with an 11% increase in mortality rate (Wu et al., 2020), we found an 8.7 ppb increase in another 

traffic-related air pollutant, NO2, to be associated with a 35 – 60% (range of three models; Table 

2.2) increase in mortality rate. The Wu et al. study, however, did not report results scaled to the 

interquartile range of PM2.5, so we scaled their results to the IQR for PM2.5 from the Liang et al. 

study (2.6 µg m-3), which uses a similar number of U.S. counties. This resulted in a highly 

comparable 31.2% increase in mortality for a 2.6 µg m-3 increase in PM2.5.  Although Wu et al., 

Liang et al., and the current research demonstrated similar effect sizes, there may be different 

biological effects of NO2 and PM2.5. 

 The comparable effect size between our study and the Liang et al. study is notable given 

that the Liang et al. used large-area county-level geographies (3,122 U.S. counties), and we 

focused on small-area neighborhoods of LA. The two studies also utilized different data sources, 

covariates, and model types—with Liang et al. also controlling for multiple pollutants. Our 

confounders were either similarly associated with our outcomes, like those included in the Wu et 

al. and Liang et al.’s studies, or were found to be null, reinforcing the validity of our results based 

on a priori expectation. The larger effect size on mortality rate in our study compared to the other 
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two studies could be due to greater spatial variability resulting from using building-footprint 

covariate aggregation on smaller-area neighborhood geographies rather than using county-level 

data.  

To our knowledge, only a handful of studies have undertaken small-area analysis of the 

association of COVID-19 and air pollution using spatial modeling techniques (Berg et al., 2021; 

Konstantinoudis et al., 2021; Travaglio et al., 2021). This study also reported associations with 

nitrogen dioxides at a sub-regional scale. In a study of 32,844 small areas in England, researchers 

also utilized Bayesian models with adjustments for confounding and spatial autocorrelation 

(Konstantinoudis et al., 2021). The study demonstrated a 0.5% (CrI: -0.2%, 1.2%) increase in 

COVID-19 mortality risk for a 1 ug m-3 increase in long-term NO2 exposure (not scaled to our 

IQR). Although a smaller effect size, these results are comparable to those from our small-area 

spatial models. Smaller-area analyses likely reduce potential exposure measurement error and 

lead to more consistent ascertainment of cases and deaths than those using the larger county 

units—both of which likely result in more precise and reliable estimates of health effects from air 

pollution exposures. By utilizing Bayesian models with CAR priors, we also accounted for spatial 

autocorrelation or clustering between adjacent administratively defined neighborhoods. This 

addition is important as transmission for COVID-19 and other infectious diseases is likely to be 

clustered spatially due to respiratory community spread (see map of incidence in Figure 2.1). 

Our study has several limitations. Most importantly, our study is limited by population-level 

counts of COVID-19 cases and deaths. These aggregate data, made publicly available by 

LACDPH, have facilitated this research but have also introduced some uncertainties. For 

example, it is difficult to determine how testing rates or the prevalence of asymptomatic cases, 

which may show significant neighborhood-level variation, could impact our results. These 

aggregate data, made publicly available by LACDPH, have facilitated this research but have also 

introduced some uncertainties. We are unable to determine data accuracy, specifically for the 
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earlier phases of the pandemic, when data collection protocols were still being defined. The 

number of neighborhoods reported by LACDPH has fluctuated, from 348 (in September 2020) to 

335 (in February 2021) distinct areas. Our sensitivity analysis on a second time period 

(September 2020 to February 2021) including N=335 neighborhoods demonstrated similar results 

to our initial period (March 2020 to September 202), so these potential data quality issues appear 

to have minimal effect on the interpretation of our results. Ideally, with data access granted, future 

research would avoid aggregate-level data in favor of individual-level outcomes. Utilizing 

individual-level home locations of cases and deaths rather than neighborhood-level aggregate 

counts would greatly improve air pollution exposure attribution and allow for better ascertainment 

of potential confounders. In addition, we could not include daily or weekly observations to account 

for changes in case or mortality rate over time, but rather used cumulative counts for the study 

period. This was due to inconsistent case reporting and incomplete death reporting due to human 

subject concerns earlier in the pandemic. Deaths may have been undercounted, as death 

certificates and coroner reports may incorrectly attribute cause of death (Jewell et al., 2020; Quast 

and Andel, 2020). Future research may benefit from using excess mortality for comparison 

(Banerjee et al., 2020). Indicators of symptom severity from hospital, intensive care unit, and 

emergency room admittance data are more difficult to acquire, as they are not publicly available, 

but future analyses on outcomes of severity would allow for better understanding of the effect of 

NO2 exposure on the progression of the disease. 

This study is also limited by the use of land-use regression from 2016 to estimate long-

term NO2 exposure. In a study in of 1,237 census tracts in Colorado, researchers found a positive 

association between PM2.5 and case rate and mortality, however, they also noted this statistically 

significant result was highly dependent on the origin of the PM2.5 surface data—with many 

surfaces not producing significant results (Berg et al., 2021). Although additional data sources 

and years of land-use regression surfaces could be utilized to better describe long-term trends 
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and to conduct further sensitivity analyses, estimates of NO2 in Los Angeles County in the years 

immediately preceding the pandemic are likely similar in their spatial pattern over such a short 

time span. Other covariate data included in these analyses were spatially misaligned. A strength 

of this study is our use of residential building footprints as an intermediate step in aggregating 

areal covariates. Although using these building footprints better accounts for population density 

patterns than more straightforward aggregation techniques (e.g., census-tract directly to 

neighborhood), the method may cause misalignment errors due to differences in building 

characteristics (e.g., height, unit size, etc.). Finally, our spatial models accounted for unexplained 

spatial variability in the between-neighborhood random effect, which suggests there may be 

additional covariates with a similar spatial pattern that we have not included in these analyses, 

and further investigation is necessary. While the CAR model accounts for this dependence in the 

statistical inference, we cannot rule out important missing confounders.  

In summary, our findings imply a potentially large association between exposure to air 

pollution and population-level rates of COVID-19 cases and deaths. Our findings demonstrate 

comparable results to other recent literature, especially concerning the association of long-term 

NO2 and COVID-19 mortality rate. Our small-area analyses, covariate aggregation methods using 

building footprints for accounting for population density variability, and utilization of spatial 

modeling (CAR model with spatial random effect) make novel contributions to the available 

literature. These findings are especially important for targeting interventions aimed at limiting the 

impact of COVID-19 in polluted communities.  

In the U.S., more polluted communities often have lower incomes and higher proportions 

of Black and Latinx people. In addition, Black and Latinx people have higher rates of pre-existing 

conditions, potentially further exacerbating the risk of COVID-19 transmission and death (Clark et 

al., 2014; O’Neill et al., 2003). The elevated risk of case incidence and mortality observed in these 

populations might result from higher exposure to air pollution. As COVID-19 data reporting 
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improves and data access is given more readily to researchers, we will further refine these 

analyses to the individual-level in a spatial framework.  
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Table 2.1. Data sources and spatiotemporal dimensions for model of association between NO2 
and COVID-19 case, mortality, and case-fatality rates in Los Angeles County 

Data source Attribute(s) Spatial Dimension Temporal Dimensiont 

LACDPH1 COVID-19 cases and 
COVID-19 deaths 
 
 
 
Population*, smoking, 
and obesity 

Neighborhood 
statistical areas 
(polygon) 

March 16th – 
September 8th, 2020 
  
September 8th, 2020 – 
February 23rd, 2021α 

 
2019 
 

ACS2 Age, median income, 
race/ethnicity, owner-
occupancy status, and 
population* 
 

Census tracts 
(polygon) 

2018 

500 Cities 
Project  

Diabetes and 
hypertension 
 

Census tracts 
(polygon) 

2019 

LA County 
GeoHub 

Testing locations and 
hospital locations 
 
Building footprints** 
 

Site location (point or 
polygon) 

September 8th, 2020 
 
 
2014 

LUR3 surface 
(Su et al., 2020) 

NO2 (ppb) California (raster; 30 
m) 

2016 

 
*LACDPH population used for regression modeling; ACS population used to validate aggregation methods. 
**building footprints used for data aggregation. 
 
1LACDPH = Los Angeles County Department of Public Health. 
2ACS = American Community Survey (U.S. Census Bureau). 
3LUR = land-use regression. 
 
tTemporal dimension describes the range in time for which the data was recorded. 
 
αSecondary time period used as sensitivity analysis in comparison to main study period of March 16th to September 8th, 
2020
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Figure 2.1. Maps of NO2 and COVID-19 case, mortality, and case-fatality rates by 
neighborhood  

A. NO2 from land-use regression (LUR) model, 2016. (Map is zoomed in to demonstrate fine-resolution variability); B. 
COVID-19 Case rate (cases/population); C. Mortality rate (deaths/population); and D. Case-fatality rate 
(deaths/cases) for the period between March 16th and September 8th, 2020, depicted at the neighborhood level. 

A.        B. 

 

C.        D.       

 

±

0 40 8020 Miles

NO2 2016
High : 31.3322

Low : 1.57941
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Table 2.2. Adjusted association of NO2 and COVID-19 from three models 

A. Case rate (cases/population); B. Mortality rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los Angeles County neighborhoods (N = 348) for 
the period between March 16th and September 8th, 2020. A sensitivity analysis was conducted to assess the inclusion of hypertension and diabetes as model 
covariates. A second sensitivity analysis assessed COVID-19 outcome data from a second time period between September 8th, 2020 and February 23rd, 2021 for 
N=335 neighborhoods. 
 

 

1 All models controlled for owner-occupancy rate, percent population > 65 years of age, percent nonwhite, percent smokers, percent obese, and hospital density per 
sq mi within 10 miles. Full model results with covariates can be seen in Appendix A. COVID-19 outcome data was acquired from the Los Angeles County Department 
of Public Health (LACDPH). 
2 Model conducted for sensitivity analysis includes all covariates from main model plus percent hypertensive and percent diabetic derived from 500 Cities Project 
data. Hypertension and diabetes data covered 212 of N=348 neighborhoods (61% coverage). We imputed the global mean for the remaining 136 neighborhoods. 
Full model results from sensitivity analysis can be seen in Appendix B. 
3 Model conducted for sensitivity analyses includes all covariates from main model. COVID-19 outcome data acquired from the Los Angeles County Department of 
Public Health (LACDPH) 

 Zero-inflated Poisson Zero-inflated negative binomial CAR zero-inflated Poisson  
with spatial random effect 

 Crude Adjusted Crude Adjusted Crude Adjusted 

Main model1 
(n=348) 

IRR CI IRR CI IRR CI IRR CI IRR CI IRR CI 

A. Case rate 1.82 (1.80, 1.84) 1.31 (1.29, 1.33) 1.47 (1.33, 1.62) 1.16 (1.02, 1.32) 1.77 (1.53, 2.09) 1.18 (1.10, 1.32) 

B. Mortality rate 1.72 (1.62, 1.83) 1.35 (1.23, 1.48) 1.77 (1.50, 2.08) 1.44 (1.11, 1.86) 1.94 (1.46, 2.58) 1.60 (1.37, 1.88) 

C.Case-fatality rate 0.96 (0.91, 1.01) 1.05 (0.96, 1.15) 1.07 (0.91, 1.25) 1.21 (0.97, 1.50) 1.13 (0.87, 1.42) 1.31 (1.10, 1.65) 

               

Sensitivity 
Analysis:  

Including hypertension & diabetes2 (n=348) 

A. Case rate 1.82 (1.80, 1.84) 1.28 (1.26, 1.30) 1.47 (1.33, 1.62) 1.18 (1.04, 1.33) 1.77 (1.53, 2.09) 1.27 (1.14, 1.34) 

B. Mortality rate 1.72 (1.62, 1.83) 1.35 (1.23, 1.49) 1.77 (1.50, 2.08) 1.57 (1.23, 2.01) 1.94 (1.46, 2.58) 1.44 (1.13, 2.06) 

C.Case-fatality rate 0.96 (0.91, 1.01) 1.05 (0.96, 1.15) 1.07 (0.91, 1.25) 1.19 (0.96, 1.49) 1.13 (0.87, 1.42) 1.34 (1.13, 1.69) 

             

Sensitivity 
Analysis:  

Second time period3 (n=335) 

A. Case rate 1.66 (1.65, 1.67) 1.29 (1.28, 1.29) 1.22 (1.04, 1.42) 1.21 (1.01, 1.45) 1.38 (1.51, 1.66) 1.24 (1.10, 1.42) 

B. Mortality rate 1.72 (1.63, 1.81) 1.28 (1.21, 1.36) 1.82 (1.53, 2.18) 1.38 (1.14, 1.67) 1.88 (1.53, 2.35) 1.77 (1.34, 2.14) 

C.Case-fatality rate 1.04 (0.99, 1.09) 1.04 (0.98, 1.10) 1.10 (0.95, 1.26) 1.09 (0.94, 1.25) 1.10 (0.98, 1.24) 1.15 (1.00, 1.35) 
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2.5 Appendix A. Adjusted association of NO2 and COVID-19 from three models for the period 
between March 16th and September 8th, 2020  

 
A. Case rate (cases/population); B. Mortality rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los 
Angeles County neighborhoods (N = 348) for the period between March 16th and September 8th, 2020. NO2 was scaled 
by its interquartile range for interpretation purposes; other covariates were not scaled 
 

 
 
 
 
  

A. Case rate Zero-inflated Poisson Zero-inflated negative 
binomial 

CAR zero-inflated Poisson 
with spatial random effect 

 IRR CI IRR CI IRR CrI 

NO2 IQR 1.307 (1.288, 1.327) 1.161 (1.024, 1.316) 1.180 (1.098, 1.316) 
Owner occupancy (%) 0.996 (0.996, 0.997) 0.996 (0.992, 0.999) 0.998 (0.996, 0.999) 
> 65 years (%) 0.977 (0.976, 0.978) 0.956 (0.942, 0.969) 0.965 (0.951, 0.989) 
Nonwhite (%) 0.995 (0.995, 0.996) 1.001 (0.997, 1.005) 0.994 (0.991, 0.997) 
Smokers (%) 1.020 (1.018, 10.022) 0.992 (0.966, 1.018) 1.033 (1.009, 1.073) 
Obese (%) 1.040 (1.039, 1.041) 1.033 (1.023, 1.042) 1.038 (1.035, 1.045) 
Hospital density  1.123 (1.118, 1.129) 1.036 (0.966, 1.111) 1.189 (1.149, 1.232) 
      

 
 

B. Mortality rate Zero-inflated Poisson Zero-inflated negative 
binomial 

CAR zero-inflated Poisson 
with spatial random effect 

 IRR CI IRR CI IRR CrI 

NO2 IQR 1.347 (1.225, 1.481) 1.438 (1.114, 1.857) 1.597 (1.367, 1.879) 
Owner occupancy (%) 0.989 (0.986, 0.991) 0.986 (0.979, 0.993) 0.987 (0.980, 0.991) 
> 65 years (%) 1.035 (1.027, 1.044) 1.040 (1.014, 1.067) 1.034 (1.012, 1.065) 
Nonwhite (%) 0.997 (0.995, 0.999) 0.996 (0.991, 1.002) 0.997 (0.992, 1.002) 
Smokers (%) 1.037 (1.024, 1.050) 1.049 (1.005, 1.094) 1.033 (0.981, 1.081) 
Obese (%) 1.019 (1.014, 1.024) 1.025 (1.010, 1.040) 1.025 (1.009, 1.041) 
Hospital density  1.061 (1.027, 1.096) 1.014 (0.902, 1.140) 1.090 (0.961, 1.289) 
      

 
 

C. Case-fatality rate Zero-inflated Poisson Zero-inflated negative 
binomial 

CAR zero-inflated Poisson 
with spatial random effect 

 IRR CI IRR CI IRR CrI 

NO2 IQR 1.049 (0.959, 1.148) 1.207 (0.969, 1.504) 1.308 (1.100, 1.650) 
Owner occupancy (%) 0.991 (0.989, 0.994) 0.993 (0.987, 0.998) 0.994 (0.989, 1.000) 
> 65 years (%) 1.070 (1.061, 1.080) 1.059 (1.038, 1.080) 1.064 (1.040, 1.086) 
Nonwhite (%) 1.001 (0.999, 1.003) 0.998 (0.993, 1.003) 0.998 (0.994, 1.002) 
Smokers (%) 1.001 (0.997, 1.022) 1.039 (1.001, 1.079) 1.037 (0.994, 1.070) 
Obese (%) 0.983 (0.977, 0.988) 0.985 (0.974, 0.997) 0.990 (0.978, 1.001) 
Hospital density  0.954 (0.924, 0.985) 0.927 (0.840, 1.023) 0.979 (0.868, 1.100) 
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2.6 Appendix B. Adjusted association of NO2 and COVID-19 from three models for the period 
between March 16th and September 8th, 2020 – sensitivity analyses including hypertension 
and diabetes covariates  

 
Model conducted for sensitivity analyses – including main model (Appendix A) covariates with the addition of 
hypertension and diabetes derived from the 500 Cities Project dataset.  Hypertension and diabetes data covered 212 
of N=348 (61% coverage) neighborhoods. We imputed the global mean for the remaining 136 neighborhoods. This 
table shows the adjusted association of NO2 (scaled by interquartile range: 8.7 ppb) and COVID-19 from three models: 
A. Case rate (cases/population); B. Mortality rate (deaths/population); and C. Case-fatality rate (deaths/cases) for Los 
Angeles County neighborhoods (N = 348) for the period between March 16th and September 8th, 2020. NO2 was scaled 
by its interquartile range for interpretation purposes; other covariates were not scaled. 

A. Case rate Zero-inflated Poisson  Zero-inflated negative 
binomial 

 CAR zero-inflated Poisson 
with  

spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.280 (1.261, 1.299)  1.175 (1.037, 1.332)  1.272 (1.143, 1.344) 
Owner occupancy (%) 0.999 (0.998, 0.999)  0.996 (0.992, 1.000)  1.000 (0.999, 1.001) 
> 65 years (%) 0.974 (0.973, 0.976)  0.955 (0.942, 0.969)  0.962 (0.951, 0.972) 
Nonwhite (%) 0.994 (0.994, 0.995)  1.000 (0.996, 1.004)  1.004 (1.003, 1.006) 
Smokers (%) 1.014 (1.012, 1.016)  0.992 (0.965, 1.018)  1.005 (0.993, 1.020) 
Obese (%) 1.034 (1.033, 1.035)  1.030 (1.021, 1.040)  1.023 (1.014, 1.032) 
Hospital density  1.109 (1.103, 1.115)  1.028 (0.957, 1.103)  1.046 (1.005, 1.119) 
Hypertensive (%) 0.981 (0.980, 0.983)  0.982 (0.967, 0.998)  0.978 (0.974, 0.983) 
Diabetic (%) 1.073 (1.069, 1.077)  1.044 (1.005, 1.084)  1.060 (1.047, 1.077) 
         
A. Mortality rate Zero-inflated Poisson  Zero-inflated negative 

binomial 
 CAR zero-inflated Poisson 

with  
spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.354 (1.233, 1.487)  1.570 (1.226, 2.012)  1.441 (1.133, 2.058) 
Owner occupancy (%) 0.991 (0.989, 0.994)  0.988 (0.982, 0.995)  0.989 (0.979, 0.996) 
> 65 years (%) 1.032 (1.023, 1.040)  1.034 (1.008, 1.061)  1.027 (0.997, 1.059) 
Nonwhite (%) 0.996 (0.994, 0.998)  0.995 (0.989, 1.001)  0.999 (0.993, 1.006) 
Smokers (%) 1.033 (1.020, 1.047)   1.054 (1.010, 1.100)  1.027 (0.973, 1.076) 
Obese (%) 1.012 (1.007, 1.017)  1.021 (1.006, 1.036)  1.021 (0.999, 1.046) 
Hospital density  1.047 (1.012, 1.083)  1.000 (0.887, 1.127)  1.100 (0.897, 1.242) 
Hypertensive (%) 0.983 (0.974, 0.991)  0.985 (0.959, 1.012)  0.992 (0.980, 1.019) 
Diabetic (%) 1.071 (1.049, 1.094)  1.040 (0.975, 1.108)  1.028 (0.943, 1.070) 
         
A. Case-fatality rate Zero-inflated Poisson  Zero-inflated negative 

binomial 
 CAR zero-inflated Poisson 

with  
spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.050 (0.959, 1.149)  1.194 (0.958, 1.489)  1.336 (1.127, 1.691) 
Owner occupancy (%) 0.992 (0.989, 0.994)  0.991 (0.985, 0.997)  0.994 (0.988, 1.001) 
> 65 years (%) 1.071 (1.061, 1.081)  1.062 (1.041, 1.084)  1.061 (1.042, 1.084) 
Nonwhite (%) 1.001 (0.999, 1.003)  0.999 (0.994, 1.004)  0.998 (0.991, 1.003) 
Smokers (%) 1.007 (0.994, 1.020)  1.040 (1.002, 1.080)  1.046 (0.996, 1.105) 
Obese (%) 0.983 (0.978, 0.988)  0.987 (0.975, 0.999)  0.992 (0.981, 1.002) 
Hospital density  0.957 (0.927, 0.989)  0.935 (0.845, 1.034)  0.957 (0.858, 1.047) 
Hypertensive (%) 1.003 (0.994, 1.012)  0.998 (0.975, 1.022)  1.010 (0.998, 1.023) 
Diabetic (%) 1.001 (0.980, 1.021)  0.987 (0.932, 1.045)  0.966 (0.939, 0.999) 
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2.7 Appendix C. Adjusted association of NO2 and COVID-19 from three models for the period 
between September 8th, 2020 and February 23rd, 2021 

 
Model conducted for sensitivity analyses using secondary time period. Adjusted association of NO2 (scaled by 
interquartile range: 8.7 ppb) and COVID-19 from three models: A. Case rate (cases/population); B. Mortality rate 
(deaths/population); and C. Case-fatality rate (deaths/cases) for Los Angeles County neighborhoods (N = 335) for the 
period between September 8th, 2020 and February 23rd, 2021. NO2 was scaled by its interquartile range for 
interpretation purposes; other covariates were not scaled. 

 

  

A. Case rate Zero-inflated Poisson  Zero-inflated negative 
binomial 

 CAR zero-inflated Poisson 
with spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.285 (1.276, 1.294)  1.212 (1.017, 1.445)  1.245 (1.101, 1.422) 
Owner occupancy (%) 1.000 (0.999, 1.000)  0.996 (0.991, 1.001)  0.996 (0.995, 0.999) 
> 65 years (%) 0.985 (0.985, 0.986)  0.940 (0.923, 0.958)  0.990 (0.984, 0.995) 
Nonwhite (%) 0.995 (0.995, 0.995)  0.990 (0.985, 0.995)  0.991 (0.990, 0.994) 
Smokers (%) 1.042 (1.041, 1.043)  1.028 (0.990, 1.068)  1.040 (1.032, 1.048) 
Obese (%) 1.033 (1.033, 1.034)  1.035 (1.022, 1.049)  1.039 (1.035, 1.044) 
Hospital density  1.092 (1.089, 1.095)  0.885 (0.803, 0.974)  1.220 (1.176, 1.244) 
        

 
B. Mortality rate Zero-inflated Poisson  Zero-inflated negative 

binomial 
 CAR zero-inflated Poisson 

with spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.280 (1.206, 1.358)  1.377 (1.135, 1.671)  1.767 (1.339, 2.141)  
Owner occupancy (%) 0.997 (0.995, 0.998)  0.999 (0.993, 1.004)  1.000 (0.996, 1.008) 
> 65 years (%) 1.025 (1.019, 1.030)  0.980 (0.960, 1.002)  1.002 (0.980, 1.023) 
Nonwhite (%) 1.000 (0.999, 1.001)  1.002 (0.997, 1.006)  1.003 (0.999, 1.007) 
Smokers (%) 1.043 (1.035, 1.052)  1.040 (1.005, 1.076)  1.023 (0.991, 1.054) 
Obese (%) 1.020 (1.017, 1.023)  1.015 (1.004, 1.027)  1.020 (1.006, 1.037) 
Hospital density  1.100 (1.076, 1.124)  1.018 (0.929, 1.116)  1.074 (0.984, 1.142) 
        

 
C. Case-fatality rate Zero-inflated Poisson  Zero-inflated negative 

binomial 
 CAR zero-inflated Poisson 

with  
spatial random effect 

 IRR CI  IRR CI  IRR CrI 

NO2 IQR 1.036 (0.977, 1.098)  1.087 (0.944, 1.251)  1.154 (1.004, 1.348) 
Owner occupancy (%) 0.996 (0.995, 0.998)  0.999 (0.995, 1.003)  0.999 (0.996, 1.003) 
> 65 years (%) 1.053 (1.047, 1.059)  1.037 (1.022, 1.052)  1.035 (1.018, 1.052) 
Nonwhite (%) 1.005 (1.003, 1.006)  1.003 (1.000, 1.007)  1.004 (1.002, 1.007) 
Smokers (%) 1.003 (0.995, 1.011)  1.008 (0.983, 1.032)  0.999 (0.977, 1.020) 
Obese (%) 0.991 (0.988, 0.995)  0.991 (0.984, 0.999)  0.992 (0.985, 1.001) 
Hospital density  1.011 (0.990, 1.033)  1.022 (0.960, 1.087)  1.038 (0.967, 1.105) 
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CHAPTER 3: PHYSICAL ACTIVITY SPACE METHODS FOR GREEN SPACE EXPOSURE 

ATTRIBUTION: A MULTI-METHOD COMPARISON STUDY 

3.1 INTRODUCTION 

The quantification of spatial context is pivotal to research across many fields. In the field 

of exposure science, accurately describing the space around individuals and populations can lead 

to improved understanding of how the built and natural environments impact human health (Dixon 

et al., 2020; Hirsch et al., 2014; Jerrett et al., 2005a; Jia et al., 2019; Kwan, 2012a). The methods 

employed to measure and attribute spatial context have changed rapidly over the last few 

decades (Chen and Dobra, 2017; J. Wang et al., 2018; Yi et al., 2019). New technology 

advancements, such as those in mobile and remote sensing, have led to more precise 

descriptions of spatial context. In the study of physical activity, location tracking and 

accelerometry have provided opportunities and advancements towards better understanding of 

human activity (Dons et al., 2015; Ku et al., 2018; Lee and Kwan, 2018; Trifan et al., 2019).  These 

advancements, however, have also created new hardware and software challenges. 

Mobile sensing technologies are rapidly evolving, leading to increasing quantities of data 

(“big data”) available for physical activity and location-tracking research. In the past, geographic 

information system (GIS) analytics have primarily used GPS information on home or work 

location, sometimes augmented by self-reported information (Kwan, 2012b; Troped et al., 2010). 

Geospatial data of physical activity location and timing could only be collected from momentary 

sampling or with specific hardware (e.g., GPS device). These data render incomplete snapshots 

of someone’s overall activity and location pattern. More recent studies have used continuous data 

collection sensors (e.g. GlobalSat/Actigraph), but these are costly to collect and process and thus 

sample size is often restricted to less than 100 participants (Gastin et al., 2018; Imboden et al., 
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2018; Sasaki et al., 2011; Shelley et al., 2018), and surveillance duration is often restricted to a 

week or less (Bakrania et al., 2017; Dohrn et al., 2018; Korsiak et al., 2018; Tate et al., 2015). 

Mobile-sensing research and innovation is exponentially expanding as mobile-sensing data are 

now widely used in academic research, government, and industry (Nemati et al., 2017; Steinhubl 

et al., 2015).   

 Now, other technologies gather geospatial data including by smartphones, wearable 

devices (such as Fitbits and smartwatches), and other sensors that are either wearable or kept 

near an individual. For example, 85% of adults in the U.S., 76% (median) of adults in countries 

with advanced economies, and 45% (median) of adults in countries with emerging economies 

now own a smartphone (Perrin, 2021). The average smartphone now includes GPS as well as an 

accelerometer, digital compass, gyroscope, various microphones, various cameras, and many 

other sensor-based hardwares (Nemati et al., 2017; Steinhubl et al., 2015).  

Some researchers have designed their own physical activity tracking smartphone apps to 

take advantage of smartphone ownership. For example, the CalFit app, developed by researchers 

to allow for usability in larger population-based studies, was demonstrated to have a correlation 

coefficient of 0.932 when compared to gold-standard Actigraph accelerometers (Donaire-

Gonzalez et al., 2013). However, given the cost of app design and maintenance, CalFit has not 

been widely adopted for research. Companies have developed smartphone apps that allow for 

crowd-sourced data collection by individuals, agencies, or academic researchers. Commercially 

available apps that collect, download, and aggregate these individually-collected data are now 

readily accessible from the Android and iOS app stores. Crowd-sourced (via smartphones) mobile 

sensing using these commercial apps may allow for continuous sampling in communities at a 

lower cost, generating much larger amounts of data to be analyzed (Nemati et al., 2017; Steinhubl 

et al., 2015). Researchers have begun to assess the validity and reliability of these consumer 

products (e.g. smartphone-based apps) in comparison to research-grade gold-standard 



 

66 

counterparts (e.g. ActiGraph - accelerometer; GlobalSat - GPS) (Evenson et al., 2015; Gastin et 

al., 2018; Imboden et al., 2018; Kooiman et al., 2015). Although there have been many systematic 

reviews of consumer-based activity tracking technologies, few have included both smartphone 

apps (e.g., MOVES) and stand-alone wearable devices (e.g. Actigraph, Fitbit, Jawbone, etc) 

(Donaire-Gonzalez et al., 2013; Hekler et al., 2015; Höchsmann et al., 2018). One example of a 

side-by-side study of apps (including of the MOVES app utilized in this study) and wearable 

devices was conducted in the Netherlands. Participants (n=56) were outfitted with 10 different 

consumer activity trackers including the MOVES app and were asked to walk on laboratory-setting 

treadmills and, or in ‘free-living’ conditions. The authors reported significant differences in steps 

and estimations of energy expenditure among the trackers but only 11 ‘free-living’ participants 

used the MOVES smartphone app and they used them on a variety of smartphone models 

(Kooiman et al., 2015). 

 Researchers can access the backend components of these apps (application program 

interfaces, or APIs, made available by the commercial or open-source app developer) to 

continuously access or collect data on many individuals with less effort and lower cost compared 

to previous methods (Kamel Boulos et al., 2011; Lane et al., 2010; Macias et al., 2013; Nemati et 

al., 2017; Steinhubl et al., 2015; Swan, 2012). In a user study of 26 individuals outfitted with Fitbit 

activity trackers and followed for six weeks to assess usage ability, over 65% of participants failed 

to adhere to protocols for continuous wearing of the Fitbit. Many participants described barriers 

to proper usage such as annoyance (e.g., taking the device on and off), discomfort, and forgetting 

to wear or charge the device. A significant number of these participants preferred using 

smartphone apps instead of or in conjunction with the Fitbit (Shih et al., 2015).  In addition, in the 

past, researchers would collect activity data over short periods of time, e.g., a week, which may 

not be generalizable to an individual’s behavior over longer periods of time. However, with crowd-

sourced activity and location data, researchers can define activity space continuously over longer 
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periods of time with minimal gap in coverage (Chen and Dobra, 2017; Hirsch et al., 2014; Holliday 

et al., 2017; Li and Tong, 2016; Perchoux et al., 2013a). Not having to generalize from smaller 

windows of data collection allows researchers to improve on past methods aimed at describing 

activity behavior. 

The increased quantity of data, coupled with better computing capacity, allows for 

improved quantification of where and when individuals engage in physical activity, i.e., their 

physical activity space (PAS). The large quantities of data have resulted in improved statistical 

and analytic power; however the main bottleneck in the utility of this massive amount of data has 

been computer storage capacity and processing speed (Jacobs, 2009; Kaisler et al., 2013; 

Kambatla et al., 2014). In a systematic review of big data practices for healthcare, reviewers 

identified that the most significant scientific advancements are occurring in trend analysis, general 

data analytics, decision analytics, and predictive capability (Y. Wang et al., 2018). In a review of 

big data trends for urban environment research, reviewers identified the burgeoning analytic 

opportunities and “improved spatial granularity” of geospatial results (Glaeser et al., 2018). The 

combination of improved spatial detail and predictive capacity is essential for advancing analyses 

in environmental health.  

 Computing is improving due to cost reduction, faster processing chips, and new 

interconnected products and services such as cloud computing (Dempsey and Kelliher, 2018; 

Shyamasundar, 2018; Varghese and Buyya, 2018). Many for-profit companies now offer solutions 

that drastically improve storage capacity and utilize large datacenters with super computers for 

analysis. Some companies have even developed analytic platforms for improved processing 

power and speed. For example, Microsoft’s Microsoft R (MRAN), designed to carry out matrix 

calculations and analytics, can run 500-times faster than traditional open source R (CRAN) (Diaz 

and Freato, 2018; Microsoft, 2021; Salvaris et al., 2018). New software and hardware continues 

to be developed. A few years ago, R would not allow for multi-core processing, but now there are 
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open-source library packages that allow or facilitate this and R Studio has parallel processing built 

into the user interface (Eddelbuettel, 2018; Schmidberger et al., 2009; Uyttendaele, 2015). GIS 

analytics have greatly benefitted from this improved processing power due to the inherently large 

amounts of data and rendering necessary (e.g., remote sensing has always been ‘big data’) 

(Graham and Shelton, 2013; Li et al., 2016; Song et al., 2018).  

With the capacity to cheaply collect large amounts of continuous data coupled with 

advancements of hardware and processing capacity, activity space methods can be developed 

that better define activity patterns without having to generalize from small sample sizes, short 

spurts of data, or reduced data collection frequency (Chen and Dobra, 2017; Hirsch et al., 2014; 

Li and Tong, 2016; Perchoux et al., 2013a). Traditionally, due to a lack of continuously-collected 

data (e.g., big data from smartphone sensors), researchers would often oversimplify activity 

space, such as to a simple circular region (buffer) or a raster grid cell around the individual’s 

geocoded home address. For example, in a study of 10-11 year old Scottish children (N=100), 

researchers aimed to assess how children’s mobility was associated with environmental exposure 

and context (Olsen et al., 2019). The researchers, however, assigned exposure and context 

values based on 50-meter grids around the children’s home—a major oversimplification, given 

that children venture beyond their home and that environmental context cannot logically be 

gridded (i.e., humans do not interact with their surroundings in perfect squares). In an assessment 

of how such oversimplifications affect physical activity research (Holliday et al., 2017), Holliday et 

al. compared the minutes of moderate-to-vigorous physical activity (MVPA) that participants 

(N=217) engaged in within simplified circular buffers with those that participants engaged in within 

a minimum convex polygon that incorporated repeatedly-collected GPS and activity data. They 

found that when comparing the circular buffer and convex polygon methods, the number of 

minutes of MVPA and where these minutes occurred differed by roughly four-fold. This implies 

that simplifications of activity space can drastically underestimate the variation in location and 



 

69 

amount of spatial-distributed activity (such as MVPA).  Activities with energy expenditure similar 

to or more than a brisk walk are considered MVPA, and the World Health Organization 

recommends adults engage in at least 75 minutes of MVPA per week to receive related health 

benefits (World Health Organization, 2022). 

In a different study of activity space methodologies, researchers collected GPS and 

activity data from 95 adults for 7 days each and assessed statistical difference of derived spatial 

metrics in three activity space approaches: (1) 95% ellipse; (2) minimum convex polygon (or 

convex hull); and (3) daily path areas (Hirsch et al., 2014). Their results showed significant 

correlation between each method, implying little effect in choice of approach. They acknowledge, 

however, that due to relatively low sample size (only 7-day collection windows per individual), 

their results may not be generalizable to other research, and other approaches utilizing larger 

sample sizes may be necessary (Hirsch et al., 2014).  New methods, such as those that utilize 

big data acquired from smartphone sensing and from larger sample sizes, would provide better 

insight into activity spaces. Researchers in the Department of Statistics at the University of 

Washington have developed improved statistical approaches to defining activity space that utilize 

these larger continuous datasets. They assert that ranking kernel density surfaces (either by 

individual or time frame or both) may improve the inference of these activity space methods (Chen 

and Dobra, 2017). 

Exposure to green space has been demonstrated to positively impact human health 

(Almanza et al., 2012; Bowler et al., 2010a; Wolch et al., 2014a).  More research is needed, 

however, to better describe how to define and quantify green space exposure. In a major 

systematic review of physical activity and green space exposure, authors discussed the lack of 

consensus regarding green space exposure attribution methods, and pointed out the importance 

of improved quantification and evaluation of these methods for future research method selection 

(McCrorie et al., 2014). In this research, a comparison framework is provided to assess methods 
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for the quantification of green space exposure by physical activity space, using multiple activity 

and location data sources (i.e., smartphone, accelerometer, and personal GPS), multiple 

geospatial methods for describing activity space (i.e., home buffer, 95% ellipse, kernel density 

ranking, etc.), and multiple green space data sources. This framework is used to recommend 

approaches for future research decision regarding physical activity, activity space, and green 

space exposure attribution research—although this framework may also be applicable to other 

scientific endeavors involving repeated location tracking for the purposes of quantifying spatial 

context of individuals. 

 In the present study, we aim to determine if green space quantification for PASs—defined 

here as regions or polygons around the location of an individual engaged in moderate-to-vigorous 

physical activity (MVPA)—differs based on (1) the methods used to generate spatiotemporal 

MVPA data; (2) the spatial methods used to draw PASs; and (3) the time-period of green space 

data employed. For these comparisons, we mainly employ data acquired in the Physical Activity 

through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study. This research is 

situated in Los Angeles (LA) County, a sprawling county of over 10,000 square km 

. 

3.2 METHODS 

3.2.1 Participants 

Participants were drawn from the PASTA-LA study, a study comparing active mobility 

before and after the October 2017 launch of the University of California, Los Angeles (UCLA) 

bike-sharing program (Bruin Bike Share) (Alvarado and Hewitt, 2017). The overall study aimed to 

assess the risks (e.g., air pollution exposure, traffic accidents) and benefits (e.g., physical activity, 

reduction of single-occupancy vehicle use) associated with the implementation of this bike-

sharing program in the UCLA-Westwood area. Study protocols were largely derived in 
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collaboration with a larger PASTA study of seven cities in Europe (Avila-Palencia et al., 2018; 

Branion-Calles et al., 2020; de Nazelle et al., 2017; Dons et al., 2015; Gerike et al., 2016; Götschi 

et al., 2017; Raser et al., 2018; Wehener et al., 2017). For PASTA-LA, 440 participants were 

enrolled between Spring and Fall 2017 (see Figure 3.1). Participants were eligible if they lived or 

worked in the UCLA-Westwood areas, were over the age of 18, capable of physical activity, 

owned an Android or iPhone smartphone, and were willing to install the MOVES app on their 

smartphone. Participants included UCLA students, staff, and faculty as well as individuals living 

or working in the greater Westwood area. A subset of 163 participants volunteered to partake in 

a substudy, in which they wore research-grade GPS and Actigraph devices (GlobalSat BT-335 

and DG-500 Global Positioning System (GPS) receivers; and Actigraph GT3X+ accelerometers) 

one week before and one week after the Bruin Bike Share launch.   

Participants signed written consents. Human-subjects’ approvals for PASTA-LA were 

maintained from the UCLA Institutional Review Boards (IRBs).  

3.2.2 PASTA-LA data collection 

Enrollment took place between May and August 2017 and data collection ended in June 

2018. Participation included activity tracking with the MOVES app and completion of six online 

questionnaires: a 40-minute baseline survey and two 20-minute follow-up surveys, before and 

after the Bruin Bike Share launch. Thus, all participants were required to install the MOVES 

smartphone app, commercially available (until July 31, 2018) on both Android and iPhone app 

stores, and to authorize their data to be sent via cellular or WIFI connection to a secure server. 

MOVES is a consumer-friendly, location and activity-tracking smartphone app that detected 

location, mode of transport and intensity of activity.  MOVES outputs included tabular daily activity 

data, separated into ‘events’, where each event included: (1) a polyline route consisting of time-

stamped GPS-coordinate nodes, (2) the total number of steps conducted along the route, and (3) 

a designation of one of three transport modes: “walking”, “biking”, and motor-vehicle “transport.” 
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Steps and transport modes were determined by MOVES using unknown proprietary algorithms 

specific to the app.  Data collection would pause or slow during periods of sedentary behavior 

(e.g., when inside a vehicle) and predictable behavior to reduce smartphone battery consumption.  

The time-stamped observations, therefore, ranged in frequency from seconds to hours. MOVES 

data were successfully collected on 404 of the 440 PASTA-LA participants, generating 

approximately 9 million time-stamped observations of location and activity information (Figure 

3.1).  

The participants who partook in the more detailed substudy, using research-grade 

devices, were required to visit the research office at UCLA to pick up and deposit their devices at 

the start and end of each collection week. The Actigraph accelerometer was worn on the wrist of 

the participant’s choosing. Participants were asked to keep the GlobalSat GPS device within 

approximately one meter of their body. The Actigraph GT3X+ accelerometer is a tri-axial device 

that records ‘counts’ for all three axes of movement. The counts are proprietary and unitless, 

which is unique to Actigraph branded devices.  The GlobalSat GPS BT-335 model has a positional 

horizontal accuracy of 10 meters (GlobalSat WorldCom Corporation, 2022a) and the DG-500 

model has a positional horizontal accuracy of less than 2.5 meters (GlobalSat WorldCom 

Corporation, 2022b).  After data collection, Actigraph’s Actilife software version 6.13.3 was used 

to download the device data and convert the Actigraph vertical axis counts to number of steps per 

10 second epoch (Actigraph Corp, 2019; Freedson et al., 1998; Keadle et al., 2014). GlobalSat’s 

GPS Tools for Windows, proprietary for each model GPS unit (BT-335 and DG-500), were used 

to download GPS data.  Actigraph counts for each of three acclerometer axes as well as derived 

step counts were combined with GPS data from the GlobalSat using linear interpolation based on 

the time-stamps from each device. The resulting dataset included 10-second interpolated GPS 

coordinates, interpolated step counts, and interpolated Actigraph ‘counts’ for all three axes 

(Alaimo et al., 2021).  
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Of 163 substudy participants, 123 collected Actigraph and GlobalSat data that could be 

interpolated, i.e., precisely overlapped in time. These 123 participants generated approximately 

14 million observations of interpolated Actigraph accelerometer and GlobalSat GPS data 

(Actigraph+GPS).   

3.2.3 Inclusion criteria and data cleaning 

Only observations occurring within LA County and between 7am and 10pm were included. 

(Participants were assumed asleep or inactive between 10pm and 7am.)  MOVES and 

Actigraph+GPS data were cleaned by removing erroneous observations. For Actigraph+GPS, this 

was done in part previously where missingness was also assessed (Alaimo et al., 2021).  

Observations were automatically flagged for manual inspection if speeds above 50 m/s or 

accelerations above 10 m/s2 were implied for a single observation or route segment (Kerr et al., 

2011). Nine participants recorded routes that were removed upon visual inspection (e.g., due to 

major misalignments with transport networks).  MOVES data were joined with Actigraph+GPS by 

day. Only MOVES data occurring on the same day as Actigraph+GPS data were included. After 

exclusion and cleaning, all 123 participants had at least one usable day of MOVES and 

Actigtraph+GPS data for subsequent analyses.  

The participants comprising this final data set averaged 33 years old (SD: 11; Range: 21 

– 66) with 68.3% female, 32.5% White, 87.8% high school graduates, and 51.0% employed full-

time. Their average body mass index (BMI) was 23.6 (SD: 4.0; Range: 9.2 – 35.5). 

This final data set was used to demonstrate and evaluate the methods described below 

and was composed of 191,032 MOVES observations overlapping (by day) with 1,013,394 

Actigraph+GPS observations across 275 unique days of data collection. For these 275 days, there 

was an average of 25.4 hours (SD: 20.1; Range: 0.2 – 106.4) of overlapping MOVES and 

Actigraph+GPS data across 1,125 person-days (Künzli et al., 2000). The average number of 

MOVES observations per person-day was 1,721, (SD: 1,384; Range: 2 – 6,285) while the average 
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number of Actigraph+GPS observations per person-day was 9,129 (SD: 7,252; Range: 85 – 

38,303).  

3.2.4 Moderate-to-vigorous physical activity 

Equations that estimate metabolic equivalent of task (MET) from accelerometry data were 

employed to evaluate activity level. Observations of location and activity (MOVES or 

Actigraph+GPS) were categorized as sedentary-to-light physical activity or moderate-to-vigorous 

physical activity (MVPA). MET ratios of 0 to 3 were considered sedentary-to-light activity and 

ratios above 3 were considered MVPA (Tucker et al., 2011). The non-linear, step-rate 

classification equations (one equation for men, one for women) produced by a motorized-treadmill 

study of 9 men and 10 women (Abel et al., 2011) were used to categorize MVPA for MOVES and 

Actigraph+GPS step counts.  In the case of MOVES, activity level was assumed to be 

homogenous for each ‘event’ or route (regardless of event duration) since step counts were 

reported as sums per event. For this reason, all observations along each route were assigned the 

same activity category. For comparison with the MOVES data, Actigraph+GPS vertical-axis 

counts were also converted to MET ratios using equations produced by a previous treadmill study 

of 25 men and 25 women (Freedson et al., 1998). Although Actigraph+GPS data included outputs 

from three axes, only the vertical axis was utilized for better comparison with step counts, which 

were also derived from the vertical axis of both smartphone (MOVES) and Actigraph 

accelerometer sensors.  Three datasets were created: (1) MOVES data with MVPA derived from 

step rate (Abel et al., 2011); (2) Actigraph+GPS data with MVPA derived from step rate (Abel et 

al., 2011); and (3) Actigraph+GPS with MVPA derived from vertical-axis counts (Freedson et al., 

1998).  The resulting datasets included GPS-coordinate pairs, time stamps, and a binary activity 

level (0 = light-to-sedentary; 1 = MVPA). Figure 3.2 and Figure 3.3 visualize datasets (1) and (2), 

respectively.  
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3.2.5 Physical activity spaces  

We operationally defined PAS as a region or polygon(s) where an individual engages in 

MVPA. The 1,125 person-days of location and activity data allowed for up to 1,125 MOVES PASs 

and up to 1,125 Actigraph+GPS PASs.  Example PAS polygons can be seen in Figure 3.4 and 

Figure 3.5 for one partially simulated (to protect identifiable spatial information) person-day of 

collection. The methods used to draw PASs are as follows: 

1. 250-meter location buffer and 2. 500-meter location buffer.  Locations categorized 

as MVPA were buffered by 250 meters and 500 meters. Euclidian distance-based 

buffers are commonly used to describe activity spaces and movement. Similarly 

referred to as “daily path areas” (Hirsch et al., 2014; N. C. Lee et al., 2016; Shannon N 

Zenk et al., 2011) or “GPS trajectory buffers” (J. Wang et al., 2018) – these are also 

used to describe activity along routes. We selected the distances of 250 and 500 

meters because they have been related to health and green space exposure science in 

the literature (Dzhambov et al., 2018; Su et al., 2019). This PAS method required a 

minimum of one observation of MVPA per person-day.  Figure 3.4 shows an example 

250-meter location buffer PAS with both true-color NAIP imagery background and 

derived green space (NDVI) background (methods below). 

3. Minimum convex polygon. This PAS is a type of minimum bounding geometry often 

referred to as a “convex hull” and is very commonly employed in activity space research 

(Hirsch et al., 2014; J. H. Lee et al., 2016). It is the smallest convex shape that contains 

all observations—similar to wrapping a rubber band around a set of points.  This PAS 

method required a minimum of three observations per person-day.  Figure 3.5 shows an 

example minimum convex polygon PAS. 

4. 95% ‘directional distribution’ ellipse. The standard deviation ellipse is commonly used 

to describe activity space (Hirsch et al., 2014; Sherman et al., 2005; Shannon N. Zenk et 
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al., 2011). We used two standard deviations to create a PAS ellipse that covered 95% of 

MVPA observations (Kamruzzaman and Hine, 2012; Zhao et al., 2018).  This approach 

involved calculating the mean center, standard deviation, and angle of rotation of the 

array of locations (Chew, 1966; Wang et al., 2015).  This PAS method required a 

minimum of five MVPA observations per person-day. Figure 3.5 shows an example 95% 

ellipse PAS. 

3. Density-based spatial clustering applications (DBSCAN). This approach uses 

machine-learning algorithms to bin points into either spatial clusters or ‘noise’. DBSCAN 

is often used to assess patterns in trajectory data (e.g., routes) (Gong et al., 2015; Tang 

et al., 2015). Specifically, we used the process of ordering points to identify clustering 

structure (DBSCAN-OPTICS referred henceforth as DBSCAN). This process can detect 

clusters with variable spatial density (such as spatially-resolved MVPA data) (Rhys, 

2020).  DBSCAN allows for user-defined search radii when allocating points to clusters. 

We defined the search radius here as 500 meters. Clusters required a minimum of 6 

observations. Raw cluster polygons were buffered by 5 meters for smoothing purposes, 

as this resulted in less error during green space extraction. The minimum number of 

MVPA observations for this method was 25. Figure 3.5 shows an example DBSCAN 

PAS. 

4. Hierarchical DBSCAN (HDBSCAN). This method is less commonly used but has been 

used for studying patterns in the location of individuals such as for identifying areas of 

high tourism (Mou et al., 2020). HDBSCAN is derived from DBSCAN methods, but 

instead of allowing for user-defined search radii, HDBSCAN assesses the full dataset of 

points to determine search radii automatically using spatially-constrained hierarchical 

machine learning (Campello et al., 2013).  As with the DBSCAN method above, we 

required clusters to have a minimum of 6 observations and we buffered raw cluster 
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polygons by 5 meters for smoothing purposes. The minimum number of MVPA 

observations for this method was 25. Figure 3.5 shows an example HDBSCAN PAS. 

5. Kernel density ranking (KDR). Kernel density is a very commonly used geospatial 

process for assessing the density of observations over a fixed Euclidean distance or 

search radius.  It is regularly used for both transportation and health research 

(Anderson, 2009; Charreire et al., 2010; Erdogan et al., 2008; Okabe et al., 2009; J. 

Wang et al., 2018; Yang et al., 2006).  Kernel density, however, may not sufficiently 

capture locations with low activity density. These low-density locations are potentially 

valuable for physical activity research (e.g., an arterial road traveled on only once by 

bike could be important for investigating PAS across a sparse dataset). Chen et al., have 

devised a method to generate ratio-based probability surfaces from GPS-based activity 

data (Chen and Dobra, 2017). Their method produces a raster surface with values 

between ‘0’ and ‘1,’ where ‘1’ would imply a grid cell with a density at 100%, and where 

‘0’ would imply a grid cell with a density at 0%.  Here we selected only grid cells greater 

than 0.9 to give areas where the top 10% of activity was expected to occur.  A 

smoothing parameter of 0.01 was used. These areas of high activity were then 

converted to PAS polygons. The minimum number of MVPA observations for this 

method was 30.  Figure 3.5 shows an example KDR PAS. 

Euclidian home buffers at 250 and 500 meters were also constructed for comparison, as these 

are commonly used to describe spatial context for individuals when repeated location and activity 

information is not available (Amoly et al., 2015; Dadvand et al., 2015; van den Berg et al., 2010).  

These circular home buffers were not considered physical activity spaces, as MVPA did not factor 

into this approach. 
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3.2.6 Green space exposure attribution 

Multispectral four-band (red, green, blue, and infrared) satellite images produced by the 

National Agriculture Imagery Program (NAIP) of the U.S. Department of Agriculture (USDA) were 

used to estimate greenness of each PAS. The annual mosaiced images for 2018 were considered 

for use as the main result since they overlap in time with the PASTA-LA data collection period; 

2016 mosaiced images were included for comparison. Both of these annual products are spatially 

resolved at 60 centimeters. This fine resolution makes the associated files very large (100s of 

gigabytes) and therefore challenging to access, download, or process. For this reason, the 

mosaics were accessed and processed on Google Earth Engine’s cloud-based super-computing 

platform.  The red and infrared bands of each mosaic were used to calculate the Normalized 

Difference Vegetation Index (NDVI).  This index has been used to quantify greenness in many 

studies, including for activity space research (Dadvand et al., 2012a, 2012b; Leslie et al., 2010; 

McMorris et al., 2015; Vienneau et al., 2017).  The index was calculated using the following band 

formula: [Near Infrared – Red] ÷ [Near Infrared + Red]. NDVI values range from -1 to 1 where 

values close to or below zero indicated no greenness (e.g., man-made objects, open water, etc.) 

and values closer to 1 indicated greener areas (NASA Earth Observatory, 2011).  PAS polygons 

were used to extract the mean NDVI raster value for each region per person-day (up to 1,125) by 

using an areal “reducer” (Google Inc., 2022). 

The above study procedures to quantify green space for each physical activity space are 

summarized in Figure 3.6.  

To extract NDVI values for home-address buffers, separate protocols were devised to 

‘hide’ participant home locations. A total of 10,000 fake addresses were generated and geocoded 

for the study area. The 123 addresses of the substudy participants were inserted into these 10,000 

at random. 99 fake participant ID keys and one true participant ID key (that was kept secure) was 

included in the dataset of 10,123 addresses. After NDVI extraction, the true key was used to 
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determine which extractions belong to the participants. The methods for this anonymization 

protocol can be seen in Figure 3.7. 

3.2.7 Comparison and evaluation 

All data sources used are shown in Table 3.1.  This research utilized location information 

in the form of GPS coordinate pairs, physical activity information in the form of accelerometry 

outcomes from wearable devices, and green space surfaces derived from satellite imagery. These 

data are considered ‘big data.’ Other participant survey data were included to describe the sample 

(above).   

In summary, 21 separate approaches to describe physical activity spaces were 

completed—7 PAS methods for each of 3 MVPA data sources (MOVES step counts, 

Actigtraph+GPS step counts, and Actigraph+GPS vertical-axis counts). Sensitivity analyses were 

conducted on these 21 approaches by using data visualizations and intraclass correlation 

coefficients (ICCs).  Specifically, ‘ICC3’ was used to compare extracted NDVI as these datasets 

were not sampled randomly so are not generalizable to a larger population, and the comparison 

group is fixed (Koo and Li, 2016; Shrout and Fleiss, 1979). Vertical-line plots were designed to 

visualize ICCs and the range of differences in NDVI across sensitivities. Bar plots were designed 

to demonstrate exclusion patterns by levels of activity, binned by quartiles of MVPA, where the 

1st quartile represented person-days with the lowest amount of MVPA. 

3.2.8 Software 

All analyses were conducted in R Studio version 1.2.5042 (R version 4.2.0). The tidyverse 

suite of R packages was used to clean data and convert counts to MVPA.  Packages used to 

draw PASs included: sf, sp, raster, rgdal, maptools, moveVIS, reticulate, aspace, adehabitatHR, 

dbscan, and density_ranking (Bivand et al., 2021; Bui et al., 2012; Calenge, 2006; Chen and 

Dobra, 2017; Hahsler and Piekenbrock, 2021; Hijmans, 2021; Pebesma, 2018; Schwalb-
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Willmann et al., 2020; Ushey et al., 2021). Google Earth Engine was queried in R using the rgee 

package (Aybar et al., 2020). ICCs were calculated using the psych package (Revelle, 2021). 

Results visualization was conducted in R Studio, while mapping was completed in both R Studio 

and ESRI’s ArcGIS Pro, version 2.8.6. 

 

3.3 RESULTS 

3.3.1 Summary of 21 PAS methods 

PASs are described in Table 3.2. The number of person-days where polygons were 

successfully drawn ranged widely across the 21 approaches—from 195 to 1,105 person-days (of 

1,125 possible) for 44 to 122 participants (of 123 possible), respectively. The fewest number of 

PAS polygons were produced using kernel density ranking, applied to Actigraph+GPS data with 

MVPA derived from step-rate (Abel et al., 2011) and the largest number were generated by the 

250-m and 500-m location buffers, drawn using Actigraph+GPS data with MVPA derived from 

vertical-axis counts (Freedson et al., 1998). In general, MOVES data resulted in fewer person-

days of PASs than Actigraph+GPS for all seven PAS methods employed. With the exception of 

the DBSCAN and HDBSCAN PAS methods, step-count MVPA conversions (Abel et al., 2011) 

generated fewer person-days of PASs than vertical-axis conversions (Freedson et al., 1998).  

The maximum duration of MVPA per person-day was 248.03 minutes and the minimum 

was 10 seconds (0.17 minutes; or one observation). DBSCAN, HDBSCAN, and kernel density 

ranking polygon-drawing methods, applied to MOVES data, utilized the highest average number 

of minutes of MVPA (MSD = 33.8124.77) per person-day. These three PAS methods, however, 

utilized fewer person-days of data (n = 200) than most other methods. 500-meter location buffer 

PASs, produced by Actigraph+GPS data with MVPA categorized from vertical-axis counts 

(Freedson et al., 1998), utilized the lowest average number of minutes of MVPA (MSD =  
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6.319.30) per person-day. This method and the analogous 250-meter location buffer method 

(produced by Actigraph+GPS data with MVPA categorized from vertical-axis counts (Freedson et 

al., 1998)), however, included the most person-days (n = 1,105) of data.  

 Figure 3.8 shows the proportion of person-days excluded for each of the other 19 

methods when compared to the quartile distribution of person-day minutes of MVPA for these two 

methods (250-meter and 500-meter location buffers; Actigraph+GPS data; Freedson MVPA 

equation).  Exclusion was skewed toward less active person-days, with more exclusion occurring 

for the 1st and 2nd quartiles of daily MVPA (minutes). In general, methods that utilized MOVES 

data had more exclusions across quartiles of daily MVPA (less active and more active person-

days) than those that used Actigraph+GPS data. For Actigraph+GPS data, using step rate to 

categorize MVPA (Abel et al., 2011) resulted in a more even distribution of exclusion—i.e., a more 

similar proportion of exclusion across all quartiles of MVPA,  than using vertical-axis counts 

(Freedson et al., 1998)—which resulted in more exclusions in the 1st and 2nd quartiles of MVPA.  

When applied to Actigraph+GPS data with MVPA categorized by vertical-axis counts (Freedson 

et al., 1998), DBSCAN, HDBSCAN, and kernel density ranking polygon methods excluded all 

person-days of data in the 1st and 2nd quartiles. This is due to the minimum number of MVPA 

observations per person-day (25 for DBSCAN, 25 for HDBSCAN, and 30 for kernel density 

ranking) needed to conduct these spatial processes. 

Across all 21 methods, PASs ranged in size between 1.0 square-meter and 526.978 

square-kilometers. There was no clear difference in PAS area between methods utilizing 

Actigraph+GPS data and those using MOVES data. For PAS methods utilizing Actigraph+GPS 

data, MVPA categorized with vertical-axis counts (Freedson et al., 1998) resulted in larger 

average PAS sizes (range = 0.039 – 10.491 square kilometers) than the MVPA categorized with 

step-rate (Abel et al., 2011) (range = 0.038 – 2.565 square kilometers). The 95% directional 

distribution ellipse PAS polygons, derived from Actigraph+GPS data with MVPA categorized by 
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vertical-axis counts (Freedson et al., 1998), averaged the largest area (MSD = 10.79145.622 

square kilometers), whereas  HDBSCAN polygons, derived from Actigraph+GPS data with MVPA 

categorized by step-count (Abel et al., 2011), averaged the smallest area (MSD = 0.0380.084 

square kilometers).  

3.3.2 Quantification of green space for 21 PAS methods 

Table 3.3 presents the NDVI areal means for 2016 and 2018 for each person-day using 

the 21 PAS methods.  Across all methods applied to 2018 imagery, the lowest NDVI for a PAS 

was 0.119 (e.g., man-made object, not green) and the highest was 0.530 (moderately green). For 

2016 imagery, the lowest NDVI for a PAS was -0.076 and the highest was 0.432. The 500-m 

location buffer PASs, derived from MOVES data, generated the highest average NDVI per 

person-day for both 2018 (MSD = 0.0630.063) and 2016 (MSD = 0.0730.050). Kernel density 

ranking PASs, derived from Actigraph+GPS data with MVPA categorized using step-count (Abel 

et al., 2011), generated the lowest average NDVI per person-day for both 2018 

(MSD=0.0250.076) and 2016 (MSD=0.037057).  Table 3.4 shows the NDVI areal means for 

250-m home buffer (2018: MSD = 0.0260.061; 2016: MSD = 0.0380.053) and 500-m home 

buffer (2018: MSD = 0.0430.064; 2016: MSD = 0.0520.041) extractions. These are not PASs 

but are used for comparison to the PAS methods. 

 Intraclass correlation coefficients (ICC3s) were used to compare methods for assigning 

NDVI values to PASs. The comparisons are depicted in Figures 3.9–3.11 and Tables 3.5–3.7.  

Actigraph+GPS and MOVES data with MVPA categorized using step count (Abel et al., 2011), 

and Actigraph+GPS data with MVPA categorized using vertical-axis counts (Freedson et al., 

1998), were used to compare difference in results due to choice in imagery year (2018 vs. 2016).  

ICCs between 0.83 and 0.88 were observed when comparing 2018 and 2016 NDVI defined using 

Actigraph+GPS data categorized by vertical-axis count (Freedson et al., 1998) (Table 3.6). The 
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maximum difference between 2018 and 2016 NDVI was found when kernel density ranking was 

used (difference was 0.35). ICCs between 0.83 and 0.89 were observed when comparing 2018 

and 2016 NDVI defined using Actigraph+GPS data categorized by step-rate (Abel et al., 2011).  

The maximum difference between 2018 and 2016 NDVI was found when kernel density ranking 

was used (difference was 0.15). ICCs between 0.90 and 0.93 were observed when comparing 

2018 and 2016 NDVI defined using MOVES data categorized by step-rate (Abel et al., 2011). The 

maximum difference between 2018 and 2016 NDVI was observed when minimum convex polygon 

was used (difference was 0.16).  

NDVI values for each PAS polygon method were compared to the NDVI values extracted 

from 250-meter home buffers (not a PAS) (Table 3.7).  We found low ICCs (0.06 to 0.31) between 

home buffers and PAS methods that used Actigraph+GPS with MVPA categorized by vertical-

axis count (Freedson et al., 1998), indicating that home buffers may not be comparable for NDVI 

greenspace attribution in the context of physical activity. The maximum NDVI difference was 0.51, 

using minimum convex polygon. This was also true for comparisons between home buffers and 

PAS methods for Actigraph+GPS with MVPA categorized by step-rate (Abel et al., 2011), where 

we found low ICCs (0.09 to 0.23) as well where the maximum NDVI difference was 0.45, again 

using minimum convex polygon. Similarly, we observed low ICCs (0.06 and 0.15) between home 

buffers and PAS methods using MOVES and MVPA categorized by step-rate (Abel et al., 2011), 

with a maximum NDVI difference of 0.34 using minimum convex polygon. 

The extracted values of NDVI from MOVES and Actigraph+GPS were compared across 

the seven PAS polygon methods (Figure 3.8). We found moderate-to-high correlations between 

Actigraph+GPS-Freedson and Actigraph+GPS-Abel as indicated by ICCs between 0.54 and 0.80. 

The maximum NDVI difference of 0.32 was observed for the 95% directional distribution ellipse. 

We found somewhat more moderate correlations between Actigraph+GPS-Abel and MOVES-

Abel as indicated by ICCs between 0.41 and 0.61. The maximum NDVI difference of 0.32 was 
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observed for the 95% directional distribution ellipse. Finally, we found the lowest, but still 

moderate, correlations between Actigraph+GPS-Freedson and MOVES-Abel as indicated by 

ICCs between 0.30 and 0.59. The maximum NDVI difference of 0.32 was observed for the 

minimum convex polygon. 

 

3.4 DISCUSSION 

This study evaluated 21 approaches to defining physical activity spaces for use in 

quantifying green space, with activity and location tracking derived from the MOVES smartphone 

app and Actigraph accelerometers combined with GlobalSat GPS units (Actigraph+GPS), 

physical activity level (sedentary-to-light and MVPA) categorized using two equations (Abel et al., 

2011; Freedson et al., 1998), and the shape and location of the spaces with the most physical 

activity (PASs) defined by seven geospatial methods for drawing polygons around highly active 

regions. Green space (NDVI) was quantified by extracting satellite data by each PAS for two 

separate years, 2018 and 2016. We found that MOVES data resulted in fewer completed PASs 

for the study population than Actigraph+GPS but these PASs utilized more minutes of MVPA on 

average. NDVI values extracted by PAS demonstrated high correlation between 2018 and 2016 

NAIP imagery for all seven PAS methods, exhibited low correlation and large mean difference 

between PAS methods and home buffers, and showed a wide range in correlation between 

Actigraph+GPS and MOVES data across the PAS methods. 

Our results showing that the MOVES app recorded fewer observations but higher 

estimated activity levels than Actigraph+GPS is consistent with the Dutch study of 56 free-living 

participants observed for a single workday (Kooiman et al., 2015). When the authors compared 

MOVES activity data to the “gold-standard” ActivPAL accelerometer (similar to Actigraph), 

MOVES data produced a high correlation with the “gold-standard” ActivPAL but with a large 

confidence interval (ICC = 0.80; CI = 0.05 – 0.99). As the authors noted, a limitation of this study 
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was only 11 of 56 free-living participants produced valid MOVES data, and this low sample size 

could lead to the large interval. In a similar study of 14 participants, researchers found MOVES to 

underestimate steps by 6.7% on average for Android smartphone users and overestimate steps 

by 6.2% for iPhone users (Case et al., 2015). Given the PASTA-LA participant sample included 

both iPhone and Android users, the results of these two studies could help explain the high 

number of excluded person-days of MOVES data (fewer minutes of MVPA potentially observed 

from Android users) while simultaneously having more minutes of MVPA (from iPhone users) for 

the person-days included. Furthermore, we have shown that once MOVES data is used to 

produce PASs, subsequent NDVI extracted is moderately correlated to NDVI extracted from 

Actigraph+GPS. Although MOVES data includes a large degree of uncertainty and possible 

imprecision due to its proprietary nature, it also allows for the collection of more tracking data over 

longer periods of time due to being a smartphone app (participants likely own smartphones).  Due 

to the ability to collect more data for less cost, the difference in reliability may be less 

consequential for certain study designs.   

Other studies also found that methods used to draw activity spaces demonstrated a wide 

range in coverage (size). Wang et al. used GPS tracking data from four individuals (sampled from 

n = 31) to compare activity spaces constructed using 200-meter location buffers, standard 

deviation ellipses (including both 63% ellipses—1 standard deviation; and 95% ellipses—2 

standard deviations), minimum convex polygons, kernel densities, and a new “context-based 

crystal-growth” (CCG) method (J. Wang et al., 2018). They found that their activity space methods 

averaged from 12.65 (CCG) to 70.08 km2 (minimum convex polygon) in size, with the smallest 

individual activity space being 0.037 km2 (63% ellipse) and the largest being 156.48 km2 (95% 

ellipse).  In the present study—with  a much larger sample size of 123 participants—minimum 

convex polygons, specifically using Actigraph+GPS data with MVPA categorized by vertical-axis 

counts (Freedson et al., 1998), also generated the largest average sizes.  Given that we used 
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only locations where MVPA is observed (PASs), rather than all locations (activity spaces) as in 

Wang et al., we would expect our PASs polygons to be smaller in size. Although our PASs had 

smaller average sizes, we did have some PASs with larger sizes—the largest being 526.98 km2 

(minimum convex polygon using Actigraph+GPS data, with MVPA categorized by vertical-axis 

counts (Freedson et al., 1998)).   

Green space extracted by home location was poorly correlated with green space extracted 

by 21 PAS methods (Table 3.6), suggesting a potential of misclassification of green space using 

home buffers. Although many studies have quantified green space exposure using NDVI 

extraction, the majority of these studies utilize the home location (Amoly et al., 2015; Dadvand et 

al., 2015, 2012b; Dzhambov et al., 2018; Fuertes et al., 2016; Klompmaker et al., 2018; Laurent 

et al., 2013), or in some cases GPS location buffers (Almanza et al., 2012; Boakye et al., 2021; 

Roberts and Helbich, 2021), to extract mean NDVI values. In a study of 217 adults, Holliday et al. 

found that when using 0.5-mile buffers around the home (approximately 800 m), 60% of MVPA 

time occurred outside the buffer (Holliday et al., 2017). Holliday et. al. cautions against using 

home buffers as physical activity spaces—a recommendation that matches the present study 

findings, which further this understanding using extracted context (green space, NDVI). 

Compared to other methods choices made in the present study, the choice between 2016 

and 2018 NDVI (for green space exposure attribution) had the least impact on NDVI mean values 

extracted by PAS and were highly correlated (Table 3.5).  In a study examining change in NDVI 

from 2000 to 2017 for Southern California, researchers found developed (urban) land areas to 

have the least annual change in vegetation (greenness) compared to other areas such as 

woodlands and grasslands (Dong et al., 2019). This is likely due to the impervious surfaces 

observed in urban areas, and the fact that these regions therefore have less areas where 

vegetation can fluctuate or grow. Furthermore, given the imagery used in this study are annual 

means of NDVI, it is unlikely that significant changes in vegetation would be observed.    
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The present study has a number of strengths and some limitations. It was one of very few 

studies that compared geospatial methodologies for defining physical activity space. It is the only 

study that has compared these multiple PAS approaches for quantifying green space exposure 

at locations of high physical activity (MVPA). Actigraph and other contemporary accelerometers 

can utilize tri-axial counts to more precisely categorize MVPA; however, this investigation uses 

step-rate (Abel et al., 2011) and vertical-axis counts (Freedson et al., 1998) to compare MOVES 

and Actigraph. Although a large amount of possible location and activity tracking data were 

excluded here (from 440 to 123), internal validity was retained (Deeks et al., 2003), and other 

studies have excluded similar amounts of analogous data (Jerrett et al., 2013a). Many of the PAS 

methods required a minimum number of MVPA observations (e.g., kernel density ranking requires 

a minimum of 30 point-locations of MVPA) to complete. This resulted in fewer PASs for certain 

methods (n=44 to 122; 195 to 1105 person-days of PASs, respectively). This suggests that certain 

PAS polygon methods may be better suited for research on more active populations (e.g., 

DBSCAN, kernel density ranking), whereas others may be better suited for less active populations 

(e.g., 250-m and 500-m location buffers, minimum convex polygon).  

The methods described in this study for NDVI could be used to extract other context 

variables, besides green space, such as other satellite images, other raster data, and vector data. 

These methods are useful for public health research but could also be utilized for other contexts 

in which there is an interest in understanding where people engage in physical activity, such as 

for urban planning and marketing. A strength of this study lies in the low computing time needed 

to quantify high resolution imagery (in this study, NDVI) for large amounts of location and activity 

data, by using a singular open-source software platform (i.e., R Studio with r-based Google Earth 

Engine queries). Although MOVES is no longer commercially available (the app was purchased 

by Facebook, Inc. on July 31st, 2018 (Dance, 2018), one month after PASTA-LA data collection 

phase completed), other analogous activity-tracking smartphone apps could be used to crowd-
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source and automate these methods. Many apps have already been developed and released for 

consumer use (e.g., the Arc App available for iOS, the Aware Framework available for Android, 

or the Gyroscope app available on both platforms) and, in the future, can be evaluated for 

quantifying spatial context of human activity.   

 

3.5 CONCLUSION 

Quantifying spatial context is important for public health research, as it allows for better 

understanding of the built and natural environments. In the case of physical activity, it may be 

important to quantify green space as it has been shown to affect the location and amount of active 

behavior. Many geospatial methods exist for attributing green space exposure to individuals 

based on location and activity; however, there is not yet consensus on best practices. The results 

of this comparative study on physical activity spaces may inform future environmental study on 

active behavior, allowing researchers to craft methods and protocols more appropriate for a given 

research question or study population or as constrained by available resources. 
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Table 3.1. Data sources utilized for the assessment of green-space exposure attribution by 
physical activity space (PAS) 

Data source Attribute(s) Spatial 
Dimension 

Epoch of 
Collection 

 

Collection 
Period 

Actigraph GT3x+ 
(PASTA-LA) 

Steps, counts*, date-
time 

- 
 
 

10 seconds May 2017- 
May 2018 

GlobalSat DG-500 
(PASTA-LA) 

GPS coordinates, date-
time 

Point  
(accuracy 10-
meters meters; 
<2.5 meters) 

15 seconds May 2017- 
May 2018 

MOVES 
smartphone app 
(PASTA-LA) 

Steps, mode of 
transport, GPS 
coordinates, date-time 

Point 
(variable 
accuracy) 

Variable** May 2017- 
May 2018 

Online 
Questionnaire 
(PASTA-LA) 

Age, sex, ethnicity, BMI, 
educational attainment, 
job status, home 
address, work address 

- - May 2017- 
May 2018 

USDA NAIP*** 
(via Google Earth 
Engine) 

Multispectral (4-band: 
red, green, blue, 
infrared) image 

60 cm Annual 2016, 2018 

* ’Counts’ are a proprietary unitless metric unique to Actigraph-branded accelerometers. 
** MOVES collection epoch is variable based on the detection of bout of inactive or predictable 
behavior – during these periods, the app would shut off to preserve battery. 
***U.S. Department of Agriculture, National Agriculture Imagery Program, National Agriculture 
Imagery Program; accessed via Google Earth Engine 
 
 

Table 3.2.  Participant demographics and tracking data sample size 

Variable  Mean Standard 
Deviation 

Range 

 
 

Participant 
Background 

Age (years) 33.3 11.0 21 – 66 

Gendera 0.317 0.467 0 – 1 

Ethnicityb 0.325 0.470 0 – 1 

Educationc 0.878 0.329 0 – 1 

Job Statusd 0.510 0.500 0 – 1 

BMI 23.6 3.95 9.3 – 35.5 

 
 
Activity Tracking 

Hours* 25.4 20.1 0.23 – 106.4 

Observations** 
(Actigraph+GPS) 

9,129 7,252 85 – 38,303 

Observations** 
(MOVES app) 

1,721 1,384 2 – 6,285 
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Table 3.3. Description of sample, minutes of MVPA included, and size of PAS polygons from activity and location data, for 21 methods 

 
PAS 
Method 

 
Data  
Source 

 
MVPA 
Formula 

   
N 

 
N 
Person- 
Days 

 
Daily MVPA (mins) 

 

 
PAS Area (km2) 

 

MSD Median (Range) MSD Median(Range) 

250-m 
Location 
Buffer 

Act+GPS Freedson 122 1105 6.369.56 3.00 (0.17, 86.20) 0.6580.476 0.554(0.196, 3.860) 

Act+GPS Abel 119 828 7.558.48 4.83(0.17, 62.31) 0.6460.449 0.559(0.196, 6.271) 

MOVES Abel 105 613 19.3022.63 12.75(0.52, 248.03) 0.7390.588 0.584(0.196, 5.695) 

         
500-m 
Location 
Buffer 

Act+GPS Freedson 122 1105 6.319.30 3.00(0.17, 70.00) 1.9731.177 1.771(0.785, 9.291) 

Act+GPS Abel 119 828 7.558.48 4.83(0.17, 62.31) 1.7881.030 1.652(0.785, 15.140) 

MOVES Abel 105 613 19.3322.63 12.75(0.52, 248.03) 1.9001.166 1.655(0.785, 10.843) 

         
Minimum 
Convex 
Polygon 

Act+GPS Freedson 120 894 7.489.42 4.00(0.83, 65.72) 9.27439.432 0.026(1.0m2, 526.978) 

Act+GPS Abel 115 710 8.718.59 6.01(0.83, 62.31) 1.90810.496 0.014(1.0m2, 211.279) 

MOVES Abel 101 550 20.0921.84 14.46(1.23, 248.03) 0.9903.369 0.103(128.9m2, 38.243) 

         
95% Ellipse Act+GPS Freedson 119 869 7.659.50 4.33(0.83, 65.72) 10.79145.622 0.276(11.0m2, 520.075) 

Act+GPS Abel 113 703 8.788.61 6.01(0.83, 62.31) 2.56516.916 0.116(10.0m2, 257.501) 

MOVES Abel 101 549 20.0921.84 14.47(1.23, 248.03) 1.1063.985 0.111(279.1m2, 47.354) 

         
DBSCAN - 
Optics 

Act+GPS Freedson 90 389 14.1011.12 9.83(5.23, 65.72) 1.0619.038 0.018(25.0m2, 151.70) 

Act+GPS Abel 93 403 13.508.74 10.67(5.02, 62.31) 0.1861.675 0.009(25.0m2, 23.387) 

MOVES Abel 61 200 33.8124.77 26.73(10.50, 159.63) 0.6570.158 0.020(152.4m2, 1.610) 

         
HDBSCAN Act+GPS Freedson 90 388 14.1011.12 9.83(5.23, 65.72) 0.0390.170 0.009(25.0m2, 2.346) 

Act+GPS Abel 93 402 13.508.74 10.75(5.02, 65.72) 0.0380.084 0.018(25.0m2, 0.877) 

MOVES Abel 61 200 33.8124.77 26.73(10.50, 159.63) 0.0760.181 0.030(967.2m2, 1.638) 

         
Kernel 
Density 
Ranking 

Act+GPS Freedson 90 389 14.1011.12 9.83(5.23, 65.72) 1.4942.504 0.228(5.5m2, 21.492) 

Act+GPS Abel 44 195 13.799.13 10.83(5.02, 65.72) 0.7732.133 0.075(50.4m2, 19.619) 

MOVES Abel 61 200 33.8124.77 26.73(10.50, 159.63) 0.3090.759 0.065(0.002, 7.033) 

 

 



 

91 

Table 3.4: Green space (areal mean NDVI derived from NAIP imagery) values attributed to PASs for 21 methods 

 
PAS 
Method 

 
Data  
Source 

 
MVPA 
Formula 

   
N 

 
N 
Person- 
Days 

2018 NDVI  
 

2016 NDVI  
 

MSD Median (Range) MSD Median(Range) 

250-m 
Location 
Buffer 

Act+GPS Freedson 122 1105 0.0270.061 0.020(-0.138, 0.239) 0.0440.047 0.038(-0.142, 0.261) 

Act+GPS Abel 119 828 0.0290.067 0.020(-0.140, 0.287) 0.0470.051       0.042(-0.103, 0.276) 

MOVES Abel 105 613 0.0390.066 0.030(-0.157, 0.269) 0.0540.054 0.048(-0.161, 0.274) 

 
500-m 
Location 
Buffer 

 
Act+GPS 

 
Freedson 

 
122 

 
1105 

 

0.0450.060 

 
0.039(-0.132, 0.234) 

 

0.0590.046 

 
0.052(-0.097, 0.249) 

Act+GPS Abel 119 828 0.0510.064 0.048(-0.159, 0.301) 0.0650.048 0.064(-0.088, 0.273) 

MOVES Abel 105 613 0.0630.063 0.062(-0.196, 0.267) 0.0730.050 0.073(-0.088, 0.269) 

 
Minimum 
Convex 
Polygon 

 
Act+GPS 

 
Freedson 

 
120 

 
894 

 

0.0330.077 

 
0.025(-0.195, 0.504) 

 

0.0460.059 

 
0.039(-0.139, 0.378) 

Act+GPS Abel 115 710 0.0320.088 0.023(-0.228, 0.409) 0.0470.068 0.036(-0.128, 0.381) 

MOVES Abel 101 550 0.0300.082 0.026(-0.211, 0.312) 0.0450.062 0.039(-0.103, 0.301) 

 
95% Ellipse 

 
Act+GPS 

 
Freedson 

 
119 

 
869 

 

0.0390.076 

 
0.040(-0.216, 0.530) 

 

0.0530.056 

 
0.048(-0.137, 0.303) 

Act+GPS Abel 113 703 0.0370.087 0.031(-0.222, 0.396) 0.0510.067 0.041(-0.118, 0.352) 

MOVES Abel 101 549 0.0330.079 0.034(-0.201, 0.271) 0.0470.059 0.046(-0.108, 0.281) 

 
DBSCAN- 
Optics 

 
Act+GPS 

 
Freedson 

 
90 

 
389 

 

0.0350.091 

 
0.025(-0.202, 0.392) 

 

0.0490.070 

 
0.043(-0.103, 0.432) 

Act+GPS Abel 93 403 0.0360.098 0.024(-0.222, 0.329) 0.0510.074 0.042(-0.145, 0.312) 

MOVES Abel 61 200 0.0440.086 0.032(-0.137, 0.331) 0.0540.065 0.039(-0.090, 0.295) 

 
HDBSCAN 

 
Act+GPS 

 
Freedson 

 
90 

 
388 

 

0.0370.090 

 
0.027(-0.169, 0.333) 

 

0.0500.072 

 
0.047(-0.121, 0.373) 

Act+GPS Abel 93 402 0.0380.091 0.030(-0.149, 0.298) 0.0510.070 0.038(-0.118, 0.249) 

MOVES Abel 61 200 0.0330.079 0.028(-0.119, 0.227) 0.0460.060 0.035(-0.095, 0.202) 

 
Kernel 
Density 
Ranking 

 
Act+GPS 

 
Freedson 

 
90 

 
389 

 

0.0430.083 

 
0.040(-0.261, 0.371) 

 

0.0530.061 

 
0.049 (-0.099,0.298) 

Act+GPS Abel 44 195 0.0250.076 0.015(-0.139, 0.300) 0.0370.057 0.022(-0.076, 0.298) 

MOVES Abel 61 200 0.0370.084 0.033(-0.144, 0.264) 0.0490.064 0.038(-0.097, 0.304) 
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Table 3.5. Green space (areal mean NDVI derived from NAIP imagery) values attributed to home 
address buffers 

Method 2018 NDVI 2016 NDVI 

MSD Median (Range) MSD Median(Range) 

250-m Home Buffer 0.0260.061 0.011(-0.076, 0.175) 0.0380.053 0.027(-0.057, 0.180) 

500-m Home Buffer 0.0430.064 0.030(-0.056, 0.196) 0.0520.054 0.041(-0.036, 0.181) 
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Table 3.6. Comparison of 2018 versus 2016 extracted NDVI values for seven PAS methods  

Comparison of 2018 versus 2016 extracted NDVI values; extracted by seven PAS polygon 
methods using Actigraph+GPS (TOP) and MOVES (BOTTOM) datasets with MVPA categorized 
by step count (Abel et al., 2011). Intraclass correlation coefficients (ICC3) are used to compare. 

 

Method (Actigraph+GPS-Freedson) 
Mean  
Difference 

Min.  
Difference 

Max.  
Difference ICC3 

250-m Location Buffer -0.019 -0.147 0.118 0.867 

500-m Location Buffer -0.015 -0.137 0.109 0.878 

Minimum Convex Polygon -0.015 -0.260 0.160 0.875 

95% Directional Distribution Ellipse -0.014 -0.173 0.246 0.867 

HDBSCAN -0.016 -0.275 0.307 0.844 

DBSCAN - OPTICS -0.014 -0.196 0.265 0.871 

Kernel Density Ranking -0.011 -0.165 0.352 0.830 
 

Method (Actigraph+GPS-Abel) 
Mean  
Difference 

Min.  
Difference 

Max.  
Difference ICC3 

250-m Location Buffer -0.020 -0.146 0.137 0.874 

500-m Location Buffer -0.016 -0.136 0.139 0.877 

Minimum Convex Polygon -0.017 -0.275 0.130 0.879 

95% Directional Distribution Ellipse -0.016 -0.253 0.146 0.875 

HDBSCAN -0.018 -0.308 0.182 0.864 

DBSCAN - OPTICS -0.015 -0.179 0.117 0.888 

Kernel Density Ranking -0.014 -0.200 0.150 0.828 
 

Method (MOVES app-Abel) 
Mean  

Difference 
Min.  

Difference 
Max.  

Difference ICC3 

250-m Location Buffer -0.014 -0.196 0.130 0.932 

500-m Location Buffer -0.010 -0.187 0.127 0.924 

Minimum Convex Polygon -0.014 -0.231 0.161 0.909 

95% Directional Distribution Ellipse -0.014 -0.214 0.148 0.908 

HDBSCAN -0.011 -0.138 0.096 0.913 

DBSCAN - OPTICS -0.014 -0.101 0.085 0.920 

Kernel Density Ranking -0.012 -0.147 0.126 0.897 
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Table 3.7: Comparison of NDVI extracted from 250-meter home address buffers versus NDVI 
extracted from seven PAS methods  

Comparison of NDVI extracted from 250-meter home address buffers versus NDVI extracted 
from seven PAS methods using Actigraph+GPS and MOVES datasets with MVPA categorized 
by step count (Abel et al., 2011). Intraclass correlation coefficients (ICC3) are used to compare. 

Method (Actigraph+GPS-Freedson) 
Mean 

Difference 
Min. 

Difference 
Max. 

Difference ICC3 

250-m Location Buffer 0.005 -0.227 0.271 0.290 

500-m Location Buffer 0.022 -0.215 0.283 0.305 

Minimum Convex Polygon 0.008 -0.297 0.507 0.062 

95% Directional Distribution Ellipse 0.014 -0.306 0.483 0.095 

HDBSCAN 0.006 -0.328 0.329 0.128 

DBSCAN - OPTICS 0.009 -0.249 0.320 0.155 

90th Percentile Kernel Density Ranking 0.015 -0.251 0.335 0.165 
 
     

 

Method (Actigraph+GPS-Abel) 
Mean 

Difference 
Min. 

Difference 
Max. 

Difference ICC3 

250-m Location Buffer -0.001 -0.214 0.303 0.229 

500-m Location Buffer 0.021 -0.225 0.317 0.219 

Minimum Convex Polygon -0.001 -0.252 0.454 0.120 

95% Directional Distribution Ellipse 0.003 -0.264 0.364 0.099 

HDBSCAN -0.009 -0.290 0.323 0.111 

DBSCAN - OPTICS -0.009 -0.263 0.304 0.104 

90th Percentile Kernel Density Ranking -0.023 -0.234 0.312 0.090 

     
 
 

Method (MOVES app-Abel) 
Mean 

Difference 
Min. 

Difference 
Max. 

Difference ICC3 

250-m Location Buffer 0.015 -0.232 0.251 0.150 

500-m Location Buffer 0.038 -0.236 0.279 0.152 

Minimum Convex Polygon 0.005 -0.247 0.329 0.098 

95% Directional Distribution Ellipse 0.007 -0.229 0.266 0.065 

HDBSCAN 0.012 -0.241 0.336 0.101 

DBSCAN - OPTICS 0.001 -0.223 0.302 0.062 

90th Percentile Kernel Density Ranking 0.004 -0.249 0.290 0.138 
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Table 3.8: Comparison of NDVI extracted from MOVES versus Actigraph+GPS (using step-
count MVPA conversion—Abel 2011) for seven PAS methods 

Comparing Methods: 
Actigraph+GPS-Freedson 
Actigraph+GPS-Abel 

Mean  
Difference 

Min.  
Difference 

Max.  
Difference ICC3 

250-m Location Buffer 0.004 -0.189 0.249 0.779 

500-m Location Buffer 0.002 -0.222 0.251 0.802 

Minimum Convex Polygon 0.001 -0.350 0.286 0.554 

95% Directional Distribution Ellipse 0.005 -0.267 0.315 0.543 

HDBSCAN 0.001 -0.240 0.274 0.605 

DBSCAN - OPTICS -0.010 -0.262 0.231 0.624 

Kernel Density Ranking 0.016 -0.130 0.257 0.753 
 

Comparing Methods: 
Actigraph+GPS-Abel 
MOVES app-Abel 

Mean  
Difference 

Min.  
Difference 

Max.  
Difference ICC3 

250-m Location Buffer -0.012 -0.287 0.265 0.594 

500-m Location Buffer -0.013 -0.283 0.292 0.548 

Minimum Convex Polygon 0.003 -0.296 0.318 0.411 

95% Directional Distribution Ellipse 0.002 -0.308 0.324 0.484 

HDBSCAN -0.008 -0.355 0.288 0.469 

DBSCAN - OPTICS 0.007 -0.353 0.193 0.495 

Kernel Density Ranking -0.010 -0.229 0.176 0.616 
 

Comparing Methods: 
Actigraph+GPS-Freedson 
MOVES app-Abel 

Mean  
Difference 

Min.  
Difference 

Max.  
Difference ICC3 

250-m Location Buffer -0.010 -0.304 0.231 0.534 

500-m Location Buffer -0.014 -0.300 0.253 0.493 

Minimum Convex Polygon -0.003 -0.295 0.319 0.300 

95% Directional Distribution Ellipse 0.004 -0.310 0.266 0.333 

HDBSCAN -0.016 -0.319 0.235 0.536 

DBSCAN - OPTICS 0.008 -0.372 0.304 0.385 

Kernel Density Ranking 0.002 -0.259 0.169 0.594 
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Figure 3.1. Flow chart of participant sample utilized for analyses 

Flow chart of PASTA-LA participants used to generate sample (in grey) utilized for the assessment of green space 
exposure attribution by physical activity space (PAS). 
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Figure 3.2. Map of participant activity and location data from MOVES app 

MOVES data for n=123 participants after data cleaning and exclusions. Zoomed area shown (RIGHT) for more detail. Physical activity is categorized using step-rate 
conversions (Abel et al., 2011). 
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Figure 3.3. Map of participant activity and location data from Actigraph+GPS  

Actigraph+GPS data for n = 123 participants, after data cleaning and exclusions. Zoomed area shown (RIGHT) for more detail.  Physical activity is categorized 
using step-rate conversions (Abel et al., 2011) 
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Figure 3.4. Map example of 250-meter location buffer PAS with true-color satellite image and NDVI 

Example of 250-meter location buffer PAS for one person-day of partially simulated location and activity data. True color background from 60-cm resolution, 2018 
NAIP imagery (LEFT); and derived green space (NDVI) background (RIGHT). 
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Figure 3.5. Map examples of PAS polygons with NDVI 

Example six PAS polygons for one person-day of partially simulated location and activity data. 500-meter location buffer PAS is not depicted. True color 
background from 60-cm resolution, 2018 NAIP imagery (LEFT); and derived green space (NDVI) background (RIGHT). 
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Figure 3.6. Overview of study procedures used to quantify green space exposure by PASs, including major software and software 
packages utilized 
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Figure 3.7. Flow chart of methods to extract green space (mean NDVI) from home location buffers while anonymizing data for cloud 
computing 

These methods were specifically designed to help anonymize (in a random sample of 10,000) participant home locations (n = 163) when analyzed using cloud 
computing (Google Earth Engine). Other personally identifying information was removed from home-location data prior to analysis. 
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Figure 3.8. Proportion of person-days of observation excluded for each of 21 methods 

Proportion excluded is compared with the quartile distribution of minutes MVPA per person-day for the 250-meter location buffer PAS, generated from 
Actigraph+GPS data with MVPA categorized using vertical-axis counts (Freedson et al., 1998). This method was selected for comparison due to having the least 
number of excluded person-days (n = 1,105). 
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Figure 3.9. Comparison of 2018 versus 2016 extracted NDVI values for 7 PAS methods 

Extracted by seven PAS polygon methods using Actigraph+GPS and MOVES datasets with MVPA categorized by step count (Abel et al., 2011). Top of each line 
depicts maximum NDVI difference, bottom of each line depicts minimum NDVI difference, and location of colored circle depicts mean NDVI difference for each 
method. 
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Figure 3.10. Comparison of NDVI extracted using 7 PAS methods versus NDVI extracted using 250-meter home address buffers  

Comparison includes seven PAS polygon methods using Actigraph+GPS and MOVES datasets with MVPA categorized by step count (Abel et al., 2011). Top of 
each line depicts maximum NDVI difference, bottom of each line depicts minimum NDVI difference, and location of colored circle depicts mean NDVI difference for 
each method. 
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Figure 3.11. Comparison of NDVI extracted from MOVES-based PASs versus NDVI extracted from Actigraph+GPS-based PASs for 
seven PAS methods utilizing MVPA categorized by step-rate (Abel et al., 2011)  

Top of each line depicts maximum NDVI difference, bottom of each line depicts minimum NDVI difference, and location of colored 
circle depicts mean NDVI difference for each method. 
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CHAPTER 4: HEAT, GREEN SPACE, AND PHYSICAL ACTIVITY IN LOS ANGELES: AN 

ACTIVITY SPACES APPROACH 

4.1 INTRODUCTION 

As a result of climate change, heatwaves in Southern California could rise as much as six 

to eight times in frequency by year 2100, with a concomitant increase in excess mortality (Hayhoe 

et al., 2004). Similarly, in Los Angeles, the number of days per year above 35°C (95° Fahrenheit) 

could increase from six (in 2015) to 54 (in 2100) (Sun et al., 2015). Exposure to extreme heat is 

well-known to have a negative impact on physical activity (Benzinger, 1959; Humpel, 2002; Stone 

et al., 2010; Tucker and Gilliland, 2007) and will likely compound the already observed low rates 

of physical activity in a large segment of the population (Stamatakis et al., 2013). Researchers 

have hypothesized that individuals will become more prone to acute health effects (such as heat 

stroke) due to immediate exposure to extreme heat while exercising and may reduce their overall 

amount of physical activity.  

Although extreme heat exposure dampens outdoor physical activity, less-extreme 

warming may actually increase physical activity (Chan et al., 2006; Ho et al., 2021).  In a study of 

1.9 million U.S. survey respondents, researchers found that physical activity increased when 

temperatures warmed but stayed below 29°C (Obradovich and Fowler, 2017). The study region 

and population investigated may govern the ability for researchers to detect effects from both 

moderate increases and “extreme” increases in temperature due to differences in temperature 

distribution, adaptation, and environmental context (Ho et al., 2021).  

 Community vulnerability to heat is higher in areas with high amounts of impervious surface 

(e.g., concrete parking lots), and lower in areas of green space. This is due to the cooling effect 

of vegetation and the shade it provides (Kong et al., 2014; Oliveira et al., 2011; Reid et al., 2009), 

as well as benefits due to perceived improvements in well-being (Lafortezza et al., 2009). This 
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leads to a potential modifying effect of green space on heat and physical activity (Ho et al., 2021), 

but in quantitative analyses the ability to detect this phenomena may depend on how exposure to 

green space and temperature is attributed to individuals (Almanza et al., 2012; Chaix et al., 2013; 

Gascon et al., 2016; Higgs et al., 2012; Villeneuve et al., 2012; Wolch et al., 2014b). Circular 

home buffers have been frequently used to define total daily exposure to green space (Amoly et 

al., 2015; Dadvand et al., 2015; van den Berg et al., 2010) and even methods that utilize location-

tracking data may oversimply and misclassify environmental exposure due to spatiotemporal 

misalignment of underlying data (Beekhuizen et al., 2013; Chaix et al., 2013). Given that 

environmental data (e.g., green space and temperature) are collected at sparse point locations 

(e.g., weather stations) via remote sensing imagery (e.g., gridded data) or via areal aggregation 

(e.g., census tract polygons), the quantification of exposure may lead to outcomes that do not 

overlap closely in time or space. For example, in a study on the effects of green space exposure 

on stress, researchers defined green space exposure as the area of green space within the post-

code (the lowest level of census data aggregation in the United Kingdom) of each participant’s 

home address (Ward Thompson et al., 2012). This approach, however, could lead to a 

misclassification of daily exposure, as individuals likely do not remain within their post-code.  

Similarly, in another study, assessing the effect of urban green space on physical activity in 

children, researchers used park boundaries to describe green space exposure at each GPS 

location collected on participants; it is likely, however, that individuals are exposed to green space 

outside of a park (Lachowycz et al., 2012). In a systematic review of physical activity and green 

space exposure, McCrorie et al. discussed the lack of consensus regarding green space exposure 

attribution methods and suggested that future methods should combine contemporary “GPS, GIS, 

accelerometry and [survey]” data, and methods (McCrorie et al., 2014).  

Similarly, heat exposure attribution methods often do not account for spatiotemporal 

misalignments between the location of individuals being studied and the heat data being utilized 

(Nazarian and Lee, 2021). For example, Chan et al. found an increase in temperature of 10 °C to 
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be associated with a 2.9% (CI: 0.4% to 5.4%) increase in physical activity (Chan et al., 2006) but 

heat exposure (raw temperature) was based on region-wide measurements of the entire Prince 

Edward Island (Canada) province, potentially leading to exposure misclassification due to 

participants engaging with only a relatively small portion of the province. In a study by Ho et al. of 

the relationship between temperature and physical activity (tracked by smartphones) and the 

effect modification by green space, temperature attribution was based on the nearest weather 

station and green space attribution was based on 30-meter gridded NDVI (Ho et al., 2021). Given 

the potential for spatial misalignment between these data and the location of individuals, it is 

possible that the relationship between temperature, green space, and physical activity was 

incorrectly quantified. Researchers have discussed new methods to incorporate activity spaces, 

combined with high-resolution imagery for better attribution of environmental exposures such as 

to green space and temperature (Chen and Dobra, 2017; Hirsch et al., 2014; Holliday et al., 2017; 

Li and Tong, 2016). 

In the present study, we investigate the relationship of heat exposure on daily physical 

activity among participants in the Physical Activity through Sustainable Transport Approaches in 

Los Angeles (PASTA-LA) study. We further determine whether the association between heat 

exposure and physical activity is modified by proximal green space. We aim to determine how 

model results differ by: (1) accelerometry-based methods used to quantify activity level; and (2) 

geospatial methods used for attribution of heat and green space exposure. We utilize high-

resolution and high-frequency data to better account for spatiotemporal misalignment. 

4.2 METHODS 

4.2.1 Participants 

Figure 4.1 outlines the participant selection and procedures.  Participants were eligible to 

enroll in the PASTA-LA study if they worked or lived in the University of California at Los Angeles 

(UCLA)-Westwood areas, and were 18 years or older, able to engage in physical activity, owners 
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of an iPhone or Android smartphone, and willing to install the MOVES activity tracking app and 

share data through an internet connection with a secure server managed by PASTA-LA 

personnel. Participants were recruited using flyers, street canvassing, email listservs, and paid 

social media advertisements. Between May and August 2017, over 1,000 individuals were 

screened, and 440 were enrolled as study participants. A total of 163 participants volunteered to 

be in a substudy, in which participants were required to wear a research-grade accelerometer 

(Actigraph GT3X+) to measure activity and GPS device (GlobalSat BT-335 or DG-500) to 

measure location (Actigraph+GPS).  Only the Actigraph+GPS data (not MOVES data) will be 

used in the current analysis. 

Signed written consents were obtained from all participants.  Participants were given cash 

gift cards and raffled prizes (e.g., iPads) upon completion of the study.  PASTA-LA human-

subjects’ approvals were kept in accordance with the UCLA Institutional Review Boards (IRBs). 

4.2.2 Participant data collection 

Data collection began upon enrollment (between May and August 2017) and ended in 

June 2018. Participants were observed for a duration of three months to one year. This study 

utilizes tracking and survey data gathered in two data collection phases, one before and one after 

the launch of the UCLA Bruin Bike Share program. Online questionnaires and participant-tracking 

protocols were developed in collaboration from materials created by a larger PASTA study of 

seven cities in Europe (Avila-Palencia et al., 2018; Branion-Calles et al., 2020; Raser et al., 2018; 

Wehener et al., 2017). All data sources used in this study are shown in Table 4.1. 

All 440 participants were asked to complete a baseline questionnaire (40 minutes) and 

two follow-up questionnaires (20 minutes each) before the launch of the Bruin Bike Share in 

October 2017; they were then asked to repeat these three questionnaires after the launch, for a 

total of six questionnaires completed. 
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 The participants visited the study office to check out the Actigraph+GPS research-grade 

devices for the two one-week periods before and after the launch of the Bruin Bike Share. The 

Actigraph accelerometer was worn on a wrist of the participants choosing and the GlobalSat GPS 

was kept within a 1-meter proximity radius.  The Actigraph was removed during sleep and bathing 

activities (handwashing, showering, etc.). The GlobalSat had to be charged every night by the 

participant using a supplied charging cable, while the Actigraph held a charge for the entire week-

long observation period.  The Actigraph GT3X+ outputs activity data in the form of proprietary 

acceleration counts from three directional axes (tri-axial counts). These counts are unitless and 

unique to Actigraph devices but are heavily used in physical activity tracking research, both in 

laboratory and free-living studies (Abel et al., 2011; Evenson et al., 2008; Freedson et al., 1998; 

Puyau et al., 2002; Trost et al., 2011). The proprietary counts can therefore be converted into 

measures of energy expenditure or other measures of activity level or type. GlobalSat DG-500 

and BT-335 GPS units have a positional horizontal accuracy of less than 2.5 meters and 10 

meters, respectively (GlobalSat WorldCom Corporation, 2022b, 2022a). GPS measurements 

were collected every 15 seconds. Accelerometer tracking data were downloaded using 

Actigraph’s Actilife software version 6.13.3—the raw outputs included 10-second measures of 

steps and tri-axial counts (proprietary) (Actigraph Corp, 2019; Freedson et al., 1998; Keadle et 

al., 2014). GPS unit data were downloaded using GlobalSat’s GPS Tools for Windows. 

Accelerometer and GPS data were combined using linear interpolation based on the time-stamps 

of each device, resulting in a dataset including GPS, tri-axial counts, and steps counted for each 

10-second interpolated interval (Alaimo et al., 2021). A total of 123 of the 163 substudy 

participants collected accelerometry and GPS data using the Actigraph and GlobalSat devices 

that could be interpolated for subsequent analyses, generating 14.0 million 10-second 

observations (Actigraph+GPS).  
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4.2.3 Inclusion criteria and data cleaning 

Actigraph+GPS data were, in part, cleaned previously (Alaimo et al., 2021). Observations 

were restricted spatially to LA County, as this research focuses on physical activity patterns 

relative to the free-living, every-day environment of the study participants. All 123 participants 

lived inside LA County; observations outside the county were excluded from the sample.  

Participants were considered sleeping or inactive between the hours of 10pm and 7am and the 

corresponding observations were excluded.  Actigraph+GPS were also cleaned by hand by 

flagging erroneous observations where speeds over 50 m/s or accelerations over 10 m/ss were 

calculated (Kerr et al., 2011), and then reviewing each flagged observation visually.  Flagged 

review resulted in daily trajectories from nine routes (across nine individuals) being removed. After 

applying inclusion criteria and cleaning the data, 13.4 million observations were retained from 

14.0 million across 123 participants. 

4.2.4 Moderate-to-vigorous physical activity 

Activity data from Actigraph+GPS datasets was converted to metabolic equivalent of task 

(MET) ratios. This was done using equations derived from laboratory-based treadmill studies 

aimed at evaluating Actigraph accelerometers. Step counts from Actigraph+GPS were converted 

to METs using gender-specific non-linear equations from a study of nine men and 10 women 

(Abel et al., 2011). Vertical-axis counts from Actigraph+GPS were converted to METs using an 

equation from a study of 25 men and 25 women (Freedson et al., 1998).  Observations with MET 

ratios above three were considered locations where individuals were engaged in moderate-to-

vigorous physical activity (MVPA) (Tucker et al., 2011). Although Actigraph+GPS data included 

tri-axial measurements, only the vertical-axis counts were included for these analyses to allow for 

better comparison with MVPA derived from step counts, which is also derived from only the 

vertical-axis sensor. All 123 participants recorded at least one day with an observation 

categorized as MVPA.  Across the 123 participants, there were 1,125 person-days where MVPA 
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was observed. These data were utilized as the main study sample for the methods described 

hereafter. 

4.2.5 Physical activity space 

Physical activity space (PAS) polygons were generated from location-based observations 

of MVPA. Two approaches to drawing PASs were utilized: the 500-meter location buffer and the 

minimum convex polygon.  Both methods are commonly used in activity space research (Hirsch 

et al., 2014; J. H. Lee et al., 2016; N. C. Lee et al., 2016; Shannon N Zenk et al., 2011) and are 

considered a major improvement to using home locations as the spatial context for environmental 

exposure (Amoly et al., 2015; Dadvand et al., 2015; van den Berg et al., 2010). We selected 500-

meter location buffers as the main method because this method is superior for describing context 

along routes and it is commonly used in the assessment of green space (Dzhambov et al., 2018; 

Su et al., 2019). We selected minimum convex polygons for comparison, as these polygons often 

include larger regions between observations or routes (J. Wang et al., 2018). 500-meter location 

buffers required a minimum of one observation of MVPA per person-day, while minimum convex 

polygons required a minimum of three observations. Physical activity spaces were generated in 

R Studio version 1.2.5042 (R version 4.2.0). 

4.2.6 Temperature attribution 

Daymet Version 4 (Oak Ridge National Laboratory and NASA, 2022) was utilized for 

attributing heat exposure. Daymet is a continuous 1,000-meter gridded climate summary product 

interpolated from ground-based weather observations. Areal mean daily maximum temperature 

was extracted for each PAS for each person-day of observation (of 1,125 person-days) as well 

as for the same calendar-day for the previous 20 years, previous 10 years, previous 30 days, and 

previous 15 days. Using these data, daily temperature deviations were calculated (e.g., 20-year 

temperature deviation = [daily max temperature] – [20-year average daily maximum temperature]) 

for each period (20-year, 10-year, 30-day, and 15-day). Raw daily maximum temperature was 
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highly correlated with all temperature deviations (correlations between 0.69 and 0.85), so daily 

maximum temperature was used as the main factor describing heat exposure; temperature 

deviations were excluded from subsequent modeling to avoid issues of collinearity and are not 

described here. Temperature data were accessed and extracted using Google Earth Engine via 

the rgee R package (Aybar et al., 2020).  

 

4.2.7 Green space attribution 

We used National Agriculture and Imagery Program (NAIP) multispectral images for 2018 

to attribute green space exposure by PAS. NAIP produces these satellite products approximately 

once every two years; the year 2018 was used here as it included the most temporal overlap with 

the participant data. These 60-centimeter multispectral images include red, green, blue, and 

infrared bands for each mosaiced image. The Normalized Difference Vegetation Index (NDVI) 

from the red and infrared bands is defined as: [Near Infrared – Red] ÷ [Near Infrared + Red].  NDVI 

has a range between -1 and 1, where values closer to 1 are very green and values close to and 

below 0 are not green (i.e., man-made objects, open water, etc.)(NASA Earth Observatory, 2011).  

This index is commonly used to describe green space and has been used in other research 

involving activity space methods (Dadvand et al., 2012a, 2012b; Leslie et al., 2010; McMorris et 

al., 2015; Vienneau et al., 2017). Using the same extraction process utilized for the attribution of 

daily maximum temperature (from Daymet), PASs were used to extract areal mean NDVI for each 

PAS. Green space data were accessed and extracted using Google Earth Engine via the rgee R 

package (Aybar et al., 2020).  
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4.2.8 Statistical modeling 

Questionnaire and Actigraph+GPS data from the 123 PASTA-LA participants were used 

to investigate the relationship between heat exposure (daily maximum temperature deviation) and 

minutes of MVPA per day and the effect modification of this relationship by NDVI. We developed 

four discrete data sets employing location and activity data from Actigraph+GPS, identified 

locations where MVPA was observed by applying two literature-derived equations (Freedson 

1998 and Abel 2011), and employing two geospatial methods for defining PAS polygons (500-

meter location buffer and minimum convex polygon) that were used to quantify heat (daily 

maximum temperature) and green space (NDVI) exposures.   

A linear mixed-effect regression model (Bates et al., 2015) was utilized to assess the 

relationship between daily maximum temperature and minutes of MVPA per day. This model type 

is appropriate to account for within-participant variability, where daily observations are observed 

for each individual.  MVPA (minutes) was loge-transformed due to right skewed data. Covariates 

were selected a priori based on the related literature and included: age (continuous), sex (male = 

1; female = 0), ethnicity (white = 1; non-white = 0), high-school education attainment (completed 

high school = 1; did not complete = 0), job status (employed = 1; unemployed = 0), body mass 

index (BMI) (continuous in kg/m2), and NDVI (continuous). Demographic covariates were 

abstracted from PASTA-LA baseline questionnaires. For ease of interpretability, daily maximum 

temperature was scaled by its interquartile range (IQR) of 7.2°C; NDVI was scaled by its IQR of 

0.078; and age and BMI were converted to z-scores. Due to low observations in subcategories, 

ethnicity and education were dichotomized as noted above.  All covariates were included in the 

final models except for job status, which was excluded due to high correlation with age (r = -0.65) 

and being less predictive of model outcomes. A quadratic term for daily maximum temperature 

(scaled by IQR of 7.2°C) was included for more flexible modeling of the relationship between 

temperature and loge-transformed MVPA, as the added curvature may allow for better inference 

at extreme ends of temperature (much hotter or much colder than normal). This quadratic term 
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was included a priori so as to capture differences, potentially opposite, between the effect of heat 

exposure and extreme heat exposure on physical activity and has been included in other studies 

of heat exposure and physical activity (Ho et al., 2021). To assess the modifying effect of green 

space on the association between heat exposure and physical activity, interactions between 

temperature and NDVI were also included a priori for both linear 

[(𝑚𝑎𝑥. 𝑑𝑎𝑖𝑙𝑦. 𝑡𝑒𝑚𝑝)𝑖𝑗𝑋(𝑁𝐷𝑉𝐼)𝑖𝑗] and quadratic temperature [(𝑚𝑎𝑥. 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝. )2
𝑖𝑗

𝑋(𝑁𝐷𝑉𝐼)𝑖𝑗]  

terms. The linear interaction term and the quadratic interaction term were highly correlated (r = 

0.90) so only one was included. Since the quadratic interaction term improved model fit (using 

restricted maximum likelihood (REML) criterion at convergence (Bates et al., 2015)) more than 

the linear interaction term, the quadratic interaction term is included. The final model equation 

employed can be seen below: 

𝐥𝐨𝐠(𝒎𝒊𝒏𝒖𝒕𝒆𝒔 𝑴𝑽𝑷𝑨)𝒊𝒋 = 𝛽0 +  𝛽1(𝑚𝑎𝑥. 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝. )𝑖𝑗 +  𝛽2(𝑚𝑎𝑥. 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝. )2
𝑖𝑗

+

 𝛽3(𝑁𝐷𝑉𝐼)𝑖𝑗  +  𝛽4(𝑎𝑔𝑒)𝑖  +  𝛽5(𝑠𝑒𝑥)𝑖  + 𝛽6(𝑒𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦)𝑖  +  𝛽7(ℎ𝑖𝑔ℎ 𝑠𝑐ℎ𝑜𝑜𝑙)𝑖  +

 𝛽8(𝐵𝑀𝐼)𝑖  +  𝛽9(𝑚𝑎𝑥. 𝑑𝑎𝑖𝑙𝑦 𝑡𝑒𝑚𝑝. )2
𝑖𝑗𝑋(𝑁𝐷𝑉𝐼)𝑖𝑗 + 𝑢𝑖 + 𝜀𝑖𝑗  

where loge-transformed minutes of MVPA (per person-day) is indexed by i for the i-th indvidual 

using the identifying number assigned to each participant; and j for the j-th observation 

corresponding to the i-th individual. The random intercept here is defined as ui and the error term 

is defined as εij.   

Model results are presented here as regression tables and as figures. The relationship 

between daily maximum temperature (scaled by IQR of 7.2°C) and loge daily MVPA is visualized 

in the figures by constructing point estimates and 95% confidence intervals at the observed 

means (modes for categorical variables) for each of the variables in the model using their 

regression coefficients and 10,000 simulated observations. We illustrate the effect modification of 

NDVI (scaled by IQR of 0.078) on the relationship between daily maximum temperature (scaled 

by IQR of 7.2°C) and MVPA by dichotomizing NDVI at the median and examining this relationship 
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within each segment. Model results derived from exposures attributed using 500-meter location 

buffer PASs applied to Actigraph+GPS data with MVPA categorized using vertical-axis counts 

(Freedson et al., 1998) was considered the main results, as this dataset is most comparable to 

those used by other studies (Jerrett et al., 2013b; Pickering et al., 2016), and because green 

space attributed with this PAS method showed high correlation (r > 0.8; see Dissertation Chapter 

3) between vertical-axis and step count MVPA methods. 

In sensitivity analyses, we restrict sample size to only overlapping person-days between 

(1) the Actigraph+GPS vertical-axis count MVPA and the step-count MVPA datasets; and (2) the 

500-meter location buffer and minimum convex polygon methods. We re-run models to assess 

how difference in exclusions may have influenced the model results. 

R studio version 1.2.5042 (R version 4.2.0) was used for all statistical analyses. The lme4 

and lmerTest R packages were utilized for linear mixed-effect regression modeling (Bates et al., 

2015; Kuznetsova et al., 2017). 

 

4.3 RESULTS 

Among the 123 participants, 68.3% were female, 32.5% were White, 87.8% graduated high 

school, and 51.0% were employed full-time. The participants had an average age of 33 years 

(SD: 11; Range 21 – 66) and an average BMI of 23.6 (SD: 4.0; Range 9.2 – 35.5).  From these 

123 participants, 1,125 person-days were assessed across 275 days. For this period, 13.4 million 

observations of location and activity from Actigraph+GPS were included where participants 

contributed an average of 13.21 days (SD: 4.01; Median: 14.78; Range: 4.30 – 29.00) of tracking 

data.  

 The 500-meter location buffer PASs derived from Actigraph+GPS observations and 

categorized as MVPA using vertical-axis accelerometry counts (Freedson et al., 1998) were used 

to quantify temperature and NDVI. MVPA categorization further restricted the 123-person (1,125 
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person-days) sample to 122 individuals (observed across 1,105 person-days on 275 unique 

days). A description of this final sample is shown in Table 4.2. Across these 1,105 person-days, 

participants engaged in an average of 6.31 (SD=9.30) minutes of MVPA per day; had an average 

physical activity space that was 1.97 (SD=1.18) square-kilometers in area; were exposed to 

average daily maximum temperatures of 25.5 °C (SD=5.4); and were exposed to green space 

with an average NDVI of 0.045 (SD=0.060). 

Adjusted linear mixed-effect regression model results are shown in Table 4.3. Neither the 

linear term for daily maximum temperature (IRR=1.014; CI=0.602, 1.716) nor the quadratic term 

for daily maximum temperature (IRR=1.012; CI=0.940, 1.088) was associated with loge daily 

MVPA.  Increased exposure to green space (scaled by NDVI IQR of 0.078) was found to be 

significantly associated with an increase in loge daily minutes of MVPA (IRR=1.117; CI=1.032, 

1.210). Age (z-score years) was also significantly inversely associated with MVPA (IRR=0.861, 

CI = 0.778, 0.954) and men had higher MVPA than women (IRR = 0.693; CI = 0.564, 0.851). 

Figure 4.1 illustrates model-predicted loge minutes of MVPA per day associated with daily 

maximum temperature (scaled by IQR of 7.2°C) (accounting for both the linear and quadratic 

terms). As shown, the adjusted model predicts an increase in MVPA with increasing daily 

maximum temperature across 10,000 simulated observations. 

Table 4.4 includes in the above model an interaction term between temperature (quadratic 

term of daily maximum temperature scaled by IQR of 7.2°C) and green space (NDVI scaled by 

IQR of 0.078). As in the model without the interaction term, we observe no association between 

the linear term for temperature (IRR=1.053; CI=0.623, 1.786) nor the quadratic term for 

temperature (IRR=1.001, CI=0.929, 1.078) and daily MVPA. The interaction term, however, was 

found to be marginally positively associated with daily MVPA (IRR=1.008; CI=0.996, 1.021). 

Figure 4.2 illustrates the model-predicted MVPA (including quadratic interaction) associated with 

daily maximum temperature for the bottom half (< median NDVI) and top half (> median NDVI) of 

green space exposures, by person-day. With lower than the median green space exposure, we 



 

144 

observe an increase in physical activity up until 25.8°C (the median temperature) and then a slight 

decrease in activity with higher temperatures (Figure 4.2: LEFT). With greater than the median 

green space exposure, however, we observe little change in activity before 25.8°C but an increase 

in activity with higher temperatures (Figure 2: RIGHT).   

We also compared the results of the main PAS method, utilizing 500-meter location buffer 

PASs, derived from observations with MVPA categorized using vertical-axis counts (Freedson et 

al., 1998), to the three other PAS methods: (1) 500-meter location buffer PASs, derived from 

observations with MVPA categorized using step counts (Abel et al., 2011); (2) minimum convex 

polygon PASs, derived from observations with MVPA categorized using vertical-axis counts 

(Freedson et al., 1998); and (3) minimum convex polygon PASs, derived from observations with 

MVPA categorized using step counts (Abel et al., 2011). Description of the sample produced by 

each method is shown in Supplemental Table 1. Adjusted linear mixed-effect regression model 

results for these three methods (and the main model) are displayed in Supplemental Table 2. 

Supplemental Table 3 includes adjustment for the interaction between quadratic temperature 

and NDVI. As outlined in Table 4.5, there are key differences in the results depending on the 

method utilized. Only the model with exposures quantified using 500-meter location buffers, 

derived from observations with MVPA categorized using step counts (Abel et al., 2011), 

demonstrated an association (p < 0.1) between the linear term for daily maximum temperature 

and MVPA.  Both models using the 500-meter location buffers (vertical-axis count and step count) 

demonstrated positive associations between NDVI and daily MVPA, and a significant interaction 

between temperature (quadratic term) and green space on daily MVPA. None of the models using 

minimum convex polygons found any association between any of the main effects (temperature, 

temperature2, NDVI) or of the interaction (temperature2 and NDVI) and daily MVPA. To better 

understand the differences among the models using the minimum convex polygon and the 500-

meter location buffer PAS methods (both using the vertical-axis counts), we compare the 

prediction plots in Supplemental Figures 1–2 (minimum convex polygon) with Figures 1–2 (500-
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meter location buffer). Although the regression models using minimum convex polygons do not 

produce significant associations (Table 4.5), the predicted trends are similar across both PAS 

methods, albeit attenuated for those using the minimum convex polygons. In sensitivity analyses 

restricting the models to overlapping person-days, we found that the results were largely 

unchanged with one notable exception; the association between the interaction (temperature2 and 

NDVI) and MVPA using the minimum convex polygon PAS methods now became marginally 

significant as we had observed for the 500-meter location buffer methods (Supplemental Tables 

4–7 compared to Supplemental Tables 2–3).  

 

4.4 DISCUSSION 

This study evaluated the relationship between heat exposure (daily maximum temperature 

observed within an individual’s daily physical activity space) and daily minutes of moderate-to-

vigorous physical activity, using sensor-collected location and activity data from 123 individuals 

across 1,125 person-days. We compared our main model using 500-meter location buffer with 

MVPA categorized by vertical-axis counts (Freedson et al., 1998) with results to three other PAS-

based approaches to quantifying spatiotemporal covariates (500-meter location buffer with step 

count and minimum convex polygon with vertical-axis count and with step count). We found that 

using the main model, NDVI but not heat exposure was associated with MVPA and NDVI modified 

the relationship of heat exposure and MVPA. Prediction plots indicated in the main effect model 

(accounting for the linear and quadratic terms) that there was a slight increase in activity with 

increasing temperatures and in the interaction model (accounting for the quadratic and quadratic 

interaction terms) that when the temperatures were hotter than normal, individuals with lower daily 

exposure to green space (< median NDVI) engaged in less MVPA whereas individuals with higher 

daily exposure to green space (> median NDVI) engaged in more MVPA. The other PAS-based 
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approaches showed similar findings between heat and physical activity and the effect modification 

of green space on this association. 

Chan et al., using pedometers (single-axis accelerometer) to track participant activity, 

observed a 2.9% (CI: 0.4% to 5.4%) increase in steps per day for every 10°C increase in mean 

temperature (Chan et al., 2006) but no decrease in the amount of physical activity associated with 

more extreme heat exposure (i.e., heat waves, or temperature deviations closer to the warmer 

temperature right-tail of the distribution). In a study of 1.9 million U.S. survey respondents, 

researchers showed that increases in temperatures remaining below 29 degrees Celsius (°C) led 

to increased physical activity but that incident increases in temperature above 29°C were 

associated with reduced physical activity (Obradovich and Fowler, 2017). Prediction plots 

demonstrate comparable results to Chan et al., showing increases in MVPA with higher daily 

temperature deviation, but we do not detect a flip in this association for the warmest temperature 

deviations.  Although we would expect physical activity to decrease at the highest temperatures, 

this was not observed in our sample possibly due to insufficient observations at more extreme 

temperatures. It is also possible, that due to the availability of outdoor recreational options in LA 

County, participants in our sample may have mitigated more extreme heat exposure by engaging 

with green spaces or other locations with cooling features (e.g., the beach). Since green spaces 

and shaded areas generate cooling, using PASs to attribute both green space and heat exposure 

may have led to exposure error (Hamada and Ohta, 2010; Ho et al., 2021). 

 The observed modifying effect of green space on the relationship between heat exposure 

and physical activity is consistent with the results of other studies, although there is minimal 

research on this subject. In a 2021 study of 352 adults living in cities in Spain, Holland, Lithuania, 

and the United Kingdom, Ho et al. (Ho et al., 2021) collected accelerometry and location data 

from a smartphone app (CalFit) and attributed green space exposure using NDVI extracted by 

30-meter grid cell and temperature using the nearest local weather station. They showed that a 

10°C increase in temperature resulted in a decrease in physical activity in the lowest quartile of 
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NDVI, an increase in physical activity in the 2nd and 3rd quartiles of NDVI (except in Holland where 

it decreased), and an increase in physical activity in the 4th quartile of NDVI in Spain and Lithuania 

but a decrease in Holland and the United Kingdom. In comparison, we showed a slight decrease 

in physical activity with increased heat exposure (approximately > median temperature of 25.8°C) 

for the bottom half of NDVI and an increase in physical activity with increased heat exposure for 

the top half of NDVI. 

Our approach had some limitations. Although a large quantity of the original PASTA-LA 

location and activity tracking data (N = 440) were excluded for the present study (N = 123), internal 

validity was retained as we are modeling within-participant effects across person-days (Deeks et 

al., 2003) and other studies have excluded similar amounts of tracking data (Jerrett et al., 2013a). 

In addition, our methods may artificially increase the level of activity of the sample analyzed 

because the inclusion criteria and geospatial methods applied to the underlying location and 

activity data are more likely to exclude lower-MVPA person-days than higher-MVPA person-days. 

For this reason, it is possible our methods and results are more applicable for assessment and 

comparison of more active populations, such as athletes. We also employ only one metric for 

defining heat exposure (areal-mean daily maximum temperature) and one metric for defining 

green space exposure (areal-mean NDVI). More contemporary metrics for these outcomes, such 

as “heat indexes” for heat exposure (Brooke Anderson et al., 2013) and Google-Street-View 

“green view indexes” (Li et al., 2015) for green space exposure, could be used to determine how 

these metrics impact results.   

Our study had a number of important strengths. While other studies have used only one 

method to define spatiotemporal covariates (MVPA, green space and heat exposure), we have 

examined the relationship between heat and physical activity with four different geospatial 

approaches. While Ho et al. (Ho et al., 2021) attributed green space from a 30-meter grid cell 

containing each observation, we used physical activity spaces to define the surrounding area of 

exposure. Similarly, Ho et al. attributed temperature using the nearest weather station 
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measurement, whereas we used continuous interpolated surfaces (Daymet V4) extracted by PAS. 

Our geospatial methods provide a potentially improved framework for combining these 

spatiotemporally misaligned covariate data where the use of activity space methodologies (PASs 

in this case) may improve quantification of surroundings and avoid exposure misclassification 

(Perchoux et al., 2013b). Furthermore, we have shown that although modeled associations may 

be attenuated by using different exposure quantification methods (i.e., 500-meter location buffer 

versus minimum convex polygon), the model-predicted outcomes follow similar trends—implying 

that choices in geospatial methods may matter less than the underlying data analyzed. Future 

research would benefit from similar analyses applied to other populations and regions. Our 

methods can provide a framework toward choosing methods for compiling datasets aimed at the 

assessment of physical activity, heat exposure, and green space. 

 

4.5 CONCLUSION 

This study found that increased heat exposure (defined as daily maximum temperature) 

was associated with increased physical activity (MVPA). In hotter than average temperatures, 

individuals with more green space in their surroundings were likely to engage in more MVPA, 

whereas individuals with less green space in their surroundings were likely to engage in slightly 

less MVPA.  We evaluated multiple spatiotemporal approaches to attribute physical activity 

outcomes, heat exposure, and green space exposure, and found these results to be robust to the 

methods selected. The spatiotemporal methods employed improve upon other existing literature 

by introducing new activity space methods applied to high-resolution covariate information to 

account for misalignment of spatial covariates—a major limitation of previous research. 
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Table 4.1: Data sources utilized for the assessment of exposure to heat on physical activity  

Data sources utilized for the assessment of exposure to heat (defined as daily maximum temperature) on daily minutes 
of MVPA; including covariates. 

Data source 
Attribute(s) Spatial 

Dimension 
Epoch of 
Collection 

 

Collection 
Period 

Actigraph GT3x+ 
(PASTA-LA) 

Steps, counts*, date-
time 

- 
 
 

10 seconds May 2017- 
May 2018 

GlobalSat BT-335; 
DG-500 
(PASTA-LA) 

GPS coordinates, date-
time 

Point  
(accuracy: 
 10-meters;  
<2.5 meters) 

15 seconds May 2017- 
May 2018 

Online 
Questionnaire 
(PASTA-LA) 

Age, sex, ethnicity, BMI, 
educational attainment, 
job status, home 
address, work address 

- - May 2017- 
May 2018 

USDA NAIP** 
(via Google Earth 
Engine) 
 

Multispectral (4-band: 
red, green, blue, 
infrared) image 

60 centimeters Annual 2016, 2018 

NASA Daymet V4 
(via Google Earth 
Engine) 
 

Daily maximum 
temperature (Celsius) 

1,000 meters Daily May 2017- 
May 2018 

*’Counts’ are a proprietary unitless metric unique to Actigraph-branded accelerometers. 
**U.S. Department of Agriculture, National Agriculture Imagery Program 
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Table 4.2: Description of sample for main model 

Description of sample, minutes of MVPA per person-day, size of PAS polygons, daily maximum temperature, and 
areal mean NDVI (NAIP 2018) from activity and location data. 

PAS → 500-m Location Buffer 

MVPA conversion → Freedson et al., 1998  

N 122 

N Person-days 1105 

Daily MVPA (mins)  

 M±SD 6.319.30 

 Median (Range) 3.00(0.17, 70.00) 

PAS area (km2)  

 M±SD 1.9731.177 

 Median (Range) 1.771(0.785, 9.291) 

Daily max. temp. (°C)  

 M±SD 25.55.4 

 Median (Range) 25.8(14.1, 42.2) 

 IQR 7.2 

2018 NDVI  

 M±SD 0.0450.060 

 Median (Range) 0.039 (-0.132, 0.234) 

 IQR 0.078 
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Table 4.3: Adjusted models of association for temperature and MVPA 

Adjusted models for the association of daily maximum temperature (scaled by IQR of 7.2°C) and loge daily minutes of 
MVPA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDaily maximum temperature scaled by interquartile range (IQR) of 7.2°C 
bAreal mean 2018 NDVI by PAS, scaled by IQR of 0.078 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 

 

 

  

 
Actigraph+GPS: 

Log MVPA by  
Freedson 1998 

(vertical-axis count) 

 
N=122 (1,105 pers.-days) 

 
500-meter Location Buffer 

IRR CI 

Daily maximum temperaturea 1.014 0.602 1.716 
Daily maximum temperature2 1.012 0.940 1.088 
2018 NDVIb 1.117 1.032 1.210 
Age (years)c 0.861 0.778 0.954 
Sexd 0.693 0.564 0.851 
BMIe 1.025 0.936 1.122 
High school educationf 0.977 0.719 1.327 
Ethnicityg 1.061 0.862 1.305 
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Table 4.4: Adjusted models of association for temperature and MVPA, including interaction 
between temperature2 and NDVI 

Adjusted models of association between daily maximum temperature (scaled by IQR of 7.2°C) and loge daily minutes 
of MVPA, including interaction between quadratic temperature and NDVI (scaled by IQR of 0.078). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDaily maximum temperature scaled by interquartile range (IQR) of 7.2°C 
bAreal mean 2018 NDVI by PAS, scaled by IQR of 0.078 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0

 
Actigraph+GPS: 

Log MVPA by  
Freedson 1998 

(vertical-axis count) 

 
N=122 (1,105 pers.-days) 

 
500-meter Location Buffer 

IRR CI 

Daily maximum temperaturea 1.053 0.623 1.786 
Daily maximum temperature2 1.001 0.929 1.078 
2018 NDVIb 0.999 0.832 1.204 
Age (years)c 0.858 0.775 0.951 
Sexd 0.693 0.564 0.851 
BMIe 1.024 0.936 1.121 
High school educationf 0.976 0.718 1.326 
Ethnicityg 1.059 0.860 1.303 
Max. daily temp.2 X 2018 NDVI 1.008 0.996 1.021 
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Table 4.5: Comparison of model results for four methods  

Table of model results for the association between daily maximum temperature (scaled by IQR of 7.2°C) and loge minutes of MVPA for main dataset (500-m Location 
Buffer PAS, from Actigraph+GPS data using Freedson-1998 MVPA conversion) and three models included for sensitivity analysis and comparison; as well as the 
association between green space (NDVI) and MVPA, and the interaction between quadratic daily maximum temperature and MVPA. 

 
 

METHOD SAMPLE MODEL RESULTS 
 

 
 
 

PAS 
Method 

 
 
 

Data 
Source 

 
 
 

MVPA 
Formula 

 
 
 

N 

 
 
 

Person-Days 

 
Temperature 

Associated with 
 MVPA 

 
Temperature2 

Associated with 
 MVPA 

 

 
NDVI 

Associated with 
MVPA 

 
Temp.2 X NDVI 
Associated with 

 MVPA 

 

 

 
Yes/No 

 
Sign 

 
Yes/No 

 
Sign 

 
Yes/No 

 
Sign 

 
Yes/No 

 
Sign  

 
500-m 

Location 
Buffer 

 
Act+GPS 

 
Freedson 

 
122 

 
1105 

 
N 

  
N 

  
Y** 

 
+ 

 
Y ϯ 

 
+   

Act+GPS Abel 119 828 Y ϯ - N  Y*** + Y* + 
  

              

 
Minimum 
Convex 
Polygon 

 
Act+GPS 

 
Freedson 

 
120 

 
894 

 
N 

  
N 

  
N 

  
N 

 
 

Act+GPS Abel 115 710 N  N  N  N  

   

*** p < 0.001; ** p < 0.01; * p < 0.05; ϯ p < 0.1 
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Figure 4.1: Predicted MVPA associated with daily maximum temperature 

Predicted loge minutes of daily MVPA associated with daily maximum temperature (scaled by IQR of 7.2°C); figure 
generated using point estimates and 95% confidence intervals derived from linear mixed-effected regression model 
coefficients applied to means (continuous covariates) and modes (categorical covariates). 
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Figure 4.2: Predicted MVPA associated with daily maximum temperature, stratified by median NDVI 

Predicted loge minutes of daily MVPA associated with daily maximum temperature (scaled by IQR of 7.2°C) – for the bottom 50% (< median) of attributed NDVI by 
person-day (A) and the top 50% (> median) of attributed NDVI by person-day (B); figures generated using point estimates and 95% confidence intervals derived 

from linear mixed-effected regression model coefficients, including interaction 𝜷𝟗(𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑫𝒂𝒊𝒍𝒚 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆)𝟐
𝒊𝒋

𝑿(𝑵𝑫𝑽𝑰)𝒊𝒋, applied to means (continuous 

covariates) and modes (categorical covariates). 

 

  

  

BOTTOM 50% OF NDVI TOP 50% OF NDVI 

A B 
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4.6 APPENDIX A. Supplemental Table 1: Description of sample from four exposure methods 

Description of sample, minutes of MVPA per person-day, size of PAS polygons, daily maximum temperature, and areal mean NDVI (NAIP 2018) from activity and 
location data for four methods. 

PAS → 500-m Location Buffer Minimum Convex Polygon 

MVPA conversion → Freedson et al., 1998  Abel et al., 2011 Freedson et al., 1998 Abel et al., 2011 

N 122 119 120 115 
N Person-days 1105 828 894 710 
Daily MVPA (mins)     
    M±SD 6.319.30 7.558.48 7.489.42 8.718.59 
    Median (Range) 3.00(0.17, 70.00) 4.83(0.17, 62.31) 4.00(0.83, 65.72) 6.01(0.83, 62.31) 
PAS area (km2)     
    M±SD 1.9731.177 1.7881.030 9.27439.432 1.90810.496 
    Median (Range) 1.771(0.785, 9.291) 1.652(0.785, 15.140) 0.026(1.0m2, 526.978) 0.014(1.0m2, 211.279) 
Daily max. temp. (°C)     
    M±SD 25.55.4 25.15.4 25.65.3 24.95.4 
    Median (Range) 25.8(14.1, 42.2) 25.2(13.8, 39.0) 26.0(14.4, 42.2) 25.2(13.9, 39.0) 
    IQR 7.2 7.6 7.0 7.9 
2018 NDVI     
    M±SD 0.0450.060 0.0510.064 0.0330.077 0.0320.088 
    Median (Range) 0.039 (-0.132, 0.234) 0.048 (-0.159, 0.301) 0.025 (-0.195, 0.504) 0.023 (-0.228, 0.409) 
    IQR 0.078 0.088 0.086 0.109 
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4.7 APPENDIX B. Supplemental Table 2: Adjusted models of association for temperature 
and MVPA – for four exposure methods 

 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 

  

Adjusted models of association between daily maximum temperature and daily minutes of MVPA. Model sample size 
is variable due to exclusions that occur based on either difference in MVPA classification (Freedson vs. Abel) or 
restrictions on the number of observations needed to draw polygons (i.e., Minimum Convex Polygons require a 
minimum of three observations while 500-m buffers only require one.) 

 
A. Actigraph+GPS: 

Log MVPA by  
Freedson 1998 

(vertical-axis count) 

 
N=122 (1,105 pers.-days) 

 
500-meter Location Buffer 

  
N=120 (894 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 1.014 0.602 1.716  0.968 0.572 1.638 
Daily maximum temperature2 1.012 0.940 1.088  1.015 0.944 1.090 
2018 NDVIb 1.117 1.032 1.210  1.034 0.973 1.100 
Age (years)c 0.861 0.778 0.954  0.927 0.848 1.014 
Sexd 0.693 0.564 0.851  0.759 0.631 0.912 
BMIe 1.025 0.936 1.122  1.028 0.948 1.114 
High school educationf 0.977 0.719 1.327  0.805 0.614 1.053 
Ethnicityg 1.061 0.862 1.305  1.033 0.854 1.247 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=119 (828 pers.-days) 

 
500-meter Location Buffer 

  
N=115 (710 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.565 0.297 1.072  0.595 0.312 1.121 
Daily maximum temperature2 1.070 0.973 1.178  1.072 0.972 1.186 
2018 NDVIb 1.262 1.148 1.388  1.000 0.929 1.078 
Age (years)c 0.874 0.778 0.981  0.888 0.799 0.987 
Sexd 0.815 0.648 1.027  0.898 0.728 1.109 
BMIe 0.938 0.845 1.042  0.955 0.869 1.050 
High school educationf 0.959 0.680 1.352  0.806 0.592 1.095 
Ethnicityg 0.936 0.738 1.187  1.029 0.824 1.283 
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4.8 APPENDIX C. Supplemental Table 1: Adjusted models of association for temperature 
and MVPA, including interaction between temperature2 and NDVI – for four exposure 
methods  

 

 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 

Adjusted models of association between daily maximum temperature and daily minutes of MVPA, including 
adjustment for the interaction between quadratic temperature and NDVI. Model sample size is variable due to 
exclusions that occur based on either difference in MVPA classification (Freedson vs. Abel) or restrictions on the 
number of observations needed to draw polygons (i.e., Minimum Convex Polygons require a minimum of three 
observations while 500-m buffers only require one.) 

 
A. Actigraph+GPS: 

Log MVPA by  
Freedson 1998 

(vertical-axis count) 

 
N=122 (1,105 pers.-days) 

 
500-meter Location Buffer 

  
N=120 (894 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 1.053 0.623 1.786  1.004 0.592 1.702 
Daily maximum temperature2 1.001 0.929 1.078  1.006 0.936 1.082 
2018 NDVIb 0.999 0.832 1.204  0.940 0.811 1.092 
Age (years)c 0.858 0.775 0.951  0.925 0.846 1.012 
Sexd 0.693 0.564 0.851  0.753 0.626 0.906 
BMIe 1.024 0.936 1.121  1.027 0.947 1.113 
High school educationf 0.976 0.718 1.326  0.807 0.616 1.056 
Ethnicityg 1.059 0.860 1.303  1.031 0.852 1.246 
Max. daily temp.2 X 2018 NDVI 1.008 0.996 1.021  1.007 0.997 1.017 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=119 (828 pers.-days) 

 
500-meter Location Buffer 

  
N=115 (710 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.668 0.344 1.284  0.619 0.323 1.173 
Daily maximum temperature2 1.030 0.931 1.141  1.063 0.961 1.177 
2018 NDVIb 1.006 0.805 1.265  0.928 0.772 1.118 
Age (years)c 0.871 0.775 0.979  0.888 0.799 0.987 
Sexd 0.810 0.643 1.022  0.893 0.724 1.103 
BMIe 0.938 0.845 1.042  0.955 0.869 1.051 
High school educationf 0.955 0.676 1.349  0.806 0.593 1.096 
Ethnicityg 0.921 0.725 1.170  1.026 0.822 1.280 
Max. daily temp.2 X 2018 NDVI 1.020 1.002 1.038  1.007 0.991 1.024 
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4.9 APPENDIX D. Supplemental Table 4: Adjusted models of association for temperature 
and MVPA – for four exposure methods using overlapping samples by PAS type 

 
 

 

 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 

 

 

 

Adjusted models of association between daily maximum temperature and daily minutes of MVPA. Only overlapping 
person-days are utilized to compare between Actigraph+GPS (Freedson) and Actigraph+GPS (Abel) for the same 
PAS polygon method (i.e., 500-m buffer and minimum convex polygon.) 

 
A. Actigraph+GPS: 

Log MVPA by  
Freedson 1998 

(vertical-axis count) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 1.005 0.519 1.921  0.825 0.422 1.576 
Daily maximum temperature2 1.010 0.922 1.109  1.039 0.950 1.140 
2018 NDVIb 1.123 1.013 1.245  1.029 0.947 1.121 
Age (years)c 0.857 0.762 0.966  0.938 0.840 1.048 
Sexd 0.745 0.591 0.937  0.744 0.598 0.925 
BMIe 1.088 0.979 1.208  1.059 0.961 1.167 
High school educationf 1.002 0.711 1.410  0.808 0.590 1.104 
Ethnicityg 1.128 0.886 1.433  1.108 0.877 1.398 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.560 0.288 1.088  0.672 0.329 1.357 
Daily maximum temperature2 1.072 0.971 1.184  1.053 0.944 1.177 
2018 NDVIb 1.214 1.102 1.339  0.981 0.901 1.070 
Age (years)c 0.898 0.795 1.014  0.911 0.812 1.021 
Sexd 0.814 0.641 1.034  0.905 0.720 1.136 
BMIe 0.918 0.824 1.024  0.947 0.855 1.049 
High school educationf 0.896 0.629 1.276  0.766 0.551 1.065 
Ethnicityg 0.915 0.714 1.172  1.024 0.803 1.305 
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4.10 APPENDIX E. Supplemental Table 5: Adjusted models of association for temperature 
and MVPA, including interaction between temperature2 and NDVI – for four exposure 
methods using overlapping samples by PAS type 

Adjusted models of association between Daily maximum temperature and daily minutes of MVPA, including 
adjustment for the interaction between quadratic temperature and NDVI. Only overlapping person-days are utilized to 
compare between Actigraph+GPS (Freedson) and Actigraph+GPS (Abel) for the same PAS polygon method (i.e., 
500-m buffer and minimum convex polygon.) 

Actigraph+GPS: 
Log MVPA by 

Freedson 1998 
(vertical-axis count) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.619 0.323 1.173  0.937 0.475 1.804 
Daily maximum temperature2 1.063 0.961 1.177  1.012 0.923 1.114 
2018 NDVIb 0.928 0.772 1.118  0.853 0.701 1.044 
Age (years)c 0.888 0.799 0.987  0.941 0.843 1.052 
Sexd 0.893 0.724 1.103  0.733 0.588 0.912 
BMIe 0.955 0.869 1.051  1.050 0.952 1.159 
High school educationf 0.806 0.593 1.096  0.807 0.588 1.105 
Ethnicityg 1.026 0.822 1.280  1.111 0.878 1.403 
Max. daily temp.2 X 2018 NDVI 1.007 0.991 1.024  1.015 1.000 1.030 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.682 0.346 1.338  0.701 0.342 1.424 
Daily maximum temperature2 1.022 0.921 1.135  1.041 0.931 1.166 
2018 NDVIb 0.907 0.721 1.147  0.888 0.714 1.104 
Age (years)c 0.894 0.791 1.011  0.913 0.813 1.022 
Sexd 0.807 0.635 1.028  0.897 0.714 1.127 
BMIe 0.918 0.823 1.025  0.946 0.854 1.048 
High school educationf 0.893 0.625 1.274  0.769 0.554 1.069 
Ethnicityg 0.898 0.700 1.153  1.021 0.801 1.301 
Max. daily temp.2 X 2018 NDVI 1.026 1.007 1.044  1.010 0.990 1.029 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 
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4.11 APPENDIX F. Supplemental Table 6: Adjusted models of association for temperature 
and MVPA—for four exposure methods using overlapping samples by MVPA conversion 
equation 

Adjusted models of association between daily maximum temperature and daily minutes of MVPA. Only overlapping 
person-days are utilized to compare between 500-meter location buffer and minimum convex polygon for the same 
MVPA conversion (Freedson vs. Abel). 

Actigraph+GPS: 
Log MVPA by 

Freedson 1998 
(vertical-axis count) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 
Daily maximum temperaturea 0.968 0.566 1.657  0.968 0.572 1.638 
Daily maximum temperature2 1.016 0.943 1.095  1.015 0.944 1.090 
2018 NDVIb 1.108 1.018 1.208  1.034 0.973 1.100 
Age (years)c 0.939 0.860 1.027  0.927 0.848 1.014 
Sexd 0.766 0.638 0.918  0.759 0.631 0.912 
BMIe 1.035 0.956 1.121  1.028 0.948 1.114 
High school educationf 0.862 0.658 1.127  0.805 0.614 1.053 
Ethnicityg 1.024 0.849 1.232  1.033 0.854 1.247 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=118 (744 pers.-days) 

 
500-meter Location Buffer 

  
N=110 (561 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 
Daily maximum temperaturea 0.704 0.380 1.292  0.595 0.312 1.121 
Daily maximum temperature2 1.043 0.953 1.144  1.072 0.972 1.186 
2018 NDVIb 1.194 1.086 1.312  1.000 0.929 1.078 
Age (years)c 0.903 0.814 1.003  0.888 0.799 0.987 
Sexd 0.883 0.718 1.087  0.898 0.728 1.109 
BMIe 0.956 0.871 1.050  0.955 0.869 1.050 
High school educationf 0.881 0.649 1.196  0.806 0.592 1.095 
Ethnicityg 1.038 0.835 1.291  1.029 0.824 1.283 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 
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4.12 APPENDIX G. Supplemental Table 7: Adjusted models of association for temperature 
and MVPA, including interaction between temperature2 and NDVI – for four exposure 
methods using overlapping samples by MVPA conversion equation 

Adjusted models of association between daily maximum temperature and daily minutes of MVPA, including 
adjustment for the interaction between quadratic temperature and NDVI. Adjusted models of association between 
daily maximum temperature and daily minutes of MVPA. Only overlapping person-days are utilized to compare 
between 500-meter location buffer and minimum convex polygon for the same MVPA conversion (Freedson vs. 
Abel). 

Actigraph+GPS: 
Log MVPA by 

Freedson 1998 
(vertical-axis count) 

 
N=120 (894 pers.-days) 

 
500-meter Location Buffer 

  
N=120 (894 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.985 0.574 1.689  1.004 0.592 1.702 
Daily maximum temperature2 1.011 0.936 1.091  1.006 0.936 1.082 
2018 NDVIb 1.041 0.847 1.286  0.940 0.811 1.092 
Age (years)c 0.938 0.859 1.026  0.925 0.846 1.012 
Sexd 0.765 0.638 0.918  0.753 0.626 0.906 
BMIe 1.035 0.955 1.120  1.027 0.947 1.113 
High school educationf 0.861 0.658 1.126  0.807 0.616 1.056 
Ethnicityg 1.022 0.847 1.230  1.031 0.852 1.246 
Max. daily temp.2 X 2018 NDVI 1.004 0.991 1.018  1.007 0.997 1.017 

 
B. Actigraph+GPS: 

Log MVPA by  
Abel 2011 

(steps) 

 
N=115 (710 pers.-days) 

 
500-meter Location Buffer 

  
N=115 (710 pers.-days) 

 
Minimum Convex Polygon 

IRR CI  IRR CI 

Daily maximum temperaturea 0.851 0.449 1.595  0.619 0.323 1.173 
Daily maximum temperature2 0.998 0.905 1.104  1.063 0.961 1.177 
2018 NDVIb 0.949 0.757 1.194  0.928 0.772 1.118 
Age (years)c 0.899 0.810 0.999  0.888 0.799 0.987 
Sexd 0.875 0.711 1.078  0.893 0.724 1.103 
BMIe 0.958 0.872 1.052  0.955 0.869 1.051 
High school educationf 0.874 0.643 1.188  0.806 0.593 1.096 
Ethnicityg 1.031 0.829 1.284  1.026 0.822 1.280 
Max. daily temp.2 X 2018 NDVI 1.020 1.002 1.039  1.007 0.991 1.024 

aDaily maximum temperature scaled by interquartile range (IQR) 
bAreal mean 2018 NDVI by PAS, scaled by IQR 
cZ-score of age (continuous years) 
dFemale = 1; Male = 0 
eZ-score of BMI (continuous kg/m2) 
fCompleted high school = 1; did not complete high school = 0 
gWhite = 1; non-White = 0 
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4.13 APPENDIX H. Supplemental Figure 1: Predicted MVPA associated with daily maximum 
temperature for minimum convex polygon PASs created from Freedson 1998 MVPA 

Sensitivity analysis using dataset from minimum convex polygon PASs, derived from Actigraph+GPS data with MVPA 
categorized using vertical-axis counts (Freedson et al., 1998) – Predicted loge minutes of daily MVPA associated with 
daily maximum temperature (scaled by IQR of 7.2°C); figure generated using point estimates and 95% confidence 
intervals derived from linear mixed-effected regression model coefficients applied to means (continuous covariates) 
and modes (categorical covariates). 
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4.14 APPENDIX I. Supplemental Figure 2: Predicted MVPA associated with daily maximum temperature, stratified by median 
NDVI, for minimum convex polygon PASs created from Freedson 1998 MVPA 

Sensitivity analysis using dataset from minimum convex polygon PASs, derived from Actigraph+GPS data with MVPA categorized using vertical-axis counts 
(Freedson et al., 1998) – Predicted loge minutes of daily MVPA associated with daily maximum temperature (scaled by IQR of 7.2°C) – for the bottom 50% (< 
median) of attributed NDVI by person-day (LEFT) and the top 50% (> median) of attributed NDVI by person-day (RIGHT); figures generated using point estimates 
and 95% confidence intervals derived from linear mixed-effected regression model coefficients, including interaction 

𝜷𝟗(𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑫𝒂𝒊𝒍𝒚 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆)𝟐
𝒊𝒋

𝑿(𝑵𝑫𝑽𝑰)𝒊𝒋, applied to means (continuous covariates) and modes (categorical covariates). 
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CHAPTER 5: SUMMARY OF DISSERTATION FINDINGS AND FUTURE RESEARCH 

RECOMMENDATIONS 

5.1 INTRODUCTION 

The goal of this dissertation was to investigate emerging geospatial methods for 

constructing ‘big data’ datasets from multiple spatiotemporally misaligned data sources.  Models 

of association require multiple descriptors, factors, or covariates, and spatial models are often 

derived from multiple sources recorded at disparate times and locations. In the study of 

Environmental Health Sciences, models often include environmental exposures or contexts which 

can be quantified from data of very different temporal (e.g., 5-second instantaneous vs. 1-year 

average) or spatial (e.g., 60-centimeter vs. 1-kilometer) resolutions. Over-simplification when 

combining these data sources can lead to misclassification of key variables (e.g., exposure). 

Through three case studies, this dissertation offered alternative methods to quantifying 

spatiotemporally misaligned variables and investigated how choice in geospatial method could 

impact modeling results.  

In the case study reported in Chapter 2, we report on a small-area study of COVID-19 and 

traffic-related air pollution.  We demonstrated the use of residential-building footprints as an 

intermediate spatial-aggregation geography, to combine intersecting areal population data—in 

this case, COVID-19 outcomes (at the neighborhood level) and population demographics (at the 

census-tract level). In Chapter 3, we presented multiple methodologies for using location and 

activity data from accelerometers, GPS units, and smartphones to define physical activity spaces 

and then to quantify green space exposure within those spaces. We demonstrated these 

methodologies on free-living study participants and compared results on attributed exposure from 

21 geospatial methods. Finally, in the case study reported in Chapter 4, we provided an example 

for how the methods in Chapter 3 could be utilized in the modeling of heat exposure and physical 
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activity, as modified by exposure to green space. Again, we demonstrated how choice in 

geospatial methods (used to attribute exposure from misaligned data) may impact study 

conclusions.  

 

5.2 COVID-19 AND TRAFFIC-RELATED AIR POLLUTION 

The research in Chapter 2 described some of the first small-area analyses on the 

association of environmental exposure with COVID-19 incidence and mortality. Since this chapter 

was published in Environment International (Lipsitt et al., 2021), more research utilizing small-

area and individual-level COVID-19 outcome data has been conducted (Kerr et al., 2021; 

Konstantinoudis et al., 2021) and corroborated our findings. After adjusting for selected 

confounders, we found NO2 to be positively associated with COVID-19 incidence and mortality. 

This result was the same across all three of our statistical models. We also found NO2 exposure 

to be positively associated with COVID-19 case-fatality in one of the three statistical models. 

These results were largely consistent with available literature (Gupta et al., 2021; Liang et al., 

2020a; Srivastava, 2021; Xiao Wu et al., 2020a; Zhu et al., 2020) and demonstrate that spatial 

models, including small-area models accounting for population density variability, show a 

relationship between traffic-related air pollution and COVID-19 case and mortality rates. 

To our knowledge, this study remains the only areal-level COVID-19 research to use an 

intermediate aggregation step, i.e., using residential building footprints to account for population 

density variation when aggregating between spatially misaligned datasets, in this case, 

neighborhoods and census tracts. Although this aggregation method has limitations, it may further 

the discussion on other potential intermediate spatial aggregation methods to overcome areal 

misalignment. 
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5.3 PHYSICAL ACTIVITY SPACE METHODS 

The research presented in Chapter 3 was, to our knowledge, the first research to use 

“physical activity space (PAS)” polygons to attribute environmental exposure during periods of 

moderate-to-vigorous physical activity (MVPA). Although activity space methodologies have 

become more widely used to describe the regions of daily activity (Jerrett et al., 2005a; 

Klompmaker et al., 2018; Shin et al., 2020; Tribby et al., 2017), they have not yet been used to 

describe regions of MVPA. We used physical activity space polygons to describe surroundings of 

individuals during periods of active behavior, and attributed values from overlapping datasets that 

were misaligned in time and/or space. We utilized PASTA-LA study data to demonstrate 21 

approaches to quantifying green space exposure using PASs using: three activity and location-

tracking devices (Actigraph accelerometer, GlobalSat GPS, and the MOVES smartphone app); 

two equations to categorize raw accelerometry and step data into activity levels (Freedson et al., 

1998 and Abel et al., 2011); and seven geospatial methods to draw PAS polygons (e.g., 500-

meter location buffer, minimum convex polygon, 95% ellipse, etc.). We compare these results to 

those derived from the commonly-used home address buffer exposure attribution. In addition, we 

compare green space attribution from two years of data from the United States Department of 

Agriculture, National Agriculture Imagery Program (NAIP) (NAIP NDVI for 2018 and 2016). 

This study had three major findings. First, we found that green space exposures (areal 

mean NDVI per person-day within each PAS) derived from the 21 PAS methods were only weakly 

correlated (r < 0.32) with that attributed from home-address buffers. This was an important finding 

because many studies have quantified environmental exposures using home location, and this 

would likely lead to exposure misclassification. This finding is generalizable to exposure attribution 

of activity spaces, in general, and given there is more activity than physical activity away from the 

home, there could be even greater misclassification using home buffers.  
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Second, all 21 PAS methods showed high correlation between green space exposure 

attributed from 2018 imagery and exposure attributed from 2016 imagery (r > 0.82). This finding 

suggests that choice of year to define green space is not a major source of exposure 

misclassification. 

Third, we found a large range in correlation (0.30 < r < 0.80) depending on the 

location/activity device used and the way MVPA was categorized (i.e., Actigraph+GPS with MVPA 

by vertical-axis count vs. Actigraph+GPS with MVPA by step count vs. MOVES with MVPA by 

step count) across the 21 PAS methods. Thus, when correlating green space exposures from 

different devices and MVPA equations, the PAS method selected can determine the strength of 

the relationship. Therefore, when using cost-effective alternatives (such as smartphones) for 

location and activity tracking, researchers should carefully select PAS polygon methods to 

attribute exposures most comparable to current best practices (i.e., Actigraph+GPS using vertical-

axis count).  

 

5.4 HEAT, GREEN SPACE, AND PHYSICAL ACTIVITY 

The study presented in Chapter 4 builds from the methods described in Chapter 3 to model 

the relationship between heat exposure and physical activity and the effect modification by green 

space. Based on the literature and results from Chapter 3, we selected as the main method for 

heat and green space exposure attribution the 500-meter location buffer PASs derived from 

Actigraph+GPS data with MVPA categorized using Freedson et al., 1998. A linear mixed-effects 

regression model utilizing the exposure data produced by this main method demonstrated that 

increasing heat exposure was associated with increased physical activity (MVPA). The results 

also showed that in hotter than normal temperatures, individuals were likely to engage in more 

MVPA if they were near ‘more-green’ green space (higher NDVI), and likely to engage in less 
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MVPA if they were near ‘less-green’ green space. This result was consistent with the literature, 

although we had limited data at extreme temperatures.  

There was inconsistency, however, between the results of the main model and the 

alternative models. As an example, models using different MVPA equations differed in their 

results in that the positive association between heat and physical activity using the Freedson 

(Freedson et al., 1998) model was no longer observed in the Abel (Abel et al., 2011) models, 

regardless of the PAS polygon method. These differences demonstrate that even with the same 

data, the geospatial methods selected may yield different results.  

 

5.5 CONCLUDING REMARKS ON GIS METHODS FOR MISALIGNED VARIABLE 

QUANTIFICATION IN ENVIRONMENTAL HEALTH SCIENCES 

This dissertation is comprised of three case studies in which we utilized methods to account 

for spatiotemporal misalignment: (1) a study of COVID-19 where population-level covariates were 

misaligned; (2) a study of the attribution of daily green space exposure for physically-active 

regions where activity, location, and green space data were misaligned; and (3) a study of the 

association between heat exposure and physical activity in which temperature, green space, and 

participant-level covariates were misaligned. In this dissertation, we aimed to develop methods to 

account for misalignment so that these multiple data sources can be utilized in combination to 

assess exposure and health outcomes. The methods we used not only allow for comparison of 

many approaches but also demonstrate exposure attribution protocols that may improve 

computer-processing hours, analyst hours, and costs of similar research by utilizing open-source 

technologies, spatial data science, and cloud computing. 

Data has become easier to collect and process due to advancements in hardware and 

software, leading to new opportunities in the field of public health and exposure modeling. Utilizing 

the best and newest spatial datasets, however, leads to questions of spatiotemporal misalignment 
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when combining those from multiple sources. We have demonstrated the importance not only of 

accounting for spatiotemporal misalignment but to carefully choose between geospatial methods 

available, as in many cases this choice can impact study results and conclusions. We hope that 

the methods we utilized and the results we found may help guide future researchers on best 

practices for exposure attribution using activity and location information. 
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