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1. Introduction
Mountain groundwater systems store and transmit essential water resources and solutes locally within catch-
ments and throughout the larger watershed (Frisbee et al., 2011; Hayashi, 2020; Viviroli et al., 2007). There is 
an increased recognition that groundwater in fractured bedrock can influence the overall hydrologic function-
ing in headwater catchments and is critical for processes such as stream baseflow (Engdahl & Maxwell, 2015; 
Tague & Grant,  2009), solute and contaminant exports to rivers (Carroll et  al.,  2018; Dwivedi et  al.,  2018), 
and plant transpiration dynamics (Fan et al., 2019; Harmon et al., 2020). While it is widely acknowledged that 
the subsurface hydrogeologic properties and land-surface processes (e.g., precipitation dynamics) exert primary 
controls on bedrock groundwater fluxes, these processes are spatially and temporally heterogeneous and remain 
uncertain within mountain systems (e.g., Appels et al., 2015; Carroll et al., 2019; W. P. Gardner et al., 2020; 
Markovich et al., 2016; Welch & Allen, 2014). Given the complexities in the mechanisms that dictate the parti-

Abstract Groundwater residence time distributions provide fundamental insights on the hydrological 
processes within watersheds. Yet, observations that can constrain groundwater residence times over broad 
timescales remain scarce in mountain catchment studies. We use environmental tracers (CFC-12, SF6,  3H, 
and  4He) to investigate groundwater residence times along a hillslope in the East River Watershed, Colorado, 
USA. We develop a Bayesian inference framework that applies a Markov-chain Monte Carlo (MCMC) approach 
to estimate noble gas recharge temperature, elevation, and excess-air parameters and the resulting environmental 
tracer concentrations. MCMC is then used to propagate the environmental tracer uncertainties to estimates of 
groundwater mean residence times inferred with lumped parameter models. All samples contain  3H, CFC-12, 
and SF6 in addition to terrigenic  4He, suggesting a mixture of water characterized by modern and premodern 
residence times.  4He exponential mean residence times range from hundreds of years at the upslope well to 
thousands of years at the toe-slope well assuming average crustal production rates. We find that binary mixing 
residence time distributions with separate young and old mixing fractions are needed to predict the  4He, 
CFC-12, SF6, and  3H observations, supporting the importance of flow path mixing in this bedrock system. Our 
findings that the fractured bedrock hosts groundwater with a mixture of residence times ranging from decades 
to millennia suggest variable recharge dynamics and flow path mixing along the hillslope and highlight the 
importance of characterizing groundwater systems with observations that are sensitive to transport over a broad 
range of residence times.

Plain Language Summary Understanding how long water spends in mountain watersheds is 
critical to manage our water resources. In this work, we use natural chemical tracers measured in groundwater 
to improve understanding of groundwater flow and transport patterns and timescales. The technique we develop 
includes interpretation of dissolved noble gases to better constrain where in the watershed water (rain and snow) 
enters the groundwater system. We find that groundwater is preferentially generated at elevations higher than 
the groundwater wells. Our interpretation of the chemical tracers also suggests that the mountain groundwater 
has ages, or residence times, on the order of decades to thousands of years. This suggests that our water 
resources in this system potentially entered the groundwater aquifer at considerable times in the past. This work 
helps develop a further understanding of groundwater processes in mountainous systems, which is needed to 
improve our water resource predictions.
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tioning of shallow soil water to bedrock groundwater recharge, there is a need to further develop integrated catch-
ment hydrologic conceptual and numerical models constrained to in situ observations of bedrock groundwater 
dynamics. However, there is typically a paucity of observation data sets that can constrain bedrock groundwater 
processes in mountainous systems (e.g., Somers & McKenzie, 2020).

Groundwater residence time distributions (RTDs), or age distributions, provide a fundamental description of the 
groundwater flow and transport processes (Cook & Herczeg, 2000). Researchers have long used RTDs to help 
understand and quantify system processes that are difficult to directly observe, such as recharge rates (Cartwright 
et al., 2017; McCallum et al., 2017; Solomon & Sudicky, 1991), active circulation depths in mountain systems 
(Manning et al., 2021; Welch & Allen, 2014), flow path mixing (Maloszewski & Zuber, 1982; Marçais et al., 2022), 
and groundwater resource resilience to climate change (Singleton & Moran, 2010). Compared to interpretation of 
groundwater level observations alone, the information content provided by RTDs can be invaluable to alleviate 
the nonuniqueness in estimation of groundwater mass fluxes (McDonnell & Beven, 2014; Thiros et al., 2021). 
Groundwater RTDs, however, cannot be directly observed and are typically inferred from environmental tracer 
measurements (Cook & Herczeg, 2000; Sprenger et al., 2019). Mountain catchment studies often estimate RTDs 
using environmental tracers that can constrain short residence times (<5 years), for instance, using stable water 
isotopes sampled from streams (Benettin et al., 2022; McGuire & McDonnell, 2006; Sprenger et al., 2019). These 
observation data sets are insensitive to the groundwater flow and transport processes that occur over decadal and 
longer timescales (Suckow, 2014), resulting in a potentially incomplete and biased interpretation of the ground-
water RTD and flow system (e.g., Frisbee et al., 2013). Improved characterization of bedrock groundwater RTDs 
over broader timescales is warranted as our conceptual and predictive models of mountain catchment hydrol-
ogy continue to highlight and integrate flow through deeper bedrock reservoirs (Brooks et al., 2015; Condon 
et al., 2020; Singha & Navarre-Sitchler, 2021; Somers & McKenzie, 2020).

Environmental tracers with input signals that vary over decades (e.g., CFCs, SF6, and  3H) and noble gas radi-
oisotopes that decay/accumulate with rates on the order of centuries to millennia (e.g.,  4He) have been useful 
to constrain groundwater RTDs over broad timescales (Suckow,  2014). Interpretation of long-residence time 
environmental tracers in mountain catchments suggests that bedrock groundwater RTDs can have components 
characteristic over timescales not identifiable using typical injection tracer tests nor stable water isotopes (Carroll 
et al., 2020; Gabrielli et al., 2018; Manning et al., 2021; Singleton & Moran, 2010). However, due to the inher-
ent challenges with installing bedrock groundwater wells in mountain systems, applications of environmental 
tracers to constrain groundwater flow have largely focused on samples collected from streams (e.g., Carroll 
et al., 2020; W. P. Gardner et al., 2011), springs (e.g., Meyers et al., 2021), and valley aquifer wells (e.g., Manning 
& Solomon, 2003; Markovich et al., 2021). Mountain front recharge RTD dynamics estimated using samples 
from valley-bottom wells provide useful information over broad spatial scales, yet have limited ability to isolate 
processes at the subcatchment and hillslope scales. While samples collected from streams and springs can be used 
to characterize catchment RTDs at finer spatial resolutions, they integrate flow path and process heterogeneity 
from multiple subsurface compartments (e.g., soil, saprolite, and fractured bedrock), making it difficult to isolate 
the signal from bedrock groundwater alone (W. P. Gardner et al., 2020). Few studies have measured environ-
mental tracers that are sensitive to long-residence time groundwater directly from bedrock wells in headwater 
mountain catchments (Gabrielli et al., 2018; Hale et al., 2016; Manning & Caine, 2007; Manning et al., 2021). 
Improved characterization of bedrock groundwater RTDs is needed to evaluate plausible mixing scenarios and 
hydrologic connectivity to the overlying shallow soil system. In this work, we add to the understanding of bedrock 
groundwater RTDs in high-elevation headwater catchments through interpretation of environmental tracers that 
can constrain residence times on the order of decades (CFCs, SF6, and  3H) and millennia (terrigenic  4He) at the 
hillslope scale. While this environmental tracer set cannot inform the full distribution of plausible residence times 
(e.g., 1-year-old water), our analysis can provide insight on groundwater processes that are characteristic over a 
range of long timescales.

RTDs inferred from environmental tracers have numerous sources of uncertainty, both in the processing of 
field data and subsequent modeling. Two salient sources of uncertainties are assumptions regarding the RTD 
used in lumped parameter models (Maloszewski & Zuber,  1982; Massoudieh et  al.,  2012) and estimation of 
the sample recharge temperatures and excess-air conditions (e.g., Aeschbach-Hertig et  al.,  1999; Manning & 
Solomon, 2003). Complexities in RTDs are a function of the uncertain hydrogeologic property heterogeneity, 
variance in topography-driven flow paths, and spatially and temporally variable recharge (Suckow, 2014). While 
interpreting multiple environmental tracers can help constrain the unknown mixing processes (e.g., W. P. Gardner 
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et  al.,  2015; Massoudieh et  al.,  2012), the full RTD cannot be uniquely determined (McCallum et  al., 2015) 
and must be assumed. Thus, understanding and quantifying the mixing processes that lead to observations of 
long-residence time bedrock groundwater in complex mountain systems that are sparsely observed remains a 
challenge. Popp et al. (2021) and Schilling et al. (2021) show the value of interpreting multiple environmental 
tracers that are sensitive to a range of residence times and groundwater processes to reduce uncertainty in mixing 
dynamic understanding.

Inference of RTDs in mountain systems is complicated by the a priori uncertain recharge temperatures, pressures, 
and excess-air conditions that are required to properly interpret gas-phase environmental tracers, such as CFCs, 
SF6, and noble gas isotopes. While methods have successfully constrained these recharge parameters using noble 
gas measurements and prior information on the correlation between temperature and pressure (Doyle et al., 2015; 
Manning & Solomon, 2003; Markovich et al., 2021), groundwater RTD optimization procedures rarely propagate 
the inferred recharge uncertainties into environmental tracer concentration errors and subsequent mean residence 
time estimates. To our knowledge, interpretation of dissolved noble gas concentrations and recharge parameter 
uncertainties using a Bayesian framework that directly assimilates valuable prior knowledge on the covarying 
parameter distributions has not been performed. Thus, it is poorly understood how uncertainties in the noble gas 
recharge parameters propagate to RTD estimates and the evaluation of plausible mixing scenarios within moun-
tain groundwater systems.

In this work, we investigate bedrock groundwater RTDs along a mountainous hillslope transect in the East River 
Watershed near Crested Butte, Colorado, using a suite of environmental tracer observations that can inform 
transport characteristics over decadal and millennia timescales. As a preliminary step in estimating groundwa-
ter mean residence times, we extend previous noble gas recharge parameter calibration methods (e.g., Jung & 
Aeschbach, 2018; Kipfer et al., 2002) to apply a Bayesian Markov-chain Monte Carlo (MCMC) procedure to infer 
joint posterior distributions (uncertainties) for recharge temperatures, elevations, and excess-air conditions. Our 
noble gas recharge parameter inference methodology differs from previous works in that it formally and jointly 
considers both prior information for all parameters and analytical measurement uncertainties for the dissolved 
noble gas observations. We then propagate the noble gas recharge and excess-air parameter uncertainties into 
field observations of environmental tracers CFC-12, SF6,  3H, and terrigenic  4He. Groundwater mean resi-
dence times conditioned to the uncertain noble gas recharge parameters are interpreted using lumped parameter 
models assuming multiple commonly applied RTDs and a MCMC uncertainty quantification technique. While 
the proposed technique does not comprehensively account for all of the uncertain assumptions needed evaluate 
dissolved noble gases and mean residence times in mountain systems, we seek to develop a flexible framework 
to improve estimation of bedrock groundwater RTD uncertainties. These tools will allow improved investigation 
of groundwater processes within mountain aquifer systems around the world, as well as illustrate the source and 
role of long-residence time groundwater in mountain aquifers.

2. Study Area
The East River Watershed is within the Elk Mountains near Crested Butte, Colorado (Figure 1). The East River 
hosts a multidisciplinary watershed research site through the U.S. Department of Energy’s and Lawrence Berke-
ley National Laboratory’s Watershed Function Scientific Focus Area (Hubbard et al., 2018). This study is focused 
on groundwater samples collected from the northeast facing “Pumphouse” lower montane (PLM) hillslope within 
the East River Watershed (Figure 1). The PLM hillslope is ∼1 km long, ranges in elevation from 2,650 to 2,930 
meters above sea-level (m asl), and terminates at the floodplain of the East River. The climate is characterized 
as continental subarctic with mean daily temperatures recorded at the nearby Butte SNOTEL station ranging 
between −8.3°C in winter to 11°C in summer. The annual average precipitation is ∼700 mm and occurs mostly as 
winter snowfall (∼70%) from October through May and summer monsoon rains from July to September (Carroll 
et al., 2018). Land cover is characterized by grasses and shrubs and snow cover can persist through May. The East 
River hydrograph shows strong correlation with snowmelt patterns, with peak discharge typically in early June 
and baseflow conditions from October to April. Previous work at the PLM hillslope suggests that the bedrock 
groundwater recharge is dominated by snowmelt and contribution from summer monsoons is not expected due 
to high evapotranspiration rates (Tokunaga et al., 2019). While the PLM hillslope is within a montane ecosys-
tem, catchment areas above the hillslope can reach 3,400 m asl and consists of subalpine and alpine ecosystems 
characterized by aspen and conifer vegetation, exposed barren and rock talus land cover, and colder temperatures 
with larger snowpacks that experience melt later in the year.
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2.1. Hydrogeology

A simplified subsurface conceptual model of the PLM hillslope consists of shallow soil, weathered 
bedrock (saprolite), and fractured bedrock layers (Figure 1c; Tokunaga et al., 2019). At the PLM hillslope 
and surrounding lower basin areas, the bedrock lithology is a marine-derived Cretaceous Mancos Shale. 
Higher elevation regions of the basin that include Snodgrass Mountain and Mount Crested Butte addition-
ally contain igneous intrusive quartz monzonite and granodiorite bedrock. The Mancos Shale bedrock at 
the PLM hillslope has experienced significant postdepositional increases in permeability due to alteration 
from mountain uplift events, alpine glaciation and deglaciation, extensional stress, and weathering processes 
(Miltenberger et al., 2021). Geologic descriptions of cores drilled up to 70 m below land surface (bls) indicate 
that the fractured bedrock starts at ∼4 m bls. Fracture density is observed to decrease with depth, yet persists 
to at least 70 m bls at the drilling locations. However, comparison of cores from two deep boreholes that are 
∼200 m apart shows that fracture characteristics and bedrock hydraulic properties can vary significantly in 
space, likely due to local fault features (Miltenberger et  al.,  2021). Estimates of mean saturated hydraulic 
conductivity in the shallow fractured bedrock (<10 m bls) are 1.6 × 10 −7 m  s −1 (Tokunaga et  al.,  2019). 
Overlying the fractured bedrock is a ∼1–3 m thick layer of highly weathered shale bedrock and ∼1 m thick 
soil horizon. The soil textures are characterized as loam to silt loam with saturated hydraulic conductivity of 
8.8 × 10 −6 m s −1 (Tokunaga et al., 2019). Measured groundwater levels along the lower part of the hillslope 
fluctuate between 1 and 4 m bls, which generally corresponds to the thickness of a weathered bedrock zone 
(Wan et al., 2021).

3. Methods
3.1. Well Description and Environmental Tracer Sampling

An overview of the methodical workflow that includes interpretation of noble gases and residence time environ-
mental tracers is shown in Figure 2. We sampled a suite of environmental tracers that includes dissolved noble 
gases (He, Ne, Ar, Kr, and Xe), chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium ( 3H) from 
three groundwater wells that are finished within the fractured shale bedrock on the PLM hillslope (Figure 1). The 
three wells (PLM1, PLM6, and PLM7) are located on the lower portion of the hillslope along a transect that spans 
a ∼30 m elevation gradient that occurs over a horizontal distance of ∼130 m. PLM1 is the most upslope well and 
is 10 m deep with screen between 6.3 and 7.2 m bls. PLM6 is at the toe of the hillslope near the floodplain and is 
10 m deep with screen between 6.1 and 9.1 m bls. Further details on PLM1 and PLM6 can be found in Tokunaga 
et al. (2019). PLM7 is located between PLM1 and PLM6 and is 70 m deep with screen over the entire length. 
Water samples from PLM7 were collected at ∼20 m bls (described below).

Figure 1. (a) Elevation contour map and (b) image of the study site located in East River Watershed near Crested Butte, 
Colorado. The red line indicates the Pumphouse lower montane (PLM) hillslope transect and the green dots are the locations 
of the three observation wells. (c) Simplified cross section along the bottom portion of the PLM hillslope transect showing 
well positions and screened intervals.
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Groundwater samples from PLM1, PLM6, and PLM7 were collected between 5 May and 7 May 2021 using 
methods described by the University of Utah Dissolved Noble Gas Lab (http://www.noblegaslab.utah.edu). The 
shale bedrock experiences methane production and release (Wan et al., 2021), which can lead to groundwater 
degassing during sampling and complications with interpreting environmental tracers (Plummer et al., 2006). 
To limit the impact of potential degassing, we sampled all environmental tracers with down-hole pumps and 
back-pressure valves for the collection of noble gases (Aeschbach-Hertig & Solomon, 2013). Well PLM1 and 
PLM7 qualitatively did not show evidence of gas bubble formation during sampling, while PLM6 contained 
minor amounts. Dissolved noble gases were collected using the standard copper tube method (Aeschbach-Hertig 
& Solomon,  2013). CFCs were collected in triplicate in 250  mL glass bottles with no headspace. SF6 was 
collected in duplicate in 1 L glass bottles with no headspace.  3H was collected in duplicate in 500 mL plastic 
bottles. Samples at well PLM1 and PLM6 were collected after purging three borehole volumes and monitoring 
of steady field parameters. Due to the long well screen at PLM7, samples were collected at low-flow pumping 
rates to prevent water table draw down and after measured field parameters were stable. All environmental tracer 
samples were analyzed at the University of Utah Noble Gas Laboratory (http://www.noblegaslab.utah.edu).

3.2. Dissolved Noble Gases

3.2.1. Solubility Equilibrium and Excess Air

Dissolved noble gases (Ne, Ar, Kr, and Xe) have long been recognized as valuable tracers to constrain ground-
water recharge temperatures (Aeschbach-Hertig et  al.,  1999; Kipfer et  al.,  2002). Noble gases dissolved into 
groundwater are chemically inert and have no appreciable internal sources within aquifers (with the exception of 
He). Concentrations in groundwater are controlled by the solubility equilibrium established at the groundwater 
table, which is given by Henry’s law and is a function of the recharge temperature and total pressure (assuming 
negligible salinity; Kipfer et al., 2002). We use elevation Z in m asl as a proxy for the total pressure P (Pa) using 
the empirical lapse rate (Cook & Herczeg, 2000):

𝑃𝑃 =

(

1 −
0.0065 ⋅𝑍𝑍

288.15

)5.2561

. (1)

It is common that measured noble gas concentrations in groundwater exceed solubility equilibrium concentra-
tions (C eq) at plausible recharge temperatures and elevations. This “excess-air” formation process has been attrib-
uted to the entrapment and subsequent dissolution of air bubbles during recharge (Heaton & Vogel, 1981). We 
model noble gas concentrations in groundwater as a function of solubility equilibrium and excess-air dynamics 
using the commonly applied closed-equilibrium (CE) model (Aeschbach-Hertig et al., 1999):

𝐶𝐶
𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖
(𝑇𝑇𝑟𝑟, 𝑍𝑍,𝑍𝑍𝑒𝑒, 𝐹𝐹 ) = 𝐶𝐶

𝑒𝑒𝑒𝑒

𝑖𝑖
(𝑇𝑇𝑟𝑟, 𝑍𝑍) +

(1 − 𝐹𝐹 ) ⋅ 𝑍𝑍𝑒𝑒𝑧𝑧𝑖𝑖

1 + 𝐹𝐹𝑍𝑍𝑒𝑒𝑧𝑧𝑖𝑖 ⋅ 𝐶𝐶
𝑒𝑒𝑒𝑒

𝑖𝑖
(𝑇𝑇𝑟𝑟, 𝑍𝑍)

−1
, (2)

where 𝐴𝐴 𝐴𝐴
𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖
 (cm 3STP/g) is the aqueous concentration of noble gas i = [He, Ne, Ar, Kr, and Xe] derived from 

atmospheric sources, Tr is the recharge temperature (°C), Z (m) is the recharge elevation, Ae (cm 3STP/g) is the 
initial volume of entrapped excess air per unit volume of porous media, and F is a dimensionless excess-air frac-
tionation parameter that describes the change in volume of the excess air in the final state compared to initial state 
at the water table during recharge. The CE model was chosen over other excess-air models because it can capture 
degassing processes (Aeschbach-Hertig et al., 2008). Equation 2 is additionally used to convert the measured 
CFCs and SF6 aqueous concentrations to atmospheric mixing ratios that can be compared to historic time series 
(Section  3.3.1).

Figure 2. Methodological workflow illustrating the primary steps performed to evaluate groundwater recharge parameters 
from dissolved noble gases and subsequent mean residence times from environmental tracers.
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3.2.2. Noble Gas Recharge Parameters in Mountain Systems

Inference of Tr, Z, Ae, and F (hereinafter referred to as noble gas recharge 
parameters) is performed with parameter calibration techniques that 
compare modeled concentrations (Equation  2) against observed concen-
trations of the noble gases Ne, Ar, Kr, and Xe. He is excluded due to in 
situ subsurface production that is not considered in Equation  2 and is a 
function of the unknown groundwater RTD. Joint estimation of the four 
noble gas recharge parameters is ill posed when both Tr and Z are consid-
ered uncertain, as is the case in mountain systems that have large variations 
in topography. To constrain this parameter nonuniqueness using plausi-
ble process knowledge, studies have incorporated approximations of the 
recharge temperature-elevation lapse rate into the parameter calibration 
procedure (Doyle et al., 2015; P. M. Gardner & Heilweil, 2014; Manning 
& Solomon, 2003; Markovich et al., 2021). In particular, the best fit joint 
solution for Tr and Z is taken as the intersection of the assumed recharge 
lapse rate and a line that approximates all plausible solutions of Equa-

tion  2 constrained to noble gas measurements (see Manning & Solomon,  2003 for details). This calibration 
procedure can include uncertainties in the prescribed lapse rate (P. M. Gardner & Heilweil, 2014; Manning & 
Solomon, 2003) and least squares solutions of Equation 2 as the result of noble gas analytical measurement error 
(Jung & Aeschbach, 2018; Markovich et al., 2021). These previous applications of recharge parameter inference 
from noble gases observations, however, do not directly consider prior knowledge on all uncertain parameters. It 
is often the case that solutions to noble gas inversions vary from expectations and prior information on the param-
eters is applied in an ad hoc and subjective manner. We propose a Bayesian framework for the parameter inference 
problem that systematically and coherently assimilates prior knowledge on all recharge parameters (including the 
uncertain temperature lapse rate) to characterize the noble gas recharge parameter joint uncertainties.

3.2.3. MCMC Parameter Inference

Parameter inference using Bayesian methods quantifies the posterior distributions of uncertain model parameters 
m conditional on observation data d obs and the prior parameter probability distributions P(m) (Linde et al., 2017). 
The parameter posterior probability distributions P(m|d obs) are quantified using Bayes’ theorem:

𝑃𝑃
(

𝐦𝐦|𝐝𝐝
𝑜𝑜𝑜𝑜𝑜𝑜
)

∝ 𝑃𝑃
(

𝐝𝐝
𝑜𝑜𝑜𝑜𝑜𝑜
|𝐦𝐦

)

𝑃𝑃 (𝐦𝐦), (3)

where P(d obs|m) is the likelihood of the observations given a set of parameters. Our observation data are the 
vector of measured noble gas concentrations d obs = [Ne, Ar, Xe, and Kr] within a sample from a single well. The 
posterior distributions in Equation 3 represent our updated estimate of the parameter uncertainties after consider-
ing both observation data and prior knowledge on parameter uncertainties. Similar to previous studies, our goal is 
to infer the joint posterior probability distributions for the noble gas recharge parameters described in Equation 2, 
while also taking into account an uncertain lapse rate. The lapse rate we consider is a linear equation that relates 
recharge elevations Z (m) to temperatures T (°C) as a function of an uncertain slope m (m/°C) and intercept b (m):

𝑇𝑇 = (𝑍𝑍 − 𝑏𝑏)∕𝑚𝑚𝑚 (4)

Thus, our parameter vector used within Equation 3 is m = [Z, m, b, Ae, and F] and recharge temperature posteriors 
are calculated using Equation 4.

Prior distributions are estimates of parameter uncertainties before the observation data are assimilated into the 
inference problem. Priors for Z, b, Ae, and F are considered Beta distributions scaled between a lower parameter 
bound bl and upper bound bu (Table 1) with the equation:

𝐦𝐦 − 𝑏𝑏𝑙𝑙

𝑏𝑏𝑢𝑢 − 𝑏𝑏𝑙𝑙
∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼𝛼 𝛼𝛼). (5)

Beta distribution priors were chosen due to the higher probability density on values in the center of the distri-
bution, they are broad enough to allow a range of plausible values, and they provide discrete bounds on the 
physically based parameters (Brinkerhoff et al., 2021). The parameter bounds for Ae and F used in Equation 5 are 

Table 1 
Prior Distributions for the Noble Gas MCMC Parameter Inferences

Parameter Low High Distribution

Ae (cm 3STP/g) 10 –4 10 –1 Beta(α = 2, β = 2)

F (−) 10 –3 10 Beta(α = 2, β = 2)

Z (m) 2,786 a, 2,782 b, 2,759 c 3,300 Beta(α = 2, β = 4)

b (m) 2,889 3,719 Beta(α = 2, β = 2.5)

μ σ

m (m/°C) −146 17 Normal(μ, σ)

Note. The Beta distributions are scaled between the Low and High values 
using Equation 5.
 aPLM1.  bPLM7.  cPLM6.
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estimated from the literature and are meant to span a large range of plausible 
excess-air conditions. The a priori minimum and maximum possible Z are set 
as the elevation of the well and the top of the nearby Snodgrass Mountain, 
respectively. The recharge lapse rate priors were inferred by fitting a linear 
equation to annual average air temperatures recorded at 10 different weather 
stations and SNOTEL sites that range from ∼2,460 to ∼3,410 m elevation 
and are within the East River Watershed (Figure 3). Previous studies show 
the recharge lapse rates in mountain systems can have lower temperatures 
compared to the annual average air temperatures due to snowpack dynamics 
(Manning & Solomon,  2003; Masbruch et  al.,  2012). To account for this 
offset, the Beta prior for b is skewed such that there is approximately equal 
initial probability for the best fit atmospheric lapse rate (b = 3,353 m) and 
that which is depressed by 1°C (b = 3,208 m; Figure S1 in Supporting Infor-
mation S1). The prior on the recharge lapse rate slope m is assumed normally 
distributed with a mean of −146 (m/°C) and 1 standard deviation of 17 m.

The likelihood function in Equation 3 quantifies the fit between model predic-
tions (Equation 2) and observed dissolved noble gas concentrations. We use 
a Gaussian likelihood model in the form P(d obs|m)  ∼  N(d obs, σobs), where 
σobs is the observation analytical errors for the noble gases in d obs (Visser 

et al., 2014). Gaussian likelihood models in this form make the common assumption that the errors between model 
predictions and observations are entirely characterized by the analytical uncertainties, thus do not account for epis-
temic uncertainties in the noble gas predictive model (Equation 2) nor observation data set. However, sole obser-
vation analytical observation error is likely not the case in our samples as we observe low Xe concentrations with 
respect to Ne, Ar, and Kr. This is consistent to the groundwater noble gas observations from Manning et al. (2021) 
in a nearby catchment with similar bedrock lithologies, who posit the low Xe can be caused by absorption to shale. 
Xe adsorption to shale bedrock has similarly been reported by Andrews et al. (1991). To account for added uncer-
tainty not captured by Equation 2, we manually and subjectively increased the Xe uncertainty to 15% in σobs. This 
has the effect of lowering the influence that Xe has in the likelihood function and parameter estimation process.

The noble gas recharge and excess-air parameter posterior distributions (left-hand side of Equation 3) are inferred 
using a MCMC procedure (Gelman et al., 2014). The MCMC parameter inference uses the Adaptive Differential 
Evolution Metropolis algorithm (Ter Braak & Vrugt, 2008) implemented within the pyMC3 Python software. 
This MCMC sampler uses past states in each Markov-chain to inform future jumps, which improves the efficiency 
compared to the Metropolis-Hastings algorithm. We simulate four independent Markov-chains, each with 50,000 
discrete samples from the posterior distribution. Both the Gelman-Rubin 𝐴𝐴 �̂�𝑅 statistic (Gelman et al., 2014) and 
visual examination of the Markov-chain traces were used to evaluate convergence of the posterior distributions, an 
adequate “burn-in” phase was established (set to 10,000 samples), and the entire parameter space was explored.

3.3. Groundwater Residence Time Distributions

3.3.1. Environmental Tracer Concentration Uncertainties

We estimate bedrock groundwater mean residence times and apparent ages using the environmental tracers 
CFC-12, SF6,  3H, and  4He (Cook & Herczeg, 2000). Our interpretation of the CFC-12, SF6, and  4He observation 
uncertainties assimilates both the analytical observation errors and the noble gas recharge and excess-air posterior 
parameter distributions (Section  3.2). The observed CFC-12 and SF6 aqueous concentrations are converted to an 
ensemble of atmospheric mixing ratios by evaluating the CE excess-air model (Equation 2) with the noble gas 
recharge parameter posterior distributions. The measured concentration of  4He ( 4Heobs) in a groundwater sample 
can be partitioned into components derived from atmospheric and terrigenic sources with the simplified mass 
balance equation (Cook & Herczeg, 2000):

4
𝐻𝐻𝐻𝐻obs=

4
𝐻𝐻𝐻𝐻atm(𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝐹𝐹 )+4Heter𝑇 (6)

where  4Heatm is the combined concentrations due to solubility equilibrium and excess air (Equation 2). Terri-
genic  4He ( 4Heter) is produced during radioactive decay of uranium and thorium in aquifer grains, thus is the 

Figure 3. Annual average air temperature versus elevation measured at 
weather stations and STOTEL sites within the East River Watershed for the 
years 2019 and 2020. The thick black line corresponds to the mean linear lapse 
rate and the gray lines are random realizations from the slope (m) and intercept 
(b) posterior distributions. Values in parentheses are 1 standard deviation in 
the best fit parameters.
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component that is sensitive to groundwater residence times. Equation 6 does not account for He derived from 
mantle sources, which is a reasonable assumption for shallow wells in sedimentary bedrock systems. We esti-
mate uncertainties in  4Heter by propagating the noble gas recharge parameter posterior distributions to  4Heatm and 
considering the analytical uncertainties of  4Heobs.

3.3.2. Groundwater Residence Time Models

Groundwater samples are characterized by a distribution of residence times as a result of flow path and diffusion 
mixing processes (Bethke & Johnson, 2008). While RTDs are known for idealized aquifers, details on the mixing 
processes remain uncertain in complex systems and are typically considered using lumped parameter models 
(e.g., Cook & Herczeg, 2000; Maloszewski & Zuber, 1982). Lumped parameter models describe the relationship 
between environmental tracer concentrations and RTDs using the convolution integral:

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑜𝑜) = ∫
∞

0

𝐶𝐶𝑖𝑖𝑖𝑖

(

𝑜𝑜 − 𝑜𝑜
′
)

𝑔𝑔
(

𝑜𝑜
′
)

𝑒𝑒
−𝜆𝜆𝑜𝑜′

𝑑𝑑𝑜𝑜
′
, (7)

where C(t) is the concentration at the sampling date t, t′ represents residence times (years), g(t′) is the resi-
dence time distribution, C(t − t′) is the environmental tracer atmospheric concentration input function, and 𝐴𝐴 𝐴𝐴

−𝜆𝜆𝜆𝜆′ 
accounts for first-order decay reactions with decay rate λ (λ 3H = 0.056 year −1). The atmospheric input functions 
for CFC-12, SF6, and  3H are taken from the compiled data sets in Bullister (2017) and Michel et al. (2018).  4Heter 
concentrations are assumed negligible in recharging water (i.e., for t′ = 0).

We consider the dominant  4Heter sources as in situ production and release from aquifer grains and crustal fluxes 
from external to the aquifer.  4Heter accumulation rates JHe (cm 3STP/g/year) in groundwater are modeled as (Kipfer 
et al., 2002)

𝐽𝐽𝐻𝐻𝐻𝐻 = Λ𝐻𝐻𝐻𝐻

𝜌𝜌𝑟𝑟

𝜌𝜌𝑤𝑤

(

𝐶𝐶𝑈𝑈 ⋅ 1.19 × 10
−13

+ 𝐶𝐶𝑇𝑇𝑇 ⋅ 2.88 × 10
−14

)

⋅

(

1 − 𝜃𝜃

𝜃𝜃

)

, (8)

where ΛHe is a release factor coefficient, ρr and ρw are densities of the rock and water, respectively, CU and CTh 
are the rock uranium and thorium concentrations (ug/g), respectively, and θ is porosity. Based on literature values 
representative of shale and analysis from a nearby site (Manning et al., 2021), rock properties are estimated as 
CU = 3.0, CTh = 10.0, and θ = 0.05. Using the common assumption that  4He is released into the groundwater at 
the same rate it is produced (ΛHe = 1), JHe is estimated as 3.3 × 10 −11 𝐴𝐴

(

cm3STP g
−1

H2O
year−1

)

 for all samples at the 
site. JHe varies between 2.4 × 10 −11 and 4.2 × 10 −11 𝐴𝐴

(

cm3STP g
−1

H2O
year−1

)

 when evaluated with regional estimates 
of CU and CTh in Mancos Shale, which have 70% confidence intervals between 2 and 4 ppm and 8 and 12 ppm, 
respectively (Pliler & Adams, 1962). However,  4Heter production rates typically remain highly uncertain due to 
unknown ΛHe (Solomon et al., 1996) and crustal He fluxes (Stute et al., 1992), which can both vary through space 
and time. Thus, JHe should be viewed as an approximation with a priori large uncertainties (Kipfer et al., 2002).

We test the ability of multiple, commonly applied parametric RTDs within Equation 7 to explain the observed 
environmental tracers and estimate plausible mean groundwater residence times τ (years). The RTD models are 
briefly described below (see Cook & Herczeg, 2000; Maloszewski & Zuber, 1982 for additional details). To 
follow convention in many groundwater studies, we use the terminology groundwater “age” synonymously with 
mean residence time. The piston-flow model (PFM) is the simplest RTD and assumes no mixing, thus all water 
in a sample is characterized by a single, scalar residence time. Due to these typically limiting assumptions, the 
piston-flow residence time is commonly referred to as an “apparent” groundwater age. The exponential model 
(EMM) RTD corresponds to complete mixing of a distribution of flow paths from zero-age to infinite-age waters. 
The EMM is fully characterized by the mean of the distribution, which approximates the mean residence time of 
the sample. The exponential piston-flow model (EPM) describes an aquifer with an exponential flow segment 
followed by a piston-flow segment. In addition to the mean residence time, the EPM has an additional shape 
parameter η, which can have the effect of excluding zero-age water from the RTD. Binary mixing models apply 
a weighted combination of two RTDs characterized by independent parameters. Here, we use a binary mixing 
model with a younger fraction described by an EPM and an older fraction described by a PFM (notated as 
EPM–PFM). The relative contribution of the EPM to the entire sample is given by f1, while that of the PFM is 
f2 = 1 − f1. The EPM–PFM can represent, for instance, the conceptual model where premodern (recharged prior 
to ∼1950 and does not contain CFC, SF6, nor  3H) groundwater from the deeper subsurface mixes into a shallow 
aquifer that is characterized by an EPM RTD.
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Additional sources of uncertainty that influence environmental tracer 
observations and residence time predictions include CFC degradation and 
SF6 contamination (Cook & Herczeg,  2000; Plummer et  al.,  2006). All 
three wells had measurable dissolved oxygen, which suggests that anaer-
obic microbial degradation of CFC-12 is not likely. However, the shale 
bedrock contains methane as the result of methanogenesis, which has been 
shown to cause degradation of CFC-12 (Plummer et al., 2006). Following 
Massoudieh et al. (2012), we consider CFC-12 degradation in Equation 7 
as a first-order decay process with an uncertain decay half-life. While SF6 
contamination due to point industrial sources is not expected due to the 
remoteness of the study site, contamination can occur from in situ produc-
tion within sedimentary aquifers (von Rohden et al., 2010). We consider 
possible SF6 contamination in Equation 7 as an uncertain percent increase 
relative to the observed SF6 concentration (described below).

3.3.3. Groundwater RTD Inference

The RTD model parameters and associated uncertainties are inferred using 
a MCMC procedure similar to that presented for the noble gas analysis 
(Section  3.2.3). The prior distributions for the uncertain RTD parameters 

are given in Table 2. In general, we apply uniform prior distributions with broad ranges for the model parameters 
τ, η, and f1 due to sparse a priori knowledge on bedrock groundwater residence times in headwater catchments. 
Based on Equation 8 (and discussion therein), we assume the prior for JHe is log-normally distributed with mean 
−10.48 and a standard deviation of 0.33. This JHe variance generally matches uncertainty ranges reported in P. M. 
Gardner and Heilweil (2014), which was performed in the intermountain western United States in a predomi-
nately carbonate bedrock system. Despite the differences in the system studied here, the prior JHe distribution that 
constrains estimates within 1 order of magnitude of the mean can account for uncertainties due to a wide range 
of rock U and Th concentrations, He release factor coefficients, and crustal fluxes. The prior for the SF6 contam-
ination parameter 𝐴𝐴

(

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆6

)

 is considered a half-normal distribution with a mean of zero and standard deviation of 
0.17. This prior assumes that no SF6 contamination is the most likely state and there is 99% probability (3σ) that 

contamination is within a ∼50% increase of the measured concentration. The prior for the CFC-12 degradation 

decay half-life 𝐴𝐴

(

𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

1∕2

)

 is considered a Beta distribution scaled between a lower parameter bound bl = 5 years 

and upper bound bu = 35 years with Equation 5. The 𝐴𝐴 𝐴𝐴
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

1∕2
 prior bounds are approximated from data presented 

in Hinsby et al. (2007). The η1 prior ranges from 1 to 5, which corresponds to the EPM approaching exponential 
and piston-flow end-member shapes, respectively.

Given the relatively uninformative priors, the RTD parameter posterior distributions are predominantly controlled 
by the fit between predictions made by the lumped parameter model (Equation 7) and the environmental tracer 
concentrations. The environmental tracer concentrations are represented as uncertain distributions Cens that 
assimilate both measurement analytical errors and the previously estimated noble gas recharge parameter uncer-
tainties. The noble gas recharge parameters manifest in Cens during the required conversion of the measured aque-
ous CFC-12 and SF6 concentrations to atmospheric mixing ratios that can be compared to historical time series 
and in  4Heter during the component separations (further described in Section   3.3.1). The likelihood function 
assumes normally distributed model errors and is given by

𝑃𝑃

(

�̂�𝐂𝐞𝐞𝐞𝐞𝐞𝐞|𝐦𝐦

)

∼ 𝑁𝑁

(

�̂�𝐂𝐞𝐞𝐞𝐞𝐞𝐞,𝝈𝝈𝐂𝐂𝐞𝐞𝐞𝐞𝐞𝐞

)

, (9)

where 𝐴𝐴 �̂�𝐂𝐞𝐞𝐞𝐞𝐞𝐞 is the mean of Cens, m are the uncertain RTD parameters, and 𝐴𝐴 𝝈𝝈𝐂𝐂𝐞𝐞𝐞𝐞𝐞𝐞
 is standard deviation of Cens. 

For  3H, 𝐴𝐴 𝝈𝝈𝐂𝐂𝐞𝐞𝐞𝐞𝐞𝐞
 contains only the analytical uncertainty and 𝐴𝐴 �̂�𝐂𝐞𝐞𝐞𝐞𝐞𝐞 is the observation value without noble gas recharge 

parameter corrections. For the PFM and EMM RTD, we perform separate MCMC inferences using each of the 
environmental tracers alone to compare the variance in mean residence times estimates. We do not vary the model 
parameters that describe SF6 contamination, CFC-12 degradation, and uncertainty in  4Heter production rates 
when considering each environmental tracer separately to avoid an ill-posed parameter inference problem. All of 
the environmental tracers (CFC-12, SF6,  3H,  4Heter) are jointly considered to infer parameters for the EPM and 

Table 2 
Prior Distributions for the RTD MCMC Analysis

Parameter Low High Distribution

τ1 (years) 1 1,000 Uniform(Low, High)

η1 (−) 1 5 Uniform(Low, High)

f1 (−) 0.01 0.99 Uniform(Low, High)

τ2 (years) 50 15,000 Uniform(Low, High)

𝐴𝐴 𝐴𝐴
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

1∕2
 (years) 5 35 Beta(α = 2, β = 2)

μ σ

𝐴𝐴 𝐴𝐴𝐻𝐻𝐻𝐻 a (cm 3STP/g) −10.48 0.33 Normal(μ, σ)

𝐴𝐴 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆6
 (−) 0.0 0.167 Half-Normal(μ, σ)

Note. The Beta distribution is scaled between the Low and High values using 
Equation 5.
 aParameter is given as the log10 transform.
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EPM–PFM RTD. Furthermore, variability in SF6 contamination, CFC-12 
degradation, and  4Heter production rates are incorporated for the EPM and 
EPM–PFM RTD parameter inferences.

4. Results
4.1. Noble Gas Recharge Parameters

The noble gas recharge parameter MCMC analysis converged for all parame-
ters based on a qualitative assessment of four independent Markov-chain traces 
adequately exploring the parameter space and producing Gelman-Rubin 𝐴𝐴 �̂�𝑅 
measures less than 1.05. Figure 4 shows the marginal posterior distributions 
for the noble gas recharge temperature (Tr) and elevation (Z), atmospheric 
lapse rate slope (m) and intercept (b), and excess-air parameters (Ae and F) at 
the three observation wells. The posterior distributions are considered to be 
within reasonable ranges for a high-elevation montane site and are consistent 
with studies in nearby basins (Carroll et al., 2020; Manning et al., 2021). We 
consider reductions in parameter posterior uncertainties relative to the prior 
distributions as a measure of parameter sensitivity to the observation data set 
and modeling structure.

The maximum a posteriori (MAP) corresponds to the parameter value with the highest probability and is the 
most likely given the analysis. The posterior Z distributions are similar for PLM1 and PLM7, with MAP esti-
mates of ∼3,000 m and standard deviations of ∼100 m (Figure 4). Z at PLM6 is lower with a MAP estimate of 
2,860 m and standard deviation of ∼88 m. The posterior distributions for m show minimal changes compared to 
the prior distributions. Thus, m has little influence on the simulated noble gas concentrations given the mode-
ling framework. The b posterior distributions are skewed to lower elevations at PLM1 and PLM7 (MAPs of 
∼3,100 m) relative to the prior of b = 3,353 m (Figure 3). At PLM6, the estimated b of 3,430 m is greater than 
the most likely prior values. Tr shows similar patterns to b. At wells PLM1 and PLM7, Tr is approximately 0.8°C 
with standard deviations of less than 1.0°C. Tr at PLM6 is warmer, with a MAP estimate of 3.7°C and standard 
deviation of 0.7°C. The excess-air parameters F and Ae show the largest uncertainty reductions relative to the 
priors. The most likely F estimates range from 0.42 to 0.72 with standard deviations less than 0.1 at wells PLM1 
and PLM7 and 0.2 at well PLM6. The MAP Ae ranges from 0.002 cm 3STP g −1 at PLM6 to 0.063 cm 3STP g −1 at 
PLM7 with uncertainties on the order of 50% of the MAP values. ΔNe, which is a measure for total excess air, 
ranges from 68% at PLM1 to 16% at the PLM6 (Table S3 in Supporting Information S1).

Figure 5 illustrates the joint posterior distributions for recharge elevations and temperatures, along with simula-
tions of the lapse rates sampled from the posterior distribution. The most likely recharge elevations at PLM1 and 
PLM7 are generally 200 m above the well heads (horizontal dashed lines), which are near or above the top of the 
hillslope transect (Figure 1). The recharge elevation for PLM6 is focused in the ∼50 to ∼100 m above the well and 

Figure 4. Noble gas recharge parameter prior distributions (red-dashed line) 
and posterior marginal distributions for wells PLM1 (blue), PLM7 (orange), 
and PLM6 (gray).

Figure 5. Simulated recharge temperature versus elevation posterior distributions (shaded blue), lapse rates from the joint 
posterior distributions (gray lines), the maximum a posteriori parameter estimate (solid black line), and the prior (dashed 
black line). Darker blue indicates higher probability density of recharge temperature and elevation. The horizontal dotted line 
is the well elevation.
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does not predict significant recharge from the higher elevation regions. For wells PLM1 and PLM7, the influence 
of depressing the lapse rate intercept b relative to the prior lowers the recharge temperature for a given elevation. 
At the toe-slope PLM6 well, the lapse rate falls to the right of the prior model (Figure 5), suggesting that recharge 
temperatures are warmer than the predicted annual average air temperature.

The MCMC inference methodology considers all parameter sets that are consistent with observations and prior 
information, and robustly quantifies the covariation between the parameters. The noble gas recharge parameter 
joint posterior distributions for well PLM1 are shown in Figure 6. Wells PLM6 and PLM7 show similar parameter 
correlation structures and are presented in Figures S2 and S3 in Supporting Information S1. Linear correlations 
exist between Tr, Z, and b due to the deterministic, yet uncertain, lapse rate used to relate these variables (Equa-
tion 4). The excess-air Ae and F parameters additionally show positive correlations with Tr, which is similar to 
the analysis in Jung and Aeschbach (2018). The correlation structure between Ae and F is positive and skewed 
such that increases of Ae beyond ∼0.02 cm 3STP g −1 do not result in commensurate increases in F. We note that 
inferring the uncertainty of the non-Gaussian joint distribution of Ae and F is problematic for typical nonlinear 
least squares inversion techniques (Tarantola, 2005).

Figure 7 compares the observed noble gas concentrations and analytical errors (dashed-gray curves; Table S1 in 
Supporting Information S1) with the posterior predictive concentration distributions (filled-blue curves). At all 
three wells, there is good agreement between the observed and simulated Ne and Ar concentrations, with biases 
below the observation analytical uncertainties. The simulated Xe agrees with field observations at PLM1 and 
PLM7; however is overpredicted at PLM6. This bias is likely due to Xe sorption to the shale bedrock, which 
has been previously reported in the nearby Redwell Basin (Manning et  al.,  2021) and the Milk River Aqui-
fer in Canada (Andrews et al., 1991). The simulated Kr concentrations underpredict the observations at wells 
PLM1 and PLM7. Improved Kr model fits require parameter values outside the prior distributions. In particular, 
increasing the simulated Kr concentrations at wells PLM1 and PLM7 requires recharge temperatures below 0°C, 
which are physically implausible.

Figure 6. Noble gas recharge parameter joint posterior distributions assuming the closed-equilibrium (CE) model at well 
PLM1. Yellow and purple regions correspond to the highest and lowest posterior probabilities, respectively.
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4.2. Groundwater Residence Times

4.2.1. Apparent Ages and Exponential Mean Residence Times

The CFC-12 observation distributions that account for the noble gas recharge conditions range from ∼12 pptv at 
PLM6 and PLM7 to ∼36 pptv at PLM1, with uncertainties of ∼5% (Table 3). The CFC-12 apparent ages are 60, 
68, and 68 years at PLM1, PLM7, and PLM6, respectively, which are near the piston-flow age dating limit for 
CFC-12. Figure 8 shows the posterior distributions of the exponential RTD model mean residence times for each 
of the environmental tracers. The low CFC-12 concentrations result in MAP exponential mean residence times 
of 615, 1,935, and 1,927 years at PLM1, PLM7, and PLM6, respectively. We note that in addition to the CFC-12 
concentrations approaching preindustrial background concentrations, CFC-113 was not observed above analyti-
cal detection limits and only PLM1 had detectable CFC-11. While these CFC patterns can suggest large  fractions 
of premodern groundwater (defined as recharge prior to the year 1950), similar patterns can been attributed 
to CFC degradation (Hinsby et  al.,  2007; Plummer et  al.,  2006). SF6 apparent ages are 37 and 49 years and 
MAP exponential mean residence times are 146 and 702 at PLM1 and PLM7, respectively (Figure 8). The SF6 
concentration of 17 pptv at PLM6 is above plausible solubility equilibrium and excess-air conditions, suggest-
ing the sample is contaminated. Possible sources of contamination include field sampling and terrigenic SF6 
production, which has previously been observed in sedimentary geologic settings (von Rohden et al., 2010).  3H 

Figure 7. Posterior predictive noble gas concentrations at (a) PLM1, (b) PLM7, and (c) PLM6. The blue curves show the 
simulated posterior predictive noble gas concentrations (after Markov-chain Monte Carlo [MCMC] inference conditioned to 
Ne, Ar, Xe, and Kr) and the gray dashed-curves show the field observations. For He, the orange dotted-curve is the estimated 
terrigenic He component, calculated as the difference between observed and simulated He concentrations.

Table 3 
Posterior Predictive Concentrations

Well  4Heter (cm 3STP/g) ± Δ 4Heter (%) ± CFC-12 (pptv) ± SF6 (pptv) ±  3H (TU) ±

PLM1 1.08e−8 2.13e−9 17 4 36.54 2.25 1.28 0.07 4.87 0.39

PLM7 3.60e−8 1.83e−9 77 5 11.92 0.69 0.29 0.02 4.32 0.35

PLM6 1.07e−7 3.09e−9 262 10 11.95 0.73 17.24 0.97 4.16 0.33

Note.  4Heter, ΔHeter, CFC-12, and SF6 assimilate observation analytical errors and noble recharge parameter uncertainties, 
while  3H only assimilates observation analytical errors. ± refers to 1 standard deviation errors.
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 concentrations decrease from 4.9 TU at the upslope PLM1 well to 4.2 TU 
at the downslope PLM6 well. These  3H concentrations result in nonunique 
apparent ages that can range from <10  years to ∼60  years. The MAP  3H 
exponential mean residence times are 71, 90, and 93 at PLM1, PLM7, and 
PLM6, respectively (Figure  8). Despite the variance and disagreement 
between the apparent ages and exponential mean residence times among the 
young environmental tracers, the presence of CFC-12, SF6, and  3H suggests 
that all the samples contain a component of modern groundwater.

Figure 7 indicates that all samples have  4He in excess of predicted atmos-
pheric equilibrium and excess-air sources, suggesting the presence of  4Heter 
and a fraction of long-residence time groundwater within the sample 
(Solomon et al., 1996). Δ 4Heter is used to notate the  4Heter concentrations as a 
percentage of the combined atmospheric equilibrium and excess-air concen-
trations (Cmod in Figure 7). At wells PLM1, PLM7, and PLM6, Δ 4Heter is 
17%, 77%, and 262%, respectively (Table  3). Uncertainties in Δ 4Heter are 
∼20% of the MAP value at PLM1 and less than ∼5% of the MAP value at 
wells PLM7 and PLM6.  4Heter apparent ages and MAP exponential mean 
residence times are 310, 1,100, and 3,170 years at PLM1, PLM7, and PLM6, 
respectively (Figure 8), with the assumption that the He flux out of mineral 
grains equals in situ production (Equation 8).

4.2.2. RTD Prior Predictive Distributions

The cooccurrence of the young residence time environmental tracers (CFC-
12, SF6, and  3H) and  4Heter suggests that the groundwater samples contain 
a mixture of residence times characterized by modern and premodern 

timescales. We qualitatively test the ability of multiple parametric RTDs to jointly explain the observed envi-
ronmental tracers by randomly sampling from the RTD prior parameter distributions (Table 2) and comparing 
simulated concentrations from the lumped parameter model (Equation 7) against observations. Figure 9 shows 
the predicted concentrations for  3H, SF6, and CFC-12 versus  4Heter calculated using a constant production rate 
of 𝐴𝐴 3.3 × 10−11 cm3STP g

−1

H2O
year−1 (see Equation 8). The EMM and EPM RTD can approximate the joint SF6 

and  4Heter, and CFC-12 and  4Heter observations. However, these RTD models cannot jointly explain the  4Heter 
and  3H observations. In particular, simulations that contain  3H > 4 TU contain too little  4Heter compared to the 
field interpretations. The right column in Figure 9 suggests that the binary mixing EPM–EPM can better recon-
cile the young residence time environmental tracers with the inferred  4Heter concentrations. The uncertainties in 
the  4Heter production rate, CFC-12 degradation, and SF6 contamination are not addressed in the prior predictive 
distribution plots, but are considered in subsequent MCMC parameter inferences.

4.2.3. RTD Model Parameter Inference

We quantitatively infer parameter uncertainties for the EPM RTD and EPM–PFM binary mixture RTD using 
MCMC analysis and the full set of environmental tracers (CFC-12, SF6,  3H, and  4Heter). Furthermore, the EPM 
and EPM–PFM posterior distributions consider uncertainties in the  4Heter accumulation rates, CFC-12 degrada-
tion, and SF6 contamination. The SF6 observation at PLM6 was excluded from the parameter inference process 
due to contamination that is in excess of the prior models. Figure 10a shows the EPM mean residence time 
posterior distributions at wells PLM1, PLM7, and PLM6. The posterior distributions for the remaining uncertain 
parameters are presented in Figure S4 in Supporting Information S1. At PLM1, the MAP mean residence time 
(τ1) is 82 years and the distribution ranges from approximately 60 to 130 years. PLM7 and PLM6 have older 
mean residence times of 122 and 140, respectively, and similar uncertainties that range from approximately 100 
to 200 years. These results suggest that there is a 49% increase in the mean residence time moving downslope 
from PLM1 to PLM7 then a smaller 14% increase moving from PLM7 to the toe-slope well PLM6. The mean 
age increases by 2.1 years per meter change in land-surface elevation along the hillslope transect between upslope 
PLM1 well and toe-slope PLM6 well. Figure 10b compares the environmental tracer observations to the posterior 
predictive concentrations for the EPM. In general, the EPM predicts all the environmental tracer observations 
with reasonable uncertainty intervals.

Figure 8.  3H, SF6, CFC-12, and  4Heter exponential residence time distribution 
(RTD) model (EMM) mean residence time posterior distributions at wells 
PLM1, PLM7, and PLM6. The  4Heter mean residence time estimates assume 
only in situ production at equilibrium diffusive conditions (see text for further 
details). Dashed vertical lines correspond to the maximum a posteriori (MAP) 
parameter estimate.
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Figure 11a shows the mean residence times and mixing fraction parameter posterior distributions for the EPM–
PFM binary mixing. Here, the subscripts, 1 and 2, refer to the young mixing component that is characterized with 
a EPM and the old mixing component that is characterized with a PFM, respectively. The posterior distributions 
for the remaining uncertain parameters are presented in Figure S5 in Supporting Information S1. The mean resi-
dence time of the young mixing component (τ1) at PLM1 is 40 years and makes up between 0.65 and 0.99 (f1) 
of the total sample (Figure 11a). PLM7 and PLM6 have similar τ1 posterior distributions that range from ∼45 to 
115 years, with higher probability at mean residence times less than 100 years. The f1 posteriors at PLM7 and 
PLM6 have broad distributions, yet, they have zero probability density at values approaching unity. This suggests 
that PLM7 and PLM6 cannot be explained using the young EPM component alone and mixing with longer 
residence time groundwater is required. Similarly, none of the wells have probability density for f1 approaching 

Figure 9.  3H, SF6, and CFC-12 versus  4Heter bivariate tracer–tracer concentration plots generated using 15,000 Monte Carlo 
samples for each residence time distribution (RTD) model. Each RTD model has its own color and the gray points are the full 
set of model runs. For the piston-flow model (PFM) and exponential model (EMM), all plausible concentrations fall along a 
line. Labeled numbers on the PFM and EMM correspond to apparent age and mean age, respectively.

Figure 10. (a) Exponential piston-flow model (EPM) residence time distribution (RTD) mean residence time posterior 
distributions at wells PLM1, PLM7, and PLM6. (b) Posterior predictive concentrations (solid-filled curves) and observation 
distributions (dashed-filled gray curves) for the environmental tracers CFC-12, SF6,  3H, and  4Heter used for the Markov-chain 
Monte Carlo (MCMC) inference.
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0.2 and less. This suggests a young component is needed to explain the envi-
ronmental tracer suite. For all three wells, the mean residence time of the old 
PFM mixing component (τ2) has broad posterior distributions with uncertain-
ties on the order of thousands of years (Figure 11a). At PLM1 and PLM7, 
the τ2 posterior distributions have ranges similar to the uniform prior distri-
butions used in the MCMC analysis, but the more likely values are skewed 
toward younger mean residence times. Alternatively, the τ2 posterior distribu-
tion at PLM6 has zero probability density below ∼2,500 years and uniformly 
predicts mean residence times ranging from ∼3,000 to ∼10,000 years.

The EPM–PFM mean residence times that combine the young and old 
mixing fractions are notated as τcomp in Figure 11a. Both the MAP estimates 
and variance of τcomp increase moving downslope from PLM1 to PLM6. At 
wells PLM1 and PLM7, the τcomp posterior distributions are skewed toward 
younger mean residence times and the most probable estimates are 227 and 
892 years, respectively. At PLM6, the posterior τcomp distribution does not 
have a well-defined maximum, but generally predicts mean residence times 
that are greater than 1,000 years. The increased fraction of long-residence 
time groundwater at PLM6 compared to PLM1 and PLM7 is consistent 
with  the commensurate increase in  4Heter concentrations, but is also likely 
influenced by the lack of a SF6 measurement that puts further constraints on 
the young mixing fraction. Figure  11b compares the environmental tracer 
field observations to the posterior predictive concentrations and suggests the 
EPM–PFM predicts all the environmental tracer observations with reasona-
ble uncertainty intervals.

Figure 12 illustrates the cumulative density functions of both the EPM and 
young fraction of the EPM–PFM (the EPM component of the binary mixture 
model) evaluated with the respective posterior parameter distributions. These 
curves represent the entire RTD, rather than a probability distribution of the 
mean residence time. Figure 12 can be interpreted as the fraction of the total 
sample that is younger than a given residence time or, equivalently, recharged 
after a given date. For instance, regions of the curves that plot below the 
horizontal dashed lines indicate the proportion of the sample with residence 
times that are modern, which we define as recharged after the year 1950. 
RTD inference assuming the EPM suggests that 53% of the PLM1 sample 
is considered modern (Figure 12a1). At well PLM7 and PLM6, the percent 
of modern groundwater decreases to ∼30% (Figures  12a2 and  12a3). The 
EPM–PFM RTD increases predictions of modern groundwater to 76%, 41%, 
and 36% of the total sample at PLM1, PLM7, and PLM6, respectively. Thus, 
the EPM–PFM predicts higher fluxes of modern groundwater compared to 
the EPM, despite τ2 and τcomp being on the order of hundreds to thousands of 
years (Figure 11).

5. Discussion
5.1. Noble Gas Recharge Zones

Understanding the temporal and spatial scales of bedrock groundwater flow 
and transport is critical for the further development of integrated hydrological 
conceptual models in headwater mountain catchments (Brooks et al., 2015; 
Condon et  al., 2020). Interpretation of environmental tracers is one of the 
few methods available to constrain RTDs over timescales commensurate 
with the range of expected flow paths in mountain systems with steep topog-
raphy and strongly contrasting hydrogeologic properties (e.g., Engdahl & 
Maxwell, 2015; W. P. Gardner et al., 2020). However, estimation of bedrock 

Figure 11. (a) Mean residence time posterior distributions at wells PLM1, 
PLM7, and PLM6 for the binary mixing model residence time distribution 
(RTD) that combines a young exponential piston-flow (EPM1) component 
with an old piston-flow (PFM2) component. (b) Posterior predictive 
concentrations (solid-filled) and observation distributions (dashed-gray 
curves) for the environmental tracers CFC-12, SF6,  3H, and  4Heter used for the 
Markov-chain Monte Carlo (MCMC) inference.

Figure 12. Groundwater residence time cumulative density distributions 
assuming (a) the exponential piston-flow model (EPM) residence time 
distribution (RTD) and (b) the binary mixing EPM–piston-flow model (PFM) 
RTD. The solid black curve is the average distribution of residence times and 
the light gray curves are samples from the posterior distribution. The open 
circle and corresponding horizontal line corresponds to the fraction of the total 
sample that is characterized with residence times that are modern (after 1950).
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groundwater RTDs using in situ measurements of environmental tracers has been limited and typically remains 
uncertain. This uncertainty is in-part due to the challenges with interpreting dissolved noble gases and inference 
of groundwater recharge conditions in mountain systems.

Studies have typically inferred variations in dissolved noble gas recharge parameters in mountain systems at the 
catchment to watershed spatial scales using deep production wells in the lower elevation valley (P. M. Gardner 
& Heilweil, 2014; Manning & Solomon, 2003; Markovich et al., 2019). While the inferred groundwater recharge 
elevations and temperatures have been valuable to constrain predictions of mountain block recharge locations 
(e.g., Doyle et al., 2015), expected variations in dissolved noble gases along smaller mountain hillslopes remain 
relatively unknown (Manning et al., 2021; Masbruch et al., 2012; Singleton & Moran, 2010). Our results suggest 
that bedrock wells spaced within 200 m of each other along the bottom half of a steep mountain hillslope have 
variations in inferred noble gas recharge temperatures, elevations, and excess-air conditions (Figure 4).

At the further upslope wells PLM1 and PLM7, the predicted recharge elevations are near or above the top of hillslope 
and have cold recharge temperatures approaching 0°C. High recharge elevations persist, even when considering 
the full uncertainty distributions of the joint parameters (Figures 5a and 5b), which accounts for the plausibility 
of colder ground and soil temperatures compared to mean air annual temperatures (Manning & Solomon, 2003; 
Masbruch et al., 2012). This implies that it is unlikely that the near 0°C recharge temperatures are solely sourced 
from low elevation recharge near the wells that consists entirely of cold snowmelt. The plausibility of recharge at 
elevations higher than the hillslope transect can suggest limitations in the hillslope 2D cross-section conceptual 
model (e.g., Figure 1c) that does not capture intermediate and regional flow paths from nearby mountain regions.

Compared to PLM1 and PLM7, the predicted recharge elevations are lower and temperatures are higher at the 
toe-slope well PLM6 (Figure 5). The increased recharge temperature can be the result of enhanced mixing with 
shallow alluvial water recharged locally on the lower elevation regions of the hillslope. This is consistent with 
the topography-driven flow path conceptual model where the base of hillslopes captures a broader distribution of 
flow paths, including very short flow paths (Engdahl & Maxwell, 2015). Numerical modeling by W. P. Gardner 
et al. (2020) provides further process insights that support varying degrees of bedrock and shallow soil water mixing 
at toe-slope versus further upslope positions. In particular, they show that lower hillslope positions experience 
longer duration of hydraulic connectivity compared to upslope positions where bedrock recharge largely occurs 
during brief periods of high soil saturation conditions. This conceptual model is also consistent with the observation 
of a thinner and less transient unsaturated zone at PLM6, compared to the upslope wells (Tokunaga et al., 2019).

An alternative explanation for the higher recharge temperatures at PLM6 is an increased contribution of deep flow 
paths that reestablish equilibrium conditions with warmer, geothermally altered groundwater. These deeper flow 
path contributions are expected to have longer residence times (Frisbee et al., 2013; Gleeson & Manning, 2008), 
which is supported by the increased  4Heter concentrations moving downslope. Nonetheless, the toe-slope well 
shows distinct dissolved noble gas characteristics compared to further upslope wells, suggesting that there are 
variations in the distribution of groundwater flow paths along the lower section of the studied hillslope. This 
distribution of flow paths can integrate over spatial scales ranging from the local hillslope to the more distant 
higher elevation regions of the basin, which are rarely considered in conceptual models of hydraulic exchanges 
within hillslopes. Further characterization of the groundwater contributions sourced from higher elevation 
regions that may be buffered from snowpack changes can be critical to properly asses mountain catchment water 
balances in a drying climate (Carroll et al., 2019).

5.2. Variations in Mean Residence Times

There is an increased recognition that bedrock groundwater is an important component of mountain catchment 
hydrological functioning (e.g., Gabrielli et  al.,  2012; Singha & Navarre-Sitchler,  2021). Characterization of 
bedrock groundwater RTDs provides a first-order approximation on subsurface flow path dynamics (Asano & 
Uchida, 2012; Hale et al., 2016), which are generally difficult to observe and directly characterize in mountainous 
systems. Groundwater residence times are often reported as piston-flow apparent ages or mean residence times 
estimated from a single environmental tracer data point.

An important consideration in our analysis is that there are disagreements in apparent age and exponential 
model mean residence time inferred when using the different environmental tracers. Variations in tracer-specific 
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groundwater mean residence times has been previously discussed (e.g., Zuber et al., 2005) and has been attributed 
to processes such as microbial degradation of CFCs, contamination of SF6, and incorrect RTD model assump-
tions (Cook & Herczeg, 2000; W. P. Gardner et al., 2011; Hinsby et al., 2007). In particular, groundwater mean 
residence times inferred from CFCs, SF6, and  3H observations can be biased when the sample contains a mixture 
of residence times that are not accurately captured in the assumed RTD (McCallum et al., 2015). These are known 
as aggregation errors and can lead to groundwater apparent ages that underpredict the true mean residence times 
of groundwater mixtures (Bethke & Johnson, 2008; Stewart et al., 2017). Aggregation errors can vary for differ-
ent environmental tracers, resulting in groundwater age estimates that do not agree (W. P. Gardner et al., 2015).

Both aggregation errors and potential SF6 contamination result in apparent groundwater ages biased toward 
younger values. Our inferred SF6 apparent ages of 37 and 48 years at wells PLM6 and PLM7, respectively, are 
expected to provide estimates of minimum mean residence times for the bedrock groundwater samples given the 
tracer suite and presented techniques. These apparent ages are similar to mean residence times inferred using envi-
ronmental tracers in other mountain catchments (Gabrielli et al., 2018; Hale et al., 2016; Manning et al., 2012; 
Singleton & Moran, 2010), which are older compared to residence times inferred using stable isotopes alone (e.g., 
McGuire & McDonnell,  2006). However, apparent groundwater ages that assume piston-flow conditions are 
expected to poorly represent the mixing processes in complex mountain groundwater systems, thus likely under-
estimate the true, but unknown, mean residences times. The presence of a considerable amount of premodern 
water mixed with modern water found in this study suggests that mountain groundwater residence times reported 
in previous studies can be missing long-residence time fractions and potentially biased young. Matrix diffu-
sion is an alternative conceptual model to help explain the considerable premodern fractions (Cook et al., 2005; 
Rajaram, 2021). Diffusive exchange of environmental tracers between immobile matrix pore water and actively 
flowing fracture water can lead to estimated mean ages that are greater than the true mean age of the mobile 
water. Further work is needed to test these conceptual models in efforts to improve our understanding of bedrock 
groundwater RTDs in mountain watersheds.

The bedrock groundwater samples show evidence of mixing between groundwater characterized by modern and 
premodern residence times. This is qualitatively based on the cooccurrence of environmental tracers first intro-
duced into hydrologic systems in the ∼1950s (CFC-12, SF6, and  3H) and elevated  4Heter, which is suggestive of 
residence times on the order of centuries to millennia (Solomon et al., 1996). Our results further support that 
interpreting mean residence times with RTD models that allow for mixing processes lead to older mean age 
estimates compared to the apparent ages. We find that introducing groundwater with premodern residence times 
into the sample mixture improves the ability to explain the full suite of environmental tracer observations. With 
an assumed EPM RTD, the most likely bedrock groundwater mean residence times along the hillslope are on the 
order of 80–140 years (Figure 10). The EPM RTD, which has been previously used to infer groundwater mean 
residence times in mountain catchments (e.g., Gabrielli et al., 2018), is a smooth function that is characterized 
by a single mean residence time. Alternatively, studies often observe that RTDs that consider a binary mixture 
of groundwater characterized by disparate young and old residence time fractions best fit multiple environmental 
tracers in mountain systems (W. P. Gardner et al., 2011; Lerback et al., 2022; Manning et al., 2012; Markovich 
et al., 2021). Our results similarly find that the EPM–PFM RTD can explain the observation data by mixing in a 
long-residence time fraction that is ∼1 order of magnitude older than the young fraction (Figure 11). However, 
even when we consider mixing of an old water source, the mean residence time of the young fraction still contains 
a significant proportion of water with residence times of 50 years (Figure 12b). In our system, analysis of multiple 
environmental tracers interpreted using multiple RTD conceptual models suggests that the shallow bedrock wells 
have mean groundwater residence times on the order of 50–150 years, with a significant component of premodern 
water.

Few studies have quantified groundwater residence times in mountain catchments with environmental trac-
ers that can inform mixing fractions with residence times characteristic on the millennia timescales (Frisbee 
et al., 2013; Manning & Caine, 2007; Manning et al., 2021). It is plausible that our interpretation of hillslope 
bedrock groundwater mean residence times that are older than values often reported in the literature is due to the 
assimilation of  4He, which decreases the degree of residence time information truncation (Frisbee et al., 2013; 
W. P. Gardner et al., 2015). This idea was similarly presented in Hale et al. (2016) who identified evidence for 
bedrock groundwater samples that contain a mixture of modern and premodern residence times. However, they 
infer  3H/ 3He piston-flow apparent ages, which are relatively insensitive to mixing fractions characterized by 
premodern residence times. Another possible factor contributing to the older mean residence times reported in 
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this study is that the sampled wells are located lower in the mountain watershed network (lower stream order) 
compared to many prior studies that are in first-order stream catchments. Lower watershed elevation regions can 
include longer flow paths with larger residence times (Frisbee et al., 2011). Compared to this work, Manning 
et al.  (2021) report similar elevated  4Heter values in bedrock wells from a nearby basin within the East River 
Watershed, further supporting our results that shallow subsurface systems in mountain headwater systems can be 
characterized with  significant premodern residence time components. The observation of very old water, when 
using tracers capable of identifying old water, highlights the need to use multiple environmental tracers that can 
inform groundwater transport over broad timescales.

Our results show an increase in mean residence times moving downslope from well PLM1 to PLM6. This pattern 
is consistent with a topography controlled groundwater flow system where higher proportions of flow paths with 
long-residence times discharge to the lower hillslope positions (Gabrielli et al., 2018; Gleeson & Manning, 2008; 
Hale et al., 2016; Manning et al., 2012). Our analysis of the EPM–PFM RTD suggests that the increase in mean 
residence time at well PLM6 is largely the result of the old-fraction mixing component, which is most sensitive 
to the  4Heter observations. The presence of a young mixing fraction within all the samples is consistent with the 
conceptual model of a bedrock groundwater system that is hydraulically connected with modern recharge condi-
tions and the overlying shallow subsurface system. This supports studies that suggest active circulation depths 
in mountain systems can extend deeper than the soil and saprolite regions and into bedrock (Carroll et al., 2020; 
Condon et  al.,  2020; W.  P.  Gardner et  al.,  2020; Tokunaga et  al.,  2019). The observed hydraulic connectiv-
ity between the soil and bedrock suggests that hillslope numerical models should be designed to capture the 
exchanges between these reservoirs over broad timescales (e.g., Rapp et al., 2020).

Given well PLM6 is at the toe of the slope in a groundwater discharge zone, we hypothesize that groundwater 
with residence times on the order of centuries to millennia are contributing to the shallow subsurface saprolite 
and soil groundwater systems. Upwelling of bedrock groundwater to high-conductivity zones at the bottom of the 
hillslope has been simulated numerically (W. P. Gardner et al., 2020). Groundwater discharge to these reservoirs 
has been shown to contribute to catchment evapotranspiration fluxes (e.g., Ryken et al., 2022) and streamflow 
generation processes (e.g., Hale et al., 2016). It has further been suggested that groundwater reservoirs character-
ized with premodern residence times can produce hydrologic and ecosystem resilience during drought conditions 
(Meyers et al., 2021; Singleton & Moran, 2010). Thus, it is critical to understand the processes that dictate the 
observed long-residence time fractions, and how inclusion of these flow paths changes predictions of integrated 
catchment hydrologic and ecological response to change.

5.3. Limitations

Modeling of dissolved noble gases has numerous sources of model structural errors that can influence the 
inferred recharge parameters. For instance, annual average air temperature lapse rates can poorly predict recharge 
temperatures in snow-dominated catchments (Manning & Solomon, 2003; Masbruch et al., 2012). Markovich 
et  al.  (2021) use numerical models to show that recharge lapse rates can deviate from linear relationships in 
systems with steep topography due to redistribution of water in the shallow subsurface prior to recharge events, 
which is also supported by model results from Carroll et al. (2019) and W. P. Gardner et al. (2020). Similarly, 
interpretation of dissolved noble gases in groundwater systems employs the piston-flow assumption, thus does 
not consider the impact of groundwater mixing with variable recharge conditions.

While our mean residence time estimates consider CFC-12 degradation, SF6 contamination, and variation 
in  4Heter production rates, these processes remain uncertain and there exists little field data to directly constrain 
the associated parameters. The introduction of these parameters into the inference process without adequate 
data to constrain them results in higher uncertainties in the RTD parameter posterior distributions. Alterna-
tively,  there are numerous model structural errors and assumptions that were not considered uncertain in this 
work. For instance,  3H concentrations in groundwater recharge are uncertain, yet they were assumed error 
free. Further work is needed to more comprehensively evaluate RTD uncertainties with environmental tracer 
observations.

The  4He mass balance is typically not closed in shallow subsurface aquifers (Kipfer et al., 2002). In particular, 
it is difficult to distinguish between upwelling of deep groundwater flow paths (Stute et al., 1992) or elevated 
matrix diffusion processes (Solomon et al., 1996) using  4He, as both can lead to elevated signals of long-residence 
time groundwater. This has implication for the provenience and flow path structure of the long-residence time 
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groundwater we observe. Further interpretation of RTDs that include diffusion processes that are salient in frac-
tured bedrock systems (e.g., W. P. Gardner et al., 2016; Rajaram, 2021) and process-based numerical modeling 
frameworks that simulate groundwater flow and transport over broad spatial and temporal scales (e.g., Thiros 
et  al.,  2021) can be powerful tools to further interrogate the source and catchment function of the observed 
long-residence time fractions.

The environmental tracer suite used in this work cannot inform the full distribution of potential residence times. 
This includes residence times on the order of years to a decade and hundreds of years. For example, studies 
show the value of stable water isotopes and radon to constrain subdecadal residence times (Popp et al., 2021; 
Schilling et al., 2021; Sprenger et al., 2019) and  39Ar to inform residence that are on the order of centuries (e.g., 
Visser et al., 2013). Interpreting more environmental tracers that inform diverse timescales (e.g., W. P. Gardner 
et al., 2015) and time series of environmental tracers (e.g., Visser et al., 2019) will likely further reduce ground-
water RTD uncertainties.

6. Conclusions
Constraining bedrock groundwater flow dynamics and RTDs are fundamental challenges in mountain hydrol-
ogy, yet necessary for refining conceptual models of mountainous water cycles. While gas-phase environmen-
tal tracer observations such as dissolved CFCs, SF6,  3H and nobles gases can provide invaluable insights on 
bedrock groundwater RTDs, there remains significant uncertainties due to nonuniqueness in noble gas recharge 
parameters. With the developed MCMC uncertainty quantification technique, we find that the noble gas recharge 
temperatures and elevations have large variability between three bedrock groundwater wells located within tens 
of meters of each other on the lower portion of a steep, mountainous hillslope. Based on MCMC uncertainty 
analyses with multiple commonly used RTD models, we show that the shallow bedrock on the studied hillslope 
is best described as a mixture between premodern and modern residence times. Terrigenic  4He concentrations 
increase from the upslope to downslope wells, suggesting higher fluxes of groundwater characterized by premod-
ern residence times. In addition to the markers of premodern residence times in the shallow bedrock wells, there 
simultaneously is evidence for a recently recharged fraction with modern residence times. The RTDs that include 
both premodern and modern mixing fractions suggest that the bedrock groundwater reservoir is connected to 
shallow soil hydraulic dynamics, which are more sensitive to contemporary recharge conditions and the effects 
of climate change. This work provides valuable insights on how mountain systems store and transmit essential 
water resources and highlights the need to further include bedrock groundwater processes in mountain catchment 
conceptual and integrated model predictions.

Data Availability Statement
The environmental tracer data from the Pumphouse Lower Montane groundwater wells in the East River 
Watershed and Python modeling scripts to interpret the data are available on the Zenodo repository at https://
zenodo.org/record/7554795#.Y8qxti-B2uM (Thiros,  2023). Data and model are freely available and meet 
FAIR principles. The Python modeling scripts are actively developed on GitHub at https://github.com/nthiros/
NobleGas_RTD_MCMC.
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