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Abstract
New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered
important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices
on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential
roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized
modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6
with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of
mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved Ti
measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L–H
transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral
beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to
on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic
simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and
reasonably correlated with turbulence decorrelation time. Te inside the island of a neoclassical tearing mode allow
the analysis of the island evolution without assuming specific models for the heat flux. Other results include the
discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion
equation, studies of the anomalous Doppler resonance compressional Alfvén eigenmodes, disruption mitigation
studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic
imaging shows promising first data sensitive to the edge current profile and flows.

1. Introduction

Future magnetic confinement fusion devices face major
challenges in the areas of plasma exhaust, pedestal and edge
localized mode (ELM) physics as well as fast particle and
current drive physics. MAST [1] (A = ε−1 = R/a =
0.85 m/0.65 m ∼ 1.3, Ip � 1.5 MA), one of the two leading
spherical tokamaks (STs) in the world (similar to NSTX [2]),
is well suited to advance the physics basis for ITER30 [3],
DEMO or an ST based component test facility (CTF) [4–6] in
these areas [7, 8]. The MAST Upgrade project [9, 10] (under
procurement) will strengthen this even further with the new

30 www.iter.org.

upper and lower divertor, the off-axis neural beam heating,
the new centre column allowing for a 90% higher flux swing,
a 50% higher toroidal field with five times higher I 2t and
higher shaping capabilities. These substantial upgrades to the
load assembly, the heating system and the power supplies will
enable detailed studies of novel divertor concepts including
Super-X [11] and Snow flake [12], fast particle physics and
current drive in a much wider operating space. On MAST the
hot Ti � 3 keV, Te � 2 keV, dense ne = (0.1–1) × 1020 m−3

and highly shaped (δ � 0.5, 1.6 � κ � 2.5) plasmas are
accessed at moderate toroidal field Bt(R = 0.7 m) � 0.62 T
giving access to regimes at high β = 2µ0p/B2, strong
rotation, where finite Larmor radius, ρi, and magnetic field
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Figure 1. Profile evolution of the (a) electron pressure and (b) its gradient during a type-I ELM cycle constructed from 50 profiles in three
similar shots as well as (d)–(f ) individual data with error bars and fits at three different times during one ELM cycle characterized by (c) the
Dα intensity.

curvature effects are enhanced. Apart from this ST unique
parameter regime MAST plasmas also show many similarities
to conventional aspect ratio tokamaks. Research during the last
two years has delivered important results for the ITER physics
basis with respect to ELM mitigation (section 5), fast particle
physics (section 6), L–H thresholds (section 5), heat loads
(section 5) and neoclassical tearing modes (NTMs) (section 8).
Furthermore, MAST data also helped to resolve critical design
issues for the Upgrade such as the thermal performance of
the sliding joint design for the higher toroidal field and longer
pulse length by validating the modelled performance against
data from prototype joints, or testing a controllable high
field side mid-plane gas valve (section 9). New radial field
power supplies for the vertical stabilization control have been
incorporated into the Upgrade scope after extensive testing of
the old power supplies on MAST and analysing the feedback
response to ELMs. The increased understanding of the fast-ion
redistribution with off-axis NBI (see section 6) suggests that
the initially proposed beam geometry could be improved by
angling one of the new beam lines upwards. The engineering
implications of this are currently under investigation.

2. Pedestal and ELMs

The physics determining the width of the edge transport barrier
in H-mode and therefore the width and height of the pedestal
is not yet well understood. In recent years a predictive
model for both the height and width of the pedestal has
been developed [13], where the pedestal gradient is limited
by kinetic ballooning modes (KBM) and the growth of the

pedestal is ultimately limited by the ideal peeling–ballooning
stability limit. On MAST the evolution of the electron pedestal
between type-I ELMs has been investigated in detail using the
recently upgraded Thomson scattering system [14–16].

Figure 1 shows the profile of the electron pressure and
its gradient at different times during a type-I ELM cycle
on MAST. The data in figures 1(a) and (b) are constructed
by combining the fitted data from 50 individual profiles at
different stages of the ELM cycle from three similar shots and
using least-squares fits of the fitting parameters to construct
the inter ELM profiles. In a single inter ELM period the
MAST Thomson scattering system can measure eight profiles
using the eight lasers triggered with respect to an ELM event.
In the discharges analysed here the normal time resolution
of �t = 4.33 ms was used leading to an average of three
profiles in an inter ELM cycle (see figures 1(c)–(e)). Using
the method described in [15] of sorting profiles of different
ELM cycles in three shots with respect to their time before
the next ELM, fitting each profile with a modified tanh fit and
deriving an average evolution of the fitting parameters through
the ELM cycle in principle an arbitrary resolution can be
achieved of a smoothed ELM cycle. The reconstructed average
evolution agrees well with the limited number of profiles from
individual laser pulses during one ELM cycle [15, 16] as can
be seen from figures 1(d)–(g) showing the measured profiles
with error bars and fits (d)–(e) as well as the pressure and
its gradient (f )–(g) calculated from the fits at three times
during the ELM cycle (c). It is the pedestal width that
evolves the most, rather than the steepness of gradient. Also
the region of steepest gradient moves further inwards. With
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Figure 2. Normalized linear growth rate from GS2 as a function of
time in the ELM cycle and normalized perpendicular wavelength
kyρi (ρi: ion Larmor radius).

respect to ideal peeling–ballooning stability this means that
the widening of the pedestal region results in a decrease of the
unstable pressure gradient limit [15]. A comparison between
the pedestal evolution at low and high collisionality of the
pedestal ν

ped
	 has been done, although in a non-dimensionless

way. ν	 = νei
√

mi/(kBTi)ε
−3/2qR is the electron ion collision

frequency νei normalized to the ion bounce time (ε = a/R:
inverse aspect ratio, q = rBt/RBθ safety factor). Whilst the
evolution of the pedestal pressure in time is similar at high and
low ν

ped
	 the pedestal width and position evolve more slowly

at low ν
ped
	 . At high ν

ped
	 only n

ped
e increases at constant T

ped
e .

A linear micro-stability analysis (at normalized perpendi-
cular wavelength kyρi ∼ O(1)) of the high ν

ped
	 profiles using

the local gyro-kinetic (GK) code GS2 [17] shows that micro-
tearing modes (MTMs) dominate the flatter gradient plateau
region just inboard of the pedestal, and that KBMs dominate at
the knee and in the steep gradient region of the pressure profile
[15–18]. As can be seen from figure 2, a mode transition arises
during the ELM cycle as the pressure pedestal broadens and
the knee approaches ψN = √

(ψ − ψ0)/(ψa − ψ0) ≈ 0.96
(ψ0: poloidal flux at magnetic axis, ψa: magnetic flux at last
closed flux surface). The increasing ∂n/∂r and ∂p/∂r stabilize
the MTMs until KBMs are driven unstable, which may be
important in explaining the inward advance of the pedestal.
In the steepest ∂p/∂r region KBMs become more stable due
to increasing bootstrap current [16] and are fully stable at low
ν

ped
	 [18, 19]. Studies using measured edge current profiles and

GK modelling with global codes are needed to elucidate the
role of the KBMs for the pedestal further.

3. ELM mitigation

In ITER and DEMO type-I ELMs need to be mitigated or
suppressed to protect the plasma facing components [20], e.g.
by using resonant magnetic perturbations (RMPs) [21–24].
The internal coil set on MAST has recently been upgraded
from 12 coils to 18 internal coils, 12 below and 6 above the
mid-plane, to study ELM mitigation with n = 2, 3, 4, 6 RMP
fields.

In figure 3 an example of mitigation of type-I ELMs using
an n = 6 RMP is shown. Clearly with the application of
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RMPs (blue) an increase of the ELM frequency f RMP
ELM over

the natural type-I ELM frequency f nat.
ELM is observed, here a

factor f RMP
ELM /f nat.

ELM ≈ 3. When the perturbation is switched off
f nat.

ELM is recovered. Various scans with different mode spectra
and plasma shape have shown that on MAST above a certain
threshold perturbation 0.7 × 10−4 < br

res < 1.5 × 10−4 the
ELM frequency increases linearly with perturbation strength.
Here, br

res is the normalized radial component of the resonant
perturbation field including the plasma response calculated
with MARS-F [25]. The threshold itself depends on the applied
spectrum. The ELM energy loss �WELM is consistent with
f RMP

ELM ·�WELM = const. as for unmitigated ELMs. An increase
of f RMP

ELM /f nat.
ELM up to 9 has been observed with a particular

n = 3 configuration. The upgraded coil set has now also the
unique capability to perform a pitch angle scan of the n = 3
perturbation at a fixed q95 to test the resonance condition. This
is done by keeping the current in the upper six coils constant,
whilst changing the ratio of currents in the 12 lower coils
operated in pairs. The sensitivity to the alignment together
with modelling including the plasma response [26] suggests
that the perturbation strength close to the X-point plays an
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(b) modelled with ERGOS.

important role to affect the ELMs, although studies have as yet
failed to identify a single parameter for ELM mitigation.

The application of the RMPs leads to a reduction in the
edge pressure gradient [14]. Consequently, these profiles are
well in the stable region of the peeling–ballooning stability
diagram (see figure 4), despite the ELM frequency being
higher. Hence, either the peeling–ballooning picture is no
longer valid, or the usual 2D stability analysis is not applicable.

With perturbation fields above the threshold for ELM
mitigation or density pump out (see above), lobe structures at
the X-point appear as can be seen from figure 5(a) [27]. These
structures are also predicted by vacuum field calculations
of the perturbed equilibrium using the ERGOS code [28]
(see figure 5(b)). The application of RMPs also leads to
periodic corrugation of the axisymmetric equilibrium. The
capability on MAST to rotate the phase of the perturbation
was used to compare the experimental profiles, i.e. from
Thomson scattering and visible imaging, with a 3D equilibrium
reconstruction using the ANIMEC code [29] showing good
agreement between data and modelling. Including 3D effects
into the stability analysis is likely to change the peeling–
ballooning stability boundary. Addition of structures close to
the X-point in a 2D boundary for example reduces the pressure
gradient at which peeling–ballooning stability is lost [30].

A study of high field side pellet fuelling with ITER-like
deposition and pellet to ELM particle ratio during mitigated
ELMs shows that the fuelling pellets trigger additional ELMs
that could be larger than the mitigated ELMs [31]. In
comparison to the ITER ideal fuelling model [32] examples
with the same post-pellet particle loss rate as during the
non-pellet phase as well as with five times larger post-pellet
loss rate have been observed. The larger post-pellet loss rate is
caused by the occurrence of an ELM that seems to consist of
several ELM-like events after pellet injection. The reasons for
the different pellet triggered ELMs under similar conditions
is not fully understood and needs more experimental data on
which to base hypotheses.

4. L–H transition

A further critical issue for ITER is the access to H-mode.
The dependence of the threshold power to access H-mode,
PL–H, on ELM mitigation techniques and on density is of
particular interest. Previous results showed a detrimental effect

with the application of n = 3 RMPs on DIII-D, MAST and
NSTX [33]. In these devices PL–H increased by up to a factor
of two at perturbation strength needed for ELM mitigation.
In contrast, the application of n = 4, 6 RMPs does not
lead to a noticeable increase in PL–H on MAST and also
mitigates the first ELM. Furthermore, shallow (r/a > 0.8)
pellet injection is shown to be at least compatible with the
L–H transition, if not beneficial [34]. The density depen-
dence of the L–H transition has been studied in plasmas with-
out RMPs [14]. Power scans at three different densities,
n̄e = (1.5 ± 0.1) × 1019 m−3, n̄e = (2.0 ± 0.1) × 1019 m−3

and n̄e = (2.9 ± 0.1) × 1019 m−3, were performed by chang-
ing the level of NBI power on a shot to shot basis. Here, the
power was only changed after the current ramp-up phase and
the L–H transition was suppressed until the current and density
flat-top was reached, using the sensitivity of PL–H to the mag-
netic configuration [35, 36]. This is to avoid effects of different
current profile evolution on the relative PL–H measurements.

At the lowest density the available power of PNBI =
3.5 MW was not sufficient to access a clear ELMy H-mode.
Instead only an intermediate phase, H̃ , is observed where the
Dα light dithers at frequencies of 4 kHz � fDα

� 5 kHz.
This phase exists to very low density n̄e ≈ 1.0 × 1019 m−3

and over a wide range of input power. At the higher density
ELMy H-mode is preceded by a similar phase, but the range
in input power is reduced as well as the duration of this
phase before the transition to ELMy H-mode occurs. This
behaviour can be seen from figure 6 showing (a) the Dα traces
at different densities and (b) an indicative existence space in
Ploss and n̄e. The periods (�t < 200 µs) with low Dα emission
represent states of decreased edge turbulence measured with
a reflectometer, beam emission spectroscopy (BES) and fast
visible imaging. The periods are too short for the kinetic
profiles to evolve significantly [37].

The dynamics of the toroidal and poloidal He+ flow,
representing the radial electric field, as the plasma enters the
low turbulence periods in the H̃ phase is indistinguishable from
the behaviour at the transition where the transport barrier can
be sustained. Both the toroidal and poloidal velocity, measured
by Doppler spectroscopy, indicate a more negative electric field
with a stronger gradient in the edge region, just inside the last
closed flux surface as can be seen from figures 7(a) and (b).
However, turbulent filaments are seen to erupt from the plasma
∼50 µs before the flow shear is lost. This would be consistent
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with a picture where the turbulence transports vorticity out of
the edge region. Pending a detailed comparison this phase
has some signatures of the I-phase observed in other devices
[38, 39], a limit cycle oscillation between turbulence driven
flow shear and plasma turbulence. The dynamics of the flow
seems to be incompatible at least with simple predator–prey
models [40, 41], where the predator, turbulence driven flow
shear, feeds on the prey, the turbulence. Here, a simple phase

relation between flow shear and turbulence would be expected
[42]. Geodesic acoustic modes (GAMs), also often connected
to the I-phase [38], have been observed in Ip = 0.4 MA ohmic
discharges on MAST and are found to be affected by RMPs
suggesting a coupling to Alfvénic perturbations [43].

5. Exhaust

The conditions in the scrape-off-layer (SOL) set the boundary
for the pedestal region, hence influencing both the L–H
transition [44] and the dynamics of the pedestal [45, 46]. All
large future fusion devices face the challenge of how to deal
with the high heat and particle fluxes impinging on the plasma
facing components. In tokamaks and stellarators the SOL and
divertor are key to this. The MAST Upgrade will incorporate,
therefore, upper and lower divertors providing closure at the
X-points. A total of 16 coils allow for substantial changes of
the magnetic geometry in the divertor volume [47, 48]. Here,
the flux expansion at the target as well as further up-stream
and the connection length can be changed. This also includes
a so called Super-X configuration (SXD) [11]. The operation
with a radially extended outer leg is in particular attractive
for future high power ST devices, such as a CTF, although
it could also mitigate the heat flux in conventional tokamaks.
The tight aspect ratio leading to the smaller strike point radius
in conventional divertor configurations leads also to a much
stronger variation of Bt with R, which translates into a strong
reduction of the parallel heat flux. The divertor design has
been assessed with a variety of tools including edge modelling
with SOLPS [49].

Selected results from an example simulation comparing
SXD and a conventional configuration are shown in figure 8
[50]. In this simulation the flux expansion at the target leads to
a strong reduction in (b) peak energy flux with little change in
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Figure 9. Comparison of heat flux profiles at the lower outer strike
point from Langmuir probes (LP, black) assuming Te = Ti, (red) IR
camera and (blue) probes using Ti from the divertor RFEA (blue).

(c) the peak particle flux. The SOL both for particles and heat
flux is broadened in the SXD case. The SOL heat transport
is dominated by conduction leading to a stronger reduction of
Te and Ti at the target in SXD due to the longer connection
length. Parameter scans have been performed with SOLPS to
test the robustness of specific Upgrade design features. This is
necessary to also address uncertainties arising from the ad hoc
anomalous diffusivity representing the turbulent cross field
(radial) transport in SOLPS. Furthermore, a 1D model has been
developed (SOLF1D) and successfully benchmarked against
the SOLPS calculation [50]. Here, a strong reduction of heat
flux is observed when the divertor leg is stretched to a larger
radius or if the recycling source is increased with the SOL
volume.

Assumptions not only enter SOL simulations, but also
data interpretation. The ion temperature in front of the target
plate is one of such assumptions, affecting the interpretation of
Langmuir probe measurements. For the first time a retarding
field energy analyser (RFEA) has now been used in the
down-stream divertor region of MAST to measure Ti close
to the target [47, 51, 52]. Figure 9 shows heat flux profiles
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Figure 10. Measured peak heat flux to the target versus ELM
energy loss for natural (black dots) and mitigated (red triangles)
ELMs. The dashed line is a linear fit to the data.

at the lower outer strike-point during an inter ELM period
in a Ip = 0.9 MA type-I ELMy H-mode from Langmuir
probes assuming Ti = Te (black dots), the IR camera (red
circles) and Langmuir probe data using Ti from the RFEA
measurement (blue squares). The inclusion of the measured
ion temperature Ti/Te � 3 clearly brings the IR and Langmuir
probe measurements into closer agreement in the high heat
flux region around the strike point, but further out in the SOL
leads to an overestimate of the heat flux most pronounced in
the region 0.04 m � R − Rsep � 0.07 m. With increasing
collisionality Ti/Te evolves towards unity as expected. The
divertor RFEA measurements are augmented by a similar
system at the outer mid-plane, thus allowing the study of the
changes of Ti towards the divertor in the SOL for the first time
in a tokamak. As shown previously for the pedestal region [37]
also in the mid-plane SOL Ti > Te holds [51, 53] agreeing well
with edge charge exchange measurements.

These new measurements enhance confidence in the heat
load measurements with the IR camera during mitigated and
unmitigated ELMs [24, 54]. As can be seen from figure 10 the
peak heat flux to the target is reduced for mitigated ELMs
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corresponding to their ELM size, which follows the same
�W · fELM = const. dependence as natural ELMs [54]. In
addition the wetted area decreases with decreasing ELM size
as has been observed in other devices. At vanishing ELM size
(�WMHD

ELM → 0 kJ) the linearly extrapolated peak heat flux
would be much larger than the measured inter ELM heat flux
qt ≈ 0.5–1.5 MW m−2 and a deviation from the linear trend
may occur, although MAST data currently show no evidence
for this. Strike point spitting during ELM mitigation with
RMPs is measured from C II narrow band visible imaging in
the divertor. These measurements agree well with ERGOS
vacuum modelling of the perturbations, though at reduced
RMP coil current in ERGOS, implying some screening by the
plasma.

Not only the peak heat flux, but also the heat flux profile
is important to assess divertor performance in future devices.
A database of MAST L- and H-mode discharges has been
constructed [55] using a new way of fitting target heat flux
profiles developed on JET and ASDEX Upgrade [56] to feed
into a multi-machine database [57] and to arrive at a scaling
of the heat flux decay length, λq , with machine parameters.
However, a first principle understanding of the SOL transport
processes leading to the profiles of ne, Te and qheat at the target
is needed. Many aspects of the L-mode filament dynamics at
the mid-plane in MAST seemed to be captured by electrostatic
interchange turbulence simulations with ESEL [58, 59]. The
simulations not only reproduce the ion saturation current
mean profile, but also many of the statistical properties of
the observed turbulence. Parameter scans of these ESEL
simulations have been used to arrive at a scaling for λq at
the mid-plane [58]. To make predictions for the target profiles
the simple model for the parallel transport in ESEL needs to
be improved. Nevertheless, the scaling law, which is in broad
agreement to a recent experimental scaling [60], reproduce the
expectation that λq does not simply increase with machine size
confirming the importance of the forthcoming experimentation
in MAST Upgrade [47, 58]. In particular it is found that
λq ∝ I−1

p as experimentally seen on many devices for L-
mode [60] and H-mode [57] and increases with the parallel
length scale in the SOL, both quantities can be changed in the
MAST Upgrade over a large range.

6. Current drive and fast particle physics

Current profile, j (r), control and non-inductive current drive
are likely needed in future tokamaks and in particular in STs.
The JINTRAC integrated suite of codes [61], routinely used for
modelling JET discharges, has been interfaced with the MAST
data to increase the interpretative and predictive capability
beyond TRANSP31 [62]. Modelling of the current ramp-up is
used as a validation exercise for both codes and previous ramp-
up modelling with TRANSP on MAST [63, 64] and JET [65]
suggested a faster modelled current diffusion than observed
in the experiment. In the simulations the current diffusion
is rather sensitive to errors in the equilibrium reconstruction
or experimental mappings. Hence, a set of highly repeatable
discharges on MAST with different NBI onset times during the
current ramp up to allow MSE measurements within 5 to 10 ms

31 http://w3.pppl.transp.gov.

c

r/a

EFIT with MSE
initial
+50ms

TRANSP 
initial
+50ms

Figure 11. Comparison of the (top) q and (bottom) current density
profile evolution during an ohmic current ramp-up with MSE
measurements using the NBI onset from a multi shot analysis.
Results from (red) an MSE constrained equilibrium reconstruction
(EFIT) and (blue) neoclassical poloidal field diffusion (TRANSP)
are shown for the (solid) initial profiles and (dashed) profiles after
50 ms evolution at dI/dt = 5 MA s−1 ramp speed.

after beam onset were used to build-up a ‘quasi-’ ohmic j (r, t)

derived from a MSE constrained equilibrium reconstruction on
a shot to shot basis [64]. Comparing these new measurements
directly with synthetic data from the modelling confirms the
previous results of slower j (r) evolution in the experiment (see
figure 11).

A key question for future tokamaks is the interplay
between fast particle driven instabilities and current drive
[66]. Beam ions being super-Alfvénic in STs mimic important
aspects of α-particles and understanding of neutral beam
current drive (NBCD) in the presence of high fast particle
pressure is a key aim for the planned Upgrade. The recently
installed four channel movable neutron camera (NC) [67] and
poloidal and toroidal fast-ion Dα emission diagnostic (FIDA)
[68] allow detailed studies of the fast-ion redistribution to be
performed already in MAST. In particular the redistribution
of fast-ions due to n = 1 fishbones has been studied in detail
[69, 70]. In figure 12 measured neutron emission profiles for
a dedicated set of discharges during n = 1 fishbone activity
are compared with synthetic data of detailed TRANSP runs
of the discharges with varying assumptions for the anomalous
fast-ion diffusion model in TRANSP with a simple diffusion
coefficient uniform in real and velocity space to assess what
global level of redistribution may be present. Similar double
null discharges (DNDs) with on-axis and single null discharges
(SNDs) with off-axis NBI are compared at two different power
levels using the same injection energy. In the DND cases
an anomalous (DFI = 3 m2 s−1) redistribution is confirmed
by the NC data at high power, whereas at low power no
significant anomalous redistribution is needed to explain the
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measurements. Here, the higher power causes the n = 1
fishbone amplitude to increase by more than a factor of two.
Off-axis NBI should lead to a reduced fishbone drive even at
high power, since the fast-ion pressure gradient in the core
is reduced. Indeed in these discharges only weak n = 1
activity is found and consequently, no fast-ion redistribution is
needed to explain the neutron data. The new local and energy
resolved FIDA data is consistent with the assumption of DFI

constant in space and energy [71, 72]. However, the data from
the poloidal FIDA system seems to suggest that there may be
a loss of trapped fast-ions even under conditions where the
neutron data can be modelled assuming no anomalous fast-
ion transport. In contrast to the loss of passing fast-ions,
which affects the neutron emission strongly, the loss of trapped
fast-ions may not produce a significant drop in the neutron
rate.

These new data can be compared with HAGIS [73] that
links the n = 1 fishbone mode amplitude to the TRANSP
anomalous diffusion coefficient [70]. A highly parallelized
new Monte-Carlo full-orbit beam injection code LOCUST-
GPU [74], running on dedicated graphics processors,
has been developed to calculate smooth representations
of the experimental fast-ion distribution function fFI =
fFI(E, pφ, µ; σ) expressed in terms of constants of motion,
to be used directly in the HAGIS modelling extending
the calculations using model fast-ion distribution functions
presented previously [8]. This, together with the incorporation
of collisional drag into the HAGIS modelling of resonant
beam ions, has led to an improved understanding of the
interactions of these ions with various electromagnetic modes,
as well as fast-ion redistribution during fishbones. In
particular the inclusion of dynamical friction is important when
modelling super-Alfvénic particles. It has been found that the
redistribution during fishbones can be expressed as effective
diffusion and convection both scaling quadratically with the
mode amplitude [70]. However, the transport coefficients
computed using HAGIS are not sufficient to account for
the drops in neutron emission during fishbone excitation,
suggesting that other processes may be contributing to the
fast-ion redistribution.

Other mechanisms for fast-ion redistribution and fast-ion
losses have also been studied. The ion loss due to the toroidal
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Figure 13. Simulated Dα emission from LOCUST-GPU. FIDA and
halo emission result from charge exchange between injected
neutrals and, respectively, fast and bulk deuterium ions, while beam
emission is produced by the de-excitation of injected neutrals.

field ripple has been modelled with CUEBIT [75] and shown
to contribute only 0.1 m2 s−1 or less to DFI. The changes
to the fast-ion distribution caused by sawtooth crashes and
an internal n = 1 kink mode (long-lived mode, LLM) [76]
have also been measured with the NC and FIDA [67, 72].
During the LLM neutron emission is reduced in the core. The
FIDA data are best matched during this phase using a core
localized DFI ≈ 6 m2 s−1 in contrast to the lower but global
redistribution during fishbone activity. Synthetic FIDA and
NC diagnostics are embedded in LOCUST-GPU, for better
data analysis. An example of the modelled Dα spectrum is
shown in figure 13.

At the low toroidal field in MAST the high ratio of fast-ion
velocity to the Alfvén speed (up to 2.5) leads to the excitation
of compressional Alfvén eigenmodes (CAEs) [77] with n > 0
rotating in the co-current direction. Such modes have to
be excited by the anomalous Doppler resonance condition
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ω − k‖v‖ = lωci with l = −1 (ωci: ion cyclotron frequency)
and are driven by the beam anisotropy T‖ > T⊥. Usually
CAEs are excited at the normal Doppler resonance l = +1 and
have n < 0.

7. Core transport

In spherical tokamaks ion energy transport is often found to
be close to neoclassical, due to the strong perpendicular flow
shear stabilizing ITG turbulence [78], except in the periphery
of L-mode plasmas where the level of flow shear is too
weak [79]. Electron heat transport on the other hand remains
strongly anomalous, with one candidate explanation being
ETG turbulence, which is less affected by sheared flow [78].
Although in H-mode plasmas in MAST (and indeed also in
NSTX) ion-scale turbulence is largely stabilized by E × B

flow shear [78, 79], strong ion-scale turbulence is present in
the peripheral regions of L-mode plasmas where the level of
flow shear is insufficient to fully stabilize this turbulence, this
difference being an important feature that distinguishes L- and
H-mode plasmas. Otherwise, the core transport properties of
L- and H-mode plasmas are rather similar with anomalous,
ion-scale transport being largely stabilized in both cases. This
has been confirmed using the new 2D (8 radial × 4 poloidal)
BES system [80]. A comparison of BES measurements of
L-mode density fluctuations with synthetic data from various
NEMORB (global non-linear GK) [79] simulations is shown
in figure 14. The level of L-mode turbulence is sensitive
to inclusion of: (A) kinetic electrons, (B) collisions and
(C) rotation shear (figure 14). The flow shear, as well as
all other prescribed profiles in these calculations, has been
taken from a detailed TRANSP analysis of the experiment.
Inclusion of (A) and (B) brings simulated turbulence amplitude
within factor of 2–3 to the experimental data and adding (C)
may improve agreement further [81]. Also, at high parallel

1 10 100
τ
c
 [µ sec]

1

10

100

τ * [µ
se

c]

1 10 100
τ
c
 [µ sec]

1

10

100

τ st
 [µ

se
c]

1 10 100
τ
c
 [µ sec]

1

10

100

τ M
 [µ

se
c]

1 10 100 1000
τ
c
 [µ sec]

1

10

100

1000

τ sh
 [µ

se
c]

0.0 5.0
L

n
/L

Ti

(a) (b)

(c) (d)

Figure 15. Comparison of turbulence correlation time τc with
(a) drift time τ	, (b) streaming time, (c) magnetic drift time and (d)
the perpendicular shearing time.

flow shear subcritical turbulence may cause a finite ion heat
flux in regimes where the linear growth rate of the micro-
instabilities vanishes [82, 83]. The experimental dependence
of R/LTi (L−1

f ≡ ∇ ln f : gradient length) on toroidal flow
shear and q/ε is in reasonable agreement with cyclone base-
case simulations (a generalized circular s-alpha, tokamak
equilibrium, frequently used to benchmark simulations [84])
to obtain the zero-turbulence manifold [81, 83].

Turbulence measurements have not only been compared
to non-linear GK calculations [81], but also a database of
turbulence characteristics has been compiled to perform a
statistical comparison to associated linear and non-linear
time scales [81, 85]. In figure 15 the measured turbulence
correlation times τc are compared to (a) the drift time
τ	 = (ly/ρi)L	/vth,i (L	 = min{LTi , Ln}, ly : poloidal
correlation length), (b) the parallel streaming time τst =
(πr/vth,i)B/Bp ∼ l‖/vth,i (Bp: poloidal field), (c) the magnetic
drift time τM = (lx/ρi)R/vth,i and (d) the perpendicular
velocity shearing time τsh = [(Bp/B)∂Uφ/∂r]−1 (Uφ : toroidal
mean flow). The data show that τc ∼ τst ∼ τM, which indicates
a ‘grand critical balance’ [82] where these basic turbulence
characteristics can be predicted from the equilibrium quantities
alone. Furthermore, this implies that the parallel and
perpendicular correlation length within the flux surface are
not independent [85].

It is evident from figure 15(d) that for most of the data in
our ion-scale turbulence database the E × B shearing time τsh

is longer than the correlation time of the turbulence τc. This
indicates that where strong ion-scale turbulence is observed,
i.e. primarily in the periphery of L-mode plasmas, that the
E ×B shearing rate is not the controlling factor governing the
de-correlation of the turbulence. It is conjectured in [85] that a
significant component of the turbulent amplitude due to zonal
flows, which does not contribute to the amplitude of the density
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fluctuations detected by the BES system, may be playing a role
in the de-correlation of the turbulence instead.

8. Core stability

The NTM is considered as one of the most detrimental
modes with respect to confinement and to the probability
of disruptions for ITER [87]. In particular modes with
m/n = 2/1 helicity (m poloidal and n toroidal mode number)
are the most dangerous. To understand the NTM stability
it is important to determine the critical island width, wc,
that leads to a flattening of the pressure profile inside the
island and thereby the loss of bootstrap current. A common
method to determine wc is to observe the island evolution in
experiments where the plasma β is ramped down [88, 89].
Examining the heat transport inside the island, however, is a
more fundamental method to understand NTM stability. Using
field-programmable gate array (FPGA) based event triggering
of the Thomson scattering system [90, 91] the Te and ne profiles
at eight time slices through the rotating 2/1 island of an
NTM have been measured for the first time in an ST [92].
A 2D simple heat transport model assuming divergence-free
diffusive heat transport in the island with constant parallel
and perpendicular heat diffusivity has been used to fit to the
Te profile. The model has been validated against the island
width estimation during β ramps. Figures 16(a) and (b) show
the good comparison between experimental and modelled
Te profiles. From the modelling of an ensemble of similar
discharges with saturated NTMs the different terms in the
modified Rutherford equation have been estimated with errors
resulting from the measurement errors (see figure 16(c)) with
the most unstable term being the bootstrap drive and all other
terms small and stabilizing. A key feature of this analysis
is that no specific models for parallel or perpendicular heat
transport are assumed, which has not been the case in many
previous analyses of NTM growth. The same technique of
intelligent event triggering can be used to mitigate the NTM
in H-mode by shifting the plasma briefly of DND triggering a

short L-mode transition [36] leading to a temporary reduction
of βp [91].

Disruption avoidance and mitigation are key features
for ITER due to the large forces and the potential for
runaway electron generation. On MAST a systematic study
of disruption mitigation by massive gas injection with respect
to gas load and impurity species [47, 93, 94] supports findings
on other devices. The peak energy load can be reduced by
60% compared to unmitigated disruptions and the best results
with respect to penetration speed and thermal quench time are
achieved with an Ar(10%)/He mix. The relative reduction of
energy is found to increase with increasing stored energy.

9. EBW imaging and other technical improvements

One of the most exciting novel diagnostics on MAST is
the electron Bernstein emission synthetic aperture imaging
[95, 96], which measures the emission window in poloidal and
toroidal angle at �t ≈ 10 µs time resolution with a 10 MHz
sampling rate. This is achieved by using an array of eight
antennas to synthesize a 2D image and 16 frequencies for
probing at different plasma densities (radial positions) giving
3D information of the EBW emission. Figure 17(a) shows
the modelled EBW emission using a 1D full wave mode-
coupling code complemented with 3D ray-tracing [97] and
figure 17(b) the corresponding measurement. The angular
positions of the emission cones show excellent agreement,
with the vertical elongation in the experimental data caused
by the shape of the antenna array, and should allow ELM-
resolved measurements of j (r) in the steep gradient region of
the pedestal. The system simultaneously also records active
data using one of the antennas as the emitter and recording the
reflected power similar to Doppler back scattering, providing
density turbulence and velocity fluctuation measurements. A
2D image of the turbulent plasma flows reconstructed from the
Doppler shift of the reflected signal is shown in figure 17(c).
The analysis of the large amount of data is ongoing, but the first
results are promising with respect to flows and ELM-resolved
edge current densities.
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Figure 17. Initial results of the EBW imaging system in L-mode showing (a) the modelled and (b) the measured EBW emission as well as
(c) plasma flows from active probing.

As several other systems on MAST this diagnostic is
also driven by FPGAs and the application of FPGAs in
fusion technology on MAST is growing with development and
individual programming done in-house. Apart from the event
triggering, already mentioned, an intelligent drive of the TAE
antenna has been developed to stop the drive power briefly
whilst measuring the plasma response and a system to improve
the vertical feedback control is in development to be used on
MAST Upgrade.

New piezo-electric valve mechanisms were developed
for the HFS mid-plane gas fuelling and the movable gas
nozzle. The former, currently operated with a solenoid
drive, now enables the mid-plane HFS fuelling to be shut off,
thus avoiding the low pedestal temperatures prevalent with
continuous fuelling. Here, the valve mechanism is extended
from the outside of the vessel to provide sealing close to the
plasma. This gives similar fuelling rates to the old system at ten
times lower gas pressure and has enabled disruption mitigation
studies with massive gas injection from the high field side. The
latter allows a modulated gas influx with up to 500 Hz close to
the plasma with response times <1 ms and fuelling rates of the
order of 1021 particles s−1 e.g. for impurity transport studies.
Both valve systems act as prototypes for the fuelling system
design on the MAST Upgrade. In particular the HFS mid-plane
fuelling location is foreseen to be the main fuelling location on
the Upgrade and needs to be able to support density feedback.

10. Summary

MAST continues to make important contributions to
ITER/DEMO physics and the general understanding of
tokamak plasmas as well as building the physics basis for
future spherical tokamak (ST) applications on the way to
fusion power. New and sometimes unique measurements
such as electron Bernstein wave imaging are fundamental to
the progress. The Upgrade (under procurement) will further
strengthen these research capabilities and recent studies have
aided the design and clarified the physics capabilities. In
particular the new divertor design in the MAST Upgrade
will help to address the critical exhaust issue, which is
even more challenging in the compact ST geometry. Initial

modelling suggests that a strong reduction in target heat flux
in the Upgrade may be accomplished with a radially extended
outer leg.

On MAST mitigation of edge localized modes (ELMs)
using resonant magnetic perturbations with n = 3, 4, 6 has
been demonstrated with the increase in ELM frequency likely
to be caused by the 3D deformation of the plasma, and has been
shown to be compatible with pellet fuelling. The peak heat flux
during an ELM is found to be proportional to the ELM energy
loss with mitigated ELMs following the same trend as natural
ELMs. At low collisionality the ion temperature in the divertor,
measured using a retarding field energy analyser, exceeds the
electron temperature showing that the usual assumption of
equality between these temperatures for probe data analysis is
not always justified. The measured edge velocity fluctuations
during an oscillatory phase preceding the formation of the
edge transport barrier (L–H transition) raise questions for
simple predator–prey-like dynamics between the turbulence
driven flow shear and turbulence suppression by the flow
shear. Core ion-scale turbulence in L-mode has been measured
to be consistent with a ‘grand-critical-balance’, where the
characteristic turbulent time scales are of the same order of
magnitude. Global gyro-kinetic modelling shows reasonable
agreement with the measured fluctuation amplitude over the
full plasma radius, when kinetic electron effects and collisions
are taken into account. Measurements of the 2D temperature
profile inside an island due to a neoclassical tearing mode
enable a detailed analysis of the island evolution without
assuming a specific model for the parallel and perpendicular
heat transport inside the island. The fast-ion redistribution
by fishbones is found to be low with off-axis neutral beam
injection. This bodes well for the MAST Upgrade and its
planned off-axis heating as well as for future ST devices.
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