
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Conservative Adaptive Projection Method for the Variable Density Incompressible
Navier-Stokes Equations

Permalink
https://escholarship.org/uc/item/0xg2k57t

Author
Almgren, A.S.

Publication Date
1996-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0xg2k57t
https://escholarship.org
http://www.cdlib.org/

LBNL-39075
UC-405
Preprint

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

A Conservative Adaptive Projection
Method for the Variable Density
Incompressible Navier-Stokes
Equations

A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell,
and M.L. Welcome
Computing Sciences Directorate

July 1996
To be submitted to
SIAM]ouwal'on- ·. ·
scieniific··co'mputing

::0
I'T1 n ..,

.... ci'Tl
,o::o
0 (I) I'T1
S::IIIZ
.... n
Ill ZITI
c+O
(l)rt'()

0
-o

o:J -<
0..---
IQ

I
o:J z
I

n 1
0 w
"0 \0
'< lSI

-..J
..... t.n

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain coiTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any waiTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-39075
UC-405

A Conservative Adaptive Projection Method for the Variable
Density Incompressible Navier-Stokes Equations

Ann S. Almgren, John B. Bell, Phillip Colella,
Louis H. Howell, and Michael L. Welcome

Computing Sciences Directorate
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

July 1996

This work was supported by the Applied Mathematical Sciences Program and the HPCC Grand Challenge
Program of the U.S. Department of Energy Office of Mathematics, Information, and Computational Sciences,
and by the Defense Nuclear Agency under IACRO 95-2045, under Contract No. DE-AC03-76SF00098.

A Conservative Adaptive Projection Method for the Variable Density
Incompressible Navier-Stokes Equations *

Ann S. Almgren
John B. Bell

Phillip Colella
Louis H. Howell

Michael L. Welcome

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Abstract

In this paper we present a method for solving the equations governing time-dependent,
variable density incompressible flow in two or three dimensions on an adaptive hierarchy of
grids. The method is based on a projection formulation in which we first solve advection­
diffusion equations to predict intermediate velocities, and then project these velocities onto.
a space of approximately divergence-free vector fields. Our treatment of the first step uses a
specialized second-order upwind method for differencing the nonlinear convection terms that
provides a robust treatment of these terms suitable for inviscid and high Reynolds number
flow. Density and other scalars are advected in such a way as to maintain conservation, if
appropriate, and free-stream preservation.

Our approach to adaptive refinement uses a nested hierarchy of logically rectangular
grids with simultaneous refinement of the grids in both space and time. The integration
algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced
in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and
the grids at different levels are then synchronized. The single grid algorithm is described
briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy.
Numerical examples are presented to demonstrate the accuracy and convergence properties
of the method. An additional example demonstrates the performance of the method on a
more realistic problem, namely, a three-dimensional variable density shear layer.

1 Introduction

In this paper we develop a local adaptive mesh refinement algorithm for variable density,
constant viscosity, incompressible flow based on a second-order projection method. The

*Support for this work was provided by the Applied Mathematical Sciences Program and the HPCC
Grand Challenge Program of the DOE Office of Mathematics, Information, and Computational Sciences,
and by the Defense Nuclear Agency under IACRO 95-2045, under contract DE-AC03-76SF00098.

1

equations governing this flow are:

1 2
Ut + (U · \l)U = -(-\lp + 11\1 U + Hu),

p

Pt + \1 · (pU) = 0,

Ct + (U · \l)c = He+ k\12c,

\l·U=O ,

(1.1)

(1.2)

(1.3)

(1.4)

where U = (u, v, w), p, c, and p represent the velocity, density, concentration of an advected
scalar, and pressure, respectively, and Hu = (Hx, Hy, Hz) represents any external forces.
Here f.L is the dynamic viscosity coefficient, k is the diffusive coefficient for c, and He is
the source term for c. In general one could advect an arbitrary number of scalars, either
passively or conservatively.

The development of the single grid second-order projection methodology for the incom­
pressible Navier-Stokes equations is discussed in a series of papers by Bell, Colella and Glaz
[6), Bell, Colella and Howell [7), and Almgren, Bell and Szymczak [4]. The method discussed
here is an adaptive version of the algorithm presented by Almgren et al. [4], generalized to
include finite amplitude de~sity variation as originally discussed in Bell and Marcus [8]. The
details of the single grid algorithm are discussed in Puckett et al. [22]. The basic method­
ology presented in those papers was motivated by a desire to apply higher-order upwind
methods developed for gas dynamics to incompressible flow. In particular, they use a spe­
cialized version of the unsplit second-order upwind methodology for the convective terms in
(1.1)-(1.3) that was introduced for gas dynamics by Colella [15). The upwind methodology
provides a robust discretization of the convective terms that avoids any stability restriction
other than the CFL constraint for inviscid flow.

The focus of this paper is on developing a local adaptive mesh refinement (AMR) ver­
sion of the basic projection methodology. This algorithm uses a hierarchical structured
grid approach first developed by Berger and Oliger [10] for hyperbolic partial differential
equations. In particular, AMR is based on a sequence of nested grids with successively
finer spacing in both time and space. Increasingly finer grids are recursively embedded in
coarse grids until the solution is sufficiently resolved. An error estimation procedure based
on user-specified criteria evaluates where additional refinement is needed and grid gener­
ation procedures dynamically create or remove rectangular fine grid patches as resolution
requirements change.

This approach has been demonstrated to be highly successful for gas dynamics by Berger
and Colella [9] in two dimensions and by Bell et al. [5] in three dimensions. Steinthorsen
et al. [25] generalized this approach to the compressible Navier-Stokes equations in two
dimensions. For incompressible flow, Howell and Bell [16] presented a two-dimensional
nonconservative adaptive algorithm, based on the Bell, Colella and Glaz projection for­
mulation, which did not subcycle in time. This version used an exact projection which
introduced substantial complication at coarse/fine boundaries because of local decoupling
of the projection.

Minion [20) has developed an adaptive projection method for the two-dimensional in­
compressible Euler equations with constant density on locally refined grids. In this approach
all grid levels are advanced with the same time step which is determined by the finest level.

2

Minion uses the treatment of the convection terms discussed in Bell, Colella and Howell
[7] in which a MAC projection is used as an intermediate step in the convection algorithm
in order to enforce incompressibility at the half-time level. He also uses an approximate
cell-centered projection based on the MAC projection to enforce the constraint at the end
of the time step.

Almgren et al. [1, 3] developed a two-dimensional, variable density adaptive version of
the approximate projection formulation developed by Almgren, Bell and Szymczak [4]. The
methodology presented in these papers used nonconservative difference approximations of
the convective terms, and did not incorporate an intermediate MAC projection. Since the
treatment of convection was nonconservative a simplified synchronization between levels of
refinement was used. Almgren et al. [2] present a generalization of this approach to three
dimensions.

Stevens [26, 27] presents an adaptive projection algorithm with subcycling in time for
the anelastic equations describing the atmosphere. (The anelastic equations are analo­
gous to the incompressible Navier-Stokes equations but with a different constraint, namely,
\7 · (po(z)U) = 0, where Po is a given function of altitude that represents atmospheric strat­
ification.) Stevens' algorithm uses a staggered representation of velocities with arbitrary
integer factors of refinement combined with a different type of difference approximation
than is presented here. Coarse grid face-based velocities are used as boundary conditions
for the fine grid face-based velocities. This leads to Neumann boundary conditions for pres­
sure on fine grids; consequently, the overall algorithm conserves mass. However, he uses no
additional synchronization between levels, which means that at coarse/fine interfaces there
is a mismatch in the pressure field although the normal derivatives of pressure match. One
of the examples presented in Section 4 indicates that failure to properly match the pressure
at coarse/fine boundaries can lead to a loss of accuracy of the overall method.

There are also a number of adaptive algorithms for incompressible flow based on an un­
structured grid approach. The reader is referred to Ramamurti, Lohner and Sandberg [24],
Ramamurti, Sandberg and Lohner [23] and the references cited therein for some discussion
of this approach.

The methodology presented here is based on the approximate projection algorithm de­
veloped in Almgren, Bell and Szymczak. The method uses sub cycling in time; however,
unlike earlier versions of the adaptive algorithm, we now use an intermediate MAC pro­
jection so that the advection velocities used in evaluating the convective terms satisfy the
divergence constraint (1.4). Special attention is given to the synchronization step of the
algorithm so that the overall method is conservative for density (and other conservatively
differenced scalar fields) and free-stream-preserving in the sense that constant scalar fields
remain constant independent of grid refinement patterns and the velocity field.

Before describing the adaptive algorithm we will review, in the next section, the basic
fractional step scheme for a single grid. In the third section we describe, in detail, the
recursive time-stepping procedure for the adaptive algorithm. Other aspects of the adaptive
algorithm are also discussed. The fourth section shows convergence results and presents
computational examples illustrating the performance of the method.

3

2 Single Grid Projection Algorithm

In this section we review the basic fractional step scheme for the case of a single uniform
grid. The reader is referred to [4] and [6] for a more detailed description. In this algorithm,
velocity, density, and concentration are defined at cell centers at integer times and are
denoted by Ui~j,k' P~j,k and c~j,k' respectively. Pressure is specified at cell corners and is

staggered in time; thus, pressure is denoted by pn++J2 .+ 11 k+ 11 •
~ !2,] !2, t2

2.1 Advection-Diffusion Step

In the first step of the fractional step scheme, we solve the advection-diffusion equations
(1.2)-(1.3) for the updated density and concentration, and we compute an intermediate
velocity field from (1.1) without strictly enforcing the divergence constraint on velocity. In
the second step, we project this intermediate field onto the space of vector fields which
approximately satisfy the divergence constraint.

For the advection-diffusion step we solve the conservative forms of (1.1)-(1.3). This leads
to a natural definition of face fluxes that are used to handle refluxing across coarse/fine grid
boundaries in the adaptive algorithm. In particular, we solve

and

(2.3)

for the intermediate velocity U* and the updated density pn+l and concentration cn+l.
We note here that the same conservative discretization is used to represent convective and
conservative differences because the advection velocities are discretely divergence-free. The
method uses an unsplit second-order upwind predictor-corrector scheme for evaluating the
advective derivatives in (2.1)-(2.3) For this step the pressure gradient is evaluated at tn-%
and is treated as a source term in (2.1), with pn+% = ~(pn + pn+l). The forcing term Hu in
the momentum equation and the source term He in the concentration equation are centered
in time to preserve second-order accuracy.

In the predictor we first extrapolate the normal velocities to cell faces at tn+% using
a second-order Taylor series expansion in space and time. The time derivative is replaced
using (1.1). For face (i + ~,j, k) this gives

n (~X n ~t)(nlim) ~t((-) (-)
= Ui,j,k + 2- Ui,j,k2 Ux' i,j,k + 2 - VUy i,j,k- WUz i,j,k+ (2.4)

1 ((G)n-~ A h c n Hn))
-n- - P • J. k + f..LD- ' ui J. k + x i J. k ·
p "'' '' ''' i,j,k

4

extrapolated from (i,j,k), and

-R,n+% ~ n Llx Llt
ui+%,j,k ~ ui+l,j,k - TUx + 2Ut

n (Llx n Llt)(nlim) Llt((-) (-) = Ui+l,j,k- 2 + Ui+l,j,k2 Ux' i+l,j,k + 2 - VUy i+l,j,k- WUz i+l,j,k+ (2.5)

1 ((G)n-~ Ah,c n Hn))
n - P i+l,j,k + /-U..J. ui+l,j,k + x,i+l,j,k

Pi+l,j,k

extrapolated from (i + 1,j, k). Here, Llh,c is a standard, five-point in 2-d, seven-point in
3-d, cell-centered approximation to the Laplacian and G is a discretization of the gradient
operator.

Analogous formulae are used to predict values for rfi+B1y'n+k% and vPIDk+,nlJ+% at the other
z,J 2, z,], 2

faces of the cell. In evaluating these terms the first derivatives normal to the face (in this
case u~,lim) are evaluated using a monotonicity-limited fourth-order slope approximation
[14]. The limiting is done on each component of the velocity at time n individually.

The transverse derivative terms (vuy and ~ in this case) are evaluated by first ex­
trapolating all velocity components to the transverse faces from the cell centers on either
side, then choosing between these states using the upwinding procedure defined below. In
particular, in the y direction we define

A F n (Llx Llt n) (n lim)
ui,J+%,k = ui,j,k + 2 - 2vi,j,k Uy, i,j,k ' (2.6)

(Ji~+%,k = Ui~j+l,k- (~X+ ~tV~j+l,k) (U;,lim)i,j+l,k (2.7)

Values are similarly traced from (i,j,k) and (i,j,k + 1) to the (i,j,k + 1/2) faces to define
Au AD

U. . k 1J and U. . k u . ZJ, + 2 ZJ, +~
In this upwinding procedure we first define a normal advective velocity on the face

(suppressing the (i,j + ~,k) spatial indices on front and back states here and in the next
equation):

{

if if vF > o, vF + vB > o
vadv = 0 if VF < 0 VB > 0 or VF + VB = 0 Z,J+l,k - l -

2
VB if VB < 0, VF +VB < 0 °

We now upwind U based on vadv+ 1 k:
Z,] 2>

{

{JF
~ ~F ~B

U ·+l k = l/2(U + U) Z,J 2'

{JB

"f ~adv 0
I V. ·+1 k >

'l,J 2'
if vadv 1 = 0

Z,J+2,k
"f ~adv 0
I V . . + 1 k <

Z,] 2'

After constructing Ui,.i-~,k' Ui,.i,k+% and Ui,j,k-% in a similar manner, we use these upwind
values to form the transverse derivatives in (2.4) and (2.5):

5

(-) 1 (~adv ~adv) (~ ~)
WUz i,j,k = 2~z wi,j,k+% + wi,j,k-% ui,j,k+% - ui,j,k-% .

The normal velocity at each face is then determined by an upwinding procedure based
on the states predicted from the cell centers on either side. The procedure is similar to that
described above, i.e. (suppressing the (i + l/2,j,k) indices)

{

uL,n+% if uL,n+% > 0 and UL,n+% + uR,n+% > 0
u. 1 . = 0 if uL,n+Y2 < 0 uR,n+% > 0 or UL,n+Y2 + uR,n+Y2 = 0

t+'i,J,k - ' -
uR,n+% if uR,n+% < 0 and uL,n+% + UR,n+% < 0

W £ ll . "l d -n+% d -n+% e o ow a simi ar proce ure to construct v . . +11 k an w . . k+v .
1,] !2, t,], !2

The normal velocities on cell faces are now centered in time and second-order accurate,
but do not, in general, satisfy the divergence constraint. In order to enforce the constraint
at this intermediate time, we apply the MAC projection (see [7]) to the face-based velocity
field before construction of the conservative updates. The equation

(2.8)

is solved for <PM AC, where

(A.MAC A.MAC)

(
GMAC A,MAC). . _ '+'i+l,j,k- '+'i,j,k

X '+' t+Y2,],k - ~X

with G"!;AC and a;;rAc defined analogously. The face-based advection velocities are then
defined by

ADlf _ -n+%
u .+ 1 . k - u. 1 . k

t 'j,J, t+'j,J,

ADlf _ -n+%
V. ·+1 k- V . . 1 k t,) 'i' t,J+'j,

1 (GMACA.MAC)
pn

1
. x '+' i+lf2,j,k

t+'i,J,k

1 (GM AC A.M AC)
n y '+' i,j+%,k

p . . 1 k t,J+'i,

where p on the faces is averaged geometrically from the cell centers at time n.
At this point the predictor step is performed for the tangential velocity components,

density and concentration from cell centers to all cell faces. The extrapolation of the
normal velocity components has been described above; the tracing of density, concentration
and tangential velocity components is analogous, with the time derivatives replaced using
(1.1)-(1.3).

6

Now let S = {U, p, c}. Time-centered values §n+% at each face (i.e. pn+%, en+%, and
[Jn+% including the normal velocity component) are determined by upwinding, as follows:

The conservative update terms can now be defined by

[
'1"7 (S)]n+% _ [(AD'rs-n+lf2)] 1 (S- ADV - ADV) v . U i J. k - \7. U i,j,k = ~ i+l J. ku·+l . k- Si_l J. ku._l . k + ' ' ux 2' ' 'l 2 ,J, 2' ' z 2 ,J,

1 - ADV - ADV 1 - ADV - ADV
-(S. · 1 kv .. 1 k- S. · 1 kv .. 1 k) + -(S. ·k+1w.. 1- S. ·k 1W . 1)
~y Z,J+ 2 , Z,J+ 2 , Z,J- 2 , z,J- 2 , ~Z Z,], 2 Z,J,k+ 2 Z,J, - 2 Z,J,k- 2

Using this approximation we now compute pn+l from (2.2). Equations (2.1) and (2.3)
require solution of parabolic equations for each component of the intermediate velocity U*
and for the concentration cn+l. For these solves the conservative updates and forcing terms
are treated as explicit source terms. The parabolic solves are described in more detail in
Section 3.

The upwind method is an explicit difference scheme and, as such, requires a time-step
restriction for stability. We use the standard CFL condition, modified to account for the
case where the initial velocity is very small (or zero) but the accelerations may be large:

~t~mm max --,--,--- ,max . ((~x ~y ~z)
z,J,k lui,j,k I lvi,j,k I lwi,j,k I z,J,k

2~x)
IHu,i,j,k- (Gp)i,j,ki/Pi,j,k ·

We note here that since the viscous terms are not included in defining the states used
in the transverse derivatives ((2.6)-(2. 7)) there is an additional stability constraint on the
time step for large J..l (see [19]). If the viscous terms were included in (2.6)-(2.7) the time
step control specified above would be sufficient.

The velocity field U* computed using (2.1) does not, in general, satisfy the divergence
constraint. The projection step, as described in the next subsection, approximately enforces
this constraint.

2.2 Discretization of the Projection

In the projection step, a vector field decomposition is applied to (U*- un)/~t to obtain
the new velocity field, un+l, and an update for the pressure. In particular, if P represents
the projection then

un+ 1 - un = p (U* - un)
~t ~t

(2.9)

1\lpn+% = _1_\i'pn-~ +(I_ P) (U*- un).
pn+% pn+% ~t

Note that the vector field we project is not U*, it is an approximation toUt. This distinction
is significant when the projection is not exact. Discretely, the projection is computed by

7

solving for the appropriately weighted gradient component of (U*- un) / !:1t which we denote
by (1/ p)G¢. We determine¢ by solving

Ln+%¢ = D (U*- un)
p !:1t

n+% where D is a discrete nodal approximation to the divergence operator and Lp ¢ is a

second-order accurate nodal approximation to \7 · (Pnlv 2 \7¢).
In two dimensions the projection discretization can be derived directly from the varia­

tional form

J 1 J U*- un p \7 ¢(x) · \17/J(x) dx = !:1t · \77/J(x) dx, V'ljJ(x) (2.10)

where dx is the volume element dx dy, r dr dO or dx dy dz as appropriate. If this variational
form is used in conjunction with standard piecewise bilinear or piecewise linear (on a stan­
dard triangulation of a mesh) finite element basis functions, the resulting discrete problem

corresponds to standard nine-point and five-point discretizations of L~+%, respectively. (In
this paper we use the nine-point discretization for all two-dimensional problems.) We then
define

where G¢ is the cell average of \7¢, and

U*- un 1 -
------G¢

!:1t pn+% '

pn+% = pn-% + ¢.

(2.11)

We note that this is not a discrete orthogonal projection; in fact, Dun+l ::/: 0. However,
the projection as defined by (2.9) and (2.10) is a discrete orthogonal projection onto a
larger velocity space (in the finite element sense) which is then averaged onto the grid.
The resulting approximate projection satisfies the divergence constraint to second-order
accuracy and the overall algorithm is stable. The reader is referred to Almgren et al. [4] for
a detailed discussion of this approximation to the projection.

In three dimensions a twenty-seven point discretization of the projection can be derived
using trilinear basis functions resulting in a twenty-seven point stencil; however, the deriva­
tion of an analog to the five-point scheme does not extend directly. Standard approaches
to dividing a cube into tetrahedra lead to directional biases in the discretization which are
undesirable. Instead, to avoid the computational work associated with the twenty-seven
point discretization we use a standard seven-point finite difference analog to the five-point
discretization in two dimensions to approximate L~+%. The details of these stencils are
given in the appendix.

2.3 Initialization of the Data

Specification of the problem must include values for U, p and cat timet = 0 and a description
of the boundary conditions. The pressure is not initially prescribed, and must be calculated
in an initial iterative step.

8

To begin the calculation, the initial velocity field is first projected to ensure that it
satisfies the divergence constraint at t=O. Then an initial iteration is performed to calculate
an approximation to the pressure at t = 1t. If this process were iterated to convergence
and the projection were exact, then U1 = U* in the first step, because the pressure used
in (2.1) would in fact be p%, not p-%. However, in practice we typically perform only a
few iterations, since what is needed for second-order accuracy in (2.1) is only a first-order
accurate approximation to pn+lfz, which in a standard time step is approximated by pn-~.

In each step of the iteration we follow the procedure described in the above two subsec­
tions. In the first iteration we use p-% = 0. At the end of each iteration we have calculated
a value of U1 and a pressure p%. During the iteration procedure, we discard the value of
U1, but define p-% = p%. Once the iteration is completed, we use the value of p-lfz in (2.1)
along with the values of U0 , p0 and c0 .

3 Adaptive Mesh Refinement

In this section we present the extension of the algorithm described above to an adaptive
hierarchy of nested rectangular grids. In the first subsection we describe the creation of
the grid hierarchy and the regridding procedure used to adjust the hierarchy during the
computation. Then we present a brief description of the time step algorithm for the grid
system that subcycles in time, and describe the initialization procedure used to begin a
multilevel calculation. In the fourth and fifth subsections we discuss the spatial discretiza­
tion of the single-level and multilevel elliptic operators used in the algorithm. Finally, we
discuss the details of the adaptive time step procedure, focusing on the synchronization
between different levels of refinement.

3.1 Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of different levels of refinement ranging from coarsest(£= 0)
to finest (£ = Rmax). Each level is represented as the union of rectangular grid patches of a
given resolution. In this implementation, the refinement ratio is always even, with the same
factor of refinement in each coordinate direction, i.e . .6-x£+ 1 = .6-y£+ 1 == .6-z£+ 1 = ~ .6-xc,
where r is the refinement ratio. (We note here that neither isotropic refinement nor uniform
base grids are requirements of the fundamental algorithm; see the section on future work.)
In the actual implementation, the refinement ratio, either 2 or 4, can be a function of level;
however, in the exposition we will assume that r is constant. The grids are properly nested,
in the sense that the union of grids at level £ + 1 is contained in the union of grids at level
£ for 0 :S £ < €max· Furthermore, the containment is strict in the sense that, except at
physical boundaries, the level £ grids are large enough to guarantee that there is a border at
least one level£ cell wide surrounding each level£+ 1 grid. (Grids at all levels are allowed
to extend to the physical boundaries so the proper nesting is not strict there.)

The initial creation of the grid hierarchy and the subsequent regridding operations in
which the grids are dynamically changed to reflect changing flow conditions use the same
procedures as were used by Bell et al. [5] for hyperbolic conservation laws. The construction
of the grid hierarchy is based on error estimation criteria specified by the user to indicate
where additional resolution is required. The error criteria are currently based on tracking

9

features of the flow such as vorticity or density gradients; however, more sophisticated
criteria based on estimating the error can be used (see, e.g., [9]). Given grids at level C we
use the error estimation procedure to tag cells where the error is above a given tolerance.
The tagged cells are grouped into rectangular patches using the clustering algorithm given
in Berger and Rigoustsos [11]. These rectangular patches are refined to form the grids at
the next level. The process is repeated until either the error tolerance criteria are satisfied
or a specified maximum level is reached. The proper nesting requirement is imposed at this
stage.

At t = 0 the initial data is used to create grids at level 0 through Cmax· (Grids have
a user-specified maximum size, therefore more than one grid may be needed to cover the
physical domain.) As the solution advances in time, the regridding algorithm is called every
kp_ (kp_ is also user-specified) level C steps to redefine grids at levels C + 1 to Cmax· Level 0
grids remain unchanged throughout the calculation. Grids at level C + 1 are only modified
at the end of level C time steps, but because we subcycle in time, i.e. ~t£+ 1 = ~~tp_, level
C + 2 grids can be created and/or modified in the middle of a level C time step if k£+1 < r.

When new grids are created at level C + 1, the data on these new grids are copied from the
previous grids at level C + 1 if possible, otherwise interpolated in space from the underlying
level C grids.

We note here that while there is a user-specified limit to the number of levels allowed,
at any given time in the calculation there may not be that many levels in the hierarchy, i.e.
Cmax can change dynamically as the calculation proceeds, as long as it does not exceed the
user-specified limit.

3.2 Overview of Time-Stepping Procedure

The adaptive projection algorithm can most easily be thought of as a recursive procedure,
in which to advance level C, 0 ~ C ~ Cmax the following steps are taken:

• Advance level C in time as if it is the only level. Supply boundary conditions for the
velocity, density, concentration and pressure from level C - 1 if level C > 0, and from
the physical domain boundaries.

• Iff< fmax

- Advance level (£ + 1) r times with time step ~tf+ 1 = ~~tf. Use boundary
conditions for the velocity, density, concentration and pressure from level £, and
from the physical domain boundaries.

Synchronize the data between levels £ and C + 1, and interpolate corrections to
higher levels if f + 1 < Cmax.

To advance the data at a single level requires evaluation of advective terms which are of
hyperbolic character, solution of an elliptic equation (the MAC solve) to make the face-based
advection velocities (uADV) divergence-free, solution of parabolic equations to account for
the diffusive terms in the momentum and advected quantity equations, and solution of an
elliptic equation to enforce the divergence constraint on the cell-centered new-time velocity
(un+1

) and define the update to pressure. The character of the equation determines the
type of operation it requires in an adaptive framework.

10

As in the adaptive mesh technique for hyperbolic systems, the evaluation of the conser­
vative derivatives in (2.1)-(2.3) can be performed one grid at a time, with boundary data
copied from other fine grids, interpolated from underlying coarse grids, or supplied from
physical boundary conditions. The parabolic and single-level elliptic solves require that the
solution be computed on all grids at a level at one time, since these are no longer explicit
operations. Boundary data for these solves are interpolated from underlying coarse grids or
supplied from physical boundary conditions. The interpolation and solution procedure for
these equations are discussed in Sections 3.4 and 3.5.

Once the level £ + 1 data have been advanced to the same point in time as the level £
data, synchronization of the data between levels is required. For hyperbolic systems, av­
eraging the fine data onto the coarse grids and refluxing across the coarse/fine interface
comprise the synchronization step. For incompressible flows, we also average the data onto
coarser levels and reflux across the coarse/fine interface; however, we must also account for
the mismatch in the MAC-projected advection velocity (UADV) and the mismatch in the
projected new-time velocity (un+l) which result from not having satisfied the full elliptic
matching conditions at the coarse/fine interface. Namely, when performing the MAC and
nodal projections we impose Dirichlet boundary conditions from level £ for the level £ + 1
grids. Consequently, the fields computed in the elliptic solves match in value at coarse/fine
interfaces but do not, in general, match normal derivatives.

In other words, in addition to the loss of conservation, which is corrected by refluxing,
there is error in the multilevel solution due to each of the projections (MAC and nodal)
which has occurred during the time step. The aim of the synchronization step is to correct
each of those as much as possible. The correction is such that if the algorithm were run
without subcycling in time, the synchronization step would be an exact fix to the Neumann
mismatch resulting from the single-level elliptic solves. However, because the problem is
nonlinear and multiple fine grid time steps are taken for each coarse grid time step, the fix
cannot be exact.

The error resulting from the mismatch in MAC-projected velocities at the coarse/fine
interface is such that the effective time-averaged advection velocity used on the coarse and
fine grids does not satisfy what would be the composite MAC-divergence constraint at the
coarse/fine interface. Similarly, the Neumann mismatch in the nodal single-level projections
causes the new-time, composite velocity field (as represented on the fine grid where possible
and on the coarse grid elsewhere) to not satisfy the composite nodal divergence constraint
on the coarse/fine interface. As stated above, both of these result from having used Dirichlet
boundary conditions interpolated from the coarse grid for the fine grid solves; this matches
pressure at the coarse/fine boundary but does not match the normal derivative of pressure.
Discretely, this inconsistency is manifest as a composite residual at the interface found using
a multilevel stencil which sees both the coarse and fine data adjacent to the interface.

In order to correct for the mismatches, two additional elliptic solves are performed at
the end of a level £ time step. The first is a level £ MAC sync solve with the right-hand­
side defined as the divergence of the mismatch between the level £ and the time-averaged
level £ + 1 advection velocities. The second is a composite (two-level) nodal projection
with the right-hand-side defined by the composite residual at the interface between levels
£ and£+ 1; exactly how this residual is accumulated will be discussed in Section 3.6. The
synchronization is further complicated because the corrections to the velocity field resulting

11

from refluxing and from the MAC synchronization correction must also be projected to split
them into divergence-free and gradient components.

Details of the spatial discretization and solution procedures for the level projection
operators (MAC and nodal), the diffusion operators and synchronization projections are
included in the next two subsections. Following that discussion we will give the exact
details of the multilevel time-stepping procedure.

3.3 Initialization of the Multilevel Data

As in the single grid projection method, we must first project the given velocity field to
enforce the divergence constraint, and iterate with the initial data in order to define an initial
pressure field. For accuracy, the initial projection is done as a full multilevel composite
solve over all levels as described in Section 3.4. As a result, the velocity resulting from
this projection satisfies the divergence constraint not only at each level but also at all the
coarse/fine interfaces. After the projection all quantities other than pressure are averaged
down from fine grids onto the coarser cells underlying them, to ensure that any level e data,
0 :::::; e < emax, is the average of the finer values overlying it.

For the iteration used to define the initial pressure, we compute the time step on the
finest level currently defined, and iterate all levels with that time step (b..tCmax), i.e. without
subcycling. Here, however, the velocity is advanced on each level without being projected
at that level, i.e. U*•c but not U1•c is defined for 0 :S e :S €max· One multilevel composite
solve is then done on the field (U* - U0) / b..tCmax to compute the pressure update on all
levels simultaneously. Here again the constraint is satisfied not only on each level but also
at all the coarse/fine interfaces. As in the single grid case, during the iteration procedure
the values of U1 computed by the projection are discarded, and the new value of pressure
is used for the next iteration. When the iteration is complete, the regular time-stepping
procedure (i.e. with subcycling) is begun.

3.4 Details of the Nodal Projections

The AMR time-stepping scheme requires projection solutions on single levels ("level projec­
tion") and pairs of levels ("sync projection"), and for initialization it requires projections
on all levels at once. We compute these solutions using a multigrid algorithm adapted
to the AMR grid hierarchy. The stencils at coarse/fine interfaces are determined by the
finite-element derivation of the projection operator, in contrast to some other multilevel
methods, e.g. FAC [18], which derive the relationships between coarse and fine grid data
from the multigrid algorithm itself. Additional complications come from the need to support
refinement ratios of 2 or 4 between levels.

Stencils at the coarse/fine interface are defined by equation (2.10), just as in the grid
interiors. Figure 1 shows the spatial extent of the stencils for the 2-d 9-point discretization
for a refinement ratio of 4; the 2-d 5-point and 3-d 7-point discretizations are similar. In the
interiors of the coarse and fine levels each finite element basis function is associated with
a node of the mesh and extends over the four adjacent cells. On the interfaces the basis
functions are associated with coarse nodes only, with values at the intermediate fine nodes
linearly interpolated from the coarse nodes.

12

0 0

0 0

0

0
0

0

0

0

0
0

0

0

0 0

0 0 0 0

0
0

0

0

0

0
0

0

0 0 0 0

0 0 0 0

0
0

0

0

0 0 0 0 0

0

0
0

0

0

Figure 1: Stencils at grid edges and corners, shown for a refinement ratio of four. On the
left, the stencil for V' · ~ V' ¢uses¢ values defined at nodes (solid circles) and p values defined
at cells (open circles). Also, the divergence stencil for V' · V uses V defined at these same
(open) cell positions. On the right are the stencils for restricting residuals to the coarse
grid.

13

In the diagrams on the left side of the figure, a value at the central node is computed
using values at the indicated surrounding nodes and cells. For divergence DV of a velocity
field V, velocity values at cells marked with open circles are used. Likewise the linear ·
operator expression Lp</J involves pat these same cells and ¢at the nodes marked by solid
circles. The diagrams on the right side show the nodes involved when averaging residuals
from the fine level down to the coarse level. A residual computed on an interface node
represents a basis function with less area and hence less weight than a full coarse node. In
the restriction step of a multigrid solve this value is combined with nearby fine grid values
in order to produce a correctly-weighted coarse grid value.

Equations for the difference and restriction stencils are presented for both two and three
dimensions in the appendix. In 2-d there are only the five basic geometric configurations
shown, not counting rotations and reflections. In 3-d, however, the number is much larger,
and a more general element assembly process becomes necessary.

Specifying the stencils at all points in the domain defines the linear system; now we
consider the separate question of how to solve it. In preparation for a multigrid solve, we
start with the levels of the AMR structure on which we want the solution, and construct
new levels between and below the active AMR levels so that adjacent pairs of levels are
related by a factor of 2. These new levels are for use by the multigrid solver alone; they·
do not participate in any other part of the AMR algorithm. Each new level is created by
coarsening the next finer level above it, and will not communicate with coarser AMR levels
below it in any way.

Figure 2 may make the relationships between levels more clear. The top picture shows a
multigrid V-cycle (cf. [28]) for a level projection-all coarse levels are obtained by coarsening
the grid structure of the single active AMR level. The bottom picture shows a multilevel
cycle involving 3 AMR levels with a factor of 4 refinement between each level.

We continue to denote AMR levels by £, with a particular subset of levels €to ~ e ~ ehi
being active in a given multilevel solve. We similarly denote the multigrid levels by m,
0 ~ m ~ mhi· Since the layout of multigrid levels depends on which AMR levels are
currently active, it will typically be different for each invocation of the solver. Let m = m(£)
be the multigrid level corresponding to a given AMR level. Note that while m(£hi) = mhi,
generally m(€t0) =I 0.

A multigrid V-cycle for the linear system Lmem = rm, where m is either identical to or
coarsened from an AMR level £, has the following recursive form:

14

R = 1-------

R = 2-------

R = 1----------------

R = 0-------------------------

Figure 2: In the multigrid V-cycle (top), operations apply only to interior points of a
level. In the multilevel cycle (bottom) two operations are defined that cross the coarse/fine
interface-computing the residual, and restricting it to the coarse grid. Dotted lines show
A~R levels, other levels are used only by the multigrid algorithm.

If (m = 0) then

Solve(Lm, em, rm)

Else if(/!- 1 2: fto and m- 1 = m(f!- 1))

Relax(Lm, em, rm, v2)

Else

Relax(Lm, em, rm, vi)

rm-1 := I:;::-l(rm _ Lmem)

em-1 := 0

V-cycle(Lm-l, em-l, rm-l, m- 1, £, v1, v2)
em := em +I:;::_ I em-l

Relax(Lm, em, rm, v2)

End if

End V-cycle

The "Relax" operation consists of two or more (v) iterations of red-black Gauss-Seidel,
while the "Solve" operation on the coarsest level uses a diagonally preconditioned conjugate

15

gradient routine. All operations take place on the domain ne consisting of all grids at level t
(n without a superscript represents the computational domain as a whole.) Boundary
conditions on ane- an are Dirichlet conditions from level R- 1, while on ane nan they
are physical boundary conditions for the edge of the computational domain. Before each
relaxation or residual computation, it is necessary to update ghost nodes around the border
of each grid from the boundary conditions or from neighboring fine grids. After relaxations
it is also necessary to synchronize the nodes shared by adjacent grids. We perform these
updates quickly using optimized grid-to-grid copy operations.

To complete the description of the multigrid scheme, we must specify the restriction
and interpolation operators and show how the linear operator itself is applied on coarsened
grids. Restriction is the simplest. We use a "full-weighting" method, where each fine node
provides an equal contribution to the coarse grid residual. The residual thus behaves as if
it were a conserved quantity in the multigrid system. In 2-d the stencil for this is

[I;::-1] = _.!_ [~ ~ ~ l
16

1 2 1
(3.1)

In the multilevel algorithm to follow, we also have to deal with restriction at coarse/fine
interfaces. The details are more complicated, but the same conservation arguments apply ..
The actual stencils we use appear in the appendix.

Next we address the coarse grid operators themselves. For the sake of brevity in this
section we will not present formulas for the various difference stencils here; those can be
found in the appendix. What all of these stencils have in common is a dependence on a
coefficient 1/ p in the four cells surrounding each node (eight cells in 3-d). We call this coef­
ficient a, so that the elliptic operation becomes 'V · a'V¢. For axisymmetric (r-z) problems
we can use a = r / p instead, which gives us the same stencils as in the Cartesian grid case
except for a small (second-order) correction.

Since a is analogous to conductivity, we coarsen it by doing an arithmetic average
transverse to each "flux" and a harmonic average parallel to the flux. This gives us separate
a's for each coordinate direction on the coarser grids. For the x-direction in 2-d the result
is

(x),m-1 _ ai/2,)/2 - ___ 1 _______ 1 ___ _ 1
(3.2)

m+ m + m m
ai,j ai,j+l ai+1,j + ai+l,j+1

with an analogous expression for a;/~:7/; 1 in the y-direction. For still coarser grids we use

the same formula, using values of a(x),m- 1 to compute a(x),m- 2 and values of a(y),m- 1 to
compute a(y),m- 2 .

The linear operators on the coarsened grids then take the same form as the operators on
the fine grids, using these coarsened coefficients. More elaborate coarsening strategies may
be added to the algorithm in the future to give better performance with large discontinuities
in density, but this one has provided adequate multigrid convergence for most of our present
applications.

Having introduced the directional a's, we can now present the operator-dependent in­
terpolation stencils required by the multigrid algorithm. Like the a's themselves, these

16

formulas work with both the 5-point and 9-point linear operators in 2-d, and an obvious
extension applies to the 7-point operator in 3-d. (For simplicity, we present the formulas as
if we were computing em+l := J;:;+lem.) We first inject the points that coincide with their
coarse equivalents,

(3.3).

then we weight the points offset in the x-direction using the coefficients for differences in
that direction,

em+l _
(

(x),m+l (x),m+l) m+l ((x),m+l (x),m+l) m+l
a2i,2j-1 + a2i,2j e2i-lJ2,2j-lJ2 + a2i+1,2j-1 + a2i+1,2j e2i+l+%,2j-%

2i+lJ2,2j-lJ2- (x),m+l + (x),m+l + (x),m+l + (x),m+l
a2i,2j a2i,2j+l a2i+l,2j a2i+1,2j+l

(3.4)
and use a similar formula for points offset in the y-direction. Finally, the points offset in
both the x- and y-directions are defined by the composite formula

em+l _
2i+lf2,2j+!J2- (3.5)

{(
(x),m+l (x),m+l) m+l ((x),m+l (x),m+l) m+l

. a2i,2j + a2i,2j+l e2i-lf2,2j+lf2 + a2i+1,2j + a2i+1,2j+l e2i+l+lf2,2j+% +

(
(y),m+l (y),m+l) m+l ((y),m+l (y),m+l) m+l }

a2i,2j + a2i+l,2j e2i+lf2,2j-!J2 + a2i,2j+l + a2i+1,2j+l e2i+lJ2,2j+l+%

(x),m+l+ (x),m+l+ (x),m+l+ (x),m+l + (y),m+l+ (y),m+l+ (y),m+l+ (y),m+l
a2i,2j a2i,2j+l a2i+1,2j a2i+l,2j+l a2i,2j a2i+1,2j a2i,2j+l aJi+1,2j+l

Since the interpolation stencils do not extend past the borders of each coarse cell, no
special multilevel stencils at coarse/fine interfaces are required in the multilevel algorithm.
We do, however, use ordinary linear interpolation instead of the operator-dependent stencils
along the interfaces, since the interface stencils for Lpc/J assume a linear profile between coarse
00~. .

A multilevel cycle for the linear system Lf.¢£ =sf. is as follows:

Begin Multilevel cycle(Lf., ¢R, sf., rm(f.+l), f, v1, v2):

m := m(£)

rm := (sf.- Lf.¢£)

If(£< fhi) then rm := If+1rm(f.+l) on n£+1 + an£+1

If(£ =flo) then v := 1.11 else v := 0

em:= 0

V-cycle(Lf., em, rm, m, f, v, v2)

¢£ :=¢£+em

If(£> gmin)

17

Multilevel cycle(L£-l, q}-l, s£-l, rm, P- 1, v1, v2)

em:= IJ_1(¢/-1 - ¢~!])on ne + ane
¢£ :=¢£+em on ne + ane
rm := (rm- Leem)

em:= 0

V-cycle(Le, em, rm, m, P, 0, v2)

<Pi':= q} +em

Endif

End Multilevel cycle

This cycle is repeated as many times as necessary for convergence. All operations take
place on ne' including points of the physical boundary an but not including points of ane
bordering the coarser level n£-l unless otherwise noted.

3.5 Details of the Cell-Centered Level Solves

The cell-centered solves required by the adaptive projection algorithm as presented here are
all single-level solves; the MAC projection, the MAC sync solve, and the parabolic solves
done for the Crank-Nicolson representation of the diffusive terms, all involve the same type
of spatial discretization. The discretization yields a cell-centered right-hand-side and a cell­
centered solution (by contrast to the projections described in the previous subsection in
which both the solution and the right-hand-side are defined at nodes). The construction
of the right-hand-sides for the MAC projection and the parabolic solves has been defined
in Section 2; the construction of the right-hand-side for the MAC synchronization step is
described in greater detail in the next subsection. Here we focus on the discretization of
the operator and the solution procedure.

The goal in each case is to solve an equation of the form (a(x) - \7 · (f3(x)V'))¢ =
RHS on the union of grids at a single level with boundary conditions for the union of grids
given by physical boundary conditions on ann ane, and by data from level p- 1 elsewhere.
The discretization of the variable-coefficient elliptic operator uses a standard, five-point in
2-d, seven-point in 3-d, cell-centered finite difference approximation in the interior of the
grids. In particular, the discretization can be viewed as computing the MAC divergence of
face-based fluxes, f3(x)Y' ¢. The only complication in these solves, aside from performance
issues, is that of maintaining sufficient accuracy at the boundary of the union of grids at a
level. In this subsection we describe how the stencils at these boundaries are defined.

We solve this system using standard multigrid methods (V-cycles with red-black Gauss­
Seidel relaxation and a conjugate gradient solver at the bottom of the V-cycle) as shown in
Figure 2a. The restriction operator is volume-weighted averaging; the multigrid interpola­
tion is piecewise constant.

At each level of the V-cycle (i.e. each multigrid level m), each red or black relaxation
sweep is performed on all grids sequentially,. with the boundary conditions effectively im­
posed once per sweep. For convenience, the boundary conditions are represented in the
operator at any given point as Dirichlet values in the ghost cells immediately outside the
fine grids. For a given fine grid, each ghost cell value can be copied from another fine grid,

18

or defined using physical boundary conditions or the coarse grid data as well as interior
data. In the latter two cases, interpolation or extrapolation of the data is usually required
to define a value at the ghost cell location.

Physical boundary conditions are typically defined as either Neumann or Dirichlet data
on 80 (as opposed to at the center of the ghost cell just outside the domain). In the case
of Dirichlet data, an extrapolation procedure is defined which fits a parabola through the
value at the boundary and the two interior grid values along a line normal to the boundary.
When used in the stencil for the elliptic operator this gives a second-order approximation
to the normal derivative at the boundary. In Figure 3a, the linear operator at point (a) is
evaluated using values at the cells marked with the small open or closed circles (the closed
circles are legitimate fine grid values; the small open circle is the value at the ghost cell for
(a)). The value in theghost cell is evaluated by the extrapolation procedure defined above,
using the data at the large open circle on the boundary as well as the data at the cell values
marked by large open circles. For Neumann data, the extrapolation procedure defines a
parabola passing through the two interior values and with the given normal derivative at
the boundary in order to define a value in the ghost cell. This again gives a second-order
accurate approximation to f3(x) ~~; in both cases the second-order flux results in first-order
local truncation error in the definition of the elliptic operator.

To supply boundary conditions from the coarse data before a red or black sweep, the
data are interpolated onto the ghost cells immediately surrounding the fine grid. (See Figure
3b for a 2-d example; in this the thickest lines represent the boundaries of individual fine
grids. Note that at the fine-fine interface shown, nothing special is done other than a copy
from the other fine grid.) The interpolation is done in two stages: first the coarse grid
data (the large closed circles in Figure 3b) are interpolated tangentially to the coarse/fine
interface, so that coarse grid data are defined at points (the open circles in Figure 3b)
which align with the fine grid points in all but the normal direction to the face. In two
dimensions, the interpolation is done by defining, in each cell, first and second derivatives
of the data in the tangential direction using centered differences, and then using those to
interpolate the data from cell centers to the intermediate points. For example, in cell (b),
¢y = (¢c- ¢a)/(2!:l.ycrse) and c/Jyy = (¢c +¢a- 2¢b)/ !:l.y~rse· However, in the cases where
constructing the derivatives would require using coarse grid values which underlie a fine
grid, the slopes are computed using a one-sided difference and the second derivatives are set
to zero (e.g. for cell (c), ¢y = (¢c- ¢b)/ !:l.ycr se and c/Jyy = 0. If the coarse cells on both sides
(in the tangential direction) are under fine grids, then both the first and second derivatives
are set to zero and the interpolation scheme reduces to piecewise constant.

In three dimensions the procedure is similar, although the tangential interpolation is
done in two directions simultaneously. Here the coarse grid data are used to define a
biquadratic function which is used to interpolate to the intermediate points. Analogously
to the two-dimensional algorithm, in the case where coarse data underlying a fine grid
would be needed to compute a centered difference, the slope calculation in that direction
reduces to a one-sided difference and the second derivative is set to zero. If even this is not
possible, the first and second derivatives in that direction are set to zero. This is done for
each tangential coordinate direction separately, testing only on the four nearest neighbor
cells (e.g. ¢i+l,j,k, c/Ji-l,j,k. ¢i,J+l,k, ¢i,j-l,k would be used for ¢i,j,k along a face parallel to
z = constant). The computation of the cross derivative (¢xy in this case) requires the

19

• • • • • • • • •
0 0 0 0 0 ooo. 0 •

0 6 •
0 oeo 0 0 oeo 0

0 6 • • d c 0 6 •
0 6 •

0 (!) 0 a 0 6 • • • 0 6 • • b 0 6 •
0 6 •
0 6 • • • 0 6 •

a 0 6 •

(a) (b)

I

I
I

•
c

- --
• • 0 •

b - ~-
•

•
a

(c)

Figure 3: (a) At a physical boundary, interior and boundary values (o's) are used to ex­
trapolate to the ghost cell (a); the ghost value and the other interior values (•'s) are used
to construct the Laplacian at (a). (b) Locations of coarse grid boundary conditions (•),
tangentially interpolated values (o), fine grid cells (•), and ghost cells (.6. 's and D's). (c)
Domain of dependence (•'s and • 's) of the Laplacian at a fine cell (o) adjacent to the
coarse/fine interface.

20

four neighbors along the diagonals (e.g. (</Jxy)i,j,k = (¢i+l,j+l,k + <Pi-l,j-l,k - <Pi-l,j+l,k­

¢i+I,j-l,k)/(4fl.xcrsef1Ycrse)· If any of these values is in a cell underlying a fine grid then
</Jxy is set to zero.

This stage of the interpolation is done at the beginning of the solve as opposed to at each
relaxation sweep. At all but the finest level the coarse data is homogeneous because the
residual-correction form is used within the multigrid solver, so the tangential interpolation
is a trivial operation.

Before each sweep, the data already interpolated from the coarse data (the open circles
in Figure 3b) are interpolated normal to each face to define values in the ghost cells (the
squares and triangles in Figure 3b) analogously to the extrapolation used for the physical
boundary values. Again, for each fine grid point next to a coarse/fine interface, a parabola
is defined using the coarse grid value (the open circle) and the two interior values which
align with the ghost cell being filled (as in Figure 3a). This polynomial is then evaluated at
the location of the ghost cell. This normal interpolation procedure is identical in two and
three dimensions.

Note that in the upper right corner of the coarse grid region in Figure 3b, the ghost cell
is marked with a square and a triangle. This illustrates that the ghost cell values are not
unique; the square value will be used for computation of the operator immediately above
that point, the triangle value will be used for computation of the operator immediately to
the right of that point. Different coarse grid values are used to define the square and the
triangle values.

The two-stage interpolation procedure described above in effect defines a specialized
discretization of the elliptic operator which at the coarse/fine interface uses only interior fine
grid data and coarse grid data which does not underlie any fine grids. In fact, the dependence
of the ghost cell value on the value at which the elliptic operator is being evaluated changes
the relaxation coefficient in the Gauss-Seidel relaxation sweeps. Interpolation of the coarse
and fine data onto ghost cell locations is simply a convenience of implementation which
allows greater efficiency in the relaxation sweeps and construction of the residual.

The driving concept for this special discretization is that the domain of dependence of
the operator at a fine grid point adjacent to a coarse/fine interface should include only
fine grid values and those coarse grid values which do not underlie any fine grids. This
is shown in Figure 3c, where the points involved in the calculation of the operator at the
large open circle are marked by closed circles. This is important because the coarse grid
values underlying fine grids are defined as averages of the fine grid values, and using these
to define the ghost cell values extends the domain of dependence of the elliptic operator
inappropriately.

The resulting solution now satisfies a first-order approximation to the second-order linear
operator at the fine cells adjacent to the coarse/fine interface where the stencil sees both the
coarse and fine data; a first-order approximation at all physical boundaries, and a second­
order approximation everywhere in the interior of the union of grids. However, since the
first-order errors are localized at the boundary of the union of grids, the overall scheme is still
second-order accurate because of the spectral properties of the discrete solution operator.
In particular, these types of localized errors are well represented by eigenfunctions of the
discrete elliptic operator that correspond to O(h) eigenvalues of the solution operator.

21

3.6 Details of Time-Stepping Procedure

In order to construct an algorithm which is both conservative and free-stream-preserving,
we must store several additional quantities at coarse/fine interfaces. We refer to the face­
based data structures that contain these quantities as registers. These include a velocity
register (oU), advective and viscous flux registers for velocity (oFu,adv and oFu,visc) and
advective and diffusive flux registers for scalars (oFs,adv and oFs,diff), where we now define
S = {p, c}. The velocity register at level/! (oUR) contains the difference between the MAC­
projected advection velocity at level/! (UADV,P) and the time average over one level/! time
step of the space average over the area of the level/! face of the MAC-projected advection
velocity at level/!+ 1. The advective flux registers at level/! (oF6,~dv and 6F~,adv) contain
the difference between the advective fluxes calculated at level/! and the time average over
the level/! time step of the space average over the area of the level/! face of the advective
fluxes at level/!+ 1. The viscous/ diffusive flux registers are defined analogously, but with the
viscous/diffusive fluxes rather than advective fluxes. For convenience, these are weighted
by the area of the level I! face and the level I! time step.

We note here that the signs of the quantities added to the flux registers actually depend
on the orientation of the normal facing away from the fine grid. We follow the convention
below that the signs are given for the faces at which the fip.e grid is in the direction of the
lower coordinate indices.

3.6.1 Advancing a single level

Assume now that we are advancing level/!, 0:::;; I!:::;; !!max' one level/! time step. Let un,R, pn,R,

and en,£ be the velocity, density and concentration at time n/:),.tf on the level/! grid, where
/:),.tf is the time step of the level/! grid. Let A£ be the area of a face (assumed the same in
each coordinate direction) at level/!, and let Vol£ be the volume of a grid cell at level/!. Let
q;M AC,P be q;M AC as computed by the MAC projection on level/!.

To advance the data on level/! itself, we follow the time-stepping procedure as described
for the single grid algorithm in the previous section. We can distinguish two types of
operations used to advance the data at a level: those that can be done one grid at a time,
and those that must be done at all grids at a single level simultaneously.

The extrapolation of normal velocities to faces and construction of the right-hand-side
for the MAC projection are done one grid at a time, since these are completely explicit
operations. The MAC projection, by contrast, requires solution of the elliptic equation
for q;M AC,P on all grids at level I! simultaneously, as described in the previous subsection.
The boundary conditions for q;M AC,P are homogeneous Neumann on all physical boundaries
except for outflow, where q;MAC,P = 0. If I!> 0, the values of q;MAC,R-l, considered constant
in time over the I!- 1 time step, supply the remaining boundary conditions. In order to keep
the correct scaling of q;M AC,P relative to q;M AC,P-1, we solve a re-scaled version of (2.8):

DMAC(_l_GMAC(/:),.tf q;MAC,P)) = DMAC([r+lfz,P).
pn,P 2

We then define the advection velocity on cell faces in each level I! grid

UADV,P = [Jn+lf2,£ _ _ l_GMAC(fj.tf q;MAC,P).
pn,P 2

22

Now we complete the predictor step by tracing all components of velocity and scalars
to faces, and upwinding using the advection velocity. The creation of the advective update
terms for velocity ([\7 · (UADV,£ tJn+%.l)]ijk) and scalars ([\7 · (UADV,£ §n+lf2,£)]ijk) is again
composed of grid-by-grid operations.

If £ < fmax, we initialize the level £ velocity and advective flux registers (defined only
at the faces on the .e 1 e + 1 interface and indexed by level .e indices) by

JU£ := -ACUADV,C

JFC ·= -~tCAC(UADV,RtJn+lf2,£)
U,adv ·

If e > 0, we then update the level e - 1 velocity and advective flux registers (defined
only at the faces on the .e - 1 1 e interface and indexed by level e - 1 indices) by

sue-1 := sue-1 + ~Ae-1 L uADv,e
r

faces

Jp£-1 ·= Jp£-1 + Ae-1 """ ~te(uADV,RtJn+%.£)
U,adv · U,adv ~

faces

Jp£-1 ·= Jp£-1 + Ae-1 """ ~te(uADV,R§n+If2,e).
S,adv · S,adv ~

faces

Note that one level £ - 1 face contains r 2 (in two dimensions it would be r) level £ faces;
the sums above should be interpreted as summing over all level£ faces which are contained
in the level £- 1 face. Note that the ~ weighting is necessary for the velocity register but
not for the flux registers because the flux registers incorporate ~te directly.

Having completed the predictor, which defines the advective update terms for both U
and S, we must now do the viscous solve for U and the diffusive solve for c. These have the
form of solving for U*,e in (a rewritten version of (2.1))

(1- 1-l~te \72)U*,e= unL~te[\7·(UADV,RtJn+lf2,£)]+ ~te (-\7pn-If2,e+!!_\72Un,e+Hn+%,£)
2pn+lf2,£ pn+%,£ 2 U '

and for cn+1,e in (a rewritten version of (2.3))

k~te k~tc
(1- -2-\72)cn+l,£ =en,£- ~te[\7 0 (uADV,£cn+lf2,£)] + ~tc H~+lf2,f. + -2-\72cn,£_

Boundary conditions for these solves are supplied from the physical boundaries where
appropriate. Where coarse grid data are needed for boundary conditions they are linearly
interpolated in time.

If .e < €max, we now initialize the level e viscous flux registers (defined only at the level e
I£+ 1 interface) as below. The quantity put into the viscous flux register is constructed by
multiplying the normal gradient across the face of the time-averaged quantity by the area
of that face, the time step, and the diffusive coefficient.

Un e + U* e C £ C MAC ' '
SFu,visc := -M~i A Gnorm (2)

23

en,€ + cn+1,€
6F;,diff := -kt:,.lAeG~~:i,(

2
)

If e > 0, we then update the level e- 1 flux viscous registers by

c-1 e-1 e-1'"" e MAC(un,e+U*,c)
6FU,visc := 6FU,visc +A L..t 1-L/::,.t Gnorm 2

faces

cn,e + cn+1,€
6F£-1 ·=oFf-~ + Ae-1 '"" kt:,.lGMAC(). c,diff · c,diff L..t norm 2

faces

Again the summing convention is that contributions are summed from all level f faces
contained in the level e - 1 face.

Finally, to complete the level f time step, we perform the level f nodal level projection,
which requires solving

on level e for q/, where ve = u·-~vn,t. Boundary conditions from q/-1 are considered
piecewise constant in time over the level f - 1 time step.

We then define un+1,e and pn+lJz,c by

and
pn+lfz,C = pn-lj2,€ + ¢/.

Residuals from the level projections must be accumulated to define the right-hand­
side for the sync projection. Because the projection is not exact, if we defined the right­
hand-side for the sync projection by taking the composite divergence of un+I on levels
e and e + 1 at the end of the level e time step, then even if the composite divergence
constraint had been satisfied exactly in each level projection the right-hand-side would
not be zero. Hence, in order to capture only the mismatch at the coarse/fine interface
and not the "approximateness" of the projection, we define the right-hand-side for the
sync projection as the time-averaged composite residual. This contains a measure of the
extent to which the level projections fail to satisfy the equations which define the composite
projection at the coarse/fine interface, but not the extent to which the projection is non­
exact. Therefore, at the end of each level f time step, iff< fmax, we define RHS~-P :=

Dcoarse(Vf - pn.0; 2 ,r G¢/) where the divergence operator Dcoarse is defined to include only
that contribution to the usual nodal divergence operator which comes from the coarse side
of the coarse/fine interface. This would be equivalent to zeroing the coefficients 1/ p on the
fine grid and applying the standard nodal divergence operator.

If f > 0, we set RH st~ := RH S~-=_~ + ~ D fine (Vc - pn+\12 ,r Gq/) where here the
contribution to the divergence comes only from the fine side of the coarse/fine interface;
this contribution is computed on the fine nodes along the interface and averaged onto the
coarse nodes.

24

3.6.2 Synchronization of data

If£< Rmax and r level£+ 1 time steps have just been completed, the level£ and£+ 1 data
must be synchronized.

First, we average un+1,H1 and sn+1,£+ 1 down onto the level£ grids wherever possible.
This is a simple cell-centered averaging procedure, where for r = 2 in 3-d, e.g., the level £
value becomes the average of the eight level £ + 1 values occupying that volume.

We then coarsen the level £ + 1 pressure down onto the level £ grids but in a time­
averaged manner, such that the pressure at a level £ node underlying a level € + 1 grid is
defined to be the average over time of the r level£+ 1 values defined within the single level
€ time step just completed.

In order to do the refluxing, we now define the cell-centered

ve - -
1

(8Fe + 1
8Fe ·) sync - b..te Vole U,adv pn+%,£ U,msc

se - -
1

(8Fe + 8Fe ·) sync - b..te Vole S,adv S,diff

on cells in the rows of level £ cells immediately outside the level £ + 1 grids and set Vsync =
Ssync = 0 elsewhere. This part of the correction to un+l,e and sn+1 ,e will make the scheme
conservative again; however, we can not correct un+1,e directly because the correction is
not divergence-free. Instead we store the correction in Vsync and project this correction field
as part of the multilevel sync projection.

However, before we use VAne and s;ync to correct the solution, we want to account for
the fact that the advection velocities at level£ (UADV,e) and the time average over the level €
time step of the advection velocities at level £ + 1 do not necessarily agree at the coarse/fine
interface. The resulting difference in fluxes is correctly accounted for by refluxing; however,
even with refluxing, this mismatch means that quantities were effectively advected with a
velocity field which does not satisfy the composite divergence constraint. In order to correct
for this mismatch, which is captured in the velocity register 8U, we must perform another
level £ solve. We solve

DMAC (\ GMAC(8/)) = fJMAC(8Ue)
pn+Y2,e

on all grids at level £for the correction 8ee. Here jjM AC is defined to be the MAC divergence
operator evaluated only on the level £ cells immediately outside the level £ + 1 grids. Bound­

ary conditions on physical no-flow boundaries are homogeneous Neumann (8(;~)e = 0); on
outflow 8ee = 0. If£ > 0, the boundary conditions for 8ee are given as homogeneous Dirichlet
conditions on the coarse grid points outside the fine grids.

We must now use the correction to the advection velocity to re-adjust the fluxes at all
level £ faces. Because of memory considerations we did not store all the time-centered face
states, so we now redefine these on all level € faces. That is, we recreate [Jn+lf2,e and §n+lf2,e
using UADV,f for upwinding, identically to the procedure immediately following the level €
MAC project.

We define the correction velocity field

Ue 1 GMAC(' e) carr = +II " ue pn 12,<-

25

and compute new fluxes uc fJn+lfz,£ and u£ §n+lfz,C ' corr corr ·
Again, the corrections to the velocity will not necessarily satisfy the divergence con-

straint, so we add the corrections here also to "Vstnc and S1ync- The velocity corrections will
be projected in the sync projection. The scalar corrections could be added immediately,
but are stored in S1ync for convenience. That is,

V c ·- vc '{"7 (Uc U-n+%,£) sync ·- sync+ v · corr '

S e ·- se '{"7. (Uc s-n+lfz,e) sync ·- sync + V corr ·

Note that if P > 0, then we must modify the level P - 1 velocity registers and flux
registers to account for the fact that we will be adding S~ync to the level P scalar fields and
the projected component of V}ync to the level P velocity field. To do this, we set

Jp£-1 ·= Jp£-1 + Ac-1 "'"""' b..te(uc fjn+Yz,e) U,adv · U,adv ~ corr
faces

Jp£-1 ·= Jp£-1 + Ac-1 "'"""' b..te(ue §n+lfz,e) S,adv · S,adv ~ corr '
faces

using the same summing convention.
We can now add the corrections to the scalar fields:

and if P < Pmax, we interpolate the correction onto the fine grids at all finer levels, q,
P < q :::::; Pmax using conservative interpolation:

sn+1,q ·= sn+1,q + b..tc Interp (Sc) ·, . cons sync

At this point there are two types of corrections we need to make to un+l,f: 1) that
due to the fact that the level projections were done one level at a time, and therefore the
composite divergence constraint is not satisfied at the coarse/fine interface, and 2) that
due to the refluxing of velocity described above. The former is represented as a non-zero
composite residual at the coarse/fine interface which represents the correction field which
must be subtracted. Simply, if there were no refluxing we would just solve

Ln+%-+.SP = RHSe
p '1-'1 S-P

where RH S~-P is the field we have accumulated on level P nodes by taking one-sided
divergences at levels P and P + 1. Here we would do a composite solve on levels P and P + 1
to create a solution on both levels. We would then subtract P;-_;:12 G¢fP from the new-time
velocity field at both levels.

The second part of the correction, that from the refluxing, is at this point in the al­
gorithm carried in Vstnc' and is defined only on level P since we did the MAC sync solve

26

only on one level. If this field already satisfied the divergence constraint then we could
simply add it to the velocity field; since there is no guarantee that it does, we want to add
only the projected part of this field. To find the divergence-free part to add, we would first
interpolate ~~nc to level C + 1 and then take its composite divergence. We would solve

Ln+lfu,SP _ D(V.)
p '1-'2 - sync

for ¢~P on a composite grid and define b.teVproj as the contribution to un+l, where Vproj =
PVsync = Vsync - pnJ1/2 Gcp~p ·

Combining these contributions, we see that the field we now add to the existing new-time
velocity field is b.te(-G¢f_P + Vproj), which is equivalent to adding b.teVsync and subtracting

P;-_;:12 G(¢f_P +¢~P). We now note that L~+%(¢f_P +¢~P) = RHS~_p+D(Vsync), and thus

in practice we need not separate ¢f_P from ¢~P. Rather, we define a single multilevel field

¢sync by solving L~+%¢sync = RHS~-P + D(Vsync), and once that solve is completed, we
add the corrections to the velocity and pressure fields:

un+l,Hl ·= un+l,Hl + b.te(v£+1 - 1 G"'Hl)
· sync pn+%.£+1 '!-'sync

Pn+%,£ ·= pn+%,£ + ,J...f · '!-'sync
1 1 .

Pn+l-2T,f+l ·= pn+1-2T,Hl + A..£+1 · '!-'sync

In the above solution, pn+%,£ = 1/2(pn,e + pn+1,e), and pn+%,£+1 is the weighted average
over the level C time step of the density at level C + 1.

If C > 0 we must account for the correction to the level C velocity field in the composite
residual for the (c -1) I c sync projection. We do this by adding a contribution to RH st_~:

e-1 e-1 1 e 1 e
RHS5 _p := RHS5 _p + -DJine(Vsync- +1/ eG¢synJ r pn 2,

where the contribution in DJine comes only from the level C grids and is defined only at
nodes on the (£- 1) I C interface which are not also at level C + 1 (i.e. which are not at
a physical boundary). This modification of the level C data will be seen by the level C - 1
data through the next level (£- 1) I C sync projection.

If£+ 1 < €max, we then interpolate the node-based pressure correction ¢H1 using bilinear
interpolation, and interpolate the cell-based velocity correction, vseyt~, using conservative
interpolation, onto fine grids at all finer levels, q, £ + 1 < q :S €max:

1
un+1,q ·= un+1,q + b.telnterp (V£+1 - G"'£+1) · cons sync pn+%,£+1 '!-'sync

n+1- I n+1--1 - €
P M-1' := P 2rq-:-l + Interpbilin(¢st~J.

We note here that in previous work (see [2]) we had believed that solving the equations
above on the level C grids alone would be sufficiently accurate since both Vsync and RHSs-P

27

are defined at coarse grid resolution. In a single-level solve, Vsync and ¢sync would be defined
only at level £ and corrections at levels £ + 1 and higher would be defined by interpolation.
While it is true that the source for the equation is at coarse grid resolution, if solved on a
composite hierarchy the behavior of the solution on the fine grid away from the coarse/fine
interface is not well represented on the coarse grid. As a result we have decided to use
the composite grid solve despite the additional CPU expense. As demonstrated in the next
section, this additional expense is minimal and the effects can be nontrivial.

4 Computational Results

In this section we present several sets of results. In the first subsection we present con­
vergence and accu}acy results on a variety of two-dimensional problems, both constant
and variable density, in Cartesian and axisymmetric geometries. (Because the algorithm is
identical in two and three dimensions, and the cost of doing convergence studies in three
dimensions is so much higher, we demonstrate the convergence behavior in two dimensions
only.) In the second subsection we show results from a variable density Navier-Stokes cal­
culation in three dimensions. Finally, in the third subsection, we present some timings of
the algorithm in two and three dimensions on a DEC Alpha workstation.

4.1 Convergence Studies

The first set of calculations we present here is to demonstrate second-order convergence
of the adaptive method on problems in which the data are smooth enough to achieve
second-order accuracy on uniform grids. These include constant density inviscid flow in
a box, for which we also demonstrate the importance of doing the sync projection; and
variable density viscous flow in a box, with which we show that the method does retain its
convergence properties when applied to the variable density Navier-Stokes equations. The
second set of calculations compares the errors on the fine patch of a composite grid with
the errors on the same patch in physical space of a uniform fine grid for a more realistic
problem with dynamic regridding.

We note here that in Table 1 we contrast data from calculations in which the sync
projection was not used, when it was done in a single-level form, and when it was done as
a multilevel projection. In all later cases the calculations were done using a multilevel sync
projection.

In Table 1 we present the L1, L2, and L00 norms of the errors in velocity, as well as the
convergence rates of the errors, for constant density inviscid flow in a 1 x 1 box. The initial
conditions for this problem are that of a vortex centered in the middle of the box:

u(x, y, t = 0) = -U sin(B), v(x, y, t = 0) = U cos(B)

where
U = { ~- a(r- ro)

2 ~f r < rvort
T If r ~ Tvort

with ro = -3
2rvort, a= -4

9 , and b = 3
r?41Drt, where rvort = 0.2 and r = J(x- .5)2 + (y- .5)2 .

rvort

This problem has the property that both U and ~~ are continuous at r = rvort· This

28

analytically specified velocity field is discretely projected at t = 0 to make it approximately
divergence-free before beginning the time-stepping. The boundary conditions are slip walls
on all sides.

The calculations are run to t = 0.9, with a fixed time step per calculation. The coarse
grid time step for a calculation with coarse grid spacing 1/n is b..t = 0.9/n, effectively
equivalent to a CFL number of .9 since U::::; 1 in the domain.

For this table, as well as the ensuing ones, the headings of the columns such as 32 - 64
represent the resolution of the two calculations used to compute the resulting error. These
numbers are 1/ he -1/ h f, where he and h f are the mesh spacings at the finest level of each of
the two calculations. The rate between the two columns of errors is defined as log2 (Ed Er),
where Ez and Er are the errors shown in the columns on the left and right sides, respectively.

The rows of Table 1 describe the region refined ("Uniform" = all of the grid refined,
"Centered" = (.25,.25) to (.75,.75) refined, "Offset" = (0.,0.) to (.5,.5) refined) and the
type of sync projection used ("MLSP" =multilevel sync projection, "SLSP" =single-level
sync projection, "NO SP" =no sync projection at all). For all of the calculations in Table 1
there was a single level of factor two refinement.

L1 L2 Loo
Case 32-64 Rate 64-128 32-64 Rate 64-128 32-64 Rate 64-128

Uniform Grid 2.422 2.10 .5663 6.121 2.04 1.485 40.67 1.88 11.01
Centered MLSP 2.725 2.03 .6675 6.054 2.01 1.501 40.12 1.87 11.00
Centered SLSP 4.767 2.10 1.116 8.144 2.08 1.928 42.43 1.95 11.01

Centered NO SP 9.924 2.40 1.886 16.28 2.36 3.171 66.99 2.07 15.99
Offset MLSP 9.759 2.11 2.254 24.69 2.13 5.637 148.35 1.95 37.60
Offset SLSP 9.395 2.09 2.206 24.57 2.10 5.745 140.2 1.79 40.6

Offset NO SP 12.07 1.64 3.868 34.44 1.63 11.11 270.8 1.38 104.29

Table 1: Composite grid errors (x 103) and convergence rates for x-velocity in constant
density inviscid calculations.

We conclude from Table 1:

• For data which are smooth enough to be second-order accurate on a uniform grid,
calculating the solution on an adaptive hierarchy, with the algorithm as presented in
the text, is also second-order accurate, whether the adaptivity is placed as one would
expect (around the vortex) or in a non-optimal manner (with a corner of the grid at
the center of the vortex).

• The effect of the sync projection is non-trivial. As we see from the case of the offset
patch without the sync projection, eliminating that step reduces the order of accuracy
of the method to 1.6 in the L 1 and L2 norms. Even for the centered patch, although
the rates are not reduced, the errors themselves are noticeably larger when the sync
projection is not done.

• There is some indication that doing the multilevel sync projection reduces the error
for a multilevel calculation, but the evidence is not conclusive; the error reduction can
be seen in the case of the centered patch, but not with the offset patch.

29

In regard to this last point, we mention another result which makes the case for a
multilevel sync projection more strongly. A two-level, r-z constant density Navier-Stokes
(Re = 100) calculation was run for 2100 coarse grid time steps with the multilevel sync
projection and then again with the single-level sync projection. The domain was 1 x 30,
and the base grid was 4 x 120, with one grid at level 1 covering z :::;; 1.5 with a factor
of two refinement. The level 1 grid was fixed in time, and the CFL number was 0.5.
The initial velocity field was uniform, U = (1, 0); the boundary conditions were inflow at
z = 0, outflow at z = 30 and a no-slip wall at r = 1. The density and viscosity were
p = .01134, J-t = .0002268, respectively.

The diagnostic used to evaluate the sync projection in this calculation was the volume­
weighted sum in the r-direction of vn, i.e. the net velocity flux in the z-direction. This sum
should be the same at all z to the precision of the projection for a single-level calculation. For
a multilevel calculation, the degree to which the sum is non-constant across the coarse/fine
interface is the degree to which the flow is not divergence-free there. In the calculation
described above, the variation in the sum when the multilevel sync projection was used
was O(lo-8). When the single-level sync projection was used, the variation in the sum
was O(lo-2) after 2100 coarse grid steps. The fact that the solution does not satisfy the
composite divergence constraint at the interface results, in this case, from the fact that the
elliptic problem has been solved on the coarse grid and the solution then interpolated to
the fine grid. This conservative interpolation (not piecewise constant) does not preserve the
diagnostic sum.

One can show analytically that the increased accuracy resulting from a multilevel as
opposed to single-level sync projection is most significant when there is significant variation
in the right-hand-side for the level R /(R+ 1) sync projection along the level R+ 1 boundaries.
In one dimension the solution to Laplace's equation is linear, and hence linear interpolation
of the solution from a coarse to fine grid is exact; for two and three dimensions the Green's
function is proportional to the log or the inverse, respectively, of the distance from the
source; these functions are not well approximated near the source by linear interpolation.
The variation across the z =constant coarse/fine interface in the calculation above results
from the viscous boundary layer forming on the r = 1 edge of the domain.

In Table 2 we show results similar to those in Table 1, but here we include errors and rates
from a calculation in which the grids are dynamically destroyed and created throughout the
calculation ("Moving Offset"). Specifically, letting T be the period of the calculations, the
fine patch covers the lower left quadrant from t = 0 to t = T / 4; it then covers the lower
right quadrant, the upper right quadrant, and the upper left quadrant, from t = T /4 to
T /2, t = T /2 to 3T /4, and t = 3T /4 to T, respectively. The errors and rates from this
calculation are contrasted with those from the uniform grid calculation and the offset fixed
grid calculation. For all of the calculations in Table 2 there was a single refined level with
a factor of two refinement.

This type of regridding, i.e., that in which new fine grids are created solely in regions
which have been coarsely resolved thus far, requires that all data in the new fine patches
be interpolated from the coarse grid. As a result we don't expect better accuracy than on a
uniform coarse patch, but we note that we do retain second-order convergence despite the
non-optimal regridding.

In Table 3 we show additional results from adaptive calculations of the problem described

30

L1 L2 Loo
Case 32-64 Rate 64-128 32-64 Rate 64-128 32-64 Rate 64-128

Uniform Grid 2.422 2.10 .5663 6.121 2.04 1.485 40.67 1.88 11.01
Fixed Offset 9.759 2.11 2.254 24.69 2.13 5.637 148.35 1.95 37.60

Moving Offset 9.841 2.05 2.382 24.74 2.02 6.111 191.1 1.84 53.38

Table 2: Composite grid errors (x 103)and convergence rates for x-velocity in constant
density inviscid calculations. Here we contrast a fixed patch vs. a moving patch.

above; here, however, we contrast the error from calculations in which the resolution is
achieved in different ways: uniform fine grid, a factor of two refinement, a factor of four
refinement, or two factors of two refinement. In all cases the center quarter of the domain
is at the same effective resolution, and the data from these calculations (effectively 32 x 32
or 64 x 64) are differenced with the data from a uniform 256 x 256 calculation, which for
the purposes here is considered to be the exact solution. The solution is differenced and
the error computed only over the center quarter of the domain. We see from this table that
using a single factor of two refinement, or two factors of two, the accuracy is very close to
that of the uniform fine grid calculation. ·The L1 norm of the error is noticeably larg~r for
the factor four refinement than for the other three cases (.014 vs .. 009), although the L2
and L00 norms are comparable. However, the L1 norm is still significantly lower than that
of the coarser uniform grid case (.00396 vs .. 00953).

We conclude that when the refjned patch is optimally placed, i.e., in the region where
most of the error in the calculation is likely to occur, the actual error of the calculation
is very close to that which one would get by placing a uniform fine grid over the domain.
The fine grid results have not been significantly "contaminated" by their nesting within a
coarser grid.

The second problem we consider in studying convergence of the adaptive projection
method is a variable density Navier-Stokes calculation. The initial profile is again a vorticity
distribution centered in a 1 x 1 box, but with a slightly different profile:

u(x, y, t = 0) =- sin(21r(y- .5)) sin2 (1r(x- .5))

v(x, y, t = 0) = sin(21r(x- .5)) sin2 (1r(y- .5)).

L1 L2
Case 32-256 64-256 32-256 64-256

Centered: Factor 4 .01403 .003956 .01676 .004832
Centered: 2 Factors of 2 .009657 .002334 .01393 .003446

Centered: Factor 2 .009411 .002335 .01390 .003457
Uniform Grid .009529 .002312 .01416 .003458

Loo
32-256 64-256

.03266 .01280

.04161 .01241

.04135 .01246

.04208 .01248

Table 3: Errors in x-velocity on centered fine patch only as calculated on a uniform grid vs.
on composite grids with different levels of refinement, in constant density inviscid calcula­
tions.

31

This analytically specified velocity field is discretely projected at t = 0 to make it approx­
imately divergence-free before beginning the time-stepping. The boundary conditions are
no-slip walls on all sides.

The initial density field is

p(x, y, t = 0) = 1 + 0.25 tanh(10(r- r 0))

where r = J(x- .5)2 + (y- .5) 2 and ro = 0.2; the viscosity is set to the constant value
fJ· = 0.01.

These calculations are run to t = 0.5, also with a fixed time step per calculation. The
coarse grid time step for a calculation with coarse grid spacing 1/n is b..t = 0.5/n, effectively
equivalent to a CFL number of .5 since again the velocity is less than or equal to one in the
domain.

L2
Case Rate 64-128

Uniform Grid 1.96 3.037
Offset Patch 2.08 10.42

Table 4: Composite grid errors (x 104) and convergence rates for x-velocity in variable
density Navier-Stokes calculations.

II L1 L2 Loo

II Case 32-64 Rate 64-128 32-64 Rate 64-128 32-64 Rate 64-128

II Uniform Grid 3.234 2.45 .5920 5.920 2.39 1.127 29.96 1.80 8.574
II Offset Patch 15.40 2.26 3.209 27.86 2.18 6.132 122.5 1.65 39.09

Table 5: Composite grid errors (x 104) and convergence rates for density in variable density
Navier-Stokes calculations.

In Table 4 we present the L 1, L 2 and L 00 norms of the error in x-velocity; in Table 5
we show the norms of the error in density. We note here that the errors for the composite
calculation do look closer to those on the uniform coarse grid than to those on the uniform
fine grid, as in the constant density Euler case. This is again because not only is 75% of the
problem domain in fact coarsely gridded, but the data on the fine patch have been advected
from the coarse grid. However, the convergence rates for the composite grid calculations
are comparable to those on the uniform grid.

The last convergence study shows that one can achieve comparable accuracy by optimal
regridding as compared with uniform fine grid for the case of variable density Navier-Stokes.
We present data from r - z calculations of a light bubble rising under gravity in a constant
density background. The re-gridding criterion is such that all of the bubble is always at the
finest resolution.

The initial conditions are a zero velocity field and a density field

P1 + P2 P1 - P2 V 2 2)) p(r, z, t = 0) =
2

+
2

tanh(5000(r + (z- 1) - Ro

32

in a .01 x .02 domain where Ro = .0025 is the radius of the bubble. Here P1 = 999.2
and P2 = 1.225, the densities of water and air, respectively, in MKS units. The viscosity
J.L = 0.0011377 is that of water.

The data are evaluated at three times: t = .014, .018, .022, and contour plots of the
density at those times are shown Figure 4; in these the velocity field is superimposed as
vectors. As with the data in Table 3, here the calculation is first done on a uniform
256 x 512 grid, and this will be taken as the "exact" solution. Two other calculations are
then run; the first on a ·uniform 64 x 128 grid, the second using a base grid of 16 x 32
and a factor of 4 refinement. Shown in Tables 6-8 are the errors in density, x-velocity,
and y-velocity, respectively, from each of the latter two calculations, evaluated only on the
region of the domain covered by the level 1 patch of the refined calculation, as calculated
using the 256 x 512 solution as exact. Note that the L1 , L2, and L00 norms of the error
in velocity and density in the adaptive calculation differ by less than 10% in density and
26% in each component of velocity. It is not surprising that there are differences; in the
adaptive calculation only 18.25% of the domain is at the finest resolution at any point in the
calculation, the rest of the domain is at one fourth the resolution; in addition, the refined
patch is non-static, so the data on the fine patch have been interpolated from the coarser
level.

t = .14 t = .18 t = .22
Time L1 L2 Loo L1 L2 Loo L1 L2 Loo

Uniform 2.55 9.41 144 3.78 14.6 234 4.89 18.1 197
Refined 2.83 9.96 151 4.06 15.1 244 5.19 18.7 209

Table 6: Errors in density on the region around the bubble as calculated using a uniform
256 x 512 grid vs. as calculated using a factor of four refinement with a base grid of 16 x 64.

t = .14 t = .18 t = .22
Time L1 L2 Loo L1 L2 Loo L1 L2 Loo

Uniform .000369 .000934 .00794 .000473 .00128 .0111 .000494 .00150 .0183
Refined .000450 .00105 .00855 .000539 .00135 .0115 .000545 .00151 .0181

Table 7: Errors in x-velocity on the region around the bubble as calculated using a uniform
256 x 512 grid vs. as calculated using a factor of four refinement with a base grid of 16 x 64.

t = .14 t = .18 t = .22
Time L1 L2 Loo L1 L2 Loo L1 L2 Loo

Uniform .000454 .00129 .0102 .000533 .00138 .00962 .000599 .00146 .0136
Refined .000566 .00151 .0112 .000636 .00155 .0121 .000672 .00152 .0143

Table 8: Errors in y-velocity on the region around the bubble as calculated using a uniform
256 x 512 grid vs. as calculated using a factor of four refinement with a base grid of 16 x 64.

This calculation has identified an algorithmic difficulty which will require future modi­
fication. When a refined calculation was attempted that was identical to the one above but

33

(a) t = 0.014 (b) t = 0.018 (c) t = 0.022

Figure 4: Contour plots of density and superimposed velocity vectors for the 256 x 512 r-z
bubble calculation at times t= 0.014, 0.018, 0.022 at which the errors were measured. The
line across the center shows the two level 0 grids used in this calculation.

34

with half the width across the tanh profileythe calculation failed before reaching t = 0.22
because the density became negative. Running the same calculation without the MAC sync
solve was successful.

Recall that the single-level MAC sync solve requires that the correction for scalars such
as density be interpolated from the level at which the solve is done (in this case level 0) to
the next finest level and above. The correction is done using the correction velocity field and
face-state values of the scalar on the coarse grid, rather than re-c?mputing advection terms
at the finer resolution. In a region of steep gradients for fields with a large dynamic range
this can result in unacceptable under- or over-shoot in the interpolated value, as we saw in
this calculation. Future work will involve altering the algorithm so that this behavior does
not occur. One possible algorithmic change is to modify the interpolation scheme so that it
"redistributes" the interpolated quantity among the fine cells as necessary to avoid under­
or over-shoot. An alternate approach would be to make the MAC sync solve a multilevel
solve, so that interpolation is only used for levels I!+ 2 and greater. However, this approach
is not as simple as it might appear. The corrections being made to the level£ and the level
I!+ 1 data correspond to a mismatch in advection velocity which has accumulated over a
full level£ time step. While one would expect the correction velocity (Ucorr) to be small, it
is possible for Ucorr to be large enough that performing the correction at level I! + 1 could
violate the level I!+ 1 CFL constraint. This would necessitate a modified correction step
with subcycling in time.

4.2 Three-Dimensional Shear Layer

Finally, we present a three-dimensional variable density shear layer calculation. The data
for the problem were chosen to model the conditions studied by Brown and Roshko [12]
and Konrad [17] who were studying the effects of density variation on low speed shear
layers. Although the experimental shear layer was unforced, we have added forcing using
frequencies taken from Monkewitz and Huerre [21] as was done by Chien et al. [13] for their
two-dimensional simulations of shear layers.

The calculation was performed in a box with dimensions 512 x 128 x 384. The base grid
was 32 x 8 x 24, and there were two levels of refinement, the first by a factor of 4 and the
second by a factor of 2, for an effective resolution at the fine level of 256 x 64 x 96, with
i::.x finest = 2. The boundary conditions were: inflow at x = 0, outflow at x = 512, slip walls
at y = 0, 128, and no-slip walls at z = -192, 192.

The computations presented here were performed at Reynolds number 2 x 104 based on
the mean flow rate and the length of the computational domain. The flow was initialized
to be U(x; y, z, t = 0) = (uo(z), 0, 0) with

U1 + U2 2z
uo(z) = (1 + Av tanh(£))

2 UQ

and >-v = g: +g2, where U1 = 1.451, U2 = .54(9 and 8o = 6. The density was initialized in
the domain to be p(x, y, z, t = 0) = (1 + .02R)po(z) where

P1 + P2 2z
Po(z) = (1- Ar tanh(£)),

2 UQ

35

with Ar = P2+-p1
, where Pl = 1, P2 = 7 and R was a random fluctuation from -1 to 1

Pl P2
intended to break the inherent symmetries in the flow. These profiles are the same profiles
as were used by Chien et al. [13] except for the inclusion of the random perturbation in the
density field.

The inflow velocity profile as a function of time was

U(x = 0, y, z, t) = (1 + ~}~1mi sin (fit))uo(z- Zpert),

where Zpert = 0.1 sin (ht) sin (.22089323y). The frequencies were !1 = .219, and fi = fi_Ifi
for 2::; i::; 10, and the magnitudes were m1 = .01, m2 = .75ml, m3 = .55ml, m4 = .44ml,
and mi = 1. 7ml/i for 5 ::; i ::; 10. The den§ity of the fluid flowing in through x = 0
was defined to be p(O, y, z, t) = po(z- Zpert). These inflow profiles are also taken from the
work of Chien et al.; however, we have added a transverse perturbation in the form of
Zpert to introduce three-dimensional structure into the flow. This perturbation of the inflow
data is intended to mimic a mild "flutter" of the splitter plate used in the experiments.
For this computation the flutter oscillated in time with a zero mean and had a maximum
deflection of 5% of the finest mesh spacing. Although this perturbation is small, we found
that without the introduction of some three-dimensional perturbation the flow evolved to
an essentially two-dimensional configuration with very small transverse velocities for the
size of computational region considered here.

The flow requires about 100 coarse grid time steps for the initial perturbations to pass
through the domain and the pattern of vortex formation to become established. For these
initial cycles we adjusted the error criteria so that no level 2 grids were formed and so that
level 1 grids followed the structures. We then set the error criteria so that level 2 grids
would be formed in the region where the two fluids were mixing, and ran the computation
for an additional 225 level 0 time steps. By step 200 all of the vortical structures in the
problem had been resolved on the finest level mesh from their inception.

In Figures 5a-d we show a time sequence of density in the x-z cross-section centered
spanwise in the domain. These "snapshots" are taken at intervals of 10 level 0 time steps;
the times are: (a) n = 205, t = 1585, (b) n = 215, t = 1630, (c) n = 225, t = 1673, (d)
n = 235, t = 1715. Recall that eight level 2 time steps are taken for each level 0 time step.
Figures 5e-f show spanwise averages of the density at n = 205 and n = 225 in order to
calculate the spreading rate. Although it is difficult to precisely define an envelope around
the spreading shear layer, the visual spreading rate, 15vis, calculated from these profiles is
consistent with the experimentally computed value of 21% [12] superimposed on our data in
these figures. In Figure 6 we show a 3-d rendering of the magnitude of vorticity at n = 205
to demonstrate the spanwise structure of the flow. The region shown in this figure covers
the full distance in x but not the full z-extent. We note that although the transverse inflow
perturbations are quite small substantial three dimensional structures do develop.

Finally, in order to have a more quantitative comparison with the experimental data we
accumulated flow statistics from n = 200 ton= 325. In particular, we computed time- and
spanwise-averaged values of the mean x-velocity and density and the density perturbation.
(The span wise averaging was across the entire domain.) We note that although the time
interval corresponds to 1000 steps on the finest grid we only accumulated data at the end
of coarse grid time steps so that the statistics include only 125 time samples. These are
scaled by U1 for the mean velocity and p2 for the mean density and density perturbation.

36

(a) t = 1585 (b) t = 1630

(c) t = 1673 (d)t= 1715

(e) t = 1585 (t) t = 1673

Figure 5: (a)-(d): Time sequence of density in x-z cross-section at y=64 with the level 1
and level 2 grids superimposed. (e)-(f): Spanwise average of density; superimposed for
comparison is the experimentally observed visual spreading rate, 6vis = 21%. In each figure
the lighter fluid is on top.

37

Figure 6: Three-dimensional rendering of vorticity at t = 1585 with the level 1 and level 2
grids superimposed. The domain is cropped slightly in the z-direction.

38

In Figure 7 the profiles are plotted on the same axes as the experimental data from [12]
(for the mean values) and [17] (for the fluctuating density); the experimental values are
shown as mean values with error bars which represent the observed spread in the data.
The velocity profile matches the experimental data well. The density profile lies above the
experimental data in the center of the profiles. By examining the statistical data earlier in
the computation we found that the density profile was converging more slowly over time
than the velocity profile. Consequently this disagreement may be an artifact of the small
number of temporal samples. (Chien et al. [13] report needing several thousand samples
to compute accurate statistics.) The perturbational density profile matches the overall
structure of the experimental profile. The peak is well approximated and the overall shape
of the profile is correct, including the flattening and subsequent drop-off to the right of
center although the values in the center are somewhat high.

4.3 Timings

Here we present some timings of the code as run on the variable density vortex-in-a-box
problem presented in the previous section. Four cases are run, each with an effective fine grid
resolution of 64 x 64 at the finest level. These cases are: uniform 64 x 64 grid, 32 x 32 base
grid with one level of factor two refinement, 16 x 16 base grid with one level of factor four
refinement, and 16 x 16 base grid with two levels offactor two refinement. The calculations
here, as well as all those presented above, were run on a single-processor DEC Alpha. The
initial conditions are those presented earlier; here the code is run in each case to t = 1.
with b.t determined as described above. Presented in Table 9 are the number of CPU
seconds required to complete the calculation, as well as the CPU time per cell advanced
as measured in f-LS / cell. This number is the total CPU time divided by the sum over all
levels of number of cells at that level times the number of time steps that level is advanced,
and is interesting for evaluating how the cost of the calculation scales with the size of the
problem and refinement strategy. For a calculation with a base grid having N cells and a
patch refined by a factor of r having M cells, run for p coarse time steps taking a total ofT
CPU f-LS, this number would be T/((Np) + (Mrp)) J.LS/cell, since rp time steps were taken
at the finer level.

Also shown in Table 9 are the percentages of time spent at each level in the calcula­
tion doing level operations and the time spent doing synchronization operations (the sync
projection and the MAC sync solve). In parentheses after each of the level numbers is the
percentage of the total number of cells (N + M above) at each level; recall, though, that
a factor of r more time steps are taken a finer level than at a coarser level, and that the
synchronization operations occur once per coarse grid time step.

For this same problem we investigated the time saved by doing a single-level rather
than multilevel nodal sync projection. For the case with a 32 x 32 base grid and one
factor of two refinement, the calculation with the single-level sync projection took about
13% less time than the calculation with the multilevel sync projection (72.3s vs. 83.8s).
For the two-level r-z constant density Navier-Stokes problem, the difference in CPU time
was approximately 5%. These percentages vary, of course, with the relative time spent in
advancing all quantities at a single level vs. doing the sync projection.

The three-dimensional shear layer calculation presented above took approximately

39

,,

(a)

p
P2

(b)

p'

P2

(c)

1.2 .---.------.------,-----,.-----,,------,

1.1

0.9

0.8

0.7

• f .. .

~velocity" o
•experiment" 1-1--1

0.3 '----'------'-----"'--'----'-----'-----'
-0.1s -o.1 -o.os o.os o.1 o.1s

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

zjx

~Density" o
"Experiment" 1-1--1

0.1 '----'------'-------'------1.---'-------'
.0.15 .0.1 .0.05

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
.0.15 -0.1 -0.05

0.05

zjx

0.05

zjx

0.1 0.15

"Fiuctuating_Oensity" o
"Experiment" H-I

0.1 0.15

Figure 7: Mean velocity and density profiles and fluctuating density profile for the three­
dimensional shear layer. The error bars on the mean profiles denote the experimental data
band from Brown and Roshko [12]; the error bars on the fluctuating density profile denote
the experimental band from Konrad [17].

40

CPU Time % of Time at Level
Time Total(s) p,sjcell 0 1 2 0-1 1-2

64:l Uniform 133.5 255 100 (100) - - - -

322 Base + Factor of 2 83.8 426 23 (50) 49 (50) - 28 -

16:l Base + Factor of 4 52.7 367 7 (20) 74 (80) - 19 -

16:l Base + 2 Factors of 2 73.9 434 5 (15) 13 (27) 54 (58) 7 22

Table 9: Timings for uniform grid and refined grid calculations on a single-processor DEC
Alpha

500-510p,s / cell advanced on a single processor of a four-processor DEC Alpha. For this
calculation, unlike the two-dimensional example above, there was significant output; both
restart files and graphics files were output every five coarse grid time steps.

Preliminary timings were also computed on the CRAY C-90, and in some cases the
code actually takes more CPU time to complete on the C-90 than on the DEC Alpha. In
these cases, the nodal projections take about half as long on the C-90 as on the Alpha, but
the cell-centered solves take about twice as long because they have not yet been optimized
for vector machines. It is clear that efficiency of the multigrid solvers is the single largest
factor in determining the overall efficiency of the code. In the timings discussed above, the
multigrid tolerances were specified to be 10__:12 for the MAC projections, w-8 for the MAC
sync solves, w-12 for the nodal level projections, and w- 10 for the nodal sync projection.
These were the ratio of the final residual to original residual in the L 00 norm for the equation
to be considered solved. In practice, the tolerances must vary somewhat between levels in
order for the synchronization equations on the coarser levels to be solvable; the numbers
given above are for the level 0 solves.

5 Conclusions and Future Work

We have described here a conservative adaptive projection method for time-dependent in­
compressible flow which conserves advected quantities and maintains free-stream preserva­
tion across coarse/fine interfaces. The levels in the adaptive mesh hierarchy are refined in
both space and time. The fractional step character of the projection algorithm requires that
we solve hyperbolic, parabolic and/or elliptic PDE's in an adaptive framework at different
stages of the algorithm. The ability of the methodology to handle these prototype equations
allows for generalization to a much broader set of equations governing low Mach number
flows with more realistic physics.

Future directions for this work include the following: modification of the algorithm as
discussed in the previous section to avoid the problems associated with the current inter­
polation of scalar data following a single-level MAC sync solve; further improvement to the
multigrid solvers for greater efficiency in the case of strongly varying coefficients (i.e. den­
sity jumps) and optimization for running on vector and/or parallel computing platforms;
development of partial refinement strategies, in which the grid is refined only in one or two
coordinate directions; and extension to a quadrilateral grid framework for body-fitted grid­
ding. We are also extending the algorithm to include a more general divergence constraint

41

V' · (aU) = Q. This will provide a framework for modeling more general low Mach num­
ber flows such as low speed combustion and the anelastic model of the atmosphere. This
methodology will also be used to study and validate numerical models of sub-grid-scale
processes in various physical applications in order to understand their scale-dependence.

Acknowledgements

We would like to thank Charles Rendleman and Marcus Day for their development of the
cell-centered multigrid software. We would also like to thank Rick Pember for his patient
alpha testing of the code described herein.

42

Appendix: Projection Stencils

Restriction, divergence, and the elliptic operator Lp</J are all defined at nodes of the grid and
thus involve complicated stencils at coarse/fine interfaces. We build up these stencils using a
finite-element assembly process involving the coarse and fine cells immediately surrounding
each interface node. The spatial extent and general form of the stencils in 2-d is shown in
Figure 1 for a refinement ratio r = 4.

The finite-element basis functions for the 2-d 9-point stencils have a bilinear form on
each cell, the 2-d 5-point stencils are linear on each of two triangles in each cell, and the 3-d
7-point stencils do not have an obvious geometric interpretation-they are essentially an
extension of the 2-d 5-point stencils into three dimensions. The details of integration within
each cell, however, are not of primary interest to us here. What we need is the contribution
each cell makes to a difference stencil, and a procedure for assembling the contributions
with the appropriate weights for each interface node.

The divergence stencils in 2-d for uniform parts of the grid look like

(
1 [-1 1 l 1 [1 1])

[D] = 2~x -1 1 '2~y -1 -1 ' (A.1)

where the velocity components are defined on the four cells surrounding each node. (The
gradient stencil [G] is just the transpose of this, taking a scalar quantity on nodes and
returning a vector quantity on cells. Because the gradient stencil covers only one cell it,
like interpolation, does not require special treatment at interfaces.) Breaking [D] up into
individual cells is trivial. The contribution of the cell value to the lower right of the node,
for example, is

[D+-l = (2~x [~ ~] '2~y [~ -~]) · (A.2)

With the contributions from the other three cells we then have

(A.3)

in the grid interiors. These stencils for divergence are correct for both the bilinear and linear
triangular basis functions, and extend to 3-d in a straightforward manner. For axisymmetric
calculations a small correction is required; this will be presented at the end of this appendix.

At coarse/fine interfaces we define divergence only at coarse nodes. The sum over the
cells covered by the basis function can be expressed as follows,

[D]o = ~ [L [Dc]o + r
1
d (L [Dj]o+

0 cESc(o) fESJ(o)

(A.4)

L x(p) L [DJ]p)]·
pEF(o) fESJ(P)

Here d is the spatial dimension (2 or 3), o represents the coarse interface node (at (Ox, oy)
in 2-d) where we are evaluating the stencil, and F(o) is the set of fictitious fine nodes p

(at (Px,Py) in 2-d) on the coarse/fine interface between o and its neighboring coarse nodes.

43

SJ(o) and Sc(o) are the sets of fine and coarse cells surrounding a, respectively. In 2-d the
weight function

()
(r- iPx- oxi)(r -IPy- oyi)

X p =
r2

(A.5)

captures the linear form of the basis function along each interface edge. (Note that this
weight function resembles but is not identical to the bilinear basis function 'I/J0 . '1/Jo =
max(x, 0) in the coarse grid and along the interface, but within the fine grid '1/Jo drops to 0
across the width of a single fine cell.) In 3-d the weight function has a similar form:

()
_ (r- iPx- oxi)(r -IPy- Oyi)(r- iPz- Ozl)

X P - 3 · r
(A.6)

The factor w0 represents a weight for the entire stencil. In 2-d it is the integral of the
basis function '1/Jo normalized so that a coarse node has weight 1:

(A.7)

In 3-d, analogously,

1 1 1
Wo = 2::= 8 + L 8r3 + 2::= x(p) L 8r3.

cESc(o) /ESJ(o) pEF(o) /ESJ(P)

(A.8)

For the linear operator Lp we have several different stencils. Bilinear basis functions in
2-d give a 9-point stencil derived from integrals over four adjacent cells. Each of these four
integrals gives a similar "unit cell" contribution, such as the following for the lower right
cell:

[(DaG)+-l = a:~2 [~ -~ ~] + a:~2 [~ -~ -~]· (A.9)
6L.lX 0 -1 1 6L.lY 0 2 1

As with divergence, we build up the stencil in uniform parts of the mesh by simply adding
four unit cells together:

(A.lO)

On coarse/fine interfaces we again sum over the cells where the basis function for an interface
node has support:

(A.ll)

Note that the distinction between a(x) and a(Y) is only relevant on coarser levels of a
multigrid structure, as these directional coefficients were introduced as part of the multigrid

44

coarsening scheme. In other cases, including all applications of the interface stencils, we
have a(x) = a(Y) =a= 1/ p.

The 5-point formula obtained from linear basis functions over triangles differs from the
9-point formula only in having a different unit cell:

(x) [0 0 0 l (y) [0 0 0 l a+- a+-
[(DaG)+-l=/\2 0 -1 1 +

2
" 2 0 -1 0 .

2
L.lX 0 0 0 L-lY 0 1 0

(A.12)

The extension of this formula to 3-d to obtain the 7-point stencil is straightforward.
Full-weighting restriction in a uniform part of the mesh assigns to each coarse node a

weighted sum of the values at all fine nodes within the 4 surrounding coarse cells (8 in 3-d).
For each coarse node at the coarse/fine interface there is a smaller set of nearby fine nodes,
with the remainder of the coarse value coming from the interface node itself. If we define
G (o) as the set of fine nodes-not interface nodes-not more than r fine cells away from o
in any direction, we can express the restriction of a quantity s defined on level £ as

£-1 1 "' Uc s)o = WoSo + d L.., x(p)sp.
r

pEG(o)

Note that letting s be a constant provides an alternate definition of w 0 •

(A.13)

For axisymmetric problems in 2-d we scale the difference stencils by r (which here
denotes radius rather than refinement ratio) to put them in conservative form. Correction
terms are required to correctly account for the r-dependence in the finite element integrals.
Here we present only the form of the stencils associated with bilinear elements.

Divergence becomes

(
1 [-r _ r + l 1 [

[rD] = 2~r -r _ r + '2.6.z
r_

-r_
r + l .6.r [1 -1 l)

-r+ + 12.6.z -1 1 '
(A.14)

where r _ and r + are defined at cell centers. Note that except for the correction term this
stencil is the same as would be obtained by replacing the vector field V by rV. The stencil
breaks up into individual cells for assembly at the coarse/fine interface just as the Cartesian
grid stencils do.

Gradient also requires a correction term.

- 1 -1 1 1 1 1 .6.r -1 1 ([l [l [l)
T

[G] = 2~r -1 1 '2.6.z -1 -1 + 12r.6.z 1 -1 '
(A.15)

where [G] and r are both defined at a cell center.
For the linear operator Lp we redefine a as r / p and use the same multigrid coarsening

formulas as before. The stencil then looks like the Cartesian grid stencil with a small
correction term, the contribution from the lower right cell now being

at~ [0 0 0 l a~~ [0 0 0 l a~~D.r [0 0 0 l [(rD(1/p)G)+-l =
6

" 2 0 -2 2 +
6

" 2 0 -2 -1 +
12

.6. 2 0 1 0 .
L.lT 0 -1 1 L.lZ 0 2 1 r + z 0 -1 0

(A.16)

45

':(he other unit cells have a similar correction, except for the signs. In the upper right cell,
like this one, the correction opposes the main difference term, while in both left cells the
correction has the same sign as the main difference. In all four cases the effect is to shift
the effective r for the cell towards the node where the stencil is being evaluated.

46

REFERENCES

[1] A. S. Almgren, J. B. Bell, P. Colella, and L. H. Howell. An adaptive projection method
for the incompressible Euler equations. In 11th AIAA Computational Fluid Dynamics
Conference, Orlando, FL, July 6-9 1993.

[2] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A high-resolution
adaptive projection method for regional atmospheric modeling. In Proceedings of the
U.S. EPA NGEMCOM Conference, August 1995.

[3] A. S. Almgren, J. B. Bell, L. H. Howell, and P. Colella. An adaptive projection
method for the incompressible Navier-Stokes equations. In Proceedings of the !MAGS
14th World Conference, Atlanta, GA, July 11-15, 1994.

[4] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the incom­
pressible Navier-Stokes equations based on an approximate projection. SIAM J. Sci.
Comput., 17(2), March 1996.

[5] J. B. Bell, M. J. Berge~, J. S. Saltzman, and M. Welcome. Three dimensional adaptive
mesh refinement for hyperbolic conservation laws. Technical Report UCRL-JC-108794,
LLNL, Dec. 1991.

[6] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the in­
compressible Navier-Stokes equations. J. Comput. Phys., 85:257-283, December 1989.

[7] J. B. Bell, P. Colella, and L. H. Howell. An efficient second-order projection method for
viscous incompressible flow. In 10th AIAA Computational Fluid Dynamics Conference,
Honolulu, June 24-27, 1991.

[8] J. B. Bell and D. L. Marcus. A second-order projection method for variable-density
flows. J. Comput. Phys., 101:334-348, 1992.

[9] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82:64-84, 1989.

[10] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484-512, 1984.

[11] M. J. Berger and I. Rigoustsos. An algorithm for point clustering and grid generation.
Technical Report NYU-501, New York University-CIMS, 1991.

[12] G. L. Brown and A. Roshko. On density effects and large structure in turbulent mixing
layers. J. Fluid Mech., 64(4):775-816, 1974.

[13] K.-Y. Chien, R. E. Ferguson, A. L. Kuhl, H. M. Glaz, and P. Colella. Inviscid dynamics
of two-dimensional shear layers. Comp. Fluid Dyn., 5:59-80, 1995.

[14] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on
Computing, 6:104-117, January 1985.

47

[15] P. Colella. A multidimensional second order Godunov scheme for conservation laws.
J. Comput. Phys., 87:171-200, 1990.

[16] L. H. Howell and J. B. Bell. An adaptive-mesh projection method for viscous incom­
pressible flow. SIAM J. Sci. Comput., to appear.

[17] J. H. Konrad. An Experimental Investigation of Mixing in Two-Dimensional Turbulent
Shear Flows with Applications to Diffusion-Limited Chemical Reactions. PhD thesis,
California Institute of Technology, 1977.

[18] S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations.
SIAM, Philadelphia, 1989.

[19] M. L. Minion. On the stability of Godunov-projection methods for incompressible flow.
J. Comput. Phys., accepted for publication,1996.

[20] M. L. Minion. A projection method for locally refined grids. J. Comput. Phys., accepted
for publication,1996.

[21] P. A. Monkewitz and P. Huerre. Influence of the velocity ratio on the spatial instability
of mixing layers. J. Physics of Fluids, 25:1137-1143, 1982.

[22] Eldridge G. Puckett, Ann S. Almgren, John B. Bell, DanielL. Marcus, and William G.
Rider. A second-order projection method for tracking fluid interfaces in variable density
incompressible flows. 1996. submitted for publication.

[23] W. Sandberg R. Ramamurti and R. Lohner. Simulation of torpedo launch using a 3-D
incompressible finite element solver and adaptive remeshing. Technical Report 95-0086,
AIAA, 1995.

[24] R. Ramamurti, R. Lohner, and W. Sandberg. Evaluation of a Three-Dimensonal finite
element incompressible flow solver. Technical Report 94-0756, AIAA, 1994.

[25] E. Steinthorsson, D. Modiano, W. Y. Crutchfield, J. B. Bell, and P. Colella. An
adaptive semi-implicit scheme for simulations of unsteady viscous compressible flow.
In 12th AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 1995.

[26] David E. Stevens. An Adaptive Multilevel Method for Boundary Layer Meterology. PhD
thesis, Dept. of Applied Mathematics, University of Washington, 1994.

[27] David E. Stevens and Christopher S. Bretherton. A new forward-in-time advection
scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow.
1995. submitted for publication.

[28] P. Wesseling. An Introduction to Multigrid Methods. Wiley, New York, 1992.

48

@;J~I§Ibant ~ (YAW;J§I~Iitj @)§!I;J}t¥4L@? ~ ~

@b93 ~ ~ 6 @\!!i;;t3:ti@1o ~ ~

