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ABSTRACT 

 

Using Road Network Spatial Clustering to Assess the Timing and Duration of Dining, 

Shopping, and Entertainment Activities in California 

 

by 

 

Adam Wilkinson Davis 

 

Activity-based models for travel behavior are an important tool in urban planning and 

transportation analysis because they simulate the lives of individual people minute-by-minute 

and mile-by-mile throughout urban space. These models produce realistic schedules that take 

into account each person’s work, school, and personal life while also abiding by constraints 

imposed by time, space, and the need to be in the same place at the same time as other 

people. While these models have made great strides in accurately representing the ways 

people and households schedule activities throughout the day, they do not do as good a job at 

understanding the interconnections between space / place, what activities people do, and 

when they do them. One factor that contributes to this shortcoming is a general mismatch 

between the spatial distribution of activities and opportunities that these models consider and 

the spatial units used in modeling. This dissertation seeks to improve this aspect of spatial 

choice models by using a network-distance variant of density-based spatial clustering 

methods to extract activity centers by clustering the locations of entertainment, food service, 

and retail businesses. 
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This sort of spatial clustering requires an accurate means of identifying neighboring 

points in addition to well-chosen clustering parameters. Various simplified methods for 

calculating network distance are compared for their accuracy at measuring distance and 

identifying neighbors, and the least simplified method is chosen. A range of clustering 

parameters are tested, their results compared, and a final clustering is chosen that balances 

the need to have small, discrete clusters while also capturing as many businesses as possible 

and matching most activity locations.  

The types, timings, and durations of activities matched to different clusters are 

explored in order to assess the potential effectiveness of these clusters. This analysis 

identifies a set of center-level metrics that influence activity participation and timing. Finally, 

the spatial variability of activity durations and travel times is investigated using hierarchical 

models based on the clusters and spatially autoregressive models. These models indicate that 

much of the spatial autocorrelation of activity duration can be understood as primarily 

reflecting differences in the opportunities available at the level of individual centers.  
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1. Introduction 

People choose places to live, places to work, and places and times to shop, dine, and 

be entertained. The models used in travel behavior research to understand these spatial 

choices and how they connect to other aspects of people’s behavior have considerable 

shortcomings both in terms of the choice of measurement unit and in terms of determining 

what makes specific destinations attractive for particular purposes. Aggregation of individual 

data points into larger spatial units is a necessary step for many sorts of geographic analysis 

and is particularly important for spatial choice models for home, work, and activity locations, 

which require limited choice sets containing meaningful and distinct spatial units.  

In this dissertation I hope to begin to bridge that gap by developing a method to 

perform this aggregation that can be used as an alternative to spatial units derived from 

census or administrative boundaries, which are often poorly aligned with the actual spatial 

distribution of activities and opportunities. I use density-based spatial clustering to identify 

commercial centers and develop a method of correctly identifying neighboring points using 

network distances that can be scaled to work for a large state. After identifying the centers, I 

investigate center-level impacts of land use and the mix of opportunities available in an area 

on the timing and duration of people’s activities in these centers. 

Chapter 2 provides a background on Modeling Spatial Choices with particular focus 

on activity-based travel behavior models, defining spatial units for choice models, spatial 

heterogeneity, and the use of accessibility as an explanatory variable for behavior. 

In Chapter 3 Data Overview and Spatial Matching, I introduce the 2012-13 

California Household Travel Survey (CHTS) and the National Establishments Time Series 

(NETS), the major sources of data for my dissertation, and analyze the degree of 
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correspondence between the spatial data they provide. The CHTS provides a one-day record 

of the activities, and locations of 108,778 California residents in 42,431 households. NETS is 

a comprehensive record of all business establishments in the United States, with annual 

records from 1990 through 2013; I extract a subset corresponding to retail, accommodation/ 

food service, and arts/entertainment business establishments active in California in 2012 with 

accurately coded coordinates for their locations. Using a sample of eight major chain 

shopping and eating destinations common throughout the state and identifiable by name, I 

investigate how closely geocoded destination locations in the CHTS match business 

establishment locations in the 2012 extract from NETS and named places found in 

OpenStreetMap in 2019. While the CHTS and NETS locations do not match perfectly, 

named destinations in CHTS are generally within 200 meters of a matching NETS business 

and a similar distance of a matching OpenStreetMap location. While NETS is not a perfect 

dataset, it is beneficial to have business data for the correct year. 

Density-based spatial clustering requires an accurate distance measure in order to 

identify neighbors. In Chapter 3 Measuring Network Distance to Identify Neighboring 

Business Establishments, I demonstrate the feasibility of performing accurate network 

distance calculations to identify neighboring business locations throughout California up to a 

1000-meter maximum distance threshold. I compare these network distances to the distance 

calculation and neighbor identification results produced by two shortcut network distance 

methods and Euclidean distances. This comparison finds a high degree of error by both 

metrics for all alternative distance measures, although the simplified road network distances 

generally stabilize beyond about 500 meters. I also evaluate the tradeoffs involved in 
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computation time and accuracy between different forms of network distance computations 

for larger point datasets or larger neighbor distances. 

 Chapter 4 Using Network-Distance DBSCAN to Identify Commercial Centers in 

California introduces network-distance DBSCAN as a method for identifying commercial 

centers from NETS business locations and explores the effects of a range of values for the 

method’s two parameters, neighbor distance threshold (e) and minimum neighbors threshold 

(minPts). I investigate the sensitivity of clustering results to parameter values both in terms 

of directly measurable attributes of the resulting centers, and using secondary information 

produced by matching CHTS destinations to centers. Finally, I choose a clustering with e = 

250 meters and minPts = 4 and illustrate the results with center maps for the San Francisco, 

Los Angeles, Santa Barbara, and Sacramento areas. 

In Chapter 5 Exploratory Analysis of Activity Timing and Chapter 6 Spatial Analysis 

of Activity Duration and Travel Time I use the commercial centers identified in Chapter 4 as 

a grouping element to analyze timing, duration, and travel time for dining, entertainment, and 

shopping activities reported in the CHTS. Chapter 5 explores the impact of the local density 

and diversity of opportunities on the frequency and timing of these activities as a way to 

identify key variables related to activity timing that should be incorporated into future choice 

models. I also apply bootstrap resampling methods to compare the scale of local center-level 

differences in activity timing with those related to personal characteristics, daily schedules, 

and day of the week. Chapter 6 addresses the spatial dependency of activity duration and 

travel time at the sub-center level in order to provide insights into how well these centers 

work as a unit of analysis. Using spatially autoregressive linear models and hierarchical 

linear models, I find that activity duration generally has higher degrees of spatial 
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autocorrelation than travel time using neighbors either identified by distance or by center 

membership.  

I conclude with an overall discussion of results and future areas of work for this 

analysis. I also discuss potential improvements to commercial center identification that might 

make them more useful as a level for spatial choice models and other limitations of my 

analysis. 
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2. Modeling Spatial Choices 

Activity-based models for travel behavior have seen tremendous improvements in 

understanding temporal and human aspects of choices, but this progress has been much more 

limited in its consideration of space and place. The research presented in this dissertation is 

aimed mainly at improving the understanding of space and place in this field. This chapter 

opens with a brief overview of Activity-Based Modeling systems used in travel behavior and 

transportation planning and of the discrete choice models on which these systems are built. I 

then discuss the concept of accessibility as it relates to these models, challenges that arise in 

choosing spatial units for this sort of analysis, and the ways that travel behavior researchers 

have addressed heterogeneity in time and space. 

a. Activity-Based Models 

The primary goal of travel behavior researchers is to understand the flow of people 

and vehicles through cities over the course of the day and to predict the impacts that changes 

to policy, infrastructure, and economic conditions might have on these flows. Early travel 

models attempted to do this by considering the density of people, workers, and students in 

different zones, and assigning flows between these zones based on their relative sizes and 

proximity. Activity-based models (ABMs) represent an improvement in both the realism and 

usefulness of this research by directly incorporating an understanding of the ways that 

individual people and households arrange their activities during the day. 

ABMs attempt to simulate the daily life of every individual in a study area using a 

cascade of statistical models that account first for various long-term choices people make 

(how long do they stay in school, where do they work, where do they live) and then to 

progressively shorter-term and more specific ones (do they have to drop their kids off at 



 

6 
 

school, do they have to buy groceries today), eventually producing a minute-by-minute 

schedule of the activities each simulated person will do during the day, where they will do 

those things, and how they will travel between those locations (K. G. Goulias et al., 2011; 

Rasouli & Timmermans, 2014; Vovsha, Bradley, & Bowman, 2005). The activity-scheduling 

portion of these models is most relevant to my dissertation. In this step, models simulate the 

more fixed / restrictive components of each person’s schedule and align it with that of other 

members of their household; non-mandatory travel (shopping, eating, entertainment) is set 

within the spatial, temporal, and personal linking constraints set by these earlier choices. 

Activities are assigned to locations at the level of traffic analysis zones, and the models for 

assignment take into account the presence of the right kinds of workers, transportation 

infrastructure and the proximity of the potential destination to the person’s other activities 

(Y. Chen et al., 2011b; K. G. Goulias et al., 2011). 

A general flaw of ABMs is that they handle many highly interconnected decisions in 

sequence rather than simultaneously. This is necessary for computational reasons, but it may 

be particularly damaging for understanding the participation, scheduling, and location for 

activities like shopping, eating, and entertainment, since they involve many highly specific 

options and come near the very end of the schedule generation process. Work on activity 

spaces and potential path areas has influenced the spatiotemporal constraints included in 

models of personal travel decisions both for individuals (Fan & Khattak, 2008; Patterson & 

Farber, 2015) and within households (Neutens, Schwanen, & Miller, 2010; Yoon & Goulias, 

2010), to ensure that models understand what is possible, rather than treating activity location 

choice as a central part of activity simulation (Vovsha et al., 2005). While much of the effort 

in improving activity based models has focused on making activity sequences more realistic 
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and representative, the minimal and highly aggregated handling of space in general and 

activity location choices specifically has been acknowledged as a major shortcoming of 

ABMs since early in their development (Garling, Gillholm, Romanus, & Selart, 1997; 

Rasouli & Timmermans, 2014). 

b. Discrete Choice Models 

Discrete choice models are central to travel behavior research. These models start 

with the somewhat unrealistic assumption that when trying to decide what to buy, where to 

go, or how to get there, people consider all the available options and choose the one that 

brings them the most benefit or utility (Ben-Akiva & Lerman, 1985; Train, 2009). The 

development of alternative structures for these models is probably the most significant way 

in which the field seeks to provide increasingly useful and meaningful analysis of the choices 

people make. The general format for discrete choice models is built around a set of potential 

choices, each with an associated latent utility variable (!"#) that is split into a systematic 

component ($"#) and a random error component (%"#) in Equation 2.1: 

!"# = $"# +	%"#     Equation 2.1 
 

The systematic component of utility is modeled as a linear combination of important 

attributes of each option and individual ()"#) based on a set of coefficients (*) that 

correspond to people’s preferences: 

$"# = *)"#      Equation 2.2 
 
Decision-makers are assumed to choose whatever option provides the highest utility, 

but because the true value of %"# is unknown, the models instead provide the probability of 

each person choosing each option based on the assumed distribution of the error term, which 

assumes a normal distribution in probit models and a Gumble / extreme value distribution in 
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logit models, which makes the probabilities much easier to work with mathematically. For a 

simple multinomial logit model, the probability of individual + choosing option , from a 

menu of choices subscripted - in the denominator is: 

."# =
/01(345)	
∑ /018349:9

	;<	."# =
/01(=>45)	
∑ /018=>49:9

    Equation 2.3 

 
Discrete choice models are popular because they express complex multivariate 

decisions relatively simply, but the basic form of these models does not address a number of 

factors that are obviously important to understanding people’s choices, particularly the 

variability of people’s individual preferences and the impact of similar alternatives on the 

models’ performance (Greene & Hensher, 2003; Train, 2009). 

Destination choice is a potentially difficult application of discrete choice modeling 

because the choice is contingent on where people live, work, and travel; what they want to 

do; and how wide or narrow a choice set they face. Since basic choice models assume that all 

options are completely independent (the independence of irrelevant alternatives), they can be 

swamped when the choice set includes numerous very similar alternatives. Various modified 

forms of choice models relax this assumption somewhat, but nesting structures address it 

directly by grouping related choices together (Train, 2009). While this model structure was 

originally intended to solve issues presented by mode choices, it has also been used as a way 

to decrease the severity of spatial autocorrelation among the utilities of neighboring 

locations, although spatially correlated choice models address the issue more directly (C. R. 

Bhat, 2000; C. R. Bhat & Guo, 2004). 

Spatial choice models pose particular issues for choice-set generation, since these 

models assume that all potential choices are included. Even with the fairly large zones used 

in travel modeling, including all of the zones with grocery stores accessible to each person 
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would overwhelm a model for shopping location. As a result, many models use randomly 

subsampled choice sets both for modeling and simulation, a solution that is not ideal but 

generally does not bias results for simpler models (Nerella & Bhat, 2004). In contexts where 

the number of potential choices is quite large, it is also often necessary to use an “unlabeled” 

model specification (which leaves out the intercept term for each alternative’s utility 

equation).  The process of generating choice sets is often handled before the model is 

estimated, but models that incorporate choice set generation endogenously are available 

(Nerella & Bhat, 2004; Swait, 2001). Two remaining issues facing spatial choice models are 

the need to spatially aggregate possible destinations and how to account for the effects of 

variable traffic conditions in destination choice models (Dill et al., 2014). 

Spatial choice models for activity location typically include travel time and cost 

(which are generally the major negative drivers on the estimated utility of various options), 

personal characteristics of the traveler and their household and information about their daily 

schedule, and information about the attractiveness of each destination (usually based on the 

density of workers in the applicable employment category). Habitual behavior is a 

profoundly important component of many people’s destination choices, but very few travel 

surveys contain sufficiently long-term data to make this workable (Schlich & Axhausen, 

2003). Destination attractiveness is closely related to the concept of accessibility, which is 

the most widely applied spatial predictor of behavior. In the rest of this chapter, I will discuss 

the ways accessibility is measured and issues with the measurement units typically used both 

for accessibility and activity location choice sets. I will then briefly highlight the importance 

of accurate distance measurement and understanding behavioral heterogeneity between 

people and locations.  
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c. Accessibility  

Travel behavior researchers and urban geographers often identify accessibility as a 

major factor in people’s movement through space and in the attractiveness of destinations. 

Originally defined as “the potential of opportunities for interaction,” (Hansen, 1959), 

measures of accessibility are generally intended to capture the density and diversity of 

potential opportunities for people’s activities, measurable as a continuous field variable over 

space. Most common measures of accessibility are intended to characterize the overall 

patterns of opportunity density and the built environment over a region, rather than providing 

information about the specific places in which people pursue their activities.  

The majority of accessibility indicators either consider a single origin or multiple 

anchor points like home and work locations around which availability and reach of 

opportunities are measured (S. Handy, 1993; D. M. Levinson, 1998; D. Levinson, Marion, 

Owen, & Cui, 2017). The range of accessibility people experience throughout the day, either 

at specific destinations or within their activity space, is linked to social interaction, activity 

scheduling, and task allocation within the household (Lee, Davis, Yoon, & Goulias, 2016; 

Patterson & Farber, 2015; Shliselberg, 2015; Yoon & Goulias, 2010). Diversity-centered 

accessibility has been measured by variables corresponding to the density of broad land use 

categories (Cervero & Kockelman, 1997) or using information entropy measures (Davis, 

2015; de Abreu e Silva, Golob, & Goulias, 2006). Both methods have shown significant 

relationships with travel behavior, but they depend heavily on the classification scheme used. 

One well-established formulation of accessibility is opportunity-based accessibility, 

which counts the number of potential destinations reachable within a certain period of time or 

by traveling a certain distance (Páez, Scott, & Morency, 2012). These are further enhanced 
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by accounting for congestion and the expected opening and closing hours of businesses (Y. 

Chen et al., 2011b). This sort of accessibility can be measured as continuous field that varies 

over space, which makes it a valuable measure of the sorts of opportunities that people can 

access within a certain distance of their home, work, or school location but is less useful as a 

measure of the specific opportunities available in one place. Proximity to opportunities for 

complementary activities (like dining and entertainment) seems likely to affect destination 

choices, but a person would not, for instance, choose to go shopping in a residential area just 

because it was located midway between two major shopping centers that counted both of 

them in its accessibility. Opportunity-based accessibility is not a good measure of 

destination-level attractiveness.   

At the other extreme, modeling specific opportunity locations (such as stores) 

individually is also infeasible for several reasons including inability of surveys to capture 

many destinations (i.e., there are many more business establishments in a region than the 

locations visited by respondents), mismatched geocoding between surveys and available 

databases of business establishments, and semantic mismatching between activity type and 

business establishment type. In addition, business locations cluster in space, whether 

measured by straight line or on a network, and this is particularly true for service industries 

which benefit from agglomeration economies achieved by attracting a larger pool of 

customers to a dense location (Kolko, 2010; Okabe, Okunuki, & Shiode, 2006; Ravulaparthy 

& Goulias, 2014; Yamada & Thill, 2004).  

Accessibility can be understood as varying continuously over space, but choice 

models use choice sets made up of discrete options; in the case of activity destinations, these 

options take the form of spatially aggregated measurement units. To perform destination-
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level analysis of shopping, dining, and entertainment activities, we require a method for 

identifying potential destinations that are aggregated enough to consider the effects of 

surrounding opportunities while also being small to be meaningfully considered a 

destination. Questions remain about how best to perform the spatial aggregation of 

opportunity locations.  

d. Problems with Census Units 

Census spatial units (such as block groups and tracts) are commonly used in social 

and health sciences to define neighborhoods both because they are predefined and 

standardized and because they match the spatial resolution of other available datasets, but 

their size, shape, and boundaries may not be well-suited to measuring phenomena of interest 

to researchers (Bates, 2006; Weiss, Ompad, Galea, & Vlahov, 2007). Although they are 

designed to measure where people live, census units are often even a poor choice for 

delineating neighborhoods when studying housing in part because the census splits units at 

major roads, which assigns houses on opposite sides of the same street to separate units 

(Clapp & Wang, 2006). 

In travel demand modeling, traffic analysis zones (TAZs) built up from census blocks 

are the typical spatial unit of analysis because the US Census and American Community 

Survey provide TAZ-level demographic and employment data, but a variety of analytical 

issues arise from their use. Páez and Scott (2004) point out two major issues with TAZs that 

relate to the Modifiable Areal Unit Problem (MAUP): the scale effect, by which the same 

analysis can lead to different conclusions depending on the resolution of the spatial units; and 

the zoning effect, by which different spatial partitioning leads to a wide range of possible 

analytical outcomes. This casts doubts upon models that incorporate zone-level spatial 
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relationships. Solutions to the problem of developing the “right” zoning system have been 

proposed that attempt to minimize some of the negative impacts of spatial aggregation, 

including some that focus on capturing travel within a single zone using a variety of scales 

(Moeckel & Donnelly, 2015; Viegas, Martinez, & Silva, 2009).  

 
Figure 2.1 Three potential outcomes when businesses concentrated along roadways 
get mapped to census units. Census tracts shown in shaded colors. Euclidean-distance 
DBSCAN cluster search radius extents with minPts=5, eps=200 meters are shown in 
blue. Example 3 clusters along Vermont Ave, a major arterial in central Los Angeles. 

 

Boundaries of these units are set based on “visible and identifiable features,” like 

arterial roads (US Census Bureau, 2010), which are often the site of many businesses. As a 

result, commercial centers built around major roads and intersections are often split among 

multiple units. Figure 2.1 shows three potential cases of business aggregation to tracts from 

an area in central Los Angeles. The first example is the best case for small commercial 

centers, because all the businesses are located near the centroid of a single tract. In example 

2, the businesses in an area cluster along a street dividing two tracts. In example 3, a set of 

businesses clusters along the intersection of two major roads that divide four tracts, which 

means that a tract-based spatial aggregation would effectively separate those businesses by as 

much as half a kilometer in an area with high population density, and much more in an area 

0 200 400 600 800	m
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with larger tracts. The bubbles on the map correspond to the search radius for destinations in 

each of the clusters that result from our clustering result. 

e. Other Ways of Defining Neighborhoods 

While census units are very commonly used for delineation of urban space, they are 

not the only basis for such delineation. People often understand cities as being broken up into 

neighborhoods that are differentiated spatially and demographically and in terms of local 

culture, history, architecture, and/or the range of amenities available. Neighborhood 

definitions vary and depend heavily on the purpose for which boundaries are drawn; scholars 

looking for effects of neighborhood on health, wealth, and education have very different 

priorities than governments and businesses using neighborhoods to attract tourism or 

investment (Campbell, Henly, Elliott, & Irwin, 2009; Coulton, Korbin, Chan, & Su, 2001; 

LA Times Data Desk, 2018; San Francisco Association of Realtors, 2017). Attempts to 

extract neighborhood boundaries from surveys and crowdsourcing have found that people 

who live in an area have wildly varying ideas about neighborhood boundaries. An effort to 

crowdsource boundaries for Boston neighborhoods found that while people agreed on the 

general arrangement of named regions, they differed widely in their assessment of their 

relative sizes (Woodruff, 2013). Bae’s study of the cognitive boundaries of Los Angeles’s 

Koreatown neighborhood demonstrated that people who live in a place have varying 

understandings of its boundaries that may not align with boundaries defined by outsiders or 

government agencies (Bae & Montello, 2018). 

An approach favored by travel behavior analysts is to dispense with neighborhood 

boundaries entirely and define “neighborhood” as a set of attributes drawn from a circular 

buffer around each individual household in the dataset. This approach seems adequate for 
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travel behavior analysis, assuming a neighborhood affects behavior primarily through 

continuous attributes like open space area, road length, and number of nearby grocery stores, 

rather than through a softer concept such as the sense of being in a mixed use neighborhood 

(Cervero & Kockelman, 1997; Frank, Bradley, Kavage, Chapman, & Lawton, 2008; S. 

Handy, 1996). Because it doesn’t attempt to draw boundaries, this method sidesteps the issue 

of vagueness, but may leave room for considerable uncertainty, depending on how the 

buffers intersect any polygonal data sources. 

Travel behavior research that has considered neighborhoods as discrete entities has 

generally compared residential neighborhoods in separate parts of an urban area instead of 

attempting to divide an entire region (X. Cao, Mokhtarian, & Handy, 2007; Khattak & 

Rodriguez, 2005; Kitamura, Mokhtarian, & Laidet, 1997; Krizek, 2003). These studies have 

found significant effects of neighborhood-level urban form and land use on travel behavior, 

but these effects are often confounded by self-selection and the considerable impact of 

people’s predispositions towards certain modes of transportation on both their travel and their 

choice of home neighborhood.  

When precise neighborhood boundaries are not known or needed for analysis, 

geographers (particularly in this department) have employed hexagonal tessellations as a way 

to divide up space as a measurement framework for surveys about place attitudes (Davis, 

2015; Deutsch, 2013; Deutsch-Burgner, Ravualaparthy, & Goulias, 2014; Montello, 

Friedman, & Phillips, 2014). This approach has also been used to identify employment sub-

centers in Southern California and investigate the relationship between accessibility to jobs in 

these sub-centers and vehicle travel (Boarnet & Wang, 2019). 
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f. Urban Geography and the Arrangement of Urban Space 

Since my goal is to identify centers of commercial activity rather than residential 

neighborhoods, it is important to consider how urban geographers and planners understand 

cities, including the arrangement of activities within them and the processes that shape this 

arrangement. Early urban geographers employed simplified models to understand the overall 

layout of the city, generally a densely-developed central region surrounded by concentric 

rings of decreasing rents, specializing in different activities (P. J. Smith, 1962). To the extent 

that generalized urban models are still employed, they generally understand activity as a 

spatially varied continuous urban field, with different priorities in different zones or realms 

(Couclelis, 1989; Friedmann & Miller, 1965; Godfrey, 1999).  

Other fields are more interested in the processes that shape cities than the eventual 

form they take. Transportation-oriented scholars hold that existing transportation modes are 

the primary control on urban expansion, with increases in transportation speed leading over 

time to less centralized layouts (Muller, 2004). In addition to affecting the extent of cities, 

transportation infrastructure can also influence the shape of development. In Los Angeles and 

the areas surrounding San Francisco, urban expansion concentrated along streetcar lines 

radiating out from the city center, and these developments still serve as commercial cores for 

the inner suburbs (Bottles, 1987; Suisman, 2014; Wachs, 1984). 

 Marxist urban geographers acknowledge the historical importance of transportation 

in the expansion of cities but identify land rents as the primary driver, since these determine 

what people and purposes the city is built to serve and incentivize the periodic rebuilding of 

the inner city (Harvey, 2003; N. Smith, 1979). In addition to these economic and 

technological processes, physical geography plays a major role in shaping urban 
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development. This is particularly notable in California. Much of San Diego and the San 

Francisco Bay Area are built on steep hilly terrain around large natural harbors, which limits 

buildable area and requires thoughtful design of transportation infrastructure (ConnectSF, 

2018; Dailey, 2017), while inland cities like Sacramento have to contend with severe 

flooding and may avoid floodplain development. Earthquakes also occasionally force 

planners to substantially rethink urban design; for example, damaged and unsafe freeways 

may be removed to make way for infill development (King, 2014). 

Most understandings of American cities include a dense, diverse Central Business 

District (CBD) or “downtown” as the focal point for the city’s government, finance, and 

trade, with city government and the consumer (retail and entertainment) heart of the city 

located nearby (Murphy, 2017). While the outward appearance and experience of CBDs is 

fairly consistent – tall buildings, corporate offices, dense development, and high rents – the 

spatial layout is somewhat more variable, largely reflecting the infrastructural connections 

(harbors, rivers, and railroads) around which the cities were built (Hartman, 1950; Murphy, 

2017). While some other parts of the US (particularly in the southwest) were developed 

largely after freeways became the primary mode of interurban transportation, most of 

California’s major urban centers predate the expansion of freeways, and often pushed back 

against their expansion (Carlsson, 2009; Perez, 2017). While CBDs are generally the densest 

parts of cities, accessibility by car is often much higher in the inner-ring suburbs, where 

people have relatively easy access both to downtowns and to sub-centers spread throughout 

the region (Giuliano & Small, 1991; D. Levinson et al., 2017). Easy access to employment 

subcenters has been tied to lower Vehicle Miles Traveled (Boarnet & Wang, 2019). The 

historical development of subcenters poses something of a dilemma concerning whether 
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suburbanization of housing or employment centers came first, and whether public 

infrastructure planning or private investment is the more important driver (Anas, Arnott, & 

Small, 1998; Gordon, Richardson, & Wong, 1986; Helsley & Sullivan, 1991; White, 1976). 

In practice, cities reflect the combined influences of a range of processes, as well as 

the historical accumulation of investment and planning practices that produced each new 

development. Some unique attributes of California cities may have a bearing on the sorts of 

commercial centers I should identify. While Los Angeles is sometimes considered the 

archetypal 20th Century American city because of its expansive car-oriented suburban 

development (Krim, 1992), in some ways this title is a poor fit. While its downtown is 

arguably less dense than that of older cities, the Los Angeles region as a whole is much more 

densely populated and continuously developed than other Sun Belt cities (Singley, 2013; 

Wilson et al., 2012). Many American cities underwent “urban renewal” programs in the 

1950s-70s to redevelop “blighted” (often predominantly black) neighborhoods near the city 

center into new commercial and residential centers, and California’s state government 

strongly emphasized these programs (Lai, 2012; Teaford, 2000; Thomas, Ritzdorf, & Hodne, 

1997). The Western Addition redevelopment project in San Francisco is notable because it 

specifically justified the bulldozing of a middle class black neighborhood as an effort to re-

build the Japanese-American downtown that was destroyed by the Japanese Internment (Lai, 

2012). On the more positive side, California has also begun to push for more mixed-use infill 

development as a way to create “Sustainable Communities” that disincentivize car travel to 

decrease greenhouse gas emissions (OneBayArea, 2013; Steinberg, 2008). 

Commercial centers come in a wide range of shapes and sizes. Dense downtowns 

offer a wide and diverse range of opportunities but should be expected to make up a smaller 
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share of the commercial development of the region than sub-centers in inner- and middle-

ring suburbs (Giuliano & Small, 1991; Helsley & Sullivan, 1991). These, in turn, should be 

expected to cluster along major roads (Bottles, 1987; Wachs, 1984). Suburban malls contain 

a great deal of the retail opportunities in California, and their uniquely car-oriented design, 

and immense parking requirements, and separation from existing centers (Ersoy, Hasker, & 

Inci, 2016) should make them fairly distinct from other sorts of centers, particularly as they 

decline (Parlette & Cowen, 2011; Schwartz, 2015). In residential neighborhoods that predate 

exclusionary zoning practices and in newer mixed-use areas, corner stores and small 

neighborhood centers meet some of residents’ needs, while newer planned medium-density 

mixed-use developments often struggle to draw customers from larger centers (Bartlett, 

2003; Grant & Perrott, 2011). Los Angeles’s mini-malls (arguably the classic Los Angeles 

cultural landscape) thrive both because they serve local communities more directly than other 

businesses (Loukaitou-Sideris, 2002) and because they often incorporate a wider mix of 

services, including medical clinics (Sloane, 2003). Considerably less scholarship has been 

devoted to the retail geography of rural areas, but a study of older and developing rural 

commercial centers found that while the concentration of the market into fewer, larger stores 

(notably Wal-Marts) was a common theme in established areas, rural areas experiencing 

population growth tended to have a wider range of stores (Vias, 2004). 

g. Measuring Distance on a Road Network 

Distance measures are a central concern for both travel behavior analysis and spatial 

clustering, and choosing the correct method is vital to performing valid analysis (Boscoe, 

Henry, & Zdeb, 2012; X. (Jason) Cao, Mokhtarian, & Handy, 2009; S. L. Handy & 

Niemeier, 1997; Yamada & Thill, 2004). Euclidean distance is satisfactory for matching 
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points that have slightly mismatched geocodes (Chapter 3), but measurement of distances 

between separate points should consider the limitations on travel between these points. 

People cannot travel through urban areas in straight lines from place to place, so distances 

between separate places in cities should be measured along a road network rather than by 

straight line. Transportation researchers generally acknowledge the importance of using road 

network distances in analysis, but shortcuts are often taken in the interests of computation 

time and complexity. These methods can entail assigning all locations to the nearest road 

intersection, road segment centroid, or census unit centroid. Simplified distance calculations 

are particularly attractive when large numbers of distance computations are required, such as 

for computing network centrality and accessibility (Boeing, 2018a; Y. Chen et al., 2011a; S. 

L. Handy & Niemeier, 1997; Ravulaparthy, Goulias, Sweeney, & Kyriakidis, 2013). 

Unfortunately, inaccuracies introduced by these methods can bias analysis, and may be 

particularly problematic for identification of neighbors and density calculations (Yamada & 

Thill, 2004). 

h. Spatial Heterogeneity and Activity Timing 

Spatial heterogeneity presents another set of issues, since the relationship between a 

location and the behavior of a person depends inherently on the location for reasons that are 

not recorded in the data, and this difference can change over the course of a day. Bhat and 

Zhao (C. Bhat & Zhao, 2002) show the impact of neglecting spatial heterogeneity in the 

context of stop-making decisions by households, but their proposed solution uses TAZs as 

the spatial units of analysis. The degree to which the attractiveness of different places varies 

over the course of the day has been less thoroughly addressed, but it is clearly an issue.  

Google Maps now displays plots showing the relative popularity at different days and times 
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of individual destinations, and ratings sites like Yelp also indicate what days and times 

individual bars and restaurants are best visited. Some work has attempted to capture time of 

day signatures of major facilities and events (McKenzie & Janowicz, 2015; McKenzie, 

Janowicz, Gao, & Gong, 2015; Paul, Vovsha, Hicks, Livshits, & Pendyala, 2014), but work 

has been limited in travel behavior. Neglecting the variability of place attractiveness is a 

major issue for activity-based travel models that simulate activity participation by time of 

day and day of the week. 

Although place-based analysis has been limited, travel behavior research has found a 

variety of ways to understand the mix of travel and activities people do in a day. Measures 

have included the amount of time spent sleeping, eating, working, and socializing; the 

number, modes, and lengths of trips made; and the number of people interacted with. Lee et 

al. investigated the relationships among these measures by developing a three-way latent 

class clustering model of daily schedules (Lee, Davis, Yoon, & Goulias, 2017) and other 

travel behavior researchers have noted the importance of understanding daily sequences of 

activities (C. R. Bhat et al., 2013). Geographers have focused more on the relationship 

between time and place; notably McKenzie et al. (2015) identified interesting differences 

between the temporal signatures of activity locations using social media data. These sorts of 

differences between places are not at all accounted for in existing activity-based models, 

which generally assume that all places that provide a certain amenity operate on the same 

schedule. 
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3. Data Overview and Spatial Matching 

In this chapter, I introduce the major data sources used throughout this dissertation 

and discuss the overall quality and interoperability of the spatial data contained in these 

datasets. The bulk of the data used in this dissertation is drawn from two sources: the 

National Establishment Time Series (NETS) and the 2012-13 California Household Travel 

Survey (CHTS). NETS data is used as a catalog of opportunities for shopping, dining, 

socializing, and other activities that can be performed outside the house, and the place-based 

travel and activity diary in the CHTS provides a record of activities performed by California 

residents. I investigate the overall accuracy of the spatial match between these datasets using 

a set of major chain shopping and eating destinations that are common throughout the state 

and are identifiable by name; while the CHTS and NETS locations do not match perfectly, 

named destinations in CHTS are generally within 200 meters of a matching NETS business 

and a similar distance of a matching OpenStreetMap location. 

a. Data Sources 

The California subset of NETS contains a record of all business establishments (e.g. 

individual stores or offices) in California from 1990 to 2013 (Walls and Associates, 2017). 

This dataset is produced from Dun & Bradstreet business establishment data and licensed by 

Walls and Associates. For this dissertation, I use customer-facing businesses in the retail, 

food service, and entertainment categories (NAICS 2-digit codes 44, 45, 71, and 72) with at 

least three employees that were located in California in 2012. Businesses with 1 or 2 

employees were excluded because many of them appeared to be home addresses rather than 

storefronts; for instance, a home-based business that sells products online is retail, but it does 

not provide a place for people to physically shop.  
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NETS data contains some degree of imprecision in business classification and 

geographic location, and it is necessary to remove business locations that are not coded with 

sufficient precision to match precisely with the road network. Establishments in NETS 

businesses are classified according to the North American Industrial Classification System 

(NAICS). At the lowest level, NAICS includes over a thousand different distinct business 

types (United States Office of Management and Budget, 2017). Because it was designed to 

describe the economic relationships between businesses, NAICS is not ideally suited for the 

sorts of questions I ask in my dissertation; the system recognizes 360 types of manufacturers 

for example, but only 4 types of restaurants.  

Most businesses in NETS are geocoded down to their position on the road segment 

and side of the road (“Block Face” level), but some locations are coded only down to the 

centroid of their census tract, block group, or zip code (Walls & Associates, 2013). This 

inconsistency is more common for non-storefront locations than it is for the types of 

businesses I use here: 94.8% of the retail/entertainment/food service businesses with at least 

three employees are geocoded precisely, as are 93.9% of the other businesses active in 

California. I exclude locations with imprecise geocodes from my analysis, decreasing the 

total number of businesses from 193,820 establishments in the target categories with at least 

3 employees in 2012 to 183,772 establishments that have precise geocodes. These businesses 

break down by category as follows: Retail 110,117 (NAICS 2-digit 44 and 45); Arts, 

Entertainment, and Recreation 17,301 (NAICS 71); and Accommodation and Food Service 

56,354 (NAICS 72). 

OpenStreetMap (OSM) provides an attractive free alternative to proprietary NETS 

data as a source of business locations. OSM is a free-to-use community-provided source of 
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spatial data for shops, restaurants, and other points of interest in a fairly consistent data 

format available worldwide for the present day (“OpenStreetMap,” 2019). The place 

classification scheme used by OSM conveys a great deal more detail than NETS does in the 

types of places I used for this analysis which makes it an especially appealing option as a 

source of business location data. My primary reason for using NETS data instead of OSM is 

that whereas NETS contains data for 2012, it is not easy to access OSM data from previous 

years (though a 40GB global data file is available online for 2013 

https://planet.openstreetmap.org/planet/full-history/2013/). Free-to-use data sources like 

OSM would be a preferable source for similar studies in the future, as long as care is taken to 

extract the data concurrently with the travel survey data collection process.  

While I had access to NETS data paid for under a previous project, I did not have any 

contemporary road network data as high quality as what is available from OpenStreetMap 

(from which I extracted the statewide road network in Spring 2018). This road network is 

likely somewhat different from what existed in 2012-13, but there have been no major new 

freeways or arterial roads built in California since then, apart from those in new residential 

developments that this dissertation does not concern. 

The California Household Travel Survey (CHTS) contains demographic and travel-

related information for 108,778 people in 42,431 California households, with people 

surveyed on every day from February 2012 until February 2013 (NUSTATS, 2013). Each 

person was asked to fill out an activity travel diary containing a complete record of every 

place they visited between 3AM on their assigned survey day and 3AM the next day. The 

activity-travel diary provides locations, descriptions, travel modes, and timings for all 

activities performed in a single assigned day in the life of all the people in the survey. The 
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households selected for the survey were spatially stratified by county in order to ensure the 

collection of sufficient data to model the behavior of rural travelers, but sampling 

probabilities for the Southern California residents used in our analysis are fairly consistent 

across counties. The CHTS provides estimated sample weights for each household that could 

be used with most of the analysis methods I present in my dissertation, but previous analysis 

has suggested that they are likely unreliable (McBride, Davis, Lee, & Goulias, 2017). For 

schedule comparison analysis, only out-of-home activities were considered. Table 3.1 

contains frequencies for all of the out of home activity types reported in the CHTS. 

Locations visited by people in the CHTS were geocoded during the initial data 

collection using a program that accessed a Google Maps API (NUSTATS, 2013). This 

process stored locations for each household, so that if multiple people in a single household 

visited the same location, it was coded identically in all of their place logs, but this program 

does not appear to have provided fully consistent results between households. I found a 

considerable amount of spatial variability in the locations recorded for places that should 

have been coded the same, possibly because different people described the places slightly 

differently. For instance, multiple people who appeared to visit the same Costco had 

geocodes that varied by over a hundred meters in one direction or the other.  
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Table 3.1 Out-of-home Activities Reported in the CHTS 

Activity Purpose Higher-level 
Category Acts 

Non-work related activities (social clubs, etc) Civic / Religious 339 

Volunteer work/activities Civic / Religious 563 

Civic/religious activities Civic / Religious 7,366 

Eat meal at restaurant/diner Dining 18,149 

Drive through meals Drive through 4,717 

Drive through other Drive through 1,270 

Entertainment Entertainment 7,209 

Exercise/sports Exercise 329 

Indoor exercise Exercise 4,875 

Outdoor exercise Exercise 10,225 

Service private vehicle Maintenance 5,058 

Household errands Maintenance 9,138 

Personal business  Maintenance 6,958 

Health care (doctor, dentist, eye care, chiropractor, veterinarian) Medical 6,007 

Study / schoolwork School 62 

After school or non-class-related sports/physical activity School 788 

All other after school or non-class related activities School 1,227 

Meals at school/college School 2,337 

In school/classroom/laboratory School 11,254 

Shopping for major purchases or specialty items Shopping 2,843 

Routine shopping Shopping 34,326 

Social/visit friends/relatives Social 21,563 

Loop trip Transportation 7,260 

Change type of transportation/transfer Transportation 23,637 

Pickup/drop off passenger(s) Transportation 24,187 

Work-sponsored social activities Work 106 

Training Work 264 

All other work-related activities at my work Work 1,069 

Meals at work Work 5,085 

Work-related Work 9,878 

Work/job duties Work 30,432 

Other Other 4,498 
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b. Point Matching 

This dissertation targets local clusters of opportunities rather than individual locations 

to explore the effects of density and diversity on the attractiveness of destinations, but it is 

worth considering whether it would be practical to use business and activity location datasets 

together at the level of individual points. To do this, I match the locations of eight stores and 

restaurants with multiple locations in California that appear frequently in the CHTS. 

I identified the unique place names in the CHTS Places dataset and counted the 

occurrences of each. CHTS respondents visited a total of 492,321 places on their respective 

survey day, with 64,033 unique place names. Many of the most frequent names referred to 

private residences or generic transportation infrastructure sites (e.g., “Bus Stop”, “Transit 

Stop”). Costco was the most common business name and appeared in the travel diaries of 

2,250 people as “COSTCO.” Manual name matching and word searching identified another 

58 forms (e.g., “COSTCO GOLETA”) for a total of 2,450 reported visits. All places with at 

least 1,000 combined appearances in the CHTS are shown in Table 3.2.  

For eight most commonly visited businesses in the CHTS (as shown Table 3.2), I 

searched for all locations in the 2012 NETS dataset with a business name containing some 

variant of the business name in question (e.g., “WALMART” or “WAL-MART”). For 

comparison, I queried OSM on January 7, 2019 for places with matching names. The spatial 

attribute of NETS data corresponds to single points, but OSM provides spatial data in a range 

of different structures, and relevant businesses are stored as a mix of points, some as 

polygons (“buildings”). For the comparison analysis, I converted polygons to point data 

using their centroids. Figures 3.1 and 3.2 show the cumulative share of destinations for each 

business name within a given distance of a matching NETS and OSM point, respectively. 
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Table 3.2 Commonly appearing place names in CHTS Travel Diary Places Dataset 

Place (Grouped) Unique Spellings 
in CHTS Place file 

Times Visited in CHTS 
Place file 

Used in Place 
Match figures 

Private Residence 27 239,612  

Transportation Infrastructure 34 13,253  

Costco 60 2,450 Yes 

Walmart 15 2,246 Yes 

Government Office 2 2,167  

Safeway 14 1,979 Yes 

Target 10 1,805 Yes 

McDonalds 9 1,483 Yes 

Starbucks 5 1,418 Yes 

Trader Joes 6 1,237 Yes 

Church 8 1,201  

Home Depot 38 1,056  

CVS 14 1,053  

Vons 21 1,053 Yes 

Kaiser (Hospital) 141 1,017  

 

For seven of the eight chain businesses considered here, NETS contains a matching 

location to 75% of CHTS destinations within about 250 meters, as shown in Figure 3.1. This 

match is slightly better for Starbucks and grocery stores (Safeway, Trader Joe’s, and Von’s) 

than for other big box stores (Costco, Target, and Walmart), but all of the stores stabilize 

between 80-90% once the search radius is expanded to 350 meters. Less than 25% of CHTS 

visits to McDonald’s restaurants are even within a kilometer of a business called McDonald’s 

in NETS, which likely reflects the company’s franchised structure, in which individuals or 

small companies own and operate most locations that carry the company’s brand. 

OSM data from 2019 matches CHTS locations comparably well to NETS, as shown 

in Figure 3.2, but different place types stabilize at somewhat more varied match rates, 

possibly reflecting varying rates of turnover between different companies. McDonalds 

matches substantially better in this dataset, whereas Starbucks matches much worse than it 



 

29 
 

did for NETS. NETS and OSM have generally similar match rates (Figure 3.3) despite the 

intervening years in which locations people visited in 2012 could have closed or changed 

ownership. This suggests that OSM might be a more reliable source for this type of analysis. 

However, since OSM also contains businesses that opened after 2012 that should not be 

considered in analysis of travel behavior in that year, NETS is probably a preferable data 

source for that year. Destination analysis would be made easier if future travel diary surveys 

chose a specific place dataset to use both in data collection and analysis.  

 
Figure 3.1 Match distance between CHTS and 2012 NETS for eight major businesses 
in California. NETS contains a matching location for most destinations within 250 
meters but matches much less poorly for McDonald's. 
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Figure 3.2 Match distance between CHTS and 2019 OSM for eight major businesses 
in California. OSM reaches a matching location for most destinations within 250 
meters but matches worse for McDonald's and Starbucks. 
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Figure 3.3 Difference in match rate over distance between OSM and NETS. OSM is 
generally better for McDonalds and generally worse for Starbucks. For other stores, 
OSM matches slightly sooner but match rates are very close for all search radii over 
about 300 meters. 
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4. Identifying Neighboring Business Establishments on the Road 
Network 

 

This chapter discusses network distance computation and neighbor identification 

using National Establishments Time Series business establishment location data joined to an 

OpenStreetMap road network. Accurate identification of neighboring points is a central 

requirement for performing density-based spatial clustering (discussed in Chapter 5). The 

correct method for calculating distances on a road network is to add each location as its own 

node in the network by splitting the nearest road segment at the point’s location, which 

allows shortest path distances to be calculated directly to or from that location. This process 

can be complicated and time consuming for large datasets, and shortcuts are sometimes used. 

I assess the error introduced in distance calculation and neighbor identification from 

three simplified methods of distance computation: Euclidean / straight-line distance between 

points, network distance based on snapping all points to the nearest intersection, and network 

distance based on snapping all points to the centroid of the nearest road segment (see Figure 

4.1). While the two other network-based methods become increasingly accurate at distances 

over about 500 meters, they introduce substantial error to the neighbor identification process 

at closer distances. My main findings are as follows: 

• By dividing the state up into one-kilometer square chunks and processing the 

network of each one separately, it is possible to join a set of POIs to a large 

statewide transportation network and identify all network neighbors within a 

reasonable amount of time on a personal computer.  
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• Node-to-node and segment-to-segment distances are not much faster to calculate 

than accurate network distances and these approximations are only slightly more 

accurate than Euclidean distance is, at least for distances up to 1 kilometer. 

• For distances of over 750 meters, average error from nearest-intersection and 

segment-based distance calculations stabilizes at 60 meters. Since the error from 

individual pairs of points is limited by the length of their respective road 

segments, the relative magnitude of this error decreases over distance. 

• Simplified network distance measures are particularly bad for identifying 

neighbors within the distance range I consider most seriously for the density-

based clustering exercise in Chapter 5.  

 

Examples of these of the four distance measures compared here are shown for three 

business locations in Isla Vista, CA in Figure 4.1.  
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Figure 4.1 Point-to-point network distance along with three simplified ways of 
measuring distance. Euclidean distance (top-right) is very quick to compute but does 
not reflect the reality of movement along road networks. Nearest Intersection 
distance (bottom-left) and nearest segment distance (bottom-right) simplify network 
distance calculation by moving points to existing locations on the network either at 
intersections / nodes or segments / links. 
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a. Subsampling the Network to Attach POIs 

For this dissertation, OpenStreetMap road network data was preprocessed using 

OSMnx, a Python library that downloads OSM road data, checks and cleans network 

topology, and exports it in multiple formats (Boeing, 2017). This preprocessing step provides 

an edge list that can easily be used for routing and spatial data that can be used for accurate 

point-to-polyline-matching, since it maintains the full spatial detail of the original Open 

Street Map data. For the analysis presented in this chapter, the statewide network contains 

1,443,374 intersections and 1,883,110 road segments with a total length of 466,110 

kilometers. Of these road segments, 86,542 have at least one business establishment and 

32,222 have at least two. 

The first step for calculating the network distance between business establishments is 

to position each location on the road network and determine its distance from the endpoints 

of its respective road segment. To distinguish them from network nodes and sample points, in 

this section I refer to business establishment locations as points of interest (POIs). It is 

possible to identify the individual closest points on a polyline dataset to a set of POIs 

analytically, but joining POIs to regularly spaced points sampled along their respective 

nearest road segments is a simpler process and can be made as precise as desired. It is much 

faster to identify nearest neighbors between two sets of points than to identify the exact 

nearest points on a polyline dataset. Even more importantly, regular subsampling of the road 

segment makes it straightforward to directly calculate the distance between each POI and the 

two endpoints of its road segment.  

This process entails sacrificing some degree of precision in positioning POIs in 

exchange for processing speed but can be made arbitrarily precise by sampling points at 
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smaller intervals. Decreasing the sampling interval increases the processing time of this step 

but does not affect the processing time of the network distance step, since that only requires 

the distance between each point and two nodes. In order to avoid visual clutter, the example 

figures used in this section use a 5-meter point spacing, but for the analysis in the rest of this 

chapter and this dissertation, distances are calculated using a 1-meter spacing between 

sample points. By using 1-meter spacing of sample points, I calculate POI position on the 

road network with error distributed uniformly between ±0.5 meters and road network 

distances with error distributed triangular between ±1 meter. The point position matching 

analysis presented in Chapter 3 demonstrates that this level of uncertainty is far below the 

level inherently present in the activity and business location datasets used in this analysis.  

I position business establishment locations on the road network with an automated 

process using the following steps in R. Figures 4.2 and 4.3 demonstrate this process on a 

subset of business establishments and road segments in Isla Vista, CA, which is adjacent to 

UCSB’s campus. 

1. Find closest road segment to each POI. Subsampling polylines is taxing, so to save 

processing time, only run this process on road segments that are joined to at least one 

POI. Separate the POIs into groups based on which road segment they are nearest to. 

2. Generate sample points on each road segment of interest (circles on road in Figure 

4.2). The corresponding function in sf generates regularly spaced points starting at 

half the sample spacing from the from the first vertex of the line segment. E.g., for a 

sample interval of 5 meters, the first sample point will be 2.5 meters from the from 

node of the given road segment. 
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3. For all the POIs attached to a specific road segment, determine which sample point is 

nearest. Arrange the POIs by sample point index. 

4. Calculate distance along the road segment from each POI to the previous point and 

the next point. For the first and last POI on a road, these will be the one of two 

endpoint nodes. Add links to the network corresponding with lengths equal to the 

respective distances between the POI and the two adjacent points (Figure 4.3). The 

distance from each point to the next is equal to the difference between their sample 

point indices times the sample point spacing. The distance from the first POI to the 

from node is (, − 0.5) × D, where , corresponds to the index of the sample point and 

D corresponds to the sample spacing. The distance from the last POI to the to node is 

E − (, − 0.5) × D, where E corresponds to the full length of the road segment.  

Once the original network has been updated with a new node and a new link for each 

POI, distances can be calculated along the network from any POI to any other POI. In rare 

cases, the process of attaching POIs to the road network moves results in distances that are 

smaller than the Euclidean distance between the POIs. In these cases, I use the larger of the 

two distance measures. 
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Figure 4.2 Identify the road segment nearest to each POI and sample it at a regular 
interval. The nearest sample point to each POI is an approximation of the nearest 
point on the line to that point. 
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Figure 4.3 Add POIs to the network as new nodes and link them to the two nodes on 
the road segment they are attached to. In this example, point A will have links to 
nodes V and W; point B will have links to W and X, and point C will have links to Z 
and Y. When there are multiple POIs on a single segment, links will be created 
between them in sequence. 

 

b. Network Distance and Neighbor Identification 

Once the joining process is complete, the network includes all of the business 

establishments added as nodes, with links connecting them to the endpoints of their road 

segment. The next step is to compute distances. 

The Dijkstra algorithm (Dijkstra, 1959) is a method to compute the shortest path 

distance between pairs of nodes on a network. This method spans the entire network, visiting 

nodes at successively increasing distance from an origin node. Because it performs a blind 
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search out from the origin and visits all nodes in every direction that are nearer to the origin 

before reaching the destination, the basic form of the Dijkstra algorithm is a fairly inefficient 

means of calculating distances between single pairs of points (Zeng & Church, 2009). 

Navigation services can provide distances and travel times between pairs of points with 

relative ease using improved algorithms like A* and other methods that precompute the 

lengths of frequently used routes (Delling, Sanders, Schultes, & Wagner, 2009; Zeng & 

Church, 2009) or span the network simultaneously from the origin and destination to save 

time, but full distance matrices are often more costly to provide. The inefficiency of this 

method for calculating single network distances is not problematic for identifying network 

neighbors, since the process of identifying all neighbors of a node within a given distance is 

identical to identifying the route between that node and a single other node at that distance. A 

method similar to this was described but not fully explored by Yiu and Mamoulis (2004), and 

a similar method was developed for identifying particularly accident-prone stretches of road 

(Zhang, Han, & Kim, 2018).  

It is possible to modify the Dijkstra algorithm to identify all neighbors within a set 

distance and stop scanning the network once that distance is reached. I achieve a similar 

effect by chunking both the network and list of nodes I’m interested in, and passing spatial 

subsets of each to the distance matrix calculator in the R package igraph (Csardi & Nepusz, 

2006), which implements the algorithm more efficiently in C than I could in R or Python. 

After initial exploration of the spatial distribution of business establishment locations in 

California, I determined that 1 kilometer was a reasonable maximum threshold for neighbor 

distance, and I would likely choose as smaller value of ε, the neighbor distance in DBSCAN. 

I divided up California business locations into 1-kilometer cells; larger or smaller cells might 



 

41 
 

improve efficiency further, but this size was acceptable for my purposes. This yielded a list 

of from nodes for my distance computation. I then buffered each region by the maximum 

neighbor distance (1 kilometer) and selected all other business locations and road segments 

that fell within this larger box. Since road distance is always at least as long as straight-line 

distance, the combination of the from points and the additional points inside the larger buffer 

contains all the possible network neighbors of the from nodes. 

c. Accuracy Tradeoffs for Simplified Distance Computation Methods 

In order to demonstrate the importance of using correct distance calculation methods, 

I also calculated straight-line (Euclidean), nearest-intersection, and nearest-segment network 

distances between all pairs of business establishments located within 1 kilometer of each 

other by actual network distance. Since Euclidean distance represents the shortest possible 

distance between two points using projected coordinates, in every case where network 

distance is smaller than the corresponding Euclidean distance, Euclidean distance is used 

instead. Statewide, there are 13.6 million pairs of retail, entertainment, and food service 

businesses within 1 kilometer of each other by road. Table 4.1 shows the upper triangle of the 

correlation matrix for these four distance measures statewide. The three simplified distance 

computation methods provide results that are generally close to accurate, and their accuracy 

increases at greater distances, but the distance errors are substantial, particularly for neighbor 

identification. 

Table 4.1 Correlation of four distance measures for California retail, entertainment, 
and food service establishments located within 1 kilometer on the road network of each 
other. 

 Nearest-Intersection Nearest-Segment Euclidean 
Correct Network 0.964 0.955 0.944 

Nearest-Intersection  0.895 0.926 
Nearest-Segment   0.913 
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Euclidean distances always underestimate road network distances, but the difference 

varies spatially both with the overall structure of an area’s road network and with the relative 

orientation of the straight-line distance between a pair of points and the rest of the network 

(Boeing, 2018; Ravulaparthy, 2013; Ravulaparthy et al., 2013). Since road network distance 

is always at least as long as Euclidean distance, I include a distance computation produced by 

scaling Euclidean distance to the average ratio between the two metrics. For California 

customer-serving business locations within 1 kilometer of each other, road network distance 

is 28% longer than Euclidean distance, on average; I include this adjusted distance measure 

in the figures below. 

Nearest-intersection and nearest-segment network distances are calculated in the 

same way as point-based network distance, but instead of adding new links from each 

business to the two nearest intersections, businesses are assigned to their nearest intersection 

or to the centroid of their nearest road segment. This location reassignment is the only source 

of error for these methods relative to network distance calculated by adding new network 

nodes for each business location, and the largest potential error from either method is equal 

to half the combined length of the two points’ respective road segments. Errors for each 

method are greatest when points are displaced the most: nearest-intersection distance is most 

accurate between pairs of establishments located close to road intersections, whereas nearest-

segment distance is most accurate when both establishments are located at the centers of their 

respective road segments. As a result, these two methods tend to have errors of opposite 

magnitudes.  
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To compare the overall error of these measures over distance, I divide all the business 

pairs into 5-meter-wide bins and calculate the average of the mean absolute error for each of 

the approximate distance measures using Equation 4.1: 

FGHI = 	JKL+8MLNOE,DO#,Q − O<RKE,DO#,QM:; 			+KOE,DO#,Q ∈ E  Equation 4.1 

Given a distance range E, identify all pairs of points that have a “true” network 

distance within that range. The mean absolute error for the range is equal to the mean of the 

absolute values of the difference between alternative distances for those pairs of points and 

the “true” network distance measurement. For consistency, both other network distance 

measures are corrected to never be less than the corresponding Euclidean distance. The mean 

average error in these bins is shown in Figures 4.4 in meters and 4.5 by percent of actual 

distance. At very short distances, Euclidean distance performs slightly better than either of 

the simplified measures based on the road network. Both approximate network distance 

measures are more accurate for measuring distances over 300 meters. At distances above 500 

meters, the relationship among the four measures stabilizes. Because the error introduced by 

displacing points from their actual position on the road segment is fixed for each point, the 

overall average error of both network methods remains constant in absolute terms (around 60 

meters, on average) and dwindles as a percent of the measurement. Because errors in 

Euclidean distance relate to the overall straightness of the road network, these errors remain 

constant as a percent of the distance measure (about 18% in California on average) and 

increase linearly in meters. 
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Figure 4.4 Mean absolute error of four approximate distance measures. At smaller 
distances, Euclidean distance performs better. Euclidean distance errors appear to 
increase in a linear fashion beyond 1 kilometer, whereas network errors stabilize to 
about 65 meters from about 750 meters on. 
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Figure 4.5 Percent absolute error for four approximate distance measures. At smaller 
distances, unmodified Euclidean distance performs much better, but stabilizes to 
around 18% for distances over 500 meters. Network distances improve at larger 
distances since their error can never be more than half the combined length of the 
road segments of the points in question. 

 

These errors of distance measurement impact that accuracy of identifying fixed-radius 

neighbors between pairs of points, a major input to density-based clustering methods like 

DBSCAN. To test the impact of using incorrect distance measures to identify neighbors for 

my dataset, I used the adjusted Euclidean distance and intersection- and segment-based 

network distance to perform neighbor identification at a range of neighbor thresholds spaced 

every 10 meters between 50 and 600 meters, a range of neighbor distance thresholds I felt 

likeliest to use as ε, DBSCAN’s neighbor distance threshold, for my final commercial center 
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clustering in the next chapter. Two points are classified as neighbors using a specific distance 

computation method if the distance between them is less than or equal to ε, and non-

neighbors if the distance is greater than ε. Figures 4.6-8 show the result of these tests, with 

the range from 150 to 400 meters highlighted. In each case, the neighbor detection results 

from the three simpler distance measures is compared against results from actual network 

distances. Since these measures require enumeration of the negative results of a test as well 

as the positives, I used Euclidean distance to identify all pairs of points within ε by straight 

line, since only these points could possibly be within ε by other measures of distance. I 

include Euclidean distance on the overall accuracy plot to show the overall share of points 

within ε by straight-line distance that also are by network distance. 

As Figure 4.6 shows, adjusted Euclidean distance and the two simplified network 

measures produce neighbor identification results with an accuracy of between 82% and 96%. 

Nearest-segment network distance is the most-accurate alternative at values of ε below 100 

meters, but nearest-intersection distance is slightly more accurate for values of ε within the 

central target range of 150-400 meters. Separating the overall accuracy measure into 

sensitivity (Figure 4.7) and specificity (Figure 4.8), which correspond respectively to a test’s 

accuracy when encountering values that should be classified as positive and negative, 

highlights the main difference between how the two network-based distance approximations 

perform for neighbor identification. Using nearest-intersection distance produces more false 

positives because it pulls points on multiple road segments to the same intersection network 

node, assigning them a distance of 0 meters, which I then correct to the Euclidean distance 

between the points. Nearest-segment distance produces more false negatives because it pulls 

businesses clustered around major intersections away from each other to the centroids of 
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their corresponding roads. Since more than 75% of businesses that are within a given value 

of ε by Euclidean distance are by network distance as well (black curve on Figure 4.6), the 

overall accuracy of nearest-intersection distance is slightly higher despite its much higher 

rate of false positives. 

 

 
Figure 4.6 Accuracy of neighbor identification using Euclidean distance and three 
simplified distance measures at a range of thresholds for neighbor distance ε, 
measured in meters. Accuracy is percent of all potential neighbors (pairs of business 
establishments with a Euclidean distance less than or equal to ε) classified correctly 
as either neighbors (network distance less than or equal to ε) or non-neighbors 
(network distance greater than ε). 
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Figure 4.7 Sensitivity (true positive rate) of neighbor identification using three 
simplified distance measures at a range of thresholds for neighbor distance ε, 
measured in meters. Sensitivity is percent of all actual neighbors (network distance 
less than or equal to ε) that are correctly identified as neighbors using simplified 
distance measures. 
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Figure 4.8 Sensitivity (true negative rate) of neighbor identification using three 
simplified distance measures at a range of thresholds for neighbor distance ε, 
measured in meters. Specificity is percent of all non-neighbors (network distance 
greater than ε) that are correctly identified as non-neighbors using simplified 
distance measures. 

 

d. Interpolated Network Distance 

For the problem of identifying neighboring retail, food service, and entertainment 

business establishments in California, it was feasible to add all the locations to the network 

directly as new nodes, but this might not be the case for a considerably denser point dataset. 

Igraph’s method for generating a shortest path distance matrix for a network has a time 

complexity of O(s*|E|log|E|+|V|), where |V| is the number of vertices, |E| the number of edges 

and s the number of sources, or points from which distances need to be computed (igraph 
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core team, 2015). Adding a new point to the road network will increase |V| by 1, and |E| by 

either 1 (if existing links are split at each point) or 2 (if new links are created between each 

point and the original nodes, as I did for simplicity of code). Since there are nearly ten times 

as many road segments and intersections in California than customer-serving business 

locations, adding all the business locations only slightly increases the network size and 

runtime for each source. While changes to |V| and |E| are somewhat limited by the size of the 

original network, the sources (s) term directly reflects the number of added points, since 

network distances must be computed from each point of interest. In this case, the total 

runtime of the process was still acceptable (about 40 minutes for the whole state using 1 

kilometer square chunks and a maximum distance threshold of 1 kilometer when run on a 

2017 MacBook Pro), but if the density of POIs were much higher (and were especially 

concentrated on a few road segments), it would make sense to limit the network-spanning 

process to existing nodes that connect links containing POIs and account separately for the 

distance between on-segment positions and road intersections, since these distances are fixed 

for a given point. 

Tests indicated that the added matrix operations added negligible processing time 

compared to the process of spanning the road network. The number of POIs is P, and the 

number of nodes is N: 

1. Subset the network to an appropriate size for the desired maximum neighbor distance 

(the chunking process described earlier in this chapter).  

2. All POIs lie on road segments that have a from node and a to node. Identify all nodes 

that are either a from or to node for at least one POI. Compute the N-by-N network 

distance matrix among these nodes. 
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3. Pull distances from these node-distance matrices to create four new P-by-P distance 

matrices. The four matrices will contain distances between the POIs’ respective from 

nodes (rows) and from nodes (columns); to and from; from and to; to and to. 

4. Add the distance from each POI to its from and to nodes in the corresponding row and 

column in each matrix. When pairs of points are on the same segment, subtract the 

distances instead of adding them (this can bet done with ifelse in R). The resulting 

four matrices now correspond to a set of four candidate shortest-path distances 

between all pairs of POIs, with each one essentially representing a distance based on 

departing the first POI and arriving at the POI in two specific directions. 

5. Use pmin or an equivalent function to get the cell-by-cell minimum value from these 

four matrices, providing the overall shortest-path distances. 

e. Conclusions 

This chapter demonstrated that it is feasible to use the road network to identify fixed-

distance neighbors up to 1000 meters for all of California. These results are used as an input 

to the density-based clustering process described in Chapter 5. Comparisons suggested that 

simplified network distance measures are generally very accurate for calculating large 

numbers of distances if the target distance is over a kilometer, but nearest-intersection 

distance is only slightly faster to run and nearest-segment distance is much slower.   

This analysis has a few notable limitations. It ignored one-way roads and turning 

restrictions because I am most interested in identifying neighbors at spatial scales that are 

reasonably walkable, but these features are vitally important for calculating road network 

distances and directions for driving purposes. Additionally, the methods discussed here 

would be considerably slower with a denser distribution of points or if longer neighbor 
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distances were required. I did not test different chunk sizes since 1000x1000 meters worked 

well enough for my purposes, but there are likely more efficiencies to be found there (or by 

directly coding a stop function into the shortest path algorithm). 
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5. Using Network-Distance DBSCAN to Identify Commercial 
Centers in California 

 

There are a number of reasons why the sorts of spatial units used in travel behavior 

analysis are a particularly poor fit for modeling centers of commercial activity, as well as the 

form of commercial centers, given the urban economic and historical geography of 

California. To extract commercial centers for this analysis, I propose using spatial clustering 

to identify concentrated centers of retail, food service, and entertainment locations that are 

likely to attract high densities of shopping, dining, and entertainment-related activities. This 

clustering should identify discrete areas with a dense and diverse range of opportunities for 

designated activities, and the resulting centers should “make sense” in familiar areas and 

capture various spatial arrangements of business locations. In practical terms, it must be 

possible to unambiguously join individual activity locations to a specific center; preliminary 

tests suggested that enclaves (highly dense clusters largely surrounded by another cluster 

with minimal gaps in between) were particularly problematic for this goal. While clusters of 

relatively consistent size would be better for future applications with destination choice 

models, not all activity and travel analyses require that, and it may be acceptable to capture 

all of a “downtown” or “main street” area in one cluster. 

This chapter presents a network-distance implementation of Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) as a method to identify 

centers of concentrated commercial centers retail, food service, and entertainment business 

locations in California. It discusses the methods by which parameters of this clustering 

algorithm were tuned to produce a final clustering with the desired characteristics, presents 
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local maps of my final clustering, and discusses how the new method relates to other 

attempts by geographers and planners to divide and characterize urban areas. 

DBSCAN is a well-established deterministic spatial clustering algorithm that 

identifies sets of densely packed points but does not assign points in low-density areas to any 

cluster. I chose DBSCAN for this application for a number of key considerations: 

• Unlike many clustering methods, it does not require a set number of clusters as an 

input and can identify clusters of various shapes and sizes. 

• It separates areas of relatively high density into discrete clusters to enable 

comparative analysis. 

• It distinguishes between areas of high expected activity density and areas of 

relatively low expected activity density. This is particularly beneficial here 

because the activity locations reported in the CHTS represent a relatively small 

share of the businesses in California, whereas NETS (the data source used in 

clustering) is ostensibly exhaustive. 

• Since it only requires distances between points (and not other information about 

point locations), DBSCAN can easily be adapted to use any distance measure. 

DBSCAN and similar methods are used for a wide range of data clustering purposes, 

particularly when it is necessary to identify particularly high-density regions from a set of 

point observations dispersed over a larger area. Many applications draw from geotagged 

social media data, and specific applications have attempted to identify distinct points of 

interest from sets of posts recorded with random error in their geolocation (Maddimsetty, 

2018, Orenstein et al., 2014) and extract regions of interest from large collections of 

geotagged photos (Hu et al., 2015). Spatial clustering is relatively new in transportation 
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research, although it has recently been used to identify major tourist regions in Florida using 

geotagged tweets (Hasnat & Hasan, 2018) and in traffic accident hotspot analysis, where a 

method using road-network DBSCAN performs much better than existing methods at 

identifying dangerous stretches of road (Zhang et al., 2018). The most similar application I 

found came in the form of a blog post by the author of the package I used to extract OSM 

road network data: Boeing uses the NETS dataset and OSM roads to demonstrate the 

importance of using road network (rather than Euclidean) distances in clustering, particularly 

when clustering is done for an irregular road network broken up by streams and freeways 

(Boeing, 2018b). That application used node-based distances rather than true network 

distances, which Chapter 3 suggests is only slightly better-suited for this purpose than 

straight-line distance. 

Although it is straightforward to implement and generally provides useful results, 

DBSCAN has a number of notable drawbacks that arise when points are not distributed 

consistently over the study area, either through directional dependence (anisotropy) or varied 

density. If points demonstrate consistent directional trends in space – either locally or in the 

whole study area – using Euclidean distance may not be appropriate; ADCN presents one 

potential solution by favoring the major axis of an ellipse constructed from each point’s 

potential neighbors (Mai, Janowicz, Hu, & Gao, 2018). This dissertation presents another 

approach using road network distance, which is applicable when the points being clustered 

are constrained to a network both in terms of location and interaction.  

Conventional DBSCAN can struggle to distinguish clusters when density varies so 

widely throughout the study area that a single set of parameters will fail to detect actual 

clusters in low-density areas and/or fail to identify breaks within large clusters in high-
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density areas. OPTICS addresses this by providing a hierarchical clustering that resembles 

DBSCAN but with a neighbor distance threshold that varies over space (Ankerst, Breunig, 

Kriegel, & Sander, 1999). Testing OPTICS with NETS data and Euclidean distances 

revealed numerous enclave clusters at every value of the cluster separation parameter Xi. 

OPTICS could be run with road network distances as well, but the implementation in the R 

package dbscan does not accept a fixed radius nearest neighbors list or a sparse distance 

matrix for OPTICS (Hahsler, Piekenbrock, Arya, & Mount, 2018).  

The rest of this chapter presents an overview of the DBSCAN algorithm and results 

from testing a range of parameters with network-DBSCAN and concludes with a justification 

for the final clustering model used in this analysis. 

a. DBSCAN Method Overview 

To extract clusters, DBSCAN requires a set of data points, a distance function, and 

two parameters: the fewest total points a point must neighbor to count as a core point 

(minPts), and the maximum distance between two points for them to count as neighbors (e). 

For this analysis, I create a list of fixed-radius (e) network-distance neighbors for all business 

locations, and use this as an input to an efficient implementation of the DBSCAN algorithm 

in the R package dbscan (Hashler et al., 2018).  

DBSCAN identifies clusters using a three-step process: 

1. For each observation p, count the total points with a distance of less than U from p 

(including p). Flag all p that have at least minPts neighbors as core points. 

2. Identify all core points within e of each other as neighbors and extend transitive 

neighbor-status to all the core points neighboring each of these, so that all core 



 

57 
 

points are neighbors if they are within e or can be connected by a string of other 

neighboring core points. 

3. Each group of neighboring core points is a single cluster. All points that do not 

meet the minPts threshold but are neighbors of one or more core points count as 

edge points for all clusters containing core points that they neighbor. All points 

that neither meet the minPts threshold nor are adjacent to any points that do are 

classified as noise. Edge and noise points are not used when attaching activity 

locations to clusters. 

In order to cluster points using DBSCAN, we must choose values for its two 

parameters: minPts and e (maximum distance between neighbors). Attempts have been made 

to automate the selection of parameters for density-based clustering methods, but these 

parameters still be chosen with consideration for the phenomenon being clustered (Karami 

and Johansson, 2014). The minimum points parameter controls the minimum acceptable size 

for a cluster; various rules of thumb have been proposed for selecting this value, with many 

recommendations placing the minimum usable value at around two times the number of 

dimensions in the data unless there are numerous duplicate points in the data, which in this 

case suggests a minimum acceptable cluster size of around 4 or 5 (Sander, Ester, Kriegel, & 

Xu, 1998; Schubert, Sander, Ester, Kriegel, & Xu, 2017). The main downside from using too 

small a value for minPts is that multiple relatively distant clusters will be joined if there are 

lines of points connecting them. Neighbor distance threshold U should be set at a scale that is 

meaningful for the data clustered (Schubert et al., 2017), often using the subjective “elbow 

method,” which looks for the distance at which the plot of distance to kth-nearest-neighbors 

flattens. Nearest-neighbors curves for this dataset are shown in Figure 5.1 
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For this analysis, I consider all distances under 1 kilometer (roughly 15 minutes 

walking for young and middle aged people, per Knoblauch, Pietrucha, & Nitzburg, 1996) to 

be potentially acceptable distances. I test clustering results for a range of distances up to 1 

kilometer, but the network-distance nearest-neighbors plot provides some useful information 

(Figure 5.1). Each curve is built by determining the distance to the kth nearest neighbor of 

each point, arranging by distance from smallest to largest, and converting to a cumulative 

percentage. The height of the kth-neighbor curve at a specific distance is the share of 

locations that have their kth-nearest neighbor within that distance. The single nearest-

 
Figure 5.1 Network-distance kth-neighbor plot for California customer-serving 
businesses. “Elbows” are clearly visible in the curves for k=1, 5, and 10. 
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neighbor curve shows that most business locations are very close to other businesses – 75% 

reach their nearest neighbor within 100 meters, and the 5th and 10th nearest neighbor curves 

show that half of all businesses reach those neighbors within about 160 meters and 300 

meters, respectively. The fifth-nearest neighbor curve appears to “elbow” in the range of 

200-400 meters, which suggests this may be the appropriate value of U to use for a clustering 

with minPts=5, the lowest value considered in the initial search.  

b. Tuning DBSCAN Parameters 

It is useful to explore potential options within a range that makes sense for the data. 

Since the goal is to identify major destinations for non-mandatory activities, we use locations 

at which people pursued these activities as a piece of secondary information to compare the 

clustering results. For business location data, a low value minPoints threshold seems to be 

ideal (especially since a development with 5 stores and restaurants would count as a local 

center). Lower neighbor distance limits make it possible to distinguish between clusters, but 

very low distances capture a smaller share of relevant activity locations, in part due to a 

mismatch between geocoding results (Chapter 3).  

Given a network neighbors list, DBSCAN runs very quickly, so I test parameters over 

a range of U, every 50 meters between 100 and 1000 meters, and a range of minPts spaced 

every 5 between 5 and 100 points, producing a grid of results. Figure 5.2 shows the percent 

of business locations in a cluster for each of these 380 sets of parameters, and Figure 5.3 

shows median cluster size. Previous cluster experiments with Euclidean distance worked well 

with a minPts of 5 and U	of 200 meters. Unsurprisingly, the largest share of businesses in 

clusters occurs when the smallest clusters are permitted (minPts=5) and the threshold for 

neighbor status is at its largest (U=1000 meters), but at relatively low values of minPts, the 
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share of businesses in a cluster is not particularly responsive to changes in e. This suggests 

that testing varied values for e might be the better approach to reach the desired properties 

once a set of potentially usable clusters has been identified. Median cluster size appears to be 

strongly related to the value of the minPts parameter, with higher values of minPts only 

detecting larger clusters. There is a slight tendency towards larger clusters when e is larger 

because nearby clusters are linked, which is not desirable given the goal of identifying small 

separate centers when present. This and the approximate elbow locations for the smaller 

values of minPts suggest that a value of e below 500 meters would be a good choice. 

 
Figure 5.2 Percent of businesses classified using network DBSCAN with 380 sets of 
parameters. Small values of minPts paired with high values of epsilon include most 
relevant businesses in centers but also combine many centers across large areas. 
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Figure 5.3 Median cluster size from network DBSCAN with 380 sets of parameters. 
Clusters tend to be smaller with lower values of minPts, but size has an irregular 
relationship with neighbor distance.  

 

Mapping the clusters produced by a few of these tests indicates that pairing a low e  

with a high minPts (upper left in Figures 5.2 and 5.3) identifies only the largest urban cores. 

Increasing the e while maintaining a high value of minPts (upper right) expands these major 

downtown clusters laterally and adds a few other business areas. Lower values of minPts 

allow for the detection of far more clusters in a much larger share of the state. High e  

parameters paired with the lowest values of minPts (lower right) classify almost all 
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developed parts of the state into clusters and join all nearby clusters so that, for instance, 

most of Los Angeles County is covered by a single cluster.  

Since the goal of this research is to identify areas of densely packed opportunities for 

shopping, dining, entertainment, and socializing, I use classified CHTS activity locations as 

secondary information to aid in selecting a final clustering. For each set of parameters, I 

assign every activity location to the cluster of the nearest business in a cluster as long as the 

distance was no greater than 200 meters. Figure 5.4 compares the various clustering results in 

terms of the share of shopping activities and home locations within a cluster, and the results 

are much the same for entertainment and dining. My goal for this analysis is to maximize the 

inclusion of observed shopping destinations while minimizing the share of home locations in 

clusters, since although some people live downtown, commercial centers should not cover 

areas that are primarily residential. The frontier at which home locations are minimized and 

shopping locations are maximized corresponds to the lowest values of minPts, with lower 

values of e capturing fewer home and shopping locations. The tradeoff between excluding 

home locations and including shopping locations appears to shift with e between about 150 

and 300 meters. Below this range, increasing U greatly increases the number of shopping 

destinations assigned to a center without adding more home locations; above this range small 

improvements in matching shopping destinations come at the expense of a considerable 

increase in the residential areas assigned to a center. These results also suggest that it may be 

worthwhile to test a lower value of minPts with correspondingly small values of e. 
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Figure 5.4 Relative shares of CHTS shopping and residential locations falling in 
clusters of NETS businesses at various sets of parameters. The lowest value of minPts 
forms the frontier plot. 

 

Since small values of minPts seemed to perform best by all my initial tests, I decided 

to run an additional round of clusterings for minPts=4 and 5, with U spaced every 25 meters 

up to 300 meters and every 50 meters up to half a kilometer. As Figure 5.5 shows, the 

clusters with minPts=4 represent only a slight improvement over minPts=5 in terms of match 

rate for shopping destinations but might provide substantially different cluster shapes for the 

same overall match rate. In particular, the minPts=4 clusters may achieve higher overall 

clustering rates without combining as many neighboring clusters. Mapping the results from a 

number of these clusterings indicated that the main tradeoff in cluster form was between the 
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expansion of large clusters at higher values of e, which prevents me from distinguishing 

between different parts of a city, and the appearance of small enclave clusters within and 

overlapping clusters around the major centers at lower values of e, which makes it difficult to 

definitively match activities to a specific cluster.  

 
Figure 5.5 Relative shares of CHTS shopping and residential locations falling in 
clusters of NETS businesses for clusters with minPts set to 4 or 5. 

 

c. Clustering Issues 

In choosing my final clustering, two major cluster form issues hampered my analysis: 

sprawling multi-center clusters were detected when the neighbor distance threshold (e) was 

set too high, and small overlapping clusters cropped up around larger centers when the 
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threshold was set too low. These results reflect reality to some degree and are not wrong per 

se – agglomerations capture areas of generally continuous high commercial density, and the 

separation between small adjacent clusters does indicate a localized decrease in density – but 

they do not form a useful basis for analysis. I explore these results in a pair of maps of central 

LA (Figures 5.6 and 5.7) produced from clusterings with e values that bracket my final 

selection. I represent clusters in these maps using polygons created by combining the 200 

meters Euclidean distance circular buffer around all the within cluster business establishment 

points, which corresponds to the area in which CHTS activity locations could potentially be 

matched to these centers. 

In areas where density is consistently high, even moderate values of e erase the 

distinctions between urban subcenters by linking strings of large clusters together across 

whole regions. In Figure 5.6, a clustering with minPts set to 4 and a neighbor distance 

threshold (e) of 300 meters identifies two very large centers that span most of central Los 

Angeles. In addition, it identifies a single continuous cluster along Ventura Blvd, which links 

the downtown areas of several cities on the southern edge of the San Fernando Valley 

(Suisman, 2014), and it combines multiple distinct shopping areas in Glendale into a roughly 

star-shaped cluster. Since I am interested in studying the effect of locally available 

opportunities on people’s time use, I would prefer to identify centers that a person could 

reasonably walk across rather than allowing “local” to span tens of miles while ignoring 

smaller centers nearby. 
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Figure 5.6 Reasonably large neighbor distances group multiple centers together 
across a large region. Using these clusters as an analysis unit would make it 
impossible to distinguish between activities taking place in Downtown Los Angeles 
(east side of the yellow cluster) from those happening in Beverly Hills (west side). 
Larger neighborhood threshold values produce more extreme results. 

 

Using too-small values of e paired with low minPts can cause other problems in dense 

areas, as these clusterings create intricate patterns of nearly-adjacent clusters separated by 

much smaller distances than the overall accuracy of the CHTS data suggests would be 

appropriate. The map of overlapping clusters around downtown LA in Figure 5.5 
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demonstrates how this effect can occur when distance thresholds are too far below the level 

at which superclusters begin to form. Centers highlighted in red are small (15 or fewer 

business locations) and have buffer boundaries that overlap those of a cluster with at least 50 

business locations. While some of these overlaps are relatively small, some of the small 

clusters appear to be nearly surrounded by areas in which CHTS locations would be joined to 

a larger cluster. This added degree of uncertainty when linking CHTS points to commercial 

centers would introduce unwanted ambiguity into my analysis. Interestingly, this effect 

emerged only when I was using network distance or OPTICS-based classification. 

 
Figure 5.7 Small neighbor distance thresholds identify numerous small centers 
adjacent to and sometimes within larger dense centers. Small clusters that overlap 
much larger ones are shown in red. 

 

One way to measure uncertainty in cluster assignment is to consider the number of 

activities that are within the match distance (200 meters) of business establishments in more 
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than one cluster. Table 5.1 shows the share of CHTS shopping, dining, and entertainment 

activities located within range of a business in a cluster for several sets of cluster parameters 

as well as the total number of clusters detected and the size of the largest cluster. Activity 

match rates in parentheses indicate the share of activity locations within 200 meters of 

business establishments in more than one cluster. Clusterings with minPts=4 detect more 

clusters and match a higher share of business establishments at a given e, but they also 

appear to detect more edge clusters, leading to higher rates of ambiguous matches. Match 

rates for shopping and dining activities are comparably high, but entertainment activities 

match center locations at a much lower rate, largely because the CHTS does not distinguish 

entertainment activities at commercial establishments or public areas from those in private 

residences (e.g., a Super Bowl party could either be described as “Entertainment” or 

“Social/Visit friends and relatives”).  

Increasing e lowers the total number of clusters detected by connecting nearby 

clusters and also expands the largest clusters. When e is set to 250 meters or lower, the 

largest cluster detected is in downtown San Francisco, but at 275 meters or higher, the 

downtown Los Angeles cluster merges with the corridor of development stretching west to 

Santa Monica. These large clusters may be appropriate for analyses that seek to identify all 

areas of high opportunity density in a region, but because I want to be able to compare the 

activities of people in nearby areas, I would prefer to keep them separate. Unfortunately, 

there are no clustering pairs that substantially subdivide the central San Francisco cluster or 

separate the clusters between Santa Monica and Downtown LA into more than four large 

pieces without also producing myriad small clusters.  
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Table 5.1 Activity location and cluster size results for a range of cluster parameters 
with low values of minPts and e. In general, higher values of U correspond to higher 
overall match rates and lower rates of ambiguous matching, but fewer and much larger 
clusters in major downtowns 

minPts  
U 

(m) 

Activities Located in a Business Cluster 
(ambiguous between 2 or more) Total 

Clusters 
Largest Cluster 

(city) Dining Entertainment Shopping 
4 150 78.0% (14.8%) 39.7% (7.9%) 75.0% (13.6%) 9,348 2,889 (SF) 
4 175 79.7% (10.3%) 41.0% (5.3%) 76.7% (10.3%) 8,714 3,397 (SF) 
4 200 81.0% (7.2%) 42.5% (3.8%) 78.1% (7.4%) 8,129 4,028 (SF) 
4 225 82.1% (4.8%) 43.5% (2.3%) 79.4% (5.2%) 7,549 4,382 (SF) 
4 250 82.9% (3.3%) 44.4% (1.5%) 80.7% (3.5%) 7,030 4,996 (SF) 
4 275 83.7% (2.4%) 45.3% (1.0%) 81.3% (2.5%) 6,636 6,514 (LA) 
4 300 84.4% (1.7%) 46.1% (0.7%) 82.1% (1.8%) 6,233 6,660 (LA) 
5 150 73.1% (10.9%) 36.2% (5.8%) 70.4% (10.1%) 7,377 2,846 (SF) 
5 175 75.6% (7.8%) 38.0% (4.1%) 72.8% (8.1%) 6,971 3,201 (SF) 
5 200 77.3% (5.7%) 39.6% (3.2%) 74.8% (6.0%) 6,609 3,547 (SF) 
5 225 78.8% (3.6%) 41.0% (1.7%) 76.4% (4.1%) 6,232 4,263 (SF) 
5 250 80.2% (2.5%) 42.0% (1.0%) 77.7% (2.8%) 5,859 4,935 (SF) 
5 275 81.1% (1.9%) 42.7% (0.6%) 78.6% (1.9%) 5,566 6,354 (LA) 
5 300 82.0% (1.4%) 43.6% (0.5%) 79.6% (1.3%) 5,255 6,577 (LA) 

 

For the remainder of this analysis, I use the network-DBSCAN clustering with 

minPts=4 and e=250 meters (bolded in Table 5.1). As with any model selection problem, this 

choice of clustering is somewhat arbitrary, but \it meets the requirements I set out better than 

any alternative. This result catches large shares of the activities I am interested in and limits 

cluster overlap (both in terms of linking actual CHTS locations and in visual inspection of 

mapped cluster results) while maintaining separations between large clusters in major 

downtowns. Clusterings that use smaller distances to link neighbors match substantially 

lower shares of CHTS locations and have much higher rates of cluster overlap.  
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d. Final Clusters 

This section investigates the general makeup of the commercial centers identified by 

network-DBSCAN with minPts=4 and e=250 meters and mapped results to determine how 

well this method identified different types of centers statewide. Table 5.2 shows the general 

size distribution of commercial centers, as well as the general division of business types in 

clusters of various sizes. While smaller centers are much more numerous, centers of at least 

26 business locations contain 64% of all businesses in a cluster. Retail accounts for roughly 

60% of businesses across all sizes of centers and retail establishments are present in all 

centers containing at least 14 businesses. Accommodation and food service businesses are 

somewhat less common, making up about 1/3 of the businesses across a range of center sizes. 

Arts and entertainment businesses are much less common overall but concentrate in larger 

centers. The median Accommodation/ Food Service and Retail businesses are located in 

centers with 45 and 46 establishments, respectively; in contrast, the median arts and 

entertainment business is located in a center with 58 establishments. Nearly 40% of all 

entertainment establishments are located in centers with over 100 business establishments.  
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Table 5.2 Distribution of business establishments by type and center size. While small 
centers are more numerous, larger ones contain a larger share of all businesses. Arts 
and entertainment businesses are particularly concentrated in large centers. 

  Accommodation / Food Arts / Entertainment Retail 

Center Size Centers Estabs Percent Estabs Percent Estabs Percent 
≤ 5 estabs 2,496 2,686 28.9% 810 8.7% 5,803 62.4% 

6 to 10 1,875 4,774 33.6% 991 7.0% 8,442 59.4% 
11 to 25 1,587 9,303 36.5% 1,545 6.1% 14,668 57.5% 
26 to 50 600 7,411 35.1% 1,136 5.4% 12,596 59.6% 

51 to 100 300 7,251 34.1% 1,262 5.9% 12,734 59.9% 
101 to 500 164 9,084 32.9% 1,705 6.2% 16,799 60.9% 

≥ 501 8 5,309 33.9% 1,996 12.7% 8,377 53.4% 

 

Different centers are made up of different proportions of these business types. This 

variability is particularly pronounced for smaller centers in densely developed areas, which 

are more likely to specialize in specific industries than similar-sized centers in less developed 

areas, which tend to serve a wider range of purposes (Giuliano & Small, 1991; Helsley & 

Sullivan, 1991). A simple classification helps differentiate centers in the maps that follow. 

Retail businesses make up a substantial component of nearly every center (Table 5.2), so I 

emphasize areas with particularly high concentrations of accommodation and food service or 

arts and entertainment businesses. To do this, I identify the upper tercile for percent food and 

percent entertainment weighted by the number of businesses in each center. The upper tercile 

for %food is calculated by sorting the centers in ascending order by %food and computing 

the cumulative sum of the number of establishments in each center; the upper tercile is the 

lowest value of %food that corresponds to a cumulative sum greater than two thirds of the 

total set of business establishments. Roughly two thirds of businesses are in centers with a 

lower %food, and roughly one third are in centers with a higher %food. The same calculation 

is done for %entertainment. 
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One third of clustered business locations are in centers with at least 39.4% food 

service businesses; centers above this concentration are shown in magenta on the maps. One 

third of clustered business locations are in centers with at least 8.3% arts and entertainment 

businesses, and centers with at least this high a concentration are shown in light blue. Centers 

above both thresholds are shown in dark blue, and centers below both thresholds are shown 

in grey. The relatively low cutoff for entertainment-oriented centers flagged many very small 

centers with only one or two relevant businesses, so centers with fewer than two businesses 

in the corresponding class were excluded even if they are over the threshold percentage. The 

maps show the results of this clustering in the San Francisco Bay Area, Greater Los Angeles, 

Santa Barbara, and Sacramento. As in the previous section, these maps represent clusters 

using polygons produced by buffering all clustered business establishment locations by 200 

meters.  

 
Figure 5.8 Commercial centers in the Santa Barbara Area. These centers mainly 
cluster 
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Santa Barbara’s centers (Figure 5.8) mostly stretch along State Street and Hollister 

Avenue (visible on the map as the thinner road south of the highway in the western half of 

the map and north of the highway connecting the two sets of centers in the eastern half). This 

surface street runs down the center of the area and serves as the main street for both Goleta 

and Santa Barbara. The large downtown center has a relatively large concentration of arts 

and entertainment businesses (particularly theaters and music venues) but is below the food 

service cutoff because of the high concentration of stores. Centers along the waterfront 

appear to specialize in food service, as do many of the smaller centers spread throughout 

Goleta. The small center in Isla Vista has a particularly high concentration of food service 

businesses to serve the adjacent college campus. 

Centers for the San Francisco Bay Area and Greater Los Angeles 

In order to identify as many smaller centers as possible, I selected a final clustering 

with several very large “downtown” clusters that would need to be broken up for choice 

modeling or many other applications. This result is acceptable for the activity timing and 

duration analyses presented in the next two chapters, since downtown San Francisco and 

Downtown Los Angeles are fairly well-understood as commercial neighborhoods. However, 

these large clusters are also much bigger than transportation analysis zones, which likely 

makes them an even worse fit as part of a choice set for a destination choice model. Future 

work will explore either hierarchical clustering or varying clustering parameters over space 

in order to make the final clusters more consistent throughout the study area.  
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Figure 5.9 Centers in the San Francisco Bay Area. Downtown San Francisco is by far 
the largest center in the area, and protected open spaces limit development of the 
hilly areas surrounding the bay. 
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Figure 5.10 Centers of the greater Los Angeles area. Note the dense development, and 
regularly spaced food-service subcenters spread throughout the region. 

 

Medium-sized commercial centers in both regions appear to be made up of a mix of 

roughly circular centers (malls and smaller city centers) and longer axial developments 

(mostly called boulevards in Los Angeles and avenues in the Bay Area). Both regions are 
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dotted with much smaller centers, which exploration in person and in Google Street View 

suggested are mostly individual strip malls and small commercial intersections in suburban 

areas. I was not satisfied with the method’s ability to subdivide the large cluster in downtown 

San Francisco, which with nearly every set of parameters expanded into nearby but culturally 

distinct neighborhoods like the Mission and Richmond Districts. Otherwise, development in 

the San Francisco Bay area appears fairly hemmed in by the bay and by protected open 

spaces that cover roughly a third of the region’s land area (Bay Area Open Space Council, 

2017). Apart from the major dense corridor in the north, greater Los Angeles has a 

distribution of small-to-medium-sized centers spread over the developed area; this difference 

in spatial distribution may in part reflect the overall difference in densities between the two 

regions. While San Francisco is one of the densest cities in the US, the surrounding area is 

substantially less densely developed, and the Los Angeles – Long Beach – Anaheim 

metropolitan area is the most densely developed in the country (Wilson et al., 2012). 

The area north and east of downtown Sacramento (Figure 5.11) appears to be a 

microcosm of the results from greater Los Angeles, with a set of linear centers following a 

gridded pattern out from the center along major arterial roads (visible in the faint black lines 

connecting many of the smaller centers). Unlike the other two regions, the areas of highest 

food density appear to be concentrated around the dense downtown cluster rather than spread 

throughout the region. 
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Figure 5.11 Sacramento is gridded like Los Angeles, but centers are much sparser 

 

e. Conclusions 

Given the right set of parameters and accurately identified neighbors, network-

distance DBSCAN produces usable clusters from locations of customer-serving businesses. 

A clustering with minPts=4 and e=250 meters identifies centers of varying shapes and sizes 

throughout California but does not differentiate between sub-regions of the most densely 

developed urban cores. I use this clustering in the analysis for the remaining chapters because 
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it catches almost all activity locations, and because it does not require centers to be 

completely distinct. 

Identifying commercial centers directly from business location data avoids the issue 

of boundaries dividing densely developed areas that is present when census-based spatial 

units are used, but these centers are subject to many of the same measurement uncertainty 

issues that apply to any other method of grouping multiple observations into a single unit. 

The center classifications used in the maps or any other center-level variable cannot describe 

the full range of places within the center and leaves analysis subject to biases caused by the 

ecological fallacy. One case where this is an issue is the identification of opportunity-dense 

zones for various types of activities: a large center with a fairly small overall share  of 

entertainment businesses might well provide more overall opportunities for entertainment 

than a small center with nine businesses, one of which is a small movie theater, but the latter 

would be classified as “high density” for Arts and Entertainment using the criteria I set for 

the maps. Still, some form of spatial aggregation is necessary for many sorts of analysis, 

particularly given the spatial mismatches identified in Chapter 3. 
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6. Exploratory Analysis of Activity Timing  

Time geography generally understands people’s ability to move through space as 

being limited by a set of constraints first outlined by Hägerstrand in 1970 (Hägerstrand, 

1970). According to this model, people are hemmed in by capability constraints imposed by 

the physical limitations of human life (particularly the needs for sleep and food) and the 

modes of transportation available to a person; coupling constraints imposed by the need to be 

in the same place at the same time as other people and material goods to work, shop, eat, and 

socialize; and authority constraints that limit where a person is allowed to be and where they 

are excluded (e.g., you can only go to a store when it’s open and can only drive on roads). 

These constraints define the areas that a person might visit during the day but do not say 

much about where and when they are likely to visit. Golledge’s concept of anchor points 

adds to this model by identifying places that are particularly important, meaningful, and fixed 

in space-time within a person’s life (Golledge & Stimson, 1997). Home, work, and school are 

obvious anchor points, but each person’s preferred destinations for daily activities like 

shopping, exercising, and socializing are anchor points as well. While people are free to 

travel wherever they’d like (subject to Hägerstrand’s constraints), human behavior is not 

randomly scattered within each person’s potential space-time prism. It is difficult to get a 

sense of people’s regular destinations apart from home, work, and school from a single-day 

survey, but it is possible to identify major centers of activity using the methods in Chapter 5 

and to investigate overall patterns of activity scheduling that are tied to personal 

characteristics and daily schedules.  To do this, we first need to understand patterns of time 

use in each derived center. 



 

80 
 

The duration and frequency of various types of out-of-home activities vary 

substantially across the week, as well as by the structure of the household and individual 

characteristics.  Discrete-continuous time-use budgeting models (i.e., models that jointly 

examine the types of activities and duration in each activity during a day) indicate that 

employment, age, income, access to vehicles, and general location within an urban area are 

important predictors of the total amount of time people spend on specific activities (C. R. 

Bhat, 2005; Calastri, Hess, Daly, & Carrasco, 2017). These models rarely consider activity 

timing within the day. In contrast, the work done by Lee, McBride, and Goulias in 

identifying daily activity patterns using latent class analysis and fragmentation / sequence 

analysis methods and tying these schedules to land use and accessibility (Lee et al., 2017; 

McBride, Davis, & Goulias, 2019) have provided insights into the sequential scheduling of 

various activities within the day without directly tying these activities to people’s needs. By 

linking people’s activity choices to the locations and fixed schedules of their anchor points 

and those of other members of their households and limiting destination choices to locations 

with sufficient opportunities, activity-based models acknowledge that activities are not 

evenly distributed in space or time. Activity choices and timings do not necessarily follow 

simple rules that are consistent across time and space, and many forms of spatial and 

temporal heterogeneity are important to understanding people’s activity scheduling.  

Restaurants and bars demonstrate particular schedule variability. The graphs of 

“Popular Times” Google Maps for various stores, restaurants, cafes, and bars show clear 

variations over the course of the week and between ostensibly similar businesses, and this 

variability is also clearly observable in person. For example, restaurants in Isla Vista serve 

people who work or go to school at UCSB around lunch time and local residents in the 
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evening, and appear equally busy at both times of day, whereas many fancier restaurants 

elsewhere are only open for dinner. Santa Barbara’s Funk Zone is busy with wine-tasting on 

weekend afternoons, but bars elsewhere are full most evenings but empty during daytime. 

Some places operate by such specific calendars that an aggregate model based on survey data 

would be highly unlikely to represent them accurately – for instance the Tap Room on Ortega 

St in Downtown Santa Barbara opens early many mornings to provide a viewing venue for 

fans of English soccer matches taking place several time zones away.  

These temporal variations reflect real qualitative differences between the types of 

activities pursued by different people at different places, but these differences are captured 

well by neither the California household travel survey nor NETS business datasets. The 

CHTS distinguishes between “drive through meals” and “eat a meal at restaurant,” and 

between “routine shopping” (for groceries, clothing, and household maintenance) and 

“shopping for major purchases or specialty items,” but provides no further distinctions within 

“Entertainment” and “Social” activities. While these latter two categories presumably do 

reflect different primary purposes and only one inherently requires other people, either could 

take place at a special purpose venue (a music club), a restaurant or bar, a public park, or at 

someone’s house. Compounding the difficulty of classifying activities is uncertainty created 

by using NAICS classifications, which identify only four types of restaurants (United States 

Office of Management and Budget, 2017) and also provide no clear way of distinguishing 

between a music club that serves alcohol and any other bar, or between a bar that serves 

some food and a restaurant (the distinction in that case depends on what “primarily” serving 

either food or alcohol means in the specific state).  
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The issues that arise when trying to classify activities and locations represents a mix 

of vagueness and uncertainty, as defined by Lukasiewicz and Straccia (2008). Vagueness 

refers to descriptive characteristics that exist on a continuum between complete presence and 

absence, which makes classification difficult or fuzzy – getting dinner with friends represents 

both an eating activity and a socializing one, and bars that serve food are somewhere in 

between a bar and a restaurant. Uncertainty refers to potential inaccuracy caused by the 

absence of information necessary to classify something, which is the case when activity and 

place datasets use overly broad or mismatched classifications. The CHTS provides a 

mechanism through which people can address vagueness in activity classification by 

reporting multiple (potentially simultaneous) activities in a specific place, but individuals 

appear to have reported their activities very differently from each other, and only 4.6% of 

CHTS locations outside of work, school, and home have more than one reported activity. 

a. Timing Variation Day-to-Day  

This chapter takes an exploratory approach to investigate heterogeneity of activity 

scheduling and timing within the day for three specific activity types: dining at restaurants, 

entertainment, and shopping. Personal characteristics, pre-existing obligations, and weekly 

plans can affect activity scheduling both by making certain activities more or less likely and 

by influencing how these events are arranged over the course of the day. A well-designed 

spatial choice model would provide a more complete approach to understanding spatial 

choice and timing (particularly the combined effects and interactions of multiple variables), 

and my aim here is to identify key variables that should be included in models in Chapter 7 

as well as choice models in the future. Additionally, the findings presented here provide 

insight into the relative impact of personal characteristics and place attributes on activity 
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scheduling. This chapter focuses on activity scheduling and timing heterogeneity and 

explores their relationships. 

I consider a range of personal, schedule-related, and land use / centers variables for 

this analysis.  Table 6.1 contains the overall counts and relative frequencies of activities by a 

number of different personal characteristics, and Table 6.2 contains the corresponding 

information for variables about centers. Categorical variables used to group different 

activities are as follows: day of the week (and holiday), life-cycle stage, tour type 

(origin/destination and number of intermediate stops), size of the destination center, the mix 

of chain and independent businesses in the destination center, and the relative proportion of 

food service and entertainment (and by extension retail) businesses in the center.  The term 

destination centers is used here to mean centers for which we have CHTS records of people 

use as one of their destinations in their daily travel pattern.   

The CHTS was designed as a 365-day survey in order to get roughly round-the-

calendar representation statewide. I separate federal holidays (plus Christmas Eve, New 

Year’s Eve, and the day after Thanksgiving) from the other days of the week, since closings 

of schools, stores, and offices on these days substantially impact people’s work and nonwork 

activity schedules. The lower representation of Mondays in the results reflects the fact that in 

addition to the four holidays that always fall on a Monday (Martin Luther King Day, 

President’s Day, Memorial Day, and Labor Day), three other date-specific holidays were on 

Mondays in 2012, the year of the survey (Veteran’s Day Observed, Christmas Eve, and New 

Year’s Eve). 

Life cycle stage is a commonly used variable in travel behavior research, which is 

designed to track the combined impact of age, household makeup, and employment. This 
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chapter uses a 12-level classification, slightly simplified from the version used by Goulias 

and Lee (K. Goulias, 2009; Lee & Goulias, 2015). Categories include: 1) All people under 

18; 2) College/University student; 3) Home-duties with no children; 4) Home-duties with 

children; 5) Part time worker (<40 hours per week) with no children; 6) Part time worker 

with children; 7); Full time worker (>=40 hours per week) with no children; 8) Full time 

worker with children; 9) Looking for a job; 10) Disabled; 11) Retired; and 12) All other 

people.  

Tour types were classified based on how a sequence of trips relates to anchor points. 

A tour (also called a trip chain in the literature) is any series of trips starting at one location 

and returning to the same location; trip chaining is the act of sequencing destinations so that 

one tour can provide transportation to multiple activities. Each separate location where one 

stops to participate in one or more activites is called a stop. For this analysis, I identified all 

the reported visits to the anchor points home, work, and school using the spatial coordinates 

and place names people provided; I defined trip chains as all sequences of stops that led from 

one anchor point to another. Home-based tours (trip chains that start and end at home without 

including a stop at either a school or work location) are the most common and presumably 

are made in order to pursue activities at one of their destinations. In contrast, commute trip 

chains (sequences of trips that start at home and end at work/school or vice versa) 

presumably have “getting to work/school” or “returning home” as their primary purpose, and 

other stops are included when it is convenient. For this analysis, I grouped all non-home-

based tours and chains together and subdivided the two categories further by the number of 

intermediate stops included between the start and end anchor points. 
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Center size is initially broken down in the same way it was during the cluster tuning 

steps in Chapter 5. NETS contains information about whether each business is independent 

or part of a larger company or business chain; I break these up into terciles using the same 

frequency-based method used when classifying centers in Chapter 5. The “high chain” 

category contains centers with at least 39% chain businesses; the “mid chain” category 

contains centers with less than 39% but more than 23% chain businesses, and the “low chain” 

category contains centers with less than 23% chain businesses. While there are different 

numbers of centers in each cluster, one third of all businesses are in each of the three 

groupings. I break up the relative shares of food service and entertainment businesses 

similarly, with the class breaks placed at 29% and 39% for food service and at 3.5% and 

8.3% for entertainment. The terciles are calculated separately for the individual measures, so 

the resulting nine cross-groupings do not each contain 1/9th of all the businesses in centers. 

Table 6.1 shows the distribution of activities as a function of the person- and tour-

level variables discussed above, as well as the total number of people in each life cycle stage 

and surveyed on each day of the week. For life-cycle stage and day of the week, the total 

number of people is fixed, so I calculate Per-Person Per-Day (PPPD) activity participation 

rates as the ratio between number of activity occurrences and number of people. For the 

breakdown by tour type, PPPD would not make sense, since people make different numbers 

and types of tours on different days, so I provide percent of relevant activities on those tours. 

Life cycle stage does not appear to have a very strong impact on activity participation. People 

who reported disabilities and did not work participated in substantially fewer activities of all 

three types (and notably have the lowest frequency for entertainment activities). Day of the 

week is strongly related to activity participation: the three activity types I consider are 
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pursued more often from Friday-Sunday than during the rest of the week, and all three are 

more common on Saturdays than on any other day. Holidays have lower rates than the 

weekend days, but this probably depends a lot on the specific holiday. Multi-purpose home-

based tours contain a much larger share of shopping activities, whereas single-purpose home-

based tours are somewhat more likely to be made for the purpose of dining and much more 

likely to be made to an entertainment destination (dinner or a movie?). Trip chains that have 

work or school as a start or end point contain a higher share of dining and entertainment 

activities than home-based tours do, possibly suggesting people do routine household 

replenishment shopping on days when they don’t have to commute.  
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Table 6.1 Relative frequencies of dining, entertainment, and shopping activities across 
different groups of people in CHTS.   

  Dining Entertainment Shopping  
Grouping People Events PPPD Events PPPD Events PPPD 

Lif
e -

Cy
cle

 S
ta

ge
 

Child 22,312 3,026 0.14 1,658 0.07 5,005 0.22 

College Student 7,797 1,505 0.19 537 0.07 2,394 0.31 

Home-duties no kids 2,040 345 0.17 135 0.07 981 0.48 

Home-duties with kids 3,307 586 0.18 284 0.09 1,731 0.52 

Part time worker no kids 9,667 2,161 0.22 753 0.08 4,265 0.44 

Part time worker with kids 4,569 878 0.19 351 0.08 2,016 0.44 

Full time worker no kids 20,844 4,596 0.22 1,415 0.07 7,546 0.36 

Full time worker with kids 12,551 2,577 0.21 972 0.08 4,022 0.32 

Looking for Work 3,772 566 0.15 249 0.07 1,519 0.40 

Disabled 3,808 464 0.12 156 0.04 1,394 0.37 

Retired 16,651 3,446 0.21 1,295 0.08 7,202 0.43 

All other 1,795 343 0.19 126 0.07 716 0.40 

Da
y 

of
 th

e 
W

ee
k 

Monday 12,585 1,626 0.13 541 0.04 3,750 0.30 

Tuesday 15,224 2,537 0.17 835 0.05 5,093 0.33 

Wednesday 15,113 2,602 0.17 781 0.05 4,955 0.33 

Thursday 15,777 2,756 0.17 916 0.06 4,988 0.32 

Friday 15,027 3,153 0.21 1,050 0.07 5,126 0.34 

Saturday 15,385 3,779 0.25 1,972 0.13 7,343 0.48 

Sunday 15,975 3,383 0.21 1,487 0.09 6,202 0.39 

Holiday 4,027 657 0.16 349 0.09 1,334 0.33 

  Tours Events % Events % Events % 

To
ur

 / 
Tr

ip
 C

ha
in

 T
yp

e  

Home-based Tour (1 stop) 52,022 5,224 30.6 2,650 15.5 9,194 53.9 

Home-based Tour (2 stops) 15,238 3,722 27.5 1,213 8.9 8,619 63.6 

Home-based Tour (3 stops) 7,523 2,441 26.5 788 8.6 5,982 64.9 

Home-based Tour (4+ stops) 8,490 3,796 25.7 1,127 7.6 9,852 66.7 

Other Tour (1 stop) 14,827 1,775 46.5 438 11.5 1,603 42.0 

Other Tour (2 stops) 5,828 759 36.9 254 12.3 1,046 50.8 

Other Tour (3 stops) 2,696 739 40.7 329 18.1 747 41.2 

Other Tour (4+ stops) 2,913 1,855 44.4 660 15.8 1,662 39.8 

 

Table 6.2 shows the distribution of activities as a function of the center characteristics 

discussed above. As shown in Chapter 5, larger centers have a notably higher share of 

entertainment businesses, and they appear to attract a much greater share of entertainment 
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and dining activities. Somewhat smaller centers appear somewhat more likely to be retail-

focused. Centers with high proportions of chain businesses (like malls) have much higher 

shares of shopping activities, whereas centers with a larger share of independent businesses 

tend to have much larger shares of dining and entertainment activities. This effect is nearly as 

substantial as the difference between the high-entertainment / high-food category and the 

other centers. Given that high, mid, and low-chain centers each have the same total number 

of businesses, the larger number of centers in the Low Chain category indicate that these 

centers are typically smaller than the centers in the High Chain and particularly Mid Chain 

categories. Unsurprisingly, the relative mix of businesses in a center is strongly related to the 

mix of activities that people pursue in that center. The mix of activities outside of centers is 

strongly influenced by the uncertainty in the Entertainment activity category, discussed 

above. 
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Table 6.2 Relative frequencies of destinations for dining, entertainment, and shopping 
activities across different center types.  

   Dining Entertainment Shopping 
 Grouping Centers Events % Events % Events % 

Ce
nt

er
 S

ize
 

5 or fewer 2,496 961 31.7% 283 9.3% 1,786 58.9% 

6 to 10 1,875 1,604 29.2% 376 6.9% 3,506 63.9% 

11 to 25 1,587 3,394 30.4% 489 4.4% 7,264 65.2% 

26 to 50 600 2,540 31.6% 413 5.1% 5,080 63.2% 

51 to 100 300 2,986 33.7% 631 7.1% 5,251 59.2% 

101 to 500 164 3,959 35.1% 998 8.8% 6,332 56.1% 

501 or more 8 1,630 38.7% 650 15.4% 1,928 45.8% 

Ch
ai

ns
 High Chain 2,139 6,555 27.8% 1,135 4.8% 15,908 67.4% 

Mid Chain 1,669 5,417 34.5% 1,142 7.3% 9,145 58.2% 

Low Chain 3,222 5,102 40.0% 1,563 12.3% 6,094 47.8% 

Bu
sin

es
s T

yp
e 

M
ix

 

High Ent & High Food 576 2,387 41.3% 761 13.2% 2,628 45.5% 

High Ent & Mid Food 320 1,482 35.6% 408 9.8% 2,274 54.6% 

High Ent & Low Food 1,035 1,406 32.8% 510 11.9% 2,377 55.4% 

Mid Ent & High Food 314 1,925 36.5% 424 8.1% 2,918 55.4% 

Mid Ent & Mid Food 260 2,411 34.9% 538 7.8% 3,956 57.3% 

Mid Ent & Low Food 218 1,026 27.1% 258 6.8% 2,507 66.1% 

Low Ent & High Food 1,761 2,984 36.2% 378 4.6% 4,874 59.2% 

Low Ent & Mid Food 577 1,643 26.4% 245 3.9% 4,334 69.7% 

Low Ent & Low Food 1,969 1,810 24.4% 318 4.3% 5,279 71.3% 

 Destinations not in Centers 3,419 22.6% 4,091 27.0% 7,644 50.4% 

 

b. Timing Variation Within the Day 

In order to investigate the heterogeneity of activity timing over the course of the day, 

I produced activity participation and flux (activity starts – ends) sequences for groupings of 

activities shown in the tables above. These curves were generated with a temporal resolution 

of 5 minutes for the tables and 15 minutes for visual clarity in the charts; very few reported 

events in the activity diaries are recorded as having started and ended on minutes not 

divisible by 5 (and particularly quarter-hours), which suggests increased precision may be 

inappropriate.  
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To calculate activity participation and flux, I created a comprehensive list of activities 

in a certain category (such as shopping or dining), and note their start and end times, as well 

as the grouping characteristics listed above. I classified each activity by the life-cycle stage, 

weekday, tour type, or center type it falls into, and converted the start and end times to the 

temporal resolution for the analysis. For this paper, start times not on an even quarter hour 

are rounded down to the nearest time evenly divisible by 5 minutes, and uneven end times are 

rounded up. This ensures that every activity will be counted for at least one time period. 

Two statistics are used for this analysis: flux (the difference between activity starts 

and stops in that grouping category at a given time point) and percent active (the share of 

ongoing activities of a given type normalized by the total number of activities of that type 

that take place in that grouping category over the course of the day). The percent active of 

relevant activities (subscripted ,) happening in group V at time O can be calculated either as 

the cumulative sum of the activity flux for group V at time O or as as follows: first identify 

how many total activities of the type take place at any time during the day in t; then for each 

time point, identify how many of those activities started on or before that time and end after 

it. The ratio between these quantities is the share of relevant activities active at a given time 

point in a given center type. 

.K<VK+O	GVO,WKXY = 100 ×	
∑ 8#"X[\]Y(#,X)×^XY#_`(#,Y):5

∑ #"X[\]Y(#,X)5
        Equation.6.1 

,+VNRDO(,, V) = 	 a
1	|	N;VLO,;+# ∈ VK+OK<X
0	|	N;VLO,;+# ∉ VK+OK<X

 

LVO,WK(,, O) = 	 a
1	|	DOL<O# ≥ O	 ∩ K+E# < O
0	|	DOL<O# < O	 ∪ K+E# ≥ O 
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To get a sense of the measurement accuracy of both the flux and percent present 

calculations, I use a bootstrapping process to generate 100 new sets of activities by 

resampling from the original set of activities in the CHTS. The calculation for flux and 

percent active was then performed for every grouping variable and time point for each of 

these bootstrap activity schedules. 

Variables affecting activity timing during the day 

While the variability of activity participation over the day can best be seen 

graphically, I first wanted a measure of the overall impact of the various grouping variables 

used on daily schedules. To determine how different each group’s schedule was from all the 

others, I calculated the correlation between the sequence of flux values produced by a 

specific grouping (e.g., Centers with a high proportion of chain businesses) and the sequence 

produced by all activities that took place outside that grouping (in that case, all activities in 

centers with a medium or low proportion of chain businesses as well as all activities that took 

place outside of centers). Since very few people participate in these activities at night, I 

extracted only values between 8 AM and 11 PM, spaced every 5 minutes for a total of 181 

time points.  

Tables 6.3 and 6.4 show the middle 90 bootstrap runs for each estimated correlation. 

Higher correlation coefficients indicate that a group’s schedule is very similar to the overall 

schedule of activities, and lower coefficients indicate that a variable is substantially different 

from the “normal” schedule. The spreads in values produced by the bootstrapping indicate 

that a relationship is particularly uncertain.  
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Table 6.3 shows the correlation ranges for the three activities from schedules cross-

classified by life-cycle stage, day of the week, and tour type.   For example, the within group 

activity flux correlation of children for dining is between 0.710 and 0.796 (right?).     

People in different life cycle stages have much more varied schedules than do people 

surveyed on different days of the week. Parents with young children have somewhat different 

schedules from people without children, making them slightly farther from the overall typical 

schedules across all three activity types, but the difference between people in each job 

classification with kids and those without kids is smaller than the differences between job 

hours. While Table 6.1 showed that people who do not work for pay engage in many of the 

same activities as people who work outside the home, the two groups appear to do those 

activities on very different schedules. Full-time workers, particularly those without kids, have 

the most “normal” dining schedules (the bootstrap correlation interval is tighter than for other 

groups), possibly because regular work schedules are somewhat structured around typical 

meal times. Different days of the week appear to have their own schedules, but somewhat 

surprisingly, none of the days stands out as particularly different from “normal,” although 

holidays are unique. While different tour types all keep meal times in roughly the same place, 

retail and entertainment timings vary substantially, particularly for activities attached to 

commute trips. 
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Table 6.3 Activity Flux correlations for person-level and tour-level variables. Cells show 
the bootstrapped middle-90% ranges for correlation between the activity flux schedule 
produced for each group and that produced from all activities not in that group (8AM-
11PM only). 

 
 

Grouping Dining Entertainment Shopping 

L
if

e-
C

yc
le

 S
ta

ge
 

Child 0.710 - 0.796 0.570 - 0.692 0.664 - 0.752 
College Student 0.508 - 0.691 0.290 - 0.492 0.437 - 0.581 
Home-duties no kids 0.326 - 0.555 0.204 - 0.434 0.392 - 0.571 
Home-duties with kids 0.354 - 0.529 0.265 - 0.442 0.583 - 0.699 
Part time worker no kids 0.680 - 0.795 0.452 - 0.616 0.489 - 0.631 
Part time worker with kids 0.562 - 0.705 0.263 - 0.461 0.378 - 0.531 
Full time worker no kids 0.774 - 0.830 0.541 - 0.682 0.604 - 0.722 
Full time worker with kids 0.731 - 0.823 0.521 - 0.652 0.581 - 0.685 
Looking for Work 0.321 - 0.488 0.239 - 0.458 0.425 - 0.567 
Disabled 0.264 - 0.479 0.228 - 0.448 0.351 - 0.507 
Retired 0.720 - 0.805 0.569 - 0.701 0.608 - 0.700 
All other 0.313 - 0.518 0.181 - 0.381 0.217 - 0.390 

W
ee

k
d

ay
 

Monday 0.587 - 0.722 0.348 - 0.493 0.466 - 0.579 
Tuesday 0.654 - 0.736 0.372 - 0.529 0.470 - 0.577 
Wednesday 0.722 - 0.799 0.423 - 0.554 0.414 - 0.580 
Thursday 0.661 - 0.755 0.298 - 0.465 0.513 - 0.629 
Friday 0.681 - 0.771 0.433 - 0.586 0.561 - 0.680 
Saturday 0.548 - 0.668 0.573 - 0.690 0.642 - 0.748 
Sunday 0.637 - 0.733 0.441 - 0.570 0.629 - 0.723 
Holiday 0.161 - 0.339 0.301 - 0.482 0.303 - 0.453 

T
ou

r 
/ T

ri
p

 C
h

ai
n

 T
yp

e  Home-based Tour (1 stop) 0.629 - 0.700 0.601 - 0.712 0.660 - 0.736 
Home-based Tour (2 stops) 0.639 - 0.746 0.520 - 0.628 0.652 - 0.755 
Home-based Tour (3 stops) 0.592 - 0.702 0.367 - 0.531 0.498 - 0.628 
Home-based Tour (4+ stops) 0.605 - 0.704 0.345 - 0.489 0.551 - 0.669 
Other Tour/Chain (1 stop) 0.550 - 0.636 0.076 - 0.279 0.185 - 0.355 
Other Tour/Chain (2 stops) 0.482 - 0.606 -0.034 - 0.178 0.064 - 0.258 
Other Tour/Chain (3 stops) 0.425 - 0.579 0.322 - 0.474 0.026 - 0.216 
Other Tour/Chain (4+ stops) 0.520 - 0.660 0.250 - 0.415 0.192 - 0.389 
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Activity timing varies nearly as much based on opportunities available in an area as it 

does from person to person and generally more than it does on different days of the week. 

The timing of entertainment activities is the most variable. Business type mix appears to have 

a greater impact on dining and shopping than center size does. Surprisingly, while the mix of 

independent and chain businesses in a center has a profound impact on the relative mix of 

activities people pursue there, center size and business type mix are much more strongly 

related to activity timing.  

Table 6.4 Center Types and Timing variability 
 

  Grouping Dining Entertainment Shopping 

C
en

te
r 

S
iz

e 

5 or fewer 0.469 - 0.610 0.263 - 0.432 0.358 - 0.491 
6 to 10 0.554 - 0.671 0.322 - 0.482 0.388 - 0.526 
11 to 25 0.653 - 0.765 0.121 - 0.342 0.572 - 0.684 

26 to 50 0.667 - 0.776 0.277 - 0.492 0.501 - 0.627 

51 to 100 0.599 - 0.704 0.188 - 0.385 0.493 - 0.613 
101 to 500 0.710 - 0.801 0.321 - 0.522 0.500 - 0.633 
501 or more 0.486 - 0.641 0.387 - 0.531 0.267 - 0.434 

C
h

ai
n

s High chain 0.738 - 0.803 0.364 - 0.521 0.607 - 0.721 
Mid chain 0.665 - 0.776 0.363 - 0.518 0.536 - 0.654 
Low chain 0.771 - 0.838 0.424 - 0.564 0.457 - 0.600 

B
u

si
n

es
s 

T
yp

e 
M

ix
 

High Ent & High Food 0.669 - 0.762 0.360 - 0.533 0.369 - 0.507 
High Ent & Mid Food 0.503 - 0.669 0.283 - 0.471 0.260 - 0.430 
High Ent & Low Food 0.576 - 0.678 0.335 - 0.508 0.370 - 0.516 
Mid Ent & High Food 0.582 - 0.696 0.159 - 0.358 0.339 - 0.472 
Mid Ent & Mid Food 0.569 - 0.676 0.300 - 0.490 0.369 - 0.521 
Mid Ent & Low Food 0.482 - 0.624 0.074 - 0.245 0.356 - 0.525 
Low Ent & High Food 0.655 - 0.753 0.216 - 0.442 0.492 - 0.622 
Low Ent & Mid Food 0.518 - 0.649 0.155 - 0.419 0.492 - 0.618 
Low Ent & Low Food 0.556 - 0.678 0.153 - 0.319 0.541 - 0.673 

 Destinations not in Centers 0.719 - 0.790 0.561 - 0.657 0.684 - 0.776 
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Business Center Classification and Activity Scheduling Results 

For visualization, it can be helpful to group similar schedules together. It is possible 

to extract groups of schedules through clustering either people’s activities at different times 

using latent class analysis (using each person’s schedule as an observation and each time 

period as a variable, with categorical activity identifiers in each cell), as done by Lee et al 

(2017). Transposing that dataset to use different sequences grouped as above (with activity 

counts or fluxes in the cells) for factor analysis or latent profile analysis would be another 

approach. For a previous version of this chapter, I clustered centers based on size and the 

relative share of retail activities, dividing the centers groups of large and small centers, and 

then splitting the smaller ones based on the relative density of retail businesses. The 

following figures show schedules for three activity types produced from three groups: 1) 

activities taking place in centers of at least 501 business establishments (red); 2) activities 

taking place in all other centers (green); and 3) activities taking place outside of centers 

(blue). These plots indicate subtle but significant differences in activity scheduling between 

areas with different densities of opportunities; the most consistent pattern is that major 

downtowns appear to operate on a clock that is shifted about an hour later. 

For Figures 6.1-4, the observed pattern is shown as solid line, and the results of 100 

bootstrap runs of schedule regeneration are shown in semitransparent lines to provide a sense 

of the uncertainty of these measures. The vertical axis in these plots shows what share of 

relevant activities that take place in a particular type of center during the entire day are 

ongoing at a given time, as shown in Equation 6.1, and the slope is a linear function of the 

flux. If one curve is consistently higher than another, the activities it contains must last 

longer, on average, since they get counted at multiple time points. When differences are 
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reported as significant in the text, but a specific number of runs is not provided, assume the 

comparison held in at least 95 of the runs (equivalent to a p<0.05), unless it is clear that none 

of the paths overlap, in which it is safe to assume that the comparison is significant at a level 

equivalent to p<0.01. 

 
Figure 6.1 Timing of Shopping Activities in large centers, other centers, and non-
centers. Dark curves show results from original sample; fainter lines are from 
bootstrapped samples. 

 

People go shopping at roughly the same times of day everywhere, but the gap 

between activity participation rates in the two center types shown in Figure 6.1 suggests that 

there is real variation in the duration of these activities from place to place. Non-center 

shopping destinations tend to get busy between 9 and 10 AM and maintain a consistent level 

of business throughout the day. Smaller centers receive shopping activities at roughly the 
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same time as non-centers, but individual activities tend to be shorter. People start visiting 

stores in large downtown areas in the late morning and continue to shop into the evening in 

larger numbers in these centers than elsewhere. 

Retail opportunities in low-density areas may correspond to visits to small corner 

stores in residential neighborhoods or big box stores that take up enough space to have few 

neighbors within 200 meters of their geocoded location, leading the clustering method to 

identify them as noise points. The three curves have substantially different variances, as 

implied by range of bootstrap curves shown in the figures. Only a small share of shopping 

activities took place in the largest centers, so this curve has the widest variance; other centers 

have the least variance. It is also worth noting that the shopping trips used in this analysis are 

drawn from two different activity purposes listed in CHTS, which distinguishes between 

shopping for a major purchase and everyday/routine shopping. These activities differ 

somewhat in average duration, but their spatial distribution is relatively even between 

different center types. 
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Figure 6.2 Timing of Dining Activities in major centers, smaller centers, and non-
center areas. Dark curves show results from original sample; fainter lines are from 
bootstrapped samples. 

  

As expected, dining activities are most common around lunch and dinner times across 

all business center types as well as less dense areas, but Figure 6.2 shows some differences 

between location types. Early morning and midday dining trips make up a larger share of 

such activities in non-center areas than in centers. Dinner is the main meal for which people 

go to both center types shown here, unlike non-center areas, which draw slightly more people 

at lunch. The patterns for major centers and smaller centers are generally similar until 

midafternoon, although lunch appears to start about 30 minutes later in large centers. Dinner 

starts at similar times in all three types of places, but the dinner period lasts about 45-60 

minutes longer in large centers.  
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The timing of dinner activities is shown in more detail in Figure 6.3. Both lower-

density categories reach their maximum concentration of diners between 6:15 and 6:30 PM, 

but large centers do not until after 7:00 PM. In addition, the number of people getting dinner 

in major centers begins to decline roughly an hour later than it does in the smaller centers, an 

effect that is borne out by the bootstrapping: major centers are significantly higher than both 

other center types for most times from 7:15-11:15, and at almost all time points after 8 PM. 

In addition to starting later, diners in major centers also spend slightly longer at meals 

starting between 17:00 and 22:00 (77.7 minutes, on average) than in smaller centers (71.2 

minutes), or non-centers (66.5 minutes). Interestingly, despite the later starts and somewhat 

longer meals, 13.7% (77/561) of people who get a meal at any time after 16:00 in major 

centers list an entertainment activity after dinner, whereas the rate is 8.8% (475/5391) for 

smaller centers. This potential for activity pairing may represent a substantial pull to major 

downtowns, which present a wider range of entertainment opportunities. 
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Figure 6.3 Timing of PM Dining activities. Dark curves show results from original 
sample; fainter lines are from bootstrapped samples. 
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Figure 6.4 Timing of Entertainment Activities. Dark curves show results from 
original sample; fainter lines are from bootstrapped samples.  

 

Figure 6.4 shows entertainment activities (e.g., movies, watching sports, listening to 

live music). This is one of the less common activities in the sample, which results in a 

somewhat noisier plot than the other activities. Entertainment is primarily an afternoon and 

evening activity in the centers, but the mix of afternoon and evening activities may differ be 

somewhat from place to place. Entertainment activities last similar lengths (about 2.5 hours, 

on average) in both center types. Interestingly, activities listed as “entertainment” outside of 

centers appear to be qualitatively very different in that a significant number of these activities 

last overnight. 
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c. Conclusions 

Spatial variation calculated using commercial centers has a strong impact on activity 

scheduling and contributes to timing heterogeneity roughly as much as life cycle stage and 

day of the week. Day of the week and the mix of chain and independent businesses in a 

center appear to have a stronger impact on the overall rate of participation in various 

activities than on the timing of those activities, whereas life cycle stage, center size, and the 

mix of businesses in a center may have a relatively large impact on timing. This analysis of 

activity timing also suggests that the activity types listed in the CHTS are too narrow to 

adequately describe leisure activities.  
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7. Spatial Analysis of Activity Duration and Travel Time 

This dissertation focuses on the development and application of spatial clustering 

methods in order to identify areas that provide lots of opportunities for people to shop, eat 

food, and be entertained. Given this focus, it is important to consider other avenues through 

which the spatial relationships between activity locations and attributes can be understood. 

The duration of activities people pursue in places and the travel time people are willing to 

accept in order to reach them are two attributes of activities that depend on the opportunities, 

context, and transportation infrastructure of the places in which people do them.  

Broad categories like “shopping” and “dining” provide limited insight into what an 

activity entails, and duration can be a useful additional attribute to consider, since it makes it 

possible to distinguish between quick fast food meal and a longer sit-down meal with family 

at a restaurant, for example. Models for activity duration are also an important component of 

activity-based travel modeling systems because knowing how long someone is likely to 

spend at a place is vital to understanding how different destinations are linked through trip 

chaining. While the duration of a specific activity depends most on the details of what the 

person needs to accomplish (the duration of a trip to a grocery store varies greatly depending 

on how much needs to be bought, but time spent at a movie theater is typically right around 

two hours), the duration of individual shopping activities has been shown to relate to urban 

geography and the temporal constraints imposed by the rest of the traveler’s schedule, 

particularly from other destinations on the same tour (C. R. Bhat, 1996; Schwanen, 2004). 

Travel time is strongly related to activity duration and frequency, but investigations of this 

relationship have focused mainly on the public health impacts of limited access to grocery 

stores close to home (Cannuscio et al., 2013; X. Chen & Clark, 2016; Grebitus, Lusk, & 
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Nayga, 2013) or the ability of unique and “vivid” destinations to attract people from much 

farther away than would be expected for ostensibly similar activities (Alter & Balcetis, 2011; 

Darley & Lim, 1999). 

I anticipate finding spatial dependence in the activity duration and corresponding 

travel times from a number of causes. Nearby activity locations might capture different 

people engaging in very similar activities at the same specific business; somewhat more 

widely-spaced activities may reflect the mix of features and specialties at the level of a small 

center or a section of a larger one; activities spaced over wider areas (such as between nearby 

centers) may reflect local transportation infrastructure and conditions.  

This chapter aims to investigate the spatial dependency of activity duration and travel 

time both before and after controlling for other variables that likely affect them using simple 

linear models, multi-level models, and spatially autoregressive models. Greater Los Angeles 

is used as the study area in order to simplify the calculation of spatial statistics. I am 

particularly interested in differentiating between the spatial dependency of these variables 

within a center and the relationship between nearby centers. Overall, I find that there is mild 

but significant spatial autocorrelation in duration and (to a lesser degree) travel time between 

nearby activity locations, but it is difficult to measure the relationships between nearby 

centers because of the widely varying activity densities in these centers. Using simple linear 

models to account for known information about the people who perform these activities, and 

other information about the tours they take place on decreases the overall degree of spatial 

autocorrelation somewhat, but multilevel models (using center membership as the grouping 

variable) and spatially-lagged models have a considerably stronger impact. 
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a. Data Preparation 

For this analysis, I investigate 6,756 activity and travel durations for shopping 

(3,940), dining (2,236), and entertainment (580) locations in greater Los Angeles drawn from 

the California Household Travel Survey (CHTS). These activities represent time 

expenditures of 5,717 distinct persons (belonging to 4,713 households) that visited one or 

more of 1,016 centers in Greater Los Angeles. To extract activity durations and travel times, 

I first identified all tours and trip chains between home, work, and school locations in the 

dataset, as discussed in Chapter 6. Because there are strong relationships between activities 

on the same tour, I decided to avoid repeating observations in the models by selecting the 

single longest-duration activity on a tour as the “primary” purpose and calculating the total 

duration spent at other destinations on the same tour for use as an explanatory variable in the 

model. Total travel time was calculated by adding the durations of all the trips on the tour 

from the departure from an anchor point until the return to another (or the same) anchor 

point. To identify the primary mode type used on the tour, I first aggregated the two dozen 

options that CHTS provided into seven general categories: bike, walking, bus, personal 

vehicle (car / motorcycle), rail, other mass transit (mostly shuttles, paratransit, and taxis), and 

other modes. While people in the Los Angeles area utilize a wider range of modes when 

travelling for other purposes, these trips were overwhelmingly made by personal vehicle 

(85.6%), with walking (9.7%) making up the largest share of the rest.  
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Figure 7.1 Activity locations (dark red) and centers used in this analysis. The study 
area covers the Los Angeles basin and some of the surrounding areas. 

 

In order to investigate higher-level spatial relationships in activity duration and travel 

time, activity locations were attached to the commercial centers identified in Chapter 5. 

Many smaller centers do not contain any activity locations from the survey, as shown in 

Figure 7.1, which provides a map of activity and center locations. Table 7.1 shows the 

number of activities recorded in centers of various sizes. Unsurprisingly, larger centers 

generally had a much larger number of activities, and a relatively small share of the smallest 

centers contained any activity locations at all. This supports the use of the aggregative 
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approach to center classification used in Chapter 6, but it makes center-level analysis that 

relies on specific locations problematic, since center-level residuals and means cannot be 

reliably computed from centers with very few activity locations. 

Table 7.1 Number of activity locations recorded in centers of different sizes. Most 

centers with at least 11 business establishments have at least one activity, and almost all 

centers of over 50 have at least give activities recorded.  

Center Size Centers Any Activity 
At least 5 

Activities 

% of All 

Businesses 

% of All 

Activities 

5 or fewer 558 105 8 5.1% 3.0% 

6 to 10 574 237 35 9.0% 8.3% 

11 to 25 485 334 94 16.1% 17.1% 

26 to 50 191 174 87 13.9% 15.1% 

51 to 100 102 101 86 14.9% 18.5% 

101 to 500 59 59 57 20.2% 20.7% 

501 or more 6 6 6 20.7% 17.3% 

 

Durations vary considerably across the three activities, as shown in Figure 7.2: 

shopping has a mean duration of 45.7 minutes, dining takes 67.8 minutes on average, and 

entertainment activities average 179 minutes. Entertainment activities are typically the 

longest and are also the most varied. The three activity categories are much more similar than 

activity durations, but entertainment activities still draw generally longer trips, possibly 

because these locations are rarer. Many of the activities come from multi-destination tours: 

41.8% represent the only stop, and 25.1% have exactly one other stop. Of the tours with any 

time spent at other locations, the average is 50.1 minutes. 
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Figure 7.2 Distribution of durations and travel times by activity type. 

 

b. Methods 

Moran’s I Correlogram 

Moran’s I is a commonly used measure for identifying spatial autocorrelation that 

identifies the degree of spatial autocorrelation present in a dataset using in generally the same 

terms as Pearson’s correlation coefficient (Anselin, 2003; Bivand, Pebesma, & Gómez-

Rubio, 2013; Cliff & Ord, 1981; Moran, 1950). Unlike multivariate correlation methods, 

which use paired values of different variables to determine whether high/low values of one 

variable align with high/low values of the other, Moran’s I compares multiple observations of 

the same variable measured in different places, with “neighboring” observations paired for 

comparison (Equation 7.1). In the equation, N is the total number of points, and W is the sum 

of all values in the weight matrix; h#Q is the value of the spatial weights matrix for points , 
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and -. Significance tests can be performed on Moran’s I by converting its value to a z-score 

and testing it against the normal distribution (steps for calculating the variance of Moran’s I 

can be found in Cliff & Ord, 1981). 

i = j
k

∑ ∑ l59(m5nm̅)8m9nm̅:95

∑ (m5nm̅)p5
 Equation 7.1 

The results of this calculation are controlled using the spatial weights matrix, which 

has one row and one column per observation and contains zeros for non-neighboring point 

pairs and positive values for point pairs that are considered neighbors. The values in the non-

zero cells are generally set either to a function of distance or a single consistent value (if 

neighbor status is considered a binary value). The choice of weights matrix strongly 

influences the result and should be chosen to reflect the expected underlying structure of the 

correlation. By adjusting the spatial weights matrix to connect a continuously expanding 

range of points, it can be used to produce a correlogram, a plot that shows the overall spatial 

autocorrelation of observations at different distance ranges. 

Spatially Autoregressive Models using Lagged Dependent Variables 

In this section I describe various forms of regression models used here to explain the 

variation of duration or travel time to a center as a function of characteristics of the person, 

location visited, and tour-level travel behavior, as well as to account for spatial dependency. 

Each model form represents a different data generating process. These models are often 

compared against a baseline simple linear regression model (Equation 7.2) that does not 

address spatial dependency between the observed value of the dependent variable (Y) at one 

location and the values of the same variable elsewhere. The models presented here contain 

spatial explanatory variables (X) of the location where each activity episodes happens.  
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Y=X�+ϵ; ϵ∼N(0,�2)  Equation 7.2 

The random error term is assumed to be homoscedastic with mean zero. Y is a vector 

of 6,756 dependent variable values, X is a matrix with 6,756 rows and one column for each 

explanatory variable and an additional column of ones. The vector b contains one regression 

coefficient for each column of X, including the additional that corresponds to the intercept, 

and e is the random error term also a vector of 6,756 values.   

The spatial lag model (SLM) is a linear regression model that treats the Y values for 

each unit of analysis (in this case each distinct activity episode) as a function of the Y values 

for activity episodes in the neighborhood (Equation 7.3). The symbols used here are the same 

as Equation 7.2 with the addition of W, which is a spatial weights matrix (like the one in 

Equation 7.1) that identifies the spatial neighborhood for each observed Y, and the spatial 

correlation parameter r. This model implies that the duration of an episode at a center is a 

function of the duration of other episodes in the same center or other close by centers. This 

form of spatial dependency may be due to the existence of places that are designed 

specifically for short activities (e.g., fast food places at lunch time) or longer ones (e.g., 

concert halls, movie theaters).  In the models for travel time, this form of spatial dependency 

may address locations where people are likely to experience long travel times due to 

congestion. The random error term is assumed to be independent between observations, as in 

Equation 7.2.   

Y=X�+�WY+ϵ; ϵ∼N(0,�2)   Equation 7.3 

The spatial error model provides an alternative to SLM. In spatial error models, the 

dependent variable is not directly dependent on other values in the neighborhood, but the 

random error term (u) has a spatially correlated structure, shown in Equation 7.4. In this 
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equation, the spatial weights matrix W is moved from the main equation into the equation for 

the error term and is multiplied by the spatial correlation parameter l. This implies that 

spatial dependency is due to unobserved factors not included in the explanatory variables of 

the regression.     

Y=X�+u;    u=�Wu+ϵ; ϵ∼N(0,�2)  Equation 7.4 

Another variant of spatial dependency model includes both a spatial lag for the 

dependent variable and a spatial lag for the random error term (Equation 7.5), which 

combines components from Equations 7.3. and 7.4.  

Y=Xβ+ρWY+u; u=λWu+ϵ; ϵ∼N(0,σ2)  Equation 7.5 

If we think spatial dependency is due to spatial similarity among the explanatory 

variables, a model with spatial lags of the X variables is another option (Equation 7.6). The 

symbols used here are the same as Equation 7.2 with the addition of W, which is the matric 

of the spatial neighborhood for each observed X and the spatial correlation parameter g. 

Y=X�+�WX+ϵ; ϵ∼N(0,�2)     Equation 7.6 

Finally, a model that encompasses all of the forms of spatial dependency included in 

the above models is shown in Equation 7.7. This is a combination of the specification in 

Equations 7.3, 7.4, and 7.6.  

Y=X�+�WY+�WX+u; u=�Wu+ϵ; ϵ∼N(0,�2)  Equation 7.7 

Spatial regression literature suggests to select the most appropriate model based on 

theoretical consideration, past evidence of other studies, and a series of LaGrange multiplier 

tests that compare different formulations against the simple liner regression model. 

Preliminary LaGrange multiplier tests of the results of linear models indicated that a model 
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with spatially lagged Y values was likely to be more appropriate for this dataset than models 

using spatially correlated errors (Anselin, 2010). 

Multilevel Models  

Multilevel models for spatial dependency are based on the suspicion that two 

different levels of spatial dependency might explain the variation of the dependent variable 

Y. In the examples presented here it is possible that unobserved characteristics of the centers 

are not included in the regression specification and they are a spatial trend at the centers level 

that is separate from any spatial correlation at the episode level. To test the possibility of this 

dependency we formulate a regression model as a linear mixture model and allow for the 

intercept of the regression to vary randomly from a center to another. Equation 7.8 shows the 

form for a multilevel model with random intercepts. This equation modifies the simple linear 

regression equation by adding a term corresponding to the effect of each center, Acent. Acent is 

in turn explained by center-level characteristics (Xcentβcent) and a random term, acent, that 

accounts for the remaining portion of the variance of Y that is consistent at the level of each 

individual center. The center-level random term (acent) provides a unique intercept for each 

center, but instead of estimating each of these values, the model estimates their standard 

deviation σcent as a parameter of the model and provides a rough guess for the true value of 

acent for each center.  

Y=Xactβact+Acent+ϵ; ϵ∼N(0,σact2) 

Acent = Xcentβcent+ acent; acent~N(0, σcent2).     Equation 7.8 

In cases where there is thought to be spatial dependency both between observations 

within each unit and between units, it is possible to estimate a that simultaneously 

incorporates both forms of spatial dependency in a hierarchical structure. This more complex 



 

113 
 

model is difficult to estimate due to sparseness of the weight matrices and spatial correlations 

involved and is discussed more at the end of the chapter.     

c. Results 

Spatial Autocorrelation of Variables of Interest 

To assess the overall extent of spatial autocorrelation in the data, I made a Moran’s I 

correlogram for activity durations and total travel time. I tested multiple schemes for 

producing the weights matrix and determined that ten nearest neighbors with row 

standardized weights gave the clearest results. Because the overall spatial distribution of 

activity locations varies over the study area, neighbors identified using a fixed radius may be 

less useful. Each lagged step in the correlogram represents links formed by adding the 

neighbors identified in the previous lag, such that where lag 1 matches all points to their 10 

nearest neighbors, lag 2 matches points to any of the 10 nearest neighbors of their existing 

neighbors that they were not already matched. The correlogram (Figure 7.3) indicates that 

both variables have significant spatial autocorrelation out to three lags, and that Moran’s I is 

substantially higher for duration than for travel time within the two nearest sets of neighbors.  
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Figure 7.3 Moran’s I Correlogram of activity durations and travel times using k=10 
nearest neighbors to populate the W matrix. Error bars correspond to ± 2 standard 
deviations, roughly corresponding to a z-test with a threshold of p=0.05. Expected 
value of I in the case of randomness is shown with the grey line slightly below 0. 

 

Model Results 

I ran four models for each of the two response variables: one linear model with a set 

of explanatory values relating to the activity, traveler, travel mode, tour, and the center in 

which the activity took place; one linear model with those variables plus the other response 

variable and the total duration of other activities on the tour; one multilevel model grouped 

by center with all the previously included variables and an intercept for each center; and one 

spatially autoregressive model with spatial lags. Results for the models for activity duration 

and travel time are shown in tables 7.2 and 7.3, respectively.  
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Apart from the variables shown in these tables, I tested specifications including 

variables such as gender, number of kids in the household, income, and various other 

attributes of the commercial centers in which the activities occur but found them to be 

insignificant predictors of both duration and travel time.  

Lagrange multiplier tests performed on the final linear models indicated that there 

was likely a significant degree of spatial autocorrelation in the residuals and suggested that a 

model with spatial lags was an appropriate way to address this issue. The spatial coefficient 

rho is significantly different from zero in spatial lags models for both activity duration and 

travel time, which indicates that including spatial linkage improves the models. The residual 

spatial autocorrelation Lagrange multiplier test on the residuals of the spatial model indicates 

that there is unlikely to be any residual spatial autocorrelation. 

The models presented here explain a relatively small share of activity duration and 

travel time (R2=0.325 for duration and 0.330 for travel time from the more complex linear 

models), but the coefficients capture differences that are highly significant and often quite 

substantial, and the results provide useful information about the spatial dependency of the 

variables in question. The variables modeled generally contain a high degree of randomness, 

especially given the number of specifics about these activities that were unavailable (notably 

more specific details about the activities), and hazard-duration models often provide a more 

appropriate fit for activity duration (C. R. Bhat, 1996), but past research did not account for 

spatial dependency. For both variables, individual coefficients are fairly stable between the 

different models, which suggests that substantial new information is added by including 

space in the model, whether in the form of group intercepts or spatially lagged dependent 

variables. 
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Models for activity duration (Figure 7.2) consistently show that dining and 

particularly entertainment activities take substantially longer than shopping ones, and the 

difference between entertainment and shopping activities is nearly two hours in every model. 

People appear to be more willing to take active modes of transportation (walking and biking) 

to shorter-duration activities, whereas activities reached by transit generally lasted longer 

than those reached by car. This may reflect a difference in the sorts of activities people 

pursue close to home and those they have to travel farther for. The reference category for 

tour type is home-based tours, and activities on these types of tours (and on overnight tours) 

tend to be substantially longer than activities on tours that start or end at locations with a 

fixed time. Work-based tours and commutes to work are associated with particularly short 

activity durations (unsurprisingly), suggesting that these are particularly likely to be quick 

stops for coffee or minor errands. The only variables that change by more than their standard 

error between the linear and multilevel models and the spatial model are average business 

size in the center (the only variable explicitly attached to space that was significant in this set 

of models) and entertainment, which perhaps indicates that different places specialize in 

entertainment activities. Although the two models are not nested and may not be directly 

comparable using conventional fit metrics, the nearest-neighbors spatially-lagged model 

appears to be a generally similar fit for this data than the multilevel model.   
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Table 7.2 Results from models for activity duration, values are coefficients and 
(standard errors). Groups of dummy variables are indicated with numerals. Reference 
categories are as follows: 1: shopping activities, 2: all other life cycle stages, 3: personal 
vehicles, 4: home-based and all other tours.  

Terms for Activity 
Duration Models 

Regression 
without 

Time X (Eq. 7.2) 

Regression with 

Time X (Eq. 7.2) 

Regression with 
Center Intercepts  
(Eq. 7.8) 

Spatially Lagged 
Model 
(Eq. 7.3) 

(Intercept) 51.50 (2.15) 50.08 (2.13) 50.79 (2.49) 28.72 (2.15) 

Dining1 22.18 (1.91) 19.32 (1.90) 18.97 (1.85) 17.37 (1.80) 

Entertainment1 137.16 (2.56) 130.11 (2.56) 119.86 (2.55) 112.47 (2.51) 

Disabled2 7.67 (4.89) 5.56 (4.82) 6.02 (4.62) 6.00 (4.57) 

Home Duty2 7.08 (3.48) 7.34 (3.42) 6.19 (3.26) 5.24 (3.25) 

Part Time2 -4.38 (2.41) -4.48 (2.37) -4.53 (2.26) -4.63 (2.25) 

Full Time2 -1.73 (2.02) -2.37 (1.99) -3.01 (1.90) -3.33 (1.88) 

Walk3 -15.15 (2.94) -11.08 (2.91) -10.19 (2.83) -11.15 (2.75) 

Bike3 -11.64 (7.68) -11.90 (7.56) -11.93 (7.23) -11.65 (7.17) 

Bus3 35.37 (7.02) 49.23 (6.97) 42.11 (6.68) 43.87 (6.61) 

Rail3 3.18 (15.32) 14.12 (15.11) 10.98 (14.60) 7.93 (14.33) 

Other Transit3 31.42 (8.26) 22.86 (8.15) 27.18 (7.78) 23.01 (7.73) 

Other Mode3 -25.24 (13.18) -22.38 (12.98) -31.04 (12.40) -26.46 (12.30) 

Mode Changes 13.38 (2.62) 12.39 (2.59) 9.20 (2.47) 8.41 (2.45) 

Total Stops -3.06 (0.54) -7.38 (0.60) -6.02 (0.58) -5.98 (0.570) 

Work-Based Tour4 -24.16 (4.30) -20.13 (4.25) -23.23 (4.06) -22.46 (4.02) 

Late-Night Tour4 75.20 (5.68) 59.40 (5.70) 48.78 (5.49) 52.63 (5.40) 

Commute to 
Home4 -18.92 (3.38) -18.06 (3.33) -19.40 (3.18) -18.10 (3.16) 

Commute to 
Work4 -28.35 (6.34) -26.34 (6.25) -24.18 (5.95) -25.07 (5.92) 

Mean Employees 
per Establishment 0.25 (0.04) 0.22 (0.04) 0.21 (0.06) 0.08 (0.04) 

Travel Time  0.17 (0.02) 0.13 (0.02) 0.12 (0.02) 

Duration at other 
Destinations   0.21 (0.02) 0.14 (0.02) 0.16 (0.02) 

other   Intercept SD=28.06   Rho=0.39 (0.01) 

R2 
0.325 0.346   

logLikelihood -46423 -46294 -45967 -45928 

AIC 92890 92636 91983 91906 

BIC 93044 92804 92158 92081 
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Models for travel time (Table 7.3) also show that dining and entertainment activities 

are linked to longer-duration trips than shopping ones, but the differences are much less 

substantial than in the models for activity duration. The entertainment part of this effect 

decreases substantially in models that include activity duration (suggesting that it’s not so 

much that people are willing to travel farther for entertainment, but that they’re generally 

willing to travel farther for longer-duration activities). People with disabilities tend to have 

longer tours, possibly reflecting inequities in the transportation system. Cars are much more 

flexible than fixed-route transit and are particularly advantageous for multiple-destination 

trips, which may explain why the other modes are generally used on shorter trips. As is with 

the case for activity duration, tours with strict temporal constraints, such as those taken on 

the way to work or in the middle of the work day, generally include much shorter trips. 

Substantially more center attributes are significantly linked effect in models for travel time 

than in models for duration, and people appear to be willing to travel farther when going to 

larger centers and those with a higher share of independent business establishments. The 

spatial coefficient rho is much smaller for this model than it is for activity duration, but it is 

still clearly significant. Additionally, the multilevel model appears to do a slightly better job 

than the spatial model for travel time.  
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Table 7.3 Results from models for total travel time, values are coefficients and 
(standard errors). Groups of dummy variables are indicated with numerals. Reference 
categories are the same as in Table 7.2 

 

Terms for Travel 
Time Models 

Regression 
without 

Duration X  
(Eq. 7.2) 

Regression with 

Duration X  
(Eq. 7.2) 

Regression with 
Center Intercepts 
(Eq. 7.8) 

Spatially Lagged 

Model 
(Eq. 7.3) 

(Intercept) 1.27 (2.71) -4.51 (2.70) -2.79 (2.95) -11.37 (2.80) 

Dining1 14.30 (1.36) 12.09 (1.35) 12.36 (1.36) 12.05 (1.34) 

Entertainment1 21.04 (1.83) 6.45 (2.09) 6.26 (2.10) 5.71 (2.08) 

Disabled2 11.34 (3.46) 10.58 (3.41) 9.90 (3.41) 10.46 (3.38) 

Home Duty2 0.13 (2.46) -0.31 (2.42) -0.60 (2.42) -0.44 (2.40) 

Part Time2 -0.65 (1.71) -0.36 (1.68) -0.46 (1.68) -0.60 (1.67) 

Full Time2 2.43 (1.43) 2.49 (1.41) 2.35 (1.41) 2.29 (1.40) 

Walk3 -16.72 (2.11) -14.38 (2.08) -14.92 (2.08) -14.40 (2.06) 

Bike3 6.71 (5.44) 8.49 (5.35) 7.99 (5.34) 8.58 (5.31) 

Bus3 -36.95 (4.98) -34.68 (4.94) -36.35 (4.94) -35.43 (4.91) 

Rail3 -13.26 (10.86) -7.37 (10.70) -12.75 (10.77) -11.16 (10.62) 

Other Transit3 35.52 (5.85) 31.20 (5.76) 31.09 (5.75) 30.52 (5.72) 

Other Mode3 -4.46 (9.34) -0.81 (9.18) -0.51 (9.17) -1.39 (9.11) 

Mode Changes 7.18 (1.86) 6.20 (1.83) 5.68 (1.83) 5.81 (1.82) 

Total Stops 15.55 (0.38) 14.69 (0.40) 14.72 (0.40) 14.69 (0.39) 

Work-Based Tour4 -18.30 (3.06) -15.59 (3.00) -16.29 (3.00) -16.56 (2.98) 

Late-Night Tour4 69.18 (4.02) 59.73 (4.01) 59.17 (4.00) 59.14 (3.96) 

Commute to 
Home4 3.66 (2.39) 6.43 (2.36) 6.26 (2.36) 6.61 (2.34) 

Commute to Work4 -2.17 (4.49) 1.61 (4.42) 1.63 (4.41) 2.14 (4.39) 

Mean Employees 
per Establishment 0.19 (0.03) 0.17 (0.03) 0.17 (0.03) 0.14 (0.03) 

Businesses (/100) 0.19 (0.06) 0.17 (0.06) 0.24 (0.16) 0.12 (0.06) 

 Independent 
Business Fraction 16.91 (3.35) 19.72 (3.30) 18.03 (3.64) 17.32 (3.28) 

Duration at this 
Destination 

 0.09 (0.01) 0.08 (0.01) 0.08 (0.01) 

Duration at other 
Destinations 

 0.15 (0.02) 0.14 (0.02) 0.14 (0.02) 

other   Intercept SD=7.48   Rho=0.17 (0.02) 

R2 0.319 0.341   

logLikelihood -43616 -43483 -43439 -43443 

AIC 87279 87017 86932 86939 

BIC 87447 87199 87121 87128 
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Residual Correlograms  

Lagrange multiplier tests indicated that spatial autocorrelation is present in the linear 

models but is eliminated by the spatially lagged model, but it is important to examine the 

extent of this, particularly since the spatially lagged model only accounts for spatial 

autocorrelation at the first lag. Figure 7.4 shows the correlograms for the residuals from all 

the models; the correlation of the original data is shown in black. All of the models reduce 

the overall spatial autocorrelation somewhat, which indicates that some of the apparent 

spatial autocorrelation was explainable with other variables. The spatially-lagged model 

essentially eliminates spatial autocorrelation, which is exactly what its specification is 

designed to do. For both dependent variables, the multilevel model (purple) substantially 

outperforms both linear models at reducing spatial autocorrelation, with residual values of 

Moran’s I below 0.02 in each case, and for activity duration the multilevel model effectively 

eliminates spatial autocorrelation of residuals. For the second and third lags, the multilevel 

model and spatially autoregressive model are both generally better than the linear model 

results but are essentially indistinguishable from each other. Overall, this indicates that 

grouping activity locations at the level of commercial clusters and using multilevel models is 

not only appropriate for this sort of analysis, but it accounts for spatial autocorrelation 

approximately as well as spatial autoregressive models while also providing a more useful 

interpretation and simpler model structure. 

In order to investigate spatial autocorrelation at the center level, I calculated the 

average location of all the activities in each center and treated this as a center point location 

for identifying neighboring centers. I calculated correlograms for center-level mean residuals 

and fixed effects (group intercepts in the multilevel model) using values from centers with at 
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least five activity locations, since group-level means are likely to be unreliable for small 

samples. These plots show generally very low values of Moran’s I and vary wildly from lag 

to lag, as shown in Figure 7.5.  

 
Figure 7.4 Moran’s I Correlogram of residuals from models for activity durations 
and travel times using k=10 nearest neighbors. Using a multilevel model to identify a 
unique intercept for every center eliminates as much spatial autocorrelation as the 
spatially lagged model. This plot does not show error bars, but values above 0.01 
generally have a significant p-value for this dataset. 
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Figure 7.5 Moran’s I Correlogram of center-level mean values and multilevel model 
conditional means for each center using k=10 nearest neighbors.  

 

d. Discussion and Conclusions 

Model Results 

Activity duration and travel time have a moderate degree of spatial autocorrelation 

that can be partially reduced by accounting for the effects of various contextual variables 

through ordinary linear regression. The multilevel and spatially autocorrelative lagged 
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models presented here both do a much more complete job of explaining the data while also 

nearly eliminating spatial autocorrelation from model residuals. While both models represent 

substantial improvements over the linear formulations, the results suggest that activity 

duration has more substantial spatial autocorrelation than travel time does, whether measured 

by the effect of the spatial coefficient rho in the spatially lagged model or the variance of 

center-level effects estimated by the multilevel model. This may reflect the fact that activity 

duration is tied to a single place, whereas travel time is presumably influenced by the 

traveler’s point of origin, route, and the range of transportation links between them. For the 

variables in question, regression coefficients change minimally between the simpler models 

and the models that incorporate spatial effects get nearly identical coefficients to the final 

ones, but accounting for spatial dependency still adds a significant improvement to the 

model. This suggests that the spatial model in large part captures relationships that were 

otherwise not accounted for. 

While these models provided a great deal of insight into the relationships between 

nearby activities (whether measured as neighbors or grouped into centers), model results 

about center effects are a mixed bag. Relatively few center-level variables were significant in 

the models, and the categorical and continuous variables that measure the mix of businesses 

in each center showed no relationship at all to the variables in question. The need of 

removing small centers from the cluster level analysis made it very difficult to determine 

whether spatial autocorrelation exists at that level. I skirted this issue in Chapter 6 by looking 

at the overall influence of a number of center-level variables, but that is not an option when 

modeling activities in specific places. 
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Hierarchical Spatially Autoregressive Models 

While the models I present in this chapter incorporate either multilevel or spatially 

autoregressive components, hierarchical spatially autoregressive models address effects at 

both of these levels simultaneously, allowing for spatial dependency both at the level of 

individual observations and between higher-level entities, as well as providing for mixed 

effects and other features of multilevel modeling (Dong & Harris, 2015). A study run with 

simulated data found that when spatial variability is present both within and between groups, 

using models that account only for one of these effects tend to overestimate significance (Xu, 

2014). These models have been implemented in R (Dong & Harris, 2016), and I tried to 

apply them to this dataset but ran into a number of issues. Points at the lower level appear to 

only be able to have other points in their same group as neighbors, and the wide mix of 

center sizes in my data made it impossible to estimate models on the full dataset. 

Additionally, when I tested the models on a subset of the centers with a large number of 

activities, the model function usually crashed without explanation presumably due to the 

sparseness of the weights matrices involved. A test model run with a very limited set of 

explanatory variables and a spatial subset of the data returned significant spatial coefficients 

both at the lower level and between centers, so I will explore this area in the future.  

Mixed Effect Multilevel Models and Model Interpretation 

Spatial autocorrelation is an effect rather than a process. The similarity between 

nearby observations does not reflect some inherent distance-based similarity relationship, but 

rather other processes that operate over space at various scales. While the clearest examples 

of this can be found in physical geography – nearby places don’t have similar climates just 

because they’re close to each other but rather because they receive similar amounts of solar 
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radiation and are similarly situated with respect to global circulation patterns – similar 

explanations can be made for this sort of data. Activity duration does not exhibit spatial 

autocorrelation because people know how long other people spend in a place and adjust their 

schedules accordingly, but rather nearby places attract activities of similar durations because 

they offer similar amenities to people. Spatially autoregressive models are a useful way to 

handle the problems spatial autocorrelation causes in data analysis, and they are particularly 

useful for making predictions (much more than multilevel models that estimate effects from 

small local samples can be), but they are fundamentally a way to capture unmeasured 

variables and effects at the local level without necessarily explaining them. 

Given that the multilevel models seem to fully capture the spatial autocorrelation 

present in this dataset, this spatial autocorrelation can be interpreted reflecting the similarity 

of activities within a center. This similarity likely reflects both the mix of opportunities 

available in that center as well harder-to-measure characteristics like sense of place and 

attractiveness, both of which are strongly related to people’s willingness to spend time in 

commercial areas (Deutsch, 2013). I also tested models that allowed the effect of activity 

type to vary from center to center, essentially calculating a separate intercept for every 

combination of center and activity type. These models returned singular results, which 

indicates that they could not separate center-level direct effects from the variability of 

activity types between centers. This provides a means to handle spatial autocorrelation in a 

model while potentially explaining more of it, not in that we necessarily would know how to 

predict a center’s effect, but rather in terms of ascribing the similarities between nearby 

places to specialization rather than spatial dependency alone. 
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8. Conclusions 

As of 2017, passenger transportation accounted for roughly 17% of US greenhouse 

gas emissions, and emissions have increased considerably over the last few decades (despite 

substantial improvements in vehicle efficiency) because of increases travel demand, much of 

which is tied to urban sprawl (US EPA, 2019, p. 2.29). California’s SB375 and similar 

regulations in other states and countries require regional and local governments to develop 

“sustainable community strategies,” which generally encourage mixed use and infill 

developments (Steinberg, 2008). Travel demand is understood as primarily deriving from the 

need to leave the house to work, shop, socialize, and pursue other activities, rather than an 

innate desire to move around. Sustainable community plans aim to decrease the demand for 

personal vehicle travel and increase the use of walking and biking by allowing people to 

meet these needs closer to home or in areas with high access to public transit.  

While the overall, region-scale relationship between urban density and personal 

vehicle use / vehicle miles traveled is fairly well-established (Cervero & Kockelman, 1997; 

Gim, 2012), numerous questions remain about the relationship between the density and 

diversity of opportunities provided by the built environment and the activities people pursue 

in it at finer spatial scales. Understanding this relationship is particularly important for 

planning infill developments, since these developments are relatively small and operate 

within the context of existing cities. Activity-based models have allowed travel behavior 

research to greatly improved the understanding and modeling of activity scheduling and 

interactions at the level of individual people and households, but the field has given much 

less focus to improving the way these models account for the interactions between space and 

place and the timing and types of people’s activities. The ability of existing models to 
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incorporate spatial heterogeneity and the shortcomings of the measurement units currently 

used to group potential destinations have both been acknowledged as areas in which the field 

needs to improve. 

My goal for this dissertation is to develop new spatial units that can be used to 

examine travel behavior from the perspective of the destination, the opposite viewpoint of 

conventional travel behavior analysis. Census polygons and Transportation Analysis Zones 

are poorly aligned with the spatial distribution of activities and opportunities in urban areas, 

and spatial clustering can be used to identify more useful groupings. In order to get a sense of 

the usefulness of the spatial opportunity clusters I have extracted, I investigate the variability 

of the types, timings, and durations of activities that people pursue in them. 

The core finding from the more methods-oriented chapters of this dissertation 

(Chapters 4 and 5) is that road-network-distance DBSCAN clustering of business location 

can be used to identify regional sub-centers in a way that is useful for spatiotemporal analysis 

of shopping, dining, and entertainment activities. I highlight the importance of using accurate 

road distance measures and demonstrate the feasibility of performing this sort of analysis 

statewide. Using known activity locations as secondary information in choosing clustering 

parameters allowed me to tune the results of this clustering to better suit the needs of this 

analysis. The resulting centers are likely too variable in size to be directly employed in a 

spatial choice model, but they investigation provided a useful exercise in balancing the risks 

of aggregation and disaggregation in spatial clustering. 

While the centers I identified in Chapter 5 are not completely ready for their planned 

applications, they still provide a useful framework for investigating the spatial variability in 

activity participation, timing, and duration (Chapters 6 and 7). In Chapter 6, I find that 
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activity timing varies roughly as much as a function of center attributes as it does by day of 

the week and life cycle stage. In Chapter 7, I investigate the spatial dependency of activity 

duration and find that using centers in a hierarchical linear model accounts for the spatial 

autocorrelation present in these variables nearly as well as using a spatially autoregressive 

model. The hierarchical model provides an estimate of the scale of unaccounted-for 

variability between centers. 

The spatial dependency results shown in Chapter 7 are particularly important because 

they provide a first look at the usefulness of these centers for studying the spatial 

heterogeneity of the attractiveness or uniqueness of destinations. These model results show 

that by grouping activities spatially based on spatial clusters identified from opportunity 

locations, it is possible to account for all of the spatial dependency in activity duration. Thus, 

spatial autocorrelation present in the raw data can be understood as reflecting differences 

between centers that specialize in or are particularly attractive for certain types of activities, 

and the centers I identified can be understood as representing meaningfully distinct places. 

This also highlights the potential usefulness of some future method of center 

extraction for identifying discrete options for a spatial choice model. Spatial choice models 

that incorporate the dependency between the (latent) utility values of nearby locations have 

been developed, but they are not used as commonly as they should be. Because these centers 

appear to capture most of the spatial dependency between activities directly, they simplify 

this process although it still may be necessary to account for the similarity of nearby centers. 

Limitations 

The shopping, eating, and entertainment activities that people pursue are not as 

consistent and predictable from day-to-day as their work and school activities. While the 
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activities studied in this dissertation do not happen on regular and externally enforced 

schedules, many of them do have a degree of regularity both temporally, in the form of 

household weekly plans for grocery shopping and other household maintenance activities, 

and spatially in the form of habitual destinations. These patterns cannot be captured with 

single-day (or even two-day) activity diaries, but the few longer activity-travel surveys that 

have been conducted indicate that habit is a major component of people’s travel behavior.  

One aspects of the way that commercial centers were defined and the ways activity 

locations were attached to them are worth noting: both of these processes were done without 

consideration for the specific types of businesses present or the match between the activity 

type and business type. It would be possible to identify separate clusters for different 

business types, although this would lessen the ability to understand the relationships between 

paired activities (like shopping and eating). Alternatively, business type could be combined 

with road network distance to create a combined dissimilarity metric that could be directly 

employed in cluster detection. This modification might make more sense for place data that 

divides these types of businesses into a larger number of categories than NETS does. While 

changing the way business category is considered in clustering has some tradeoffs, using the 

relationship between activity type and business type to match activities to clusters when there 

are multiple candidates in a specific area seems like a generally good idea and will be 

employed in future iterations of this analysis. 

Final clustering parameters were chosen because they identified centers that seemed 

correct when visually inspected on a map and matched appropriate activity locations better 

than other clusterings tested, as discussed in Chapter 5. Since these criteria are both fairly 

subjective, it is worth considering whether the cluster results could be optimized based on 
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their internal properties alone. Substantial research has gone into optimizing cluster 

parameter selection without the use of secondary data (Schubert, Sander, Ester, Kriegel, & 

Xu, 2017), and future research will consider how to apply these methods to commercial 

center clustering. 

One well-established limitation of the DBSCAN algorithm is that it is most effective 

when the underlying data has fairly consistent density. This is clearly not the case for the 

business establishment location data used in this dissertation, and the variability of business 

density and cluster size across California results in the detection of overly large clusters in 

major city centers and the presence of ambiguous and overlapping clusters in less dense areas 

and on the fringes of larger clusters. OPTICS was specifically designed to address this issue 

by taking a hierarchical approach to cluster detection, but as noted in Chapter 5, this method 

identifies highly ambiguous clusters when used for business location data. An alternative 

approach would be to allow clustering parameters to vary over space, with lower values of e 

used in city centers and higher values used in less dense areas. Since this analysis aims to 

employ commercial centers for the analysis of activity participation rather than to describe 

the spatial clustering of business locations, it may be unnecessary to assign a single set of 

clustering parameters for the whole state. 

Next Steps 

The natural next step for the analysis presented in this dissertation is to use these 

centers as choice options in a discrete choice model for destinations for eating, shopping, and 

entertainment activities. While the current version of the clustering performs relatively well 

at identifying distinct centers in areas of mostly residential development, it produces centers 

that are much too big in areas with a consistently high density of commercial businesses. The 
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boundaries of large centers likely reflect the overall distribution of opportunities better than 

TAZes, but since they are much larger than TAZes, they are less useful for studying where 

people travel within downtowns. One approach to this would be to subsample large centers 

using K-Means or a divisive hierarchical clustering method like DIANA. For these methods, 

care would need to be taken to determine an appropriate number of centers into which to 

divide each large center, likely a function of the total number of businesses or the area 

spanned by a center. Subdividing existing centers would likely increase center-level spatial 

autocorrelation, since to the degree that the large center had any characteristics that were 

consistent throughout it, these characteristics would then be shared by all the sub-centers 

created from it. A cleverly-designed partial choice set might account for this somewhat, and 

nested choice models would be another viable option, since these essentially turn the choice 

problem into a hierarchical one. 

Using spatial clustering to identify centers of activity that are more realistic than 

TAZes, but the precision and accuracy of spatial data in both surveys and business locations 

(explored in Chapter 3) set a ceiling on our ability to match reported activity locations with 

known business locations. The uncertainty involved when performing this matching is one 

reason that destination choice modeling requires the use of aggregate spatial units. A project 

that could greatly improve the immediate usability of activity travel diaries for this sort of 

analysis would be to incorporate a standard place dataset (derived from OpenStreetMap or 

another source) directly into the data collection process and distributing this dataset to 

researchers. Surveys already ask respondents to report place names, but geocoding mainly 

uses reported addresses; instead, respondents could match their destinations by name and 

approximate location to potential destinations in this dataset. While this process might 
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slightly increase the burden for survey respondents, it would allow better understanding of 

activities for which destination choice is made daily while also potentially allaying privacy 

concerns by diminishing the need to provide precise geocodes for more sensitive destinations 

like home, work, and school. 
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