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ABSTRACT OF THE DISSERTATION

Interactions of Virus Like Particles in Equilibrium and Non-equilibrium Systems

by

Hsiang-Ku Lin

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2011

Dr. Roya Zandi , Chairperson

This thesis summarizes my Ph.D. research on the interactions of virus like particles in

equilibrium and non-equilibrium biological systems.

In the equilibrium system, we studied the fluctuation-induced forces between inclu-

sions in a fluid membrane. We developed an exact method to calculate thermal Casimir forces

between inclusions of arbitrary shapes and separation, embedded in a fluid membrane whose

fluctuations are governed by the combined action of surface tension, bending modulus, and

Gaussian rigidity. Each objects shape and mechanical properties enter only through a charac-

teristic matrix, a static analog of the scattering matrix. We calculate the Casimir interaction

between two elastic disks embedded in a membrane. In particular, we find that at short separa-

tions the interaction is strong and independent of surface tension.

In the non-equilibrium system, we studied the transport and deposition dynamics of

colloids in saturated porous media under un-favorable filtering conditions. As an alternative to

traditional convection-diffusion or more detailed numerical models, we consider a mean-field

description in which the attachment and detachment processes are characterized by an entire

spectrum of rate constants, ranging from shallow traps which mostly account for hydrodynamic

dispersivity, all the way to the permanent traps associated with physical straining. The model has
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an analytical solution which allows analysis of its properties including the long time asymptotic

behavior and the profile of the deposition curves. Furthermore, the model gives rise to a filtering

front whose structure, stability and propagation velocity are examined. Based on these results,

we propose an experimental protocol to determine the parameters of the model.
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Chapter 1

Introduction

As the most fundamental type of biological entities, viruses or macromolecules such

as proteins, exist almost in every ecosystem on earth. They constantly change the properties of

the dwelling biological system by interacting with the surrounding medium. The studies of the

mechanisms of their interactions are crucial for us to elucidate how biological systems work and

provide better ideas to solve many actual problems caused by them, for example illnesses.

Viruses or macromolecules always carry complex structures and demonstrate diverse

properties, which usually can not be generalized within simple rules. However, from another

point of view, as actual physical identities, they must be governed by fundamental physics laws.

When we consider the interactions between the virus or macromolecules or the interactions be-

tween them and the surrounding medium, there are generalized mechanisms of the interactions

that can be applied to the biological entities of any kind. Therefore, in our studies, we mod-

eled real virus or macromolecules into microscopic particles, which possess the most simplified

structure resembling to the real entities. In this thesis, I will demonstrate our studies on the

interactions of the microscopic biological particles in two major systems, which are equilibrium

and non-equilibrium systems.
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In the equilibrium system, we study the thermal fluctuation-induced force between

two foreign inclusions in a biological fluid membrane. Every living cell is enclosed by a mem-

brane. Typical biological membranes consist of amphiphilic molecules as a lipid bilayer. Many

kinds of macromolecules such as proteins are often found embedded in the membrane struc-

ture, which are essential for a cells survival. For instance, some specific proteins embedded

in the membrane allow the cell to communicate with others while some proteins work as tiny

motors directing the flow of substance, like nutrients, in and out of the cell. Several studies also

reveal that many cell diseases might be associated with the malfunction of protein-membrane

interactions.

As a fluid object, the cell membrane is subject to random fluctuations, which modulate

the interactions between embedded proteins. The study of fluctuation-induced forces between

proteins in a fluid membrane could greatly be simplified by the use of continuum elasticity

theory, which enables us to accurately describe the membrane as a complex object. In general, a

biological membrane can be modeled as a two-dimensional sheet of fluid surface, which closely

resembles the surface of a sea. The elastic waves, here, are due to the thermal fluctuations of

the membrane. In the absence of embedded proteins, a membrane can freely fluctuate without

any constraints. However, the presence of proteins will modify the spectrum of the allowed

fluctuations resulting in a set of novel interactions. Understanding these novel forces by utilizing

analytical methods to describe the complexities of biological membranes and its constituents is

the goal of this work.

In the non-equilibrium system, we study the transport and deposition dynamics of

the virus like particles (VLPs) in saturated porous media under unfavorable filtering conditions.

Many processes in biological systems involve the transport and filtration of particles through

media. The fundamental mechanism behind the kinetics of these filtration processes is the

interactions between the VLPS and the media, which are represented by a variety of forces
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exerted on VLPS. Due to the complexity of the dwelling environment of VLPS in the non-

equilibrium system, it is almost impossible to describe the kinetics of these filtration processes

by directly solving the equations of motion of the VLPS due to all these interactions.

The phenomenological mean-field models based on the convection-diffusion equation

(CDE), however, provides a possible method in the study of these non-equilibrium processes.

Typically, the CDE method models the dynamics of free particles in terms of the average drift

velocity v and the hydrodynamic dispersivity λ, while the net particle deposition rate rd ac-

counting for particle attachment and detachment at trapping sites is a few-parameter function

of local densities of free and trapped particles. Nevertheless, the CDE model has significant

problems that can not explain some of the experimental phenomena [50, 51, 52].

Our mean-field model of such system considers a description in which the attachment

and detachment processes are characterized by an entire spectrum of rate constants, ranging

from shallow traps which mostly account for hydrodynamic dispersivity, all the way to the

permanent traps associated with physical straining. This provides an alternative to traditional

convection-diffusion or more detailed numerical models. Our model has an analytical solution

which allows analysis of its properties including the long-time asymptotic behavior and the

profile of the deposition curves. Furthermore, the model gives rise to a filtering front whose

structure, stability, and propagation velocity are examined. These analytical solutions provide

us better results in fitting with the experimental data.
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Chapter 2

Fluctuation-induced forces between

inclusions in a fluid membrane under

tension

2.1 introduction

A biological membranes are quasi-two-dimensional structures formed by amphiphilic

lipid molecules with embedded macromolecules such as proteins [1]. Studies indicates that

many biological functions strongly depend on the geometry, topology, and dynamics of the

structures of biological membranes. Specialized proteins exert the necessary control in cellular

tasks such as exocytosis, cell adhesion, etc [2]. The behavior of proteins in a fluid membrane

is determined by interactions between them[3, 4, 5, 6, 7, 8, 9, 13]. For the past years, both

experimental and simulation results have been observed that the aggregations of membrane

proteins [10, 11, 12]. However, the physical mechanism of the phenomena is still not well un-

derstood yet. The possible candidates for the interaction forces can be divided into two classes:
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the direct forces comprising the electrostatic forces and Van der Waals forces, and the indirect

forces (curvature-mediated forces) including elastic forces and fluctuation-induced forces[4, 5].

While the elastic force is caused by membrane equilibrium shape deformation, the fluctuation-

induced force is due to embedded proteins whose presence suppresses the thermal fluctuations.

The fluctuation-induced force, which we will somewhat loosely call the Casimir force, is the

focus of this work.

Thermal Casimir forces have been a topic of intense research and development efforts

over the past two decades[4, 5, 6, 7, 8], However, protein-protein interaction and membrane-

protein interaction resulting from membrane thermal fluctuations are still not fully understood.

Most importantly, previous theoretical research considered the fluctuations in the presence as-

sociated with the membrane rigidities exclusively. Although surface tension is negligible for

free-floating membranes in equilibrium with lipid molecules in the solution[4, 5], the interac-

tions stemming from surface tension could dominate bending force under certain conditions.

For example, the surface tension is finite for a cell membrane with excess osmotic pressure or,

for the experiment where membrane is stretched by a hydrophobic frame and the concentration

of the free lipids in solvent is very low. The area of the membrane must change when it fluctu-

ates. Thus, it is necessary to consider the cost of the surface tension energy[14, 15]. In Ref. [14],

it is shown that the surface tension can span as much as five orders of magnitudes depending

on the external forces applied to the membrane. It is interesting to note that even though the

Casimir interactions due to surface tension were considered previously by Kardar group [6], the

interactions resulting from bending rigidities were ignored in the work. From a theoretical point

of view, understanding the fluctuation-induced forces in membranes due to the bending forces

combined with the surface tension is a very challenging task. Furthermore, the previous studies

were focused only on two regimes in which the bending rigidities of embedded inclusions are

either infinity (stiff inclusions) or close to those of the surrounding membrane[4, 5, 7, 8].
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In this work, we present a method of calculating the fluctuation-induced forces be-

tween any number of elastic inclusions for a fluid membrane governed by both surface tension

and bending energy. This method is based on the technique for Casimir forces in antiferromagnets[16].

The Green’s function technique is applied to calculate the force in conjunction with scattering-

matrix approach[17]. We find that the Casimir interaction energy can be regarded as the re-

sponses of the thermal fluctuation fields to the sources at inclusions’ edges. The sources are ex-

pressed in terms of multipoles which contains the information of inclusions’ shapes and bound-

ary conditions.

As a given example, we calculate the Casimir energy between two elastic disks in

membrane. We examine the unexplored parameter range where both surface tension and bend-

ing energy are relevant. In the limit of very small separations, it is necessary to keep the mul-

tipoles with large angular momentums. We reproduce the same distance dependency as that

obtained through Derjaguin or proximity force approximation (PFA) [18]. At large separations,

the Casimir energy is mainly contributed by lower order of multipoles. We also derive explicit

asymptotics for the Casimir interaction. Results are checked against the previous theoretical

work in the weak- and strong- coupling regimes for the cases dominated by surface tension or

bending energy[4, 5, 8, 7]. Full results are given in Fig 2.1. For non-zero surface tension energy,

we find that the Casimir energy is strongly suppressed at large distance. Furthermore, as seen in

the figure, at large separations the Casimir effect is significantly determined by the characteristic

length defined as square root of the ratio between the bending rigidity (κ0) and surface tension

(σ0) of the membrane[9, 19],

`0 ≡ α−1
0 = (κ0/σ0)1/2. (2.1)

while at small separations it is dominated by the ratio of bending rigidities between the inclusion

and the ratio regardless of the characteristic length.
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The chapter is organized as follows. In Sec. 2.2, we derive a general formula for the

thermal Casimir energy between inclusions of arbitrary shapes and separations. The Green’s

function technique is introduced with the help of Hellmann-formula to calculate the thermal

Casimir energy. This formula can be further recast in a similar form to that of scattering matrix

approach employed to calculate quantum Casimir energy[20]. In Sec. 2.3, we calculate the

Casimir interaction between two elastic disks embedded in a membrane. The full numerical

results at whole regimes and the analytical results are at large separations in surface tension

or bending energy dominated regimes are presented in Sec. 2.4. At last, we give summary in

Sec. 2.5.

2.2 Method

2.2.1 Hamiltonian for small deformation membrane with inclusions

We consider a fluid membrane with any number of inclusions of arbitrary shapes

and separations undergoing thermal fluctuations. The membrane surface can be described as

a height function u(x, y) or u(~r), the out-of-plane displacement above the reference plane x-y

plane, z = 0. With the small deformation of a fluid membrane, the energy is expanded to the

quadratic order in the displacement with the equilibrium membrane configuration assumed to

be flat. Inclusions are modeled as thin isotropic elastic solid characterized by in-plane Lamé

coefficients and bending rigidities. The fluid membrane does not transmit in-plane stress per-

turbations. Thus, the in-plane displacements of the inclusions do not interact, and only the

transverse displacements z ≡ u(x, y) are relevant for Casimir interaction. We find that the cor-

responding part of the energy for the membrane with the inclusions has the standard Helfrich

7



form [21, 22],

U ≡
∫
A
d2r

σ

2
(∇u)2 +

κ

2
(∇2u)2 + κ[u′′xxu

′′
yy − (u′′xy)

2] +

∮
S
dl

γ

2r2
(u′θ)

2 (2.2)

where primes (’) denote the partial derivatives with respect to x or y as indicated. The integration

is performed over the projected area A of the entire membrane. σ ≡ σ(~r) stands for surface

tension, γ ≡ γ(~r) denotes line tension, and κ ≡ κ(~r) and κ̄ ≡ κ̄(~r) represent the bending and

Gaussian rigidities respectively. Thermodynamical stability require that σ, κ > 0 and −2κ ≤

κ̄ ≤ 0.

The first term in Eq. (2.2) has the standard form of a surface-tension contribution.

However, inside inclusions, it refers to the elastic energy associated with the in-plane stress

induced by membrane surface tension. Energy cost of elastic deformations of the inclusion is

due to stretching (or compressing) and shearing effects. To ensure local stability of the system,

line tension energy at boundaries has to be added in Hamiltonian. From Appendix A.1, we

derive effective surface tension of a circular inclusion embedded in a fluid membrane. The

terms with κ and κ̄ represent the bending energy contributions associated with the mean and

the Gaussian curvatures respectively. Typical values of the bending rigidity κ is around 0.1 −

25kBT [23].

2.2.2 Green’s function technique

Next, we introudce our Green’s function technique to calculate the Casimir-like forces

between inclusions in a fluid membrane. The membrane sheet creates its own fluctuation spec-

trum due to the thermal energy. Using the standard variational method, we find a symmetric

8



(real Hermitian) differential operator Ĥ ≡ Ĥr, where

Ĥr = κ(r)∇4 − σ(r)∇2

as a functional derivative of the energy Eq. (2.2) with respect to u(r). The corresponding set of

orthonormal eigenfunctions un ≡ u(r), Ĥun = Enun is complete in membrane system,

∑
n

un(r)un(r′) = δ(r− r′)

We define the Green’s function (GF) of the operator Ĥ,

Ĝ ≡ G(r, r′) =
∑
n

un(r)un(r′)

En
(2.3)

which obeys the usual equation

HrG(r, r′) = δ(r− r′).

Any fluctuation states can be expressed in terms of eigenfunctions,

u(r) =
∑

Anun(r) (2.4)

where An is fluctuation amplitude of flu. Substituting Eq. (2.4) into Eq. (2.2), we obtain the

total energy in terms of eigenenergy,

U =
∑
n

A2
nEn

9



Then the partition function can be written as a standard Boltzmann sum over all the membrane

state configuration,

Z =

∫
DAn exp[−

∑
n

βA2
nEn] (2.5)

where β = 1/kBT . We obtain the following expression for the free energy increment associated

with the inclusions,

F = − 1

2β

∑
n

lnβEn + Constant (2.6)

To apply our Green’s function technique to calculate the Casimir free energy, we

model the inclusions as regions where the parameters of Eq. (2.2) different from those in the

surrounding part of the membrane, e.g.κ ≡ κ0 + λκ1, etc., where position-independent σ0 ,κ0,

and κ̄0 correspond to an unperturbed membrane and σ1(r), κ1(r), and κ̄1(r) vanish outside of

the inclusions. The line tension at boundaries is defined as γ = λγ1(r)|r∈S . The coefficient λ

parametrizes the amplitude of the perturbation. Thus, the Hamiltonian can be divided into two

parts,

Ĥ ≡ Ĥλ = Ĥ0 + λV̂(σ1, κ1, κ̄1) (2.7)

where the first term Ĥ0 describes the total energy of free membrane and the second term λV̂

represents the potential due to the presence of foreign inclusions. The non-perturbed fluid mem-

brane corresponds to λ = 0. The free energy difference depends on parameter λ and can be

calculated as an integral of its derivative with respect to λ by using

∆Fλ ≡ Fλ −F0 =

∫ λ

0
dλ′

∂F
∂λ′

=
1

2β

∑
n

∫ λ′

0
dλ′

∂En
∂λ′

En
(2.8)

where ∂λEn/En is obtained by taking derivative of Eq. (2.6) with respect to λ. Using the

10



Hellmann-Feynman theorem[24, 25], the derivative term in Eq. (2.8) gives

∂Eλn
∂λ

= 〈uλn|
Ĥ
∂λ
|uλn〉 = 〈uλn|V̂|uλn〉 (2.9)

we obtain the following expression for the free energy

β∆Fλ =
1

2

∫ λ

0
dλ′Tr(V̂Ĝλ′) (2.10)

Explicitly, with the energy functional (2.2), we have

Tr(V̂Ĝ) =

∫
d2r

{
σ1(r)[∇ · ∇′Ĝ] + κ1(r)∇2(∇′)2 Ĝ

+ κ1(r)
[
∂2
x∂

2
y′ Ĝ+ ∂2

x′∂
2
y Ĝ− 2∂x∂y∂x′∂y′ Ĝ

]}
r′=r

+

∮
S
dl
{ γ
r2
∂θ∂
′
θĜ
}
θ=θ′

,

It is evident that the exact expression (2.10) performs an integration only over the area occupied

by the inclusions. In the case of k membrane inclusions, we write V̂ =
∑k

l=1 V̂l, where the

operator V̂l, l = 1, 2, · · · , k, is only non-zero inside the inclusions. The full Green’s function in

Eq. (2.10) can be expanded into the series in powers of λ,

Ĝλ ≡ Ĝ0 − λĜ0V̂Ĝ0 + λ2Ĝ0V̂Ĝ0V̂Ĝ0 − · · · . (2.11)

Substituting Eq. (2.11) into Eq. (2.10) we obtain

β∆F = −1

2

∑
n>0

(−λ)n

n
Tr[(V̂Ĝ0)n] (2.12)

where 1/n results from the integration. The term with (−λ)n in Eq. (2.12) inside the trace can
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be expressed as

V̂l1Ĝ0V̂l2Ĝ0 · · · V̂li−1Ĝ0V̂liĜ0 · · · V̂lnĜ0 (2.13)

where 1 ≤ li ≤ k. Here we should emphasize that each operator V̂li in Eq. (2.13) acts on GFs to

the left and to the right of it, with subsequent integration over the area of the inclusions. Every

time if the index of the operator V̂li acting the GFs is different from that of its neighbor V̂li+1
,

i.e. li 6= li+1, it introduces the factor of 1/R to the Casimir energy (R is the distance between

two inclusions). Let us denote the exact GF in the presence of only one inclusion.

G
(l)
λ ≡ G0 − λG0V̂lG0 + λ2G0V̂lG0V̂lG0 − · · · . (2.14)

Thus the relevant Casimir free energy for k inclusions becomes

β∆Fλ = −1

2

∑
{l1}

Tr[log(1 + λV̂l1Ĝ
(l1)
λ )] +

∑
s>1

(−λ)s

2s

∑
{li}

Tr V̂l1G
(l1)
λ V̂l2G

(l2)
λ . . . V̂lsG

(ls)
λ ,

(2.15)

where the n-th term involves the summation over s inclusion indices 1 ≤ li ≤ k, with the

neighboring indices different, li+1 6= li, ls 6= l1. Comparing term-by-term the corresponding

expansion in powers of λ, it is easy to check that Eq. (2.15) is equivalent to Eq. (2.12). Deriva-

tion details are provided in Appendix A.3. To evaluate the series in Eq. (2.15), we introduce the

“hopping” matrix

Σll′ ≡ (1− δll′)V̂lG
(l)
λ (2.16)

Rewrite the sum in the nth term as

Tr Σ̂n ≡
∑
{li}

Tr Σl1l2Σl2l3 . . .Σln−1lnΣlnl1 , n > 1, (2.17)
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where neighboring indices are different. The free energy can then be written as

∆Fλ =
∑
l

∆F (l)
λ + FC, (2.18)

where

βFC ≡
1

2
Tr log

(
I + λΣ̂

)
. (2.19)

The first term indicates the self-energies of individual inclusions while the second term describes

the Casimir free energy between inclusions. The full expression of Σ̂ matrix can be written as

following,

Σ̂ =



0 Σ12 · · · · · · Σ1s

Σ21 0 · · · · · · Σ2s

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

Σs1 · · · · · · · · · 0


Note that the diagonal elements of the matrix Σ̂ are vanished. Each element Σij indicates the

interaction between ith and jth inclusions, which is decomposed in terms of multipole expan-

sions. Although Σij is in principle complicated, it is still computed for certain geometries. We

will give an example in the following section.

Quite remarkably, Eq. (2.19) provides the most general result to calculate the Casimir

energy between a finite number of compact objects of arbitrary shape and separation. The idea of

physics involved can be obtained from a discussion of the response of an object to the thermal

fluctuation fields, which records the information about the material properties and boundary

conditions and is related to the scattering fields by the object. We decomposed the energy as

multipole-multipole interaction energy, which only enters though the matrix Σij . This result can

13



also be recast in a form similar to that of the scattering matrix approach employed to calculate

the electromagnetic Casimir interaction[17].

2.3 Example: Casimir energy for two disks embedded in mem-

brane

As an example, we, here, focus on the interaction between two circular disks embed-

ded in a membrane. The geometry is shown in Fig. A.2. In this case, the Σ̂ matrix in Eq. (2.19)

is a 2× 2 matrix since there are only two inclusions,

Σ̂ =

 0 λΣ12

λΣ21 0

 =

 0 λV̂1Ĝ
(1)
λ

λV̂2Ĝ
(2)
λ 0


Then Eq. (2.19) becomes

β FC =
1

2
Tr log(I− λ2V̂1G

(1)
λ V̂2G

(2)
λ )

= −1

2

∑
s

Tr[λ2V̂1G
(1)
λ V̂2G

(2)
λ ]s

s
, (2.20)

which can be interpreted as a series of back-and-forth interactions between inclusions. To eval-

uate Eq. (2.20), we first construct the the exact GF in the presence of a single circular inclusion

as a series in polar coordinates. For a free membrane, the corresponding energy operator is

Ĥ0 = κ0(∇4 −α2
0∇2), with α2

0 ≡ σ0/κ0. The uniform-membrane GF is a combination of GFs

for the Laplace and Helmholtz equations[19],

G0(r) = − 1

2πσ0

[
K0(α0r) + ln(α0r)

]
, r ≡ |r− r′|. (2.21)
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A simple use of the multipole expansion of Eq. (2.21), we expand the modified Bessel function

and logarithm in a power series,

ln |r− r′| = lnR> −
∑
m>0

Rm<
Rm>

cosmφ

m
,

and

K0(α|r− r′|) = K0(αR>)I0(αR<) + 2
∑
m>0

Km(αR>)Im(αR<) cosmφ.

Here we denote R< ≡ min(r, r′), R> ≡ max(r, r′), φ ≡ φ − φ′ is the angle between the two

vectors. Thus, the general solution for the GF with a single disk associated with the angular har-

monic cosmφ or sinmφ contain four radial functions, r±m and the modified Bessel functions

Km(αr) and Im(αr), which gives

2πσ0G
in
λ (r, r′) =

∑
m≥0

[
Cm(r′)rm +Dm(r′)Im(αr)

]
cos(mφ),

2πσ0G
out
λ (r, r′) = A0 − lnR> +B0K0(α0r)−K0(α0R>)I0(α0R<)

+
∑
m>0

{
Am

1

rm
+

1

m

Rm<
Rm>

+BmKm(α0r)− 2Km(α0R>)Im(α0r<)

}
cosmφ.

Here we assume that r′ > a and denote R< ≡ min(r, r′), R> ≡ max(r, r′), φ is the an-

gle between the two vectors. It also requires four boundary conditions on the circumference:

continuity of the function, normal derivative, as well as the following two quantities,

σ∂ru− κ∂r
(
∇2u

)
+
κ̄

r
∂r

(1

r
u′′θθ

)
− γ

r2
∂u′′θθ

∣∣∣
in

= u− κ∂r
(
∇2u

)
+
κ̄

r
∂r

(1

r
u′′θθ

)∣∣∣
out
,

(2.22)
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and

κ∇2u+
κ̄

r

(1

r
u′′θθ + ∂ru

)∣∣∣
in

= κ∇2u+
κ̄

r

(1

r
u′′θθ + ∂ru

)∣∣∣
out
. (2.23)

Here u′′θθ is the second derivative over the polar angle with respect to the center of the disk.

The detailed derivation of the boundary conditions of Eqs. (2.22) and (2.23) is shown in Ap-

pendix A.4. After applying the boundary conditions, the relevant Green’s function can be ex-

pressed in the form as

2πσ0G
in
λ (r, r′) =

∑
mµ,αβ

c(αβ)
mµ f

(α)
mµ(r)g(β)

mµ(r′), (2.24)

where

f (1)
mµ(r) = rm(cosmθ, sinmθ)µ,

f (2)
mµ(r) = Im(αr)(cosmθ, sinmθ)µ,

g(1)
mµ(r′) = (r′)−m(cosmθ′, sinmθ′)µ,

g(2)
mµ(r′) = Km(α0r

′)(cosmθ′, sinmθ′)µ.

From Eq.(2.20), for s = 1 let us rewrite

Tr[λ2V̂1G
(1)
λ V̂2G

(2)
λ ] = Tr[λ2V̂1

∑
m

um(r)um(r′)V̂1

∑
q

vq(ρ)vq(ρ
′)] (2.25)

= Tr[
∑
m,q

(λvq(ρ
′)V̂1um(r))(λum(r′)V̂2vq(ρ))] (2.26)

where we simply rewrite G(1)
λ ≡

∑
m um(r)um(r′), G

(2)
λ ≡

∑
m vm(ρ)vm(ρ′). Since trace

is invariant under cyclic permutations, Eq. (2.25) can be written in the form as Eq. (2.26). To

do so, the interaction energy is obtained because the operator V̂(i) is acting on both Green’s

functions, Ĝ(1)
λ and Ĝ(2)

λ . Then, the term with s = 1 in Eq. (2.20) can be evaluated by replacing
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λ2V̂1G
(1)
λ V̂2G

(2)
λ with Eq. (2.26) and then further simplified after several integrations by parts

(see Appendix A.5 and Appendix A.6), which gives

β FC = −1

2

∑
ν

∞∑
s=1

Tr[Λ̂νΛ̂ν ]s

s
=

1

2
ln
∏
ν

det(1− Λ̂νΛ̂ν) (2.27)

each element in the Λ̂ν is found to be

Λ̂νnm =

 −A
f
n
m(m+n−1

m )
Rq Agn

Km+n(α0R)+(−1)νKm−n(α0R)
2

−Bf
n
m(m+n−1

m )
Rq Bg

n
Km+n(α0R)+(−1)νKm−n(α0R)

2

 (2.28)

where the coefficients Afn, Agn, Bf
n , Bg

n are defined in Eq. (A.22) and can be obtained applying

boundary conditions. The full expressions are listed in Appendix A.7. The symbol ν indicates

the sum over odd and even solutions. The element Λ̂νnm is denoted by a 2 × 2 matrix owing to

the combined solutions of the GFs of the Laplace and Helmholtz equations.

For the numerics, we keep a finite number of azimuthal angular harmonics, m. The

Casimir energy at large separation is mainly contributed by low order of multipoles and can

be computed in a few terms of Eq. (2.27) on the requirement of accuracy. As the separation

become smaller, higher order multipole interaction become more relevant. The manipulation of

large matrices Λ̂ is needed.

2.4 Results

2.4.1 Analytical results and discussions

In the absence of line tension at the inclusion boundaries, the diagonal components of

the equilibrium stress tensor in the inclusions coincide with the surface tension of the membrane,

which gives σ = σ0 in Eq. (2.2). For a non-zero surface tension, we find that the Casimir energy
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becomes strongly suppressed at distances R larger than the characteristic length `0, Eq. (2.1).

Note that the Casimir energy retains the power-law asymptotic form

β FC = −Aan/Rn, β ≡ 1/kBT, R� a, (2.29)

with the exponent increasing from n = 4 at R . l0 (bending-energy-dominated regime) to

n = 8 at R & l0 (tension-dominated regime). This is illustrated in Fig. 2.1 for two inclu-

sion stiffnesses, with a number of different surface tensions. Depending on the parameters, the

Casimir free energy scaled with the fourth power of the distance has either constant or ∝ 1/R4

asymptotics.

Analytical results for Casimir energy (2.27) can be obtained in weak coupling regime

(κ/κ0, κ̄/κ̄0 << 1) regardless of any separation or any coupling regime but large separation

compared to the inclusion size a. The corresponding Casimir energy can be further simplify the

calculations by replacing G(l)
λ with the bare GF G0, which gives

β FC =
1

2
Tr log(I− λ2V̂1G0V̂2G0)

= −1

2

∑
n

λ2n

n
Tr[V̂1G0V̂2G0]n, (2.30)

The obtained full analytical expressions are too cumbersome to quote here. We only

present simplified results for three important parameter ranges, and illustrate the general trends

in Fig 2.1 where we plot the distance dependence of the Casimir energy in the scaling relation

Eq. (2.29) with n = 4. Note that the results at small separations are checked against those

obtained through PFA which we will discuss the details in the next section.

(a) l0 >> R, regime dominated by the bending energy. At large separation, the

18



Casimir energy Eq. (2.27) has the asymptotic form (2.29) with n = 4 and the coefficient

A = (4Bg
2 +Af0)Bg

2 , (2.31)

Bg
2 =

κ0 − κ
4κ0 + κ0 − κ

, Af0 =
4(κ− κ0) + 2(κ− κ0)

2κ+ κ− κ0
.

Discontinuity in κ̄ is required for the leading order result. The general expression (2.31) repro-

duces the same results obtained in previous work. In the strong coupling limit, where κ and

−κ̄ are infnite (stiff inclusion), we find the A = 6[4, 5, 8, 7]; in the weak coupling, it gives

A = −λ2κ1κ1/2κ
2
0[4, 5, 8].

(b) `0 � a� R, regime dominated by the surface tension of the membrane. We find

that the leading-order power law term in a/R (resulting from dipole-like fluctuations around

the inclusions) is zero, and the next-order terms give the Casimir energy (2.30) falling off much

faster, FC ∝ 1/R8, with the coefficient proportional to κ2
1. The full result being too bulky, we

only present the strong-coupling limit,

β∆FC = −9(a/R)8

which is in agreement with Refs. [26, 27], and the leading-order contribution in λ at weak-

coupling,

β F (2)
C = −36λ2κ2

1a
4

σ2
0R

8
= −36(κ− κ0)2a4

σ2
0R

8
. (2.32)

Note that we also obtain the same power law in the presence of line tension energy, in which

case Eq. (2.2) has σ 6= σ0 inside inclusions. See Fig. 2.2. In a special case where the tilt

motion of the inclusion is restricted, we recover the Casimir energy β∆FC = −a4/R4 at large

separation (See Fig. 2.1).

(c) a . `0 . R, with both surface tension and bending rigidities of the membrane
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relevant. The full analytical Casimir energy contains terms decaying like a power of separation

R, and exponential decaying term asKm(R/l0). In particular, for l0 << R, the modified Bessel

function become exponentially small. In this case the Casimir energy is proportional to 1/R8.

The exponentially small terms become relevant when `0 ∼ R, where Casimir energy crosses

over to the small-σ regime (a) with FC ∝ 1/R4. This crossover can be seen in Fig. 2.1. A

representative case corresponds to `0 = 10a, where A ≡ −(R/a)4FC is nearly constant for

R . `0, is strongly reduced for larger R, and eventually crosses over to ∝ 1/R4 (FC ∝ 1/R8)

for R� `0. At smaller R, the same asymptotic power law is also seen, e.g., for `0/a = 1.

Note that the distance dependence of the Casimir energy is the same,∝ 1/R8, as long

as `0 � R, which includes regimes (b) and (c). In the regime (b), dominated by the surface

tension, this power law can be easily obtained by treating the inclusions as point-like objects

in the effective field theory (EFT)[27]. For inclusions that are free to tilt with the membrane,

the expansion starts with the quadrupole terms[27]. In the regime (c) the higher-order multipole

terms in the EFT expansion diverge as increasing powers of `0/a � 1. However, the contri-

butions to the Casimir energy coming from higher-order multipole terms also get suppressed

as increasing powers of 1/R. As a result, the leading-order quadrupole terms dominate, which

again gives FC ∝ 1/R8 for `0 � R. For `0 ∼ R, where we recover the exponentially small

terms ∝ Km(R/`0), all multipoles contribute equally and the EFT approach cannot be used.

2.4.2 Casimir energy at small separation: our method and PFA

For the R dependence of the Casimir energy at short separation, as shown in the

Fig. , the Casimir energy becomes large in this regime. Note that the R dependence of the

Casimir energy does not depend on the characteristic length `0 but determined by the ratio

κ/κ0. As seen in Fig 2.1, all the symbol and solid lines representing the fixed values of the

ratio κ/κ0 converge together respectively when the separation become very small. The small
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separation asymptotic form of the Casimir energy can also be evaluated within Derjaguin[18]

or proximity force approximation (PFA) where the Casimir energy is calculated between curved

contact lines in terms of the interaction between parallel and infinitesimal straight line segments

(see Fig. A.3). We calculate the analytical results of the Casimir energy per unit length for two

half-planes with the separation H based on the previous work in Ref. [20] and we obtain

F
kBT l

=
f

H
+O(H) (2.33)

where f = π/24 in the limit dominated by the surface tension energy and f ≈ 0.46 in the

limit dominated by the bending energy. f for the intermediate regime can also be calculated by

numerical integration of Eq. (A.23). However, with the Hamiltonian of Eq. (2.2) the bending

energy dominated limit is relevant at very short separation. Thus, for two hard disks, PFA gives

βFPFA = −πf
[
x−1/2 +

1

2
− 3

8
x1/2 +O(x)

]
, x ≡ H

a
. (2.34)

The details of the evaluations are provided in Appendix A.8. To compare the results between

our method and PFA, we plot the ratio of the Casimir energy, FC[Eq. (2.27)] calculated for

different cutoff m (highest order of multipole) in the regime dominated by bending energy,

and FPFA[Eq. (2.34)] in Fig. (2.3). It can be seen that the ratio FC/FPFA approaches one

only at very short separation. Clearly, the PFA approximation is only valid in the limit of small

distances. The figure also shows that higher order multipoles are necessary at shorter separations

as expected.
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2.5 Summary

In conclusion, we have developed an exact method for computing the Casimir energy

between elastic inclusions of arbitrary shapes embedded in a biological membrane under ten-

sion, characterized by the surface tension σ0 and bending and Gaussian rigidities, κ0 and κ0.

The method allows to calculate the Casimir forces in all ranges of parameters and for all separa-

tions. The Casimir energies are fully characterized by the objects’ “scattering” matrices, which

encode the shapes and mechanical properties. In particular, for two elastic disks, the Casimir

energy scales as ∝ 1/R4 for R . `0, and crosses over to ∝ 1/R8 for R & `0. At short dis-

tances, the Casimir energy is large; for hard disks our findings agree with the corresponding PFA

results, FC ∝ H−1/2. One interesting result is that the Casimir energy is strongly suppressed

for inclusions whose Gaussian rigidity κ equals that of the membrane.
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Figure 2.1: (color online) The Casimir free-energy (2.30) scaled with fourth power of the dis-
tance as a function of R/a for κ/κ0 = 104 (symbols) and κ/κ0 = 10−1 (solid lines), with
α0a ≡ a/`0 as indicated. We set κ0 = −κ0, κ = −κ. Dashed black lines indicate asymptotic
large-R dependences evaluated with Eq. (2.31). Plots are horizontal (∆F ∝ R−4) only for
R . `0 ≡ α−1

0 ; for larger R/`0 the Casimir energy decays as ∆F ∝ R−8.
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Figure 2.2: (color online) The Casimir free-energy (2.30) scaled with fourth power of the dis-
tance as a function of R/a for κ/κ0 = 10−1, with α0a ≡ a/`0 as indicated. We set κ0 = −κ0,
κ = −κ. Empty symbol line indicates the Casimir energy with σ0 = σ while solid symbol lines
indicate that with different surface tensions. The solid brown line shows that the Casimir energy
decays as ∆F ∝ R−8 in surface tenison dominated regime.
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multipole order of truncation. Clearly, the PFA approximation is only valid in the limit of small
distances. The figure shows that higher order multipoles are necessary at shorter separations as
expected.
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Chapter 3

Attachment and detachment rate

distributions in deep-bed filtration

3.1 Introduction

Many processes in biological systems as well as in the chemical and petroleum in-

dustry involve the transport and filtration of particles in porous media with which they interact

through various forces[28, 29, 30, 31]. These interactions often result in particle adsorption

and/or entrapment by the medium. Examples include filtration in the respiratory system, ground-

water transport, in situ bioremediation, passage of white blood cells in brain blood vessels in the

presence of jam-1 proteins, passage of viral particles in granular media, separation of species

in chromatography, and gel permeation. The particle-medium interactions in these systems are

not always optimal for particle retention. For example, the passage of groundwater through soil

often happens under chemically unfavorable conditions, and as a result many captured particles

(e.g., viruses and bacteria) may be released back to the solution. While filtration under favorable

conditions has been studied and modeled extensively[32, 33, 34, 35, 36, 37, 38, 39, 40, 41], we
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are just beginning to understand the process occurring under unfavorable conditions.

Several models have been developed to describe the kinetics of particle filtration un-

der unfavorable conditions. The most commonly used ones are, in essence, phenomenolog-

ical mean-field models based on the convection-diffusion equation (CDE) [see Eq. (3.1) and

Sec. 3.2]. Typically, one models the dynamics of free particles in terms of the average drift

velocity v and the hydrodynamic dispersivity λ, while the net particle deposition rate rd ac-

counting for particle attachment and detachment at trapping sites is a few-parameter function

of local densities of free and trapped particles. For given filtering conditions, the parameters λ

and v can be determined from a separate experiment with a tracer, while the coefficients of the

function rd can be obtained by fitting Eq. (3.1) to the breakthrough curves.

Despite their attractive simplicity, it is widely accepted now that the phenomenolog-

ical models at the mean-field level have significant problems. First, the depth dependent depo-

sition curves for viruses and bacteria are often much steeper than it would be expected if the

deposition rates were uniform throughout the substrate[42, 43, 44, 45, 46, 47, 48, 49]. This

was commonly compensated by introducing the depth-dependent deposition rates. The prob-

lem was brought to light in Ref. [50], where it was demonstrated that the steeper-than-expected

deposition rates under unfavorable filtering conditions also exist for inert colloids.

Second, Bradford et al. [51, 52] pointed out that the usual mean-field models based

on the CDE, accounting for dynamic dispersivity and attachment and detachment phenomena,

cannot explain the shape of both the breakthrough curves and the subsequent filter flushing.

In these experiments some particles were retained in the medium, and the authors argued for

the need to include the straining (permanent capture of colloids) in the model. Even so, these

models may still be insufficient to fit the experiments [53].

More elaborate models to describe deep-bed filtration have been proposed in Refs. [54,

55, 56, 57]. These models go beyond the mean-field description by simulating subsequent filter
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layers as a collection of multiply connected pipes with a wide distribution of radii, which results

in a variation in flow speed and also of the attachment and detachment rates (even straining in

some cases). The disadvantage of these models is that they are essentially computer based: it is

difficult to gain an understanding of the qualitative properties of the solutions, without extensive

simulations. Furthermore, the simulation results suffer from statistical uncertainties.

In the present work, we develop a minimalist mean-field model to investigate filtering

under unfavorable conditions. The model accounts for both a convective flow and the primary

attachment and detachment processes. Unlike the previous mean-field models of filtration, our

model contains attachment sites (traps) with different detachment rates Bi [see Eq. (3.32)],

which allows an accurate modeling of the filtration dynamics over long-time periods for a broad

range of inlet concentrations. Yet, the model admits exact analytical solutions for the profiles of

the deposition and breakthrough curves which permit us to understand qualitatively the effect of

the corresponding parameters and design a protocol for extracting them from experiment.

One of the advantages of our model is that the “shallow” short-lived traps represent

the same effect as hydrodynamical dispersivity without generating unphysically fast moving

particles or requiring an additional boundary condition at the inlet of the filter. The “deep”

long-lived traps allow to correctly simulate long-time asymptotics of the released colloids in the

effluent during a washout stage. The traps with intermediate detachment rates determine the

most prominent features of breakthrough curves. The effect of every trap kind is to decrease

the apparent drift velocity. As attachment and detachment rate constants depend on colloid size,

we can also account for the apparent acceleration of larger particles without any microscopic

description as in Ref. [58]. The particle-size distribution can be also used to analyze the steeper

deposition profiles near the inlet of the filter [43, 44, 49, 50].

The paper is organized as follows. In Sec. 3.2, we give a brief overview of colloid-

transport experiments, CDE models, and their analytical solutions in simple cases. The lin-
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earized multirate convection-only filtration model is introduced in Sec. 3.3. The model is

characterized by a discrete or continuous trap-release-rate distribution; it is generally solved

in quadratures, and completely in several special cases. The results support our argument that

the hydrodynamic dispersivity can be traded for shallow traps. This serves as a basis for the ex-

act solution of the full mean-field model for filtration under unfavorable conditions introduced

in Sec. 3.4, where we show that a large class of such models can be mapped exactly back to the

linearized ones and analyze their solutions, as well as the propagation velocity, structure, and

stability of the filtering front. We suggest an experimental protocol to fit the parameters of the

model in Sec. 3.5 and give our conclusions in Sec. 3.6.

3.2 Background

3.2.1 Overview of colloid transport experiments

A typical setup of a colloid-transport experiment is shown in Fig. 3.1. A cylindrical

column packed with sand or other filtering material is saturated with water running from top

to bottom until the single-phase state (no trapped air bubbles) is achieved. At the end of this

stage, colloidal particles are added to the incoming stream of water with both the concentration

of the suspended particles and the flow rate kept constant over time T . This is sometimes fol-

lowed by a filter washout stage in which clean water is pumped through the filter. The filtration

processes are characterized by two relevant experimental quantities: the particle breakthrough

and deposition profile curves. While breakthrough curve represents the concentration of effluent

particles at the outlet of the column as a function of time, deposition curves illustrate the depth

distribution of concentration of the particles retained throughout the column.
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Figure 3.1: Schematic of experimental setup in the colloid-transport studies.

3.2.2 Convection-diffusion transport model

As the suspended particles move through the filtering column, each individual colloid

follows its own trajectory. Consequently, even for small particles that are never trapped in the

filter, the passage time through the column fluctuates. In the case of laminar flows with small

Reynolds numbers and sufficiently small particles, which presumably follow the local veloc-

ity lines, the passage time scales inversely with the average flow velocity along the column v.

The effects of the variation between the trajectories of particles as well as their speeds can be

approximated by the velocity-dependent diffusion coefficient D = λv, where λ is the hydrody-

namic dispersivity of the filtering medium. In comparison, the actual diffusion rate of colloids

in experiments is negligibly small. Dispersivity is often obtained through tracer experiments in

which the motion of the particles, i.e., salt ions, which move passively through the filter medium

without being trapped, is traced as a function of time.

Overall, the dynamics of the suspended particles along the filter can be approximated

by the mean-field CDE,

∂C

∂t
+ v

∂C

∂x
− λv∂

2C

∂x2
= −rd, (3.1)

where C ≡ C(x, t) is the number of suspended particles per unit water volume averaged over

the filter cross section at a given distance x from the inlet and rd is the deposition rate which

may include both attachment and detachment processes.
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3.2.3 Issues with the CDE approximation

The diffusion approximation employed in Eq. (3.1) has two drawbacks which could

seriously affect the resulting calculations if enough care is not used.

First, while the diffusion approximation works well to describe the concentration

C(x, t) of suspended particles in places where C(x, t) is large, it seems to significantly over-

estimate the number of particles far downstream where C(x, t) is expected to be small or zero.

This is mainly due to the fact that the diffusion process allows for infinitely fast transport, albeit

for a vanishingly small fraction of particles. In the simple case of tracer dynamics [rd = 0 in

Eq. (3.1)], the general solutions as presented in Eqs. (3.6) and (3.7) are non-zero even at very

large distances x − vt � 2(λvt)1/2. While in many instances this may not be crucial, the

application of the model to, e.g., public health and water safety issues might trigger a false alert.

Second, for the filtering problem one expects the concentration C(x, t) to be con-

tinuous, with the concentration downstream uniquely determined by that of the upstream. On

the other hand, Eq. (3.1) contains second spatial derivative, which requires in addition to the

knowledge of C(x, t) at the inlet, x = 0, another type of boundary condition to describe the

concentration of particles along the column. This additional boundary condition could be, e.g.,

the spatial derivative C ′(x, t) at the inlet, x = 0, or the outlet, x = L [59, 49], or the fixed value

of the concentration at the outlet. We show below that fixing a derivative introduces an incon-

trollable error. On the other hand, we cannot introduce a boundary condition for the function

C(x, t) at the outlet, x = L, as this is precisely the quantity of interest to calculate.

The situation has an analogy in neutron physics[60]. While neutrons propagate diffu-

sively within a medium, they move ballistically in vacuum. A correct calculation of the neutron

flux requires a detailed simulation of the momentum distribution function within a few mean-

free paths from the surface separating vacuum and the medium. In contrast to the filtration
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theory, for the case of neutron scattering, where the neutron distribution is stationary it is com-

mon to use an approximate boundary condition in terms of a “linear extrapolation distance” (the

inverse logarithmic derivative of neutron density).

The CDE [see Eq. (3.1)] can be solved on a semi-infinite interval (xmax � L) with

setting C ′(x, t) = 0 at xmax and calculating the value of C(x, t) at x = L as an approximation

for the concentration of effluent particles. To illustrate this situation, we solve Eq. (3.1) for

the case of tracer particles, where the deposition rate is set to zero, rd = 0. We consider a

semi-infinite geometry with the initial condition C(x, 0) = 0 and a given concentration C(0, t)

at the inlet. The corresponding solution is presented in Sec. 3.2.4. The spatial derivative at

the boundary given in Eq. (3.9) is non-zero, time-dependent, and rather large at early stages of

evolution when the diffusive current near the boundary is large. Therefore, setting an additional

boundary condition for the derivative, e.g., C ′(0, t) = 0, is unphysical.

On the other hand, the problem with the boundary condition far downstream,C(xmax, t) =

0, xmax � L, can be ill-defined numerically, as this condition is automatically satisfied to a

good accuracy as long as the bulk of the colloids has not reached the end of the interval.

3.2.4 Tracer model

The simplest version of the convection-diffusion equation [Eq. (3.1)] applies to tracer

particles where the deposition rate is set to zero, rd = 0,

∂C

∂t
+ v

∂C

∂x
− λv∂

2C

∂x2
= 0. (3.2)

With the initial conditions, C(x, 0) = 0, the Laplace-transformed function C̃ ≡

C̃(x, p) obeys the equation

pC̃ + vC̃ ′ − λvC̃ ′′ = 0, (3.3)
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where primes denote the spatial derivatives, C̃ ′ ≡ ∂xC̃(x, p). The solution to the above equation

is C̃ ∝ eκx, with

κ± =
1

2λ
±
(

1

4λ2
+

p

λv

)1/2

. (3.4)

At semi-infinite interval x > 0, only the solution with negative κ = κ− does not diverge at

infinity. Given the Laplace-transformed concentration at the inlet, C̃(0, p), we obtain

C̃(x, p) = C̃(0, p) exp

(
x

2λ
− x

[
1

4λ2
+

p

λv

]1/2
)
. (3.5)

The inverse Laplace transformation of the above equation is a convolution,

C(x, t) =

∫ t

0
dt′C(0, t− t′) g(x, t′), (3.6)

with the tracer Green’s function (GF)

g(x, t) =
x

2(πλv)1/2

1

t3/2
exp

(
−(x− vt)2

4λvt

)
. (3.7)

In the special case C(0, t) = C0 =const, the integration results

C =
C0

2

1 + erf

[
tv − x

2(tvλ)1/2

]
+ ex/λ erfc

[
tv + x

2(tvλ)1/2

] , (3.8)

where erfc(z) ≡ 1− erf(z) is the complementary error function.

We note that the spatial derivative of the solution of Eq. (3.8) at x = 0 is different

from zero. Indeed, it depends on time and is divergent at small t, implying an unphysically
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large diffusive component of the particle current,

C ′(0, t) =
C0

2

(
erfc (α)

2λ
− e−α

2

(πtvλ)1/2

)
, α2 ≡ tv

4λ
. (3.9)

In the presence of the straining term, rd = A0N0C in Eq. (3.1), the GF can be ob-

tained from Eq. (3.7) by introducing exponential decay with the rate A0N0,

g(x, t) =
x

2(πλv)1/2

e−A0N0t

t3/2
exp

(
−(x− vt)2

4λvt

)
. (3.10)

Note that we wrote the straining rate as a product of the capture rate A0 by infinite-capacity

“permanent” traps with the concentration N0 per unit volume of water. Such a factorization is

convenient for the non-linear model presented later in Sec. 3.4. The same notations are em-

ployed throughout this work for consistency.

3.3 Linearized mean-field filtration model

In this section we discuss the linearized convection-only multitrap filtration model,

a variant of the multirate CDE model first proposed in Ref. [61]. Our model is characterized

by a (possibly continuous) density of traps as a function of detachment rate [see Eq. (3.23)].

Generically, continuous trap distribution leads to non-exponential (e.g., power-law) asymptotic

forms of the concentration in the effluent on the washout stage.

The main purpose of this section is to demonstrate that “shallow” traps with large

detachment rates have the same effect as the hydrodynamic dispersivity in CDE. In addition, the

obtained exact solutions will be used in Sec. 3.4 as a basis for the analysis of the full non-linear

mean-field model for filtration under unfavorable conditions.
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3.3.1 Shallow traps as a substitute for diffusion

To rectify the problems with the diffusion approximation noted previously, we suggest

an alternative approach for the propagation of particles through the filtering medium. Instead

of considering the drift with an average velocity with symmetric diffusion-like deviations ac-

counting for dispersion of individual trajectories, we consider the convective motion with the

maximum velocity v. The random twists and turns delaying the individual trajectories are ac-

counted for by introducing Poissonian traps which slow down the passage of the majority of

the particles through the column. In the simplest case suitable for tracer particles, the relevant

kinetic equations read as follows:

Ċ + vC ′ +N1ṅ1 = 0, ṅ1 = A1C −B1n1, (3.11)

with n1 ≡ n1(x, t) as the auxiliary variable describing the average number of particles in a trap,

N1 as the number of traps per unit water volume, A1 as the trapping rate, and B1 as the release

rate. The particular normalization of the coefficients is chosen to simplify the formulation of

models with traps subject to saturation in Sec. 3.4.

To simulate dispersivity where all time scales are inversely proportional to propaga-

tion velocity, we must choose both A1 and B1 proportional to v. The corresponding parameter

σ in A1 ≡ σv has a dimension of area and can be viewed as a trapping cross section. The length

` in the release rate B1 ≡ v/` can be viewed as a characteristic size of a stagnation region. On

general grounds we expect σ ∝ `2 with ` on the order of the grain size.

3.3.2 Single-trap model with straining.

To illustrate how shallow traps can provide for dispersivity in convection-only models,

let us construct the exact solution of Eq. (3.11). In fact, it is convenient to consider a slightly
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generalized model with the addition of straining,

Ċ + vC ′ +N1ṅ1 = −A0N0C, ṅ1 = A1C −B1n1. (3.12)

With zero initial conditions the Laplace transformation gives for C̃ ≡ C̃(x, p),

(
p+A0N0 +

A1N1p

p+B1

)
C̃ + vC̃ ′ = 0. (3.13)

The boundary value for Laplace-transformed C(x, t) at the inlet is given by C̃(0, p). With

initially clean filter, C(x, 0) = n(x, 0) = 0, and a given free particle concentration C(0, t) at

the inlet, the solution to the linear one-trap convection-only model with straining [Eq. (3.12)] is

a convolution of the form presented in Eq. (3.6) with the following GF [62]:

g(x, t) = e−βx/v−B1(t−x/v)

{
δ
(
t− x/v

)
+θ(t− x/v)

(A1N1B1x)1/2

(tv − x)1/2
I1(ζt)

}
, (3.14)

where β ≡ A0N0 + A1N1 is the clean-bed trapping rate, θ(z) is the Heaviside step-function,

and I1(ζt) is the modified Bessel function of the first kind with the argument

ζt ≡
2

v

[
A1N1B1(tv − x)x

]1/2
. (3.15)

The singular term with the δ function δ(t−x/v) in Eq. (3.14) represents the particles at the lead-

ing edge which propagate freely with the maximum velocity v without ever being trapped. The

corresponding weight exp(−βx/v) decreases exponentially with the distance from the origin.

Sufficiently far from both the origin and from the leading edge, where the argument
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ζt [Eq. (3.15)] of the Bessel function is large, we can use the asymptotic form,

I1(ζ) =
1

(2πζ)1/2
eζ
[
1 +O(ζ−1)

]
,Re ζ > 0. (3.16)

Subsequently, Eq. (3.14) becomes

g(x, t) ≈ e−A0N0x/v B1ξ
1/4

2π1/2τ3/4
exp−(

√
ξ −
√
τ)2, (3.17)

where τ ≡ B1(t − x/v) is the dimensionless retarded time in units of the release rate, and

ξ ≡ A1N1x/v is the dimensionless distance from the origin in units of the trapping mean free

path.

The correspondence with the GF in Eq. (3.10) for the CDE with linear straining [or

Eq. (3.7) for the CDE tracer model in the case of no permanent traps, N0 = 0] can be recovered

from Eq. (3.17) by expanding the square roots in the exponent around its maximum at ξ = τ ,

or x = v0t, with the effective velocity v0 = vB1/(B1 + N1A1). Specifically, suppressing the

prefactor due to straining, [N0 = 0 in Eq. (3.17)], we obtain for the asymptotic form of the

exponent at large t,

g(x, t) ∝ exp−(x− v0t)
2

4λ0v0t
, (3.18)

with the effective dispersivity coefficient [cf. Eq. (3.7)]

λ0 = v
N1A1

(N1A1 +B1)2
. (3.19)

The approximation is expected to be good as long as both x and t are large compared to the

width of the bell-shaped maximum.

The actual shapes of the corresponding GFs, Eqs. (3.7) and (3.14) in the absence of
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permanent traps, N0 = 0, are compared in Fig. 3.2. While the shape differences are substantial

at small t, they disappear almost entirely at later times.
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Figure 3.2: (Color online) Comparison of the spatial dependence of the GFs for the tracer model
implemented as the convection-diffusion equation [Eq. (3.1)] with rd = 0 (solid lines) and the
single-trap convection model [Eq. (3.11)] (dashed lines). Specifically, we plot Eq. (3.7) and the
regular part of Eq. (3.14) with N0 = 0, using identical values of v = v0 = 1 and λ = λ0 = 1
and the release rate B1 = 1/2 (half the maximum value at these parameters) at t = 2, 4, 8, 16,
32. Once the maximum is sufficiently far from the origin, the two GFs are virtually identical
(see Sec. 3.3.2).

3.3.3 Multitrap convection-only model

Even though the solutions of the single-trap model correspond to those of the CDE

[Eq. (3.2)], the model presented in Eq. (3.12) is clearly too simple to accurately describe filtra-

tion under conditions where trapped particles can be subsequently released. At the very least,

in addition to straining and “shallow” traps that account for the dispersivity, describing the

experiments[51, 52] requires another set of “deeper” traps with a smaller release rate.

More generally, consider a linear model with m types of traps differing by the rate
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coefficients Ai, Bi,

Ċ + vC ′ +
m∑
i=1

Niṅi = 0, ṅi = AiC −Bini. (3.20)

The corresponding solution can be obtained in quadratures in terms of the Laplace transforma-

tion. With the initial condition, C(x, 0) = ni(x, 0) = 0 and a given time-dependent concentra-

tion at the inlet, C(0, t) = C0(t), the result for C(x, t) is a convolution of the form presented in

Eq. (3.6) with the GF given by the inverse Laplace transformation formula,

g(x, t) =

∫ c+i∞

c−i∞

dp

2πi
ep [t− x/v − xΣ(p)/v], (3.21)

with the response function

Σ(p) ≡
m∑
i=1

AiNi

p+Bi
=

∫
dB ρ(B)

p+B
. (3.22)

Here we introduced the effective density of traps,

ρ(B) ≡
m∑
i=1

AiNiδ(B −Bi), (3.23)

corresponding to various release rates.

The general structure of the concentration profile can be read off directly from Eq. (3.21).

It gives zero for t < x/v, consistent with the fact that v is the maximum propagation velocity in

Eq. (3.20). The structure of the leading-edge singularity (the amplitude of the δ function due to

particles which never got trapped) is determined by the large-p asymptotics of the integrand in
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Eq. (3.21). Specifically, GF (3.21) can be written as

g(x, t) = e−βx/vδ(t− x/v) + θ(t− x/v)greg(x, t), (3.24)

where β = limp→∞ pΣ(p) =
∑

iNiAi [cf. Eq. (3.14)] is the clean-bed trapping rate, and greg

is the non-singular part of the GF.

Similarly, the structure of the diffusion-like peak of the GF away from both the origin

and the leading edge is determined by the saddle point of the integrand in Eq. (3.21) at small p.

Assuming the expansion Σ(p) = Σ(0) − Σ1p + O(p2) and evaluating the resulting Gaussian

integral around the saddle point at

p? ≈
t− x/v0

2xΣ1/v
, v0 ≡

v

1 + Σ(0)
, (3.25)

we obtain

g(x, t) ≈ 1

2(πΣ1x/v)1/2
e−(t−x/v0)2/(4Σ1x/v). (3.26)

The exponent near the maximum can be approximately rewritten in the form of that in Eq. (3.7),

with the effective dispersivity

λ0 =
v2

0

v
Σ1 =

vΣ1

[1 + Σ(0)]2
. (3.27)

For the case of one trap, m = 1, the expressions for the effective parameters clearly correspond

to our earlier results of Eqs. (3.18) and (3.19). Note that the precise structure of the exponent

and the prefactor in Eq. (3.26) is different from those in Eq. (3.18) which was obtained by a

more accurate calculation.

The effective diffusion approximation [Eq. (3.26)] is accurate for large x near the max-
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imum as long as the integral in Eq. (3.21) remains dominated by the saddle-point in Eq. (3.25).

In particular, the poles of response function (3.22) must be far from p?. This is easily satisfied

in the case of “shallow” traps with large release rates Bi � |p?|.

On the other hand, this condition could be simply violated in the presence of “deep”

traps with relatively small Bi. Over small time intervals compared to the typical dwell time

B−1
i , these traps may work in the straining regime in which they would not contribute to the

effective dispersivity. This situation may be manifested as an apparent time-dependence of the

effective drift velocity v0 and/or the dispersivity λ0.

3.3.4 Model with a continuous trap distribution

The multitrap generalization given in Eq. (3.20) for filtration is clearly a step in the

right direction if we want an accurate description of the filtering experiments.

Indeed, apart from the special case of a regular array of identical densely-packed

spheres with highly polished surfaces, one expects the trapping sites (e.g., the contact points of

neighboring grains) to differ. For small particles such as viruses, even a relatively small variation

in trapping energy could result in a wide range of release rates Bi differing by many orders of

magnitude[56, 53]. Under such circumstances, it is appropriate to consider mean-field models

with continuous trap distributions.

Here we only consider a special case of a continuous distribution of the trap param-

eters, Ai and Bi, such that the release-rate density in Eq. (3.22) has an inverse-square-root

singularity, ρ(B) = ρ1/2/(πB
1/2), with the release rates ranging from infinity all the way to

zero. The corresponding response function (3.22) could be expressed as

Σ(p) = ρ1/2/p
1/2. (3.28)
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The inverse Laplace transform [Eq. (3.21)] gives the following GF:

g(x, t) =
xρ1/2

2
√
πvτ3/2

e
−x2ρ2

1/2
/(4v2τ)

θ(τ), τ ≡ t− x

v
. (3.29)

Note that, in accordance with Eq. (3.24), there is no leading-edge δ function near t = x/v as the

expression for the corresponding trapping rate β diverges. Because of the singular behavior of

Σ(p) at p = 0, there is no saddle-point expansion of the form given in Eq. (3.25). Thus, there is

no Gaussian representation analogous to Eq. (3.26): at large t, the maximum of the GF is located

at xmax = vρ1/2(2t)1/2, which is also of the order of the width of the Gaussian maximum. The

GF [Eq. (3.29)] for two representative values of ρ1/2 is plotted in Fig. 3.3.
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Figure 3.3: (Color online) Spatial dependence of the GF [Eq. (3.29)] for the model presented in
Eq. (3.20) with continuous distribution of trap parameters corresponding to inverse-square-root
singularity in the response function [see Eqs. (3.22) and (3.28))]. Dashed lines show the GF at
ρ1/2 = 0.25, while solid lines present the same GF at ρ1/2 = 1 multiplied by the factor of 8.
We chose t = 2, 4, 8, 12 as indicated in the plot. Unlike in Fig. 3.2, due to abundance of traps
with long release time, the GFs do not asymptotically converge toward a Gaussian form.

We also note that for large t at any given x, Eq. (3.29) has a power-law tail ∝ t−3/2.
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This property is generic for continuous trap density distributions leading to small-p power-law

singularities in Σ(p). For example, taking the density of the release rates as a power law in B,

ρ(B) =
sin(πs)

π

ρs
Bs

, (3.30)

where s is the corresponding exponent, 0 < s < 1, we obtain Σ(p) = ρsp
−s, and the large-t

asymptotic of the GF at a fixed finite x scales as

g(x, t) ∝ ts−2. (3.31)

Such a power law is an essential feature of continuous distribution (3.30) of the detachments

rates; it cannot be reproduced by a discrete set of rates Bi which always produce an exponential

tail.

3.4 Filtration under unfavorable conditions

3.4.1 Multitrap model with saturation

The considered linearized filtration model presented by Eq. (3.20) can be used to

analyze filtration of identical particles in small concentrations and over limited time interval as

long as the trapped particles do not affect the filter performance. However, unless the model is

used to simulate tracer particle dynamics in which no actual trapping occurs, it is unlikely that

the model remains valid as the number of trapped particles grows.

Indeed, one expects that a trapped particle changes substantially the probability for

subsequent particles to be trapped in its vicinity. Under favorable filtering conditions charac-

terized by filter ripening [63, 64], the probability of subsequent particle trapping increases with

time as the number of trapped particles ni grows. On the other hand, under unfavorable filtering
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conditions, where the Debye screening length is large compared to the trap size `, for charged

particles one expects trapping probabilities Ai(ni) to decrease with ni.

If repulsive force between particles is large, we can assume that only one particle is

allowed to be captured in each trap. Subsequently, a single trap can be characterized by an

attachment rate Ai when it is empty and a detachment rate Bi when it is occupied, and the

mean-field trapping/release dynamics for a given group of trapping sites can be written as

ṅi = C Ai(1− ni)−Bini. (3.32)

Note that this equation is non-linear because it contains the product of Cni.

Previously, similar filtering dynamics was considered in a number of publications (see

Refs. [51] and [52] and references therein). In the present work, we allow for a possibility of

groups of traps differing by the rate parameters Ai and Bi. The distribution of rate parame-

ters can also be viewed as an analytical alternative of the computer-based models describing a

network of pores of varying diameter[54, 56, 57].

Our mean-field transport model is completed by adding the kinetic equation for the

motion of free particles with concentration C,

Ċ + vC ′ +

m∑
i=1

Niṅi = 0, (3.33)

which has the same form as the linearized equations [Eq. (3.20)] considered in Sec. 3.3.4.

We note that for shallow traps with large release ratesBi, the non-linearity inherent in

Eq. (3.32) is not important for sufficiently small suspended particle concentrations C. Indeed,
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if C is independent of time, the solution of Eq. (3.32) saturates at

ni(C) =
CAi

Bi + CAi
. (3.34)

For small free-particle concentration C, or for any C and large enough Bi, the trap population

is small compared to 1, and the non-linear term in Eq. (3.32) can be ignored.

Therefore, as discussed in relation with the linearized multitrap model [see Sec. 3.3A

and Eq. (3.20)], the effect of shallow traps is to introduce dispersivity of the arrival times of

the particles on different trajectories. For this reason, we are free to drop the dispersivity term

[cf. the CDE model, Eq. (3.1)], and use a simpler convection-only model (3.33) with several

groups of traps with density Ni per unit water volume, characterized by the relaxation parame-

ters Ai and Bi.

3.4.2 General properties: Stable filtering front

The constructed non-linear equations [Eqs. (3.32) and (3.33)] describe complicated

dynamics which is difficult to understand in general. Here, we introduce the front velocity, a

parameter that characterizes the speed of deterioration of the filtering capacity.

Consider a semi-infinite filter, with the filtering medium initially clean, and the con-

centration C(0, t) = CA of suspended particles at the inlet constant. After some time, the

concentration of deposited particles near the inlet reaches the dynamical equilibrium ni(CA)

[Eq. (3.34)] and, on average, the particles will no longer be deposited there. At a given inlet

concentration, the filtering medium near the inlet is saturated with deposited particles. On the

other hand, sufficiently far from the inlet, the filter is still clean. On general grounds, there

should be some crossover between these two regions.

The size of the saturated region grows with time [see Fig. 3.4]. The corresponding
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front velocity vA ≡ v(CA) can be easily calculated from the particle balance equation,

vACA + vA
∑
i

Nini(CA) = vCA. (3.35)

This equation balances the number of additional particles needed to increase the saturated region

by δx = vAδt on the left, with the number of particles brought from the inlet on the right [see

Fig. 3.4]. The same equation can also be derived if we set C = C(x− vAt), ni = ni(x− vAt)

and integrate Eq. (3.33) over the entire crossover region. The trapped particle density saturates

as given by Eq. (3.34), and the resulting front velocity is

v(CA) =
v

1 +
∑
i

NiAi
AiCA +Bi

. (3.36)

This is a monotonously increasing function of CA: larger inlet concentration CA leads to higher

front velocity, which implies that the filtering front is stable with respect to perturbations. In-

deed, in Appendix we show that the velocity vAB of a secondary filtering front with the inlet

concentration CB > CA (see Fig. 3.5), moving on the background of equilibrium concentration

of free particles CA, is higher than vA, i.e., vAB > vA. Thus, if for some reason the original

filtering front is split into two parts, moving with the velocities vA and vAB , the secondary front

will eventually catch up, restoring the overall front shape.

We emphasize that the existence of the stable filtering front is in sharp contrast with

the linearized filtering problem [see Eq. (3.20)], where the propagation velocity v0 [Eq. (3.25)]

is independent of the inlet concentration, and any structure is eventually washed out dispersively

(the width of long-time GF does not saturate with time). Also, in the case of the filter ripening,

the nonlinear term in Eq. (3.32) will be negative and thus would prohibit the filtering front
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Figure 3.4: Solid line shows the free particle concentration near a filtering front. Dashed line
shows the front shifted by ∆x; the additional free and trapped particles in the shaded region are
brought from the inlet [see Eq. (3.35)]. See Eq. (3.52) for exact front shape.

solutions due to the fact that the secondary fronts move slower, vAB < vA. The non-linear

problem with saturation is thus somewhat analogous to Korteweg-de Vries solitons where the

dispersion and nonlinearity compete to stabilize the profile[65, 66].

3.4.3 Exactly solvable case

3.4.3.1 General solution

Compared to the linear case presented in Sec. 3.3, the physics behind the non-linear

equations [Eqs. (3.32) and (3.33)] is much more complicated. However, the structure of these

equations immediately indicates that non-linearity reduces filtering capacity because trapping

sites could saturate in this model [see Eq. (3.34)]. While the relevant equations can also be

solved numerically, a thorough understanding of the filtering system, especially with large or

infinite number of traps, is difficult to achieve.
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Figure 3.5: Free particle concentration C(x, t) with two filtering fronts. The initial front moves
on the background of clean filter and leaves behind the equilibrium filtering medium with C =
CA. The secondary front with higher inlet concentration CB is moving on partially saturated
medium. With nonlinearity as in Eq. (3.32), the secondary front is always faster, vAB > vA; the
two fronts will eventually coalesce into a single front.
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To gain some insight about the role of the different parameters in the filtering process,

we specifically focus on the non-linear models presented by Eqs. (3.32) and (3.33) which can

be rendered into a linear set of equations, very similar to the linear multitrap model [Eq. (3.20)].

To this end, we consider the case where all trapping sites have the same trapping cross sections,

that is, all Ai = A in Eq. (3.32). If we introduce the time integral

u(x, t) ≡
∫ t

0
C(x, t′)dt′, (3.37)

then Eq. (3.32) after a multiplication by expAu can be written as

∂t

(
nie

Au
)

+Bi

(
nie

Au
)

= ∂t

(
eAu
)
. (3.38)

Clearly, these are a set of linear equations,

ȧi +Biai = ẇ, (3.39)

with the following variables

w ≡ w(x, t) = eAu, ai ≡ ai(x, t) = niw. (3.40)

Note that Eq. (3.33) can also be written as a set of linear equations in terms of these variables.

If we integrate Eq. (3.33) over time, we find

u̇+ vu′ +
m∑
i=1

Nini = 0, (3.41)

where we assumed initially clean filter, C(x, 0) = ni(x, 0) = 0. Considering that ẇ = Au̇w
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and w′ = Au′w, we obtain

ẇ + vw′ +A
m∑
i=1

Niai = 0. (3.42)

The main difference of the linear Eqs. (3.39) and (3.42) from Eqs. (3.20) is in their

initial and boundary conditions,

w(x, 0) = 1, ai(x, 0) = 0, (3.43)

w(0, t) = eAu0(t), u0(t) ≡
∫ t

0
dt′C(0, t′). (3.44)

Note that with the time-independent concentration of the particles in suspension at the inlet, i.e.,

C(0, t) = C0, boundary condition (3.44) gives a growing exponent,

w0(t) ≡ w(0, t) = eAC0t. (3.45)

The derived equations can be solved with the use of the Laplace transformation. De-

noting w̃ ≡ w̃(x, p) = Lp{w(t)} and eliminating the Laplace-transformed trap populations

ñi(x, p) ≡ Lp{ni(x, t)}, we obtain

(pw̃ − 1)
[
1 + Σ(p)

]
+ vw̃′ = 0, Σ(p) ≡ A

∑
i

Ni

p+Bi
. (3.46)

The response function Σ(p) is identical to that in Eq. (3.22), and for the case of continuous trap

distribution we can also introduce the effective density of traps, ρ(B) ≡ A
∑

iNiδ(B−Bi). The

solution of Eq. (3.46) and the Laplace-transformed boundary condition [Eq. (3.44)] becomes

w̃ =
1

p
+

[
w̃0(p)− 1

p

]
e−[1+Σ(p)]px/v, (3.47)
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where w̃(0, p) = w̃0(p). Employing the same notation as in Eq. (3.21), the real-time solution of

Eqs. (3.39) and (3.42) with the boundary conditions [Eqs. (3.43) and (3.44)] can be written in

quadratures,

w(x, t) = 1 +

∫ t

0
dt′
[
w0(t− t′)− 1

]
g(x, t′). (3.48)

The time-dependent concentration can be restored from here with the help of logarithmic deriva-

tive,

C(x, t) =
1

A

∂ lnw(x, t)

∂t
. (3.49)

3.4.3.2 Structure of the filtering front

In the special case C(0, t) = C0 = const, the integrated concentration [Eq. (3.37)] is

linear in time at the inlet, u0(t) = C0t, and w(0, t) grows exponentially [see Eq. (3.45)]. This

exponent determines the main contribution to the integral in Eq. (3.48) for large t and x. Indeed,

in this case we can rewrite Eq. (3.48) exactly as w(x, t) = 1 + J(C0)− J(0), where

J(C0) ≡ eAC0t

∫ t

0
dt′ e−AC0t′g(x, t′). (3.50)

Note that J(0) is proportional to the solution of the linearized equations [Eq. (3.20)] with time-

independent inlet concentration C(0, t) = const [see Eq. (3.6)]. The corresponding front is

moving with the velocity v0 [Eq. (3.25)] and is widening over time [Eqs. (3.26) and (3.27)].

Thus, for x/v0 − t positive and sufficiently large, this contribution to w(x, t) is small and can

be ignored. In the opposite limit of large negative x/v0 − t, J(0) = 1, which exactly cancels

the first term in Eq. (3.48).

On the other hand, the term J(C0) grows exponentially large with time. At large

enough t, the integration limit can be extended to infinity, and the integration in Eq. (3.50)
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becomes a Laplace transformation, thus

w(x, t) ≈ 1 + eAC0t

∫ ∞
0

dt′ e−AC0t′g(x, t′)

= 1 + ep0t e−[1+Σ(p0)]p0x/v, p0 ≡ AC0. (3.51)

This results in the following free-particle concentration [see Eq. (3.49)],

C(x, t) =
C0

e[x/v(C0)−t]AC0 + 1
, (3.52)

and the occupation of the ith trap [Eqs. (3.39) and (3.40)],

ni(x, t) =
A

Bi +AC0
C(x, t), (3.53)

with the front velocity

v(C0) ≡ v

1 + Σ(AC0)
. (3.54)

Note that this coincides exactly with the general case presented in Eq. (3.36) if we set all Ai =

A.

3.4.3.3 Filtering front formation

The approximation in Eq. (3.51) is valid in the vicinity of the front, |x/v(C0)− t| .

(AC0)−1, as long as x/v0 − t is positive and large. Since v(C0) > v0 = v(0), this implies

x

[
1

v0
− 1

v(C0)

]
� 1

AC0
, (3.55)

which provides an estimate of the distance from the outlet where the front structure [Eqs. (3.52)

and (3.53)] is formed. The exactness of the obtained asymptotic front structure can be verified
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directly by substituting the obtained profiles in Eqs. (3.32) and (3.33).

The exact expressions in Eqs. (3.48) and (3.49) for the free-particle concentration can

be integrated completely in some special cases. Here we list two such results and demonstrate

the presence of striking similarities in the profilesC(x, t) between different models, despite their

very different rate distributions. Furthermore, we show that the corresponding exact solutions

[Eq. (3.49)] converge rapidly toward the general filtering front [Eq. (3.52)].

Single-trap model with straining. In Sec. 3.3.2, we found the explicit expression [Eq. (3.14)]

for the GF in the case of the linear model for two types of trapping sites with rates A1 and

B1 and permanent sites with the capture rate A0. The resulting GF (with A1 = A0 = A and

B1 = B) can be used in Eq. (3.48) to construct the solution for the corresponding model with

saturation,

Ċ + vC ′ +N0ṅ0 +N1ṅ1 = 0, (3.56)

ṅ0 = AC(1− n0), ṅ1 = AC(1− n1)−B1n1. (3.57)

Let us consider the special case of the inlet concentration, C(0, t) = C0 θ(T − t) θ(t),

constant over the interval 0 < t < T , and zero afterwards. The function w0(t) [see Eq. (3.44)]

is, then

w0(t) = exp[AC0 min(t, T )], (3.58)

and the integration in Eq. (3.48) gives

w = 1 + e−βξ
[
W (t)− eAC0TW (t− T )

]
, (3.59)

W (t) ≡ θ(t− ξ)
{[
eAC0(t−ξ) − 1

]
+

∫ t

ξ
dτ e−B1(τ−ξ)

[
eAC0(t−τ) − 1

] d

dτ
I0(ζτ )

}
, (3.60)
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where ξ ≡ x/v and ζτ is given in Eq. (3.15). The concentration of free particles, C(x, t), can

be now obtained through Eq. (3.49). The step function θ(t − x/v) included in w indicates that

it takes at least t = x/v for a particle to travel a distance x.

Figure 3.6 illustrates C(x, t) as a function of distance, x, at a set of discrete values of

time t = 1, 2, . . . ,16. The model parameters as indicated in the caption were obtained by fitting

the response function Σ(p) = AN0/p+AN1/(p+B1) at the interval 0.5 < p < 5.0 to that of

the model with the continuous trap distribution (see Fig. 3.7). The solid lines show the curves for

t ≤ T , while the dashed lines correspond to t > T ; they have a drop in the concentration near

the origin consistent with the boundary condition at the inlet. The exact profiles show excellent

convergence toward the corresponding front profiles computed using Eq. (3.52) (symbols).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

C
(x

,t
)

x

Figure 3.6: (Color online) Formation of the filtering front for the single-trap filtering model
with straining [Eq. (3.56)]. Lines show the free-particle concentration C(x, t) extracted from
Eq. (3.56) with T = 10, A = v = C0 = 1, N0 = 0.388, N1 = 3.60, and B1 = 4.97, for
t = 1, 2, . . . ,16. Symbols show the front solution [Eq. (3.52)] for t ≥ 10 with the front velocity
[Eq. (3.54)].

Model with square-root singularity. Let us now consider the non-linear model, [Eqs. (3.33)

54



and (3.32)] with the inverse-square-root continuous trap distribution, producing the response

function given in Eq. (3.28). The model is exactly solvable if we set all Ai = A, while allowing

the trap densities Ni vary with B appropriately.

The solution for the auxiliary function w corresponding to the inlet concentration

C(0, t) constant on an interval of duration T is obtained by combining Eqs. (3.48) and (3.58),

with the relevant GF [Eq. (3.29)]. The resulting x-dependent curves C(x, t) at a set of discrete

time values are shown in Fig. (3.7), along with the corresponding asymptotic front profiles

(symbols), for a parameter set as indicated in the caption. The solid lines show the curves for

t ≤ T . The dashed lines are for t > T ; they display a drop of the concentration near the origin

consistent with the boundary condition at the inlet. Again, the time-dependent profiles show

gradual convergence toward front solution (3.52).
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Figure 3.7: (Color online) As in Fig. 3.6 but for filtering model (3.33), Eq. (3.32) with continu-
ous inverse-square-root trap distribution [Eq. (3.28)]. Parameters are A = v = C0 = ρ1/2 = 1,
T = 10. Symbols show the front solution [Eq. (3.52)] for t ≥ 10 with front velocity (3.54).
The raising parts of the curves are almost identical with those in Fig. 3.6, while there are some
quantitative differences in the tails, consistent with the exponential vs power-law long-time
asymptotics of the corresponding solutions.

Note that the profiles in Figs. 3.6 and 3.7 are very similar even though the correspond-

ing trap distributions differ dramatically. This illustrates that parameter fitting from a limited set

of breakthrough curves is a problem ill-defined mathematically. The complexity and ambigu-

ity of the problem grow with increasing number of traps. In Sec. 3.5 we suggest an alternative

computationally simple procedure for parameter fitting using the data from several breakthrough

curves differing by the input concentrations.

3.5 Experimental implications

The suggested class of mean-field models is characterized by a large number of pa-

rameters. In the discrete case, these are the trap rate constants Ai, Bi and the corresponding
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concentrations Ni along with the flow velocity v. In the continuous case, the filtering medium

is characterized by the response function Σ(p) [see Eq. (3.22)]. In our experience, two or three

sets of traps are usually sufficient to produce an excellent fit for a typical experimental break-

through curve (not shown). This is not surprising, given the number of adjustable parameters.

On the other hand, from Eq. (3.54) it is also clear that the obtained parameters would likely

prove inadequate if we change the inlet concentration. The long-time asymptotic form of the

effluent during the washout stage would also likely be off.

One alternative to a direct non-linear fitting is to use our result given in Eq. (3.54) [or

Eq. (3.36)] for the filtering front velocity as a function of the inlet concentration, C0. With a

relatively mild assumption that all trapping rates coincide, Ai = A, one obtains the entire shape

of the filtering front [Eq. (3.52)]. Thus, fitting the front profiles at different inlet concentrations

C0 to determine the parameter A and the front velocity v(C0) can be used to directly measure

the response function Σ(p).

The suggested experimental procedure can be summarized as follows. (i) One should

use as long filtering columns as practically possible in order to achieve the front formation for

a wider range of inlet concentrations. (ii) A set of breakthrough curves C(L, t) for several

concentrations C0 at the inlet should be taken. (iii) For each curve, the front formation and the

applicability of the simplified model with all Ai = A should be verified by fitting with the front

profile [Eq. (3.52)]. Given the column length, each fit would result in the front velocity v(C0),

as well as the inverse front width p = AC0. (iv) The resulting data points should be used to

recover the functional form of Σ(p) and the solution for the full model.

It is important to emphasize that the applicability of the model can be controlled at

essentially every step. First, the time-dependence of each curve should fit well with Eq. (3.52).

Second, the values of the trapping rate A obtained from different curves should be close. Third,

the computed washout curves should be compared with the experimentally obtained break-
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through curves. The obtained parameters, especially the details of Σ(p) for small p, can be fur-

ther verified by repeating the experiments on a shorter filtering column with the same medium.

3.6 Conclusions

In this paper, we presented a mean-field model to investigate the transport of colloids

in porous media. The model corresponds to the filtration under unfavorable conditions, where

trapped particles tend to reduce the filtering capacity, and can also be released back to the flow.

The situation should be contrasted with favorable filtering conditions characterized by filter

ripening. These two different regimes can be achieved, e.g., by changing pH of the media if the

colloids are charged. The unfavorable filtering conditions are typical for filtering encountered

in natural environment, e.g., ground water with biologically active colloids such as viruses or

bacteria.

The advantages of the model are twofold. It not only fixes some technical problems in-

herent in the mean-field models based on the CDE but also admits analytical solutions with many

groups of traps or even with a continuous distribution of detachment rates. It is the existence

of such analytical solutions that allowed us to formulate a well-defined procedure for fitting the

coefficients. Ultimately, this improves predictive capability and accuracy of the model.

The need for the attachment and detachment rate distributions under unfavorable filter-

ing conditions has already been recognized in the field[51, 52, 53]. Previously it has been imple-

mented in computer-based models in terms of ad hoc distributions of the pore radii[54, 56, 57].

Such models could result in good fits to the experimental breakthrough curves. However, we

showed in Sec.3.5 that the relevant experimental curves are often insensitive to the details of the

trap parameter distributions, especially on the early stages of filtering.

On the other hand, our analysis of the filtering front reveals that the front velocity as
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a function of the inlet colloid concentration, v(C0) [Eq. (3.36)], is primarily determined by the

distribution of the attachment and detachment rates characterizing the filtering medium. We,

indeed, suggest that the filtering front velocity is one of the most important characteristics of the

deep-bed filtration as it is directly related to the loss of filtering capacity.

We have developed a detailed protocol to calculate the model parameters based on the

experimentally determined front velocity, v(C0). We emphasize that the most notable feature

of the model is its ability to distinguish between permanent traps (straining) and the traps with

small but finite detachment rate. It is the latter traps that determine the long-time asymptotics

of the washout curves.

The suggested model is applicable to a wide range of problems in which macro-

molecules, stable emulsion drops, or pathogenic micro-organisms such as bacteria and viruses

are transported in flow through a porous medium. While the model is purely phenomenological

in nature, the mapping of the parameters with the experimental data as a function of flow veloc-

ity and colloid size will shed light on the nature of trapping for particular colloids. The model

can also be extended to account for variations in attachment and detachment rates for various

colloids as needed to explain the steep deposition profiles near the inlet of filters[50].
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Chapter 4

Conclusions

In conclusion, during my Ph.D. work I have studied the interactions of the micro-

scopic biological particles in equilibrium system, where the focus is on the thermal fluctuation-

induced forces between two foreign inclusions in a biological fluid membrane, and in the non-

equilibrium system, where the transport and deposition dynamics of the virus like particles

(VLPs) in saturated porous media under unfavorable filtering conditions are modeled.

In the first work, we develop an exact method to calculate thermal Casimir forces

between inclusions of arbitrary shapes and separation, embedded in a fluid membrane whose

fluctuations are governed by the combined action of surface tension, bending modulus, and

Gaussian rigidity. Each objects shape and mechanical properties enter only through a charac-

teristic matrix, a static analog of the scattering matrix. We calculate the Casimir interaction

between two elastic disks embedded in a membrane. In particular, we find that at short separa-

tions the interaction is strong and independent of surface tension.

In the second work, we study the transport and deposition dynamics of colloids in

saturated porous media under unfavorable filtering conditions. As an alternative to traditional

convection-diffusion or more detailed numerical models, we consider a mean-field description in
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which the attachment and detachment processes are characterized by an entire spectrum of rate

constants, ranging from shallow traps which mostly account for hydrodynamic dispersivity, all

the way to the permanent traps associated with physical straining. The model has an analytical

solution which allows analysis of its properties including the long-time asymptotic behavior and

the profile of the deposition curves. Furthermore, the model gives rise to a filtering front whose

structure, stability, and propagation velocity are examined. Based on these results, we propose

an experimental protocol to determine the parameters of the model.

Although biological systems are consist of complex biological entities, with the proper

physics modeling and methods, we are able to simplify these complicated systems and unveil the

fundamental mechanisms behind them. These studies have greatly deepened our understandings

on the biological systems around us and will eventually lead people to uncover the enormous

interesting phenomena in the biology world.
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Appendix A

A.1 Elastic energy and effective surface tension of inclusion

We assume any point P on the membrane surface originally located at ~r = (x, y, z).

When the fluid membrane with a single inclusion fluctuates, the point P moves to the new

position P’ located at ~v ≡ (vx, vy, vz). Define ~u ≡ ~v − ~r as the vector displacement from P

to P’. Inside of the disk (circular inclusion), we denote ~ρ ≡ αr ≡ (ξ, η, ζ). This is stretched

coordinate. Actual disk radius becomes R ≡ αR0 when the strain is applied to the elastic

inclusion due to the effect of surface tension of the fluid membrane. The total energy is the sum

given by the following terms (up to quadratic order):

The first term describes the energy outside of the inclusions:

U0 ≡ σ0

{
−πR2 +

∫
|~ρ|>R d

2ρ
[
(∂ξuz)

2 + (∂ηuz)
2 + ∂ξux∂ηuy − ∂ξuy∂ηux

]
−R

∮ 2π
0 dφuρ(R,φ)+

}
+U

(B)
0

where U (B)
0 represents the bending energy of the fluid membrane which has the standard form

as

U
(B)
0 =

∫
|~ρ|>R

d2ρ

{
κ0

2

[
∂ξξuz + ∂ηηuz

]2
+ κ̄0(∂ξξuz∂ηηuz − (∂ξηuz)

2)

}
(A.1)
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The second term gives the line tension energy of the boundary

Uγ ≡ γ
∮ 2π

0
dφ
∣∣∂φ~ρ(R,φ)

∣∣ = γ

∮
dφ

{
R+ ur +

1

2R

[(
∂φur

)2
+
(
∂φuz

)2]}

The next two terms are the elastic uniform deformation energy associated the area change of the

inclusion

2Ud
E

=

∫
r<R0

d2r
∣∣∂x~v × ∂y~v∣∣ = πR2

0(α2 − 1)2 + 2α2(α2 − 1)

∫
d2r(∂ξux + ∂ηuy)

+α4

∫
d2r(∂ξux + ∂ηuy)

2

+α2(α2 − 1)

∫
d2r(∂ξuz)

2 + (∂ηuz)
2 + 2∂ξux∂ηuy − 2∂ξuy∂ηux

and elastic shear deformation energy associated the shape change of the inclusion:

2Us
Σ

=

∫
r<R0

d2r
|∂x~v · ∂y~v|2

|∂x~v|2|∂y~v|2
=

∫
r<R0

d2r(∂xuy + ∂yux)2

The last term U
(B)
i gives the bending energy of the inclusion which has the same form of

Eq. (A.1) except the different bending rigidities κ, κ̄ and region |~ρ| < R.

To zeroth order in ~u we have to minimize

U (0) = −πσ0R
2 + 2πγR+

E

2
πR2

0(α2 − 1)2,

which gives

− σ0 +
γ

αR0
+ E(α2 − 1) = 0, (A.2)

and

− 3γ + 2R(E + σ0) > 0 (A.3)
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where Eqs. (A.2) and(A.3) are obtained by using ∂αU (0) = 0 and ∂α,αU (0) > 0. Applying

Eq. (A.2), we find terms of linear order in ~u disappear as a result:

U (1) = −σ0R

∮
dφur + γ

∮
dφur + Eα(α2 − 1)R0

∮
dφur

=

[
−σ0 +

γ

R0
+ E(α2 − 1)

]
αR0

∮
dφur = 0

Terms of quadratic order in ~u can be separated into those depending on ux, uy and those de-

pending on uz ≡ u:

U‖ =
Σ

2

∫
r<R0

d2r(∂xuy + ∂yux)2 +
E

2

∫
r<R0

d2r(∂ξux + ∂ηuy)
2 + . . .

U⊥ =
σ0

2

∫
ρ>R

d2ρ(∇u)2 +
γ

2R

∮
dφ (u′φ)2

∣∣∣
ρ=R

+ Eα2(α2 − 1)

∫
r<R0

d2r (∇u)2 + U
(B)
i + U

(B)
0

=
σ0

2

∫
ρ>R

d2ρ(∇u)2 +
γ

2R

∮
dφ (u′φ)2

∣∣∣
ρ=R

+
E

2
(α2 − 1)

∫
ρ<R

d2ρ (∇u)2 + U
(B)
i + U

(B)
0

=
σ0

2

∫
ρ>R

d2ρ(∇u)2 +
γ

2R

∮
dφ (u′φ)2

∣∣∣
ρ=R

+
1

2

(
σ0 −

γ

R

)
︸ ︷︷ ︸

σ

∫
ρ<R

d2ρ (∇u)2 + U
(B)
i + U

(B)
0

(A.4)

As mentioned in the Sec. 2.2, the fluid membrane does not transmit the in-plane stress pertur-

bations. Thus, only the fluctuations in z direction matters in our case. As a result of Eq. (A.4),

we define σ = σ0 − γ/R as effective inclusion surface tension of the inclusion. Clearly, the σ

and σ0 differ by the amount of additional pressure due to line tension, γ/R. The conclusion can

also be applied to a fluid membrane with more than one inclusions.
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A.2 Geometry

R

r
r´

´

Figure A.1: two-disk geometry and notations: r = (r cos θ, r sin θ), ~ρ = (R− ρ cosϕ, ρ sinϕ)

Here, we used ~ρ ′ = −R + r, (ρ′)2 = R2 + r2 − 2Rr cos θ, and r′ = R + ~ρ,

(r′)2 = R2 + ρ2 − 2ρR cosϕ. To convert between the angles, use

cosϕ′ =
R− r cos θ

ρ′
=

R− a cos θ

(R2 + a2 − 2Ra cos θ)1/2
, sinϕ′ =

r sin θ

ρ′
=

a sin θ

(R2 + a2 − 2Ra cos θ)1/2
,

cos θ′ =
R− ρ cosϕ

r′
=

R− a cosϕ

(R2 + a2 − 2Ra cosϕ)1/2
, sin θ′ =

r sinϕ

r′
=

a sinϕ

(R2 + a2 − 2Ra cosϕ)1/2
.
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A.3 Derivation of Eq. (2.15)

This appendix provides the mathematical proof that Eq. (2.15) is equivalent to Eq. (2.10).

First, substituting Eq. (2.11) into Eq. (2.10), we obtain

β∆F = −1

2

∑
n>0

(−λ)n

n
Tr[V̂l1Ĝ0V̂l2Ĝ0 · · · V̂li−1Ĝ0V̂liĜ0 · · · V̂lnĜ0] (A.5)

where 1 ≤ li ≤ k. The trace is invariant under the cyclic permutation of (l1l2 · · · ln). Thus,

if we want to express the result summing over all the terms with the same trace by fixing the

first letter of l1, in general, we should multiply a factor n due to the n possibilities of the cyclic

permutations of (l1l2 · · · ln). Next, let us group together the subsequent terms with s different

indexes in Eq. (A.5),

− 1

2

(−λ)n

n
V̂l1G0V̂l1G0 · · · V̂l1G0︸ ︷︷ ︸

(V̂l1G0)n1

V̂l2G0 · · · V̂l2G0︸ ︷︷ ︸
(V̂l2G0)n2

· · · V̂liG0 · · · V̂liG0︸ ︷︷ ︸
(V̂liG0)ni

· · · V̂lsG0 · · · V̂lsG0︸ ︷︷ ︸
(V̂lsG0)ns

(A.6)

where li 6= li+1, ls 6= l1 and 1 ≤ ni ≤ ∞,
∑

i ni = n. For the fixed s larger than 1, the total

sum over all possible ni in Eq. (A.6) can be written as

−1

2

(−λ)s

s
V̂l1(G0 − λG0V̂l1G0 + · · · )︸ ︷︷ ︸∑

n1>0(−λ)n1−1(V̂l1G0)n1

V̂l2(G0 − λG0V̂l2G0 + · · · )︸ ︷︷ ︸∑
n2>0(−λ)n2−1(V̂l2G0)n2

· · · V̂ls(G0 − λG0V̂lsG0 + · · · )︸ ︷︷ ︸∑
ns>0(−λ)ns−1(V̂lsG0)ns

(A.7)

which is equivalent to

− 1

2

(−λ)s

s
V̂l1Ĝ

(1)
λ V̂l2Ĝ

(2)
λ · · · V̂lsĜ

(s)
λ (A.8)

here again if we express the result summing over the terms with the same trace quantity by

fixing the first letter l1, we should multiply a factor m due to the m possibilities of the even

permutations of the subsets. By doing so, we can easily see that the factors 1/n of Eq. (A.5) and
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1/m of Eq. (A.6) both become 1 after multiplying n and m respectively. For m = 1, Eq. (A.6)

gives

− 1

2

∑
n>0

(−λV̂l1Ĝ
(l1)
λ )n

n
=

1

2
log(1 + λV̂l1Ĝ

(l1)
λ ) (A.9)

which is corresponding to the self-energy terms. Combining Eqs. (A.8) and (A.9), we obtain

the Casimir energy

β∆Fλ =
1

2

∑
{l1}

Tr[log(1 + λV̂l1Ĝ
(l1)
λ )]−

∑
s>1

(−λ)s

2s

∑
{li}

Tr V̂l1G
(l1)
λ V̂l2G

(l2)
λ . . . V̂lsG

(ls)
λ ,
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A.4 Boundary conditions

In this Appendix we find that the normal modes of the Hamiltionian given in Eq. (2.2)

can be written as

H =
1

2

∫
dA σ(∇u)2 + (K + K̄)(∇2u)2 − K̄∂i∂ju∂i∂ju+

∮
S
dl

γ

2r2
(u′θ)

2

=
1

2

∫
dA σ(∇u)2 +K(∇2u)2 + 2K̄(uxxuyy − uxyuxy) +

∮
S
dl

γ

2r2
(u′θ)

2

(A.10)

We Minimize Eq. (A.10) by using variation method and find

δH =

∫
dA

{
∇ · (δuσ∇u)− δu∇ · (σ∇u)

+ ∇ · (κ∇2u∇δu)−∇ · (δu∇(κ∇2u) + δu∇ · (∇κ∇2u))

+ (∂y(δuyκ̄uxx)− ∂y(δu∂y(κ̄uxx)) + δu∂yy(κ̄uxx))

+ (∂x(δuxκ̄uyy)− ∂x(δu∂x(κ̄uyy)) + δu∂xx(κ̄uyy))

− (∂y(δuxκ̄uxy)− ∂x(δu∂y(κ̄uxy)) + δu∂xy(κ̄uxy))

− (∂x(δuyκ̄uxy)− ∂y(δu∂x(κ̄uxy)) + δu∂xy(κ̄uxy))

}

+

∮
dl
γ

r2

{
∂θ(δu∂θu)− (δu∂θθu)

}
(A.11)
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or in polar coordinates we have

δH = 2

∫
dA

{
δu[−∇ · (σ∇u) +∇2(κ∇2u)]

+
1

r
∂r[δu(rσur − rκ∂r∇2u) + κ̄∂rθθ(

u

r
) + γ∂θθu]

+
1

r
∂r[δur(κr∇2u+ κ̄(

uθθ
r

+ ur))] + . . .

}
,

(A.12)

where the subscripts indicate partial derivatives. We only keep the radial derivatives associ-

ated with boundary terms because of the cylindrical symmetry of the embedded inclusions. In

Eq. (A.12) the linear differential operator L̂ can be written as,

L̂ = κ∇4 − σ∇2 (A.13)

if κ(r) and σ(r) are uniform in the region. The eigenstates of the normal modes un(r) asscoiated

with the linear differential operator L̂ can be obtained from the following equation,

L̂un = Enun (A.14)

by satisfying the essential and natural boundary conditions which can be found in Eq. (A.12),

1. un continous

2. ∂run continous

3. rσ∂run − rκ∂r(∇2un) + κ̄∂rθθ(
un
r

)− γ

r
∂θθun continous

4. rκ∇2un + κ̄(
1

r
∂θθun + ∂run) continous. (A.15)
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A.5 Simplification of the surface integral

Assume that u and v obeys the correct boundary conditions and that σ∇2u−κ∇4u =

0 inside of the disk and σ0∇2v − κ0∇4v = 0 outside the disk respectively. Consider

λvV̂u ≡ λ

∫
A
d2r{σ1∇v · ∇u+ κ1∇2v∇2u+ κ̄1(vxxuyy + vyyuxx − 2vxyuxy) +

∮
dl
γ

r2
∂θu∂θv}

=

∫
d2r
{
σ[∇ · (v∇u)− v∇2u] + κ[∇ · (∇v∇2u)−∇ · (v∇∇2u) + v∇4u]

−σ0[∇ · (u∇v)− u∇2v]− κ0[∇ · (∇u∇2v)−∇ · (u∇∇2v) + u∇4v]

+(κ̄− κ̄0)[(vxuyy)x − (vxuxy)y + (vyuxx)y − (vyuxy)x] +

∮
dl
γ

r2
[∂θ(v∂θu)− v∂θθu]

}
=

∮
dl
{
σv∂nu− σ0u∂nv + κ(∂nv∇2u− v∂n∇2u)− κ0(∂nu∇2v − u∂n∇2v)

+(κ̄− κ̄0)[nx(vxuyy − vyuxy) + ny(vyuxx − vxuxy)] +
γ

r2
[∂θ(v∂θu)− v∂θθu]

}
,

(A.16)

The term with κ−κ0 can be rewritten in the polar coordinates as follows [add a factor a(κ̄−κ̄0)]:

∮
dl[nx(vxuyy − vyuxy) + ny(vyuxx − vxuxy)] =

∮
dl
{vr
r2
uθθ +

vr
r
ur −

v

r3
uθθ +

v

r2
urθθ

}

70



Overall, using the boundary conditions on u, we have

λvV̂u =

∮
dl
{
σv∂nu− σ0u∂nv −

γ

r2
v∂θθu+ κ(∂nv∇2u− v∂n∇2u)

−κ0(∂nu∇2v − u∂n∇2v) + (κ̄− κ̄0)
[vr
r2
uθθ +

vr
r
ur −

v

r3
uθθ +

v

r2
urθθ

]}

=

∮
dl
{
v
[ Q3︷ ︸︸ ︷
σur − κ(∇2u)r −

κ̄

r3
uθθ +

κ̄

r2
urθθ −

γ

r3
∂θθu

]
+ vr

[ Q4︷ ︸︸ ︷
κ(∇2u) +

κ̄

r2
uθθ +

κ̄

r
ur

]
−σ0u∂nv − κ0(∂nu∇2v − u∂n∇2v)− κ̄0

[vr
r2
uθθ +

vr
r
ur −

v

r3
uθθ +

v

r2
urθθ

]}
=

∮
dl
{
v
[
σ0ur − κ0(∇2u)r −

κ̄0

r3
uθθ +

κ̄0

r2
urθθ

]
0

+ vr

[
κ0(∇2u) +

κ̄0

r2
uθθ +

κ̄0

r
ur

]
0

−σ0u∂nv − κ0(∂nu∇2v − u∂n∇2v)− κ̄0

[vr
r2
uθθ +

vr
r
ur −

v

r3
uθθ +

v

r2
urθθ

]}
= κ0

∮
dl
{
v
[
α2

0u− (∇2u)
]
r

+ vr
[
(∇2u)− α2

0u
]
− (∇2v)ur + (∇2v)r u

}
,

(A.17)

Now, we have u obeys σ0∇2u − κ0∇4u = 0 outside the disk. Recall that the general solution

of GF is the combination of radial and modified Bessel functions. Let us write u = p + q and

v = p̃+ q̃, where∇2p = 0 and ∇2q = α2
0q. Using κ0α

2
0 = σ0, Eq. (A.17) becomes

λvV̂u = κ0α
2
0

∮
dl
{
v pr − vr p+ q̃r u− q̃ur

}
= σ0

∮
dl
{

(p̃+ q̃)pr − (p̃r + q̃r)p+ q̃r(p+ q)− q̃(pr + qr)
}

= σ0

∮
dl
{
p̃ pr − p̃r p+ q̃r q − q̃ qr

}
= σ0

∮
dl
{
W [p, p̃] +W [q̃, q]

}
(A.18)

Notice that the expression is teh sum of Wronskians, W [v, u] = v′u− u′v.
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A.6 Evaluation of the scattering matrix elements

Given r, r′, the GF can be generally written as follows

2πσ0G
in
λ (r, r′) =

∑
mµ,αβ

c(αβ)
mµ f

(α)
mµ(r)g(β)

mµ(r′),

where

f
(1)
mµ(r) = rm(cosmθ, sinmθ)µ, f (2)

mµ(r) = Im(αr)(cosmθ, sinmθ)µ,

g
(1)
mµ(r′) = (r′)−m(cosmθ′, sinmθ′)µ, g(2)

mµ(r′) = Km(α0r
′)(cosmθ′, sinmθ′)µ.

From Eq. (A.16), we find that the action of V̂ can be written as follows

vV̂u = a

∮
dθ
∑
i

v
←−
A i
−→
B iu,

where
←−
A i,
−→
B i are the differential operators acting to the function on the left/right. Then, the

leading-order Casimir energy becomes

C = −λ
2

2
Tr
[
V̂(a)Ĝ

(a)
λ (r, r′)V̂(b)Ĝ

(b)
λ (~ρ, ~ρ ′)

]
= −λ

2a2

2σ2
0

∮
dθ

2π

∮
dϕ

2π
∑
mµ,αβ

∑
nν,α′β′

∑
i,j c

αβ
mµc

α′β′
nν Tr

[
←−
A

(a)
i

−→
B

(a)
i f

(a,α)
mµ (r)g

(a,β)
mµ (r′)

←−
A

(b)
j

−→
B

(b)
j f

(b,α′)
nν (~ρ)g

(b,β′)
nν (~ρ ′)

]
= − λ2

2σ2
0

∑
mµ,α

∑
nν,α′

∑
β′,i

cα
′β′
nν a

∮
dθ
2π

[
g
(b,β′)
nν (~ρ ′)

←−
A

(a)
i

−→
B

(a)
i f

(a,α)
mµ (r)

]
︸ ︷︷ ︸

(σ0/λ)Λa,α
′α

nν,mµ

∑
β,j

cαβmµa
∮ dϕ

2π

[
g
(a,β)
mµ (r′)

←−
A

(b)
j

−→
B

(b)
j f

(b,α′)
nν (~ρ)

]
︸ ︷︷ ︸

(σ0/λ)Λb,αα
′

mµ,nν

= −1

2

∑
mµ,α

∑
nν,α′

Λa,α
′α

nν,mµΛb,αα
′

mµ,nν .
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Now, the Casimir energy is expressed in terms of the following simple integrals:

Λa,α
′α

nν,mµ ≡ λa

σ0

∑
β′

cα
′β′
nν

∑
i

∮
dθ

2π

[
g(b,β′)
nν (~ρ ′)

←−
A

(a)
i

−→
B

(a)
i f (a,α)

mµ (r)
]
, (A.19)

Λb,αα
′

mµ,nν ≡ λb

σ0

∑
β

cαβmµ
∑
j

∮
dϕ

2π

[
g(a,β)
mµ (r′)

←−
A

(b)
j

−→
B

(b)
j f (b,α′)

nν (~ρ)
]
. (A.20)

Substituting Eq. (A.18) into Eq. (A.19), we obtain

Λa,α
′α

nν,mµ ≡ λa

σ0

∑
β′

cα
′β′
nν

∑
i

∮
dθ

2π

[
g(b,β′)
nν (~ρ ′)

←−
A

(a)
i

−→
B

(a)
i f (a,α)

mµ (r)
]

= cα
′1
nν δα,1 a

∮
dθ

2π
W [f (a,1)

mµ (r), g(b,1)
nν (~ρ ′), ]︸ ︷︷ ︸

C
(1)
nm,ν

+δα,2c
α′2
nν a

∮
dθ

2π
W [g(b,2)

nν (~ρ ′), f (a,2)
mµ (r)]︸ ︷︷ ︸

C
(2)
nm,ν

,

(A.21)

where we only get diagonal terms µ = ν. Note that the components of the GF in Eq. (A.18) are

taken outside of the disk; they have the general form

Gλ(r, r′) =
1

2πσ0

∑
mµ,αβ

c(αβ
mµ f

(α)
mµ(r)g(β)

mµ(r′),

g(1)
mµ(r′) =

1

(r′)m
(cosmθ′, sinmθ′)µ, g(2)

mµ(r′) = Km(α0r
′)(cosmθ′, sinmθ′)µ,

f (1)
mµ(r) =

1

(r)m
(cosmθ, sinmθ)µ, f (2)

mµ(r) = Km(α0r)(cosmθ, sinmθ)µ;

the remaining components f (3)
mµ(r) ∝ Im(α0r) and f (4)

mµ(r) ∝ rm will not contribute to the

Wronskians.

We will use the series expansions. Fig. A.2 shows the geometry of the membrane

system. Here, we used ~ρ ′ = −R + r, (ρ′)2 = R2 + r2 − 2Rr cos θ, and r′ = R + ~ρ,
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(r′)2 = R2 + ρ2 − 2ρR cosϕ. To convert between the angles, use

cosϕ′ =
R− r cos θ

ρ′
=

R− a cos θ

(R2 + a2 − 2Ra cos θ)1/2
, sinϕ′ =

r sin θ

ρ′
=

a sin θ

(R2 + a2 − 2Ra cos θ)1/2
,

cos θ′ =
R− ρ cosϕ

r′
=

R− a cosϕ

(R2 + a2 − 2Ra cosϕ)1/2
, sin θ′ =

r sinϕ

r′
=

a sinϕ

(R2 + a2 − 2Ra cosϕ)1/2
.

R

r
r´

´

Figure A.2: two-disk geometry and notations: r = (r cos θ, r sin θ), ~ρ = (R− ρ cosϕ, ρ sinϕ)

− ln ρ′ = − ln(R2 + r2 − rR cos θ)1/2 = − ln(R) +
∑
m>0

rm cosmθ

mRm
,

cosϕ′

ρ′
=

R− r cos θ

(R2 + r2 − rR cos θ)
=
∑
m≥0

rm cosmθ

Rm+1
,

sinϕ′

ρ′
=
∑
m>0

rm sinmθ

Rm+1
,

cos 2ϕ′

ρ′2
= =

∑
m≥0

(m+ 1)rm cosmθ

Rm+2
,

sin 2ϕ′

(ρ′)2
=
∑
m>0

(m+ 1)rm sinmθ

Rm+2
,

cosnϕ′

ρ′n
= =

∑
m≥0

Cm+n−1
m rm cosmθ

Rm+n
,

sinnϕ′

ρ′n
=
∑
m>0

Cm+n−1
m rm sinmθ

Rm+n

to obtain

C
(1)
0m,ν = 0, C

(1)
1m,ν = − m

Rm+1
, C

(1)
2m,ν = −m(m+ 1)

Rm+2
, C(1)

nm,ν = −mC
m+n−1
m

Rm+n
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Similarly, the expansions

K0(α0ρ
′) = K0(α0R)I0(α0r) + 2

∑
m>0

Km(α0R)Im(α0r) cosmθ

K1(α0ρ
′)cosϕ′ = K1(α0R)I0(α0r) +

∑
m>0

[Km−1(α0R) +Km+1(α0R)]Im(α0r) cos(mθ),

K1(α0ρ
′)sinϕ′ =

∑
m>0

[Km+1(α0R)−Km−1(α0R)]Im(α0r) sin(mθ);

K2(α0ρ
′)cos 2ϕ′ = K2(α0R)I0(α0r) +

∑
m≥1

[Km−2(R) +Km+2(R)]Im(α0r) cosmθ

K2(α0ρ
′)sin 2ϕ′ =

∑
m≥1

[Km+2(α0R)−Km−2(α0R)]Im(α0r) sinmθ

Kn(α0ρ
′)cosnϕ′ = Kn(α0R)I0(α0r) +

∑
m≥1

[Km−n(R) +Km+n(R)]Im(α0r) cosmθ

Kn(α0ρ
′)sinnϕ′ =

∑
m≥1

[Km+n(α0R)−Km−n(α0R)]Im(α0r) sinmθ

give [note that K−m(z) = Km(z)]:

C
(2)
00,ν = δν0K0(α0R), C

(2)
0m,ν = δν0Km(α0R), m > 0;

C
(2)
10,ν = δν0K1(α0R), C

(2)
1m,ν =

Km+1(α0R) + (−1)νKm−1(α0R)

2
, m > 0;

C
(2)
20,ν = δν0K2(α0R), C

(2)
2m,ν =

Km+2(α0R) + (−1)νKm−2(α0R)

2
, m > 0;

C
(2)
n0,ν = δν0Kn(α0R), C(2)

nm,ν =
Km+n(α0R) + (−1)νKm−n(α0R)

2
, m > 0

Now, come back to the infinite-area GF (2.22) immediately outside the disk,R> = r′,

R< = r:

2πσ0G
(a)
λ (r, r′) = A0(r′)− ln(r′) +B0(r′)K0(α0r)−K0(α0r

′)I0(α0r)

+
∑
m>0

{
Am(r′)

1

rm
+

1

m

rm

(r′)m
+Bm(r′)Km(α0r)− 2Km(α0r

′)Im(α0r)

}
cosmφ.
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We can write

Am(r′) =
Afm

(r′)m
+AgmKm(α0r

′), m > 0; Bm(r′) =
Bf
m

(r′)m
+Bg

mKm(α0r
′), (A.22)

which corresponds to

cα
′1
nν = (δα′1A

f
n + δα′2A

g
n), cα

′2
nν = (δα′1B

f
n + δα′2B

g
n).

Overall, we have [see Eq. (A.21)] for the matrix components in terms of α′, α (no summation

in ν)

Λ̂nν,mµ = δνµ

 AfnC
(1)
nm,ν Bf

nC
(1)
nm,ν

AgnC
(2)
nm,ν Bg

nC
(2)
nm,ν



Λ̂0,0 = K0

 0 0

Ag0 Bg
0

 , Λ̂0m,ν = Km

 0 0

Ag0 Bg
0

 ,

Λ̂1,0 = K1

 0 0

Ag1 Bg
1

 , Λ̂1m,ν =

 −Af1mR−m−1 −Bf
1mR

−m−1

Ag1(Km+1+(−1)νKm−1)
2

Bg1 (Km+1+(−1)νKm−1)
2

 ,

Λ̂2,0 = K2

 0 0

Ag2 Bg
2

 , Λ̂2m,ν =

 −m(m+ 1)Af2/R
m+2 −m(m+ 1)Bf

2 /R
m+2

Ag2(Km+2+(−1)νKm−2)
2

Bg2 (Km+2+(−1)νKm−2)
2

 ,

Λ̂n,m = K2

 0 0

Agn Bg
n

 , Λ̂nm,ν =

 −mC
n+m−1
m Afn/Rm+n −mCn+m−1

m Bf
n/Rm+n

Agn(Km+n+(−1)νKm−n)
2

Bgn(Km+n+(−1)νKm−n)
2

 .

Here Km ≡ Km(α0R).
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A.7 The full expressions of Af , Ag, Bf , Bg

Af=

IHm- 1L a2 m IΑ a
2
Α0 Κ0 Im+1Ha ΑLKmHa Α0L Ia2 IΑ2

Κ - Α0
2
Κ0M+ 2 m HΚ0- ΚLM+

Km+1Ha Α0L Ia Α HΚ - Κ0L Im-1Ha ΑL IΚ I-a
2
Α

2
+m

2
+mM-

Κ0 I-a
2
Α0

2
+m

2
+mMM- ImHa ΑL IΑ2

a
4
Κ IΑ0

2
Κ0- Α

2
ΚM+

2 a
2
Α0

2
Κ0 m HΚ - Κ0L+ 2 m

3 HΚ - Κ0L2 + 2 m
2 HΚ - Κ0L2MMMM �

Im Ia Α Im-1Ha ΑL IHΚ0- ΚLKm-1Ha Α0L IΚ Hm- 1L I-a
2
Α

2
+m

2
+mM-
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A.8 PFA

The Casimir energy between two parallel surfaces was derived in Ref. [20]. We use

Eq. (2.9) from the paper,

Fflat

kTA
=

∫
dDp

(2π)D
ln G̃d(p) +

1

2

∫
dp

(2π)D
ln

1−

[
G̃d(p, H)

G̃d(p)

]2
 (A.23)

where A is the D-dimensional area. Here we focus on the case of the two parallel lines with the

separation H immersed in 2-dimensional uniform membrane described by the Hamiltonian of

Eq. (2.2). The Green’s function is given by

G2(x, y) =

∫
d2p

(2π)2

exp i(pxx+ pyy)

κp4 + σp2
(A.24)

Using this expression, we can evaluate the Fourier transform of the GF defined as following

G̃2(p, H) =

∫
Gd(x, H) exp(ip · x)dDx

=

∫
dy

∫
dp′xdp

′
y

(2π)2

exp i(p′xH + p′yy)

κp′4 + σp′2
exp(ipy)

=
1

2σ

{
exp (−pH)

p
− exp (−

√
p2 + α2H)√

p2 + α2

}
(A.25)

where α =
√
σ/κ. Then, substituting Eq. (A.25) into Eq. (A.23) to calculate the free energy

density at short distance. In Eq. (A.23), the first term is independent on the separation H , thus,

we only calculate the integral of the 2nd term of the formula of our interest. In the following we

consider the Casimir energy density for two limiting cases:

• α→∞, surface tension energy dominated,

fS ≡
FS

kBT l
= 2× 1

2

∫ ∞
0

dp

2π
ln
[
1− exp(−2pH)

]
= − π

24H
(A.26)
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• α→ 0, bending energy dominated,

fB ≡
FB

kBT l
= 2× 1

2

∫ ∞
0

dp

2π
ln
[
1− exp(−2pH)(Hp+ 1)2

]
= −0.46

H
(A.27)
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Figure A.3: The interaction between curve edges is expressed as a sum over infinitesimal straight
line segments approximated as parallel.

Then integrating over the opposing contact line half circle yields (see Fig. A.3)

FPFA = 2

∫ H=2a+H0

H=H0

dy
f

H

= 2f

∫ π/2

0
dθ

a cos θ

(2a+H0)− 2a cos θ
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∫ π/2

0

cos θ

1− 2a
2a+H0

cos θ

=
2fa

2a+H0

∫ π/2

0

cos θ

1− k cos θ︸ ︷︷ ︸
I

(A.28)

where f = −π/24 for surface tension energy dominated and f = −0.46(bending only) for

bending energy dominated cases and k = 2a/(2a+H0). The integration of I is found to be

I =
−π
√
H0(H0+4a)

(H0+2a) + 2π

2 2a
H0+2a

√
H0(H0+4a)

H0+2a

(A.29)

Thus we obtain the Casimir energy using PFA

FPFA =
πf

2

2(H0 + 2a)−
√
H0(H0 + 4a)√

H0(H0 + 4a)

=
πf

2
(2

√
a

H0
− 1 +

3

4

√
H0

a
+ · · · ) (A.30)
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In the limiting case of surface tension energy dominated, we find

F (s)
PFA = −π

2

24

√
a

H0
+
π2

48
− π2

64

√
H0

a
+O (A.31)

In the limiting case of bending energy dominated, we find

F (B)
PFA = −1.44

√
a

H0
+ 0.72− 0.54

√
H0

a
+O (A.32)
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Appendix B

B.1 Velocity of an intermediate front.

Here we derive an inequality for the velocity vAB of an intermediate front interpolat-

ing between free-particle concentrations CA and CB [Fig. 3.5].

We first write the expressions for the filtering front velocities in clean filter, with the

inlet concentrations CA and CB > CA [cf. Eq. (3.35)],

(
v

vA
− 1

)
CA =

∑
i

Nini(CA),(
v

vB
− 1

)
CB =

∑
i

Nini(CB).

The velocity vAB of the filtering front interpolating between CA and CB [Fig. 3.5] is given by

(
v

vAB
− 1

)
(CB − CA) =

∑
i

Ni[ni(CB)− ni(CA)]. (B.1)

Combining these equations, we obtain

CB
vB
− CA
vA

=
CB − CA
vAB

. (B.2)

From here we conclude that the left-hand side (lhs) of Eq. (B.2) is positive. Solving for vAB
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and expressing the difference vAB − vA, we have

vAB − vA =
CB(vB − vA)(
CB
vB
− CA
vA

)
vB

. (B.3)

For the model with saturation [Eq. (3.32)], we saw that vB > vA, thus vAB > vA.
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