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Shared Subspace Models for Multi-Group Covariance

Estimation ∗

Alexander Franks and Peter Hoff

October 22, 2019

Abstract

We develop a model-based method for evaluating heterogeneity among several p×p covari-

ance matrices in the large p, small n setting. This is done by assuming a spiked covariance

model for each group and sharing information about the space spanned by the group-level

eigenvectors. We use an empirical Bayes method to identify a low-dimensional subspace which

explains variation across all groups and use an MCMC algorithm to estimate the posterior

uncertainty of eigenvectors and eigenvalues on this subspace. The implementation and utility

of our model is illustrated with analyses of high-dimensional multivariate gene expression.

Keywords: covariance estimation; spiked covariance model; Stiefel manifold; Grassmann

manifold; large p, small n; high-dimensional data; empirical Bayes; gene expression data.
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1 Introduction

Multivariate data can often be partitioned into groups, each of which represent samples from popu-

lations with distinct but possibly related distributions. Although historically the primary focus has

been on identifying mean-level differences between populations, there has been a growing need to

identify differences in population covariances as well. For instance, in case-control studies, mean-

level effects may be small relative to subject variability; distributional differences between groups

may still be evident as differences in the covariances between features. Even when mean-level

differences are detectable, better estimates of the covariability of features across groups may lead

to an improved understanding of the mechanisms underlying these apparent mean-level differences.

Further, accurate covariance estimation is an essential part of many prediction tasks (e.g. quadratic

discriminant analysis). Thus, evaluating heterogeneity between covariance matrices can be an im-

portant complement to more traditional analyses for estimating differences in means across groups.

To address this need, we develop a novel method for multi-group covariance estimation. Our

method exploits the fact that in many natural systems, high dimensional data is often very struc-

tured and thus can be best understood on a lower dimensional subspace. For example, with gene

expression data, we may be interested how the covariability between expression levels differs in

subjects with and without a particular disease phenotype (e.g, how does gene expression covari-

ability differ in different subtypes of leukemia? See Section 6). In these applications, the effective

dimensionality is thought to scale with the number of gene regulatory modules, not the number

of genes themselves [Heimberg et al., 2016]. As such, differences in gene expression across groups

should be expressed in terms of differences between these regulatory modules rather than strict

differences between expression levels. Such differences can be examined on a subspace that reflects

the correlations resulting from these modules. In contrast to most existing approaches for group

covariance estimation, our approach is to directly infer such subspaces from groups of related data.

Some of the earliest approaches for multi-group covariance estimation focus on estimation in

terms of spectral decompositions. Flury [1987] developed estimation and testing procedures for the

“common principal components” model, in which a set of covariance matrices were assumed to share

the same eigenvectors. Schott [1991, 1999] considered cases in which only certain eigenvectors are

shared across populations, and Boik [2002] described an even more general model in which eigen-

vectors can be shared between some or all of the groups. More recently, Hoff [2009a], noting that

eigenvectors are unlikely to be shared exactly between groups, introduced a hierarchical model for
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eigenvector shrinkage based on the matrix Bingham distribution. There has also been a significant

interest in estimating covariance matrices using Gaussian graphical models. For Gaussian graphical

models, zeros in the precision matrix correspond to conditional independence relationships between

pairs of features given the remaining features [Meinshausen and Bühlmann, 2006]. Danaher et al.

[2014] extended existing work in this area to the multi-group setting, by pooling information about

the pattern of zeros across precision matrices.

Another popular method for modeling relationships between high-dimensional multivariate data

is partial least squares regression (PLS) [Wold et al., 2001]. This approach, which is a special case of

a bilinear factor model, involves projecting the data onto a lower dimensional space which maximizes

the similarity of the two groups. This technique does not require the data from each group to share

the same feature set. A common variant for prediction, partial least squares discriminant analysis

(PLS-DA) is especially common in chemometrics and bioinformatics [Barker and Rayens, 2003].

Although closely related to the approaches we will consider here, the primarily goal of PLS-based

models is to create regression or discrimination models, not to explicitly infer covariance matrices

from multiple groups of data. Nevertheless, the basic idea that data can often be well represented

on a low dimensional subspace is an appealing one that we leverage.

The high-dimensional multi-group covariance estimation problem we explore in this work is also

closely related to several important problems in machine learning. In particular, it can be viewed

as an extension of distance metric learning methods [Bellet et al., 2012, Wang and Sun, 2015]

to the multiple-metric setting. Multi-group covariance estimation also has applications in multi-

task learning [Zhang et al., 2016, Liu et al., 2009], manifold and kernel learning tasks [Kanamori

and Takeda, 2012], computer vision [Vemulapalli et al., 2013, Pham and Venkatesh, 2008] and

compressed sensing and signal processing [Romero et al., 2016]. Recently, covariance matrix and

subspace learning has been used in deep learning applications [Huang and Van Gool, 2017].

In this paper we propose a multi-group covariance estimation model by sharing information

about the subspace spanned by group-level eigenvectors. Our approach is closely related to the

covariance reducing model proposed by Cook and Forzani [2008], but their model is applicable

only when n � p. In this work we focus explicitly on high-dimensional inference in the context

of the “the spiked covariance model” (also known as the “partial isotropy model”), a well studied

variant of the factor model [Mardia et al., 1980, Johnstone, 2001]. Unlike most previous methods

for multi-group covariance estimation, our shared subspace model can be used to improve high-

dimensional covariance estimates, facilitates exploration and interpretation of differences between

3



covariance matrices, and incorporates uncertainty quantification. It is also straightforward to inte-

grate assumptions used in previous approaches (e.g. eigenvector shrinkage) to the shared subspace

model.

In Section 2 we briefly review the behavior of spiked covariance models for estimating a single

covariance matrix and then introduce our extension to the multi-group setting. In Section 3 we

describe an efficient empirical Bayes algorithm for inferring the shared subspace and estimating

the posterior distribution of the covariance matrices of the data projected onto this subspace. In

Section 4 we investigate the behavior of this class of models in simulation and demonstrate how

the shared subspace assumption is widely applicable, even when there is little similarity in the

covariance matrices across groups. In particular, independent covariance estimation is equivalent

to shared subspace estimation with a sufficiently large shared subspace. In Section 5 we use an

asymptotic approximation to describe how shared subspace inference reduces bias when both p and

n are large. Finally, In Section 6 we demonstrate the utility of a shared subspace model in an

analysis of gene expression data from juvenile leukemia patients . Despite the large feature size

(p > 3000) relative to the sample size (n < 100 per group), we identify interpretable similarities

and differences in gene covariances on a low dimensional subspace.

2 A Shared Subspace Spiked Covariance Model

Suppose a random matrix S has a possibly degenerate Wishart(Σ, n) distribution with density given

by

p(S|Σ, n) ∝ l(Σ : S) = |Σ|−n/2etr(−Σ−1S/2), (1)

where etr is the exponentiated trace, the covariance matrix is a positive definite matrix, i.e. Σ ∈ S+
p ,

and n may be less than p. Such a likelihood results from S being, for example, a residual sum of

squares matrix from a multivariate regression analysis. In this case, n is the number of independent

observations minus the rank of the design matrix.

In this paper we consider multi-group covariance estimation based on K matrices, Y1, ..., YK ,

where Yk is assumed to be an nk by p matrix of mean-zero normal data, typically with nk � p. Then,

Y T
k Yk = Sk has a (degenerate) Wishart distribution as in Equation 1. To improve estimation, we

seek estimators of each covariance matrix, Σ̂k, that may depend on data from all groups. Specifically,
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(a) Projection in R3 (b) YkV (c) YkV⊥

Figure 1: Two groups of four-dimensional data (red and blue) projected into different subspaces.

a) To visualize Yk we can project the data into R3. In this illustration, the distributional differences

between the groups are confined to a two-dimensional shared subspace (V V T , grey plane). b) The

data projected onto the two-dimensional shared subspace, YkV , have covariances Ψk that differ

between groups. c) The orthogonal projection, YkV⊥ has isotropic covariance, σ2
kI, for all groups.

we posit that the covariance matrix for each group can be written as

Σk = σ2
k(VΨkV

T + I), (2)

where V is a p × s semi-orthogonal matrix whose columns form the basis vectors for subspace of

variation shared by all groups. Ψk is a non-isotropic s× s covariance matrix for each group on this

subspace of variation and it is assumed that s� p.

Our model extends the spiked principal components model (spiked PCA), studied extensively

by Johnstone [2001] and others, to the multi-group setting. Spiked PCA assumes that

Σ = σ2(UΛUT + I) (3)

where for s � p, Λ is an s × s diagonal matrix and U ∈ Vp,s, where Vp,s is the Stiefel manifold

consisting of all p × s semi-orthogonal matrices in Rp, so that UTU = Is. The spiked covariance

formulation is appealing because it explicitly partitions the covariance matrix into a tractable low

rank “signal” and isotropic “noise”.

Classical results for parametric models (e.g., Kiefer and Schwartz [1965]) imply that asymptot-

ically in n for fixed p, an estimator will be consistent for a spiked population covariance as long

as the assumed number of spikes (eigenvalues larger than σ2) is greater than or equal to the true

number. However, when p is large relative to n, as is the case for the examples considered here,

things are more difficult. Under the spiked covariance model, it has been shown that if p/n→ α > 0
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as n → ∞, the kth largest eigenvalue of S/(nσ2) will converge to an upwardly biased version of

λk + 1 if λk is greater than
√
α [Baik and Silverstein, 2006, Paul, 2007]. This has led several au-

thors to suggest estimating Σ via shrinkage of the eigenvalues of the sample covariance matrix. In

particular, in the setting where σ2 is known, Donoho et al. [2013] propose estimating all eigenvalues

whose sample estimates are smaller than σ2(1 +
√
α)2 by σ2, and shrinking the larger eigenvalues

in a way that depends on the particular loss function being used. These shrinkage functions are

shown to be asymptotically optimal in the p/n→ α setting.

Single-group covariance estimators of the spiked PCA form are equivariant with respect to rota-

tions and scale changes, but the situation should be different, when we are interested in estimating

multiple covariance matrices from distinct but related groups with shared features. Here, equiv-

ariance to distinct rotations in each group is an unreasonable assumption; both eigenvalue and

eigenvector shrinkage can play an important role in improving covariance estimates.

In the multi-group setting, we account for similarity between group-level eigenvectors by posit-

ing that the anisotropic variability from each group occurs on a common low dimensional subspace.

Throughout this paper we will denote to the shared subspace as V V T ∈ Gp,s, where Gp,s is the

Grassmannian manifold consisting of all s-dimensional linear subspaces of Rp [Chikuse, 2012]. Al-

though V is only identifiable up to right rotations, the matrix V V T , which defines the plane of

variation shared by all groups, is identifiable for a fixed dimension, s. To achieve the most dimen-

sion reduction, we target the shared subspace of minimal dimension, e.g. the shared subspace for

which all Ψk are full rank. Such a minimal subspace is known as the central subspace [Cook, 2009].

Later, to emphasize the connection to the spiked PCA model (3), we will write Ψk in terms of its

eigendecomposition, Ψk = OkΛkOk, where Ok are eigenvectors and Λk are the eigenvalues of Ψk

(see Section 3.2).

For the shared subspace model, V TΣkV = σ2
k(Ψk +I) is an anisotropic s-dimensional covariance

matrix for the projected data, YkV . In contrast, the data projected onto the orthogonal space, YkV⊥,

is isotropic for all groups. In Figure 1 we provide a simple illustration using simulated 4-dimensional

data from two groups. In this example, the differences in distribution between the groups of data

can be expressed on a two dimensional subspace spanned by the columns of V ∈ V4,2. Differences in

the correlations between the two groups manifest themselves on this shared subspace, whereas only

the magnitude of the isotropic variability can differ between groups on the orthogonal space. Thus,

a shared subspace model can be viewed as a covariance partition model, where one partition includes

the anisotropic variability from all groups and the other partition is constrained to the isotropic
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variability from each group. This isotropic variability is often characterized as measurement noise.

3 Empirical Bayes Inference

In this section we outline an empirical Bayes approach for estimating a low-dimensional shared sub-

space and the covariance matrices of the data projected onto this space. As we discuss in Section 4,

if the spiked covariance model holds for each group individually, then the shared subspace assump-

tion also holds, where the shared subspace is simply the span of the group-specific eigenvectors,

U1, ..., UK . In practice, we can usually identify a shared subspace of dimension s� p that preserves

most of the variation in the data. Our primary objective is to identify the “best” shared subspace

of fixed dimension s < p. Note that this subspace accounts for the across-group similarity, and thus

can be viewed as a hyperparameter in a hierarchical model. Although a fully Bayesian approach

may be preferable in the absence of computational limitations, in this paper we propose computa-

tionally tractable empirical Bayes inference. In the empirical Bayes approach, hyperparameters are

first estimated via maximum marginal likelihood, often using the expectation-maximization algo-

rithm [Lindstrom and Bates, 1988]. In many settings such an approach yields group-level inferences

that are close to that which would be obtained if the correct across-groups model were known (see

for example Efron and Morris, 1973). In Section 3.1 we describe the expectation-maximization

algorithm for estimating the maximum marginal likelihood of the shared subspace, V V T . This

approach is computationally tractable for high-dimensional data sets. Given an inferred subspace,

we then seek estimators for the covariance matrices of the data projected onto this space. Because

seemingly large differences in the point estimates of covariance matrices across groups may not

actually reflect statistically significant differences, in Section 3.2 we also describe a Gibbs sampler

that can be used to generate estimates of the projected covariance matrices, Ψk, and their associ-

ated uncertainty. Later, in Section 4 we discuss strategies for inferring an appropriate value for s

and explore how shared subspace models can be used for exploratory data analysis by visualizing

covariance heterogeneity on two or three dimensional subspaces.

3.1 Estimating the Shared Subspace

In this section we describe a maximum marginal likelihood procedure for estimating the shared

subspace, V V T , based on the expectation-maximization (EM) algorithm. The full likelihood for
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the shared subspace model can be written as

p(S1, ...Sk|Σk, nk) ∝
K∏
k=1

|Σk|−nk/2etr(−Σ−1
k Sk/2)

∝
K∏
k=1

|Σk|−nk/2etr(−(σ2
k(VΨkV

T + I))−1Sk/2)

∝
K∏
k=1

|Σk|−nk/2etr(−
[
V (Ψk + I)−1/σ2

kV
T + (I − V V T )/σ2

k

]
Sk/2)

∝
K∏
k=1

(σ2
k)
−nk(p−s)/2|Mk|−nk/2etr(−

[
VM−1

k V T +
1

σ2
k

(I − V V T )

]
Sk/2), (4)

where we define Mk = σ2
k(Ψk + I). The log-likelihood in V (up to an additive constant) is

l(V ) =
∑
k

tr
(
−(VM−1

k V T + V V T/σ2
k)Sk/2

)
=

1

2

∑
k

tr

(
(

1

σ2
k

I −M−1
k )V TSkV

)
. (5)

We maximize the marginal likelihood of V with an EM algorithm, where M−1
k and 1

σ2
k

are considered

the “missing” parameters. We assume independent Jeffreys prior distributions for both σ2
k and Mk.

The Jeffreys prior distributions for these quantities correspond to p(σ2
k) ∝ 1/σ2

k and p(Mk) ∝

|Mk|−(s+1)/2. From the likelihood it can easily be shown that the conditional posterior for Mk is

p(Mk|V ) ∝ |Mk|−(nk+s+1)/2etr(−(M−1
k V TSkV )/2)

which is an inverse-Wishart(V TSkV , nk) distribution. The conditional posterior distribution of σ2
k

is simply

p
(
σ2|V

)
∝ (σ2

k)
−nk(p−s)/2−1etr

(
−(I − V V T )Sk/[2σ

2
k]
)

which is an inverse-gamma(nk(p − s)/2, tr[(I − V V T )Sk]/2) distribution. We summarize our ap-

proach in Algorithm 1 below.

For the M-step, we use a numerical algorithm for optimization over the Stiefel manifold. The

algorithm uses the Cayley transform to preserve the orthogonality constraints in V and has com-

putationally complexity that is dominated by the dimension of the shared subspace, not the num-

ber of features [Wen and Yin, 2013]. Specifically, the optimization routine has time complexity

O(ps2 + s3), and consequently, our approach is computationally efficient for relatively small values

of s, even when p is large. Run times are typically on the order of minutes for values of p as large
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Algorithm 1: Shared Subspace EM Algorithm

Initialize V0 ∈ Vp,s;

while ||Vt − Vt−1||F > ε do
E-step:

for k ← 1 to K do

φ
(k)
t ← E[M−1

k |V(t−1)] = nk(V
T

(t−1)SkV(t−1))
−1;

τ
(k)
t ← E[ 1

σ2
k
|V(t−1)] = nk(p−s)

tr[(I−V(t−1)V
T
(t−1)

)Sk]
;

end

M-step:

Vt ← arg max
V ∈Vp,s

∑
k tr
(
−(V φ

(k)
t V T + τ

(k)
t V V T )Sk/2

)
;

end

as 10,000 and moderate values of s (e.g. < 50). See Figure 10 in Appendix B for a plot with typical

run times in simulations with a range of values of p and s.

Initialization and Convergence: The Stiefel manifold is compact and the marginal likelihood

is continuous, so the likelihood is bounded. Thus, the EM algorithm, which increases the likelihood

at each iteration, will converge to a stationary point [Wu, 1983]. However, maximizing the marginal

likelihood of the shared subspace model corresponds to a non-convex optimization problem over the

Grassmannian manifold and may converge to a sub-optimal local mode or stationary point. Other

work involving optimization on the Grassmannian has found convergence to non-optimal stationary

values problematic and emphasized the importance of good (e.g.
√
n-consistent) starting values

[Cook et al., 2016]. Our empirical results on simulated data confirms that randomly initialized

starting values converge to sub-optimal stationary values, and so in practice we initialize the algo-

rithm at a carefully chosen starting value based on the eigenvectors of a pooled covariance estimate.

We give the details for this initialization strategy below.

First, note that when the shared subspace model holds, the first s eigenvectors, from any of the

groups can be used to construct a
√
n-consistent estimator of V V T . In particular, if Û (k)Û (k)T is

the eigenprojection matrix for the subspace spanned by the first s eigenvectors of Sk then it can

be shown that
√
n vec(Û (k)Û (k)T − V V T ) converges in distribution to a mean-zero normal [Kollo,

2000]. In the large p, small n setting, such classical asymptotic guarantees give little assurance
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that the resulting estimators would be reasonable, but they nevertheless suggest useful strategies

for identifying starting value for the EM algorithm.

In this work, we choose a subspace initialization strategy based on sample eigenvectors of the

data pooled from all groups. Let Z =
∑

k πk
Zk

σk
where Zk is a mean-zero normal with covariance Σk

and πk = nk/
∑

k nk. Then Z is a mixture of mean-zero normal distributions with covariance

ΣZ =
∑
k

πk
σ2
k

Σk

= V T (
∑
k

πk
σ2
k

Ψk)V + I,

Clearly, the first s eigenvectors of ΣZ span the shared subspace, V V T . This suggests that we can

estimate the shared subspace using the scaled and pooled data, Ypool = [ 1
σ1
Y1; 1

σ2
Y2; ...; 1

σk
Yk], where

Ypool has dimension (
∑

k nk) × p. We use ÛpoolÛ
T
pool as the initial value for subspace estimation

algorithm where Ûpool are the first s eigenvectors of Spool = Y T
poolYpool. If we treat Ypool as an

i.i.d. sample from the mixture distribution Z, then it is known that ÛpoolÛ
T
pool is not consistent

when both n and p growing at the same rate. For an arbitrary p-vector η, the asymptotic bias of

ηT ÛpoolÛ
T
poolη is well characterized as a function of the eigenvalues of ΣZ [Mestre, 2008]. If either the

eigenvalues of
∑

k
πk
σ2
k
Ψk or the total sample size

∑
k nk are large, ÛpoolÛ

T
pool will accurately estimate

the shared subspace and likelihood based optimization may not be necessary. However, when either

the eigenvalues are small or the sample size is small the likelihood based analysis can significantly

improve inference and ÛpoolÛ
T
pool is a useful starting value for the EM algorithm.

Evaluating Goodness of Fit: Tests for evaluating whether eigenvectors from multiple groups

span a common subspace were explored extensively by Schott [1991]. These tests can be useful

for assessing whether a shared subspace model is appropriate, but cannot be used to test whether

a particular subspace explains variation across groups. These results are also based on classical

asymptotics and are thus less accurate when n� p

Our goodness of fit measure is based on the fact that when V is a basis for a shared subspace,

then for each group, most of the non-isotropic variation in Yk should be preserved when projecting

the data onto this space. To characterize the extent to which this is true for different groups, we

propose a simple estimator for the proportion of “signal” variance that lies on a given subspace.

Specifically, we use the following statistic for the ratio of the sum of the first s eigenvalues of V TΣkV
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to the sum of the first s eigenvalues of Σk:

γ(Yk : V, σ2
k) =

||YkV ||2F/nk
max
Ṽ ∈Vp,s

||YkṼ ||2F/nk −Bk

(6)

where || · ||F is the Frobenius norm and Bk is a bias correction where Bk = σ2
kp/nk

∑
k

(
m

(k)
i

m
(k)
i −σ2

k

)
with m

(k)
i the positive solution to the quadratic equation

(m
(k)
i )2 +m

(k)
i (σ2

kp/nk − σ2
k − λ̂

(k)
i )− λ̂(k)

i σ2
k = 0. (7)

and λ̂
(k)
i is the i-th eigenvalue of Sk/nk.

Theorem 1. Assume p/nk → αk and s is fixed. If Σk = VΨkV
T + σ2

kI, then γ(Yk : V, σ2
k)

a.s→ 1 as

nk, p→∞.

Proof. Since s is fixed and nk is growing, the numerator, ||YkV ||2F/nk, is a consistent estimator for

the sum of the eigenvalues of V TΣkV . In the denominator, max
Ṽ ∈Vp,s

||YkṼ ||2F/nk is equivalent to the

sum of the first s eigenvalues of the sample covariance matrix Sk/nk. Baik and Silverstein [2006]

and others have demonstrated that asymptotically as p, nk → ∞ and p/nk = αk, λ̂
(k)
i is positively

biased. Specifically,

λ̂
(k)
i

a.s.→ λ
(k)
i

(
1 +

σ2
kαk

λ
(k)
i − σ2

k

)
(8)

Replacing λ
(k)
i by m

(k)
i and assuming equality in 8 yields the quadratic equation 7. The solution,

m
(k)
i , is an asymptotically (in n and p) unbiased estimator of λ

(k)
i and

max
Ṽ ∈Vp,s

||YkṼ ||2F/nk −Bk
a.s.→

s∑
i

λ
(k)
i (9)

As such, when the shared subspace model holds both the numerator and denominator of the good-

ness of fit statistic converge almost surely to
∑s

i=1 λ
(k)
i . Therefore γ(Yk : V, σ2

k)→ 1.

The goodness of fit statistic will be close to one for all groups when V V T is a shared subspace

for the data and typically smaller if not. The metric provides a useful indicator of which groups can

be reasonably compared on a given subspace and which groups cannot. In practice, we estimate

a shared subspace V̂ and the isotropic variances σ̂2
k using EM and compute the plug-in estimate

γ(Yk : V̂ , σ̂2
k). When this statistic is small for some groups, it may suggest that the rank s of

the inferred subspace needs to be larger to capture the variation in all groups. If γ(Yk : V̂ , σ̂2
k)
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is substantially larger than 1 for a particular group, it suggests that the inferred subspace is too

similar to the sample principal components from group k. We investigate these issues in Section 4,

by computing the goodness of fit statistic for inferred subspaces of different dimensions on a single

data set. In Section 6, we compute the estimates for subspaces inferred with real biological data.

3.2 Inference for Projected Covariance Matrices

The EM algorithm presented in the previous section yields point estimates for V V T , Ψk, and σ2
k

but does not lead to natural uncertainty quantification for these estimates. In this section, we

assume that the subspace V V T is fixed and known and demonstrate how we can estimate the

posterior distribution for Ψk. Note that when the subspace is known, the posterior distribution of

Σk is conditionally independent from the other groups, so that we can independently estimate the

conditional posterior distributions for each group.

There are many different ways in which we could choose to parameterize Ψk. Building on recent

interest in the spiked covariance model [Donoho et al., 2013, Paul, 2007] we propose a tractable

MCMC algorithm by specifying priors on the eigenvalues and eigenvectors of Ψk. By modeling

the eigenstructure, we can now view each covariance Σk in terms of the original spiked principal

components model. Equation 2, written as a function of V , becomes

Ψk = OkΛkO
T
k

Σk = VΨkV
T + σ2

kI. (10)

Here, we allow Ψk to be of rank r ≤ s dimensional covariance matrix on the s-dimensional subspace.

Thus, Λk is an r × r diagonal matrix of eigenvalues, and Ok ∈ Vs,r is the matrix of eigenvectors

of Ψk. For any individual group, this corresponds to the original spiked PCA model (Equation 3)

with Uk = V Ok ∈ Vp,r. Note that the V and Ok are jointly unidentifiable because for any s × s

orthonormal matrix W,V O = VW TWO = Ṽ Õ. Once we fix a basis for the shared subspace, Ok

is identifiable. As such, Ok should only be interpreted relative to the basis V , as determined by

the EM algorithm described in Section 3.1. Differentiating the ranks r and s is helpful because it

enables us to independently specify a subspace common to all groups and the possibly lower rank

features on this space that are specific to individual groups.

Although our model is most useful when the covariance matrices are related across groups, we

can also use this formulation to specify models for multiple unrelated spiked covariance models. We
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explore this in detail in Section 4. In Section 6 we introduce a shared subspace model with addi-

tional structure on the eigenvectors and eigenvalues of Ψk to facilitate interpretation of covariance

heterogeneity on a two-dimensional subspace.

The likelihood for Σk given the sufficient statistic Sk = Y T
k Yk is given in Equation 1. For the

spiked PCA formulation, we must rewrite this likelihood in terms of V , Ok, Λk and σ2
k. First note

that by the Woodbury matrix identity

Σ−1
k = (σ2

k(UkΛkU
T
k + I))−1

=
1

σ2
k

(UkΛkU
T
k + I)−1

=
1

σ2
k

(I − UkΩkU
T
k ), (11)

where the diagonal matrix Ω = Λ(I + Λ)−1, e.g. ωi = λi
λi+1

. Further,

|Σk| = (σ2
k)
p|UkΛkU

T
k + I|

= (σ2
k)
p|Λk + I|

= (σ2
k)
p

r∏
i=1

(λi + 1)

= (σ2
k)
p

r∏
i=1

(1− ωi), (12)

where the second line is due to Sylvester’s determinant theorem. Now, the likelihood of V , Ok, Λk

and σ2
k is available from Equation 1 by substituting the appropriate quantities for Σ−1

k and |Σk| and

replacing Uk with V Ok:

L(σ2
k, V, OkΩk : Yk) ∝ (σ2

k)
−nkp/2etr(− 1

2σ2
k

Sk)

(
r∏
i=1

(1− ωki)

)nk/2

etr(
1

2σ2
k

(V OkΩkO
T
k V

T )Sk). (13)

We use conjugate and semi-conjugate prior distributions for the parameters Ok, σ
2
k and Ωk to

facilitate inference via a Gibbs sampling algorithm. In the absence of specific prior information,

invariance considerations suggest the use of priors that lead to equivariant estimators. Below we

describe our choices for the prior distributions of each parameter and the resultant conditional

posterior distributions. We summarise the Gibbs Sampler in Algorithm 2.

Conditional distribution of σ2
k: From Equation 13 it is clear that the inverse-gamma class

of prior distributions is conjugate for σ2
k. We chose a default prior distribution for σ2

k that is

equivariant with respect to scale changes. Specifically, we use the Jeffreys prior distribution, an
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improper prior with density p(σ2
k) ∝ 1/σ2

k. Under this prior, straightforward calculations show

that the full conditional distribution of σ2
k is inverse-gamma(nkp/2, tr[Sk(I − UkΩkU

T
k )/2]), where

Uk = V Ok.

Conditional distribution of Ok: Given the likelihood from Equation 13, it is easy to show

that the class of Bingham distributions are conjugate for Ok [Hoff, 2009a,b]. Again, invariance

considerations lead us to use a rotationally invariant uniform probability measure on Vs,p. Under

this uniform prior, the full conditional distribution of Ok has a density proportional to the likelihood

p(Ok|σ2
k, Uk,Ωk) ∝ etr(ΩkO

T
k V

T [Sk/(2σ
2
k)]V Ok). (14)

This is a Bingham(Ω, V TSkV/(2σ
2)) distribution on Vs,r [Khatri and Mardia, 1977]. A Gibbs

sampler to simulate from this distribution is given in Hoff [2009b].

Together, the prior for σ2
k and Ok leads to conditional (on V ) Bayes estimators Σ̂(V TSkV )

that are equivariant with respect to scale changes and rotations on the subspace spanned by V ,

so that Σ̂(aWV TSkVW
T ) = aW Σ̂(V TSkV )W for all a > 0 and W ∈ Os (assuming an invariant

loss function). Interestingly, if Ωk were known (which it is not), then for a given invariant loss

function the Bayes estimator under this prior minimizes the (frequentist) risk among all equivariant

estimators [Eaton, 1989].

Conditional distribution for Ωk: Here we specify the conditional distribution of the diagonal

matrix Ωk = Λk(I+Λk)
−1 = diag(ωk1, ...ωkr). We consider a uniform(0,1) prior distribution for each

element of Ω, or equivalently, an F2,2 prior distribution for the elements of Λ. The full conditional

distribution of an element ωi of Ω is proportional to the likelihood function

p(ωki|V,Ok, Sk) ∝ωki

(
r∏
i=1

(1− ωki)nk/2

)
etr(

1

2σ2
k

(V OkΩkO
T
k V

T )Sk) (15)

∝ (1− ωki)nk/2eckiωkink/2, (16)

where cki = uTkiSkuki/(nkσ
2
k) and uki is column i of Uk = V Ok. It is straightforward to show that

the density for (1 − ωki) is proportional to a gamma(nk/2 + 1, ckink/2) truncated at 1. Thus, we

can easily sample from this distribution using inversion sampling. The behavior of the distribution

for ωki is straightforward to understand: if cki ≤ 1, then the function has a maximum at ωki = 0,

and decays monotonically to zero as ωki → 1. If cki > 1 then the function is uniquely maximized at

(cki − 1)/cki ∈ (0, 1). To see why this makes sense, note that the likelihood is maximized when the
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Algorithm 2: Gibbs Sampler for Projected Data Covariance Matrices

Estimate V̂ using EM (Algorithm 1). Initialize Ok,Λk, σ
2
k;

for s← 1 to number of samples do

for k ← 1 to K do

Sample σ2
k from an inverse-gamma(nkp/2, tr[Sk(I − V̂ OkΩkV̂

TOT
k )/2]);

Sample Ok from a Bingham(Ω, V̂ TSkV̂ /(2σ
2));

for i← 1 to r do

Sample (1− ωki) from a gamma(nk/2 + 1, ckink/2) truncated at 1;

λki ← ωki/(1− ωki)
end

end

end

columns of Uk are equal to the eigenvectors of Sk corresponding to its top r eigenvalues [Tipping

and Bishop, 1999]. At this value of Uk, cki will then equal one of the top r eigenvalues of Sk/(nkσ
2
k).

In the case that nk � p, we expect Sk/(nkσ
2
k) ≈ Σk/σ

2
k, the true (scaled) population covariance,

and so we expect cki to be near one of the top r eigenvalues of Σk/σ
2
k, say λki + 1. If indeed Σk

has r spikes, then λki > 0, cki ≈ λki + 1 > 1, and so the conditional mode of wki is approximately

(cki−1)/cki = λki/(λki+ 1), the correct value. On the other hand, if we have assumed the existence

of a spike when there is none, then λki = 0, cki ≈ 1 and the Bayes estimate of wki will be shrunk

towards zero, as it should be. We summarise the full Gibbs sampling algorithm below.

4 Simulation Studies

We start with an example demonstrating how a shared subspace model can be used to identify

statistically significant differences between covariance matrices on a low dimensional subspace. Here,

we simulate K = 5 groups of data from the shared subspace spiked covariance model with p = 20000

features, a shared subspace dimension of s = r = 2, σ2
k = 1, and nk = 100. We fix the first eigenvalue

of Ψk from each group to λ1 = 1000 and vary λ2. We generate the basis for the shared subspace

and the eigenvectors of Ψk by sampling uniformly from the Stiefel manifold. First, in Figure 2(a)

we demonstrate the importance of the eigen-based initialization strategy proposed in Section 3.1.

As an accuracy metric, we study the behavior of tr(V̂ V̂ TV V T )/s which is bounded by zero and one
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and achieves a maximum of one if and only if V̂ V̂ T corresponds to the true shared subspace. In

this high dimensional problem, with random initialization, we typically converge to an estimated

subspace that has a similarity between 0.25 and 0.5. With the eigen-based initialization we achieve

nearly perfect estimation accuracy (> 0.95).

Next, we summarize estimates of Ψk inferred using Algorithm 2 in terms of its eigendecom-

position by computing posterior distributions for the log eigenvalue ratio, log(λ1

λ2
), with λ1 > λ2,

and the angle of the first eigenvector on this subspace, arctan(O12

O11
), relative to the first column of

V . In Figure 2(b), we depict the 95% posterior regions for these quantities from a single simula-

tion. Dots correspond to the true log ratios and orientations of V̂ TΣkV̂ , where V̂ is the maximum

marginal likelihood for V . To compute the posterior regions, we iteratively remove posterior sam-

ples corresponding to the vertices of the convex hull until only 95% of the original samples remain.

Non-overlapping posterior regions provide evidence that differences in the covariances are “statisti-

cally significant” between groups. In this example, the ratio of the eigenvalues of the true covariance

matrices were 10 (black and red groups), 3 (green and blue groups) and 1 (cyan group). Larger

eigenvalue ratios correspond to more correlated contours and a value of 1 implies isotropic covari-

ance. Note that for the smaller eigenvalue ratio of 3, there is more uncertainty about the orientation

of the primary axis. When the ratio is one, as is the case for the cyan colored group, there is no

information about the orientation of the primary axis since the contours are spherical. In this

simulation, the 95% regions all include the true data generating parameters. As we would hope,

we find no evidence of a difference between the blue and green groups, since they have overlapping

posterior regions. This means that a 95% posterior region for the difference between the groups

(0,0), i.e. the model in which the angles and ratios are the same in both groups.

To demonstrate the overall validity of the shared subspace approach, we compute the frequentist

coverage of these 95% Bayesian credible regions for the eigenvalue ratio and primary axis orientation

using one thousand simulations. For the two groups with eigenvalue ratio λ1/λ2 = 3 the frequentist

coverage was close to nominal at approximately 0.94. For the groups with λ1/λ2 = 10 the coverage

was approximately 0.92. We did not evaluate the coverage for the group with λ1/λ2 = 1 (cyan)

since this value is on the edge of the parameter space and is not covered by the 95% posterior

regions as constructed. The slight under coverage for the other groups is likely due to the fact that

we infer V V T using maximum marginal likelihood, and thus ignore the extra variability due to the

uncertainty about the shared subspace estimate.
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4.1 Rank Selection and Model Misspecification

Naturally, shared subspace inference works well when the model is correctly specified. What happens

when the model is not well specified? We explore this question in silico by simulating data from

different data generating models and evaluating the efficiency of various covariance estimators. In

all of the following simulations we evaluate covariance estimates using Stein’s loss, LS(Σk, Σ̂k) =

tr(Σ−1
k Σ̂k)− log |Σ−1

k Σk|−p. Since we compute multi-group estimates, we report the average Stein’s

loss L(Σ1, ...,ΣK ; Σ̂1, ..., Σ̂K) = 1
K

∑
k LS(Σk, Σ̂k). Under Stein’s loss, the Bayes estimator is the

inverse of the posterior mean of the precision matrix, Σ̂k = E[Σ−1
k |Sk]−1 which we estimate using

MCMC samples.

We start by investigating the behavior of our model when we underestimate the true dimension

of the shared subspace. In this simulation, we generate K = 10 groups of mean-zero normally

distributed data with p = 200, r = 2, s = p and σ2
k = 1. We fix the eigenvalues of Ψk to

(λ1, λ2) = (250, 25). Although the signal variance from each group individually is preserved on a

two dimensional subspace, these subspaces are not similar across groups since the eigenvectors from

each group are generated uniformly from the Stiefel manifold, Uk ∈ Vp,r.

We use these data to evaluate how well the shared subspace estimator performs when we fit

the data using a shared subspace model of dimension ŝ < s. In Figure 3(a) we plot Stein’s risk as

a function of ŝ, estimating the risk empirically using ten independent simulations per value of ŝ.

The dashed blue line corresponds to Stein’s risk for covariance matrices estimated independently.

Independent covariance estimation is equivalent to shared subspace inference with ŝ = p because

this implies V V T = Ip. Although the risk is large for small values of ŝ, as the shared subspace

dimension increases to the dimension of the feature space, that is ŝ → p, the risk for the shared

subspace estimator quickly decreases. Importantly, it is always true that rank([U1, ..., UK ]) ≤ rK

so it can equivalently be assumed that the data were generated from a shared subspace model with

dimension s = rK < p. As such, even when there is little similarity between the eigenvectors

from each group, the shared subspace estimator with ŝ = rK will perform well, provided that we

can identify a subspace, V̂ V̂ T that is close to span([U1, ..., UK ]). When V̂ V̂ T = span([U1, ..., UK ])

exactly, shared subspace estimation outperforms independent covariance estimation (3(a), dashed

red line).

From this simulation, it is clear that correctly specifying the dimension of the shared subspace

is important for efficient covariance estimation. When the dimension of the shared subspace is too
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small, we accrue higher risk. The goodness of fit statistic, γ(Yk : V̂ , σ̂k
2), can be used to identify

when a larger shared subspace is warranted. When ŝ is too small, γ(Yk : V̂ , σ̂k
2) will be substantially

smaller than one for at least some of the groups, regardless of V̂ (e.g. Figure 3(b)). When ŝ is

large enough, we are able to use maximum marginal likelihood to identify a shared subspace which

preserves most of the variation in the data for all groups (Figure 3(c)). Thus, for any estimated

subspace, the goodness of fit statistic can be used to identify the groups that can be fairly compared

on this subspace and whether we would benefit from fitting a model with a larger value of ŝ.

Finally, in the appendix, we include a some additional misspecification results. In particular, we

consider two cases in a 10 group analysis: one case in which 7 groups share a common subspace but

the other three do not, and a second case in which five groups share one common two dimensional

subspace, and the other five groups share a different two dimensional subspace (see Figures 8 and

9). Briefly, these results indicate that when only some of the groups share a common subspace,

we can still usually identify both the existence of the subspace(s) shared by those groups. We can

also identify which groups do not share the space, using the goodness of fit metric. When there

are multiple relevant shared subspaces, we can often identify those distinct modes using a different

subspace initialization for the EM algorithm.

Model Comparison and Rank Estimation: Clearly, correct specification for the rank of the

shared subspace is important for efficient inference. So far in this section, we have assumed that

the group rank, r, and shared subspace dimension, s, are fixed and known. In practice this is not

the case. Prior to fitting a model we should estimate these quantities. Standard model selection

methods can be applied to select the both s and r. Common approaches include cross validation

and information criteria like AIC and BIC. However, these approaches are computationally intensive

since they require fitting the model for each value of s and r. Here, we estimate the model dimensions

by applying an asymptotically optimal (in mean squared error) singular value threshold for low rank

matrix recovery with noisy data [Gavish and Donoho, 2014]. This rank estimator is a function of

the median singular value of the data matrix and the ratio αk = p/nk. Note that under the

shared subspace model, the scaled and pooled data described in section 3.1 can be expressed as

Ypooled = X + Z where V are the left singular values of X and Z is a noise matrix with zero mean

and variance one. This is the setting in which Gavish and Donoho [2014] develop a rank estimation

algorithm, and so it can be appropriately applied to Ypooled to estimate s.

Using this rank estimation approach, we conduct a simulation which demonstrates the relative
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Table 1: Stein’s risk (and 95% loss intervals) for different inferential models and data generating

models with varying degrees of between-group covariance similarity. For each of K = 10 groups,

we simulate data from three different types of shared subspace models. For each of these models,

p = 200, r = 2, σ2
k = 1 and nk = 50. We also fit the data using three different shared subspace

models: a model in which s, r and V V T are all estimated from the data (“adaptive”), a spiked

covariance model in which the covariance matrices from each group are assumed to be identical

(Σ̂k = Σ̂) and a model in which we assume the data do not share a lower dimensional subspace

across groups (i.e. ŝ = p). The estimators which most closely match the data generating model

have the lowest risk (diagonal) but the adaptive estimator performs well relative to the alternative

misspecified model.

Inferential Model

Adaptive Σ̂k = Σ̂ ŝ = p

D
a
ta

M
o
d

e
l

s = r = 2 0.8 (0.7, 0.9) 2.1 (1.7, 2.6) 3.0 (2.9, 3.2)

s = r = 2, Σk = Σ 0.8 (0.7, 0.9) 0.7 (0.6, 0.8) 3.0 (2.9, 3.2)

s = p = 200 7.1 (6.2, 8.0) 138.2 (119, 153) 3.0 (2.9, 3.2)

performance of shared subspace group covariance estimation under different data generating models.

We consider three different shared subspace data models: 1) a low dimensional shared subspace

model with s = r; 2) a model in which the spiked covariance matrices from all groups are identical,

e.g. Σk = Σ = UΛUT + σ2I; and 3) a full rank shared subspace model with s = p.

We estimate group-level covariance matrices from simulated data using three different variants

of the shared subspace model. For each of these fits we estimate r. First, we estimate a single

spiked covariance matrix from the pooled data and let Σ̂k = Σ̂. Second, we fit the full rank shared

subspace model. This corresponds to a procedure in which we estimate each spiked covariance

matrix independently, since s = p implies V V T = Ip. Finally, we use an “adaptive” shared subspace

estimator, in which we estimate both s, r and V V T .

Since full rank estimators do not scale well, we compare the performance of various estimators

on a simulated data set with only p = 200 features. We also assume for r = 2 spikes, σ2
k = 1, and

nk = 50. We fix the non-zero eigenvalues of Ψk to (λ1, λ2) = (250, 25). We simulate 100 independent

data sets for each data generating mechanisms. In Table 1 we report the average Stein’s risk and

corresponding 95% loss intervals for the estimates derived from each of these inferential models.

As expected, the estimates with the lowest risk are derived from the inferential model that
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most closely match the data generating specifications. However, the adaptive estimator has small

risk under model misspecification relative to the alternatives. For example, when Σk = Σ, the

adaptive shared subspace estimator has almost four times smaller risk than the full rank estimator,

in which each covariance matrix is estimated independently. When the data come from a model

in which s = p, that is, the eigenvectors of Ψk are generated uniformly from Vp,r, the adaptive

estimator is over an order of magnitude better than the estimator which assumes no differences

between groups. These results suggest that empirical Bayes inference for V V T combined with the

rank estimation procedure suggested by Gavish and Donoho [2014] can be widely applied to group

covariance estimation because the estimator adapts to the amount of similarity across groups. Thus,

shared subspace estimation can be an appropriate and computationally efficient choice when the

similarity between groups is not known a priori.

Finally, in addition to potential statistical efficiency gains, the empirical Bayes shared subspace

estimator has significant computational advantages. In particular, the total run time for empirical

Bayes inference of the shared subspace is significantly smaller than full Bayesian inference for a p×r

dimensional subspace (e.g. Bayesian probabilistic PCA with s = p), in particular for larger values

of p. Given the difficulty of Bayesian inference on the Stiefel manifold, for large p, probabilistic

principal component analysis quickly becomes infeasible. Empirical Bayes inference enables efficient

optimization for V̂ and Bayesian inference on the lower dimensional shared subspace (See Figure

10, Appendix B, for typical run times).

5 Reduction of Asymptotic Bias Via Pooling

Recently, there has been an interest in the asymptotic behavior of PCA-based covariance estimators

in the setting in which p, n→∞ with p/n = α fixed. Specifically, in the spiked covariance model it

is known that when p and n are both large, the leading eigenvalues of the sample covariance matrix

are positively biased and the empirical eigenvectors form a non-zero angle with the true eigenvectors

[Baik and Silverstein, 2006, Paul, 2007]. Although this fact also implies that the shared subspace

estimators are biased, a major advantage of shared subspace inference over independent estimation

of multiple covariance matrices is that we reduce the asymptotic bias, relative to independently

estimated covariance matrices, by pooling information across groups. The bias reduction appears to

be especially large when there is significant heterogeneity in the first s eigenvectors of the projected

covariance matrices.
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Throughout this section we assume K groups of data each with nk = n observations per group

and s a fixed constant. First, note that if V̂ V̂ T corresponds to the true shared subspace, then

estimates ψ̂k derived using the methods presented in Section 3.2 will consistently estimate ψk as

n → ∞ regardless of whether p increases as well because YkV has a fixed number of columns.

For this reason, we focus explicitly on the accuracy of V̂ V̂ T (derived using the maximum marginal

likelihood algorithm presented in Section 3.1) as a function of the number of groups K when both p

and n are of the same order of magnitude and much larger than s. As an accuracy metric, we again

study the behavior of tr(V̂ V̂ TV V T )/s which is bounded by zero and one and achieves a maximum

of one if and only if V̂ V̂ T corresponds to the true shared subspace.

Conjecture 1. Assume that the first s eigenvalues from each of K groups are identical with λi >

σ2(1 +
√
α). Then, for p/n→ α and p, n→∞, tr(V̂ V̂ TV V T )/s

a.s.→ ξ with

1 > ξ ≥ 1

s

s∑
i=1

(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
. (17)

We prove that the lower bound in 17 is in fact achieved when Yk are identically distributed and

show in simulation that the subspace accuracy exceeds this bound when there is variation in the

eigenvectors across groups. In the case of i.i.d. groups, let the covariance matrix Σk = Σ have the

shared-subspace form given in Equation 2 and without loss of generality let ψk = ψ be a diagonal

matrix (e.g assume the columns of V align with the eigenvectors of Σ). In this case, the complete

data likelihood of V (Equation 5) can be rewritten as

`(V ) =
1

2

∑
k

tr

(
(

1

σ2
I −M−1)V TSkV

)

=
1

2
tr

(
DV T (

∑
k

Sk)V

)
.

where
∑K

k=1 Sk ∼ Wish(Σ, Kn). Since ψ is diagonal and σ2 = 1, M = σ2(ψ + I) is diagonal and

thus D = ( 1
σ2 I −M−1) is also diagonal with entries 0 < di < 1 of decreasing magnitude.

Then, the solution to

V̂ (k) = argmax
Ṽ ∈Vp,s

tr

(
DṼ T

∑
k

(Sk)Ṽ

)
.

has V̂ (k) equal to the first s eigenvectors of
∑

k Sk. This is maximized when the columns of V

match the first empirical eigenvectors of
∑

k Sk and has a maximum of
∑r

i=1 di`i where `i is the ith

eigenvalue of
∑

k Sk. Using a result from Paul [2007], it can be shown that as long as λi > σ2(1+
√
α)
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where λi is the ith eigenvalue of Σk, the asymptotic inner product between the ith sample eigenvector

and the ith population eigenvector approaches a limit that is almost surely less than one

|〈V̂i, Vi〉|
a.s.→

√(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
As such, we can express asymptotic shared subspace accuracy for the identical groups model as

tr(V̂ V̂
T

V V T )/s =
1

s

s∑
i=1

|〈V̂i, Vi〉|2

a.s.→ 1

s

s∑
i=1

(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
. (18)

Here, the accuracy of the estimate depends on α, K and the magnitude of the eigenvalues, with

the bias naturally decreasing as the number of groups increases. Most importantly, Equation 18

provides a useful benchmark for understanding the bias of shared subspace estimates in the general

setting in which ψk varies across groups. Our conjecture that the subspace accuracy is larger than

the lower bound when the eigenvectors between groups are variable is consistent with our simulation

results.

In Figure 4 we depict the subspace accuracy metric tr(V̂ V̂ TV V T )/s and benchmark

1

s

s∑
i=1

(
1− α

K(λi − 1)2

)
/

(
1 +

α

K(λi − 1)

)
for simulated multi-group data generated under the shared subspace model with s = 2, n = 50, p =

200 and three different sets of eigenvalues. For each covariance matrix, the eigenvectors of ψk were

sampled uniformly from Stiefel manifold V2,2. When ψk is isotropic (green) the subspace similarity

metric closely matches the benchmark since the assumptions used to derive this asymptotic result

are met. However, when the eigenvectors of ψk vary significantly across groups and λ1 � λ2, the

subspace accuracy can far exceed this benchmark (blue). Intuitively, when the first eigenvectors of

two different groups are nearly orthogonal, each group provides a lot of information about orthogonal

directions on V V T and so the gains in accuracy exceed those that you would get by estimating the

subspace from a single group with K times the sample size. In general the accuracy of shared

subspace estimates depends on the variation in the eigenvectors of ψk across groups as well as

the magnitude of the eigenvalues and matrix dimensions p and nk. Although the shared subspace

estimator improves on the accuracy of individually estimated covariance matrices, estimates can

still be biased when α is very large or the eigenvalues of Σk are very small for all k. In practice, one

should estimate the approximate magnitude of the bias using the inferred eigenvalues of Σk. When

these inferred eigenvalues are significantly larger than σ̂2
k(1 +

√
α/K) the bias will likely be small.

22



6 Analysis of Gene Expression Data

We demonstrate the utility of the shared subspace covariance estimator for exploring differences in

the covariability of gene expression levels in young adults with different subtypes of pediatric acute

lymphoblastic leukemia (ALL) [Yeoh et al., 2002]. Quantifying biological variation across differ-

ent subtypes of leukemia is important for assigning patients to risk groups, proposing appropriate

treatments, and developing a deeper understanding of the mechanisms underlying these different

types of cancer. The majority of studies have focused on mean level differences between expression

levels. In particular, mean-level differences can be useful for identifying leukemia subtypes. How-

ever, differences in the covariance structure across groups can be induced by interactions between

important unobserved variables. Covariance analysis is particularly important when the effects of

unobserved variables, like disease severity, disease progression or unmeasured genetic confounders,

dominate mean level differences across groups. In this analysis, we explicitly remove the mean from

the data and look for differences in the covariance structure of the gene expression levels.

The data we analyze were generated from 327 bone marrow samples analyzed on an Affymetrix

oligonucleotide microarray with over 12,000 probe sets. Preliminary analysis using mean differences

identified clusters corresponding to distinct leukemia subtypes: BCR-ABL, E2A-PBX1, hyper-

diploid, MLL, T-ALL, TEL-AML1. 79 patients were assigned to a seventh group for unidentified

subtypes (“Others”). We use these labels to stratify the observations into seven groups with corre-

sponding sample sizes of n = (15, 27, 64, 20, 43, 79, 79).

Although there are over 12,000 probes on the microarray, the vast majority of gene expression

levels are missing. Thus, we restrict our attention to the genes for which less than half of the

values are missing and use Amelia, a software package for missing value imputation, to fill in the

remaining missing values [Honaker et al., 2011]. Amelia assumes the data is missing at random

and that each group is normally distributed with a common covariance matrix. Since imputation

is done under the assumption of covariance homogeneity, any inferred differences between groups

are unlikely to be an artifact of the imputation process. We leave it to future work to incorporate

missing data imputation into the shared subspace inference algorithm. After removing genes with

very high percentages of missing values, p = 3124 genes remain. Prior to analysis, we de-mean both

the rows and columns of the gene expression levels in each group.

We apply the rank selection criteria discussed in Section 4.1 and proposed by Gavish and Donoho

[2014] to the pooled expression data (i.e. data from all groups combined) to decide on an appropriate
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value for the shared subspace. This procedure yields s = 45 dimensions1. We run Algorithm 1 to

estimate the shared subspace, and then use Bayesian inference (Algorithm 2) to identify differences

between groups on the inferred subspace. Together, the run time for the full empirical Bayes

procedure (both algorithms) took less than 10 minutes on a 2017 Macbook Pro.

Using the goodness of fit metric, we find that a 45-dimensional shared subspace dimension that

explains over 90% of the estimated variation in the top s eigenvectors of Σk, suggesting that the

rank selection procedure worked reasonably well (Figure 11(a), Appendix B). To further validate

the utility of shared subspace modeling, we look at how informative the projected data covariance

matrices are for predicting group membership. For an observation Yi, we compute the probabil-

ity, assuming uniform prior distribution over group membership, that Yi came from group k as

P (Yi from group k) =
|Ψk|−1/2etr(−1/2(YiV̂ )T Ψ−1

k YiV̂ )∑
j(|Ψj |−1/2etr(−1/2(YiV̂ )T Ψ−1

j YiV̂ ))
. We correctly identified the leukemia type

in all samples, which provides further confirmation that this subspace provides enough predictive

power to easily distinguish groups.

In addition, we quantified differences amongst the projected data covariances using the Frobe-

nius norm, ||Ψk − Ψj||F for all pairs of the seven groups. We use these distances to compute

a hierarchical clustering dendrogram of the groups (Figure 11(b), Appendix B). The hierarchical

clustering reveals that BCR-ABL, E2A-PBX1, TEL-AML1 and hyperdiploid, which correspond to

B lineage leukemias, cluster together. T-ALL, the T lineage leukemia, and MLL, the mixed lineage

leukemia, appear the most different [Dang, 2012]. To further verify that the inferred subspace re-

lates to relevant biological processes, we conducted gene set enrichment analysis using the observed

magnitudes of the loadings for the genes on the 45 basis vectors [Subramanian et al., 2005] and

using gene sets defined by the Gene Ontology Consortium [Consortium et al., 2004]. Gene set anal-

ysis on the magnitudes of gene loadings identified dozens of pathways (FDR < 0.01, [Storey et al.,

2003]). Nearly every identified pathway relates to the immune response or cell growth (Figure 12,

Appendix B), for example B and T cell proliferation (GO:0042100, GO:0042102), immunoglobin

receptor binding (GO:0034987) and cellular response to cytokine stimulus (GO:0071345) to name

only a few. Together, all of these results suggest that in this application there is indeed significant

differences in the covariability between genes for each the of groups, with biologically plausible

underpinnings. Consequently, there is value in exploring what underlies those differences.

We next demonstrate how we can explore significant a posteriori differences between the groups

1Note that for some groups, nk < 45, in which case we infer the rank r = min(nk, s) s× s matrix Ψk.
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which might lead to scientifically meaningful insights. In order to visualize differences in the poste-

rior distributions of the 45×45 dimensional matrices Ψk, we examine the distribution of eigenvalues

and eigenvectors between the groups on a variety of two-dimensional subspaces of the shared space.

We propose two different methods for identifying potentially interesting sub-subspaces to visualize.

First, we summarize variation on a two dimensional subspace whose axes are approximately aligned

to the first two eigenvectors of Σ̂k, for a specific group k. This subspace corresponds to the subspace

of maximal variability within group k. For example, in Figure 5(a) we plot posterior summaries

about the principal eigenvector and eigenvalues for each group on a two dimensional space spanned

by the first two eigenvectors of the inferred covariance matrix for the hyperdiploid group. The x-axis

corresponds to the orientation of the first eigenvector and the y-axis corresponds the magnitude of

the first eigenvalue. In this subspace, we can see that the first eigenvector for most groups appear

to have similar orientations, but that the hyperdiploid group has significantly larger variance along

the first principal component direction than all other groups (with the exception of perhaps T-ALL,

for which the posterior samples overlap). The first eigenvector for the BCR-ABL subgroup appears

to be the least variable on this subspace.

As an alternative approach to summarizing the posterior distribution, we examine the posterior

eigen-summaries on a two dimensional subspace which is chosen to maximize the difference between

any two chosen groups. To achieve this, we look at spaces in which the axes correspond to the first

two eigenvectors of Σ̂k−Σ̂j for any k 6= j. As an example, in Figure 5(b) we plot posterior summaries

corresponding to the subspace for which the difference between the T-ALL and MLL subgroups is

large. On this subspace, the groups cluster into four distinct subgroups which appear significantly

different a posteriori : the T-ALL subtype, the MLL subtype, the BCR subtype and the all other

groups. Roughly, along the first dimension, there is large variability in the T-ALL group that is

not matched in other groups, whereas the second dimension there is large variability in the MLL

group that is not matched in the other groups.

Scientific insights underlying the significant differences that were identified in Figure 5 can

be understood in the biplots in Figures 6 and 7. In each figure, we plot the contours of the

two dimensional covariance matrices for a few leukemia subtypes. The 20 genes with the largest

loadings for one of the component directions are indicated with letters and the remaining loadings

plotted with light grey dots. The gene names for the genes with the largest loadings are listed in

the corresponding table. In both biplots, the identified genes have known connections to cancer,

leukemia, and the immune system.
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For example, for the subspace of maximal variability in the hyperdiploid group, gene set analysis

identified two gene sets with large magnitude loadings on the first principal component: a small

group of proteins corresponding to the MHC class II protein complex (GO:0006955) as well as a

larger group of genes corresponding to genes generally involved in immune response (GO:0006955).

MHC class II proteins are known to play an essential role in the adaptive immune system [Reith

et al., 2005] and are correlated with leukemia patient outcomes [Rimsza et al., 2004]. Our analysis

indicates these proteins have especially variable levels in the hyperdiploid subtype relative to the

other leukemia subtypes.

For the subspace chosen to maximize the difference between T-ALL and MLL groups, gene set

analysis associated with large loadings in the second dimension (associated with high variance in

the MLL subgroup) included “regulation of myeloid cell differentiation” (GO:0045637), “positive

regulation of B cell receptor signaling pathway” (GO:0098609) and “immunoglobulin V(D)J recom-

bination” (GO:0033152). Most of the individual genes with large loadings are known in the leukemia

literature including WASF1 (“F”) which plays an important role in apoptosis [Kang et al., 2010],

LEF1 (“D”) which is linked to the pathogenesis of leukemia [Gutierrez et al., 2010] and LMO2

(“M”) which was shown to initiate leukemia in mice [McCormack et al., 2010], to name only a few.

In contrast to the MLL group, these genes in the T-ALL and TEL-AML1 subgroups have relatively

little variability.

These insights would be overlooked in more conventional mean-based analyses, particularly when

mean-level differences are small relative to the residual variance. Further, we have shown how the

shared subspace reveals sets of interpretable genes that are most important for describing differ-

ence between leukemia subtypes; these discoveries would less evident with alternative covariance

estimation methods which do not explicitly include the assumption about differences manifesting

on a common low dimensional subspace. All told, these results highlight the value of shared sub-

space covariance matrix inference for both predicting leukemia subtypes as well as for exploring

scientifically meaningful differences between the groups.

7 Discussion

In this paper, we proposed a class of models for estimating and comparing differences in covariance

matrices across multiple groups on a common low dimensional subspace. We described an empirical

Bayes algorithm for estimating this common subspace and a Gibbs sampler for inferring the pro-
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jected covariance matrices and their associated uncertainty. Estimates of both the shared subspace

and the projected covariance matrices can both be useful summaries of the data. For example, with

the leukemia data, the shared subspace highlights the full set of genes that are correlated across

groups. Differences between group covariance matrices can be understood in terms of differences in

these sets of correlated molecules. In this analysis, we demonstrated how we can use these notions to

visualize and contrast the posterior distributions of covariance matrices projected onto a particular

subspace and interpret these differences biologically.

In simulation, we showed that the shared subspace model can still be a reasonable choice for

modeling multi-group covariance matrices even when the groups may be largely dissimilar. When

there is little similarity between groups, the shared subspace model can still be appropriate as long

as the dimension of the shared subspace is large enough. However, selecting the rank of the shared

subspace remains a practical challenge. Although we propose a useful heuristic for choosing the

dimension of the shared subspace based on the rank selection estimators of Gavish and Donoho

[2014], a more principled approach is warranted. Improved rank estimators would further improve

the performance of the adaptive shared subspace estimator discussed in Section 4.

It is also a challenging problem to estimate the “best” subspace once the rank of the space is

specified. We used maximum marginal likelihood to estimate V V T and then used MCMC to infer

Ψk. By focusing on group differences for Ψk on a fixed subspace, it is much simpler to interpret

similarities and differences. Nevertheless, full uncertainty quantification for V V T can be desirable.

We found MCMC inference for V V T to be challenging for the problems considered in this paper

and leave it for future work to develop an efficient fully Bayesian approach for estimating the

joint posterior of V V T and Ψk. Recently developed Markov chain Monte Carlo algorithms, like

Riemannian manifold Hamilton Monte Carlo, which can exploit the geometry of the Grassmannian

manifold, may be useful here [Byrne and Girolami, 2013, Girolami and Calderhead, 2011]. It may

also be possible, though computationally intensive, to jointly estimate s and V V T using for instance,

a reversible-jump MCMC algorithm.

Fundamentally, our approach is quite general and can be integrated with existing approaches

for multi-group covariance estimation. In particular, we can incorporate additional shrinkage on

the projected covariance matrices Ψk. As in Hoff [2009a] we can employ non-uniform Bingham

prior distributions for the eigenvectors of Ψk or we can model Ψk as a function of continuous

covariates as in Yin et al. [2010] and Hoff and Niu [2012]. Alternatively, we can summarize the

estimated covariance matrices by thresholding entries of the precision matrix, Ψ−1
k to visualize

27



differences between groups using a graphical model [Meinshausen and Bühlmann, 2006]. We can also

incorporate sparsity to the estimated eigenvectors of the shared subspace to add in interpretation

[Ročková and George, 2016, e.g]. Finally, we can consider variants in which some eigenvectors are

assumed to be identical across groups, whereas others are allowed to vary on the shared subspace.

This can further improve estimation efficiency, particularly when the common eigenvectors are

associated with the largest eigenvalues and differences appear in lower variance components [Cook

and Forzani, 2008]. Such an approach would further aid in identifying the relevant sub-subspace of

variability that describes prominent differences between groups . The specifics of the problem at

hand should dictate which extensions are appropriate, but the shared subspace assumption can be

useful in a wide range of analyses, especially when the number of features is very large. A repository

for the replication code is available on GitHub [Franks, 2016].
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A Additional Misspecification Results

Following the simulation set up of 4.1 we generate data from 10 groups with (λ1, λ2) = (250, 25),

p = 200 and σ2
k = 1. In this section, we consider two model misspecification simulations. First, we

consider data in which the first two eigenvectors for the first five groups share a two-dimensional

subspace, and the eigenvectors for the last five groups share a different two-dimensional subspace.

We then fit all ten groups assuming a two-dimensional shared subspace model. In Figure 8 we plot

the goodness of fit metric for all ten groups for subspaces identified in different local modes of the

likelihood. Specifically, we empirically identified three local modes: one mode identifies the shared

subspace for the first give groups, the other mode corresponds to the shared subspace for the second

five groups, and the third mode corresponds to subspace shares some commonalities across all 10

groups. This last mode is the one discovered by the eigen-based initialization strategy proposed in

Section 4.1.

In the second simulation we generate the first two eigenvectors for the first seven groups from

a common two dimensional subspace. The eigenvectors from the last three groups were generated

uniformly at random from the p − 2 dimensional null space of the shared subspace. In repeated

simulations with V initialized uniformly at random on the Stiefel manifold, the resulting we empir-

ically discovered four modes. In Figure 9 we plot goodness of fit metrics for the 10 groups at these

modes. The first mode corresponds to the shared subspace for the first 7 groups. The other three

modes identify subspaces shared by two of the last three groups.
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Figure 2: a) Accuracy of shared subspace estimation, tr(V̂ V̂ TV V T )/s , for randomly initialized

(density) and eigen-initialized value of V (dashed line). If V is initialized uniformly at random from

the Stiefel manifold, then typically Algorithm 1 produces a subspace estimate that is sub-optimal.

By contrast, using the initialization strategy described in Section 3.1, we achieve excellent accuracy.

b) 95% posterior regions for the log of the ratio of eigenvalues, log(λ1

λ2
), of Ψk and the orientation of

the principal axis on the space spanned by V̂ cover the truth in this simulation. Dots correspond

to true data generating parameter values on V̂ TΣkV̂ . Since V is only identifiable up to rotation,

for this figure we find the Procrustes rotation that maximizes the similarity of V̂ to the true data

generating basis. True eigenvalue ratios were 10 (red and black), 3 (green and blue) and 1 (cyan).

True orientations were π/4 (black), −π/4 (red) and 0 (blue, green, and cyan). Note that the dark

blue and green groups were generated with identical covariance matrices. Their posterior regions

overlap, which suggests that a 95% region for the difference in eigenvalue ratios and angle would

include (0,0).
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Figure 3: a) Stein’s risk as a function of the shared subspace dimension (solid black line). Data from

ten groups, with Uk generated uniformly on the Stiefel manifold V200,2. As ŝ→ p, the risk converges

to the risk from independently estimated spiked covariance matrices (dashed blue line). The data

also fit a shared subspace model with s = rK. If V V T = span(U1, ..., Uk) were known exactly,

shared subspace estimation yields lower risk than independent covariance estimation (dashed red

line). b) For a single simulated data set, the goodness of fit statistic, γ(Yk : V̂ , σ̂k
2), when the

assumed shared subspace is dimension ŝ = 5. c). For the same data set, goodness of fit when the

assumed shared subspace is dimension ŝ = 20. We can capture nearly all of the variability in each

of the 10 groups using an ŝ = rK = 20 dimensional shared subspace.
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Figure 4: Subspace accuracy tr(V̂ V̂ TV V T )/s (solid) and the asymptotics-based benchmark (dashed)

as a function of K. When λ1 = λ2 (green), the assumptions used to derive the benchmark (identi-

cally distributed groups) are met and thus the subspace accuracy matches the benchmark. However,

when the ratio λ1/λ2 is large, the subspace accuracy metric can far exceed this benchmark if there

is significant variation in the eigenvectors of ψk across groups. Small increases in accuracy over the

benchmark are seen for moderately anisotropic data (red) and large increases for highly anisotropic

data (blue).
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(b) T-ALL vs MLL subspace

Figure 5: Posterior samples for the first eigenvalue and orientation of the first eigenvector on the a

dimensional subspace. a) The two dimensional subspace was chosen to approximately span the first

two eigenvectors for the hyperdiploid group. The orientation of first eigenvector is similar for all

groups, but the variance significantly larger for the hyperdiploid subgroup. b) The two dimensional

subspace was chosen to maximize the difference between the T-ALL and MLL groups. Along the

first dimension of this subspace, there is large variability in the T-ALL group that is not matched

in other groups, whereas the second dimension there is large variability in the MLL group that is

not matched in the other groups.
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Figure 6: Left) Variant of a biplot for the hyperdiploid subspace. We include contours for three

leukemia subtypes and the loadings for each gene on the first two columns of V̂ . We plot contours for

three leukemia subtypes and the loadings for genes with the most postive (A-J) and most negative

(K-T) values on the first principal axis. The loadings for all of the genes are displayed in light

gray. There is significant correlated variability amongst genes A-T in the TEL and hyperdiploid

subgroups, and a factor of two less variability amongst these genes in the E2A subgroup. Right)

List of the gene’s with the largest loadings along the first axis.
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Figure 7: Left) Variant of a biplot for the MLL vs TEL-AML1 subspace. We plot contours for three

leukemia subtypes and the loadings for genes with the most positive (A-J) and most negative (K-T)

values on the second axis. The loadings for all of the genes are displayed in light gray. There is

significant correlated variability among genes with large loadings (e.g. letters A through T) in the

MLL subgroup, and a significantly less variability in the TEL-AML1 and T-ALL groups. Although

the TEL and T-ALL groups have similar variance in the “V2” direction, T-ALL has significantly

more variance in the “V1” direction. Right) List of the gene’s with the largest loadings along the

V2 axis.
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Figure 8: Goodness of fit for 10 groups using a two dimensional shared subspace model. In truth, the

eigenvectors of the first five groups share a 2 dimensional subspace and the eigenvectors of the last

five groups share a different 5 dimensional subspace. Empirically, by initializing the shared subspace

uniformly at random, we found that there were three local modes. a) This mode corresponds to

the shared subspace of the first five groups. b) This mode corresponds to the shared subspace of

the second five groups. c) The third mode corresponds to a “shared subspace” across all groups.

This is the mode discovered when using the eigen-based initialization strategy suggested in Section

4.1. Note that in truth variation in all ten groups could be captured using a 4 dimensional shared

subspace.
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Figure 9: Goodness of fit for 10 group shared subspace model. The eigenvectors of the first seven

groups share a 2 dimensional subspace and the eigenvectors of the last three groups were generated

uniformly on the null space. Empirically, by initializing the shared subspace uniformaly at random,

we found that there were three local modes. a) We discover the subspace shared by the first

seven groups using the eigen-based initialization (Section 4.1). We also identify that the last three

groups have small variance on this subspace, indicating that they do not share the subspace. b-d)

Additional local (non-global) modes can be identified which in which 2 of the last three groups

approximately share a two-dimensional subspace.
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B Run time results
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Figure 10: Run time results for subspace inference (Algorithm 1) as a function of the subspace

dimension, S, and the number of features p. s = 2, 10, 25, 50 and p = 1000, 2000, ...10000. Points

are jittered for visibility. In this simulation we assume K = 5 groups, nk = 50 observations per

group, σ2
k = 1 and the eigenvalues of ψk are samples from an Expo(1/4) (e.g. have mean 4). For

each value of S and P we run subspace inference 10 times and plot the resulting run times. In each

simulation we initialize the optimization routine uniformly at random on Vp,s to get a conservative

estimate for run times. Using the intelligent initialization routine discussed in Section 4.1 typically

increases time to convergence. Convergence time is on the order of minutes, even for relatively large

values of s and p.

C Addition Results From Leukemia Analysis

38



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BCR−A
BL

E2A
−P

BX1

Hyp
er

dip
50

M
LL

OTHERS

T−A
LL

TEL−
AM

L1

(a) γ(Yk : V̂ , σ̂k
2)

M
LL

T
−

A
LL

B
C

R
−

A
B

L

O
T

H
E

R
S

E
2A

−
P

B
X

1

H
yp

er
di

p5
0

T
E

L−
A

M
L1

(b) Hierarchical clustering

Figure 11: a) Goodness of shared subspace fit for each of the seven Leukemia groups. The inferred

s = 45 dimensional subspace explains over 90% of estimated total variation in Σk in each of the seven

groups. b) Complete-linkage hierarchical clustering of inferred projected data leukemia covariance

matrices using Frobenius norm distance metric. The right sub-branches, which includes BCR-ABL,

E2A-PBX1, hyperdiploid and TEL-AML1, are the B lineage leukemias of the seven types. T-All is

a T lineage leukemia and MLL is a mixed lineage leukemia [Dang, 2012].
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Name Q-value Number of Genes

GO:0005751 mitochondrial respiratory chain complex IV 0.00 7

GO:0044388 small protein activating enzyme binding 0.01 7

GO:0022624 proteasome accessory complex 0.00 16

GO:0048025 negative regulation of nuclear mRNA splicing, via spliceosom 0.01 21

GO:0004298 threonine-type endopeptidase activity 0.01 19

GO:0010498 proteasomal protein catabolic process 0.01 26

GO:0006405 RNA export from nucleus 0.00 33

GO:0031124 mRNA 3’-end processing 0.00 36

GO:0030336 negative regulation of cell migration 0.01 22

GO:0038083 peptidyl-tyrosine autophosphorylation 0.01 20

GO:0043235 receptor complex 0.00 18

GO:0045766 positive regulation of angiogenesis 0.00 36

GO:0048661 positive regulation of smooth muscle cell proliferation 0.00 18

GO:0035690 cellular response to drug 0.00 27

GO:0060337 type I interferon-mediated signaling pathway 0.00 32

GO:0000786 nucleosome 0.00 27

GO:0004888 transmembrane signaling receptor activity 0.00 27

GO:0030183 B cell differentiation 0.00 30

GO:0030890 positive regulation of B cell proliferation 0.01 15

GO:0060333 interferon-gamma-mediated signaling pathway 0.00 35

GO:0030198 extracellular matrix organization 0.00 23

GO:0002053 positive regulation of mesenchymal cell proliferation 0.01 9

GO:0071345 cellular response to cytokine stimulus 0.01 19

GO:0007159 leukocyte cell-cell adhesion 0.00 16

GO:0034113 heterotypic cell-cell adhesion 0.00 10

GO:0042102 positive regulation of T cell proliferation 0.00 19

GO:0042605 peptide antigen binding 0.00 15

GO:0030658 transport vesicle membrane 0.00 13

GO:0071556 integral to lumenal side of endoplasmic reticulum membrane 0.01 17

GO:0042613 MHC class II protein complex 0.00 10

GO:0004896 cytokine receptor activity 0.00 9

GO:0005001 transmembrane receptor protein tyrosine phosphatase activity 0.01 7

GO:0030669 clathrin-coated endocytic vesicle membrane 0.00 10

GO:0042100 B cell proliferation 0.00 14

GO:0042742 defense response to bacterium 0.00 35

GO:0031668 cellular response to extracellular stimulus 0.00 13

GO:0001916 positive regulation of T cell mediated cytotoxicity 0.01 10

GO:0019731 antibacterial humoral response 0.00 19

GO:0001915 negative regulation of T cell mediated cytotoxicity 0.00 6

GO:0072562 blood microparticle 0.00 32

GO:0035456 response to interferon-beta 0.01 7

GO:0050829 defense response to Gram-negative bacterium 0.00 13

GO:0003823 antigen binding 0.00 24

GO:0071757 hexameric IgM immunoglobulin complex 0.00 6

GO:0006911 phagocytosis, engulfment 0.00 23

GO:0042834 peptidoglycan binding 0.00 7

GO:0071756 pentameric IgM immunoglobulin complex 0.00 7

GO:0006958 complement activation, classical pathway 0.00 19

GO:0006910 phagocytosis, recognition 0.00 16

GO:0042571 immunoglobulin complex, circulating 0.00 16

GO:0050871 positive regulation of B cell activation 0.00 16

GO:0003094 glomerular filtration 0.00 7

GO:0034987 immunoglobulin receptor binding 0.00 17

GO:0001895 retina homeostasis 0.00 11

Figure 12: Gene set enrichment analysis based on the magnitude of gene-loadings on the inferred

45 dimensional shared subspace (Section 6).
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