
Lawrence Berkeley National Laboratory
LBL Publications

Title

Detecting lithium plating dynamics in a solid-state battery with operando X-ray computed 
tomography using machine learning

Permalink

https://escholarship.org/uc/item/0xk284wx

Journal

npj Computational Materials, 9(1)

ISSN

2057-3960

Authors

Huang, Ying
Perlmutter, David
Fei-Huei Su, Andrea
et al.

Publication Date

2023

DOI

10.1038/s41524-023-01039-y

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0xk284wx
https://escholarship.org/uc/item/0xk284wx#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Detecting Lithium Plating Dynamics in a Solid-State Battery with Operando X-
ray Computed Tomography using Machine Learning 

Ying Huang1†, David Perlmutter2†, Andrea Fei-Huei Su3, Jerome Quenum2, Pavel Shevchenko4, 
Dilworth Parkinson5, Iryna V. Zenyuk3*, Daniela Ushizima2,6*  
1 Department of Materials Science & Engineering, National Fuel Cell Research Center, University 
of California Irvine, California, USA     
2 Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, 
California, USA     
3 Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center, 
University of California Irvine, California, USA    
4 Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, 
Illinois, USA 
5 Advanced Light Source, Lawrence Berkeley National Laboratory, California, USA 
6 Berkeley Institute for Data Science, University of California Berkeley, California, USA 
† These authors contributed equally    
*Corresponding authors: Iryna.zenyuk@uci.edu, dushizima@lbl.gov  

 

Abstract 
Inspection of Li-metal batteries during operation is essential to understanding how Li moves and 
why the battery degrades. Operando X-ray micro-computed tomography (µCT) provides an 
opportunity to observe the evolution of Li structures inside a Li-metal pouch cell. Segmentation is 
an essential step to quantitatively analyzing µCT datasets, but it is challenging to achieve on 
operando Li-metal battery datasets due to the low X-ray attenuation of the Li metal and the sheer 
size of the datasets. Herein, we report an iterative approach to training an Iterative Residual U-Net 
based network to segment operando X-ray µCT datasets of a solid-state Li metal pouch cell. Five 
Li-related components were extracted. With semantic segmentation, not only can we extract 
singular Li-related component changes, but we can also quantitatively analyze the diverse 
morphologies in the dataset. In our case, dead Li was visualized, and the volume and effective 
thickness of electrodes, deposited Li, and redeposited Li were calculated. We also discovered the 
spatial relationships between these components. The proposed approach is easily transferrable to 
other datasets and presents a unique method for analyzing battery performance.  To the authors’ 
knowledge, these Li dynamics have not been measured quantitatively using CT data before. This 
method brings new insight that can significantly benefit future Li-metal battery design. 

Main 
Li metal is a promising candidate as a battery anode material due to its high theoretical capacity 
(3,860 mAh g-1) and high magnitude of thermodynamic potential (-3.06 V vs. SHE)1. In liquid 
electrolytes, Li metal is generally not stable, leading to various side reactions, the formation of 
solid electrolyte interphase (SEI), and dendrite formations2. Solid electrolytes can mitigate some 
of these issues, as they can form a more stable interface with Li metal3,4. Li-metal solid-state 
batteries (SSBs) have higher energy density compared to the current state-of-the-art Li-ion 



batteries, resulting in lower battery weight and size. However, dendrite formation caused by 
inhomogeneous Li metal plating hinders the development of the SSBs. Most of the previous 
research on SSBs focused on dendrite structure or the growth of dendrites in small, nanoscale 
fields of view. A more in-depth understanding of the Li plating and stripping dynamics in SSBs in 
a larger field-of-view (micron-scale) is needed to overcome these challenges1,5,6.  

X-ray micro-computed tomography (µCT) has the spatial resolution necessary to capture dendrite 
formation7. In situ/Operando CT was used to detect the substructures formed on Li electrodes8, to 
understand Li metal plating in symmetric Li/polymer electrolyte/Li batteries4, to study the 
lithiation and Li plating in Li-graphite batteries with polymer electrolyte6, and to reveal void 
formation caused by Li stripping at the interface between Li metal and solid-state electrolyte9,10. 
However, these studies imaged batteries with small active areas, leading to significant edge effects 
which cause streak artifacts or shading11 as well as issues in electrochemical performance. Also, 
the batteries in some previous studies were constructed using a Swagelok cell. Swagelok cell are 
manufactured from a polyether ether ketone (PEEK) or other plastics to ensure X-rays are not too 
readily absorbed, and thus there is no guarantee that the cells are airtight. Our work reports on the 
development of a pouch cell designed for high-resolution synchrotron X-ray µCT imaging and 
demonstrates its feasibility. The coin-in-pouch cell design developed in this work enables high 
throughput imaging of batteries using operando X-ray CT while still achieving electrochemical 
performance comparable to other, smaller sized pouch cells. 

A challenge in analyzing operando X-ray CT data is the sheer size of the datasets. One scan yielded 
tens of gigabytes of raw projection data, which was reconstructed into a multi-gigavoxel image 
stack. Here, we collected multiple image stacks, each containing over 26 billion voxels (stitched 
from three scans), so manual labeling all the data was not feasible. Furthermore, accurate 
segmentation of Li phase is an inherently complex problem. Li has a low atomic number and does 
not attenuate X-rays significantly, meaning that the contrast of Li structures in X-ray images is 
typically poor. Therefore, the pixel value difference between Li, voids, and other Li components 
is minimal. Traditional thresholding-based segmentation methods can be ineffective in such low-
contrast settings due to noise and other imaging artifacts. However, machine learning, and in 
particular deep learning, can produce high-quality segmentations even with low-contrast and noisy 
images because they consider more complex, multi-resolution spatial components in addition to 
pixel intensity36. U-Net is a deep learning architecture initially developed for two-dimensional 
(2D) biomedical image segmentation but has become popular for many types of image 
segmentation, including CT images12. Like all such methods, it is trained on a small amount of 
labeled (i.e., pre-segmented) data, and once trained can produce segmentation predictions. Much 
effort 13-17 has been dedicated to exploiting machine learning to accelerate the analysis of CT data 
of batteries, most of which are focused on the electrodes, especially the cathodes.  

In this paper, we performed operando X-ray µCT to track the Li dynamics of a solid-state Li-metal 
symmetric pouch cell during one cycle. With a monochromatic synchrotron beam, we collected 
3D image volumes with high resolution (pixel size of 1.33 µm) of the same SSB at 25 different 
timesteps in one cycle. Using an Iterative Residual U-Net based segmentation algorithm, we 
processed all 25 volumes by splitting each volume into five classes: dendrite, pit, deposited li 



(during charging), redeposited Li (during discharging), and background. We then analyzed the 
changes of each Li-related component and measured the spatial correlation between different 
components. Our main contribution is to provide an automated technique based on machine 
learning to segment large-scale operando µCT images and to perform quantitative analysis on 
morphological dataset of an energy device, foreseeing potential applications in quality control.  

Operando X-ray CT  
A Li/polymer electrolyte/Li symmetric pouch cell with an active area of 0.5 cm2 was used in this 
study (Supplementary Fig. 1). Electrochemical impedance spectrum was collected at 25 °C before 
the cell was cycled (Supplementary Fig. 2). Full details about the cell assembly are presented in 
the Methods section. 

Our operando X-ray CT study was conducted with the pouch cell mounted on the rotating stage 
by a clip (Fig. 1a) and connected to the potentiostat. The study was conducted for one full cycle 
(charge and discharge). A galvanostatic current of 1.5 mA cm-2 was periodically applied for 10 
min and then interrupted with a ~20 minutes rest period in between (Fig. 1b). CT scans were 
collected during the rest periods, twenty-five scans in total over the entire experiment, to observe 
the evolution of the internal cell structure (Fig. 1c). By cycling the battery with this galvanostatic 
intermittent titration technique, the Li was able to dissolve and deposit during the rest periods and 
was less affected by the Li+ concentration gradient at the interface. Therefore, the cycling curve 
can reveal voltage changes caused by the reaction rate difference on the electrode surface18. The 
envelope voltage constructed by connecting the maximum voltage of each current applied period 
(Supplementary Fig. 3) demonstrates this voltage change. The amplitude of the voltage peaking 
shape changed during the cycle. This means that the reaction rate effect on the voltage had been 
reduced, and Li accumulation occurred after the cycle18-20. 

Different components appeared at different stages during the full cycle (Fig. 1d). When checking 
the cross-section images, all five Li-related components could be recognized (note that all 
microCT figures are shown with inverted intensity scale, so lighter is less dense). At pristine state 
(before charging began), two Li metal electrodes were clearly shown, each of which had a 
thickness of ~100 µm. Between the Li metal electrodes, the polymer electrolyte was visible. For 
convenience and better presentation, we named the electrodes as the “Li-stripping side” and the 
“Li-plating side” based on their behavior during the charging stage. During charging, some new 
components appeared on the images, including deposited Li, dendrites, and pits. The deposited Li 
is the Li uniformly plated onto the electrode (Li-plating side). Dendrites are defined as the Li 
protruding out and having a height more than the uniformly plated Li (deposited Li). Pits are the 
components left after the Li was stripped non-uniformly on the electrode (Li-stripping side).  
During discharge, the pits were filled as deposited Li from the Li-plating side was redeposited on 
the Li-stripping side. This redeposited Li was added to the segmentation analysis.  Some deposited 
Li and dendrites still appeared in some of the discharging images. The redeposited Li and pits only 
appeared on the Li-stripping side, while the deposited Li only existed on the Li-plating side. After 
one entire cycle, the dendrites remaining at the Li-plating side are considered dead Li. All analysis 
in this study was based on the above-mentioned Li-related components.  



Machine learning-powered segmentation 
The raw µCT scans were reconstructed (details are described in Methods) and yielded twenty-five 
grayscale image stacks. The overall pipeline to process the operando data consisted of image 
alignment and registration, region of interest (ROI) selection, image segmentation, and 
quantitative analysis (Fig. 2a). See Supplementary Note 1 for more details on these steps. To train 
an Iterative Residual U-Net for segmentation, labeled training data is required, but labeling vast, 
volumetric data is tedious. With µCT analysis of Li-metal battery morphology being a relatively 
new field, there do not exist publicly available labels or pre-trained models for segmentation tasks 
on similar datasets to our knowledge. Therefore, an iterative approach to training the network was 
developed.   

Starting with a small number of 2D hand labels, an initial model was trained to segment pits, Li, 
and background, and the resulting predictions were used as starting points for further hand 
labeling. To make the labeling process more efficient, material phases like deposited Li, 
redeposited Li, and electrode were labeled individually. Thus, the segmentation was divided into 
several binary classification problems which were later combined with the results from the initial 
model to train the next, fully multi-class model. Fig. 2b shows the iterations in detail. Note that 
the initial labeling of pits and Li were made on the in-plane slices (see Supplementary Fig. 4 for 
illustrating demonstration), while later labels were made cross-sectionally. The in-plane slices near 
the electrodes have a higher density of the material phases of interest, making them more 
morphologically diverse than cross-section slices. Therefore, it is more efficient to train models 
from scratch with in-plane labels. However, distinguishing between some components, such as 
homogeneous electrode and electrolyte regions, is easier to classify in the cross-sectional views 
since they need context from the entire battery depth (see Supplementary Fig. 5 for demonstration). 
Finally, our cross-sectional model was refined using 42 hand-labeled cross-sectional slices across 
11 of the 25 scans to improve classification accuracy in ambiguous regions. This final model 
achieved a testing accuracy of 98.8% and an overall intersection over union12 (IoU) of 95.5% 
(Supplementary Table 1).  More details about the model training are provided in the Methods and 
Supplementary Note 1. 

After getting the semantic segmentation results, further post-processing was done, including 
choosing an appropriate ROI for quantitative analysis and refining the results by defining a 
reasonable spatial location for each component (see Supplementary Note 1 for more details). The 
operando CT imaging datasets for a cycling cell were segmented (Fig. 2c-d).  

Quantitative analysis for Li-related components 
After image segmentation, we performed a quantitative analysis of the Li-related components 
(Supplementary Fig. 6). More details about the analysis performed is included in Supplementary 
Note 2. The rendered volumes in Fig. 3a demonstrate the change of all components during the 
battery cycling at 1.5 mA cm-2. As shown with the volume renderings, dendrites grew during 
charging and deposited Li appeared on the plating side while pits formed on the stripping side. 
When the applied current direction changed, the volume of the deposited Li on the plating side 
decreased while redeposited Li appeared to fill in the pits. Fig. 3b plots the volume changes of the 
dendrites (plating side), deposited Li (plating side during charging) and the redeposited Li 



(stripping side during discharging). As expected, the volume of the dendrites increased and then 
decreased during the whole cycle. There were noticeably more dendrites at the beginning of the 
discharging than at the end of the charging. This indicates that Li was still moving during the rest 
period before discharging started. However, there were still some dendrites left after one full cycle, 
meaning that some Li with a volume of 1.11×107 µm3 had lost connection with the electrode and 
became “dead Li”.  

The change in thickness of both Li metal electrodes (excluding the contributions from deposited 
Li, dendrites or redeposited Li) are shown in Supplementary Fig. 7. The plating Li electrode grew 
during charging and shrank during discharging as expected, but its net thickness change was small. 
During charging, the stripping Li electrode shrank but did not increase during discharging. This 
could be due to the fact that the traveling Li did not integrate into the electrodes and only attached 
to the electrode surfaces as layers. If we include the deposited Li and redeposited Li into the 
thickness calculation, then the true Li evolution is revealed (Fig. 3c). During charging, the sum of 
thicknesses of components on the plating side (plating electrode and the deposited Li layer) 
increased from 107.7 µm to 140.1 µm. The increase slowed down after 60 min of charging (during 
the 7th charging segment) and almost stopped after 80 min (during the 9th charging segment). This 
is probably due to the newly plated Li integrating into the porous structure formed by the 
previously deposited Li. As with the ~1 µm resolution, sub micrometer porosity cannot be resolved 
with µCT. At the same time, the stripping side (stripping electrode and the redeposited Li) 
decreased from 112.9 µm to 101.7 µm with a rate of 0.93 µm /segment (10 min of charging). 
During discharging, the thickness of the stripping side increased at a rate of 2.47 µm /segment (10 
min of discharging), and the final thickness of 130.5 µm was much higher than the pristine one of 
112.9 µm. This was probably due to the nonuniform plating of the redeposited Li, which made the 
Li structure porous and loose. Also, the rate of decrease of the plating side thickness followed an 
exponential decay, meaning that the rate of thickness decrease dropped as discharge time 
increased. This could be due to the dead Li accumulation, which formed a tortuous Li+ pathway 
and thus affected the Li+ diffusion18. The deposited Li and redeposited Li are unlikely to be 
perfectly uniform even though we calculated their thickness with the assumption that their surfaces 
were flat.   

The net Li volume in the ROI changed by 1.65×109 µm3 with a variation of 1.94×108 µm3 (Fig. 
3d) during the cycle. The variation was probably due to error in the segmentation. This error could 
be caused by the porous structure of the Li. Fig. 3d also showed the traveling Li volume that is 
calculated from the cycling curve (see Supplementary Note 3 for more details). The amount of 
traveling Li calculated from the cycling curve (based on Faraday’s Law) is larger than the one 
gained from the µCT data. If we converted the difference in amount of Li to the capacity, the 
missing capacity could be larger than 70% after one full cycle (Supplementary Fig. 8). It is possible 
that some of the applied current was used for interphase oxidation, which was observed in many 
of the batteries with solid-state electrolytes and is one of the primary causes of capacity fade in the 
SSBs21-23. Also, some nanostructures of Li may not be detected using µCT technique24,25. 



Li dynamics 
The spatial evolution of Li dendrite and pits distributions over time were revealed by projecting 
the volumetric images onto a 2D, in-plane view (Fig. 4a-c, see Supplementary Note 2 for more 
details). The projected in-plane view projects all the dendrites or deposited Li present through-
thickness of the battery onto a single projection. The area where no Li plated (dendrites or 
deposited) on the plating electrode decreased during charging, then increased during discharging, 
as expected. Almost all the deposited Li disappeared after one entire cycle (deposited Li 
occupation area decreased from 98.4% after charging to 0.16% after discharging), meaning that 
the deposited Li was still “conductive”. However, dendrites occupied almost 30% of the ROI area 
at the half cycle and almost 12% when the cell finished one full cycle. This indicates that some of 
the Li on the dendrite structure were still conductive by maintaining connection to the electrode 
through Li nanostructures, while some Li dendrites were hard to “activate” and remained attached 
to the Li metal electrode. Also, the dendrite formed and grew at specific locations that did not 
change after the early stage of cycling. This indicates that the dendrite growth pattern was 
determined by the pristine structure of the cell rather than the later-formed components.  
 
Pits at the stripping side were formed due to the nonuniform stripping. The colocalization was 
analyzed between the components on the plating side and the pits on the stripping side 
(Supplementary Fig. 9). However, no correlation was found between the 2D distribution of the pits 
and the dendrite or deposited Li. The pits formed in the charging stage and filled with redeposited 
Li in the discharging stage. By subtracting the flattened 3D data of the pits from the flattened 3D 
data of the redeposited Li, we learn about the filling status of the pits. Fig. 4d shows the 2D spatial 
distribution changes of pits. After one full cycle, almost the entire pit area was filled. This indicates 
that no defects prevented Li from redepositing on the stripping side. However, the filling was not 
compact since the thickness of the stripping side increased after a cycle. There might be voids 
between the redeposited Li and the electrode, meaning that the active area (where the redeposited 
Li was attached to the electrode) might not be the whole ROI area. 

We can reveal more information by investigating the binary images of each Li components 
separately. Fig. 5a compares the location of the redeposited Li after a full cycle and the pits at a 
half cycle, which shows the map of voids between the redeposited Li and the stripping electrode.      
53.9% of the ROI area was occupied by the voids, indicating that the contact area of the Li 
electrode and the solid electrolyte was 46.1%. The electrode position can be shown by the edge 
projection of the electrode (Fig. 5b and Supplementary Fig. 10). After charging, the gap between 
the plating electrode and stripping electrode increased ~39.3 µm. This demonstrates the battery 
swelling, which could be due to oxidation of the interphase or the void formation between the 
electrode and the deposited Li. No apparent changes in the electrode position were observed during 
the discharging.  

Fig. 5c shows spatial relationship between the decrease of deposited Li and dendrites and the 
increase of the redeposited Li. Surprisingly, the spatial location where the deposited Li and 
dendrite volume decreased the most at the plating side was not correlated with the location where 
the redeposited Li increased the most at the stripping side. The Li-ion was not traveling in straight 
lines perpendicular to the electrodes but rather in a tortuous manner. This could be explained by 



components or defects on the membrane (Supplementary Fig. 11), which could make the pathway 
of the traveling Li more complex.   

Conclusion 
Batteries need special care when being characterized since they cannot be exposed to air. Micro-
CT is an ideal tool for understanding the internal structure of batteries since it can image with 
sufficient resolution to reveal Li component evolution while providing a large enough field of view 
for statistical analysis, all while the batteries are sufficiently sealed. With the help of deep learning, 
material phases can be segmented accurately and efficiently, even for very large volumetric 
datasets. We used an iterative training approach to achieve multi-class segmentation with 
satisfactory accuracy and minimal manual labeling. After segmenting the operando data into five 
different classes of dendrite, pits, deposited Li, redeposited Li and electrodes, the quantitative 
volume evolution of each component was revealed. Also, the Li traveling dynamics and its 
corresponding phenomena, like battery swelling, were detected by observing the electrode spatial 
changes.  

We investigated the volume changes of different Li-related components. Some parts of the 
dendrites, which were defined as Li with abnormal height after plating on the electrode, struggle 
to maintain contact with the electrode. Thus, not all dendrites went back to the stripping side after 
one full cycle. Deposited Li plated uniformly on the electrode during charging and traveled back 
to the stripping side during discharge. However, after the Li redeposited to the stripping side, it 
was not fully attached to the electrode, leading to void formation between the redeposited Li and 
the electrode. These voids could potentially impede further redepositing of Li on the electrode 
during future cycling.   

Our study demonstrated the possibility of quantifying the morphological evolution of the Li-
related components within a sealed Li-metal battery. Furthermore, we provided an example of how 
to better analyze CT data for future experiments using a pipeline and the approach that can be 
transferred to other datasets.  

 

Methods 

Materials and Electrochemical Testing 

Free-standing Li metal foil was used from FMC, with a thickness of ~100 µm. A polymer 
electrolyte membrane was provided as a research sample by Ionic Materials, Woburn, MA. The 
thickness of the polymer electrolyte was ~140 µm. The pouch cell was assembled in a 
configuration shown in Supplementary Fig. 1. A shim was used of 50 µm thickness to create a 0.8 
cm diameter circle. Two polymer electrolyte membranes were punched in a circle having a 
diameter of 1.11 cm and placed on each side of the shim. Then two Li-metal electrodes were placed 
on the outside of each membrane. The metal tabs were connected to the Li-metal electrodes. The 
dimensions of the pouch cell were 1.5 cm x 3.75 cm. The cell was sealed with a vacuum sealer.  



The cell was cycled at 1.5 mA cm-2 current density and 3.0 mAh cm-2. The cell was mounted onto 
an X-ray CT rotating stage and was imaged in 10-minute intervals during the battery rest periods. 
No external pressure was applied to the cell.  

Synchrotron X-ray CT Imaging 

X-ray CT was carried out at Beamline 2-BM33 at Advanced Photon Source (APS) at Argonne 
National Laboratory (ANL). The following optics were used: a 20 µm LuAG scintillator, 5x lenses 
and an sCMOS PCO Edge camera. The image resolution was 1.33 µm /pixel and the field-of-view 
was 3.4 mm. 27.5 keV energy was selected using a multilayer monochromator. Three Field of 
View (FOV) were recorded and stitched together to form a vertical height of > 3 mm. A 100 ms 
exposure time was used per projection, and 1500 projections were collected over 180 degrees of 
rotation. Tomographic reconstructions were performed using TomoPy28-29 with the Gridrec 
algorithm 34-35. Earlier works presented an in-depth description of algorithm parameters30,31.   

Image Processing and Segmentation  

All data processing was done at the National Energy Research Scientific Computing Center 
(NERSC). Neural network training was performed on a single, 4-GPU Perlmutter node, using the 
distributed data parallel functionality in PyTorch. Since initial networks were trained using partial, 
imperfect labels made from scratch, we focused on qualitative improvement over quantitative 
segmentation metrics. For the early training, the data was split 85/15% into training and validation 
sets, respectively. Since our training data size varied significantly from network to network, we 
chose not to train for a fixed number of epochs. Instead, training was stopped after 1 hour or when 
validation accuracy did not improve for 10 iterations, whichever came first. However, our final set 
of labels consisting of of multi-class labels from 42 cross-sectional slices across 11 of the 25 scans 
was generated by refining previous predictions and was much more accurate. We split these final 
labels 72/13/15% into training, validation, and testing sets, respectively, which produced the final 
trained network and accuracy/IoU performance metrics. After segmentation, the processing and 
visualization were done in Fiji32 and ORS Dragonfly Software (Version 2022.1).  

 

Data Availability 

XCT data, annotations and segmentation data will be available upon request as well as at Zenodo 
upon paper acceptance.  

 

Code Availability 

Python codes for microCT segmentation, batteryNET, were created by the authors and are 
described in this paper. These codes will be available upon paper acceptance and clearance with 
the LBNL Intellectual Property Office, following the DOE Advanced Scientific Computing 
Research (ASCR) recommendations. 
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Fig. 1 Operando X-ray imaging of the pouch cell during cycling 

a. Schematic of operando setup for CT imaging experiments of a cycling pouch cell.  

b. Representative 3D datasets collected showing the evolution of the internal pouch cell during 
one full charge and discharge cycle. 

c. Cycling curve measured during the operando CT experiment at 1.5 mA cm-2. Scans were taken 
during pouch cell charge/discharge rest periods. 

d. Representative grayscale image showing the Li-related components to be segmented. 

 

 

  



 

 

 

 

Fig. 2 Pipeline of the operando imaging data processing.  

a. Image processing pipeline from raw data to quantitative results 

b. Detailed schematic representation of iterative U-Net model training 

c, d. Illustration of the segmentation results of the pouch cell after half and full cycle: c, 
representative 2D cross-section image and d, 3D structure. The arrows indicate how Li-ions and 
electrons moved during the charging and discharging stages.    

  



 

 

Fig. 3 Quantitative analysis of Li-related components.  

a. 3D rendering of the segmented data at selected time steps. Each Li phase is rendered in a 
different color.  

b. Volume change of dendrites, deposited Li, and redeposited Li over the full cycle, as extracted 
from the segmentations. The x-axis includes times when current is being applied only, not resting 
periods. 

c. Effective electrode thickness on the plating side (excluding dendrites) and stripping side over 
time. The x-axis includes times when current is being applied only, not resting periods. 

d. Transformation of traveling Li calculated from µCT data and the cycling curve. The total Li 
volume is calculated from the µCT data. The x-axis includes times when current is being applied 
only, not resting periods. 



 

Fig. 4 Two-dimensional (2D) Distribution of the Li-related components.  



a. Evolution of the dendrite spatial distribution in 2D in-plane views (flattened 3D data). Dendrites 
are plotted in cyan. Scale bar: 500 µm. 

b. Evolution of deposited Li spatial distribution in 2D in-plane views (flattened 3D data). 
Deposited Li is plotted in magenta. Scale bar: 500 µm.  

c. Evolution of the unfilled pit spatial distribution during discharging in 2D in-plane views 
(flattened 3D data). The half-cycle figure (left) shows the pits formed during the charging stage. 
The orange color shows the area where the pits were not fully filled. Scale bar: 500 µm.   

d. Proportion of 2D in-plane view pixels not occupied by dendrite (blue) and deposited Li (red) 
over the full cycle. The x-axis includes times when current is being applied only, not resting 
periods. 

e. Proportion of 2D in-plane view pixels not occupied by pits (black) and redeposited Li (red) over 
the full cycle. Purple shows the percentage of pits remaining unfilled during discharge. The x-axis 
includes times when current is being applied only, not resting periods. 

  



 

 

 

Fig. 5 Comparison between Li-components at pristine, half cycle, and one full cycle. 

 a. Map of voids between redeposited Li and Li-stripping side electrode after the full cycle. The 
voids are defined as the pits (formed during charging) that were not occupied by redeposited Li 
after discharging. Scale bar: 500 µm. Color bar represents the depth of the voids, unit: µm.  

b. Displacement of electrode over full cycle. The green, orange, and magenta colors represent the 
edges of the pristine electrodes, after a half cycle, and after the full cycle, respectively (note: the 
lowest electrode didn’t move significantly during the cycle, so all 3 colors overlap and appear 
yellow). Scale bar: 500 µm.  

c. Map of traveling Li- components evolution during discharging (from half to full cycle), in cross-
sectional view (flattened 3D data). Blue shows where deposited Li and dendrites decreased and 
red shows where redeposited Li increased. Scale bar: 500 µm.  
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Supplementary Note 1: Image pre-processing and segmentation     

Registration  

The raw µCT reconstructions from all 25 scans were registered before labeling and 
segmentation. First, we roughly aligned the electrodes to be perpendicular in-plane (x-z plane in 
Fig. 1b) by applying fixed rotations to each cross-sectional slice, first in x-y and then y-z. The 
angles were chosen by eye from visualized slices in a Jupyter notebook. Next, we fixed the 
geometry of the final (240 min) scan, cropped the volume to an initial ROI (of 3896×1707×698 
voxels), and precisely registered and cropped the remaining scans to the fixed volume using the 
ITK registration toolbox1. Each registration iteratively optimized a 6 parameter, 3D rigid-body 
transformation (3 rotations and 3 translations) with sub-voxel resolution to maximize the voxel-
wise cross-correlation. Registration of the entire ROI was too computationally demanding, so we 
used a 300×300×300 voxel sub-volume centered on material defects known to be static across 
the experiment. Also, since some gross, non-rigid deformation was present in the battery 
throughout the experiment, we averaged the registrations from several sub-volumes distributed 
across the battery to ensure we achieved a reasonable fit everywhere. 

Neural Network Segmentation 

Convolutional neural networks (CNNs) treat image segmentation as pixel-wise classification into 
distinct, pre-defined classes and are known to give state of the art segmentation performance. 
Since our data volumes are very large (3896×1707 pixels per slice), we subdivided each slice 
into fixed-size patches which before inputting to the neural network. Models were trained in 
PyTorch, using standard cross-entropy loss and the Adam optimizer. For inference, we also use 
patches but with 25% overlap to mitigate the loss of classification accuracy near the patch 
edges3,4 The multiple predictions from overlapped regions were averaged before applying the 
softmax function. Supplementary Fig. S12 shows sample outputs of the model considered in this 
work. 

The U-Net architecture was first introduced in 2015 by Ronneberger et al.2 for the semantic 
segmentation of biomedical images. We refer interested readers to the referred paper for details 
about the architecture of the network. In our work, we used the U-Net implementation in 
MONAI5, which is based on a Residual U-Net architecture6. Residual U-Net improves upon the 
original U-Net by adding residual connections between input and output blocks within the same 
level (i.e. resolution) in both the encoder and decoder7. The networks consisted of seven levels, 
with each level containing two blocks, and each block consisting of, in order, convolutional, 
parametric ReLU, dropout (20%), and batch normalization layers. Adjacent levels were 
connected with max pool 2x2 downsampling layers in the encoder, and strided transpose 
convolutional 2x2 upsampling layers in the encoder. As in standard U-Net, skip connections 
connected equivalent encoder and decoder levels. We used 512 pix × 512 pix inputs, a 3x3 
convolutional kernel, and 32, 64, 128, 256, 512, 512, 512 channels for each of the seven levels, 
respectively. 

Post-processing     



Some post-processing was done on the raw segmentation results before analysis. First, we chose 
to remove the edges of the full volumes, where image quality was poorer and inconsistent 
segmentation results were given. Our final analysis ROI was 2280×1707×698 voxels. Next, we 
split the electrode and deposited Li class into two subclasses each based on depth. The ROI was 
divided into two sub-volumes, each 2280×1707×349 voxels. The voxels closer to the stripping Li 
were relabeled redeposited Li, while the pixels closer to the plating Li remained deposited Li. A 
similar operation was done to get the volumes of the striping Li electrode and the plating Li 
electrode.  



Supplementary Note 2: Quantitative analysis and image manipulation    

1. Quantitative analysis  

The quantitative analysis was conducted based on the segmentation results and voxel size of the 
µCT. The equations were shown as follows. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑉𝑜𝑙𝑢𝑚𝑒 = 	𝐿𝑎𝑏𝑒𝑙𝑒𝑑	𝑉𝑜𝑥𝑒𝑙	 × (1.33	µ𝑚)!			

𝐹𝑒𝑎𝑡𝑢𝑟𝑒	𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 	
𝐿𝑎𝑏𝑒𝑙𝑒𝑑	𝑉𝑜𝑥𝑒𝑙	 × (1.33	µ𝑚)!	

𝑅𝑂𝐼	𝑎𝑟𝑒𝑎	 	

Notice that in our case, 

𝑅𝑂𝐼	𝑎𝑟𝑒𝑎 = 	1707	 × 2280	 × (1.33	µ𝑚)"			

2. Flatten 3D  

Flattening the 3D image stack can make visualization and analysis simpler. In this study, we 
used Z-project in Fiji Image J8 on the binary image stacks representing individual segmented 
classes. We applied Z-project by either summing or averaging the pixel values along the y-axis 
(perpendicular to the electrode plane). A sum Z-project calculates the total thickness of the class 
at a given location, while averaging gives the density. 

3. Colocalization 

The colocalization analysis in this study was done using Coloc 29, which is a plugin of Fiji Image 
J8. Coloc shows the correlation between the 2D spatial map of different segmented classes. The 
Pearson’s correlation coefficient summarized the strength of this correlation; a correlation 
coefficient of 1 means perfect correlation, 0 means no correlation, and -1 means perfect anti-
correlation. 

 

 

  



Supplementary Note 3: Traveling Li volume from the electrochemical curve     

In this study, the galvanostatic current was periodically applied twenty-four times over one 
cycle, for 10 min each. Thus, all the calculations were done based on one current-applied period 
(10 min). 

The capacity (unit: mAh) of the battery gained from one current-applied period is: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦#$%&' =	 𝐼())*&+, × 10	𝑚𝑖𝑛 ×
1	ℎ

60	𝑚𝑖𝑛		

The specific capacity of Li-metal is 3860 mAh g−1. Thus, the mass of the Li traveled in one 
current-applied period can be calculated as:	

𝑀𝑎𝑠𝑠#$%&' =	
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦#$%&'
3860	𝑚𝐴ℎ/𝑔 		

With the information that the density of Li metal is 0.534 g cm-3, the volume of the Li traveled in 
one current-applied period can be gained by: 

𝑉𝑜𝑙𝑢𝑚𝑒#$%&' =	
𝑀𝑎𝑠𝑠#$%&'
0.534	𝑔/𝑐𝑚!		
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Supplementary Fig. 5 Example of a small batch of labels in cross-sectional view 
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Supplementary Fig. 1 Schematic of the assembled pouch cell for operando CT experiment  
  



 

Supplementary Fig. 2 EIS data of the pristine assembled pouch cell 
 

  



 

Supplementary Fig. 3 Voltage profile of galvanostatic intermittent titration cycling over one 
cycle. The profile is constructed by connecting the maximum voltage at each transient period.  
 

  



 

Supplementary Fig. 4 Example of an in-plane view hand label. Red represents dendrite and blue 
represents background.   



 

Supplementary Fig. 5 Example of a partial cross-sectional labels. The colored overlay shows the 
labels painted on top of a the grayscale image. Yellow pixels, representing background, make up 
the largest labeled section. Green, red, orange and grey pixels represent dendrite, deposited Li, pit 
and electrode pixels, respectively. However, most of the image is unlabeled, and so appears as 
simply a grayscale image. 
 

 



 

Supplementary Fig.6 Quantitative analysis of material phase evolution based on segmentation 
results from final U-Net model. The x-axis includes times when current is being applied only, not 
resting periods. 



  

Supplementary Fig.7 Change in the effective thickness of the electrodes during one cycle. The x-
axis includes times when current is being applied only, not resting periods.  



 

Supplementary Fig. 8 Capacity calculated from CT imaging data divided by the capacity 
calculated from cycling curve. The accumulated capacity from the CT data in the charging stage 
was calculated from Li-features voxels in the plating side minus the original plating electrode 
voxels. The discharging stage was calculated from Li-features voxels in the stripping side minus 
the original stripping electrode voxels. The x-axis includes times when current is being applied 
only, not resting periods. 



 

Supplementary Fig. 9 Person’s correlation coefficient between the 2D distribution of Pits and 
deposited Li or dendrite. The x-axis includes times when current is being applied only, not resting 
periods.  



 

Supplementary Fig. 10 Cross-sectionally flattened 3D data (average) of the edge of the 
segmented electrodes at pristine, half cycle and full cycle   
  



 

Supplementary Fig. 11 Representative in-plane images of the solid-state electrolyte region  
Scale bar: 500 µm. 

 

  



 

Supplementary Fig. 12 Examples of the final prediction of the U-Net model   
Scale bar: 500 µm. Blue represents the electrodes. Yellow represents the deposited Li. Green 
represents the dendrites. Brown represents the redeposited Li.  

  



Supplementary Table 1 Breakdown of per-class test set intersection-over-union (IoU) metric 
for final cross-sectional U-Net model. The test set consisted of 31 512x512 pixel patches 
randomly selected across 42 cross-sectional slice final hand label set. 
 

Class IoU 

Dendrite 69.4% 

Pit 86.5% 

Deposited Li 78.8% 

Electrode 97.0% 

Total 95.5% 
  



 

References 

1 Lowekamp, B., Chen, D., Ibanez, L. & Blezek, D. The Design of SimpleITK. Frontiers 
in Neuroinformatics 7, doi:10.3389/fninf.2013.00045 (2013). 

2 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical 
Image Segmentation. International Conference on Medical image computing and 
computer-assisted intervention.  234-241 (Springer). 

3 Innamorati, C., Ritschel, T., Weyrich, T. & Mitra, N. J. Learning on the edge: Explicit 
boundary handling in CNNs. arXiv preprint arXiv:1805.03106 (2018). 

4 Cui, Y., Zhang, G., Liu, Z., Xiong, Z. & Hu, J. A deep learning algorithm for one-step 
contour aware nuclei segmentation of histopathology images. Medical & biological 
engineering & computing 57, 2027-2043 (2019). 

5 Consortium, M. Project monai. Zenodo. Available online: https://zenodo. 
org/record/4323059#. YXaMajgzaUk (accessed on 25 May 2020) (2020). 

6 Kerfoot, E. et al. in International Workshop on Statistical Atlases and Computational 
Models of the Heart.  371-380 (Springer). 

7 He, K., Zhang, X., Ren, S. & Sun, J. in European conference on computer vision.  630-
645 (Springer). 

8 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature 
Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012). 

9 Coloc 2, <https://imagej.net/plugins/coloc-2> (2018). 

 

 




