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Entanglement structures in qubit systems

Mukund Rangamani, Massimiliano Rota

Centre for Particle Theory & Department of Mathematical Sciences,
Durham University, South Road, Durham DH1 3LE, UK.

E-mail: mukund.rangamani@durham.ac.uk,
massimiliano.rota@durham.ac.uk

Abstract: Using measures of entanglement such as negativity and tangles we pro-
vide a detailed analysis of entanglement structures in pure states of non-interacting
qubits. The motivation for this exercise primarily comes from holographic considera-
tions, where entanglement is inextricably linked with the emergence of geometry. We
use the qubit systems as toy models to probe the internal structure, and introduce
some useful measures involving entanglement negativity to quantify general features
of entanglement. In particular, our analysis focuses on various constraints on the pat-
tern of entanglement which are known to be satisfied by holographic sates, such as
the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy
of mutual information. We argue that even systems as simple as few non-interacting
qubits can be useful laboratories to explore how the emergence of the bulk geometry
may be related to quantum information principles.

ar
X

iv
:1

50
5.

03
69

6v
3 

 [
he

p-
th

] 
 2

7 
A

ug
 2

01
5

mailto:mukund.rangamani@durham.ac.uk
mailto:massimiliano.rota@durham.ac.uk


Contents

1 Introduction 1

2 Measures of entanglement 6
2.1 Bipartite entanglement 6
2.2 Multipartite entanglement 10
2.3 Notation 12

3 Warm up: Three qubits 14

4 Four qubits 17
4.1 Generic states of 4 qubits 18

4.1.1 Monogamy of the negativity and disentangling theorem 19
4.1.2 Negativity to entanglement ratio 21
4.1.3 Monogamy of mutual information 25

4.2 SLOCC classification of 4 qubit states 26

5 Large N qubit systems 34
5.1 Negativity versus entanglement 35
5.2 Exploring multipartite entanglement 39

6 Discussion: Lessons for holography 41

A Four qubit states: Detailed analysis of SLOCC classes 47

1 Introduction

One of the key features distinguishing quantum mechanics is the presence of entan-
glement which is a natural consequence of the superposition principle. Usually this is
characterized simply by the inability to separate a composite system into its constituent
parts without losing some information about the whole. The lack of knowledge of how
the individual parts comprise the entire system is encoded by entanglement.

While the presence or absence of entanglement elicits a binary response, one often
would like to know more and in particular be able to quantify the precise nature of
entanglement in a quantum system. In simple bipartite systems, e.g., two qubits, this is
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easily done using the von Neumann entropy of the reduced density matrix for one of the
components. This quantity which is referred to as the entanglement entropy provides
a complete characterization of the entanglement inherent in the state.1 However, this
ceases to be the case in more general scenarios: density matrices of bipartite systems
or equivalently pure states of multipartite systems.

To quantify the amount of entanglement in more general cases various measures
of entanglement have been proposed in the quantum information literature. Some
of these which we shall review in the sequel are easy to compute, while others have
restricted applicability. Nevertheless, given that the structure of entanglement in multi-
component systems can get rather intricate (if only due to the rapid growth of potential
permutations involved), it is interesting to contrast the different observables against
each other.

While this is an interesting exercise in its own right in quantum mechanics, part
of our motivation in attempting to understand such detailed structure of entanglement
stems from potential insights it can offer in the context of holography. One of the
amazing facts about the holographic AdS/CFT correspondence is the observation that
the entanglement in a class of strongly coupled planar field theories is geometrized in
terms of a gravitational background in higher dimensions. This statement is manifest
in the holographic entanglement entropy proposals of Ryu and Takayanagi [1, 2] and
its covariant generalization [3]. A more intricate and intriguing picture arises when we
ask whether the structure of entanglement in the field theory is itself responsible for
the emergence of geometry as was first suggested a few years ago in [4–6]. These ideas
have been central to the recent thesis that “entanglement builds geometry” codified
succinctly in the statement ER = EPR [7].

One obvious question in this context is the following: is the emergence of geometry
simply reliant on the presence or absence of entanglement, or does it depend more cru-
cially on the structure of entanglement? Most discussions in the holographic context
presuppose a pure state of a bipartite system whence entanglement entropy suffices.
However, we should be able to ask for the emergence of geometry in situations where the
configuration in question is more complicated and admits no simple bipartite descrip-
tion. Typical scenarios we have in mind are multipartite systems exemplified by the
multi-boundary wormhole geometries of [8–10] in three dimensions. Here the precise
manner in which the individual parts are entangled does play a role in the emergence of
some sort of semi-classical geometry and indeed previous investigations [11, 12] indicate
this to be the case.

1 To be sure this only captures the entanglement under the obvious bipartitioning; we will later be
careful to distinguish this from the entanglement contained in further subdivisions of the each system.
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The prototype scenario for this discussion is a N -partite system wherein integrating
out (N−3) components leads to a density matrix for the residual three components. In
this case, it is known following an interesting analysis of [13] that the density matrix of
the resulting tripartite system has to have non-positive definite tripartite information
(see below) in order to admit a semi-classical geometry as a holographic dual.2 On the
other hand for simple quantum systems the tripartite information can have either sign,
so not all states of a tripartite system can a-priori admit a semi-classical gravity dual.
This point was already made in [11], cautioning that the ER=EPR statement should
be accompanied by some riders. We will take this as sufficient motivation to examine
the nature of entanglement in simple systems.

To set the stage for our discussion, let us recall that in the holographic context
we are interested in studying continuum quantum field theories in the large central
charge limit. While the central charges can be formally defined in terms of conformal
anomalies, it is operationally useful to think them as measuring the curvature scale
of the holographic dual geometry `AdS in units of the Planck constant `P , viz., ceff ∼
`AdS/`P . Thus ceff � 1 corresponds to the regime where semi-classical geometry is
trustworthy.3 Heuristically this means that we are interested in considering systems
with a large number of degrees of freedom. Given such a theory we want to understand
what structures of entanglement are possible.

The canonical route of exploration is to consider various measures of entangle-
ment in continuum QFTs, such as entanglement entropy, Renyi entropies, negativity
etc.. However, these quantities are rather difficult to compute generically in interacting
systems. If we start with a pure state in the QFT and demarcate various (disjoint)
regions Ai i = 1, · · · ,M , then while it is possible to compute the entanglement en-
tropy for ∪iAi in holographic systems,4 it is harder to compute the Rényi entropies

2 As far as we know this condition is necessary but not sufficient to guarantee a semi-classical
geometric dual. The constraint was derived in [13] by examining the properties of holographic entan-
glement entropy, essentially adapting the arguments leading to the proof of strong-subadditivity of
holographic entanglement entropy. It appears not to follow simply from strong subadditivity, making
it in an independent statement about systems with large numbers of degrees of freedom as is relevant
for holography. We thank Matthew Headrick and Veronika Hubeny for an extremely illuminating
discussion on this point.

3 Strictly speaking we also need `AdS � `s where `s is the string scale, which requires the field
theory coupling being large. If not we end up with a classical theory, but one which involves stringy
excitations as well.

4 Given a collection of boundary regions as above, the [2, 3] require one to solve a classical grav-
itational problem to find an extremal surface in the geometry dual to the state in question. Even
in complicated geometries, this is a problem of solving classical partial differential equations, which
whilst involved, is nevertheless a lot simpler than the quantum problem (the simplification is made
possible by the ceff � 1 limit).
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and negativities.5

Entanglement negativity, introduced in [15], is a clean measure of the quantum
entanglement even for mixed states, while the usual von Neumann entropy is contam-
inated by classical correlations. This is particularly pertinent, if we are interested in
understanding the entanglement between two of our regions, say Aj and Ak, after
tracing out the state. Entanglement properties of the density matrix ρAj∪Ak are more
cleanly encoded in the negativity, which bounds the amount of distillable entangle-
ment, so it tells us directly how many Bell pairs are common to this disjoint region. It
is however quite hard to compute it in continuum systems.6

In a previous work [27], we examined the (logarithmic) negativity in the vacuum
state of a CFT (for bipartitionings given by connected regions of spherical topology).
We conjectured that the ratio of the universal part of the logarithmic negativity of
a pure state with respect to a given bipartitioning was bounded from below by the
entanglement entropy of the reduced density matrix obtained by integrating out one of
the components.7 Further analysis of this result for more complicated regions (building
on the analysis of [28]) reveals a rather interesting interplay between the central charges
of the CFT and the geometry and topology of the entangling surface [29]. Motivated by
these observations in the continuum, we introduce a new measure involving negativity,
called specific robustness, which is sensitive to the pattern of internal entanglement in
simple systems (see below).

To get further insight into features of quantum entanglement we look at a toy
problem of non-interacting qubits.8 Our motivation here is to understand how the
measures of entanglement that have been proposed in the quantum information litera-
ture serve to help us delineate the entanglement structure of the state. The advantage
of working with qubit systems is that we can explicitly compute (at least for small
numbers of qubits) various measures of entanglement. Starting with a pure state of
N -qubits, we can consider tracing out k < N qubits and examining the entanglement
inherent in the remainder (N−k)-qubits. Furthermore we can consider different bipar-
titions (or multi-partitions) of the remaining qubits and investigate how entanglement

5 Similar statements apply for entangled states in tensor product of CFTs, e.g., [12, 14].
6 In recent years negativity has been explored quite extensively in pure and thermal states of two

dimensional CFTs in a series of works, cf., [16–22]. We should also note that negativity in spin chains
has been studied in [23–26].

7 The universal part here refers to the renormalization scheme independent term; in even dimen-
sional CFTs it is the coefficient of the logarithmically divergent term, while in odd dimensional CFTs
it corresponds to the finite part.

8 Strictly speaking we pick random pure states of a few qubits and are agnostic about the actual
Hamiltonian (which may well be the identity operator); hopefully our terminology does not cause
confusion.
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is distributed among them and what are its properties. We perform some simple numer-
ical experiments starting with randomly chosen pure states of N -qubits (with N ≤ 8

for computational reasons) and argue that in general the combination of information
emerging from different measures of entanglement can give useful insights about the
properties of the state. Even for a fixed bipartition of a pure state, where entangle-
ment entropy determines the amount of entanglement, other measures give additional
information about the nature of this entanglement. While the holographic systems we
are really after are not as simple as non-interacting qubits, it is useful to use this toy
model to build some intuition about the nature of entanglement inherent in many-body
wavefunctions.9

Following our interest for the ratio between the logarithmic negativity and entan-
glement entropy motivated by field theory arguments [27, 29], we consider a similar
(and strictly related) quantity for qubit system, i.e., the ratio R between the negativ-
ity (not logarithmic) and the entropy. Using a known operational interpretation for
the negativity in terms of robustness of entanglement against noise, we introduce the
concept of specific robustness which is measured by the ratio and investigate how this
property is related to the pattern of entanglement inside the state. In the case of 4
qubits, where a classification of the possible states under a particular class of operations
(called stochastic LOCC, aka, SLOCC) exists, we show how this additional informa-
tion allows a partial resolution of the classes and investigate the detailed structure of
entanglement within this classification scheme.

We also undertake an analysis of mutual information and the monogamy constraint,
both for generic states and also for the different classes of 4 qubits. We find that
generically the monogamy constraint is not particularly restrictive. However, if we
restrict attention to SLOCC classes of states, we find a unique class that respects
monogamy.

In [27] part of the motivation for considering negativities as a measure of entangle-
ment in holographic systems was its ability to provide clear distinction between clas-
sicality and quantumness. For bipartitions of mixed states the von Neumann entropy
mixes classical and quantum correlations, while negativities can distinguish between
them. In a multipartite setting the same problem arises for the tripartite informa-
tion. We use a measure of multipartite entanglement known as tangle in the quantum
information literature, as a witness of intrinsically quantum multipartite correlations.
Even though its interpretation is somewhat murky and its definition restricted to qubit
systems alone, we show that it provides useful information when compared against the

9 The entanglement we explore is more closely related to the notion of particle partition entangle-
ment used in certain contexts to gain information complementary to that contained in spatial cuts of
the systems, cf., [30–33].
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tripartite information (and flesh out some connections to the monogamy of mutual
information). Armed with these result for qubit systems, we attempt to draw some
general lessons for continuum field theories.

The outline of the paper is as follows: in §2 we introduce the measures of bipartite
and multipartite entanglement as well as the notation that we will use for our inves-
tigations. We then start in §3 with the simplest case of 3 qubits, which serves as an
introduction to the kind of investigations that we will later conduct on larger systems.
§4 is the core of the paper, we first investigate generic states of 4 qubits and then present
a detailed analysis of the structure of entanglement for the known equivalence classes.
We extend the analysis to generic states of larger systems (6 and 8 qubits) in §5 and
discuss the main results and potential implication for holography in §6. Appendix A,
contains additional plots that complete the main results presented in the other sections.

2 Measures of entanglement

The problem of quantifying entanglement has been at the center of research in quan-
tum information theory for the last 15 years, nevertheless no conclusive measure has
been found so far that enables us to fully capture the structure of entanglement of
generic states. Several measures have been proposed in the literature but they are
usually strongly dependent on the specificities of the application for which they have
been developed, and often very difficult to compute. Alternatively, quantities with the
correct mathematical properties to be good candidates for entanglement witness, often
lack a clear physical interpretation. In this section we review some properties of entan-
glement and some measures that can be efficiently used to investigate its structure. In
the following we will be careful in distinguishing classical from quantum correlations
and reserve the term entanglement for the latter.

2.1 Bipartite entanglement

In its original formulation entanglement is a form of correlation that is not compatible
with local physics. Bell’s inequalities impose a bound on the strength of correlations
achievable by local physics, the violation of these constraints is a witness of entangle-
ment, which actually serves as its definition. For pure states this is well understood
– states which are not products are entangled and always violate some (generalized)
Bell’s inequality.

This is not always the case for mixed states. A mixed state ρ in a Hilbert space
HA ⊗HB is said to be separable if it is a convex combination of product states

ρ =
∑
i

pi ρ
A
i ⊗ ρBi ,

∑
i

pi = 1 , pi ≥ 0 , (2.1)
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and entangled otherwise. Product states contain no correlation, separable states have
only classical correlation (i.e., correlations that can be produced by LOCC10) and en-
tangled states contain some sort of quantum correlation.11 It is important to realize
that the bipartition of the system is a crucial part of the definition.

From a more recent perspective entanglement, can also be interpreted as a powerful
resource for specific protocols that are not possible when only classical resources are
available. In this context one often would like to be able to manipulate entanglement,
convert it into different forms, extract it from a system and transfer it to another and
so on. In this context entanglement can be quantified depending on a specific task such
as the preparation of a state (entanglement of formation), or the extraction of Bell’s
pairs from a given state (entanglement of distillation) (see [34]).

For pure states of a system where a bipartition is specified, it is well known that
entanglement entropy is a measure of the amount of entanglement between the sub-
systems. In a practical situation where two parties only have limited access to the
subsystems this is the best measure known so far, as it quantifies both non-locality
and the value of entanglement as a resource for specific tasks such as teleportation.12

Naïvely it is the number of Bell pairs available.13

We want instead to investigate how different subsystems are correlated among each
other in a state of a given global system, being particularly careful in distinguishing
classical from quantum correlations. One natural way to proceed is to consider different
bipartitions of the entire system: this would certainly give additional information about
the distribution of correlations. If we restrict this analysis to pure states, entanglement
entropy is a reasonable way to capture the quantum entanglement inherent in the state.

The problem becomes much more intricate for mixed states, where the relation
between non-locality and the “task dependent” formulation of entanglement is in general
not clear at present.14 In this case the von Neumann entropy is not a good measure of

10 LOCC stands for local operations and classical communication, which includes action by unitaries,
measurement and information exchange on classical channels.

11 The question of whether these correlations may or may not be compatible with local physics is
still open, see [27] for additional comments and further references.

12 In this case entanglement entropy is known to be equal to both entanglement of formation and
distillable entanglement [34].

13 This is precisely the meaning of distillable entanglement, but it is important to realize that the
definition is an asymptotic statement in the limit where an infinite number of copies of the original
state is available. In the context of holography one would prefer an interpretation in terms of a single
system.

14 There exist bound entangled states which are entangled (i.e., not separable), but at the same time
they are of very limited value as resource for typical quantum information (QI) protocols; specifically
Bell pairs cannot be distilled from them.

– 7 –



entanglement any more.
This is also a problem one faces in the attempt to completely characterize the

internal pattern of entanglement in a given state, even if the state is pure. One can
use entanglement entropy as long as only bipartitions of the entire state are considered,
but this is not enough to describe the state entirely. Given a pure state of a system
ABC, if we want to study the entanglement among internal subsystems, for example
A and B alone, we first need to trace out the degrees of freedom in C, but the result
of this operation is a mixed state. In order to characterize the entanglement between
A and B we need some other measure.

In a previous paper [27] we focused on negativities [15] as the measures of interest.
Let us recall their definitions and salient properties for convenience. Given a density
matrix ρ and a bipartition HA ⊗HB one defines the partial transpose ρΓ as

〈 r(A)
i l(B)

n | ρΓ |r(A)
j l(B)

m 〉 = 〈 r(A)
i l(B)

m | ρ |r
(A)
j l(B)

n 〉 (2.2)

The logarithmic negativity then is defined as

E = log ‖ρΓ‖ , (2.3)

where ‖...‖ denotes the trace norm.15 This is known to be an upper bound to distillable
entanglement. It is in general greater or equal to entanglement entropy (for pure bipar-
tite states), with the equality holding for maximally entangled states. It is somewhat
natural in continuum systems as one can give a suitable path integral representation
[16]. One can also define the negativity as

N =
‖ρΓ‖ − 1

2
. (2.4)

While simply related to the logarithmic negativity, it is more convenient to consider in
simple discrete systems; hence we will focus for the most part on the negativity itself.

Armed with the tools of entanglement entropy for bipartition of pure states and
negativity for bipartition of pure or mixed states, one can ask how much information
about the structure of entanglement of a given state can be extracted considering differ-
ent partitionings and comparing the two measures. More specifically [27–29] considered
the ratio between negativity and entanglement entropy for bipartitions of pure states.
One of the motivations of the present work is to flesh out a possible interpretation of
this quantity.

To this end it turns out it will be useful to interpret the negativity in terms of
another measure of entanglement called robustness [35]. Given a state ρ and a separable

15 The trace norm is defined as ‖O‖ = Tr
(√
O†O

)
for any Hermitian operator O.
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state ρs, one can consider mixtures of the two states and ask how much of ρs is necessary
to completely disentangle ρ. Formally

ρ̃ =
1

1 + s
(ρ+ sρs) . (2.5)

The minimal value of s such that ρ̃ is separable is called the robustness of ρ relative
to ρs. One can then ask what is the minimal value of s for all possible choices of
ρs, this is the robustness of ρ. Intuitively this corresponds to the robustness of ρ
against “intelligent jamming”; it is the minimal amount of noise needed to disrupt the
entanglement when we have full knowledge about the structure of the state.

For finite dimensional systems the negativity is known to be equal to a half of the
robustness

N =
1

2
min
∀ρs

s . (2.6)

This then provides a potential interpretation of negativity. Note however that this way
to quantify entanglement is operational and is quite different from the intuition we have
for the entropy in terms of non-locality and separability. It is interesting to ask if and
how the robustness is related to the internal structure of entanglement, namely to the
way entanglement is distributed among subsystems.

Inspired by this concept, to get a quantitative handle, we introduce a measure,
which we call specific robustness R. It is defined as the ratio of the negativity of a
given state (and bipartitioning), to the entanglement entropy of the reduced density
matrix under the same bipartitioning. Schematically we can write16

R =
N

S
(2.7)

Heuristically we want to think of it as a measure of the minimal amount of noise suffi-
cient to disentangle Bell pairs in a given state. More specifically, given two states with
the same entropy but different negativity, we will then interpret the entanglement as
more or less robust, depending on the ratio R; higher values of R would correspond
to greater robustness of the entanglement pattern. It is worth reiterating that such a
notion of robustness captures the operational sense of the concept, as it relies on a pro-
cedure that mixes the state with some noise. We want to ask whether (and how) this
quantity depends on the internal pattern of entanglement of the state. In particular,
given an entangling surface corresponding to a fixed bipartition, one can distinguish en-
tanglement inside the two subsystems or entanglement “across” the entangling surface.
In the rest of the paper we will examine this quantity in simple qubit systems.

16 In [27, 29] we considered the ratio X = E /S which was convenient in continuum systems. For
qubit systems the ratio R seems more appropriate, and one can anyway translate to X if necessary.
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Finally, as a measure of bipartite correlations we recall the definition of mutual
information

I(A|B) = S(A) + S(B)− S(AB) (2.8)

This has been argued to capture the total amount of correlations, both classical and
quantum [36].

In the theory of quantum information it is often useful to consider inequalities that
constrain the values of the measure of interest among different subsystems. One such
example is a relation called monogamy, which is defined for a quantum information
theoretic function f as

f(A|B) + f(A|C) ≤ f(A|BC) (2.9)

Monogamy is known to be a general feature of quantum entanglement. One can in-
terpret Eq. (2.9) as follows: if f is some entanglement measure, and subsystem A is
almost maximally entangled both with subsystem B and a larger one BC, then there
is almost no entanglement between A and C, i.e., f(A|C) = 0. This corresponds to the
common intuition for the concept of monogamy. Alternatively, the monogamy relation
is the precise statement of the fact that the “union is more than the sum of its parts”.
Specifically, there is some subtle correlation between A and the pair BC which is lost if
one only looks at the correlations A|B and A|C. The latter interpretation of monogamy
will be crucial in the definition of some measures of multipartite entanglement in the
following.

We will be interested in exploring monogamy relations as a potential way to con-
strain the allowed entanglement structures. Specifically, we will have occasion to ex-
plore the monogamy relation for the square of the negativity that was proved in [37].
Another monogamy relation involves the mutual information. While I(A|B) is not
monogamous in general, it happens to be so for holographic theories, as proved in [13]
(this holds asymptotically at large ceff). We note that recently [38–40] used a similar
philosophy to derive a set of (inequality) constraints on holographic theories, using
strong-subadditivity and relative entropy.

2.2 Multipartite entanglement

The definition of entangled and separable states introduced previously can be extended
to a multipartite setting. For a system of N parties a state is said to be fully separable
if it can be written as17

ρ =
∑
i

pi ρ
A1
i ⊗ ρ

A2
i ...⊗ ρANi ,

∑
i

pi = 1 , pi ≥ 0 , (2.10)

17 For more details about multipartite entanglement see [34] and [41].
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where the states ρi contain no entanglement. If some of the parties contain some
entanglement the state is called m-separable if it can be similarly decomposed into
a convex linear combination of products of m parts only. A state is said to contain
genuine N -partite entanglement if it is neither fully separable nor m-separable for any
m > 1.

We will focus on pure states as in the mixed case the properties of multipartite
entanglement are much less understood. The prototype of multipartite entangled states
is the well known GHZ state (a.k.a. cat state), whose general expression for N qubits
is given by

|GHZN〉 =
1√
2

(|0 · · · 0︸ ︷︷ ︸
N

〉+ |1 · · · 1︸ ︷︷ ︸
N

〉) (2.11)

This is sometimes called a maximally entangled state (in an N -partite sense) as it is
the state that violates a N -partite generalization of Bell’s inequality maximally [42].

The interpretation and quantification of multipartite entanglement is in general
difficult and much less understood than in the bipartite case. Some measures exist but
their physical meaning is usually not known. In the following our measure of interest
for multipartite entanglement of pure states will be the N -tangle (τN), which was
introduced for three qubits by [43]. In the three qubits case τ3 is known to quantify the
residual multipartite entanglement in the state, which is not captured by its bipartite
counterpart18

τ2(A|B) + τ2(A|C) + τ3(ABC) = τ2(A|BC) (2.12)

This equation precisely corresponds to the intuition we have from the previous discus-
sion about monogamy and actually serves as the definition of the tripartite entangle-
ment measure τ3.

A formal generalization of τ3 to any even number N of qubits was given in [44]

τN =2
∣∣∣∑ aα1...αNaβ1...βNaγ1...γNaδ1...δN×

εα1β1εα2β2 ...εαN−1βN−1
εγ1δ1εγ2δ2 ...εγN−1δN−1

εαNγN εβN δN
∣∣ (2.13)

where the coefficients correspond to the components of the state vector |ψ〉 in the
conventional computational basis (|0 · · · 00〉,|0 · · · 01〉, . . . ). This quantity is known to
be an entanglement monotone19 and invariant under qubits permutation, nevertheless

18 For pure states the 2-tangle is simply τ2 = 4 det ρA, where ρA is the usual reduced density matrix
of the qubit A.

19 A measure of entanglement is called an entanglement monotone if its value on a given state cannot
increase under the effect of LOCC operations performed on the state.
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its interpretation for generic N is not fully understood. For N = 4 an interpretation
in terms of residual entanglement analogous to the three qubits case was given in [45].
Nevertheless it is worth noting that this interpretation has some peculiarities [45]: for
example, τ4 = 1 for a product state of two Bell pairs suggesting that it cannot be
interpreted as a measure of genuine 4-partite entanglement. We emphasize that these
measures are only defined for qubits – there is no generalization to a continuous setting.

Another measure of mutipartite correlation that we will use is the so called tripartite
or interaction information (I3). This is measure of tripartite correlation which is defined
as:

I3(A|B|C) = S(A) + S(B) + S(C)

− S(AB)− S(BC)− S(AC) + S(ABC) (2.14)

It is important to notice that this is a combination of mutual informations and hence
it mixes classical and quantum correlation. For generic quantum states the tripartite
information can be either negative or positive, but one can rephrase the condition for
the monogamy of mutual information in terms of I3 simply as [13]:

I3(A|B|C) ≤ 0 (2.15)

In the following we will investigate the relation between monogamy of mutual informa-
tion and the structure of internal entanglement for simple qubits systems.

2.3 Notation

For the convenience of the reader we summarize here the notation that we will use in
the sequel. Given a system of N qubits we employ the following notation to denote
various partitionings of interest:

• single qubits will be labeled by small letters: a, b, c, . . ..

• capital letters will identify subsets of qubits: A,B,C, . . ..

• partitioning of N -qubits in groups ofm,n, k, . . . etc., withm+n+k+· · · ≤ N will
be denoted simply as m|n|k| · · · when we don’t need to specify the particularities
of the grouping.

For example Na|bc denotes the negativity between qubits a and bc, NA|BC is the nega-
tivity between a subset A and a subset BC (further decomposed into B and C), N1|2

is the negativity between a generic single qubit and two other qubits in the system.
Fig. 1 shows an example for 6 qubits.
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Σ

(a)

Σ

(b)

Figure 1: Example of our notation for 6 qubits, the horizontal line represents the entangling surface Σ.
(a) Local entanglement, N loc

1|1 . (b) Entanglement across the entangling surface, N Σ
1|2

We will often consider averages of different quantities and use an overline to identify
them. For example N1|2 is the negativity between a single qubit and two qubits,
averaged over all the possible choices of three qubits from the original set. In the
following we will mostly focus on systems made of an even number of qubits. For
this systems it is obviously possible to consider bipartitions into two subsets with N/2
qubits each, we will refer to this particular bipartition as the maximal one.

Using natural terminology from the context of holography we will call the fiducial
surface that specifies a bipartition of a system the entangling surface (Σ). We will be
interested in the entanglement among qubits that could lie in the two subsystems across
the entangling surface Σ, or in the same one, see Fig. 1. Expressions such as N Σ

1|1 refer to
negativity between one qubit in a subset and one qubit in the other subsystem. In this
case we use the expression entanglement across Σ. We call instead local entanglement
the correlation between qubits in the same subsystem, and use expressions like N loc

1|1 .

In the following sections we investigate the structure of entanglement for pure states
of systems composed by few qubits. These are simple toy models where the structure
of entanglement can be studied numerically, nevertheless the pattern of entanglement
is highly non-trivial. Our goal is twofold, on the one hand we use qubits systems as
simple laboratories to investigate the properties of different measures of entanglement
and their interpretation. On the other hand we will look for entanglement structures
that might be relevant for bulk reconstruction in holography. We start with the simplest
case of three qubits, this serves as an introduction to the kinds of investigations which
we will later apply to larger and more interesting systems.
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3 Warm up: Three qubits

We start by recalling the definition of two particular states, the GHZ and the W states
of three qubits:20

|GHZ3〉 =
1√
2

(|000〉+ |111〉) |W3〉 =
1√
3

(|100〉+ |010〉+ |001〉) (3.1)

These states are well known in the literature. The GHZ state only carries genuine
tripartite entanglement, this is captured by the fact that the value of the 3-tangle is
maximal, τ3 = 1. In particular after tracing out one of the qubits one is left with a
system of two qubits in a separable (mixed) state, i.e., not entangled. On the other
hand the W state contains the maximal possible amount of bipartite entanglement,
i.e., the correlation between any pair of qubits is maximal. It does not contain any
tripartite entanglement and τ3 = 0. This distribution of internal bipartite entanglement
corresponds to the known fragility and robustness against qubits removal of the GHZ
and W states respectively. An alternative motivation for considering the GHZ state
as the maximally entangled state of three qubits (cf., the definition in terms of Bell
inequalities in §2.2) is precisely this notion of fragility [42].

General pure states of three qubits were classified in [46]. The classification relies
on an equivalence relation under a class of operations called SLOCC (stochastic local
operation and classical communication). Two states are considered equivalent when
there is a non vanishing probability to convert one state into the other using LOCC
and a single copy of the state.21 There is a total number of six classes: the class of
product states, three classes of entangled pairs where the third qubit is not entangled,
and two classes of states which contain entanglement involving all three qubits. These
are the classes we will focus on, they are called GHZ and W classes from the names of
their representatives.

Given any pure state it is possible to decide with certainty which class it belongs
to using τ3. When τ3 = 0 there is no truly 3-partite entanglement in the state, which is
then in the W class. We will reverse the process and use instead τ3 to generate random
states in the two classes for which we study the pattern of bipartite entanglement. It
should be noted however that the W class has measure zero with respect to the generic

20 The definition of the W state here is given for the case of 3 qubits, but similarly to the GHZ case
the generalization to a higher number of qubits is straightforward.

21 Equivalence under LOCC instead would require the ability to convert one state into the other
with certainty. It is known that when only a single copy of a state is available two states are equivalent
under LOCC if and only if they are related by local unitaries (LU) [47]. In this case a classification
under LOCC would result in an infinite number of inequivalent classes even for a system of only three
qubits.

– 14 –



N 2
a|bc

N 2
a|b + N 2

a|c τ3

GHZ

W

(a)
N 2

a|bc

N 2
a|b + N 2

a|c

GHZ

W

(b)
N 2

1|1

N 2
1|2

GHZ

W

(c)

N 2
1|1

N 2
1|2

GHZ

W

(d)
N1|1

N1|2

GHZ

W

(e)

N1|1

N1|2

GHZ

W

(f)

Figure 2: 50000 random states in the W (light violet) and the GHZ (color map) classes. The color map
corresponds to the value of τ3 in the range (0, 1) as shown in panel (a). The GHZ and W states correspond
to the orange and purple large dots respectively. Left and right panels show the same plots with different
overlay.
(a)-(b): Monogamy of the square of the negativity for a specific bipartition of the global system. (c)-(d):
Average of the squared negativity over all possible bipartitions. (e)-(f): Average negativity between single
qubits compared to the average negativity for bipartitions of the entire system.
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class (GHZ), this means that our numerical investigation will not respect the statistics
of the two classes.

We label the qubits by abc. There are three possible bipartitions of the entire system
which are generally inequivalent, we will denote them by: a|bc, b|ac, c|ab. For such
bipartitions one could in principle consider both entanglement entropy and negativity.
Nevertheless since one of the parties only contains a single qubit, its entanglement
is completely determined by a single number.22 This means that if we only look at
bipartitions of the entire system there is no additional information carried by a second
measure and we can choose to equivalently use either the entropy or the negativity. The
negativity being a well defined measure of entanglement, which works well for mixed
states, we will prefer it to the entropy and use it to quantify the entanglement between
single qubits.

We start by choosing a specific bipartition (a|bc) and computing the following
negativities: Na|bc, Na|b, Na|c. As a first exercise we can check the monogamy relation
for the square of the negativity which was proved in [37]

N 2
a|b + N 2

a|c ≤ N 2
a|bc (3.2)

this is shown in Fig. 2a-2b. We notice that monogamy seems to be saturated more
easily by W states. More interestingly we find that there is a lower bound on the
internal negativity for W states. Some non-vanishing amount of tripartite correlation
is necessary to disentangle pair of qubits while at the same time strongly entangling
each qubit with the other pair. An analogous result holds for the average over the three
possible bipartitions of the global state, Fig. 2c-2d.

2N 2
1|1 ≡

2

3

(
N 2
a|b + N 2

a|c + N 2
b|c
)
≤ 1

3

(
N 2
a|bc + N 2

b|ac + N 2
c|ab
)
≡ N 2

1|2 (3.3)

One can notice how the distribution of the states in the W class is reproduced by the
states in the GHZ class with small value of τ3 (dark blue). It is useful to contrast
this behaviour with the saturation of the Arkai-Lieb inequality, but we postpone that
discussion till we discuss the situation with more qubits.

As a measure of the strength of correlations in the state it is also interesting to
look at the average of the internal negativity between single qubits

N 1|1 ≡
1

3

(
Na|b + Na|c + Nb|c

)
(3.4)

and compare it to the average negativity for bipartitions of the entire state N 1|2. One
clearly sees that the internal negativity is always close to the maximum for states in the

22 Formally a single qubit density matrix has only one non-trivial eigenvalue, the other being deter-
mined by the trace normalization.
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W class, Fig. 2e-2f. This corresponds to the common intuition for W-like entanglement
as being more robust when a qubit is removed from the system.

Note however that this concept of robustness is different from the definition we gave
in the previous section. In that case the robustness is proportional to the negativity for
a bipartition of the global state (N1|2), which on average is actually maximized by the
GHZ state, and not the W state. The relation between this last concept of robustness
and the pattern of internal entanglement will be discussed extensively in the next
sections for larger systems. In order to keep this distinction clear we will reserve the
expression robustness to the noise-related quantity and refer to the robustness against
qubits removal simply as internal entanglement.

Finally one can ask for the monogamy of mutual information. It is straightforward
to check that for pure states of only three qubits I3 is identically zero; consequently the
mutual information is always monogamous.

4 Four qubits

In this section we consider the more interesting case of four qubits, we will see that the
addition of a single qubits introduces much more structure and correspondingly several
new investigations are possible.

For a four qubits system two kinds of bipartitions of the global state are possible,
using the notation of the previous section we will refer to them as (1|3) and (2|2).
As before, the first case is less interesting as the entropy essentially carries the same
information as the negativity. The second case instead is more interesting, for such
bipartition we can now compute both the negativity and entanglement entropy and
ask what kind of information about the state one can gain by comparing them. More
specifically we will consider the specific robustness (2.7) and show that it conforms to
the interpretation we wish to give it.

A second novelty of a four qubits system is the possibility to investigate the prop-
erties of different states with respect to the disentangling theorem for the negativity.
In particular, we explore the relation to the saturation of Araki-Lieb inequality for
entanglement entropy. This is again inspired from holography owing the occurrence of
the entanglement plateaux phenomena [48] there.

Finally, it is now possible to obtain a mixed state of three qubits by simply trac-
ing out a single qubit, the value of I3 is then non-trivial and one can investigate the
monogamy of mutual information in relation to the structure of entanglement of the
state.
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N 2
ab|c + N 2

ab|d

N 2
ab|cd

τ4

(a)

N 2
a|b + N 2

a|c

N 2
a|bc

f(3)

(b)
N 2

a|bc + N 2
a|d

N 2
a|bcd

f(4)

(c)
∆NABC

∆SAB

(d)

Figure 3: Monogamy of the squared negativity for 100000 random states. (a), (b), (c) show inequalities
(4.1a), (4.1b), (4.1c) respectively. (d) Contrasting Araki-Lieb saturation with the disentangling theorem
for negativities.

In §4.1 we will start these investigation for random generic states. Following this
in §4.2 we will introduce a SLOCC classification for four qubits systems and apply the
extend the consideration to the different classes.

4.1 Generic states of 4 qubits

We begin our discussion here by picking out random pure states of 4-qubits. We will
subject these to various examinations, testing for the saturation of the AL inequality,
the disentangling theorem, and finally explain how the specific robustness can play a
useful role in delineating internal entanglement structure.
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4.1.1 Monogamy of the negativity and disentangling theorem

Similarly to the three qubits case, it is interesting to ask how the saturation of the
monogamy is related to the four-partite entanglement measured by τ4. There are
now three different kinds of monogamy relations (up to permutation of the qubits),
depending on different ways to partition into subsystems:

N 2
ab|c + N 2

ab|d ≤ N 2
ab|cd (4.1a)

N 2
a|b + N 2

a|c ≤ N 2
a|bc (4.1b)

N 2
a|bc + N 2

a|d ≤ N 2
a|bcd (4.1c)

The results are plotted in Fig. 3a-3b-3c; note that the Hilbert space is now much larger
and by random sampling one only covers a small portion of the space. Curiously, in
the second case (4.1b), Fig. 3b, the monogamy relation seems to be saturated more
by states with a higher content of multipartite entanglement while in the third case
(4.1c), Fig. 3c, the states with low tangle saturate monogamy inequality. It is tempting
to interpret this result in terms of residual multipartite entanglement (cf., three qubit
discussion in §3).

Rewriting the saturation of (4.1b) as

N 2
a|b + N 2

a|c + f
(3)
abc = N 2

a|bc (4.2)

where f (3) is some measure of mixed residual tripartite correlation, it is natural to
conjecture that high values of τ4 correspond to small values of bipartite (N 2) and
tripartite (f (3)) correlation. τ4 ∼ 1 then implies f (3) ∼ 0 and the saturation of (4.1b).
Similarly one could rewrite the saturation of (4.1c) as

N 2
a|bc + N 2

a|d + f
(4)
abcd = N 2

a|bcd (4.3)

where now f (4) is some measure of 4-partite correlation related to τ4. The saturation
of (4.1c) then corresponds to τ4 ∼ 0.

Let us now turn to the connection between the monogamy of the negativity and
the saturation of Araki-Lieb inequality (AL) [49] for entanglement entropy [50]. Recall
that the AL inequality reads:

|S(A)− S(B)| ≤ S(AB) (4.4)

For a joint system A∪B in a mixed state, for reasons explained hitherto, it is difficult
to interpret AL in terms of quantum correlations. In order to understand what kind
of constraint AL implies for the internal structure of entanglement of the state, it is
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convenient to introduce the purification C of the state AB. Thus for a system U of
N qubits we then consider only tripartitions such that A ∪ B ∪ C ≡ U and the global
state is pure. With this choice one can then rewrite (4.4) as

|SA|BC − SB|AC | ≤ SC|AB (4.5)

where by expressions like SA|BC we mean the entropy of entanglement between A and
BC (which of course is S(A) = S(BC)), stressing the interpretation of the von Neu-
mann entropy as a measure of entanglement between a subsystem and its complement.

In the case of four qubits then there is only one possible kind of tripartition, up to
qubits permutation, i.e., 1|1|2. We consider the set-up A = {a}, B = {bc}, C = {d},
(4.5) then reads

|Sa|bcd − Sbc|ad| ≤ Sd|abc (4.6)

Permuting the qubits one obtains a set of constraints on the internal pattern of en-
tanglement of the global state. We want to ask how this set of constraints is related
to the one obtained from the monogamy of the negativity. In particular it is known
that AL is in general difficult to saturate and it is certainly not saturated by generic
states.23 We want to investigate when this saturation actually happens and for which
distribution of internal negativities.

More specifically, we invoke the disentangling theorem for the negativity of [37] for
this purpose. For a pure state of U ≡ A ∪ B ∪ C, if NA|BC = NA|B then it is possible
to partition B = B1 ∪B2 such that the state factorizes |Ψ〉 =|ψAB1〉⊗ |ψB2C〉. For our
specific set-up the condition for the disentangling theorem is: Na|bcd = Na|bc. Eq.(4.1c)
then implies N 2

a|d ≤ 0, which is absurd; the only possible solution is saturation of the
monogamy relation and in particular Na|d = 0. The consequence of the disentangling
theorem is even stronger, not only there is no distillable entanglement between a|d, but
there is no entanglement at all and the global state factorizes either as |ψab〉⊗ |ψcd〉 or
as |ψac〉⊗ |ψbd〉.

The disentangling theorem implies saturation of AL in the following way: because
of the factorization of the state one has S(B) = S(B1)+S(B2), but since the individual
states in the product are pure S(B) = S(A)+S(C). Note that C now is the purification
of AB, hence S(B) = S(A) + S(AB) i.e., AL is saturated. We measure the saturation

23 For further discussion we refer the reader to [50] for general analysis of AL saturation, [48] for
explicit examples where the saturation occurs in holographic systems, and [51] for a general analysis
of AL saturation of holographic entanglement entropy. We should note that the saturation of AL in
holography is not generic, but does happen in a large class of examples involving bulk spacetimes with
horizons.
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for random states by ∆SAB = S(AB) − |S(A) − S(B)| ≥ 0 and correspondingly the
amount by which the states match the hypothesis of the disentangling theorem by
∆NABC = NA|BC −NA|B ≥ 0. With our specific choice these quantities are

∆SAB = Sd|abc − |Sa|bcd − Sbc|ad| , ∆NABC = Na|bcd −Na|bc (4.7)

The results are shown in Fig. 3d. Note that as expected there are no states that sat-
urate AL, while the states that get closer to the saturation correspond to the states
that almost satisfy the conditions of the disentangling theorem. This in itself is not
particularly surprising, as we discussed AL inequalities are statistically difficult to sat-
urate. Furthermore the result shows that matching the hypothesis of the disentangling
theorem is a sufficient conditions for a state to saturate AL. On the other hand it is
interesting to ask if these conditions are necessary and what is the meaning of states
that saturate AL without factorization. We will comment more on this issue as we
investigate further aspects of the relation in greater detail in the following.

4.1.2 Negativity to entanglement ratio

We can now initiate the study of the ratio between entanglement entropy and negativity,
which is one of the main motivations of the present work. In order for the entropy to
be a sensible measure of quantum entanglement we only consider global bipartition of
pure states. Furthermore, for the same reason discussed in the case of three qubits, in
the case of a 1|3 bipartition both the entanglement entropy and negativity carry the
same information. We will therefore focus on the 2|2 bipartition only, where we can
distinguish the negativity and entanglement.

Let us start with a particular partition (ab|cd) and refer to the fiducial separation
of the two subsystems (i.e., the symbol “|”) as the entangling surface (Σ). One can then
compute both negativity and entropy for this particular bipartition. Since the state is
pure the entropy is a measure of the amount of entanglement between the subsystems,
intuitively the number of Bell’s pairs that can be distilled.24 On the other hand we
interpret the negativity as the robustness of the entanglement between the subsystems.

We stress again that this notion captures the robustness against “intelligent jam-
ming”, which is in principle different from the common intuition about the robustness
of the W states. In the latter case one actually refers to the amount of internal entan-
glement. As described in §2 we want to interpret the ratio R as capturing the specific
robustness in a given state. We explore the dependence of R on the entanglement
structure of the state focusing on the internal pattern of entanglement.

24 Note however that more precisely this would be an asymptotic statement.
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Figure 4: Average negativities across the entangling surface Σ and inside the subsystems for a fixed
bipartition (100000 states). The left panels show the results for random states with entropy in the range
(0.27292, 1.32195), the large red dots show the maximally entangled state (Ξ). The right panels show
states with a constrained value of the entropy 0.799 ≤ S(ab) ≤ 0.8.
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Figure 5: Average negativities across the entangling surface Σ and inside the subsystems for a fixed
bipartition (2000 states). The left panels show the results for random states with entropy constrained in
the range 0.39 ≤ S(ab) ≤ 0.4. The right panels show states with a constrained value of the entropy in
1.19 ≤ S(ab) ≤ 1.2.
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For the bipartition ab|cd we have N loc
a|b and N loc

c|d for local entanglement, while for
entanglement across Σ we consider all the possible negativities of the kind N Σ

1|1 and N Σ
1|2

where the sets of qubits are subsets of the original subsets of the bipartition. Finally
we take the average of all the negativities of a particular kind, keeping the original
bipartition fixed. The results are shown in Fig. 4a-4c-4e and show the dependence of
the ratio on the internal entanglement with unconstrained value of the entropy across Σ.
For states which are almost maximally entangled25 the spread between possible values
of entropy and negativity is very restricted. Interestingly the spread grows considerably
for small values of the entropy, which also correspond to a higher value of the ratio.
These are states that are less entangled but whose entanglement is particularly robust.
In some sense it seems that if a state is highly entangled, its entanglement is more
fragile against noise. Larger R corresponds to greater specific robustness, justifying
our terminology.

One can also look for the distribution of the states when the entropy is almost
fixed, the results are shown in Fig. 4b-4d-4f. The fixed value is picked to be somewhere
in the middle-range of the entanglement spread for our sampling; other choices outside
the edge regions lead to similar results. Note that the dependence on the entropy
now is completely random. Furthermore the ratio seems to be increasing when the
(1|2) entanglement across the entangling surface is higher. On the other hand it seems
not to depend on the average (1|1) entanglement. It will be useful to contrast this
result against those for larger systems. For now we tentatively interpret the results as
suggesting that states with a higher amount of (1|2) entanglement across the entangling
surface, but the same value of the entropy, are more robust.

Finally, we look at the average entanglement inside the subsystems specified by
Σ. We find that high values of local negativity correspond to high value of the ratio
although the converse is not always true. Fig. 5 shows two other slices for different
constraints on the entropy. For states which are almost maximally entangled (Fig. 5b-
5d-5f) the results agree with the previous analysis. On the other hand when the entropy
is fixed but small (Fig. 5a-5c-5e) the dependence of the ratio on 1|2 entanglement
becomes less evident. Furthermore a larger amount of local 1|1 entanglement is not
sufficient any more to produce higher values of the ratio.

25 By maximally entangled state here we mean the usual state that maximizes entanglement for
a given bipartition. For four qubits this is the state which achieves this between two pairs, i.e.,
1
2

∑4
i=1 | i〉⊗ | i〉 where | i〉 is the computational basis for a two-qubits system. We will reserve the

symbol |ΞN 〉 for such states.
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Figure 6: 100000 random generic states to test monogamy of mutual information. (a) Average ratio
between negativity and entropy compared to the values of I3 and τ4 (color map), (b) Average 2|2 negativity
compared to I3 and τ4 for the same states.

4.1.3 Monogamy of mutual information

For a system of four qubits there are in principle two different kinds of tripartite
information one can look at, viz., either I3(1|1|2), or I3(1|1|1) after tracing out a single
qubit. Since we are only working with pure states, in the first case we have I3 = 0, we
will instead focus on the second case. There are in principle four different values of I3
depending on which qubit we choose to trace out. Nevertheless it is straightforward to
check that they are all equal, there is actually a unique value of I3.

We compare this value to the amount of quantum multipartite entanglement mea-
sured by the tangle and the internal entanglement structure. As a measure of the ro-
bustness of the state we use the average negativity N2|2, the result is shown in Fig. 6a.
An evident result is the observation that statistically the monogamy of mutual infor-
mation is not a very restrictive condition. States with low robustness and high values
of τ4 seem to violate the monogamy of mutual information (positive I3) more easily.

In Fig. 6b we show instead a similar plot for the average ratio R. Now we note that
the states that violate monogamy and have high value of τ4, also have quite a small
value of the ratio. This correlation is rather suggestive, and if true, implies that the
specific robustness measured by R could be a useful diagnostic vis a vis monogamy of
mutual information. However, before we arrive at this conclusion, we should do some
more sanity checks, which we now turn to, by considering a classification of four qubit
states.
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4.2 SLOCC classification of 4 qubit states

For four or more qubits it is known that the number of inequivalent SLOCC classes
is infinite [46]. Nevertheless, motivated by the result for three qubits, one can still
look for special states that maximize mixed internal correlations. These are a higher
dimensional generalization of the W states of three qubits. For states of four qubits [52]
gave an SLOCC classification into eight special classes of this kind, plus an additional
class ([Q1] in the following) which contains infinitely many SLOCC classes and is related
to generic states (see below). Using the standard computational basis for 4-qubits we
can write down the classes explicitly as26

| [Q1]〉 =
a+ d

2
(|0000〉+ |1111〉) +

a− d
2

(|0011〉+ |1100〉) +
b+ c

2
(|0101〉+ |1010〉)

+
b− c

2
(|0110〉+ |1001〉)

| [Q2]〉 =
a+ b

2
(|0000〉+ |1111〉) +

a− b
2

(|0011〉+ |1100〉) + c(|0101〉+ |1010〉)+ |0110〉

| [Q3]〉 = a(|0000〉+ |1111〉) + b(|0101〉+ |1010〉)+ |0110〉+ |0011〉

| [Q4]〉 = a(|0000〉+ |1111〉) +
a+ b

2
(|0101〉+ |1010〉) +

a− b
2

(|0110〉+ |1001〉)

+
i√
2

(|0001〉+ |0010〉+ |0111〉+ |1011〉)

| [Q5]〉 = a(|0000〉+ |0101〉+ |1010〉+ |1111〉) + i |0001〉+ |0110〉 − i |1011〉
| [Q6]〉 = a(|0000〉+ |1111〉)+ |0011〉+ |0101〉+ |0110〉
| [Q7]〉 = |0000〉+ |0101〉+ |1000〉+ |1110〉
| [Q8]〉 = |0000〉+ |1011〉+ |1101〉+ |1110〉
| [Q9]〉 = |0000〉+ |0111〉 (4.8)

Here a, b, c, d are complex numbers which appear as eigenvalues of an operator used in
constructing the classification scheme. The classification only includes states where all
the qubits are entangled.27 The first class is the “generic class” in the sense that any
generic state of four qubits can be mapped to a state in [Q1] by SLOCC. This class is
not unique under SLOCC; as clarified in [45] it is dense in the space of generic states,
but it actually contains an infinite number of classes. The remaining classes are thus of
measure zero, but contain the maximal amount of internal mixed bipartite or tripartite
entanglement (there are some exceptions which we note below). In the following we

26 For simplicity we drop the normalization factor in the definition of the classes.
27 The class [Q9] is an exception as it can be written as |0〉⊗ |GHZ3〉. This was indeed one of the

motivation for [53] to consider an alternative classification of the four qubits states into eight classes.
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Figure 7: Comparison of the averaged entropy and negativity for the maximal bipartition (50000 random
states per class). The four panels show the same plot with different overlap. The color-class correspondence
is as follows: � = [Q1], � = [Q2], � = [Q3], � = [Q4], � = [Q5], � = [Q6]. Note that while generic
states can be mapped into class [Q1] by a SLOCC, picking states in [Q1] according to the ansatz in (4.8)
does not sample this genericity. Hence the region covered by � = [Q1] is not the entire domain of the plot
above, but only a subregion thereof.

will focus in particular on the classes [Q1]-[Q6] – the last three only contain exceptional
states. The W state of four qubits belongs to [Q4], while the GHZ 4-qubit state is in
[Q1] (a = d, b = c = 0), as expected.

Distinguishing the classes: Given a single state one could ask how it is possible to
identify the corresponding class using different measures of entanglement. In principle
one could compute the negativity for each bipartiton of the entire system and all bi-
partitions of each possible subsystem. It is natural to expect that the collection of this
data allows some resolution of the classes.

We want instead to ask a different question. As advertised earlier, we are concerned
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with knowing to what extent it is possible to distinguish states in different classes if one
is restricted to use measures of entanglement for pure states. Our motivation comes
from holography, where at present we only know how to compute the negativity for
pure states. We can then combine information one extracts from both negativity and
entropy, and see how much we can learn about the entanglement structure.

For simplicity, we focus on the maximal bipartitions, i.e., 2|2. One can easily
compute the average negativity and average entropy for random states in the various
classes, and average over the three possible inequivalent bipartitions. The results are
shown in Fig. 7. One can see that even if the combined information extracted from
negativity and entropy is not enough to completely resolve the classes, one can still
discriminate them in some ranges of the values of the two measures.

Disentangling theorem and Araki-Lieb: We repeat the analysis of the previous
subsection for the disentangling theorem of the negativity and the saturation of AL. In
the previous discussion §3 the states were generic and all the possible qubits permu-
tations gave the same result. Here we expect the behaviour to be different depending
on the specific set-up that we choose – this is manifest in the fact that the classes are
not completely symmetric under qubits permutations. In principle there are 12 differ-
ent situations to consider, but many choices give equivalent results. For each class we
report the result for the most interesting partition in Fig. 8. The full list of possible
results for each class and the corresponding plots can be found in Appendix A. In each
class there are states that get arbitrarily close to saturating AL and respect the condi-
tions for the disentangling theorem, with the only exception of [Q5]. This is the class
that will be of particular interest for us in the sequel.

Interestingly, it is worth pointing out that in two classes there are states that
saturate AL even without satisfying the conditions for the disentangling theorem. These
states have (a) high values of multipartite entanglement in [Q1] and (b) a low value
in [Q3] (the color map in the various plots shows the values of τ4). The specific states
(indicated by colored dots in Fig. 8) are respectively a product of two Bell pairs |Φ〉, and
the product between a Bell pair and two disentangled qubits |Ψ〉.28 This means that the
hypothesis of the disentangling theorem would be satisfied for a different permutation
of qubits. Indeed the tangle is sensitive to the factorization inherent in one of the two
subsystems.

AL saturation without factorization ought to be a very restrictive condition on the
pattern of internal entanglement. This may exaplain why it hard see the saturation for
generic states. Looking at the results one might be tempted to conjecture that such a

28 The explicit expressions of these states are: |Φ〉 =| φ+〉ab⊗ | φ+〉cd and |Ψ〉 =| 01〉ac⊗ | φ+〉bd
where |φ+〉 is the maximally entangled two qubits state |φ+〉 =|01〉+ |10〉, i.e., a Bell pair.
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(c) [Q3], A = {b}, B = {ac}, C = {d}
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(d) [Q4], A = {a}, B = {bc}, C = {d}
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(f) [Q6], A = {a}, B = {bc}, C = {d}

Figure 8: Disentangling theorem and saturation of Araki-Lieb (see Eq. (4.7)) for the SLOCC classified
4-qubit states (50000 random states per class). The large dots show the GHZ (orange), |Φ〉 (turquoise),
|Ψ〉 (pink), W (purple) and maximally entangled |Ξ〉 (red) states.
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state could exist in [Q2]. A numerical search for such a state showed that states with
∆N > 0 and ∆S ∼ 0 approach to the product | 0110〉. The reason why these states
may be highly shifted to the right of the origin is that their entanglement is particularly
robust. An extremely small but non vanishing value of the entropy can produce much
higher values of the negativity. We conclude then that in the case of four qubits the
saturation of AL only happens if there exists a permutation such that the conditions
for disentanglement are matched and factorization actually happens.

Specific robustness R: For generic states we have seen that the most sensible quan-
tity to the internal structure of entanglement is the negativity across Σ between a qubit
in a subsystem and the other pair, viz., N Σ

1|2. We now repeat the same analysis for the
classes and compare specific robustness (2.7) to the negativity N Σ

1|2. The results are
shown in Fig. 9; we keep track of the values of the entropy (color map).

States in [Q1] reproduce the behaviour of generic states; similar patterns are visible
in [Q2]-[Q4] – see Fig. 9a-9d. On the other hand, for a different choice of Σ, a different
pattern manifests itself in classes [Q3] and [Q4], see Appendix A, Figs. 20a and 21a. In
this case the highest values of the ratio in the class correspond to states with the highest
entropy and negativity. There are no states with small negativity and high value of
the ratio (and small entropy). [Q6] has a similar behaviour as evidenced in Fig. 9f.
In contrast, [Q5] instead is quite peculiar, states with high negativity and entropy
correspond both to the highest and smallest values of the ratio, cf., Fig. 9e. Highly
entangled states in [Q5] are divided in two branches, one with fragile entanglement, the
other whose entanglement is more robust. Note however that the three quantities that
characterize the state are constrained in a small range of values.

While the behaviour of the various classes is more or less similar to the generic
class, the curious feature is the exceptional behaviour in [Q5]. We have previously also
seen that this class of 4-qubit states is also peculiar when we analyzed the consequences
of the disentangling theorem, vis a vis, saturation of the AL inequality. We shall now
compare the ratio to the value of multipartite entanglement and the monogamy of
mutual information and find yet another distinguishing feature of this class.

Monogamy of mutual information: Finally, we compare the value of I3, to the
tangle, and the average ratio over the three maximal bipartitions. The results for the
different classes are shown in Fig. 10. Surprisingly, there is only a single class [Q5]

shown in Fig. 10e, whose states always have a negative value of I3.
This the most interesting aspect of our analysis of the SLOCC classified 4-qubit

states. What it suggests is the following: in all the other classes [Qk] with k 6= 5, a given
state with a particular value of I3 can always be turned into a state with positive I3 by
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Figure 9: The ratio for a given Σ compared to the average N1|2 across Σ. 50000 random states per
class. Panels (a-b) are truncated, few states (not shown) approach the vertical axes with high values of the
ratio and small values of the entropy. The large dots show the GHZ (orange), W (purple) and maximally
entangled |Ξ〉 (red) states. (a)(b)(c) are truncated, few states with small values of N and ratio up to
R ∼ 7.4 (a), R ∼ 16 (b) and R ∼ 32 (c), are not shown.
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Figure 10: Monogamy of mutual information compared to the average ratio for the maximal bipartitions
and mutipartite entanglement τ4 (color map). The large dots show the GHZ (orange), |M〉 (gray), W
(purple) and maximally entangled |Ξ〉 (red) states. 50000 states per class. (b)(c) are truncated, few states
with I3 ∼ 0 and values of the average ratio up to R ∼ 8.5 (b) and R ∼ 11 (c) are not shown.
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SLOCC. Even more strongly, since every generic state of four qubits can be mapped
to the first class by SLOCC, the states in [Q5] are the only one that can never violate
the monogamy of mutual information. In effect, what this suggests is that the subset
of 4-qubit states lying in Class [Q5] are likely to be most holographic. Of course, this
statement should be taken with a large grain of salt, for we are discussing here the
structure of entanglement in qubit systems with no interactions. Furthermore, it is
unclear to us that the holographic map respects the SLOCC operations used to classify
states herein.29 Nevertheless we think the presence of a distinguished class of states
suggests that certain patterns of entanglement are more likely than others to play a role
in holographic systems (at least for the purposes of building semi-classical geometry).30

It is also interesting to look at the result for the generic class [Q1], cf., Fig. 10a. As
expected from previous results for generic states the value of I3 is generally negative,
in particular for small values of τ4. Nevertheless states which are strongly entangled
in a multipartite sense are divided into two branches. One branch minimizes the av-
erage ratio and violates monogamy of mutual information, the other seems to respect
monogamy and maximizes the ratio. The states in the latter case asymptotically ap-
proach the state Φ discussed before in the context of AL inequalities.31 A numerical
search for the states that minimizes the value of I3 gives instead the following state

|M〉 =|0011〉+ e−
π
3
i |0101〉 − e

π
3
i |0110〉 − e

π
3
i |1001〉+ e−

π
3
i |1010〉+ |1100〉 (4.9)

This state is interesting in its own right; it appears to be a highly scrambled state.
It has maximal entanglement under all partitionings of the qubits [45]. Preliminary
investigations indicate a similar pattern for higher qubit systems; it would be interesting
to explore this class of states further. A behaviour similar to that of [Q1] is manifest
for [Q4] (Fig. 10d). On the other hand this should be contrasted with the behaviour
of [Q2] and [Q3] (see Fig. 10b and 10c respectively), where the states that maximize
the average ratio contain a small amount of multipartite entanglement and can violate
monogamy.

29 We thank Veronika Hubeny for a discussion on this issue.
30 For completeness let us also record the values of I3 for the exceptional states [Q7], [Q8], [Q9]:

I3([Q7]) = −0.356135 , I3([Q8]) = −0.477386 , I3([Q9]) = 0 .

31 This was checked numerically over 1000000 states that maximize the ratio.
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Figure 11: Entanglement across Σ for a system of 6 qubits (100000 random states). The entangling
surface Σ is fixed and divides the states into two subsystems of three qubits each. The panels show the
dependence of the ratio on the internal negativity. The color map shows the values of the entropy in the
range (1.26147, 1.84577).

5 Large N qubit systems

At present no classification is known for pure states of five or more qubits. As a
result any analysis of larger number of qubits must necessarily be restricted to generic
states. We now explore specific robustness characterized by the ratio R, focusing on its
dependence on internal entanglement. We also look to examining the relations amongst
the ratio, multipartite entanglement and the monogamy of mutual information. We will
specifically focus on states of 6 and 8 qubits, primarily because the tangle is only defined
for an even number of qubits (for N > 3). Much of the other results we derive ought
not to change considerably for an odd number of qubits.
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Figure 12: A slice of Fig. 11, for 50000 states, now with a constraint on the entropy which takes values
in the interval (1.49, 1.5) and is shown by the color map.

5.1 Negativity versus entanglement

As in the case of four qubits we want to investigate the dependence of the specific
robustness on the internal pattern of entanglement of the system. As before we are
interested both in the entanglement between qubits inside a single subsystem and en-
tanglement across the entangling surface Σ. We will choose Σ such that the size of the
subsystems is maximal, i.e., commit a 3|3 split for the 6 qubits case, which we keep
fixed in what follows.

Let us start by listing all the possible internal negativities we can consider for a
pure state of 6-qubits.

across Σ: N Σ
2|3 N Σ

1|3 N Σ
2|2 N Σ

1|2 N Σ
1|1

local: N loc
1|2 N loc

1|1 (5.1)

In the above, averages are computed by considering all possible permutations of qubits
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Figure 13: Dependence of the ratio on the average negativity between qubits inside the subsystems
specified by Σ for pure states of 6-qubits. (a) no constraint on the entropy (color map), for 100000 states,
(b) entropy constrained in the range (1.49, 1.5), for 50000 states.

(with Σ held fixed).
Of the set of possibilities listed in (5.1), N Σ

1|1 is uninteresting, and so we will ignore
it from now on. In Fig. 11 we show the results for the other cases. The color map
indicates values of the entropy across Σ for the entire system.

We see that the ratio R clearly increases when N Σ
2|3 or N Σ

1|3 increase. Some depen-
dence is also manifest for N Σ

2|2 while there is no clear dependence on N Σ
1|2. In addition,

note that the average negativity is well correlated with the entanglement entropy (they
both increase in concert). This should be compared to Fig. 4c for the four qubits case.
We just have to bear in mind the obvious fact that random sampling actually covers
a larger portion of the space in the 4-qubit case. For system of six qubits the Hilbert
space is much larger and random generation only gives access to a small portion of it.
We are probably exploring only a region analogous to the one near the tip of Fig. 4c.
This is consistent with the fact that statistically we get high values of the entropy.32 It
is entirely possible that as in the four qubits case, R is maximized by states in another
region, again with a much smaller value of the entropy.

Bearing this caveat in mind we can still investigate how the specific robustness
depends on internal entanglement for states in this region of the space. In order to
understand whether R increases with the negativity independently of the entropy, we
look for random states with the entropy constrained in some small range of values.
The results for the same bipartitions as above are shown in Fig. 12. One can see that
the weak dependence noticed above in the case N Σ

2|2 actually disappears. On the other

32 A maximally entangled state of six qubits, in a bipartite 3|3 sense, has entropy S = 2.079, specific
robustness R = 1.683.
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Figure 14: Entanglement across Σ for a system of 8-qubits (20000 random states). The entangling
surface Σ is fixed and divides the states into two subsystems of four qubits each. The panels show the
dependence of the ratio on the internal negativity. The color map shows the values of the entropy in the
range (2.14035, 2.38651). (a)-(b) entanglement across Σ, (c)-(d) entanglement inside subsystems.

hand our suspicions are vindicated for N Σ
1|3 and in particular for N Σ

2|3. In the last case
we also notice that for states with a fixed value of the N , the ratio R seems to be
statistically maximized by states with a lower value of the entropy.

We can also look at the local entanglement (again ignoring N loc
1|1 ).The results for

N loc
1|2 are shown in Fig. 13. Quite curiously the ratio seems to slightly decrease as the

internal negativity increases. At the same time the entropy seems to decrease as well.
If we look instead at states with a constrained value of the entropy, the ratio seems to
increase as the negativity increases.

One lesson that we learn is that the specific robustness R is particularly sensible
if one of subsystems coincides with one of the subsystems of the original bipartition.
When we start to trace out qubits, the sensitivity of the ratio progressively fades.
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Figure 15: A slice of Fig. 14, now with a constraint on the entropy which takes values in the interval
(2.26, 2.27) and is shown by the color map. Plot is for 5000 random states.

Similarly, for the internal entanglement the sensibility of the ratio seems to be higher
when do not trace out any qubit.

We can check this result for an even larger system. For a system of eight qubits
the list of all possible negativities we could look at is the following:

across Σ: N Σ
3|4 N Σ

2|4 N Σ
1|4 N Σ

3|3 N Σ
2|3 N Σ

1|3 N Σ
2|2 N Σ

1|2

local: N loc
1|3 N loc

2|2 N loc
1|2 N loc

1|1 (5.2)

Fig. 14 shows the results without a constraint on the entropy, the results for states
with constrained entropy are shown in Fig. 15. Similar comments as for the 6-qubit
case hold.33
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Figure 16: a) Maximal value of I3 for the two inequivalent kinds of partitionings of 5.5, from right to left.
The values of I3 are compared to the tangle, 100000 states per class, b) Max value of I3(1|1|1) compared
to tangle and the average ratio (color map), 100000 states.

5.2 Exploring multipartite entanglement

We now move to the analysis of multipartite correlations. Consider a pure state of a
system U of N -qubits. We can choose subsystems A, B, C such that A ∪ B ∪ C ≡ U .
Since the state of U is pure we have I3 = 0. We want instead to look at all the possible
values of I3, for all the possible inequivalent choices of A, B, C where the total number
of qubits k in A∪B ∪C takes value in {3, 4, · · · , N − 1}, i.e., subsystems obtained by
tracing out at least one and at most N − 3 qubits of the entire system.

We follow the following canonical algorithm for computing the tripartite mutual
information. For a given value of k we consider all the possible ways to partition the
qubits into three subsystems (up to qubit permutations), this is given by the list of
possible decompositions of k into three integers. Fixing k and the type of tripartition
chosen, we compute all the possible values of I3 considering the full set of qubits per-
mutations, and retain the maximal value. The choice is inspired by the fact that its
sign clearly tells us whether there is a violation of the monogamy of mutual information
for at least one permutation of the qubits. To wit,

I3(k1|k2|k3) = max
perms

I3
(
aα1 · · · aαk1

|bβ1 · · · bβk2
|cγ1 · · · aγk3

)
for A = {aαi}, B = {bβi}, C = {cγi} ,
k1 + k2 + k3 = k ∈ {3, 4, · · · , N − 3} .

(5.3)

33 A maximally entangled state of eight qubits, in a bipartite 4|4 sense, has entropy S = 2.773,
specific robustness R = 2.705.
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Figure 17: a) Maximal value of I3 for the five inequivalent kinds of partitionings of 5.6, from right to left.
The values of I3 are compared to the tangle, 1000 states per class, b) Max value of I3(1|1|1) compared to
tangle and the average ratio (color map), 10000 states.

Since the global state is pure, we will find certain equivalences among values of I3 for
different kinds of partitions {k1, k2, k3} and different values of k.

We start with a system of six qubits, where k takes values in {3, 4, 5}. The possible
kinds of partitions for different values of k are easily listed:

k = 3 I3(1|1|1)

k = 4 I3(1|1|2)

k = 5 I3(1|1|3) , I3(1|2|2)

(5.4)

Moreover, as promised it is simple to check the following equivalence relations:

I3(1|1|1) ≡ I3(1|1|3)

I3(1|1|2) ≡ I3(1|2|2)
(5.5)

We remind the reader that expressions like I3(1|1|1) here represent the set of values of
I3 for a particular tripartition and all the possible choices of the qubits.

Fig. 16a shows the maximal value of I3 for these two classes of equivalent parti-
tioninings, one can notice that I3(1|1|1) is the quantity that get closer to the violation
of monogamy. For such a partitioning we then compare the maximal value of I3 to the
value of the averaged specific robustness and the tangle, see Fig. 16b.

We can repeat this analysis for the eight qubits case. The list of all the equivalence
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classes of I3 for different values of k is:

I3(1|1|1) ≡ I3(1|1|5)

I3(1|1|2) ≡ I3(1|1|4) ≡ I3(1|2|4)

I3(1|1|3) ≡ I3(1|3|3)

I3(1|2|2) ≡ I3(1|2|3) ≡ I3(2|2|3)

I3(2|2|2)

(5.6)

Fig. 17a shows the results for the five inequivalent values of I3. As for the six qubit
case, we also report the relation with the average ratio and the tangle, see Fig. 17b.

As expected from the results for four qubits, the monogamy of mutual informa-
tion appears to be generically satisfied. Thus the monogamy of mutual information
in these systems is not particularly restrictive vis a vis applications to holographic
considerations. We expect the result to be true for larger systems as well.

From the eight qubits case another suggestive pattern appears to emerge. The
values of I3 that get closer to zero correspond to the case where single qubits are
involved, eg., I3(1|1|1). On the other hand tripartitions into larger subsystems seem
to produce the lowest values of I3, eg., I3(2|2|2). The result seems to suggest that
mutual information is essentially monogamous for large regions and that in search of a
violation one should look at regions of the smallest possible size.

6 Discussion: Lessons for holography

The main message of our discussion has been to demonstrate how several measures
of quantum entanglement (more generally correlations) can be used to investigate the
structure of entanglement of pure states of non-interacting qubits. Specifically, we
examined the properties of this entanglement that are captured by (a) the monogamy
of negativity, (b) the specific robustness, (c) tripartite mutual information, and (d) the
tangles. Our primary interest was to use these measures to delineate the distribution
of entanglement inside a given pure state of N -qubits. For the most part we resorted
to random sampling from the space of states, though in specific circumstances (e.g., 3
and 4 qubit systems) we did make use of available classification schemes.

Even if the systems under consideration were a vast oversimplification of continuum
QFTs, we believe that they have rather useful message to impart in the context of
holography. This should in part be attributed to the non-trivial structure entanglement
inherent in them, coupled with their eminent tractability. Let us therefore try to
abstract some general lessons for holographic systems.
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Consider a state of a holographic QFT (assuming ceff � 1) which is dual to a
classical bulk geometry. This state can be pure or mixed (eg., the thermal density
matrix which is dual to a black hole). We pick a spatial region A on the background
geometry where the QFT resides, to make up our subsystem. The holographic entan-
glement entropy prescriptions of [1–3] associate the area of an extremal surface to the
von Neumann entropy SA.

There are two interpretation of SA, which are sometimes called objective and sub-
jective in the literature. The objective interpretation, which is perhaps more physical,
relies on the intuition of entropy as measure of disorder of the system. The subjective
point of view, on the other hand, is typical of information theory. If the entropy of
A is thermal there is still no correlation among degrees of freedom inside A, but the
system contains complete information about some other system, i.e., its purification.
It is in this second case that the von Neumann entropy can be interpreted as a mea-
sure of entanglement between the two parties, namely entanglement entropy. From the
point of view of understanding the structure of quantum entanglement, the subjective
viewpoint is more appropriate. We will therefore focus on pure states of some extended
system; e.g., instead of the thermal density matrix we pick the thermofield double state
[14]. Given a subregion A, it should therefore be borne in mind that the complement
Ac could include the purifying degrees of freedom.

Given this configuration, lets say that we are handed an algorithm for reconstruct-
ing the bulk geometry from the information theoretic content of the field theory. To
be sure, such an algorithm does not exist to date, but it has been speculated that
the picture is somewhat akin to tensor networks which encapsulate the entanglement
pattern of the state [4, 54]. The closest one gets is the error correction model discussed
recently in [55] (see [56] for the genesis of this set of ideas). In this context, the extremal
surface and spacetime regions associated with it, such as the entanglement wedge are
distinguished, in that they capture the long range correlations of the degrees of freedom
contained in the subregion A of interest and its complement.

Per se tensor networks or other models are but a tool to characterize the structure
of correlations of a state. We want to analyse the entanglement pattern from a more
operational perspective. Given a global pure state of a system U consider N -parties
Oi, each of which has access only to some subregion Ai of U (in general ∪Ni=1Ai ⊆ U)
and suppose that all the parties are allowed to perform operations on their subsystems
and are also allowed to communicate through classical channels.34 The entanglement

34 This is a cartoon of the typical quantum information set-up where different parties are allowed to
perform LOCC. We ignore any causal constraint (note that actually these regions live on a time-slice
of the theory). This is somewhat akin to the discussions of [57] who attempt to give an operational
definition to the concept of differential entropy.
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amongst these subregions is the resource that Oi’s can use to implement typical tasks
that would not be achievable if they were restricted to classical correlations. A com-
mon intuitive procedure for example would be the distillation of Bell pairs (for two
parties) or GHZN states (for N > 2) which can be stored and later used for other
purposes. Entanglement measures, both bipartite and multipartite, are designed to
quantify this resource and characterize its properties. As mentioned earlier, in the case
of two parties the logarithmic negativity provides an upper bound to distillable entan-
glement.35 Unfortunately this being hard to compute in all but the simplest cases, we
resorted to qubit experiments to gain some intuition; likewise to our knowledge there
is no clean measure of multipartite entanglement defined for continuous systems. Ef-
fectively, we are making the approximation Ai = span{|0〉, |1〉}, which is dramatic but
useful truncation.36

Alternatively, imagine an external agent that knowns the detailed properties of the
state and wants to disrupt the entanglement for a particular bipartition. As far as
only bipartitions of the entire state are concerned, the minimal amount of noise that
she has to inject into the system is captured by the negativity. A question we want to
ask is to what extent is the dual geometry stable against these operations. Similarly
one may also ask what is the consequence of the distillation procedure on the state.
It would be nice to have a model where one could test the effect of different protocols
explicitly. In its absence, we limited our analysis to the minimal sufficient condition for
the disruption of the state, namely the violation of monogamy of mutual information.

The first lesson one learns from our study of I3 in qubit systems is that the
monogamy constraint for mutual information, which is known to be satisfied by holo-
graphic states [13], is not a particularly restrictive condition. Statistically, random
states of four qubits tend in general to satisfy monogamy; this only strengthens as the
number of qubits increases. We discussed how for a given number of qubits, the possible
values of I3 for different choices of the three subregions are related. When large regions
are involved, I3 becomes more and more negative and, statistically, the matching of the
monogamy restriction becomes even more favoured. This in particular suggests that
in search of a violation of monogamy one should look at the smallest possible regions.
This would for instance suggest that in multiboundary wormhole spacetimes of [8, 10],
which was analyzed in [12], one should retain the domain of outer communication of
the smallest set of black holes.

35 As explained hitherto we used instead the negativity because of its interpretation for pure states,
but one can map from one quantity to the other.

36 It would be interesting to upgrade our explorations where we replace a single qubit by a composite
system of many qubits; ramping up the internal dimension could allow exploration of free vector or
matrix like models. We thank Don Marolf for a discussion on this issue.
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Being a linear combination of mutual informations, I3 mixes quantum and classical
correlations. We compared its behaviour to the multipartite entanglement captured by
the tangle. Our results suggest that states with high values of quantum multipartite
entanglement have a higher probability to violate monogamy of mutual information.
For the GHZ4 state this is a known result, which was used in [11] to argue that a
4-boundary state built from many copies of GHZ4 cannot be dual to a smooth classical
geometry (see also [12, 58]). Our result extends this argument to generic states with a
high multipartite entanglement. We discussed a possible interpretation of multipartite
entanglement that relies on the residual entanglement which is left after one takes into
account all the (mixed) bipartite and tripartite entanglement in the state. A small
value of 4-partite entanglement then corresponds to strong correlation among internal
parties. This may suggest that special states with high internal correlation are then
more suitable for holography. Nevertheless it is immediate to check that even the
W4 state violates monogamy. More generally, the states of 4-qubits with the strongest
internal correlations are precisely those belonging to the special classes [Q2]-[Q6]. Under
the effect of SLOCC operations a state in a class can evolve to a new state that violates
monogamy. The one exception are states in class [Q5] which always respect I3 < 0.
This class of 4-qubit states is in a natural sense most suitable to be “holographic”. In
any event it is tempting to conjecture that states with geometric duals in holography
have strong bipartite (or tripartite) correlations.

For larger qubit systems, there isn’t a statistically significant correlation between
the N -partite entanglement and the tripartite mutual information. In fact, in our
analysis it appears that increasing the number of qubits is sufficient to ensure that
the I3 < 0. However, absent a classification, we have been forced to examine generic
states in these systems, so it would be interesting to further analyze if there is a special
sub-class of states with a specific pattern that mimics the class [Q5] of 4-qubits.

We then argued that for pure states with a given bipartitioning, even if the amount
of entanglement is measured by the entropy, other measures can provide further reso-
lution of the entanglement structure. Negativity is good measure of quantum entan-
glement (which can be computed in the continuum) – it allows for some resolution of
the pattern of entanglement inherent in the state. We showed that for 4-qubits states
the internal pattern of negativity allows for a partial resolution of the classes.

In particular, we looked at the ratio between these two quantities for bipartitions
of a pure state, which we called specific robustness. We proposed that this captures
the minimal amount of noise necessary to disentangle Bell pairs in the bipartition. We
further demonstrated how it is related to the distribution of internal entanglement.
When a state is highly entangled (vis a vis S), the specific robustness is highly con-
strained. On the other hand when S is small the behaviour depends on the specific

– 44 –



details of the state. In general one could say that large values of specific robustness
correspond to nematic type order: the local entanglement for the bipartitioning across
some entangling surface is large, but the entanglement entropy for the reduced density
matrices themselves is small.

On a slightly different note, holographic states are known to satisfy other interesting
constraints on the distribution of internal correlations. There are situations where the
Araki-Lieb inequality (AL) can be saturated to leading order in ceff, leading to the
entanglement plateaux phenomena [48]. The prototypical example is a thermofield
double state (a pure state in H ⊗ H), where for a subsystem A ∈ H one finds SA =

SH\A+Sthermal. As described there (and further explained in [27, 51]), one can visualize
this as saying that the degrees of freedom in A can be decomposed in two groups; one
that carries entanglement across the entangling surface in H and the other carries the
thermal correlations built into the thermofield state.37 This implies a factorization of
the global state into two components.

We explained how the AL can be interpreted as a constraint on the internal pattern
of entanglement of the state and related its saturation to the disentangling theorem
for the negativity (cf., [27]). When the conditions for the disentangling theorem are
matched then the degrees of freedom satisfy the factorization mentioned above. Curi-
ously, it was possible to see such behaviour in special states of even small numbers of
qubits. Our analysis demonstrates conclusively that the conditions for the disentan-
gling theorem are not only sufficient, but also necessary for the saturation of Araki-Lieb,
strengthening thus the entropic results of [50].

All in all, qubit systems appear to provide an excellent playground for under-
standing the general properties of entanglement that one might hope to understand in
holographic contexts. While our analysis has been restricted to the simplest of possible
scenarios, the rich structure seen in the qubit states, leads us to believe that one could
extract general lessons from examining them closely. It would be interesting to build in
minimal dynamics and or consider networks of qubits as in graph states or tensor type
networks [55], to gain more insight into the interplay of entanglement and geometry.
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A Four qubit states: Detailed analysis of SLOCC classes

In this appendix we collect the results for the SLOCC classes of 4-qubit states. These
complement the discussion of §4.2 in that they encompass the partitions of qubits we
did not consider in the main text.

[Q1]

Rac|bd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent.
∆NABC

∆SAB τ4

Φ

Ξ

GHZ

(b) A = {a}, B = {bc}, C = {d}

Figure 18: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permu-
tation of qubits, see Tab. 1 for the full list of possible cases.

A = {b} , B = {cd} , C = {a} A = {a} , B = {bc} , C = {d}
A = {a} , B = {cd} , C = {b} A = {a} , B = {bd} , C = {c}
A = {d} , B = {ab} , C = {c} A = {b} , B = {ac} , C = {d}
A = {c} , B = {ab} , C = {d} A = {b} , B = {ad} , C = {c}

A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 1: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text, the right
column corresponds to Fig. 18b.
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[Q2]

Rac|bd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent. The
plot is truncated, few states with small values of N

and ratio up to R ∼ 7.2 are not shown (R ∼ 4.8 for
the other cut).

∆NABC

∆SAB τ4

(b) A = {a}, B = {bc}, C = {d}

Figure 19: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permu-
tation of qubits, see Tab. 2 for the full list of possible cases.

A = {a} , B = {cd} , C = {b} A = {a} , B = {bc} , C = {d}
A = {b} , B = {cd} , C = {a} A = {a} , B = {bd} , C = {c}
A = {d} , B = {ab} , C = {c} A = {b} , B = {ac} , C = {d}
A = {c} , B = {ab} , C = {d} A = {b} , B = {ad} , C = {c}

A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 2: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text, the right
column corresponds to Fig. 19b.
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[Q3]

Rab|cd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent.
∆NABC

∆SAB
τ4

(b) A = {a}, B = {bc}, C = {d}

∆NABC

∆SAB

(c) A = {a}, B = {bd}, C = {c}
∆NABC

∆SAB

(d) A = {b}, B = {ad}, C = {c}

Figure 20: (a) Specific robustness for different choices of Σ. (b)(c)(d) Saturation of AL for alternative
permutations of qubits, see Tab. 3 for the full list of possible cases.

A = {b} , B = {ac} , C = {d} A = {a} , B = {bc} , C = {d}
A = {d} , B = {ac} , C = {b} A = {a} , B = {cd} , C = {b}

A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

A = {a} , B = {bd} , C = {c} A = {b} , B = {ad} , C = {c}
A = {c} , B = {bd} , C = {a} A = {b} , B = {cd} , C = {a}

A = {d} , B = {ab} , C = {c}
A = {d} , B = {bc} , C = {a}

Table 3: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The top left cases give the result shown in the main text. Top right, Fig. 20b. Bottom
left, Fig. 20c. Bottom right, Fig. 20d.
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[Q4]

Rab|cd

N Σ
1|2

S

W

(a) The result for the cut Rad|bc is equivalent to the
one shown in the main text.

∆NABC

∆SAB τ4
W

(b) A = {a}, B = {cd}, C = {b}

Figure 21: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permu-
tation of qubits, see Tab. 4 for the full list of possible cases.

A = {a} , B = {bc} , C = {d} A = {a} , B = {cd} , C = {b}
A = {a} , B = {bd} , C = {c} A = {b} , B = {cd} , C = {a}
A = {b} , B = {ac} , C = {d} A = {d} , B = {ab} , C = {c}
A = {b} , B = {ad} , C = {c} A = {c} , B = {ab} , C = {d}
A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 4: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text, the right
column corresponds to Fig. 21b.
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[Q5]

Rac|bd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent to the
one shown in the main text.

∆NABC

∆SAB τ4

(b) A = {a}, B = {bd}, C = {c}
∆NABC

∆SAB

(c) A = {b}, B = {ac}, C = {d}

Figure 22: (a) Specific robustness for different choices of Σ. (b)(c) Saturation of AL for alternative
permutations of qubits, see Tab. 5 for the full list of possible cases.

A = {a} , B = {bc} , C = {d} A = {a} , B = {bd} , C = {c} A = {b} , B = {ac} , C = {d}
A = {a} , B = {cd} , C = {b} A = {c} , B = {bd} , C = {a} A = {d} , B = {ac} , C = {b}
A = {b} , B = {ad} , C = {c}
A = {b} , B = {cd} , C = {a}
A = {d} , B = {ab} , C = {c}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

Table 5: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text. The
center column corresponds to Fig. 22b, the right one to Fig. 22c.
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[Q6]

∆NABC

∆SAB

τ4

(a) A = {b}, B = {ac}, C = {d}
∆NABC

∆SAB

(b) A = {b}, B = {cd}, C = {a}

Figure 23: Saturation of AL for alternative permutations of qubits, see Tab. 6 for the full list of possible
cases.

A = {a} , B = {bc} , C = {d} A = {b} , B = {ac} , C = {d} A = {b} , B = {cd} , C = {a}
A = {a} , B = {bd} , C = {c} A = {b} , B = {ad} , C = {c} A = {d} , B = {bc} , C = {a}
A = {a} , B = {cd} , C = {b} A = {d} , B = {ab} , C = {c} A = {c} , B = {bd} , C = {a}

A = {d} , B = {ac} , C = {b}
A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

Table 6: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation
of AL inequality. The left column shows the choices which give the result shown in the main text. The
center column corresponds to Fig. 23a, the right one to Fig. 23b.
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