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The last decade has witnessed an explosion of interest in Artificial Intelligence, not only among

researchers, but also in the public eye. This has led to machine learning (ML) systems being in-

creasingly deployed in domains with high personal and societal impact. Consequently, there’s a

growing need to reason about the behavior of these machine learning systems, with the ultimate

goal of mitigating unwanted behaviors, ensuring reliable outputs, and fostering trustworthy interac-

tions with the end user. This dissertation lays the foundations for reasoning about the behavior of

such systems, especially when we have access to domain knowledge—sets of rules, or constraints,

that characterize the set of valid predictions given the problem at hand. In particular, a core contri-

bution of this dissertation is viewing ML systems as inducing probability distributions over output

spaces. To reason about the behavior of these systems, one must then reason about the behavior of

the underlying probability distributions. Building upon that perspective, the dissertation begins by

developing methods that minimize the probability of ML systems producing invalid outputs, even

when the constraints and distributions are theoretically intractable. It then goes further, developing

methods that provide guarantees on the outputs of these ML systems, developing probabilistically-

ii



sound approaches to gradient estimation when the constraints are embedded within the architecture.

The developed methods make use of tractable circuits whose structure differs from that of typical

ML architectures. This dissertation, therefore, develops frameworks for expressing constraints as

Python functions that can then be efficiently computed on GPUs. Lastly, this dissertation showcases

the scalability and efficacy of the developed methods on real-word applications.
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CHAPTER 1

Introduction

Neural networks have achieved resounding success across many domains, leading to their widespread

adoption across many walks of life, from drug design to self-driving cars. In such settings, we do

not want to predict a single output, e.g., whether an image contains a cat, but many outputs that con-

stitute a semantically meaningful object, e.g., a protein structure. This leads to output spaces that

scale exponentially in the number of variables, and it is not possible to see enough data to faithfully

recover the true underlying function. How can we then hope to develop trustworthy systems?

Knowledge is everywhere! Sets of rules, or constraints, specified in formal language, character-

izing the set of predictions admissible in a given problem domain. The presence of such constraints

is, in principle, very beneficial. During training time, they greatly restrict our hypothesis space by

precluding models inconsistent with the constraints, reducing the amount of data required to re-

cover the target function. At inference time, they restrict the set of possible predictions to those

admissible in the current domain. The challenge, however, then becomes: how do we consolidate

the continuous nature of gradient-based learning with the discrete nature of constraints?

By taking a probabilistic approach to this problem, viewing neural networks as inducing prob-

ability distributions over output spaces reasoning about such distributions, this dissertation aims to

develop, from first principles, tractable approaches that leverage probabilistic semantics to consoli-

date purely statistical approaches to learning, chiefly using neural networks, with purely symbolic

approaches to reasoning. The Holy Grail of this research is to conceive of methods that address

shortcomings of both paradigms: developing scalable approaches that learn from unstructured data

while leveraging constraints to ensure the explainable and trustworthy behavior of neural networks.

1



1.1 Structure of the Dissertation

Chapter 2, based on Ahmed et al. [2022c], Ahmed et al. [2023a], and Ahmed et al. [2023b] starts

with a starry-eyed perspective to integrating logical reasoning with statistical learning, where a

simple means to integrating the constraint into learning is by optimizing for the set of parameters

that maximize the probability of not only the data but also the constraint. It then proceeds to exploit

a common assumption in machine learning, namely that data belonging to the same class tend to

form discrete clusters to propose a new neuro-symbolic loss termed neuro-symbolic entropy. It then

moves on to relax the assumption at the core of many exact neuro-symbolic approaches, the ability

to compile a given constraint into a compact circuit, and derives a probabilistic approach to scal-

ing probabilistic inference for neuro-symbolic learning while retaining the sound semantics of the

logic. Lastly, it moves beyond minimizing the probability of the constraint under fully-factorized

output distributions and towards autoregressive distributions, approximating the probability of the

constraint w.r.t. the autoregressive distribution by its probability in a local pseudolikelihood distri-

bution centered around a model sample, resulting in an efficient and high-fidelity approximation.

Chapter 3, based on Ahmed et al. [2022b] and Ahmed et al. [2023c], moves towards devel-

oping methods that provide guarantees on a system’s behavior. To that end, it proposes semantic

probabilistic layers (SPLs), drop-in replacements for the traditional Softmax layer that guarantee

the neural network’s predictions are consistent with a set of constraints, while being amenable to

end-to-end learning. Very often the utility of constraints can extend beyond just the output layer of

a neural network to being part of the neural network architecture. This necessitates taking discrete

samples and taking gradients w.r.t. these samples, which are inherently differentiable. Reparame-

terizing the samples in terms of the marginals, this dissertation proceeds to show that the gradient

of the loss w.r.t. the samples can be estimated as the gradient w.r.t. the marginals of the distribution

over all subsets of size k. This constitutes a new, general gradient estimator, SIMPLE, that exhibits

lower bias and lower variance compared to state-of-the-art gradient estimators, and which can be

applied in the context of any constraint that can be compiled into a tractable circuit.
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Chapter 4, based on Ahmed et al. [2022a] and Liu et al. [2024a], develops a unifying framework

that seamlessly integrates with existing deep learning code and allows users to easily specify and

utilize constraints, augmenting procedurally trained neural networks with declaratively specified

constraints. When the PyTorch function can be compiled into a tractable circuit Pylon makes use of

PyJuice, another framework developed by this dissertation, to efficiently compute the loss. PyJuice

interprets the circuit as a layerwise computational graph, leading to maximal GPU utilization and

running times orders of magnitude faster than older implementations.

Chapter 5, based on Shukla et al. [2023] and Qian et al. [2023] showcases the scalability and

efficacy of the approaches developed throughout the dissertation. One such application is weakly-

supervised learning, where high-quality labels are often very scarce, whereas data with partial

labels is more readily available due to privacy or budget constraints. The dissertation derives a

count loss penalizing the model for deviations in its distribution from an arithmetic constraint

defined over label counts. Another application is learning the structure of graph neural networks,

where this dissertation proposed probabilistically rewired message-passing graph neural networks

(PR-MPNNs). Building upon SIMPLE, the approach learns to add relevant edges while omitting

less beneficial ones, overcoming many of the pitfalls of state-of-the-art algorithms.

Finally, Chapter 6 concludes by summarizing the thesis and discussing future directions.
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CHAPTER 2

Learning with Constraints

A simple means to integrating constraints into learning is by optimizing for the set of parameters

that maximize the probability of not only the data but also the constraint. We can compile the con-

straint into a tractable circuit, a compact computational representation which we can parameterize

to induce a distribution over the possible worlds of the constraint. This yields the probability we

seek to maximize. An assumption core to learning is that data belonging to the same class tend to

form discrete clusters. Minimizing the entropy [Grandvalet and Bengio, 2005] of the distribution

can thus be regarded as minimizing a measure of class overlap under the learned representation.

That is, we should aim to learn minimum entropy distributions satisfying the constraint. Naively

we might consider maximizing the probability of the constraints while minimizing the entropy.

However, the entropy is agnostic to the constraint and, therefore, likely to steer the network to-

wards predictions that violate it. We propose a new loss, neuro-symbolic entropy regularization,

minimizing the distribution’s entropy restricted to the possible worlds of the constraint and derived

an efficient algorithm for its computation using tractable circuits.

An assumption at the heart of many exact neuro-symbolic approaches is the ability to compile

a given constraint into a compact circuit by exploiting the structure inherent in the problem. Un-

fortunately, many constraints do not exhibit sufficient structure to yield a compact circuit, which

can very often grow exponentially. We propose a new approach, semantic strengthening, a prob-

abilistic approach to scaling probabilistic inference for neuro-symbolic learning while retaining

the sound semantics of the logic. We start by assuming that the probability of the constraint de-

composes, conditioned on the networks learned features. We thereby reduce the (often intractable)
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problem of probabilistically satisfying the global constraint, e.g., that a Sudoku puzzle is valid, to

the (tractable) problem of probabilistically satisfying the local constraints, e.g. the uniqueness of

the elements of a row, column, or square. This, however, introduces inconsistencies: an assign-

ment that satisfies one constraint might violate another, leading to misaligned gradients. We give

an algorithm for tractably computing the conditional mutual information, a measure of modeling

error incurred by assuming the constraints to be independent when they are in fact dependent. We

interleave learning with semantic strengthening, iteratively tightening our approximation, using

the network to guide constraint joining.

Previous approaches to neuro-symbolic AI assume the outputs of a neural network to be condi-

tionally independent given the learned features and therefore the distribution over the output space

to be fully-factorized, disregarding any potential correlations among the individual variables. In

my work, pseudo-semantic loss, we move beyond fully-factorized output distributions and towards

autoregressive distributions, including those induced by LLMs such as GPT, where the output at

any given time step depends on the outputs at all previous time steps. Computing the probability of

an arbitrary constraint under a fully-factorized distribution is already computationally hard, owing

to the exponentially-many possible worlds of the constraint and the lack of structure to the solution

space. Under an autoregressive distribution, however, computing the probability of even a single

literal as a constraint is hard. To that end, we approximate the probability of the constraint w.r.t.

the autoregressive distribution by its probability in a local pseudolikelihood distribution centered

around a model sample resulting in a factorizable, efficient and high-fidelity approximation.

2.1 Neuro-Symbolic Entropy Regularization

Neural networks have achieved breakthroughs across a wide range of domains. Such breakthroughs

are often only possible in the presence of large labeled datasets, which can be hard to obtain. In-

creasing efforts are therefore being devoted to approaches that utilize alternate sources of supervi-

sion in lieu of more labeled data. Entropy regularization constitutes one such approach [Grandvalet
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and Bengio, 2005; Chapelle et al., 2010]. It posits that data belonging to the same class tend to

form discrete clusters. Minimizing the entropy of the predictive distribution can thus be regarded

as minimizing a measure of class overlap under the learned representation. Intuitively, a classifier

guessing uniformly at random has maximum entropy and has not learned features that are infor-

mative of the underlying class. Consequently, we prefer a minimum entropy classifier that learns

features maximally informative of the underlying class, even on unlabeled data.

The need for labeled data is only exacerbated in structured prediction, where the objective

is to predict multiple interdependent output variables representing a discrete object. Viewed as

traditional classification, the number of classes in structured prediction is exponential in the num-

ber of output variables—all possible output configurations. Neuro-symbolic methods can pro-

vide additional supervision, leveraging symbolic knowledge regarding the structure of the output

space [De Raedt et al., 2020]. This knowledge characterizes the set of valid structures; for instance,

a path in a graph is a series of connected edges connecting the source and destination vertices.

Here, we take a principled approach to unifying the aforementioned forms of supervision.

Naively, we might consider simply optimizing both losses simultaneously. However, computed

in that manner, entropy regularization does not account for the structure of the output space and

is therefore likely to push the network towards invalid structures. Instead, we restrict the entropy

loss to the network’s distribution over the valid structures, as characterized by the constraint, as op-

posed to the entire predictive distribution, proposing neuro-symbolic entropy regularization. That

is, we require that the network’s output distribution be maximally informative of the target subject

to the constraint. Intuitively, the network should “know” the right structure among the valid struc-

tures. Computing the entropy of a distribution subject to a constraint is, in general, computationally

hard. We provide an algorithm leveraging structural properties of tractable logical circuits to ef-

ficiently compute this quantity. Our framework integrates seamlessly with other neuro-symbolic

approaches that maximize the constraint probability, in effect “eliminating” invalid structures.

Empirically, we evaluate our loss on four structured prediction tasks, where we observe it leads

to models whose predictions are more accurate, and more likely to satisfy the constraint.
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2.1.1 Neuro-Symbolic Entropy Loss

We first introduce background on logical constraints and probability distributions over output struc-

tures. Afterwards, we motivate and define our neuro-symbolic entropy loss.

2.1.1.1 Background

We write uppercase letters (X , Y ) for Boolean variables and lowercase letters (x, y) for their

instantiation (Y = 0 or Y = 1). Sets of variables are written in bold uppercase (X, Y), and their

joint instantiation in bold lowercase (x, y). A literal is a variable (Y ) or its negation (¬Y ). A

logical sentence (α or β) is constructed from variables and logical connectives (∧, ∨, etc.), and is

also called a (logical) formula or constraint. A state or world y is an instantiation to all variables

Y. A state y satisfies a sentence α, denoted y |= α, if the sentence evaluates to true in that world.

A state y that satisfies a sentence α is also said to be a model of α. We denote by m(α) the set of

all models of α. The notation for states y is used to refer to an assignment, the logical sentence

enforcing the assignment, or the binary output vector capturing the assignment. A sentence α

entails another sentence β, denoted α |= β, if all worlds that satisfy α also satisfy β.

A Probability Distribution over Possible Structures Let α be a logical sentence defined over

Boolean variables Y = {Y1, . . . , Yn}. Let p be a vector of probabilities for the same variables

Y, where pi denotes the predicted probability of variable Yi and corresponds to a single output of

the neural network. The neural network’s outputs induce a probability distribution P(·) over all

possible states y of Y:

P(y) =
∏

i:y|=Yi

pi
∏

i:y|=¬Yi

(1− pi). (2.1)

Semantic Loss The semantic loss [Xu et al., 2018a] is a function of the logical constraint α

and a probability vector p. It quantifies how close the neural network comes to satisfying the

constraint by computing the probability of the constraint under the distribution P(·) induced by
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m(α)
y

p(y|x)

(a) Network uncertain over valid and invalid predictions

m(α)
y

p(y|x)

(b) Network allocating most mass to one invalid prediction

m(α)
y

p(y|x)

(c) Network allocating most mass to valid predictions

m(α)
y

p(y|x)

(d) Network allocating most mass to one valid prediction

Figure 2.1: A network’s predictive distribution can be uncertain or certain (↔), and it can allow
or disallow invalid predictions under the constraint α (l). Entropy regularization steers the net-
work towards confident, possibly invalid predictions (b). Neuro-symbolic learning steers the net-
work towards valid predictions without necessarily being confident (c). Neuro-symbolic entropy-
regularization guides the network to valid and confident predictions (d).

p. It does so by reducing the problem of probability computation to weighted model counting

(WMC): summing up the models of α, each weighted by its likelihood under P(·). It, therefore,

maximizes the probability mass allocated by the network to the models of α

Ey∼P [1{y |= α}] =
∑
y|=α

P(y). (2.2)

Taking the negative logarithm recovers semantic loss. We make use of semantic loss in our experi-

ments to "eliminate" invalid structures under the neural network’s distribution.

2.1.1.2 Motivation and Definition

Consider the plots in Figure 2.1. For any given data point x, the neural network can be fairly un-

certain regarding the target class, accommodating for both valid and invalid structured predictions

under its predicted distribution.
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A common underlying assumption in many machine learning methods is that data belonging

to the same class tend to form discrete clusters [Chapelle et al., 2010]—an assumption deemed

justified on the sheer basis of the existence of classes. Consequently, a classifier is expected to

favor decision boundaries lying in regions of low data density, separating the clusters. Entropy-

regularization [Grandvalet and Bengio, 2005] directly implements the above assumption, requiring

that the classifier output confident—low-entropy—predictive distributions, pushing the decision

boundary away from unlabeled points, thereby supplementing scarce labeled data with abundant

unlabeled data. Seen through that lens, minimizing the entropy of the predictive distribution can

be regarded as minimizing a measure of class overlap as a function of the learned features.

Entropy regularization, however, remains agnostic to the underlying domain, failing to exploit

situations where we have knowledge characterizing valid predictions in the domain. Therefore, it

can often be harmful to a model’s performance, causing it to grow confident in invalid predictions.

Conversely, neuro-symbolic approaches steer the network towards distributions disallowing

invalid predictions, by maximizing the constraint probability, but do little to ensure the network

learn features conducive to classification.

Clearly then, there is a benefit to combining the merits of both approaches. We restrict the

entropy computation to the distribution over models of the logical formula, ensuring the network

only grow confident in valid predictions. Complemented with maximizing the constraint probabil-

ity, the network learns to allocate all of its mass to models of the constraint, while being maximally

informative of the target.

Defining the Loss More precisely, let Y be a random variable distributed according to Equation

2.1: Y ∼ P. We are interested in minimizing the entropy of Y conditioned on the constraint α

H(Y|α) = −
∑
y|=α

P(y|α) log P(y|α)

= −EY|α [log P(Y|α)] .
(2.3)

9



Algorithm 1 ENT(α,P, c)
Input: a smooth, deterministic and decomposable logical circuit α, a fully-factorized probability
distribution P(·) over states of α, and a cache c for memoization
Output: H(Y|α), where Y ∼ P(·)

1: if α ∈ c then return c(α)
2: if α is a literal then
3: e← 0
4: else if α is an AND gate then
5: e← ENT(β,P, c) + ENT(γ,P, c)
6: else if α is an OR gate then
7: e←

∑|ch(α)|
i=1 P(βi) log P(βi)+ P(βi) ENT(βi,P, c)

8: c(α)← e
9: return e

2.1.2 Computing the Loss

The above loss is, in general, hard to compute. To see this, consider the uniform distribution

over models of a constraint α. That is, let P(y|α) = 1
|m(α)| for all y |= α. Then, H(Y|α) =

−
∑

y|=α
1

|m(α)| log
1

|m(α)| = log |m(α)|. This tells us how many models of α there are, which is

a well-known #P-hard problem [Valiant, 1979a,b]. We will show that, through compilation into

tractable circuits, we can compute Equation 2.3 in time linear in the size of the circuit.

2.1.2.1 Computation through Compilation

Tractable Circuit Compilation We resort to knowledge compilation techniques—a class of

methods that transform, or compile, a logical theory into a target form with certain properties that

allow certain probabilistic queries to be answered efficiently. More precisely, we know of circuit

languages that compute the probability of constraints [Darwiche, 2000], and that are amenable to

backpropagation. We use the circuit compilation techniques in Darwiche [2011a] to build a logical

circuit representing our constraint. Due to the structural properties of this circuit form, we can use

it to compute both the probability of the constraint as well as its gradients with respect to the net-

work’s weights, in time linear in the size of the circuit [Darwiche and Marquis, 2002]. This does

not, in general, escape the complexity of the computation: worst case, the compiled circuit can
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be exponential in the size of the constraint. In practice, however, constraints often exhibit enough

structure (repeated sub-problems) to make compilation feasible. We refer to Section A.1.1 for an

illustrative example of such a compilation.

Logical Circuits More formally, a logical circuit is a directed, acyclic computational graph rep-

resenting a logical formula. Each node n in the DAG encodes a logical sub-formula, denoted [n].

Each inner node in the graph is either an AND or an OR gate, and each leaf node encodes a Boolean

literal (Y or ¬Y ). We denote by ch(n) the set of n’s children, i.e., the operands of its logical gate.

Structural Properties As already alluded to, circuits enable the tractable computation of certain

classes of queries over encoded functions granted that a set of structural properties are enforced.

A circuit is decomposable if the inputs of every AND gate depend on disjoint sets of variables

i.e. for α = β ∧ γ, vars(β) ∩ vars(γ) = ∅. Intuitively, decomposable AND nodes encode local

factorizations of the function. For the sake of simplicity, we assume that decomposable AND

gates always have two inputs, a condition that can be enforced on any circuit in exchange for a

polynomial increase in its size [Vergari et al., 2015; Peharz et al., 2020a].

A second useful property is smoothness. A circuit is smooth if the children of every OR gate

depend on the same set of variables i.e. for α =
∨

i βi, we have that vars(βi) = vars(βj) ∀i, j.

Decomposability and smoothness are a sufficient and necessary condition for tractable integration

over arbitrary sets of variables in a single pass, as they allow larger integrals to decompose into

smaller ones [Choi et al., 2020a].

Lastly, a circuit is said to be deterministic if, for any input, at most one child of every OR node

has a non-zero output i.e. for α =
∨

i βi, we have that βi ∧ βj = ⊥ for all i 6= j. Figure 2.2 shows

an example of smooth, decomposable and deterministic circuit.
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2.1.2.2 Algorithm

Let α be a smooth, deterministic and decomposable logical circuit encoding our constraint, defined

over Boolean variables Y = {Y1, . . . , Yn}. We now show that we can compute the constrained en-

tropy in Equation 2.3 in time linear in the size of α. The key insight is that we are able to efficiently

decompose an expectation with respect to a fully-factorized distribution by alternately splitting the

query variables and the support of the distribution until we reach the leaves of the circuit, which

are simple literals. In what follows, in a slight abuse of notation for brevity, all unconditional

probabilities are implicitly conditioned on constraint α; i.e., we redefine P(·) as P(·|α).

Base Case: α is a literal

When α is a literal, α = Yi or α = ¬Yi, we have that

P(yi|α) = 1{yi |= [α]}, and

H(yi|α) = −P(yi|α) log P(yi|α) = 0.

Intuitively, a literal has no uncertainty associated with it.

Recursive Case: α is a conjunction

When α is a conjunction, decomposability enables us to write

P(y|α) = P(y1|β) P(y2|γ), where vars(β) ∩ vars(γ) = ∅

as it decomposes α into two independent constraints β and γ, and y into two independent assign-

ments y1 and y2. The neuro-symbolic entropy −EY|α [log P(Y|α)] is then

− E{Y1,Y2}|α

[
log P(Y1|β) + log P(Y2|γ)

]
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= −
[
EY1|β

[
log P(Y1|β)

]
+ EY2|γ

[
log P(Y2|γ)

]]
.

That is, the entropy if a decomposable conjunction α is the sum of entropies of the conjuncts.

Recursive Case: α is a disjunction

When α is a smooth and deterministic disjunction, we have that α =
∨

i βi, where the βis are

mutually exclusive, and therefore partition α. Consequently, we have that

P(y|α) =
∑
i

P(βi) · P(y|βi).

The neuro-symbolic entropy decomposes as well:

− EY|α [log P(Y|α)] = −
∑
y|=α

P(y|α) log P(y|α)

= −
∑
y|=α

∑
i

P(βi) P(y|βi) log
[∑

j

P(βj) P(y|βj)
]

= −
∑
y|=α

∑
i

P(βi) P(y|βi)Jy |= βiK
log
[∑

j

P(βj) P(y|βj)Jy |= βjK],
where by determinism, we have that, for any y such that y |= α, y |= βi =⇒ y 6|= βj for all i 6= j.

In other words, any state that satisfies the constraint α satisfies one and only one of its terms, and

therefore, the above expression equals

−
∑
y|=α

∑
i

P(βi) P(y|βi) log
[
P(βi) P(y|βi)

]Jy |= βiK
= −

∑
i

∑
y|=βi

P(βi) P(y|βi) log
[
P(βi) P(y|βi)

]
.
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Figure 2.2: For a given data point, the network (middle) outputs a distribution over classes A,B
and C, highlighted in blue, green and red, respectively. The circuit encodes the constraint (A ∧
B) =⇒ C. For each leaf node l, we plug in P(l) and 1 − P(l) for positive and negative literals,
respectively. The computation proceeds bottom-up, taking products at AND gates and summations
at OR gates. The value accumulated at the root of the circuit (left) is the probability allocated by the
network to the constraint. The weights accumulated on edges from OR gates to their children are of
special significance: OR nodes induce a partitioning of the distribution’s support, and the weights
correspond to the mass allocated by the network to each mutually-exclusive event. Complemented
with a second upward pass, where the entropy of an OR node is the entropy of the distribution
over its children plus the expected entropy of its children, and the entropy of an AND node is
the product of its children’s entropies, we get the entropy of the distribution over the constraint’s
models—the neuro-symbolic entropy regularization loss (right).

Further simplifying the expression, expanding the logarithm, and using the fact that probability

sums to 1 yields

= −
∑
i

P(βi) log P(βi)
∑
y|=βi

P(y|βi)

+ P(βi)
∑
y|=βi

P(y|βi) log P(y|βi)

= −
∑
i

P(βi) log P(βi) + P(βi)EY|βi

[
log P(Y|βi)

]
.

That is, the entropy of the random variable Y conditioned on a disjunction α is the sum of the

entropy of the distribution induced on the children of α, and the average entropy of its children.

The full algorithm is illustrated in Algorithm 1.
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2.1.3 An Illustrative example

Consider Figure 2.2. Given a data point, the neural network defines a distribution over Boolean

random variables A,B, and C, where P(A) = p0 and P(¬A) = 1 − p0, P(B) = p1 and

P(¬B) = 1 − p1, etc. The circuit encodes the constraint (A ∧ B) =⇒ C. To compute the

the probability of the constraint under the network’s distribution, we feed the probabilities into

the circuit, proceeding in a bottom-up fashion, taking products at AND gates and summations at

OR gates, accumulating intermediate computations on the edges of the circuit. The value accu-

mulated at the root of the circuit is the probability mass allocated by the network to models of

the formula, and corresponds to the probability of the constraint under the network’s distribution

– this is exactly the semantic loss, up to a negative logarithm. The weights accumulated on edges

from OR gates to their children are of special significance: OR nodes induce a partitioning of the

distribution’s support, and the weights correspond to the mass allocated by the network to each

mutually-exclusive event. Complemented with another upward pass, where the entropy of every

OR node is the entropy of the distribution over it’s children plus the expected entropy of its chil-

dren, and the entropy of every AND node is the product of its children’s entropies, we calculate

the entropy of the distribution over models of the constraint – this is exactly the neuro-symbolic

entropy regularization. Therefore, performing two upward sweeps of the circuit, we are able to

compute the neuro-symbolic entropy regularization and the semantic loss

2.1.4 Experimental Evaluation

In this section we set out to empirically test our neuro-symbolic entropy loss. To that end, we

devise a series of semi-supervised and fully-supervised structured prediction experiments. Such

are settings where, contrary to the their dominant use, classifiers are expected to predict structured

objects rather than scalar, discrete or real values. Such objects are defined in terms of constraints:

a set of rules characterizing the set of solutions. We aim to answer the following:

1. Does entropy regularization lead to predictive models with improved generalization?
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Table 2.1: Experimental results for entity-relation extraction on ACE05 and SciERC. #Labels
indicates the number of labeled data points available to the network per relation. The remaining
training set is stripped of labels and utilized in an unsupervised manner. We report the F1-score
where a prediction is correct if the relation and its entities are correct.

# Labels 3 5 10 15 25 50 75

A
C

E
05

Baseline 4.92 ± 1.12 7.24 ± 1.75 13.66 ± 0.18 15.07 ± 1.79 21.65 ± 3.41 28.96 ± 0.98 33.02 ± 1.17
Self-training 7.72 ± 1.21 12.83 ± 2.97 16.22 ± 3.08 17.55 ± 1.41 27.00 ± 3.66 32.90 ± 1.71 37.15 ± 1.42
Product t-norm 8.89 ± 5.09 14.52 ± 2.13 19.22 ± 5.81 21.80 ± 7.67 30.15 ± 1.01 34.12 ± 2.75 37.35 ± 2.53

Semantic Loss 12.00 ± 3.81 14.92 ± 3.14 22.23 ± 3.64 27.35 ± 3.10 30.78 ± 0.68 36.76 ± 1.40 38.49 ± 1.74
+ Full Entropy 14.80 ± 3.70 15.78 ± 1.90 23.34 ± 4.07 28.09 ± 1.46 31.13 ± 2.26 36.05 ± 1.00 39.39 ± 1.21
+ NeSy Entropy 14.72 ± 1.57 18.38 ± 2.50 26.41 ± 0.49 31.17 ± 1.68 35.85 ± 0.75 37.62 ± 2.17 41.28 ± 0.46

Sc
iE

R
C

Baseline 2.71 ± 1.10 2.94 ± 1.00 3.49 ± 1.80 3.56 ± 1.10 8.83 ± 1.00 12.32 ± 3.00 12.49 ± 2.60
Self-training 3.56 ± 1.40 3.04 ± 0.90 4.14 ± 2.60 3.73 ± 1.10 9.44 ± 3.80 14.82 ± 1.20 13.79 ± 3.90
Product t-norm 6.50 ± 2.00 8.86 ± 1.20 10.92 ± 1.60 13.38 ± 0.70 13.83 ± 2.90 19.20 ± 1.70 19.54 ± 1.70

Semantic Loss 6.47 ± 1.02 9.31 ± 0.76 11.50 ± 1.53 12.97 ± 2.86 14.07 ± 2.33 20.47 ± 2.50 23.72 ± 0.38
+ Full Entropy 6.26 ± 1.21 8.49 ± 0.85 11.12 ± 1.22 14.10 ± 2.79 17.25 ± 2.75 22.42 ± 0.43 24.37 ± 1.62
+ NeSy Entropy 6.19 ± 2.40 8.11 ± 3.66 13.17 ± 1.08 15.47 ± 2.19 17.45 ± 1.52 22.14 ± 1.46 25.11 ± 1.03

2. If the answer to the above question is positive, it is our expectation that restricting the

distribution acted upon by entropy regularization to that over just the models of the con-

straint might seem more sensible as compared to entropy-regularizing the entire predictive

distribution–including non-models of the constraint. Do the results support this?

3. Finally, entropy regularization can be interpreted as clustering the different classes, and has

intimate connections to transductive Support Vector Machines [Chapelle et al., 2010]. Does

such an interpretation carry over to models and non-models of the constraint? Put differently,

can we expect entropy-regularized predictive models to better conform to our constraints,

measured by the percentage of predictions satisfying the constraint?.

2.1.4.1 Semi-Supervised: Entity-Relation Extraction

We begin by testing our research questions in the semi-supervised setting. Here the model is

presented with only a portion of the labeled training set, with the rest used exclusively in an unsu-

pervised manner by the respective approaches.
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We make use of the natural ontology of entity types and their relations present when dealing

with relational data. This defines a set of relations and their permissible argument types. As is with

all of our constraints, we express the aforementioned ontology in the language of Boolean logic.

Our approach to recognizing the named entities and their pairwise relations is most similar to

Zhong and Chen [2020]. Contextual embeddings are first procured for every token in the sentence.

These are then fed into a named entity recognition module that outputs a vector of per-class prob-

ability for every entity. A classifier then classifies the concatenated contextual embeddings and

entity predictions into a relation.

We employ two entity-relation extraction datasets, the Automatic Content Extraction (ACE)

2005 [Walker et al., 2006] and SciERC datasets [Luan et al., 2018]. ACE05 defines an ontology

over 7 entities and 18 relations from mixed-genre text, whereas SciERC defines 6 entity types with

7 possible relation between them and includes annotations for scientific entities and there relations,

assimilated from 12 AI conference/workshop proceedings. We report the percentage of coherent

predictions: data points for which the predicted entity types, as well as the relations are correct.

We compare against five baselines. The first baseline is a purely supervised model which

makes no use of unlabeled data. The second is a classical self-training approach based off of

Chang et al. [2007], and uses integer linear programming to impute the unlabeled data’s most

likely labels subject to the constraint, and consequently augment the (small) labeled set. The third

baseline is a popular instantiation of a broad class of methods, fuzzy logics, which replace logical

operators with their fuzzy t-norms and logical implications with simple inequalities. Lastly, we

compare our proposed method, dubbed “NeSy Entropy”, to vanilla semantic loss as proposed in

Xu et al. [2018a] as well as another entropy-regularized baseline, dubbed “Full Entropy”, which

minimizes the entropy of the entire predictive distribution, as opposed to just the distribution over

the constraint’s models.

Our results are shown in Table 2.1. We observe that semantic loss outperforms the baseline,

self-training, and product t-norm across the board. We attribute such a performance to the ex-

actness of semantic loss, and its faithfulness to the underlying constraint. We also observe that
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Table 2.2: Grid shortest path test results

Test accuracy % Coherent Incoherent Constraint

5-layer MLP 5.62 85.91 6.99

Semantic loss 28.51 83.14 69.89
+ Full Entropy 29.02 83.76 75.23
+ NeSy Entropy 30.12 83.01 91.61

Table 2.3: Preference prediction test results

Test accuracy % Coherent Incoherent Constraint

3-layer MLP 1.01 75.78 2.72

Semantic loss 15.03 72.43 69.83
+ Full Entropy 17.52 71.80 80.21
+ NeSy Entropy 18.17 71.51 96.04

entropy-regularizing the predictive model, in conjunction with training using semantic loss leads

to better predictive models, as compared with models trained solely using semantic loss. Further-

more, it turns out that restricting entropy to the distribution over the constraint’s models, models

that we know constitute the set of valid predictions, compared to the model’s entire predictive

distribution leads to a significant increase in the accuracy of predictions.

2.1.4.2 Fully-Supervised Learning

We now turn our attention to testing our hypotheses in a fully supervised setting, where our aim is

to examine the effect of constraints enforced on the training set. We note that this is a seemingly

harder setting in the following sense: In a semi- supervised setting we might make the argument

that, despite its abundance, imposing an auxiliary loss on unlabeled data provides the predictive

model with an unfair advantage as compared to the baseline. We concern ourselves with two tasks:

predicting paths in a grid and preference learning.

Predicting Simple Paths For this task, our aim is to find the shortest path in a graph, or more

specifically a 4-by-4 grid, G = (V,E) with uniform edge weights. Our input is a binary vector of

length |V |+ |E|, with the first |V | variables indicating the source and destination, and the next |E|

variables encoding a subgraph G′ ⊆ G. Each label is a binary vector of length |E| encoding the

shortest simple path in G′, a requirement that we enforce through our constraint. We follow the

algorithm proposed by Nishino et al. [2017] to generate a constraint for each simple path in the grid,

conjoined with indicators specifying the corresponding source-destination pair. Our constraint is
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Table 2.4: Warcraft shortest path prediction results

Test accuracy % Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9

Semantic loss 50.9 97.7 67.4
+ Full Entropy 51.5 97.6 67.7
+ NeSy Entropy 55.0 97.9 69.8

then the disjunction of all such conjunctions.

To generate the data, we begin by randomly removing one third of the edges in the graph G,

resulting in a subgraph, G′. Subsequently, we filter out connected components in G′ with fewer

than 5 nodes to reduce degenerate cases. We then sample a source and destination node uniformly

at random. The latter constitutes a single data point. We generate a dataset of 1600 examples, with

a 60/20/20 train/validation/test split.

Preference Learning We also consider the task of preference learning. Given the user’s ranking

of a subset of elements, we wish to predict the user’s preferences over the remaining elements of

the set. We encode an ordering over n items as a binary matrix Xij , where for each i, j ∈ 1, . . . , n,

Xij denotes that item i is at position j. Our constraint α requires that the network’s output be a

valid total ordering. We use preference ranking data over 10 types of sushi for 5, 000 individuals,

taken from PREFLIB [Mattei and Walsh, 2013a], split 60/20/20. Our inputs consist of the user’s

preference over 6 sushi types, with the model tasked to predict the user’s preference, a strict total

order, over the remaining 4.

Tables 2.2 and 2.3 compare the baseline to the same MLP augmented with semantic loss, se-

mantic loss with entropy regularization over the entire predictive distribution, “Full Entropy”, and

entropy regularization over the distribution over the constraint’s models, “NeSy Entropy".

Similar to Xu et al. [2018a], we observe that the semantic loss has a marginal effect on inco-

herent accuracy, but significantly improves the networks ability to output coherent predictions. We

also observe that, similar to semi-supervised settings, entropy-regularization leads to more coher-
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Figure 2.3: Warcraft dataset. Each input (left) is a 12 × 12 grid corresponding to a Warcraft II
terrain map, the output is a matrix (middle) indicating the shortest path from top left to bottom
right (right).

ent predictions using both “Full Entropy” and “NeSy Entropy", with “NeSy Entropy" leading to

the best performing predictive models. Remarkably, we also observe that “NeSy Entropy” leads to

predictive models whose predictions almost always satisfy the constraint, denoted “Constraint”.

Warcraft Shortest Path Lastly, we consider a more real-world variant of the task of predicting

simple paths. Following [Pogančić et al., 2019], our training set consists of 10, 000 terrain maps

curated using Warcraft II tileset. Each map encodes an underlying grid of dimension 12×12, where

each vertex is assigned a cost depending on the type of terrain it represents (e.g. earth has lower

cost than water). The shortest (minimum cost) path between the top left and bottom right vertices

is encoded as an indicator matrix, and serves as label. Figure 2.3 shows an example input presented

to the network, the groundtruth, and the input with the annotated shortest path. Figure 2.4 shows

examples of baseline predictions and those obtained by training with constraints.

Presented with an image of a terrain map, a convolutional neural network – following [Pogančić

et al., 2019], we use ResNet18 [He et al., 2016a] – outputs a 12 × 12 binary matrix indicating the

vertices that constitute the minimum cost path. We report three metrics: “Coherent” denotes the

percentage of optimal-cost predictions, “Incoherent” denotes the percentage of individual vertices

matching the groundtruth, and “Constraint” indicates the percentage of predictions that constitute

valid paths. Our results are shown in Table 2.4.

In line with our previous experiments, we observe that incorporating constraints into learning
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Figure 2.4: Example maps from the Warcraft dataset (left) annotated with the baseline predictions
in red (center), and the predictions obtained using constraints in yellow (right)

improves the “Coherent” metric from 44.8% to 50.9%, and of the “Coherent” metric from 56.9%

to 67.4%. Augmenting semantic loss with the entropy over the network’s predictive distribution,

“Full Entropy”, we attain a modest improvement from 50.9% to 51.5% and 67.4% to 67.7% for the

“Coherent” and “Constraint” metrics respectively. Restricting the entropy minimization to models

of the constraint, “NeSy Entropy”, we observe that we attain a large improvement to 55.0% and

69.8% for the “Coherent” and “Constraint” metrics, respectively.

2.1.5 Related Work

The idea of using a model’s predictions to obtain artificial labels for unlabeled data is as old as

time [Scudder, 1965; McLachlan, 1975], and has often known throughout the literature as pseudo-

labeling or self-training. Self-training is an iterative process by which a learner imputes the labels

of examples which have been confidently classified in the previous step, and can therefore be
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viewed as implicitly minimizing the model’s entropy. This is done explicitly in Grandvalet and

Bengio [2005] with a loss term which minimizes the entropy of the model’s predicted distribu-

tion for any given unlabeled data point, thereby rendering the entropy computation amenable to

differentiation, and allowing finer control on the influence of the unlabeled data. It has been ap-

plied successfully across many domains, including NLP [McClosky et al., 2006], object detection

[Rosenberg et al., 2005], image classification [Lee, 2013; Xie et al., 2019], domain adaptation [Zou

et al., 2018]. It has also been used recently by a plethora of semi-supervised learning algorithms

as a constituent of their training pipelines [Arazo et al., 2019; Pham and Le, 2019; Miyato et al.,

2018; Berthelot et al., 2019]. This is in contrast to entropy maximization in reinforcement learning

where the aim is to capture the range of low-cost behaviors [Toussaint, 2009].

In an acknowledgment to the need for both symbolic as well as sub-symbolic reasoning, there

has been a plethora of recent works studying how to best combine neural networks and logical rea-

soning, dubbed neuro-symbolic reasoning. The focus of such approaches is making probabilistic

reasoning tractable through first-order approximations, and differentiable, reducing logical formu-

las into arithmetic objectives, replacing logical operators with their fuzzy t-norms, and implications

with inequalities [Kimmig et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019].

Diligenti et al. [2017a] and Donadello et al. [2017] use first-order logic to specify constraints

on outputs of a neural network. They employ fuzzy logic to reduce logical formulas into dif-

ferential, arithmetic objectives denoting the extent to which neural network outputs violate the

constraints, thereby supporting end-to-end learning under constraints. More recently, Xu et al.

[2018a] introduced semantic loss, which circumvents the shortcomings of fuzzy approaches, while

still supporting end-to-end learning under constraints. More precisely, fuzzy reasoning is replaced

with exact probabilistic reasoning, made possible by compiling logical formulae into structures

supporting efficient probabilistic queries.

Another class of neuro-symbolic approaches have their roots in logic programming. Deep-

ProbLog [Manhaeve et al., 2018] extends ProbLog, a probabilistic logic programming language,

with the capacity to process neural predicates, whereby the network’s outputs are construed as the
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probabilities of the corresponding predicates. This simple idea retains all essential components

of ProbLog: the semantics, inference mechanism, and the implementation. In a similar vein, Dai

et al. [2018] combine domain knowledge specified as purely logical Prolog rules with the output

of neural networks, dealing with the network’s uncertainty through revising the hypothesis by it-

eratively replacing the output of the neural network with anonymous variables until a consistent

hypothesis can be formed. Bošnjak et al. [2017] present a framework combining prior procedural

knowledge, as a Forth program, with neural functions learned through data. The resulting neural

programs are consistent with specified prior knowledge and optimized with respect to data.

2.2 Semantic Strengthening of Neuro-Symbolic Learning

Neural networks are often only able to achieve decent label-level accuracy, with a complete disre-

gard to the structure jointly encoded by the individual labels. Neuro-symbolic approaches [De Raedt

et al., 2020] hope to remedy the problem by injecting into the training process knowledge regard-

ing the underlying problem domain. We have seen that this can be achieved by maximizing the

probability allocated by the neural network to outputs satisfying the rules of the underlying domain.

Computing this quantity is, a #P-hard problem [Valiant, 1979b], which while tractable for a range

of practical problems [Xu et al., 2018a; Ahmed et al., 2022c], precludes many problems of interest.

A common approach is to side step the hardness of computing the probability exactly by re-

placing logical operators with their fuzzy t-norms, and logical implications with simple inequali-

ties [Medina Grespan et al., 2021; van Krieken et al., 2020]. This, however, does not preserve the

sound probabilistic semantics of the underlying logical statement: equivalent logic statements no

longer correspond to the same set of satisfying assignments, to different probability distributions,

and consequently, vastly different constraint probabilities. On the other hand, obtaining a Monte

Carlo estimate of the probability [Ahmed et al., 2022a] is infeasible in exponentially-sized output

spaces where the valid outputs represent only a sliver of the distribution’s support.

In this work, starting from first principles, we derive a probabilistic approach to scaling prob-
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abilistic inference for neuro-symbolic learning while retaining the sound semantics of the under-

lying logic. Namely, we start by assuming that the probability of the constraint decomposes, con-

ditioned on the network’s learned features. That is, we assume the events encoded by the logical

formula to be mutually independent given the learned features, and therefore, joint probability fac-

torizes as a product of probabilities. This generalizes the prolific assumption that the probabilities

of the variables are mutually-independent conditioned on the network’s learned features [Mullen-

bach et al., 2018; Xu et al., 2018a; Giunchiglia and Lukasiewicz, 2020] to events over arbitrary

number of atoms. This reduces the (often intractable) problem of probabilistically satisfying the

constraint, the validity of a Sudoku puzzle, to the (tractable) problem of probabilistically satisfying

the individual local constraints, e.g. the uniqueness of the elements of a row, column, or square.

This, however, introduces inconsistencies: an assignment that satisfies one constraint might vio-

late another, leading to misaligned gradients. More precisely, for each pair of constraints, we are

interested in the penalty incurred, in terms of modeling error, by assuming the constraints to be

independent when they are in fact dependent, conditioned on the features learned by the neural

network. This corresponds exactly to the conditional mutual information, a quantity notoriously

hard to calculate. We give an algorithm for tractably computing the conditional mutual informa-

tion, given that our constraints are represented as circuits satisfying certain structural properties.

Training then proceeds, where we interleave the process of learning the neural network, with the

process of semantic strengthening, where we iteratively tightening our approximation, using the

neural network to guide us to which constraints need to be made dependent.

We test our approach on three different tasks: predicting a minimum-cost path in a Warcraft

terrain, predicting a minimum-cost perfect matching, as well as solving Sudoku puzzles, where

we observe that our approach greatly improves upon the baselines all for a minuscule increase in

computation time, thereby sidestepping the intractability of the problem.
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Figure 2.5: Estimating the probability of a constraint using sampling can fail when, (a) the set
of satisfying assignments represents only a minuscule subset of the distribution’s support, or, (b)
when the network already largely satisfies the constraints, and consequently, we are very unlikely
to sample very low-probability assignments violating the constraint. Using product t-norm, (c),
to model the probability of satisfying constraints reduces the problem to satisfying the constraints
locally, which can often lead to conflicting probabilities, and therefore, conflicting gradients. Here,
e.g., according to the distribution over the Sudoku row, 3 is the likely value of the cell in grey,
where as, according to the distribution over the Sudoku column, 4 is the likely value.

2.2.1 Problem Statement and Motivation

Recall from section Sec. 2.1.1.1 that a neural network induces a distribution over the output space,

and that we can define a semantic loss [Xu et al., 2018a], as in Equation 2.2 to minimize the

probability mass allocated to invalid outputs under the neural network’s distribution.

Computing the above expectation is generally #P-hard [Valiant, 1979b]: there are potentially

exponentially many models of α. For instance, there are 6.67× 1021 valid 9× 9 Sudokus [Felgen-

hauer and Jarvis, 2005], where as the number of valid matchings or paths in a n × n grid grows

doubly-exponentially in the grid size [Strehl, 2001].

A common approach resorts to relaxing the logical statements, replacing logical operators with

their fuzzy t-norms, and implications with simple inequalities, and come in different flavors: Prod-

uct [Rocktäschel et al., 2015; Li and Srikumar, 2019; Asai and Hajishirzi, 2020], Gödel [Minervini

et al., 2017], and Łukasiewicz [Bach et al., 2017], which differ only in their interpretation of the

logical operators. Medina Grespan et al. [2021] offer a comprehensive theoretical, and empirical,
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treatment of the subject matter.

While attractive due to their tractability, t-norms suffer from a few major drawbacks. First, they

lose the precise meaning of the logical statement, i.e. the satisfying and unsatisfying assignments

of the relaxed logical formula differ from those of the original logical formula. Second, the logic

is no longer consistent, i.e. logical statements that are otherwise equivalent correspond to different

truth values, as the relaxations are a function of their syntax rather than their semantics. Lastly,

the relaxation sacrifices sound probabilistic semantics, unlike other approaches [Xu et al., 2018a;

Manhaeve et al., 2018] where the output probability corresponds to the probability mass allocated

to truth assignments of the logical statement, the output probability has no sound probabilistic

interpretation [Medina Grespan et al., 2021].

A slightly more benign relaxation [Rocktäschel et al., 2015] only assumes that, for a constraint

α = β1 ∧ . . . ∧ βn, a neural network f(·), and an input x, the events βi are mutually independent

conditioned on the features learned by the neural network. That is, the probability of the constraint

factorizes as P(α|f(x)) = P(β1|f(x)) × . . . × P(βn|f(x)). This recovers the true probabilistic

semantics of the logical statement when β1, . . . , βn are over disjoint sets of variables, i.e. ∀i,j

vars(βi) ∩ vars(βj) = ∅ for i 6= j and can otherwise be thought of as a tractable approximation,

the basis of which is the neural network’s ability to sufficiently encode the dependencies shared

between the constraints, rendering them conditionally independent given the learned features. That

is assuming the neural network makes almost-deterministic predictions of the output variables

given the embeddings. Even assuming the true function is deterministic, there is still the problem

of an imperfect embedding giving probabilistic predictions whereby clauses are dependent.

The above relaxation reduces the intractable problem of satisfying the global constraint to the

tractable problem of satisfying the local constraints, and can therefore often lead to misaligned

gradients. Consider cell (1, 1) of the Sudoku in Figure 2.5. Consider the two constraints asserting

that the elements of row 2 and that the elements of column 2 are unique, and assume the probability

distribution induced by the network over row and column assignments are as shown in Figure 2.5,

right. This leads to opposing gradients for cell (1, 1): On the one hand, the gradient from maximiz-

26



ing the probability of the column constraint pushes it to 2, whereas the gradient from maximizing

the probability of the row constraint pushes it to 4. The problem here is modeling as independent

two constraints that are strongly coupled so much that one determines the value of the other.

Recently, Ahmed et al. [2022a] proposed using sampling to obtain a Monte Carlo estimate

of the probability of the constraint being satisfied. This offers the convenience of specifying

constraints as PyTorch functions, as well as accommodating non-differentiable elements in the

training pipeline of the constraint, especially in cases where the training pipeline includes non-

differentiable elements. However, when problems are intractable, this is often accompanied by a

state space that is combinatorial in size, meaning that the probability of sampling a valid structure

drops precipitously as a function of the size of the state space, making it near impossible to obtain

any learning signal, as almost all the sampled states will necessarily violate our constraint. The

same applies when the constraint is almost satisfied, meaning we never sample low-probability

assignment that violate the constraint.

That is not to mention the pitfalls of sampling: Ahmed et al. [2022a] employ the REINFORCE

gradient estimator, which while unbiased in the limit of many samples, exhibits variances that

makes it very hard to learn. Even gradient estimators that do not exhibit this problem of variance,

trade off variance for bias, making it unlikely to obtain the true gradient.

2.2.2 Semantic Strengthening

We are interested in an approach that, much like the approaches discussed in Sec. 2.2.1 is tractable,

but retains sound probabilistic semantics, and yields a non-zero gradient when the constraint is

locally, or globally, violated.

Let our constraint α be given by a conjunctive normal form (CNF), α = β1∧ . . .∧βn. We start

by assuming that, for a neural network f(·), and an input x, the clauses βi are mutually independent

conditioned on the features learned by the neural network i.e. the probability of the constraint

factorizes as P(α|f(x)) = P(β1|f(x)) × . . . × P(βn|f(x)), where the probability of each of
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Figure 2.6: (Left) Example of two compatible constraint circuits parameterized by the outputs of a
neural network. To compute the probability of a circuit, we plug in the output of the neural network
pi and 1−pi for positive and negative literal i, respectively. The computation proceeds bottom-up,
taking products at AND gates and summations at OR gates, and the probability is accumulated
at the root of the circuit. (Right) the conjunction of the two constraint circuits, its probability,
computing the probabilities required for the mutual information using the law of total probability.

the clauses, P(βi), can be computed tractably. This recovers the true probabilistic semantics of the

logical statement when β1, . . . , βn are over disjoint sets of variables, i.e. ∀i,j vars(βi)∩vars(βj) =

∅ for i 6= j, and can otherwise be thought of as a tractable approximation, the basis of which is the

neural network’s ability to sufficiently encode the dependencies shared between the constraints,

rendering them conditionally independent given the learned features, again, assuming the true

function is deterministic, with no inherent uncertainty.

The above approximation is semantically sound in the sense that, the probability of each term

P(βi) accounts for all the truth assignment of the clause βi. It is also guaranteed to yield a semantic

loss value of 0, and therefore a zero gradient if and only if all the clauses, βi, are satisfied.

However, as discussed in Sec. 2.2.1, training the neural network to satisfy the local constraints

can often be problematic: two dependent constraints assumed independent can often disagree on

the value of their shared variables leading to opposing gradients. If we are afforded more compu-

tational resources, we can start strengthening our approximation by relaxing some of the indepen-

dence assumptions made in our model.
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2.2.2.1 Deriving the Criterion

The question then becomes, which independence assumptions to relax. We are, of course, inter-

ested in relaxing the independence assumptions that have the most positive impact on the quality of

the approximation. Or, put differently, we are interested in relaxing the independence assumptions

for which we incur the most penalty for assuming, otherwise dependent constraints, to be indepen-

dent. For each pair of constraints βi and βj , for all i 6= j, this corresponds to the Kullback-Leibler

divergence of the product of their marginals from their joint distribution, and is a measure of the

modeling error we incur, in bits, by assuming the independence of the two constraints

KL
(
P(X,Y ) ‖PX ·PY

)
(2.4)

where X and Y are Bernoulli random variables, X ∼ P(βi), Y ∼ P(βj), and (X,Y ) ∼ P(βi, βj),

for all i, j such that i 6= j. Equation 2.4 equivalently corresponds to the mutual information

I(X;Y ) given by

I(X;Y ) = E(X,Y )

[
log

P(X,Y )(X,Y )

PX(X) · PY (Y )

]
, (2.5)

between the random variables X and Y , or the measure of dependence between them. Intuitively,

mutual information captures the information shared between X and Y : it measures how much

knowing one reduces about the uncertainty of the other. When they are independent, then knowing

one does not give any information about the other, and therefore the mutual information is 0. At the

other extreme, one is a deterministic function of the other, and therefore, the mutual information

is maximized and equals to their entropy. Note that the expectations in both Equation 2.4 and

Equation 2.5 are over the joint distribution P(X,Y ).

We would be remiss, however, to dismiss the features learned by the network, as they already

encode some of the dependencies between the constraints, affording us the ability to make stronger

approximations. That is, we are interested in the mutual information between all pairs of con-

straints βi, βj conditioned on the neural network’s features. Let D be our data distribution, and Z
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Algorithm 2 MI(β1; β2 | f(x))
Input: Two compatible constraint circuits β1 and β2

Output: Mutual Information of β1 and β2 given features
// Conjoin β1 and β2

α = β1 ∧ β2

// Compute the probability of α, β1 and β2 c.f. Figure 2.6
pα, pβ1 , pβ2 = prob(α), prob(β1), prob(β2)
// Calculate marginals and joint using total probability
pX = [1− pβ1 , pβ1 ], pY = [1− pβ2 , pβ2 ]
p(X,Y) = [[1− pβ1 − pβ2 − pα, pβ2 − pα], [pβ1 − pα, pα]]
mi = 0
for x, y in product([0, 1]) do

mi += p(X,Y)[x][y]× log(
p(X,Y)[x][y]

pX[x]×pY[y]
)

return mi

Algorithm 3 SemanticStrengthening(constraints, κ)
Input: Current set of constraint circuits
Output: Strengthened set of constraints

pwmi = [ ]
for β1, β2 in product(constraints) do

if disjoint(vars(βi), vars(βj)) then continue
// Keep track of constraints with mutual information

pwmi.append((MI(βi, βj), βi, βj))

// Consider only the top κ pairs of constraints
to_merge = sorted(pwmi, reverse=True)[: κ]
for mi, β1, β2 in (to_merge) do

constraints.remove(βi, βj)
constraints.append(βi ∧ βj)

return constraints

be a random variable distributed according to D, we are interested in computing

I(X;Y | Z) = EZ

[
E(X,Y )|Z

[
log

P(x, y | z)
P(x | z) · P(y | z)

]]
(2.6)

= EZ

[
1∑

x=0

1∑
y=0

P(x, y | z)
[
log

P(x, y | z)
P(x | z) · P(y | z)

]]
, (2.7)

where, as is common place, we estimate the outer expectation using Monte Carlo sampling.

Perhaps rather surprisingly, not withstanding the expectation w.r.t the data distribution, the

quantity in Equation 2.6 is hard to compute. This is not only due to the intractability of the prob-

ability, which as we have already stated is #P-hard in general, but also due to the hardness of

conjunction, in general. Loosely speaking, one could have constraints βi and βj for which the

probability computation, P(βi) and P(βj) is tractable, yet computing P(α), where once again

α = βi∧βj , is hard [Shen et al., 2016; Khosravi et al., 2019a]. Intuitively, the hardness of conjunc-

tion comes from finding the intersection of the satisfying assignments without enumeration. We

formalize this in Sec. 2.2.2.3.
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2.2.2.2 The Semantic Strengthening Algorithm

For the purposes of this section, we will assume we can tractably compute the conditional mutual

information in Equation 2.6, and proceed with giving our Semantic Strengthening algorithm. The

idea is, simply put, to use the neural network to guide the process of relaxing the independence as-

sumptions introduced between the constraints. Specifically, we are given an interval, η, a constraint

budget, κ, and a computational budget τ . We initiate the process of training the neural network,

interrupting training every η epochs, computing the conditional mutual information between pairs

of constraints, considering only those pairs sharing at least one variable (e.g. the two constraints

asserting the uniqueness of the first and last row, respectively, do not share variables, are therefore

independent, and by definition have a mutual information of 0, so we need not consider joining

them, yet). Subsequently, we identify the κ pairs of constraints with the highest pairwise condi-

tional mutual information, and that therefore, have the most detrimental effect on the quality of our

approximation. We detect the strongly connected components of constraints, and conjoin them: if

β1 and β2 should be made dependent, and β2 and β3 should be made dependent, then β1 , β2 and β3

are made dependent. We delete the old constraints from, and add the new constraints, to our set of

constraints, and resume training. This process is repeated every η epochs until we have exhausted

our computational budget τ . Our full algorithm is shown in Algorithm 3.

2.2.2.3 Tractably Computing the Criterion

Recall the definition of tractable circuits and their structural properties given in Sec. 2.1.2.1. Deter-

minism, taken together with smoothness and decomposability, allows us to tractably compute the

probability of a constraint [Darwiche and Marquis, 2002].

What remains, is to show that we can tractably conjoin two constraints. Conjoining two decom-

posable and deterministic circuits is NP-hard if we wish the result to also be decomposable and

deterministic, which as we mentioned is a requirement for tractable probability computation [Dar-

wiche and Marquis, 2002; Shen et al., 2016; Khosravi et al., 2019a]. To guarantee the tractabil-
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Figure 2.7: An example of a Warcraft terrain map (left) and an MNIST grid, and the corresponding
groundtruth labels.

ity of the probability computation of the conjoined constraint, we will, therefore, need to intro-

duce one last structural property, namely the notion of compatibility between two circuits [Vergari

et al., 2021]. Two circuits, c1 and c2 over variables Y are said to be compatible if (1) they are

smooth and decomposable, and (2) any pair of AND nodes, n ∈ c1 and m ∈ c2 with the same

scope over Y can be rearranged to be mutually compatible and decompose in the same way i.e.

vars(n) = vars(m) =⇒ vars(ni) = vars(mi), and ni and mi are compatible, for some arrange-

ment of the inputs ni and mi of n and m. A sufficient condition for compatibility is that both c1

and c2 share the exact same hierarchical scope partitioning [Vergari et al., 2021], sometimes called

a vtree or variable ordering [Choi et al., 2020a; Pipatsrisawat and Darwiche, 2008]. Intuitively, the

two circuits should share the order in which they factorize the function over its variables. Figure 2.6

shows an example of smooth, decomposable, deterministic and compatible circuits.

At a high level, there exist off-the-shelf compilers utilizing SAT solvers, essentially through

case analysis, to compile a logical formula into a tractable logical circuit. We are agnostic to the

exact flavor of circuit so long as the properties outlined herein are respected. In our experiments,

we use PySDD1 – a Python SDD compiler [Darwiche, 2011a; Choi and Darwiche, 2013].

Now that we have shown that we can tractably compute the probabilities P(β1),P(β2) and

P(α), we can utilize the law of total probability (c.f. Figure 2.6) to compute the remaining proba-

bilities, and therefore, the mutual information. Our algorithm is shown in Algorithm 2.

1https://github.com/wannesm/PySDD
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2.2.3 Experimental Evaluation

We evaluated our approach, semantic strengthening, on several neuro-symbolic tasks, namely War-

craft minimum-cost path finding, minimum-cost perfect matching of MNIST digits, as well as the

task of training neural networks to solve Sudoku puzzles. The challenge with all of the above

tasks, when looked at through a neuro-symbolic lens, is the vastness of the state space: as previ-

ously mentioned, there are 6.6× 1021 valid 9× 9 Sudokus, and the number of valid matchings, or

paths in a grid grows doubly-exponentially in the grid size—simply too much to enumerate. Even

approaches like semantic loss which rely on circuit approaches to exploit the local structure in

the problem, essentially through caching solutions to repeated subproblems, do not scale to large

instances of these tasks.

As has been established in previous work [Xu et al., 2018a; Ahmed et al., 2022c,b], label-level

accuracy, or the accuracy of predicting individual labels is very often a poor indication of the

performance of the neural network, and is often uninteresting in neuro-symbolic settings, where

we are rather more interested in the accuracy of our predicted structure object exactly matching

the ground truth, e.g., is the prediction a shortest path?, a metric which we denote “Exact” in our

experiments, as well as the accuracy of predicting objects that are consistent with the constraint,

e.g., is the prediction a valid path?, a metric which we denote “Consistent” in our experiments.

Note that, unlike the other two tasks, for the case of Sudoku, these measures are one and the same:

a valid Sudoku has a single unique solution.

In all of our experiments, we compare against two baselines: a neural network, whose architec-

ture we specify in the corresponding experimental section, and the same neural network augmented

with product t-norm, where we assume the independence of constraints throughout training.

Warcraft Shortest Path We evaluate our approach, semantic strengthening, on the challenging

task of predicting the minimum-cost path in a weighted grid imposed over Warcraft terrain maps.

Following Pogančić et al. [2019], our training set consists of 10, 000 terrain maps curated using

the Warcraft II tileset. Each map encodes an underlying grid of dimension 12 × 12, where each

33



vertex is assigned a cost depending on the type of terrain it represents (e.g. earth has lower cost

than water). The shortest (minimum cost) path between the top left and bottom right vertices is

encoded as an indicator matrix, and serves as label. Figure 2.7 shows an example input presented

to the network and the input with an annotated shortest path as a groundtruth. Presented with an

image of a terrain map, a convolutional neural network—similar to Pogančić et al. [2019], we use

ResNet18 [He et al., 2016a]—outputs a 12 × 12 binary matrix indicating a set of vertices. Note

that the minimum-cost path is not unique: there may exist several paths sharing the same minimum

cost, all of which are considered to be correct by our metrics. Table 2.5 shows our results.

Table 2.5: Warcraft shortest path prediction results

Test accuracy % Exact Consistent

ResNet-18 44.80 56.90

+ Product t-norm 50.40 63.20

+ Semantic Strengthening 61.20 72.70

We observe that incorporating constraints into learning improves the accuracy of predicting

the optimal path from 44.80% to 50.40%, and the accuracy of predicting a valid path from 56.90%

to 63.20%, as denoted by the “Exact” and “Consistent” metrics, respectively. Furthermore, and

perhaps more interestingly, we see that our approach, semantic strengthening, greatly improves

upon the baseline, as well as product t-norm improving the accuracy of predicting the optimal path

from 44.80% and 50.40% to 61.20%, while greatly improving the accuracy of predicting a valid

path from 56.90% and 63.20% to 72.70%.

MNIST Perfect Matching Our next task consists in predicting a minimum-cost perfect-matching

of a set of k2 MNIST digits arranged in a k × k grid, where diagonal matchings are not permit-

ted. We consider the problem for the instance when k = 10. Similar to Pogančić et al. [2019],

we generate the ground truth by considering the underlying k × k grid graph, and solving a min-

cost perfect-matching problem using Blossom V [Kolmogorov, 2009], where the edge weights are

given simply by reading the two vertex digits as a two-digit number, reading downwards for verti-
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cal edges, and left to right for horizontal edges. The minimum-cost perfect matching label is then

encoded as an indicator vector for the subset of the selected edges. Similar to the Warcraft experi-

ment, the grid image is input to a (pretrained) ResNet-18, which simply outputs a set of predicted

edges. Table 2.6 shows our results.

Table 2.6: Perfect Matching prediction test results

Test accuracy % Exact Consistent

ResNet-18 9.30 10.00

+ Product t-norm 12.70 12.90

+ Semantic Strengthening 15.50 18.40

Similar to the Warcraft experiment, we observe that incorporating constraints into learning im-

proves the accuracy of predicting the optimal perfect matching from 9.30% to 12.70%, and the

accuracy of predicting a valid perfect matching from 10.00% to 12.90%, as denoted by the “Exact”

and “Consistent” metrics, respectively. Furthermore, we see that our approach, semantic strength-

ening, greatly improves upon the baseline, as well as product t-norm improving the accuracy of

predicting the optimal perfect matching from 09.30% and 12.70% to 15.50%, while greatly im-

proving the accuracy of predicting a valid perfect matching from 10.00% and 12.90% to 18.40%.

Sudoku Lastly, we consider the task of predicting a solution to a given Sudoku puzzle. Here the

task is, given a 9 × 9 partially-filled grid of numbers to fill in the remaining cells in the grid such

that the entries each row, column, and 3 × 3 square are unique i.e. each of the numbers from 1

through 9 appears exactly once.

We use the dataset provided by Wang et al. [2019], consisting of 10K Sudoku puzzles, split

into 9K training examples, and 1K test samples, all puzzles having 10 missing entries.

As our baseline, we follow Wang et al. [2019] in using a convolutional neural network modeled

on that of Park [2018]. The input to the neural network is given as a bit representation of the initial

Sudoku board, along with a mask representing the bits to be learned, i.e. the bits in the empty
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Sudoku cells. The network interprets the bit inputs as 9 input image channels (one for each square

in the board) and uses a sequence of 10 convolutional layers (each with 512 3×3 filters) to output

the solution, with the mask input as a set of additional image channels in the same format as the

board. Table 2.7 shows our results.

Table 2.7: Sudoku test results

Test accuracy % Exact Consistent

10-Layer ConvNet 16.80 16.80

+ Product t-norm 22.10 22.10

+ Semantic Strengthening 28.00 28.00

In line with our previous experiments, we observe that incorporating constraints into learning

improves the accuracy of predicting correct Sudoku solutions, the “Exact” metric from 16.80% to

22.10%. Furthermore, we see that our approach, semantic strengthening, greatly improves upon the

baseline, as well as product t-norm, improving the accuracy from 16.80% and 22.10% to 28.00%.

2.2.4 Related Work

There has been increasing interest in combining neural learning with symbolic reasoning, a class

of methods that has been termed neuro-symbolic methods, studying how to best combine both

paradigms in a bid to accentuate their positives and mitigate their negatives. The focus of many

such approaches has therefore been on making probabilistic reasoning tractable through first-order

approximations, and differentiable, through reducing logical formulas into arithmetic objectives,

replacing logical operators with their fuzzy t-norms, and implications with inequalities [Kimmig

et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019; Pryor et al., 2022].

Diligenti et al. [2017a] and Donadello et al. [2017] use first-order logic to specify constraints on

outputs of a neural network. They employ fuzzy logic to reduce logical formulas into differential,

arithmetic objectives denoting the extent to which neural network outputs violate the constraints,

thereby supporting end-to-end learning under constraints. More recently, Xu et al. [2018a] intro-
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duced semantic loss, which circumvents the shortcomings of fuzzy approaches, while supporting

end-to-end learning under constraints. More precisely, fuzzy reasoning is replaced with exact prob-

abilistic reasoning, by compiling logical formulae into structures supporting efficient probabilistic

queries. Liu et al. [2023a] use semantic loss to simultaneously learn a neural network and extract

generalized logic rules. Different from other neural-symbolic methods that require background

knowledge and candidate logical rules, they aim to induce task semantics with minimal priors.

Another class of neuro-symbolic approaches have their roots in logic programming. Deep-

ProbLog [Manhaeve et al., 2018] extends ProbLog, a probabilistic logic programming language,

with the capacity to process neural predicates, whereby the network’s outputs are construed as the

probabilities of the corresponding predicates. This simple idea retains all essential components of

ProbLog: the semantics, inference mechanism, and the implementation. Manhaeve et al. [2021]

attempts to scale DeepProbLog by considering only the top-k proof paths. In a similar vein, Dai

et al. [2018] combine domain knowledge specified as purely logical Prolog rules with the output

of neural networks, dealing with the network’s uncertainty through revising the hypothesis by it-

eratively replacing the output of the neural network with anonymous variables until a consistent

hypothesis can be formed. Bošnjak et al. [2017] present a framework combining prior procedural

knowledge, as a Forth program, with neural functions learned through data. The resulting neural

programs are consistent with specified prior knowledge and optimized with respect to data.

2.3 A Pseudo-Semantic Loss for Autoregressive Models with Logical Con-

straints

All of the methods developed so far, as well as those existing in the literature assume the outputs

of the neural network to be conditionally independent given the learned features, and therefore the

distribution over the solutions of the constraint is assumed to be fully-factorized.
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Figure 2.8: Our approach in a nutshell.
Given a data point x, we approximate the
likelihood of the constraint α (area shaded in
pink) with the pseudolikelihood (shown in
gray) of the constraint in the neighborhood
of a sample (denoted ×), where m(α) de-
notes the region of the constraint support.

In this work we move beyond fully-factorized

output distributions and towards autoregressive

ones, including those induced by large language

models such as GPT [Radford et al., 2019], where

the output at any given time step depends on the

outputs at all previous time steps. Computing the

probability of an arbitrary constraint under fully-

factorized output distributions is #P-hard. Intu-

itively, the hardness of the problem can be at-

tributed to the possibly exponentially-many solu-

tions of the constraint. Under an autoregressive

distribution, however, computing the probability of even a single literal as a constraint is #P-hard

Roth [1996]. That is, under autoregressive distributions, the hardness of computing the probability

of an arbitrary constraint is now due to two distinct factors: the hardness of the logical constraint as

well as the hardness of the distribution. Throughout this paper, we will assume the inherent hard-

ness of the constraint can be sidestepped: for many applications, we can come up with compact

representations of the constraint’s solutions that are amenable to computing its probability under

the fully-factorized distribution efficiently. When such compact representations are unavailable,

we can fall back to approximate representations of the constraint [Ahmed et al., 2023a].

Unlike previous works that are only able to approximately handle simple constraints under re-

laxations of autoregressive distributions [Ganchev et al., 2010; Zhang et al., 2017; Hu et al., 2018;

Yu et al., 2022], our approach injects non-trivial constraints, that don’t easily factorize, as part

of the training process, computing the probability of the constraint exactly w.r.t. an approximate

distribution. Concretely, we approximate the likelihood of the constraint w.r.t. the autoregressive

distribution with its probability in a local pseudolikelihood distribution—a product of condition-

als—centered around a model sample. This leads to a factorizable objective which allows us to

efficiently compute the probability of constraints by reusing solutions to common sub-problems.
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Experiments show our approximation is low-entropy, allocating most of its mass around the sam-

ple, and has low KL- divergence from the true distribution. Intuitively, we want to stay close to the

sample to ensure high fidelity, while retaining a distribution to ensure differentiability and maxi-

mum generality within tractability bounds. An overview of our approach is depicted in Figure 2.8.

Empirically, we start by evaluating our approach on the tasks of solving a Sudoku puzzle and

generating a shortest path in a given Warcraft map where, conditioned on the input puzzle (map,

resp.), the neural network autoregressively generates a Sudoku solution (shortest path, resp.), tak-

ing into account generations at previous time steps. We observe that our autoregressive models

improve upon the non-autoregressive baselines, and that our approach leads to models whose pre-

dictions are even more accurate, and even more likely to satisfy the constraint. Lastly, we evaluated

our approach on the challenging task of detoxifying pretrained large language models where the

aim is to move the model’s distribution away from toxic generations and towards nontoxic ones

without sacrificing the model’s overall language modeling abilities. We show that, perhaps surpris-

ingly, using only a simple constraint disallowing a list of toxic words, the model exhibits a great

reduction in the toxicity of the generated sentences, as measured using the perspective API2, at

almost no cost in terms of the model’s language modeling capabilities, measured in perplexity.of

logical constraints in such task.

2.3.1 An autoregressive Probability Distribution over Possible Structures

Let α be a logical sentence defined over Boolean variables Y = {Y11, . . . , Ynk}, where n denotes

the number of time steps in the sequence, and k denotes the number of possible classes.

The neural network’s outputs induce a probability distribution p(·) over possible states y. How-

ever, the neural network will ensure that, for each time step i, there is exactly one class being

predicted in each possible state. That is, exactly one Boolean variable {Yi1, . . . , Yik} can be set to

true for each time step i. We will use yi to denote that variable Yij is set to true in state y. More

2https://www.perspectiveapi.com/
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precisely, we let yi ∈ {0, 1}k be the one-hot encoding of Yij being set to 1 among {Yi1, . . . , Yik}.

By the chain rule, the probability assigned by the autoregressive neural network to a state y is then

p(y) =
n∏

i=1

p(yi | y<i), (2.8)

where y<i denotes the prefix y1, . . . ,yi−1. The most common approaches [Mullenbach et al.,

2018; Xu et al., 2018a; Giunchiglia and Lukasiewicz, 2020] to neuro-symbolic learning assume the

conditional independence of the network outputs given the learned embeddings. More precisely,

let f be a neural network that maps inputs x to M -dimensional embeddings z = f(x). Under

such assumption, we obtain the fully-factorized distribution

p(y | z) =
n∏

i=1

p(yi | z). (2.9)

We no longer have a notion of ordering under the fully-factorized distribution—and each possible

p(yi | z) is computed as σ(w⊤
i z) where wi ∈ RM is a vector of parameters and σ(x) is the softmax

function. The appeal of such distribution is that it enables the tractability of many reasoning tasks,

but the downside is that it dismisses any correlation between the output labels. As we will show in

our experimental section (cf. Sec. 2.3.4), using autoregressive distributions, even simple ones such

as LSTMs, already outperforms a neural network where the labels are assumed to be independent.

2.3.2 The Pseudo-Semantic loss

Recall that in neuro-symbolic learning, we often assume access to symbolic knowledge connecting

the different outputs of a neural network and are concerned with maximizing the likelihood of the

constraint w.r.t. the network’s parameters θ:

argmax
θ

pθ(α) = argmax
θ

Ey∼pθ [1{y |= α}] = argmax
θ

∑
y|=α

pθ(y), (2.10)
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where we can use tractable circuit to compute the above expectation exactly when the output of

the neural networks is fully-factorized. Unfortunately, as previously mentioned, moving beyond

the fully-factorized distribution, we are faced with another source of intractability: the hardness of

the distribution w.r.t. which the expectation in Equation 2.10 is being computed. Assuming a deep

generative model whose distribution p can capture a Bayesian network distribution, the problem

of computing even a single marginal—i.e., the marginal probability of a single variable—is known

to be #P-hard [Roth, 1996]. This class of models includes the autoregressive distribution. Intu-

itively, a constraint might have exponentially-many solutions, yet lend itself nicely to reusing of

solutions to sub-problems, and therefore a tractable calculation of the expectation in Equation 2.10.

An example being the n choose k constraint Ahmed et al. [2023c], where the expectation in Equa-

tion 2.10 can be computed in quadratic time under the fully-factorized distribution, despite having

a normally-prohibitive number of solutions. Moving away from the fully-factorized distribution,

however, entails that in the worst case, we would need to compute a sub-problem combinatorial

number of times—for all possible sequences—for exponentially many solutions of the constraint.

To sidestep the intractability of the expectation in Equation 2.10, as a first step, we consider

the pseudolikelihood p̃(·) of a set of parameters given an assignment [Besag, 1975], as a surrogate

for its likelihood i.e.,

p(y) ≈ p̃(y) :=
∏
i

p(yi | y−i), (2.11)

where y−i denotes y1, . . . ,yi−1,yi+1, . . . ,yn. Consequently, we can consider the pseudolikeli-

hood of a set of parameters given a logical constraint α as a surrogate for its true likelihood i.e.,

p(α) ≈ p̃(α) = Ey∼p̃ [1{y |= α}] =
∑
y|=α

p̃(y). (2.12)

Intuitively, the pseudolikelihood objective aims to measure our ability to predict the value of each

variable given a full observation of all other variables. The pseudolikelihood objective attempts to

match the model’s conditional distributions to the conditional distributions computed from thedata.

If it succeeds in matching them exactly, then a Gibbs sampler run on the model’s conditional
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distributions attains the same invariant distribution as a Gibbs sampler run on the true distribution.

On its own, the above would still not be sufficient to ensure the tractability of the expectation

in Equation 2.10. Intuitively, different solutions depend on different sets of conditionals, meaning

we would have to compute the probabilities of many of the solutions of the constraint from scratch.

Instead, we compute the pseudolikelihood of the constraint in the neighborhood of a model sample3

p̃(α) = Ey∼p̃ [1{y |= α}] ≈ Ey∼pEỹ∼p̃y [1{ỹ |= α}] = Ey∼pp̃y(α) = Ey∼p

∑
ỹ|=α

p̃y(ỹ), (2.13)

where p̃y(ỹ) :=
∏
i

p(ỹi | y−i) (2.14)

which is the pseudolikelihood p̃(·) of an assignment in the neighborhood of a sample y. Cru-

cially this distribution is fully-factorized, making it amenable to neuro-symbolic loss functions.

Definition 1 (Pseudo-Semantic Loss). Let α be a sentence in Boolean logic, and let p̃y(·) be the

pseudolikelihood function parameterized by θ and centered around state y, as defined in Equa-

tion 2.14. Then, we define the pseudo-semantic loss between α and θ to be

LSL
pseudo(α, pθ) := − logEy∼pp̃y(α) = − logEy∼p

∑
ỹ|=α

p̃y(ỹ). (2.15)

Intuitively, our pseudo-semantic loss between α and pθ can be thought of as penalizing the

neural network for all the local perturbations ỹ of the model sample y that violate the constraint.

2.3.3 The Algorithm

We will now give a walk through of computing our pseudo-semantic loss. We note that our algo-

rithm is implemented in log-space to preserve numerical stability and uses PyTorch Paszke et al.

[2019]. Our full algorithm is shown in Algorithm 4. We sample an assignment y ∼ pθ from the

3We sample y1 conditioned on the beginning-of-sentence token, then y2 conditioned on the sampled y1, followed
by y3 conditioned on both y1 and y2 and so on until we the end-of-sentence token is sampled.
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model (line 4). We now need to compute the pseudolikelihood of the sample

log p̃θ(y) =
∑
i

log p(yi | y−i)

=
∑
i

log p(yi,y−i)− LSE
y′
i

log p(y′
i,y−i),

Algorithm 4 LSL
pseudo(α; pθ)

1: Input: Logical constraint α and model pθ.
2: Output: Pseudo-semantic loss of α w.r.t. θ
3: // Obtain sample y from pθ
4: y ∼ pθ
5: // Get sequence length and num. of categories
6: seq, cats = y.shape()
7: // Expand the batch to contain all perturbations
8: // of y that are a Hamming distance of 1 away
9: y = y.expand(seq, cats)

10: y[:, range(seq), :, range(seq)] = range(cats)
11: // Evaluate expanded samples through model
12: log pθ = pθ(y).log_softmax(dim=− 1)
13: // Compute the conditional probabilities:
14: // log p̃θ[i][j] = log pθ(yj|y−j)
15: log p̃θ = log pθ − log pθ.logsumexp(dim=−1)
16: // Compute the probability of α under p̃y
17: // by propagating the conditionals through cα
18: return − log p̃y(α)

where LSE is the logsumexp function. That

is, for every element in the sequence, we

need to marginalize over all categories y′
i.

This entails, for every element in the sam-

pled sequence, we need to substitute each

of the categories (lines 9-10) and compute

the probability of the sample under the

model (line 12), obtaining sequence length

× number of categories sequences. Now we

can compute the log-conditional probabili-

ties log p(yi | y−i). We marginalize over

the categories y′
i to obtain the log-marginal

log p(y−i) = LSEy′
i(log p(y

′
i,y−i)). We then condition the probability of every sequence by sub-

tracting the log-marginals i.e., log p(yi,y−i) − log p(y−i) (line 15). We use these conditionals to

compute the pseudolikelihood assigned by the neural network to local perturbations of the model

sample y that satisfy the constraint (line 18). As per Sec. 2.2.2.3, we can compute the pseudo-

likelihood of a constraint α locally around the sample y by pushing the computed conditionals at

the respective input nodes of cα, propagating them through the circuit, taking sums and products.

Figure 2.9 shows a toy example run of our algorithm in non-log space.
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pθ ∼ abc
expand−−−→

{
abc abc abc

¬abc a¬bc ab¬c

eval.−−−→

{
p(abc) = 0.13 p(abc) = 0.13 p(abc) = 0.13

p(¬abc) = 0.15 p(a¬bc) = 0.21 p(ab¬c) = 0.16

norm.−−−→

{
p(a|bc) = 0.46 p(b|ac) = 0.38 p(c|ab) = 0.45

p(¬a|bc) = 0.54 p(¬b|ac) = 0.62 p(¬c|ab) = 0.55

0.71

0.38 0.33

C

¬C
0.45

0.55

0.84 1.0 0.33

0.33

B ¬B
0.38 0.62

A ¬A
0.460.54

0.38
0.46

1.0
1.0

Figure 2.9: An example of our pipeline. (Left) We start by sampling an assignment from the
model pθ. Our goal is to compute the pseudolikelihood of the model sample—the product of
the sample’s conditionals. We start by expanding the model sample to include all samples that
are a Hamming distance of 1 away from the sample. We proceed by (batch) evaluating the
samples through the model, obtaining the joint probability of each sample. We then normal-
ize along each column, obtaining the conditionals. (Right) A logical circuit encoding constraint
(Cat =⇒ Animal) ∧ (Dog =⇒ Animal), with variable A mapping to Cat, variable B mapping
to dog and variable C mapping to Animal. To compute the pseudolikelihood of the constraint in
the neighborhood of the sample abc, we feed the computed conditional at the corresponding lit-
erals. We push the probabilities upwards, taking products at AND nodes and sums at OR nodes.
The number accumulated at the root of the circuit is the pseudolikelihood of the constraint in the
neighborhood of the sample abc.

2.3.4 Experimental Evaluation

We evaluate our pseudo-semantic loss on several tasks, spanning a number of domains. We start by

evaluating on Warcraft shortest-path finding, where we are given an image of a Warcraft tilemap,

and are tasked with autoregressively generating one of the potentially many minimum-cost paths

between two end points conditioned on the map, where the cost is determined by the underlying

cost of the tiles spanned by the path. We move on to evaluating on the classic, yet challenging,

task of solving a 9×9 Sudoku puzzle where, once again, the generation proceeds autoregressively,

conditioned on the input Sudoku puzzle. It is worth noting that such tasks have been considered as

a test bed for other neuro-symbolic approaches before, but never for autoregressive generation.

We also evaluate on the task of large language models (LLMs) detoxification. In this task, we

are interested in the generations produced by an LLM when presented by a prompt input by the user.

More specifically, we are interested not only in how good these models are at the modeling aspect,

but also how toxic their outputs might be, a measure which includes sexual explicitness, identity

attacks, and profanity, among others. Our goal in this task is then to shift the model’s distribution
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Figure 2.10: Example inputs and groundtruth labels for two of the three tasks considered in
our experimental evaluation. (Left) Example Warcraft terrain map and a possible (non-unique)
minimum-cost shortest path. (Right) Example Sudoku puzzle and its corresponding solution.

away from toxic generations, and toward nontoxic ones, all while maintaining its original ability

to model text. We believe this to be a timely and important problem due to their recent prevalence

and widespread usage coupled with the fact that previous work [Gehman et al., 2020] has found

non-negligible amounts of toxic, harmful, and abusive text in the corpora used to train LLMs.

Lastly, we evaluated our approximation’s fidelity by comparing the entropy of our local ap-

proximation against that of the GPT-2 distribution, as well as how close our approximation is to

the true likelihood in the proximity of the sampled data point as measured by the KL-divergence

between the two. All experimental details, hardware specifications, as well as training details are

provided in the appendix.

Warcraft Shortest Path For this task, we follow the experimental setting set forth by Pogančić

et al. [2019], where our training set consists of 10, 000 terrain maps curated using Warcraft II tileset.

Each map encodes a 12 × 12 grid superimposed on a Warcraft terrain map, where each vertex is

weighted according to the cost of the tile, which in turn depends on type of terrain it represents

e.g., earth has lower cost than water. These costs are not presented to the network. The task is

then to generate a minimum-cost path from the upper left to the lower right vertices, where the

cost of a path is defined as the sum of costs of the vertices visted by the edges along the path, and

the minimum-cost path is not unique, i.e., there exists many paths with the minimum cost, and are

all considered correct. The minimum cost path between the top left and bottom right vertices is

encoded as an indicator matrix, and serves as a label. Figure 2.10 shows an example input to the
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Table 2.8: Results on Sudoku.

Test accuracy % Exact Consistent

ConvNet 16.80 16.80

ConvNet + SL 22.10 22.10

RNN 22.40 22.40

RNN + PSEUDOSL 28.20 28.20

Table 2.9: Results on Warcraft.

Test accuracy % Exact Consistent

ResNet-18 55.00 56.90

ResNet-18 + SL 59.40 61.20

CNN-LSTM 62.00 76.60

CNN-LSTM + PSEUDOSL 66.00 79.00

network, and the input annotated with a possible path.

We use a CNN-LSTM model, where, presented with an image of a terrain map, we use a

ResNet18 [He et al., 2016a] to obtain a 128 image embedding, which is then passed on to an

LSTM with a single layer, a hidden dim of size 512, and at every time step predicts the next

edge in the path conditioned on the image embedding and previous edges. The constraint being

maximized by pseudo-semantic loss in this task is that the predicted edges form a valid path.

As has been established in previous work [Xu et al., 2018a; Ahmed et al., 2022c,b], the ac-

curacy of predicting individual labels is often a poor indicator of the performance of the neural

network in neuro-symbolic settings, where we are rather more interested in the accuracy of our

predicted structure object exactly matching the groundtruth label , e.g., is the prediction a shortest

path?, a metric which we denote “Exact” in our experiments, as well as the accuracy of predicting

objects that are consistent with the constraint, e.g., is the prediction a valid path?, a metric denoted

“Consistent”. Our results are shown in Table 2.9.

As alluded to repeatedly throughout the course of the paper, the first observation is that using

an autoregressive model to predict the shortest path in the grid, even a simple single layer LSTM

outperforms both a ResNet-18, as well as a ResNet-18 trained with semantic loss, improving the

exact match from 55.00% and 59.40% to 62.00%, and greatly improving the consistency of the

predicted paths to 76.00%, an improvement by almost 15%. We also see that using our pseudo-

semantic loss, denoted PSEUDOSL, we improve the exact and consistent accuracies to 66.00% and

79.00%, resp.
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Sudoku Next, we consider the task of predicting a solution to a given Sudoku puzzle. Here the

task is, given a 9 × 9 partially-filled grid of numbers to fill in the remaining cells such that the

entries each row, column, and 3×3 square are unique i.e., each number from 1 to 9 appears exactly

once. We use the dataset provided by Wang et al. [2019], consisting of 10K Sudoku puzzles, split

into 9K training examples, and 1K test samples, all puzzles having 10 missing entries. As our

baseline, we use a 5-layer RNN with a hidden dimension of 128, tanh non-linearity and a dropout

of 0.2. At each time step, the RNN predicts the next cell given as input a one-hot encoding of the

previous cell, and conditioned on the partially filled Sudoku. The constraint being maximized by

pseudo-semantic loss is that entries in each row, column, and 3× 3 squares are unique. Our results

are shown in Table 2.8.

In line with our previous experiment, we observe that, once again, a simple RNN outperforms

the non-autoregressive model, as well as the same model augmented with semantic loss, although

the difference is not that big with regards to semantic loss. Augmenting that same autoregressive

model with pseudo-semantic loss, however, increases the gap to a convolutional network, and the

same convolutional network augmented with semantic loss to 11.40 and 7.10, respectively.

LLM detoxification Lastly, we consider the task of LLM detoxification. That is, we investigate

the effectiveness of logical constraints, enforced using pseudo-semantic loss, at steering the model

away from toxic prompted-generations. We choose a very simple constraint to be minimized by

pseudo-semantic loss throughout this task, namely we minimize the probability that any of a list

of profanity, slurs, and swear words4 appear as part of the model generations. Following previous

work [Gehman et al., 2020; Wang et al., 2022], we evaluate on the REALTOXICITYPROMPTS, a

dataset of almost 100k prompts ranging from nontoxic, assigned a toxicity score of 0, to very toxic,

assigned a toxicity score of 1. We focus on GPT-2 [Radford et al., 2019] as a base model for

detoxification. As is customary, [Gehman et al., 2020; Wang et al., 2022], we use Perspective API,

an online automated model for toxic language and hate speech detection, to score the toxicity of

4List downloaded from here.
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Table 2.10: Evaluation of LLM toxicity and quality across different detoxification methods on
GPT-2 with 124 million parameters. Model toxicity is evaluated on the REALTOXICITYPROMPTS

benchmark through Perspective API. Full, Toxic and Nontoxic refer to the full, toxic and nontoxic
subsets of the prompts, respectively. PPL refers to the model perplexity on the WebText validation
set. PPL of word banning is evaluated on the 50% nontoxic portion of the WebText validation set.
In line with previous work Gehman et al. [2020]; Wang et al. [2022], we characterize toxicity using
two metrics: the Expected Maximum Toxicity over 25 generations, and the Toxicity Probability
of a completion at least once over 25 generations. Setting the probabilities of toxic words to zero
sending the perplexity of to infinity. We, therefore, report the perplexity on the 50% least toxic
prompts dataset for Word Banning variants.

Models
Exp. Max. Toxicity (↓) Toxicity Prob. (↓)

PPL (↓)
Full Toxic Nontoxic Full Toxic Nontoxic

GPT-2 0.44 0.62 0.39 34.11% 67.27% 24.85% 25.85

Domain-
Adaptive

SGEAT Wang et al. [2022] 0.32 0.46 0.28 14.05% 35.72% 7.99% 28.72

PseudoSL (ours) 0.29 0.38 0.27 9.80% 20.07% 6.93% 28.14

Word
Banning

GPT-2 0.40 0.55 0.36 27.92% 57.86% 19.56% 22.24

SGEAT Wang et al. [2022] 0.30 0.41 0.27 10.73% 27.05% 6.17% 24.91

PseudoSL (ours) 0.29 0.37 0.27 9.20% 18.71% 6.55% 24.19

our predictions. It returns scores in the range 0 to 1.0, corresponding to nontoxic on the one end,

and extremely toxic on the other. Though not without limitations, studies [Wang et al., 2022; Welbl

et al., 2021] have shown that the toxicity scores from Perspective API are strongly correlated with

human evaluations.

We compare GPT-2 against SGEAT [Wang et al., 2022]—which finetunes GPT-2 on the non-

toxic portion of its self generation, performing unconditional text generation and retaining only

generations with toxicity < 0.5—and against SGEAT augmented with pseudo-semantic loss. We

report the Expected Maximum Toxicity and the Toxicity Probability. The Expected Maximum Tox-

icity measures the worst-case toxicity by calculating the maximum toxicity over 25 generations

under the same prompt with different random seeds, and averaging the maximum toxicity over all

prompts. Toxicity Probability estimates the empirical probability of generating toxic language by

evaluating the fraction of times a toxic continuation is generated at least once over 25 generations

with different random seeds for all prompts. To understand the impact of detoxification, we evalu-
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ate the quality of the LLM using perplexity on the validation split of WebText, used to train GPT-2.

Our results are shown in Table 2.10.

Domain-Adaptive Training It was previously shown that SGEAT lowers the toxicity of the

generations produced by GPT-2, albeit at a slight cost in terms of perplexity. This is confirmed

by our numbers, where we see that SGEAT reduces the average worst-case toxicity as well as the

probability of producing a toxic generation when prompted with either toxic or nontoxic prompts.

We also observe that using PseudoSL loss alongside SGEAT further reduces the overall average

worst-case toxicity as well as the probability of producing a toxic generation, while producing a

better language model compared to SGEAT. Much of this reduction in toxicity appears to stem

primarily from a reduction in the average worst-case toxicity as well as toxicity probability given

toxic prompts.

Decoding-Time Methods We also compared GPT-2, SGEAT and PseudoSL with variants thereof

obtained through augmentation with a decoding-time algorithm, Word Banning [Gehman et al.,

2020]. Word Banning sets the probability of generating any of the words from the aforementioned

list of profanity, slurs and swearwords to zero during decoding. We also attempted to compare

against NeuroLogic decoding, a search-based decoding algorithm utilizing look-ahead heuristics

to optimize for not only the probability of the generated sentence but also the lexical constraints

being satisfied. However, attempting to run NeuroLogic decoding on the entire dataset of prompts

(100k) using the maximum batch size we could fit on a 48GB GPU yielded an estimated time of

165 hours. Considering a randomly-sampled subset of the prompts, we obtained empty generations

for at least 30% of the prompts. The PPL of word banning goes to infinity as the probabilities of

some banned words are set to zero. We, therefore, report the perplexity on the 50% least toxic

portion of the prompts dataset. We observe that augmenting all of the domain-adaptive training

baselines with Word Banning reduces their average worst-case toxicity as well as the their toxicity

probability. SGEAT augmented with Word Banning exhibits lower toxicity, both average worst-

case toxicity and toxicity probability, than all other non-PseudoSL variants. Interestingly, even
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augmented with Word Banning, SGEAT exhibits higher toxicity than the base PseudoSL model.

PSeudoSL augmented with Word Banning exhibits the lowest overall toxicity, both average worst-

case toxicity and toxicity probability, with the gap to the second best in terms of toxicity probability

being particularly stark on the toxic prompts. We also note that, in our evaluation of PPL for Word

Banning, having discarded the toxic sentences, assigned a lower probability under our model, the

perplexity of our model is now closer to that of GPT-2.

Fidelity evaluation Lastly, we evaluated the fidelity of our approximation. We start comparing

the entropy of our approximate distribution to the true distribution. We want this quantity to be low,

as it would mean our approximation only considers assignments centered around the model sample.

We also evaluate the KL-divergence of our approximate distribution from the true distribution in

the neighborhood of a model sample. We want this quantity to be low as well, as it corresponds

to how faithful our approximation is to the true distribution in the neighborhood of the model

sample. Intuitively, the KL-divergence measures how many extra bits are needed to encode samples

from our approximation using a code optimized for GPT-2, and is zero when the two distributions

coincide. We find the entropy of GPT-2 is 80.89 bits while the entropy of our approximation is,

on average, 35.08 bits. We also find the KL-divergence DKL(p̃y || pθ) is on average 4.8 bits. That

is we only need 4 extra bits, on average, to encode the true distribution w.r.t. our approximation

distribution. Intuitively, we want to stay close to the sample to ensure high fidelity, while retaining

a distribution to ensure differentiability and maximum generality within tractability bounds.

2.3.5 Related Work

In an acknowledgment to the need for both symbolic as well as sub-symbolic reasoning, there has

been a plethora of recent works studying how to best combine neural networks and logical rea-

soning, dubbed neuro-symbolic AI. The focus of such approaches is typically making probabilistic

reasoning tractable through first-order approximations, and differentiable, through reducing logi-

cal formulas into arithmetic objectives, replacing logical operators with their fuzzy t-norms, and
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implications with inequalities [Kimmig et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019].

Another class of neuro-symbolic approaches have their roots in logic programming. Deep-

ProbLog [Manhaeve et al., 2018] extends ProbLog, a probabilistic logic programming language,

with the capacity to process neural predicates, whereby the network’s outputs are construed as the

probabilities of the corresponding predicates. This simple idea retains all essential components

of ProbLog: the semantics, inference mechanism, and the implementation. In a similar vein, Dai

et al. [2018] combine domain knowledge specified as purely logical Prolog rules with the output

of neural networks, dealing with the network’s uncertainty through revising the hypothesis by it-

eratively replacing the output of the neural network with anonymous variables until a consistent

hypothesis can be formed. Bošnjak et al. [2017] present a framework combining prior procedural

knowledge, as a Forth program, with neural functions learned through data. The resulting neural

programs are consistent with specified prior knowledge and optimized with respect to data.

Diligenti et al. [2017a] and Donadello et al. [2017] use first-order logic to specify constraints on

outputs of a neural network. They employ fuzzy logic to reduce logical formulas into differential,

arithmetic objectives denoting the extent to which neural network outputs violate the constraints,

thereby supporting end-to-end learning under constraints. Xu et al. [2018a] introduced semantic

loss, which circumvents the shortcomings of fuzzy approaches, while still supporting end-to-end

learning under constraints. More precisely, fuzzy reasoning is replaced with exact probabilistic

reasoning, made possible by compiling logical formulae into structures supporting efficient proba-

bilistic queries.

There has recently been a plethora of approaches ensuring consistency by embedding the con-

straints as predictive layers, including semantic probabilistic layers (SPLs) [Ahmed et al., 2022b],

MultiplexNet [Hoernle et al., 2022] and C-HMCNN [Giunchiglia and Lukasiewicz, 2020]. Much

like semantic loss [Xu et al., 2018a], SPLs maintain sound probabilistic semantics, and while dis-

playing impressive scalability to real world problems, but might struggle with encoding harder

constraints. MultiplexNet is able to encode only constraints in disjunctive normal form, which

is problematic for generality and efficiency as neuro-symbolic tasks often involve an intractably
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large number of clauses. HMCCN encodes label dependencies as fuzzy relaxation and is the cur-

rent state-of-the-art model for hierarchical multi-label classification [Giunchiglia and Lukasiewicz,

2020], but, similar to its recent extension [Giunchiglia and Lukasiewicz, 2021], is restricted to a

certain family of constraints.

A related line of research focuses on constrained text generation, modifying the decoding algo-

rithm to inject lexical constraints into the beam search process. Such methods include constrained

beam search [Post and Vilar, 2018], NeuroLogic Decoding [Lu et al., 2021] and A*esque Neuro-

Logic Decoding [Lu et al., 2022b]. And although they can be easily applied to various language

models without training, these search-based methods can be inefficient as they suffer from large

search spaces. Recent works like NADO [Meng et al., 2022] and FUDGE [Yang and Klein, 2021]

train auxiliary neural models to provide token-level guidance for autoregressive generation. In a

similar vein, GeLaTo [Zhang et al., 2023a] augments a large language model with guidance from

a tractable probabilistic model to guarantee the keyword tokens are part of the generated sentence

while retaining its fluency. Another family of approaches that enforce keyword-type constraints

are insertion-based language models [Lu et al., 2022a; Susanto et al., 2020], where the initial se-

quences only consist of the desired keywords and the transition phrases are repeatedly inserted to

complete the sentences.

Throughout this work, we assumed that the constructing a logical circuit from a logical formula

was easy. This is, in general, not the case. Ahmed et al. [2023a] offer an approach, by assuming

the sub-problems are independent, and iteratively relaxing the independence assumption according

to the sub-problems that most violate that assumption as measured using mutual information.
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CHAPTER 3

Guarantees Within and Without Neural Networks

It is very often desirable, if not crucial, to provide guarantees on a system’s behavior. Much of

the neuro-symbolic AI literature has been focused on biasing neural networks towards predictions

that satisfy the constraint, but fall short of providing any such guarantees. To that end, we propose

semantic probabilistic layers (SPLs): drop-in replacements for the traditional softmax layer that

guarantee the neural network’s predictions are consistent with a set of constraints, while being

amenable to end-to-end learning. SPLs combine exact probabilistic inference with logical reason-

ing in a modular way, learning arbitrarily-complex distributions over the variables and restricting

their support to the possible worlds of the constraint.

Very often the utility of constraints can extend beyond just the output layer of a neural network

to being part of the neural network architecture. Take for instance the task of learning to explain

(L2X), where we are interested in learning the k-subset of n words that best explain a classifier’s

predicted sentiment given a user review. This necessitates sampling from the distribution over

all subsets of size k, a task we show to be tractable for any n and k. Having evaluated the loss

on the sampled model, a more substantial challenge presents itself: how do we propagate the

error through discrete sampling, an inherently non-differentiable operation? Reparameterizing the

samples in terms of the marginals, we show that the gradient of the loss w.r.t. the samples can be

estimated as the gradient w.r.t. the marginals of the distribution over all subsets of size k. We show

that the distribution’s marginals can be computed tractably, and easily, using auto-differentiation.

This constitutes a new, general purpose gradient estimator, which we termed SIMPLE, that exhibits

lower bias and lower variance compared to state-of-the-art gradient estimators.
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3.1 Semantic Probabilistic Layers for Neuro-Symbolic Learning

Modularity is among the major factors that propelled the Cambrian explosion of deep learning

[Goodfellow et al., 2016]. By stacking multiple differentiable layers together, practitioners are

able to train deep classifiers in an end-to-end fashion with little effort. However, despite its flexi-

bility, this modular approach to learning does not guarantee that the predictions of these models

conform to our expectations of what makes sense. On the contrary, unconstrained deep classifiers

are notorious for leading to predictions that are inconsistent with the logical constraints governing

an underlying domain.

This is even more evident in, and crucial for, structured output prediction (SOP) tasks, where

classifiers have to predict hundreds of mutually constrained labels [Tsochantaridis et al., 2004;

Borchani et al., 2015]. Consider for example a classical SOP task such as multi-label classifica-

tion (MLC) [Tsoumakas and Katakis, 2007]. Learning a multi-label classifier that disregards the

correlations among labels, e.g., by considering them fully independent given the inputs, yields

sub-optimal results [Bielza et al., 2011]. In more challenging tasks such as hierarchical MLC

(HMLC) [Sorower, 2010] or pathfinding [Pogančić et al., 2019], leveraging the domain’s logical

constraints (encoding, e.g., the label hierarchy or acyclicity and connectedness of a path) at training

time can improve prediction accuracy [Levatić et al., 2015], but it cannot guarantee that the pre-

dictions are always consistent with the constraints at inference time [Giunchiglia and Lukasiewicz,

2020]. Figure 3.1 illustrates this problem in the context of pathfinding: constraint-unaware neu-

ral networks systematically fail to predict label configurations that form a valid path. In many

safety-critical scenarios such as protein function [Radivojac et al., 2013] and interaction predic-

tion [Sacca et al., 2014], and drug discovery [De Cao and Kipf, 2018; Di Liello et al., 2020],

predicting inconsistent solutions can not only be harmful but also highly expensive [Amodei et al.,

2016; Giunchiglia et al., 2022].

Unsurprisingly, due to their discrete nature, injecting logical constraints into deep neural net-

works while retaining modularity and differentiability is extremely challenging, as demonstrated
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GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)

Figure 3.1: Neural nets struggle with satisfying validity constraints in complex semantic SOP
tasks such as predicting the lowest-cost path from the top-left to the bottom-right corners of a
Warcraft map. Even state-of-the-art neuro-symbolic approaches like the Semantic Loss [Xu et al.,
2018a] fail to ensure consistency with hard rules (c). SPLs in contrast guarantees validity while
retaining modularity, expressiveness and efficiency. See Sec. 3.1.4 for complete experimental de-
tails and additional results.

in the neuro-symbolic learning literature [Sarker et al., 2021]. One such attempt has been to learn

neural networks that satisfy the logical constraints by explicitly minimizing a differentiable loss

term encoding the probability that the networks violates the constraint for a given prediction. And

while successful, such approaches do not guarantee consistency of the predictions at test time.

More recently, researchers have proposed predictive layers that do guarantee consistency, but these

are restricted to specific kinds of symbolic knowledge [Giunchiglia and Lukasiewicz, 2020; Sivara-

man et al., 2020] or become intractable for even moderately complex logical constraints [Hoernle

et al., 2022].

Motivated by these observations, we introduce a novel Semantic Probabilistic Layer (SPL)

for modeling intricate correlations, and logical constraints on the labels of the output space in a

modular and probabilistically sound manner. It does so by leveraging recent advancements in the

literature on probabilistic circuits [Vergari et al., 2020; Choi et al., 2020a]. The key features of SPL

are that, on the one hand, it can be used as a drop-in replacement for common predictive layers

of deep nets like sigmoid layers, and on the other, it guarantees the output’s consistency with any

prespecified logical constraints. Importantly, SPL also supports efficient inference and – perhaps

surprisingly – does not complicate training.
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3.1.1 Designing a probabilistic layer for neuro-symbolic SOP

Notation. In the following, we denote scalar constants x in lower case, random variables X in

upper case, vectors of constants x in bold and vectors of random variables X in capital boldface.

1{φ} denotes the indicator function that evaluates to 1 if the statement φ holds and to 0 otherwise.

We denote by x |= K that the value assignment x to variables X satisfies a logical formula K.

Neuro-symbolic SOP. We tackle SOP tasks in which a neural net classifier must learn to asso-

ciate instances x ∈ RD to L interdependent labels, identified by the vector y ∈ {0, 1}L. We

assume that we can abstract any neural classifier into two components: a feature extractor f that

maps inputs X to a M -dimensional embedding Z = f(X) and a predictive final layer that outputs

the label distribution p(Y | Z). For example, the simplest, and yet widely adopted [Mullen-

bach et al., 2018; Xu et al., 2018a; Giunchiglia and Lukasiewicz, 2020], predictive layer in neural

classifiers for SOP considers labels Yi to be conditionally independent from each other given Z,

i.e., p(Y | Z) =
∏L

i=1 p(Yi | Z). We refer to this as fully independent layer (FIL). In a FIL,

p(Yi = yi | z) is computed as σ(w⊤
i z) where wi ∈ RM is a vector of parameters and σ(x) is the

logistic sigmoid function 1/(1 + e−x).

We are interested in dependencies between labels that can occur both as correlations, as is the

case in MLC [Dembczyński et al., 2012], and as logical constraints encoded by logical formulas.

For example, in a HMLC task [Giunchiglia and Lukasiewicz, 2020] one logical constraint can

encode the fact that observing a label for the class cat and dog, implies observing the label for their

superclass animal

(Ycat = 1 =⇒ Yanimal = 1) ∧ (Ydog = 1 =⇒ Yanimal = 1). (3.1)

Specifically, we assume symbolic knowledge to be supplied in the form of constraints encoded

as a logical formula denoted as K and defined over the labels Y and optionally over a subset of

the discrete input variables in X, if any (e.g., in our experiments, the predicted simple path is
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Table 3.1: SPL is the only approach to satisfy all the desiderata for neuro-symbolic SOP. An
in-depth discussion of all competitors can be found in Sec. 3.1.3.

LOSSES LAYERS

DESIDERATUM DL2 SL NESYENT FIL EBM MULTIPLEXNET CCN SPL (ours)

(D1) Probabilistic 7 3 3 3 7 3 7 3

(D2) Expressive 7 7 7 7 3 7 7 3

(D3) Consistent 7 7 7 7 7 3 3 3

(D4) General 3 3 3 7 3 3 7 3

(D5) Modular 3 3 3 3 3 3 3 3

(D6) Efficient 3 3 3 3 7 7 3 3

constrained to lie within the subset of edges appearing in the input graph, see Sec. 3.1.4). On

the other hand, we expect a model to learn the label correlations from data. We call such task

neuro-symbolic SOP.

Desiderata for neuro-symbolic SOP. To tackle this setting, we seek an algorithmic strategy

for replacing the predictive layer in any neural network classifier with little effort, with the aim

of injecting complex symbolic knowledge and allowing for flexible probabilistic reasoning. We

formalize these observations into the following six desiderata for our predictive layer:

D1. Probabilistic: The layer should enjoy sound probabilistic semantics, and deliver normal-

ized probabilistic predictions to facilitate maximum-likelihood learning and sound decision

making by virtue of calibrated probabilistic predictions

D2. Expressive: It should be able to compactly encode intricate correlations between labels.

D3. Consistent: It should always output predictions that are consistent with the prespecified

symbolic knowledge, i.e., for all x and y, if (x,y) 6|= K then p(y | x) = 0.

D4. General: It should support rich logical constraints over the labels expressed in some formal

language, e.g., propositional logic.
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D5. Modular: It should be applicable to any off-the-shelf (and possibly pretrained) neural net-

work in a modular fashion, enabling end-to-end learning and rapid prototyping.

D6. Efficient: The time required by the predictor to compute a prediction should be linear in the

size of the predictor and of the hard constraint representation.

For example, FILs are clearly probabilistic (D1), modular (D5), and efficient (D6), but at the

cost of being incapable of modeling intricate correlations and logical constraints and thus gen-

erating inconsistent predictions (D2–D4) (see also Figure 3.1). Table 3.1 summarizes how the

other popular and effective approaches to neuro-symbolic SOP nowadays fall short of one of more

desiderata as well. We discuss this in detail in Sec. 3.1.3. To the best of our knowledge, our pro-

posed semantic probabilistic layers (SPLs) are the first algorithmic solution to satisfy all above

desiderata.

SPL. At a high level, SPL realizes the above desiderata in a single layer that combines exact

probabilistic inference with logical reasoning in a clean and modular way, learning complex distri-

butions and restricting their support to solutions of the constraint.

Definition 2 (Semantic probabilistic layer (SPL)). Given an input configuration x, a SPL decom-

poses the computation of the probability of a label configuration as:

p(y | f(x)) = qΘ(y | f(x)) · cK(x,y)/Z(x) where Z(x) =
∑

y
qΘ(y | x) · cK(x,y).

(3.2)

Here, qΘ(y | f(x)) is a module to perform probabilistic reasoning by encoding an expressive

distribution over the labels parameterized by Θ; cK(x,y) is a module to ensure consistency of

the predictions by encoding logical constraints K and being non-zero only when K is satisfied, i.e.,

cK(x,y) = 1{(x,y) |= K}; andZ(x) is a renormalization term, also called the partition function.

It is worth noting that this amounts to taking a product of experts [Hinton, 1999] which is, in

general, hard.
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Figure 3.2 illustrates the computational graph of our SPL at training time. In order to satisfy

all D1-D6, we will realize both qΘ and cK as circuits [Vergari et al., 2020; Choi et al., 2020a],

constrained computational graphs that enable tractable computations. Differently from FILs, qΘ in

SPLs can encode an expressive joint distributions over the labels and therefore attain full expres-

siveness by scaling the number of parameters Θ (D2). Consistency is guaranteed by the component

cK: by multiplying it to the joint probability of a label configuration the resulting product distri-

bution rΘ,K(y,x) = qΘ(y | f(x)) · cK(x,y) will have its support effectively cut by K, and thus

cannot allocate any probability mass to inconsistent predictions (D3). Additionally, cK will allow

to encode general propositional logical constraints in a compact computational graph (D4). Lastly,

the product rΘ,K(x,y) is fully differentiable and allows SPL to be an off-the-shelf replacement

for other predictive layers (see Figure 3.2) and enables end-to-end learning (D5). By renormal-

izing rΘ,K(x,y) and outputting normalized probabilities, SPL enables the exact computation of

gradients for Θ, which can therefore be trained by maximum likelihood (D1).

Thanks to recent advancements in the literature on circuits, we can compute the partition func-

tion Z(x) efficiently in time linear in the size of rΘ,K, thus preserving efficiency (D6) and not

compromising on the other desiderata. This will also yield correct (and consistent) predictions

at test time, when an SPL computes the MAP state y∗ = argmaxy rΘ,K(y,x)/
∑

y rΘ,K(y,x).

The next section clarifies how to implement the modules of SPL as circuits while satisfying these

desiderata.

3.1.2 Realizing SPLs with tractable circuit representations

The components of SPLs are circuits, a large class of computational graphs that can represent both

functions and distributions [Choi et al., 2020a; Darwiche and Marquis, 2002]. Circuits subsume

many tractable generative and discriminative probabilistic models—from Chow-Liu and latent tree

models [Chow and Liu, 1968; Choi et al., 2011], to hidden Markov models (HMMs) [Rabiner and

Juang, 1986], sum-product networks (SPNs) [Poon and Domingos, 2011], decision trees [Khosravi

et al., 2020; Correia et al., 2020a], and deep regressors [Khosravi et al., 2019b]—as well as many
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Figure 3.2: A high level view of SPLs. The predictive layer of a neural network for neuro-
symbolic SOP, e.g., a FIL (left), can be readily replaced by a SPL (middle). SPLs are implemented
(right) by multiplying together a probabilistic circuit qΘ(Y | f(X)) parameterized by (a function
g of) the network’s embeddings f(X), and a constraint circuit cK(X,Y) embodying the symbolic
knowledge. The result is normalized by efficiently marginalizing over the product circuit rΘ,K, so
as to guarantee fully probabilistic semantics and end-to-end differentiable learning by maximum
likelihood.

compact representations of logical formulas, such as (ordered) binary decision diagrams [Akers,

1978], sentential decision diagrams (SDDs) [Darwiche, 2011b] and others [Darwiche and Marquis,

2002].

The key idea behind SPLs is to leverage this single formalism to represent both an expres-

sive joint distribution for qΘ(y | f(x)) and a compact encoding of the logical constraints for

cK(x,y), while ensuring the exact and efficient evaluation of Equation 3.2. This can be achieved

by ensuring that these computational graphs abide certain structural properties: smoothness, de-

composability, determinism and compatibility [Darwiche and Marquis, 2002; Vergari et al., 2021].

Next, we introduce probabilistic circuits for modeling qΘ (Sec. 3.1.2.1) and constraint circuits

for cK (Sec. 3.1.2.2), while in Sec. 3.1.2.4 we propose a more efficient implementation of SPL

utilizing a single circuit.

3.1.2.1 Representing expressive distributions with probabilistic circuits

We start by introducing circuits for joint probability distributions, and then extend the discussion

to conditional distributions, which we use to implement qΘ(Y | f(X)) in SPLs.

Definition 3 (Circuits). A circuit h over variables Y is a computational graph encoding a pa-

rameterized function hΘ(Y) by combining three kinds of computational units: input functional
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Figure 3.3: Examples of circuits in SPL. Left: a neural conditional probabilistic circuit qΘ. Red
lines indicate how the output of g parameterizes the input distribution parameters λ and the sum
unit parameters ω of q, both indicated as red dots. Right: constraint circuit encoding the logical
constraint of Equation 3.1 where labels are Yi ∈ {Ycat, Ydog, Yanimal}. Note that q and c are smooth,
decomposable (Def. 5) and compatible (Def. 9) and c is deterministic (Def. 8). By parameterizing
c via g we can obtain a single-circuit SPL (Sec. 3.1.2.4). Both: circuits q and c are compatible, as
product units with the same scope decompose in the same way. E.g., consider the first two product
units of q and c, right to left and top to bottom. Both units decompose {Y3, Y2, Y1} into Y3 and
Y2, Y1.

units, sum units, and product units. An input functional n represents a base parametric function

hn(ϕ(n);λ) over some variables ϕ(n) ⊆ Y, called its scope, and it is parameterized by λ. Sum

and product units n elaborate the output of other units, denoted ch(n). Sum units are parameter-

ized by ω and compute the weighted sum of their inputs
∑

c∈ch(n) ωchc(ϕ(n)), while product units

compute
∏

c∈ch(n) hc(ϕ(n)). The parameters Θ of a circuit encompass the parameters of all input

functionals (λ) and the parameters of sum units (ω).

For any input y, the value of hΘ(y) can be evaluated by propagating the output of the input

units through the computational graph and reading out the value of the last unit. The support of h

is the set of all states y of Y for which the output is non-zero, i.e., supp(h) = {y |h(y) 6= 0}.

Definition 4 (Probabilistic circuits (PCs)). A circuit q is a PC if it encodes a (possibly unnormal-

ized) probability distribution, i.e., qΘ(y) is non-negative for all configurations y of Y.

From here on, we will assume PCs to have positive sum parameters ω and whose input units

model valid distributions, e.g., Bernoullis, as these conditions are sufficient for satisfying Def. 4.

Moreover, w.l.o.g. we will assume the sum and product units to be organized into alternating

layers, and that every product unit n receives only two inputs c1, c2, i.e., qn(X) = qc1(Y) · qc2(Y).

These conditions can easily be enforced in polynomial time [Vergari et al., 2015, 2019]. We are
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specifically interested in smooth and decomposable PCs, as they will be enabling efficient inference

in SPL (Sec. 3.1.2.3).

Definition 5 (Smoothness & Decomposability). A circuit is smooth if for every sum unit n, its

inputs depend on the same variables: ∀ c1, c2 ∈ ch(n), ϕ(c1) = ϕ(c2). It is decomposable if the

inputs of every product unit n depend on disjoint sets of variables: ch(n) = {c1, c2}, ϕ(c1) ∩

ϕ(c2) = ∅.

Smooth and decomposable PCs are both expressive and efficient: they can encode distribu-

tions with hundred millions of parameters and be effectively learned by gradient ascent [Peharz

et al., 2020b]. The structure of their computational graph can be either specified manually [Poon

and Domingos, 2011; Peharz et al., 2020b,a] or acquired automatically from data [Vergari et al.,

2015; Rahman et al., 2014; Dang et al., 2022b], e.g., by first learning a latent tree model and then

compiling the latter into a circuit [Liu and Van den Broeck, 2021]. These circuits are competitive

with intractable models such as variational autoencoders and normalizing flows scores on several

benchmarks [Liu et al., 2022a].

As proposed by Shao et al. [2022], any (smooth and decomposable) PC qΘ(Y) encoding a joint

distribution over the labels Y can be turned into a (smooth and decomposable) conditional circuit,

conditioned by input variables X, by letting its parameters be a function of X.

Definition 6 (Neural conditional circuits [Shao et al., 2020]). A conditional circuit q(Y;Θ =

g(X)) models the conditional distribution p(Y | X) via a differentiable function g that maps every

input configuration x to the set of parameters of Θ of p, also called the gating function.

An example of a smooth and decomposable conditional circuit is shown in Figure 3.3. This

design immediately allows us to implement qΘ(Y | f(X)) in SPL as a conditional PC whose

gating function maps the feature embedding space RK to the parameter space R|Θ|
+ , realizing

q(Y;Θ = g(f(X))). As such, the gating function g creates a clean interface between any pre-

trained feature extractor f and the PC q (Figure 3.3). While one can devise g in several ways, we

strive for simplicity in our experiments and adopt vanilla multi-layer perceptrons (MLPs) whose

62



final activations are either sigmoids, if they have to predict the parameters λ of the Bernoulli input

distributions of q, or softmax, if they output the sum unit parameters ω (Def. 3).

3.1.2.2 Encoding logical formulas with constraint circuits

The next step is to translate a logical constraint K into a smooth and decomposable circuit cK(x,y).

To this end, we employ a special type of PCs, defined as follows.

Definition 7 (Constraint circuits). A PC c over variables X ∪Y is a constraint circuit encoding

prior knowledge K if it computes 1{(x,y) |= K} for every configuration (x,y).

As a practical way to realize such a circuit, we will consider constraint circuits that have all sum

unit parameters equal to 1 and input functionals that are indicator functions over their scope, e.g.,

cn(z) = 1{z |= φ(n)}where Z is the scope of the input and φ(n) a constraint over it. Furthermore,

we require each sum unit in it to be deterministic.

Definition 8 (Determinism). A sum unit n is deterministic if its inputs have disjoint supports, i.e.,

∀ c1, c2 ∈ ch(n), c1 6= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Figure 3.3 shows an example of a deterministic constraint circuit. Thanks to determinism,

we can readily translate classical compact representations for logical formulas such as (ordered)

binary decision diagrams [Akers, 1978; Bryant and Meinel, 2002] and sentential decision diagrams

(SDDs) [Darwiche, 2011b] into constraint circuits as defined above. This becomes evident when

they are written in the language of negation normal form [Darwiche and Marquis, 2002] and their

and gates (resp. or gates) are replaced with product units (resp. sum units) [Choi et al., 2020a]. A

logic constraint can therefore be represented as a constraint circuit for SPLs, by utilizing any of

the many tools available for OBDDs [Toda and Soh, 2016] or SDDs [Choi and Darwiche, 2013;

Oztok and Darwiche, 2015]. Sec. B.1.2 illustrates in detail how to compile the example constraint

of Equation 3.1 into the constraint circuit of Figure 3.3 in this way.

The worst-case size of the constraint circuit depends on a) the algorithm employed for compi-

lation and, b) the local structure of the constraints, rather than the number of labels. For example,
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in our Warcraft experiment (see Sec. 3.1.4), we have a label configuration space over edges in a

12 × 12 grid, yielding 212
2
= 2144 ≈ 1043 states. However, only 1010 configurations satisfy the

constraint that these edge labels form a valid path in the grid. If our compilation algorithm were

to simply enumerate these configurations, putting them in a logical OR (as done in some neuro-

symbolic learners such as MultiplexNet [Hoernle et al., 2022]), the size of the constraint circuit,

denoted as |c|, would be 1010. However, by using recent advancements in compiling logical formu-

las into constraints circuits, we can can greatly reduce the circuit size. For example, the PySDD

compiler used generates circuits whose size is worst-case exponential in the treewidth of the CNF

representation of the logical formula, but typically much smaller. See Sec. 3.1.4 and Sec. B.1.5 for

details.

3.1.2.3 Efficient inference in SPLs

As discussed above, PCs can be expressive (D2) and are modular (D5), while constraint circuits

ensure consistency (D3) for general constraints (D4). What remains to be shown to complete

SPLs is that the product supports efficient normalization (D1) and inference (D6), specifically that

it allows for the efficient evaluation of the normalization constant of rΘ,K, and its MAP state. To

this end, we need to introduce the notion of compatibility between the two circuits [Vergari et al.,

2021].

Definition 9 (Compatible circuits in SPLs). A smooth and decomposable conditional PC q(Y;Θ)

is compatible over variables Y with a smooth and decomposable constraint circuit cK(Y,X) if

any pair of product units n ∈ q and m ∈ cK with the same scope over Y can be rearranged

to be mutually compatible and decompose in the same way: (ϕ(n) = ϕ(m)) =⇒ (ϕ(ni) =

ϕ(mi), ni and mi are compatible) for some rearrangement of the inputs of n (resp. m) into n1, n2

(resp. m1,m2). The two circuits q and c shown in Figure 3.3 are compatible.

Theorem 1 (Efficient inference in SPLs). If q(Y;Θ) and cK(Y,X) are two smooth, decomposable

and compatible circuits, then computing Equation 3.2 can be done inO(|q| |c|) time. Furthermore,
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if they are also deterministic, then computing the MAP state can be done in O(|q| |c|) time.

The proof can be found in Sec. B.1.1. How do we come up with compatible circuits? One op-

tion is to have a PC q that is compatible with every possible smooth and decomposable circuit c. To

do so, we can represent q as a mixtures of M fully-independent models; i.e.,
∑M

i=1 ωi

∏
j q(Yj;Θi).

This additional sum unit can be enough to be more expressive than a FIL and already delivers more

accurate predictions than any competitor, as our experiments in pathfinding show (Sec. 3.1.4). An

example of such a circuit is shown in Figure 3.3. Another sufficient condition for compatibility is

that both q and c share the exact same hierarchical scope partitioning [Vergari et al., 2021], some-

times called a vtree or variable ordering [Choi et al., 2020a; Pipatsrisawat and Darwiche, 2008].

This can be done easily if one first compiles logical constraints into OBDDs or SDDs and then

uses a mechanized algorithm to build q as in [Peharz et al., 2020b] to create a compatible structure.

Additionally, to ensure q is a deterministic PC, we could exploit the mechanized construction

proposed in Shih and Ermon [2020]. Computing the exact MAP state, however, is of less concern

as approximate inference algorithms, e.g., beam search decoding [Vijayakumar et al., 2016] or

iterative pruning [Choi et al., 2022], are nowadays a commodity in deep learning frameworks. For

non-deterministic PCs, we compute the MAP state with a faster approximation by replacing non-

deterministic sum units with max units [Peharz et al., 2016]. This runs in time linear in the size of

r, and yet delivers state-of-the-art accuracies in our experiments Sec. 3.1.4.

3.1.2.4 A single-circuit SPL

The two-circuit design we proposed for SPLs provides a clear and theoretically-backed interface

between neural networks and probabilistic and symbolic reasoning. This setup, however, can some-

times be wasteful, as it requires to compute the product of two circuits and renormalize. We cir-

cumvent this issue by designing a single-circuit implementation of SPL.

Definition 10 (Single-circuit SPL). Given an input configuration x, a single-circuit SPL computes

p(y | x) = cK(Y,X;Ω = g(f(X))) where cK is a neural conditional constraint circuit whose
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Table 3.2: SPLs outperform all loss-based competitors in the neuro-symbolic benchmarks of [Xu
et al., 2018a].

SIMPLE PATH PREFERENCE LEARNING

ARCHITECTURE EXACT HAMMING CONSISTENT EXACT HAMMING CONSISTENT

MLP+FIL 5.6 85.9 7.0 1.0 75.8 2.7
MLP+LSL 28.5 83.1 75.2 15.0 72.4 69.8
MLP+NESYENT 30.1 83.0 91.6 18.2 71.5 96.0
MLP+SPL (ours) 37.6 88.5 100.0 20.8 72.4 100.0

sum-unit parameters Ω are non-unitary values parameterized via a gating function g.

In a nutshell, we can directly realize SPL by compiling a complex logical constraints (D4) into

a deterministic constraint circuit cK, as before, and then parameterizing it with a gating function of

the network embeddings f(X), i.e., allowing its sum units to be non-unitary and input dependent.

Since the support of cK is already restricted to exactly match the constraint K (D3), parameterizing

Ω induces an expressive probability distribution over the label configurations that are consistent

with K (D2). We can further guarantee that the circuit’s output are normalized probabilities (D1,

D6) by enforcing the parameters ω of each sum unit to form a convex combination [Peharz et al.,

2015]. This can be easily done by utilizing a softmax activation function for g.

One of the advantages of the two-circuit implementation of SPLs is that the size of the circuit

qΘ can be easily increased to improve the capacity of the model (Sec. 3.1.2.1). The single-circuit

implementation is not as flexible, as normally the number of parameters is determined by the

complexity of the constraint circuit, which depends entirely on the compilation step. In this case,

one option is to overparameterize the neural conditional circuit by introducing additional sum units,

hence allowing it to capture more modes in the distribution. We detail this process is Sec. B.1.3.

A side effect of overparameterization is that it relaxes determinism, meaning that MAP inference

needs to be approximated, as described in Sec. 3.1.2.3. Additionally, training a gating function

to map relatively small embeddings to large parameter vectors in overparameterized circuits, can

slow down training. In such cases, a two-circuit implementation of SPL is to be preferred.

66



3.1.3 Related works

In this section, we position SPLs against state-of-the-art approaches for enforcing constraints on

neural network predictions. In-depth surveys on this topic can be found in [Dash et al., 2022]

and [Giunchiglia et al., 2022].

Energy-based models. Deep energy-based models (EBMs) replace FILs with an unnormalized

factor graph [Koller and Friedman, 2009] that captures higher-order label dependencies [LeCun

et al., 2006] (D2) but at the cost of foregoing probabilistic semantics (D1) and efficiency (D6).

EBMs are typically unconcerned with hard constraints (D3). Neural approaches for segmentation

[Liu et al., 2015a] and parsing [Durrett and Klein, 2015; Zhang et al., 2020a,b] remedy to this by

replacing the factor graph with a full-fledged intractable (discriminative) graphical model [Koller

and Friedman, 2009]. To gain efficiency, one can restrict EBMs to simpler graphical models (e.g.,

chains, trees), compromising expressiveness (D2) and the ability to model non-trivial logical con-

straints (D3, D4).

Loss-based methods. A prominent strategy consists of penalizing the network for producing in-

consistent predictions using an auxiliary loss [Dash et al., 2022; Giunchiglia et al., 2022]. While

popular, loss-based methods, however cannot guarantee that the predictions will be consistent

at test time. Common losses include translating logical constraints into a differentiable fuzzy

logic [Diligenti et al., 2012, 2017a], as exemplified by DL2 [Fischer et al., 2019]. Although effi-

cient (D6), this solution is not probabilistically sound (D1) and crucially is not syntax-invariant:

different encodings of the same formula (e.g., conjunctive vs. disjunctive normal form) yield dif-

ferent losses [Giannini et al., 2018; Di Liello et al., 2020]. Closer to our SPL, the Semantic Loss

(SL) [Xu et al., 2018a] avoids this issue by penalizing the the probability θi associated to the i-th

label by the neural network via the loss term

LSL ∝ −
∑
y|=K

∏
y|=Yi

θi
∏
y ̸|=Yi

(1− θi) = −
∑
y|=K

∏
i

p(Yi | x) = −
∑
y

∏
i

q(Yi; θi) · cK(x,y).

When K is compiled into a constraint circuit cK one retrieves −Z(x) for a two-circuit version of
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SPL that is as expressive as FIL as it assumes independent labels via a conditional PC
∏

i q(Yi; θi).

The neuro-symbolic entropy (NESYENT) [Ahmed et al., 2022c] extends LSLby an entropy term

that improves (but still does not guarantee) consistency. It still makes the same independence

assumptions over labels (D2).

Consistency layers. Approaches ensuring consistency by embedding the constraints into the pre-

dictive layer as in SPLs include MultiplexNet [Hoernle et al., 2022] and HMCCN [Giunchiglia

and Lukasiewicz, 2020]. MultiplexNet is able to encode only constraints in disjunctive normal

form, which is problematic for generality (D4) and efficiency (D6) as neuro-symbolic SOP tasks

involve an intractably large number of clauses – e.g. our pathfinding experiments involves billions

of clauses. HMCCN encodes label dependencies as fuzzy relaxation and is the current state-of-

the-art model for HMLC [Giunchiglia and Lukasiewicz, 2020]. HMCCN and even its recent ex-

tension [Giunchiglia and Lukasiewicz, 2021] are restricted to only certain constraints that can be

exactly encoded with fuzzy logic easily. SPLs instead can express constraints encoded as arbitrary

propositional logical formulas (D4).

Other approaches. Other common approaches to neuro-symbolic SOP require to invoke a solver

to either obtain the MAP state or to compute (often only approximately) the gradient of the

loss [Deshwal et al., 2019; Pogančić et al., 2019; Niepert et al., 2021b]. SPLs have no such re-

quirement. Some neuro-symbolic approaches [Sarker et al., 2021] constrain the outputs of neural

networks within complex logical reasoning pipelines to solve tasks harder than neuro-symbolic

SOP. For instance, DeepProblog [Manhaeve et al., 2018] uses Prolog’s backward chaining algo-

rithm for first order logical rules whose probabilistic weights are predicted by the network. In

modern implementations of Problog, grounding a first order program and then compiling it into

constraint circuits [Dries et al., 2015] produces a conditional circuit akin to those we use in SPLs,

but in which (i) only input distributions are parameterized and (ii) increasing the parameter count is

not considered a straightforward operation. Scallop [Huang et al., 2021] provides a more scalable

approach to deepproblog by considering only the top-k proofs. We leave to future work how we

could quickly compile only a specific query as DeepProblog/Scallop do, to deal with first-order
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representations efficiently.

3.1.4 Experiments

We evaluate SPLs on standard neuro-symbolic SOP benchmarks such as simple path prediction,

preference learning [Xu et al., 2018a], shortest path finding in Warcraft [Pogančić et al., 2019]

and HMLC [Giunchiglia and Lukasiewicz, 2020]. We compare SPLs against several state-of-

the-art loss- and layer-based approaches (Sec. 3.1.3) by applying them to the same base neural

network architecture as feature extractor f . As we are interested in measuring how close to the

ground truth and how safe the predictions of all models are, we report the percentage of EXACT

matches of the predicted labels, also called subset accuracy [Tsoumakas and Katakis, 2007], and

the percentage of CONSISTENT predictions, also called “Constraint” [Xu et al., 2018a]. Note that,

like other consistency layers, SPLs are guaranteed to always output 100% consistent predictions.

Additionally, we report the HAMMING score [Tsoumakas and Katakis, 2007], mainly to maintain

compatibility with previous experimental settings [Xu et al., 2018a; Ahmed et al., 2022c]. This

metric does not consider consistency of predictions and naturally favors competitors that assume

label independence and thus can minimize the per-label cross-entropy [Dembczyński et al., 2012]

(Table 3.3). Sec. B.1.4 collects all experimental details such as architectures and hyperparameters

used for each experiment.

In Sec. B.1.5 we provide the average timings for compiling logical formulas into circuitscarried

out once, and reused in all subsequent experiments, for parameterizing the conditional circuits,

computing the MAP-state of SPL and the loss function at training time (including the cost of

computing the product circuit r and its normalization). All these timings, compilation excluded,

are reported per batch. We compare to the timings of baselines such as semantic loss and neuro-

symbolic entropy, where applicable, to which SPL is highly competitive.

Simple path prediction & preference learning. We start by comparing SPLs against loss-based

approaches, reproducing the neuro-symbolic benchmarks of Xu et al. [2018a] for simple path
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Table 3.3: SPLs outperform competitors in pathfinding in Warcraft. Predicted paths that do not ex-
actly match the ground truth are still valid paths and yield very close costs to the ground truth.
Competitors’ predictions can have higher Hamming scores but be invalid. More examples in
Sec. B.1.4.3.

ARCHITECTURE EXACT HAMMING CONSISTENT

RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+LSL 59.4 97.7 61.2
RESNET-18+SPL (ours) 78.2 96.3 100.0

GROUND TRUTH FIL LSL SPL

prediction and preference learning. In the first experiment, given a source and destination node

in an unweighted grid G = (V,E), the neural net needs to find the shortest unweighted path

connecting them. We consider a 4× 4 grid. The input (x,y) is a binary vector of length |V |+ |E|,

with the first |V | variables indicating the source and destination nodes, and the subsequent |E|

variables indicating a subgraph G′ ⊆ G. Each label is a binary vector of length |E| encoding the

unique shortest path in G′. For each example, we obtain G′ by dropping one third of the edges in

the graph G uniformly at random, filter out the connected components with fewer than 5 nodes, to

reduce degenerate cases, and then sample a source and destination node uniformly at random from

G′. The dataset consists of 1600 such examples, with a 60/20/20 train/validation/test split.

In the preference learning task, given a user’s ranking over a subset of items, the network has

to predict the user’s ranking over the remaining items. We encode an ordering over n items as a

binary matrix Yij , where for each i, j ∈ 1, . . . , n, Yij indicates whether item i is the jth element in

the ordering. The input x consist of the user’s preference over 6 sushi types, and the model has to

predict the users preferences (a strict total order) over the remaining 4. We use preference ranking

data over 10 types of sushi for 5, 000 individuals, taken from [Mattei and Walsh, 2013b], and a

60/20/20 split.

We employ a 5-layer and 3-layer MLP as a baseline for the simple path prediction, and prefer-

ence learning, respectively, equipped with FIL layer and additionally with the Semantic Loss [Xu

et al., 2018a] (MLP+LSL) or its entropic extension [Ahmed et al., 2022c] (MLP+NESYENT). We

compile the logical constraints into an SDD [Darwiche, 2011b] and then turn it into a the same
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constraint circuit cK that is used for LSL, NESYENT (Sec. 3.1.3) and our 1-circuit implementation

of SPLs. Table 3.2 clearly shows that the increased expressiveness of SPL, coming from overpa-

rameterizing cK, allows to outperform all competitors while guaranteeing consistent predictions,

as expected.

Warcraft Shortest Path. Next, we evaluate SPL on the more challenging task of predicting the

minimum cost path in a weighted 12× 12 grid imposed over terrain maps of Warcraft II [Pogančić

et al., 2019]. Each vertex is assigned a cost corresponding to the type of the underlying terrain (e.g.,

earth has lower cost than water). The minimum cost path between the top left and the bottom right

vertices of the grid is encoded as an indicator matrix, and serves as a label. As in [Pogančić et al.,

2019] we use a ResNet18 [He et al., 2016b] with FIL optionally with LSL as a baseline. Given

the largest size of the compiled constraint circuit cK in this case 1010, we use a two-circuit imple-

mentation of SPL. Results in Figure 3.1 and Table 3.3 are striking: not only SPL outperforms

competitors by a large margin – approx. +23% over FIL and +19% over the SL – but also consis-

tently delivers meaningful paths that are very close to the ground truth in terms of cost, even when

they encode very different routes. See Sec. B.1.4.3 for a gallery of these examples. Concerning

times, SPLs are able to compute the likelihood in a mere 14 seconds per batch even on a 1010 valid

configuration space (Sec. B.1.5).

Hierarchical Multi-Label Classification. Lastly, we follow the experimental setup of Giunchiglia

and Lukasiewicz [2020] and evaluate SPL on 12 real-world HMLC tasks spanning four different

domains: 8 functional genomics, 2 medical images, 1 microalgea classification, and 1 text cat-

egorization. Figure 3.3 shows an example of a hierarchy of classes. These tasks are especially

challenging due to the limited number of training samples, the large number of output classes,

ranging from 56 to 499, as well as the sparsity of the output space. The larger datasets yield a label

space of 2499 configurations, but we can compile them in seconds into compact constraints circuits

of size ≈ 108KB (Sec. B.1.5).

For numeric features we replaced missing values by their mean, and for categorical features by
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Table 3.4: Comparison between SPL and HMCNN [Giunchiglia and Lukasiewicz, 2020] on twelve
HMLC datasets averaged over 10 runs. Best results for each dataset are in bold. Results which are
not significantly worse than the competition, as determined using an unpaired Wilcoxon test, are
marked in boldface. Consistency is always 100% for both approaches.

Dataset Exact Match Hamming Score

HMCNN MLP+SPL HMCNN MLP+SPL

CellCycle 3.05± 0.11 3.79± 0.18 98.26± 0.00 97.84± 0.06

Derisi 1.39± 0.47 2.28± 0.23 98.32± 0.32 97.70± 0.07

Eisen 5.40± 0.15 6.18± 0.33 98.09± 0.01 97.30± 0.04

Expr 4.20± 0.21 5.54± 0.36 98.29± 0.01 97.87± 0.02

Gasch1 3.48± 0.96 4.65± 0.30 98.37± 0.31 97.59± 0.05

Gasch2 3.11± 0.08 3.95± 0.28 98.27± 0.00 97.94± 0.07

Seq 5.24± 0.27 7.98± 0.28 98.31± 0.01 97.66± 0.03

Spo 1.97± 0.06 1.92± 0.11 98.23± 0.00 98.17± 0.03

Diatoms 48.21± 0.57 58.71± 0.68 99.75± 0.00 99.64± 0.01

Enron 5.97± 0.56 8.18± 0.68 94.10± 0.04 93.19± 0.13

Imclef07a 79.75± 0.38 86.08± 0.45 99.40± 0.01 99.35± 0.03

Imclef07d 76.47± 0.35 81.06± 0.68 98.06± 0.02 98.07± 0.08

a vector of zeros, and standardized all features. We used the validation splits to determine the num-

ber of layers in the gating function as well as the overparameterization, keeping all other hyperpa-

rameters fixed. The final models were obtained by training using a batch size of 128 and early stop-

ping on the validation set. We compare our single-circuit SPL against HMCNN which was shown

to outperform several other state-of-the-art HMLC approaches in Giunchiglia and Lukasiewicz

[2020]. We study the effect of increasing the expressivenss of SPL via overparameterization in

Sec. B.1.4.4. The results in Table 3.4 highlight that SPL significantly outperforms HMCNN in

terms of exact match on 11 data sets performing comparably on 1,

La guerra piu totale.
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3.2 SIMPLE: A Gradient Estimator for k-Subset Sampling

k-subset sampling, sampling a subset of size k of n variables, is omnipresent in machine learn-

ing. It lies at the core of many fundamental problems that rely upon learning sparse features

representations of input data, including stochastic high-dimensional data visualization [van der

Maaten, 2009], parametric k-nearest neighbors [Grover et al., 2018], learning to explain [Chen

et al., 2018], discrete variational auto-encoders [Rolfe, 2017], and sparse regression, to name a

few. All such tasks involve optimizing an expectation of an objective function with respect to a

latent discrete distribution parameterized by a neural network, which are often assumed intractable.

Score-function estimators offer a cloyingly simple solution: rewrite the gradient of the expectation

as an expectation of the gradient, which can subsequently be estimated using a finite number of

samples offering an unbiased estimate of the gradient. Simple as it is, score-function estimators

suffer from very high variance which can interfere with training. This provided the impetus for

other, low-variance, gradient estimators, chief among them are those based on the reparameteriza-

tion trick, which allows for biased, but low-variance gradient estimates. The reparameterization

trick, however, does not allow for a direct application to discrete distributions thereby prompting

continuous relaxations, e.g., Gumbel-softmax [Jang et al., 2017; Maddison et al., 2017], that allow

for reparameterized gradients w.r.t the parameters of a categorical distribution. Reparameterizable

subset sampling [Xie and Ermon, 2019] generalizes the Gumbel-softmax trick to k-subsets which

while rendering k-subset sampling amenable to backpropagation at the cost of introducing bias in

the learning by using relaxed samples.

In this work, we set out with the goal of avoiding all such relaxations. Instead, we fall back to

discrete sampling on the forward pass. On the backward pass, we reparameterize the gradient of

the loss function with respect to the samples as a function of the exact marginals of the k-subset dis-

tribution. Computing the exact conditional marginals is, in general, intractable [Roth, 1996]. We

give an efficient algorithm for computing the k-subset probability, and show that the conditional

marginals correspond to partial derivatives, and are therefore tractable for the k-subset distribution.
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Figure 3.4: A comparison of the bias and variance of the gradient estimators (left) and the average
and standard deviation of the cosine distance of a single-sample gradient estimate to the exact
gradient. We used the cosine distance, defined as (1− cosine similarity), in place of the euclidean
distance as we only care about the direction of the gradient, not magnitude. The bias, variance and
error were estimated using a sample of size 10,000. The details of this experiment are provided in
Sec. 3.2.4.1.

We show that our proposed gradient estimator for the k-subset distribution, coined SIMPLE, is rem-

iniscent of the straight-through (ST) Gumbel estimator when k = 1, with the gradients taken with

respect to the unperturbed marginals. We empirically demonstrate that SIMPLE exhibits lower bias

and variance compared to other known gradient estimators, including the ST Gumbel estimator in

the case k = 1.

We include an experiment on the task of learning to explain (L2X) using the BEERADVOCATE

dataset [McAuley et al., 2012], where the goal is to select the subset of words that best explains the

model’s classification of a user’s review. We also include an experiment on the task of stochastic

sparse linear regression, where the goal is to learn the best sparse model, and show that we are able

to recover the KuramotoSivashinsky equation. Finally, we develop an efficient computation for the

exact variational evidence lower bound (ELBO) for the k-subset distribution, which when used in

conjunction with SIMPLE leads to state-of-the-art discrete sparse VAE learning.

3.2.1 Problem Statement and Motivation

We consider models described by the equations

θ = hv(x), z ∼ pθ(z |
∑

i zi = k), ŷ = fu(z,x), (3.3)
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Figure 3.5: The problem setting considered in our paper. On the forward pass, a neural network hv

outputs θ parameterizing a discrete distribution over subsets of size k of n items, i.e., the k-subset
distribution. We sample exactly, and efficiently, from this distribution, and feed the samples to
a downstream neural network. On the backward pass, we approximate the true gradient by the
product of the derivative of marginals and the gradient of the sample-wise loss.

where x ∈ X and ŷ ∈ Y denote feature inputs and target outputs, respectively, hv : X → Θ and

fu : Z×X→ Y are smooth, parameterized maps and θ are logits inducing a distribution over the

latent binary vector z. The induced distribution pθ(z) is defined as

pθ(z) =
n∏

i=1

pθi(zi), with pθi(zi = 1) = sigmoid(θi) and pθi(zi = 0) = 1− sigmoid(θi). (3.4)

The goal of our stochastic latent layer is not to simply sample from pθ(z), which would yield

samples with a Hamming weight between 0 and n (i.e., with an arbitrary number of ones). Instead,

we are interested in sampling from the distribution restricted to samples with a Hamming weight

of k, for any given k. That is, we are interested in sampling from the conditional distribution

pθ(z |
∑

i zi = k).

Conditioning the distribution pθ(z) on this k-subset constraint introduces intricate dependen-

cies between each of the zi’s. The probability of sampling any given k-subset vector z, therefore,

becomes

pθ(z |
∑

i zi = k) = pθ(z)/pθ(
∑

i zi = k) · J∑i zi = kK
where J·K denotes the indicator function. In other words, the probability of sampling each k-subset

is re-normalized by pθ (
∑

i zi = k) – the probability of sampling exactly k items from the un-

constrained distribution induced by encoder hv. The quantity pθ(
∑

i zi = k) =
∑

z pθ (z) ·J∑i zi = kK appears to be intractable. We show that not to be the case, providing a tractable
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TASK MAP hv MAP fu LOSS ℓ

Discrete VAE (Sec. 3.2.4.2) Encoder Decoder ELBO
Learn To Explain (Sec. 3.2.4.3) Embedding Regression RMSE
Sparse Regression (Sec. 3.2.4.4) Identity Linear Regression RMSE

Table 3.5: Architectures of the three experiment settings.

algorithm for computing it.

Given a set of samples D, we are concerned with learning the parameters θ = (v,u) of the

architecture in (3.3) through minimizing the training error L, which is the expected loss:

L(x,y;θ) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)] with θ = hv(x), (3.5)

where ℓ : Y×Y → R+ is a point-wise loss function. This formulation, illustrated in Figure 3.5, is

general and subsumes many settings. Different choices of mappings hv and fu, and sample-wise

loss ℓ define various tasks. Table 3.5 presents some example settings used in our experimental

evaluation. Learning then requires computing the gradient of L w.r.t. θ = (v,u). The gradient of

L w.r.t. u is

∇uL(x,y;θ) = Ez∼pθ(z|
∑

i zi=k)[∂ufu(z,x)
⊤∇ŷℓ(ŷ,y)], (3.6)

where ŷ = fu(z,x) is the decoding of a latent sample z. Furthermore, the gradient of L w.r.t. v is

∇vL(x,y;θ) = ∂vhv(x)
⊤∇θL(x,y;θ), (3.7)

where ∇θL(x,y;θ) := ∇θEz∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x), ŷ)], the loss’ gradient w.r.t. the encoder.

One challenge lies in computing the expectation in (3.5) and (3.6), which has no known closed-

form solution. This necessitates a Monte-Carlo estimate through sampling from pθ(z |
∑

i zi = k).

A second, and perhaps more substantial hurdle lies in computing ∇θL(x,y;θ) in (3.7) due to
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the non-differentiable nature of discrete sampling. One could rewrite∇θL(x,y;θ) as

∇θL(x,y;θ) = Ez∼pθ(z|
∑

i zi=k)[ℓ(fu(z,x),y)∇θ log pθ (z |
∑

i zi = k)]

which is known as the REINFORCE estimator [Williams, 1992], or the score function estimator

(SFE). It is typically avoided due to its notoriously high variance, despite its apparent simplicity.

Instead, typical approaches [Xie and Ermon, 2019; Plötz and Roth, 2018] reparameterize the sam-

ples as a deterministic transformation of the parameters, and some independent standard Gumbel

noise, and relaxing the deterministic transformation, the top-k function in this case, to allow for

backpropagation.

3.2.2 SIMPLE: Subset Implicit Likelihood Estimation

Our goal is to build a gradient estimator for ∇θL(x,y;θ). We start by envisioning a hypothetical

sampling-free architecture, where the downstream neural network fu is a function of the marginals,

µ := µ(θ) := {pθ(zj |
∑

i zi = k)}nj=1, instead of a discrete sample z, resulting in a loss Lm s.t.

∇θLm(x,y;θ) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y). (3.8)

When the marginals µ(θ) can be efficiently computed and differentiated, such a hypothetical

pipeline can be trained end-to-end. Domke [2010] observed that, for an arbitrary loss function

ℓm defined on the marginals, the Jacobian of the marginals w.r.t. the logits is symmetric, i.e.

∇θLm(x,y;θ) = ∂θµ(θ)
⊤∇µℓm(fu(µ,x),y) = ∂θµ(θ)∇µℓm(fu(µ,x),y). (3.9)

Consequently, computing the gradient of the loss w.r.t. the logits, ∇θLm(x,y;θ), reduces to com-

puting the directional derivative, or the Jacobian-vector product, of the marginals w.r.t. the logits

in the direction of the gradient of the loss. This offers an alluring opportunity: the conditional

marginals characterize the probability of each zi in the sample, and could be thought of as a differ-
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entiable proxy for the samples. Specifically, by reparameterizing z as a function of the conditional

marginal µ under approximation ∂µz ≈ I as proposed by Niepert et al. [2021b], and using the

straight-through estimator for the gradient of the sample w.r.t. the marginals on the backward pass,

we approximate our true ∇θL(x,y;θ) as

∇θL(x,y;ω) ≈ ∂θµ(θ)∇zL(x,y;ω), (3.10)

where the directional derivative of the marginals can be taken along any downstream gradient,

rendering the whole pipeline end-to-end learnable, even in the presence of non-differentiable sam-

pling.

Now, estimating the gradient of the loss w.r.t. the parameters can be thought of as decomposing

into two sub-problems: (P1) Computing the derivatives of conditional marginals ∂θµ(θ), which

requires the computation of the conditional marginals, and (P2) Computing the gradient of the loss

w.r.t. the samples ∇zL(x,y;ω) using sample-wise loss, which requires drawing exact samples.

These two problems are complicated by conditioning on the k-subset constraint, which introduces

intricate dependencies to the distribution, and is infeasible to solve naively, e.g. by enumeration.

We will show simple, efficient, and exact solutions to each problem, at the heart of which is the

insight that we need not care about the variables’ order, only their sum, introducing symmetries

that simplify the problem.

3.2.2.1 Derivatives of Conditional Marginals

In many probabilistic models, marginal inference is #P-hard [Roth, 1996; Zeng et al., 2020b]. How-

ever, we observe that it is not the case for the k-subset distribution. We notice that the conditional

marginals correspond to the partial derivatives of the log-probability of the k-subset constraint. To

see this, note that the derivative of a multi-linear function with respect to a single variable retains

all the terms referencing that variable, and drops all other terms; this corresponds exactly to the un-

normalized conditional marginals. By taking the derivative of the log-probability, this introduces
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Algorithm 5 PrExactlyk(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: pθ(
∑

i zi = k)

// a[i, j] = pθ(
∑i

m=1 zm = j) for all i, j
initialize a to be 0 everywhere
a[0, 0] = 1 // pθ(

∑0
m=1 zm = 0) = 1

for i = 1 to n do
for j = 0 to k do

// cf. constructive proof of Prop. 3.1
a[i, j] = a[i− 1, j] · pθi(zi = 0)

+ a[i− 1, j − 1] · pθi(zi = 1)

return a[n, k]

Algorithm 6 Sample(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: z = (z1, . . . , zn) ∼ pθ(z |
∑

i zi = k)
sample = [ ], j = k
for i = n to 1 do

// cf. proof of Prop. 3.2
p = a[i− 1, j − 1]
zi ∼ Bernoulli(p · pθi(zi = 1)/a[i, j])

// Pick next state based on value of sample
if zi = 1 then j = j − 1
sample.append(zi)

return sample

the k-subset probability in the denominator, leading to the conditional marginals. Intuitively, the

rate of change of the k-subset probability w.r.t. a variable only depends on that variable through its

length-k subsets.

Theorem 2. Let pθ(
∑

j zj = k) be the probability of exactly-k of the unconstrained distribution

parameterized by logits θ. Let αi := log pθ(zi) denote the log marginals. For every variable Zi,

its conditional marginal is

pθ

(
zi |
∑

j zj = k
)
=

∂

∂αi

log pθ(
∑

j zj = k). (3.11)

We refer the reader to the appendix for a detailed proof of the above theorem. To establish the

tractability of the above computation of the conditional marginals, we need to show that the prob-

ability of the exactly-k constraint pθ(
∑

i zi = k) can be obtained tractably, which we demonstrate

next.

Proposition 3.1. The probability pθ (
∑

i zi = k) of sampling exactly k items from the uncon-

strained distribution pθ(z) over n items as in Equation 3.4 can be computed exactly in timeO(nk).

Proof. Our proof is constructive. As a base case, consider the probability of sampling k = −1

out of n = 0 items. We can see that the probability of such an event is 0. As a second base case,
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consider the probability of sampling k = 0 out of n = 0 items. We can see that the probably of such

an event is 1. Now assume that we are given the probability pθ
(∑n−1

i zi = k′), for k′ = 0, . . . , k,

and we are interested in computing pθ (
∑n

i zi = k). By the partition theorem, we can see that

pθ (
∑n

i zi = k) = pθ
(∑n−1

i zi = k
)
· pθn(zn = 0) + pθ

(∑n−1
i zi = k − 1

)
· pθn(zn = 1)

as events
∑n−1

i zi = k and
∑n−1

i zi = k− 1 are disjoint and, for any k, partition the sample space.

Intuitively, for any k and n, we can sample k out of n items by choosing k of n− 1 items, and not

the n-th item, or choosing k− 1 of n− 1 items, and the n-th item. The above process gives rise to

Algorithm 5, which returns pθ (
∑

i zi = k) in time O(nk).

By the construction described above, we obtain a closed-form pθ(
∑n

i zi = k), which allows us

to compute conditional marginals pθ(zi |
∑

j zj = k) by Theorem 2 via auto-differentiation. This

further allows the computation of the derivatives of conditional marginals ∂θµ(θ)i = ∂θ pθ(zi |∑
j zj = k) to be amenable to auto-differentiation, solving problem (P1) exactly and efficiently.

3.2.2.2 Gradients of Loss w.r.t. Samples

As alluded to in Sec. 3.2.2, we approximate ∇θL(x,y;ω) by the directional derivative of the

marginals along the gradient of the loss w.r.t. discrete samples z,∇zL(x,y;ω), where z is drawn

from the k-subset distribution pθ(z |
∑

i zi = k). What remains is to estimate the value of the

loss, necessitating faithful sampling from the k-subset distribution, which might initially appear

daunting.

Exact k-subset Sampling Next we show how to sample exactly from the k-subset distribution

pθ(z |
∑

i zi = k). We start by sampling the variables in reverse order, that is, we sample zn

through z1. The main intuition being that, having sampled (zn, zn−1, · · · , zi+1) with a Hamming

weight of k− j, we sample Zi with a probability of choosing k− j of n− 1 variables and the n-th

variable given that we choose k − j + 1 of n variables. We formalize our intuition below.
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Proposition 3.2. Let Sample be defined as in Algorithm 6. Given n random variables Z1, · · · , Zn,

a subset size k, and a k-subset distribution pθ(z |
∑

i zi = k) parameterized by log probabilities

θ, Algorithm 6 draws exact samples from pθ(z |
∑

i zi = k) in time O(n).

Proof. Assume that variables Zn, · · · , Zi+1 are sampled and have their values to be zn, · · · , zi+1

with
∑n

m=i+1 zm = k− j. By Algorithm 6 we have that the probability with which to sample Zi is

pSample(zi = 1 | zn, · · · , zi+1) =
pθ(
∑n

m=i zm = k − j + 1 |
∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

=
pθ(
∑n

m=i+1 zm = k − j | zi = 1,
∑

m zm = k) pθi(zi = 1)

pθ(
∑n

m=i+1 zm = k − j |
∑

m zm = k)

= pθ(zi = 1 |
∑n

m=i+1 zm = k − j,
∑

m zm = k) (by Bayes’ theorem)

It follows that samples drawn from Algorithm 6 are distributed according to pθ(z |
∑

i zi =

k).

3.2.3 Connection to Straight-Through Gumbel-Softmax

One might wonder if our gradient estimator reduces to the Straight-Through (ST) Gumbel-Softmax

estimator, or relates to it in any way when k = 1. On the forward pass, the ST Gumbel Softmax

estimator makes use of the Gumbel-Max trick [Maddison et al., 2014], which states that we can

efficiently sample from a categorical distribution by perturbing each of the logits with standard

Gumbel noise, and taking the MAP, or more formally z = OneHot(argmaxi∈{1,...,k} θi+ gi) ∼ pθ

where the gi’s are i.i.d Gumbel(0, 1) samples, and OneHot encodes the sample as a binary vector.

Since argmax is non-differentiable, Gumbel-Softmax uses the perturbed relaxed samples,

y = Softmax(θ + gi) as a proxy for discrete samples z on the backward pass, using differ-

entiable Softmax in place of the non-differentiable argmax, with the entire function returning

(z − y). detach() + y where detach ensures that the gradient flows only through the relaxed sam-

ples on the backward pass.
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Algorithm 7 The proposed algorithm for the k-subset distribution
function FORWARDPASS(θ)

// pθ(
∑i

m=1 zm = j) for all i, j
a = PrExactlyk(θ, n, k)
// Sample from pθ(z |

∑
i zi = k)

z = Sample(θ, n, k)
save a for the backward pass
return z

function BACKWARDPASS(∇zℓ(fu(z,x),y))
load θ from the forward pass
// derivatives of pθ(z |

∑
i zi = k)

µ = ∇θ log a[n, k] // by auto-diff
// Return the directional derivative of the
// marginals along the downstream gradients
return JVP(µ,∇zℓ(fu(z,x))

Exact ST Gumbel Softmax SIMPLE
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Figure 3.6: Bias and variance of SIMPLE

and Gumbel Softmax over 10k samples

That is, just like SIMPLE, ST Gumbel-

Softmax returns exact, discrete samples. How-

ever, whereas SIMPLE backpropagates through

the exact marginals, ST Gumbel Softmax back-

propagates through the perturbed marginals that

result from applying the Gumbel-max trick. As

can be seen in Figure 3.6, such a minor differ-

ence means that, empirically, SIMPLE exhibits lower bias and variance compared to ST Gumbel

Softmax while being exactly as efficient.

3.2.4 Experiments

We conduct experiments on four different tasks: 1) A synthetic experiment designed to test the

bias and variance, as well as the average deviation of SIMPLE compared to a variety of well-

established estimators in the literature. 2) A discrete k-subset Variational Auto-Encoder (DVAE)

setting, where the latent space models a probability distribution over k-subsets. We will show

that we can compute the evidence lower bound (ELBO) exactly, and that, coupled with exact

sampling and our SIMPLE gradient estimator, we attain a much lower loss compared to state of

the art in sparse DVAEs. 3) The learning to explain (L2X) setting, where the aim is to select the

k-subset of words that best describe the classifier’s prediction, where we show an improved mean-

squared error, as well as precision, across the board. 4) A novel, yet simple task, sparse linear
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regression, where, in a vein similar to L2X, we wish to select a k-subset of features that give rise to

a linear regression model, avoiding overfitting the spurious features present in the data. Table 3.5

details the architecture with the objective functions. Our code will be made publicly available at

github.com/UCLA-StarAI/SIMPLE.

3.2.4.1 Synthetic Experiments

We carried out a series of experiments with a 5-subset distribution, and a latent space of dimension

10. We set the loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[‖z−b‖
2], where b is the groundtruth logits sampled

fromN (0, I). Such a distribution is tractable: we only have
(
10
5

)
= 252 k-subsets, which are easily

enumerable and therefore, the exact gradient, the golden standard, can be computed in closed form.

In this experiment, we are interested in three metrics: bias, variance, and the average error of

each gradient estimator, where the latter is measured by averaging the deviation of each single-

sample gradient estimate from the exact gradient. We used the cosine distance, defined as 1−

cosine similarity as the measure of deviation in our calculation of the metrics above, as we only

care about direction.

We compare against four different baselines: exact, which denotes the exact gradient; Soft-

Sub [Xie and Ermon, 2019], which uses an extension of the Gumbel-Softmax trick to sample re-

laxed k-subsets on the forward pass; I-MLE, which denotes the IMLE gradient estimator [Niepert

et al., 2021b], where approximate samples are obtained using perturb-and-map (PAM) on the for-

ward pass, approximating the marginals using PAM samples on the backward pass; and score

function estimator, denoted SFE.

We tease apart SIMPLE’s improvements by comparing three different flavors: SIMPLE-F, which

only uses exact sampling, falling back to estimating the marginals using exact samples; SIMPLE-B,

which uses exact marginals on the backward pass with approximate PAM samples on the forward

pass; and SIMPLE, coupling exact samples on the forward pass with exact marginals on the back-

ward pass.
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Figure 3.7: ELBO against # of epochs. (Left)
Comparison of SIMPLE against variants of IMLE
on the 10-subset DVAE, and (Right) against ST
Gumbel Softmax on the 1-subset DVAE.

Algorithm 8 Entropy(θ, n, k)

Input: The logits θ of the distribution, the num-
ber of variables n, and the subset size k

Output: H(z) = −Ez∼pθ(z|
∑

i zi=k)[log p(z)]
h = zeros(n, k)
for i = k to n do

for j = 0 to k do
// p(zi |

∑i
m=1 zm = j)

p = a[i− 1, j − 1] ∗ pθi(zi = 1)/a[i, j]
// cf. proof of Prop. 3.3 in Appendix
h[i, j] = Hb(p) + p ∗ h[i− 1, j]+

(1− p) ∗ h[i− 1, j + 1]
return h

Our results are shown in Figure 3.4 As expected, we observe that SFE exhibits no bias, but high

variance whereas SoftSub suffers from both bias and variance, due to the Gumbel noise injection

into the samples to make them differentiable. We observe that I-MLE exhibits very high bias,

as well as very low variance. This can be attributed to the PAM sampling, which in the case

of k-subset distribution does not sample faithfully from the distribution, but is instead biased to

sampling only the mode of the distribution. This also means that, by approximating the marginals

using PAM samples, there is a lot less variance to our gradients. On to our SIMPLE gradient

estimator, we see that it exhibits less bias as well as less variance compared to all the other gradient

estimators. We also see that each estimated gradient is, on average, much more aligned with

the exact gradient. To understand why that is, we compare SIMPLE, SIMPLE-F, and SIMPLE-

B. As hypothesized, we observe that exact sampling, SIMPLE-F, reduces the bias, but increases

the variance compared to I-MLE, this is since, unlike the PAM samples, our exact sample span

the entire sample space.We also observe that, even compared to I-MLE, SIMPLE-B, reduces the

variance by marginalizing over all possible samples.

3.2.4.2 Discrete Variational Auto-Encoder

Next, we test our SIMPLE gradient estimator in the k-subset discrete variational auto-encoder

(DVAE) setting, where the latent variables model a probability distribution over k-subsets, and

has a dimensionality of 20. Similar to prior work [Jang et al., 2017; Niepert et al., 2021b], the
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encoding and decoding functions of the VAE consist of three dense layers (encoding: 512-256-

20x20; decoding: 256-512-784). The DVAE is trained to minimize the sum of reconstruction loss

and KL-divergence of the k-subset distribution and the constrained uniform distribution, known as

the ELBO, on MNIST.

In prior work, the KL-divergence was approximated using the unconditional marginals, ob-

tained simply through a Softmax layer. Instead we show that the KL-divergence between the

k-subset distribution and the uniform distribution can be computed exactly. First note that, through

simple algebraic manipulations, the KL-divergence between the k-subset distribution and the con-

strained uniform distribution can be rewritten as the sum of negative entropy, −H(z), where

z ∼ pθ (z |
∑

i zi = k) and log the number of k-subsets, log
(
n
k

)
(see appendix for details), re-

ducing the hardness of computing the KL-divergence, to computing the entropy of a k-subset

distribution, for which Algorithm 8 gives a tractable algorithm. Intuitively, the uncertainty in the

distribution over a sequence of length n, k of which are true, decomposes as the uncertainty over

Zn, and the average of the uncertainties over the remainder of the sequence. We refer the reader to

the appendix for the proof of the below proposition.

Proposition 3.3. Let Entropy be defined as in Algorithm 8. Given variables, Z1, · · · , Zn, and a

k-subset distribution pθ(z |
∑

i zi = k), Algorithm 8 computes entropy of pθ (z |
∑

i zi = k).

We plot the loss ELBO against the number of epochs, as seen in Figure 3.7. We compared

against I-MLE using sum-of-gamma noise as well as Gumbel noise for PAM sampling, on the 10-

subset DVAE, and against ST Gumbel Softmax on the 1-subset DVAE. We observe a significantly

lower loss on the test set on the 10-subset DVAE, partly attributable to the exact ELBO computa-

tion, but also on the 1-subset DVAE compared to ST Gumbel Softmax, where the sole difference

is the backward pass.
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Method
Appearance Palate Taste

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.35 ± 0.28 66.81 ± 7.56 2.68 ± 0.06 44.78 ± 2.75 2.11 ± 0.02 42.31 ± 0.61
L2X (t = 0.1) 10.70 ± 4.82 30.02 ± 15.82 6.70 ± 0.63 50.39 ± 13.58 6.92 ± 1.61 32.23 ± 4.92

SoftSub (t = 0.5) 2.48 ± 0.10 52.86 ± 7.08 2.94 ± 0.08 39.17 ± 3.17 2.18 ± 0.10 41.98 ± 1.42
I-MLE (τ = 30) 2.51 ± 0.05 65.47 ± 4.95 2.96 ± 0.04 40.73 ± 3.15 2.38 ± 0.04 41.38 ± 1.55

Table 3.6: Results for three aspects with k = 10: test MSE and subset precision, both ×100

3.2.4.3 Learning to Explain

The BEERADVOCATE dataset [McAuley et al., 2012] consists of free-text reviews and ratings for

4 different aspects of beer: appearance, aroma, palate, and taste. The training set has 80k reviews

for the aspect APPEARANCE and 70k reviews for all other aspects. In addition to the ratings for

all reviews, each sentence in the test set contains annotations of the words that best describe the

review score with respect to the various aspects. We address the problem introduced by the L2X

paper [Chen et al., 2018] of learning a k-subset distribution over words that best explain a given

rating. We follow the architecture suggested in the L2X paper, consisting of four convolutional

and one dense layer.

We compare to relaxation-based baselines L2X [Chen et al., 2018] and SoftSub [Xie and Er-

mon, 2019] as well as to I-MLE which uses perturb-and-MAP to both compute an approximate

sample in the forward pass and to estimate the marginals. Prior work has shown that the straight-

through estimator (STE) did not work well and we omit it here. We used the standard hyperparam-

eter settings of Chen et al. [2018] and choose the temperature parameter t ∈ {0.1, 0.5, 1.0, 2.0}

for all methods. We used the standard Adam settings and trained separate models for each aspect

using MSE as point-wise loss ℓ. Table 3.7 lists results for k ∈ {5, 10, 15} for the AROMA aspect.

The mean-squared error (MSE) of SIMPLE is almost always lower and its subset precision never

significantly exceeded by those of the baselines. Table 3.6 shows results on the remaining aspects

Appearance, Palate, and Taste for k = 10.
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Method
k = 5 k = 10 k = 15

Test MSE Precision Test MSE Precision Test MSE Precision

SIMPLE (Ours) 2.27 ± 0.05 57.30 ± 3.04 2.23 ± 0.03 47.17 ± 2.11 3.20 ± 0.04 53.18 ± 1.09
L2X (t = 0.1) 5.75 ± 0.30 33.63 ± 6.91 6.68 ± 1.08 26.65 ± 9.39 7.71 ± 0.64 23.49 ± 10.93

SoftSub (t = 0.5) 2.57 ± 0.12 54.06 ± 6.29 2.67 ± 0.14 44.44 ± 2.27 2.52 ± 0.07 37.78 ± 1.71
I-MLE (τ = 30) 2.62 ± 0.05 54.76 ± 2.50 2.71 ± 0.10 47.98 ± 2.26 2.91 ± 0.18 39.56 ± 2.07

Table 3.7: Results for aspect Aroma: test MSE and subset precision, both ×100, for k ∈
{5, 10, 15}.

3.2.4.4 Sparse Linear Regression

Given a library of feature functions, the task of sparse linear regression aims to learn from data

which feature subset best describes the nonlinear partial differential equation (PDE) that the data

are sampled from. We propose to tackle this task by learning a k-subset distribution over the

feature functions. During learning, we first sample from the k-subset distribution to decide which

feature function subset to choose. With k chosen features, we perform linear regression to learn

the coefficients of the features from data, and then update the k-subset distribution logit parameters

by minimizing RMSE.

To test our proposed approach, we follow the experimental setting in PySINDy [de Silva et al.,

2020; Kaptanoglu et al., 2022] and use the dataset collected by PySINDy where the samples are

collected from the KuramotoSivashinsky (KS) equation, a fourth-order nonlinear PDE known for

its chaotic behavior. This PDE takes the form vt = −vxx − vxxxx − vvx, which can be seen as a

linear combination of feature functions V = {vxx, vxxxx, vvx}with the coefficients all set to a value

of −1. At test time, we use the MAP estimation of the learned k-subset distribution to choose the

k feature functions. For k = 3, our proposed method achieves the same performance as the state-

of-the-art solver on this task, PySINDy. It identifies the KS PDE from data by choosing exactly

the ground truth feature function subset V , obtaining an RMSE of 0.00622 after applying linear

regression on V .
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3.2.5 Complexity Analysis

In Proposition 3.1, we prove that computing the marginal probability of the exactly-k constraint

can be done tractably in time O(nk). In the context of deep learning, we often care about vec-

torized complexity. We demonstrate an optimized algorithm achieving a vectorized complexity

O(log k log n), assuming perfect parallelization. The optimization is possible by computing the

marginal probability in a divide-and-conquer way: it partitions the variables into two subsets and

compute their marginals respectively such that the complexity O(n) is reduced to O(log n); the

summation over the k terms also has its complexity reduced to O(log k) in a similar manner. We

refer the readers to Algorithm 12 in Appendix for the optimized algorithm. We further modify

Algorithm 6 to perform divide-and-conquer such that sampling k-subsets achieves a vectorized

complexity being O(log n), shown as Algorithm 13 in the Appendix. As a comparison, Soft-

Sub [Xie and Ermon, 2019] has its complexity to be O(nk) due to the relaxed top-k operation

and its vectorized complexity to be O(k log n) stemming from the fact that softmax layers need

O(log n) rounds of communication for normalization.

3.2.6 Related Work

There is a large body of work on gradient estimation for categorical random variables. Maddison

et al. [2017]; Jang et al. [2017] propose the Gumbel-softmax distribution (named the concrete dis-

tribution by the former) to relax categorical random variables. For more complex distributions,

such as the k-subset distribution which we are concerned with in this paper, existing approaches

either use the straight-through and score function estimators or propose tailor-made relaxations

(see for instance Kim et al. [2016]; Chen et al. [2018]; Grover et al. [2018]). We directly compare

to the score function and straight-through estimator as well as the tailored relaxations of Chen

et al. [2018]; Grover et al. [2018] and show that we are competitive and obtain a lower bias and/or

variance than these other estimators. Tucker et al. [2017]; Grathwohl et al. [2018] develop param-

eterized control variates based on continuous relaxations for the score-function estimator. Lastly,

Paulus et al. [2020] offers a comprehensible work on relaxed gradient estimators, deriving several

88



extensions of the softmax trick. All of the above works, ours included, assume the independence of

the selected items, beyond there being k of them. That is with the exception of Paulus et al. [2020]

which make use of a relaxation using pairwise embeddings, but do not make their code available.

We leave that to future work.

A related line of work has developed and analyzed sparse variants of the softmax function,

motivated by their potential computational and statistical advantages. Representative examples are

Blondel et al. [2020a]; Peters et al. [2019]; Correia et al. [2019]; Martins and Astudillo [2016].

SparseMAP [Niculae et al., 2018] has been proposed in the context of structured prediction and

latent variable models, also replacing the softmax with a sparser distribution. LP-SparseMAP [Nic-

ulae and Martins, 2020] is an extension that uses a relaxation of the optimization problem rather

than a MAP solver. Sparsity can also be exploited for efficient marginal inference in latent variable

models [Correia et al., 2020b]. Contrary to our work, they cannot control the sparsity level exactly

through a k-subset constraint or guarantee a sparse output. Also, we aim at cases where samples

in the forward pass are required.

Integrating specialized discrete algorithms into neural networks is growing in popularity. Ex-

amples are sorting algorithms [Cuturi et al., 2019; Blondel et al., 2020b; Grover et al., 2018], rank-

ing [Rolinek et al., 2020; Kool et al., 2019], dynamic programming [Mensch and Blondel, 2018;

Corro and Titov, 2019], and solvers for combinatorial optimization problems [Berthet et al., 2020;

Rolínek et al., 2020; Shirobokov et al., 2020; Niepert et al., 2021b; Minervini et al., 2023] or even

probabilistic circuits over structured output spaces [Ahmed et al., 2022b; Blondel, 2019]. There

has also been work on making common programming language expression such as conditional

statements, loops, and indexing differentiable through relaxations [Petersen et al., 2021]. Xie et al.

[2020] propose optimal transport to obtain differentiable sorting methods for top-k classification.
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CHAPTER 4

Scaling

Much of the existing work on neuro-symbolic AI offers piecemeal solutions to the problem of

integrating learning and reasoning, with legacy code that does not seamlessly integrate or domain

specific languages that require porting of existing code bases to fit within the design of the target

framework. There is, therefore, a palpable need for a unifying framework that seamlessly inte-

grates with existing deep learning code and allows the user to easily specify and utilize constraints.

To that end, we propose Pylon, a neuro-symbolic training framework that builds on PyTorch to

augment procedurally trained neural networks with declaratively specified constraints. Pylon al-

lows users to programmatically specify constraints as PyTorch functions which are then compiled

into a differentiable loss, training predictive models that fit the data and the constraint. Pylon in-

cludes exact and approximate compilers to efficiently compute the loss, ensuring scalability even

to complex models and constraints. Using Pylon, an existing codebase can be extended to learn

from constraints in a few lines: a function expressing the constraint and a single line of code to

compile it into a loss. When the PyTorch function can be compiled into a tractable circuit, Pylon

makes use of PyJuice, a framework we proposed to efficiently compute the loss. PyJuice interprets

the circuit as a layerwise computational graph, leading to maximal GPU utilization and running

times orders of magnitude faster than older implementations.

4.1 PYLON: A PyTorch Framework for Learning with Constraints

Deep learning models, by virtue of being universal function approximators, are able to learn even

the most complex of tasks with enough available data. However, some high-level domain knowl-
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edge can often be much more succinctly described directly in a declarative manner, such as pro-

grammatic constraints, which existing learning frameworks are not able to learn from. Instead,

deep learning models attempt to extract the same knowledge from available data, leading to over-

fitting the spurious patterns, learning functions that are unfaithful to rules of the underlying domain.

Neuro-symbolic reasoning systems aim to straddle the line between deep learning and sym-

bolic reasoning, combining high-level procedural knowledge with data, during learning. They

aim to learn functions that fit the data while remaining faithful to the rules of the underlying

domain, and empirically translates into performance improvements and more efficient learning.

These systems are not without their challenges, however. Most frameworks make use of custom

languages [Rajaby Faghihi et al.; Guo et al., 2020; Manhaeve et al., 2018; Stewart and Ermon,

2017] or logic [Bach et al., 2017; Diligenti et al., 2017b; Fischer et al., 2019; Hu et al., 2016; Li

and Srikumar, 2019; Nandwani et al., 2019; Rocktäschel et al., 2015; Xu et al., 2018a; Zhang et al.,

2016] to express the knowledge, making it unnatural, unwieldy or even impossible to express many

forms of knowledge. Further, they often require porting codebases to use these systems, making

them arduous to integrate into preexisting code. Final, different approaches to integrate symbolic

knowledge and neural models have their own specific strengths and weaknesses, thus effective on

limited set of domains and constraints; however, this is often not clear to the user.

We introduce PYLON1, a package built on top of PyTorch that offers practitioners the abil-

ity to seamlessly integrate procedural knowledge into deep learning models. The user expresses

the knowledge directly as a Python predicate function that defines the constraint on tensor vari-

ables (such as model output). PYLON compiles this user-defined function to efficiently compute

a differentiable loss compatible with PyTorch trainers, providing a common interface to existing

neural-symbolic approaches that integrate declarative knowledge in the learning process. With a

few lines of code (defining the constraint and adding the loss), the user is able to integrate declara-

tive knowledge into their models, testing out which of the existing approaches are most effective.

1PYLON website is available at https://pylon-lib.github.io/
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4.1.1 PYLON Overview

1 # Only a person can live in a location
2 def check_livesin_subj(entity, relation):
3 # if word is subj of livesIn, it should be PER entity
4 return all(entity[relation==LIVESIN_SUBJ] == PER)
5
6 livesin_loss = constraint_loss(check_livesin_subj)
7
8 # there should be more non-people tokens than people
9 numppl_loss = constraint_loss(

10 lambda entity: sum(entity!=PER) > sum(entity==PER))
11
12 for i in range(train_iters):
13 ...
14 relation_logits, entity_logits = model(x)
15 loss = F.CrossEntropy(relation_logits, relation_labels)
16 loss += livesin_loss(entity_logits, relation_logits)
17 loss += numppl_loss(entity_logits)

Figure 4.1: Enforcing a constraint using PYLON

Example Consider the code snippet

in Figure 4.1, where we consider the

task of entity-relation extraction. That

is, given a sentence x, the model on

line 14 classifies each word into a cor-

responding entity (e.g. person, organi-

zation), and for every pair of entities

whether they are related, and if so, the

type of relation that holds between them

(e.g. works for)

We wish to enforce two constraints, which stem from our knowledge of the problem domain,

on the learned model on line 14: 1) the subject of a lives in relation is always a person, and

2) that the majority of predicted entities are not person. The above constraints are expressed as

the PyTorch function check_livesin_subj defined on lines 2-4 and the lambda function on

line 10, respectively.

The challenge then is, how to integrate these discrete, Boolean functions with differentiable

learning. We will show how this can be achieved by interpreting the network’s outputs as inducing

a distribution over the output space, and reducing our problem to one of probabilistic reasoning:

we wish to find the set of parameters that maximize the probability of the functions under the

network’s distribution.

A Probability Distribution over Structured Outputs Let θ be the parameters of a neural net-

work defined over a set of variables Y = {Y1, . . . , Yn}, where each Yi denotes a class output by

the network. Let p be a vector of probabilities for the same variables Y, where pi denotes the

predicted probability of variable Yi and corresponds to a single output of the neural network. The
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neural network’s outputs induce a distribution Pr(·) over all possible instantiations, or decodings,

y of Y

Pr(y) =
∏

i:y|=Yi

pi
∏

i:y|=¬Yi

(1− pi). (4.1)

where y |= Yi and y |= ¬Yi denote that Yi is true or false in the instantiation y, respectively.

Training objective Having defined a distribution over all possible outputs, we now consider the

problem of learning with constraints through a probabilistic lens: the problem of integrating our

declaratively-defined functions into the learning process reduces to optimizing for the set of net-

work parameters such that the probability allocated by the network to the constraint is maximized.

Formally

argmin
θ
L(θ|C, x) = argmin

θ
− logEy∼pθ(·|x)

[
1{C(y)}

]
(4.2)

That is, for a given constraint C, we penalize the network with a loss that is proportional to the

extent to which the network’s beliefs violate the constraint, as measured by the probability mass

allocated by the network to all decodings violating the constraint C.

Calculating the above naively requires enumerating all decodings y in a brute force manner, of

which there are exponentially many, and is feasible only for simple constraints. For instance, for a

classifier defined over 2n2 − 2n variables – the edges in a n× n grid – and that predicts a path in

the grid, a decoding is an assignment to each of the 2n2 − 2n variables, and there are 22n2−2n such

decodings.

Exploiting Structure of Constraint Definition Even though the user is free to use all of Py-

Torch/Python to write the constraint, we parse the constraint code to see if it is expressing known

structures, for example, first-order logic. When the constraints do exhibit structural properties that

allow us to reuse intermediate computations, we can sidestep the intractability of eqn. 4.3 by com-

piling them into logical circuits [Xu et al., 2018a]. This does not, in general, escape the complexity

of eqn. 4.3 as the compiled circuit can worst-case grow exponentially in the size of the constraint.
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In such a case, we can utilize approximations based on fuzzy logic, computing differentiable prob-

abilities of logical statements without grounding them, such as using product T-norm [Rocktäschel

et al., 2015], or Łukasiewicz T-norm [Bach et al., 2017; Kimmig et al., 2012].

Black-box Optimization Alternatively, we can also approximate the loss in eqn. 4.3 by sampling

decodings from the network’s posterior. More precisely, we can use the REINFORCE gradient

estimator [Glynn, 1990; Williams, 1992] to rewrite the gradient of the expectation in eqn 4.3 as

the expectation of the gradient, which can be readily estimated using Monte Carlo sampling. This

not only enables us to estimate the probability of otherwise-intractable constraints but also enables

greater flexibility in defining our constraint functions: we can issue calls to non-differentiable

resources (e.g. external APIs, database queries, etc.) and continue to yield a differentiable loss

function, hence the moniker black-box.

PYLON uses implementations of these approaches that are directly compatible with PyTorch,

as seen in lines 16 and 17, including ones that utilize the structure in the user-defined code for

efficiency (T-norm and circuit-based losses) and ones that work for any implementation (brute-

force and sampling), and is easily extensible to other techniques.

Constraint functions We encode the aforementioned declarative knowledge (read: constraints)

by means of constraint functions. A constraint function is a Python function that accepts any

number of tensor arguments, each of shape (batch_size, ...) and returns a Boolean tensor of

shape (batch_size, ). Each argument corresponds to a (batched) decoding from a model. A

decoding is an assignment to all variables of a model, each variable sampled with a probability

corresponding to its likelihood under the model’s posterior. For example, in our entity-relation

extraction example, a decoding of relation_logits (resp. entity_logits) constitutes a

relation (resp. entity) assigned to each word in the sentence. On the other hand, for a classifier

defined over 2n2−2n Boolean variables – the edges in a n×n grid – and that predicts a path in the

grid, a decoding constitutes an assignment to each of the 2n2− 2n variables, and there are 22n2−2n
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such decodings.

A constraint function defines a predicate C on the decodings of any number of models, and

returns whether or not the given decodings satisfy the constraint. For instance, lines 2-4 define

a constraint function over the decodings of the entity and relations classifiers which encodes our

first constraint whereas line 10 defines a lambda constraint function over the decoding of the entity

classifier, and encodes our second constraint. Note that while the first constraint can be easily

expressed in logic, the same does not hold true for the second constraint: we would need to conjoin

all decodings satisfying the constraint, which would scale exponentially with the length of the

sentence – unless we resort to introducing auxiliary variables. Using Python/PyTorch we manage

to capture the constraint succinctly in a single line of code.

Constraint functions We define constraint functions that express this knowledge. A constraint

function is a Python function that accepts any number of tensor arguments, each of shape (batch_size, ...)

and returns a Boolean tensor of shape (batch_size, ). Each argument represents a (batched) de-

coding corresponding to the model’s posterior. A constraint function represents a constraint C on

these decodings, returning whether or not the decodings satisfy the constraint. For instance, lines

2-4 define a function corresponding to our first constraint and line 10 defines a lambda function for

the second constraint. Note while the first constraint can be easily expressed in logic, the same is

not true of the second constraint, which we express succinctly using Python/PyTorch.

Training objective Having defined the constraint C, we aim to compile it into a loss function to

encourage the model to satisfy the constraints, i.e. minimize the probability of constraint violation.

argmin
θ
L(θ|C, x) = argmin

θ
− logEy∼pθ(·|x)

[
1{C(y)}

]
. (4.3)

Calculating the above naively requires we enumerate all possible decodings y in a brute force man-

ner, of which there are exponentially many, and is feasible only for the simplest of constraints. If

the constraints have certain structure, we can sidestep the intractability of (4.3), for example, by

compiling them into circuits [Xu et al., 2018a]. The loss can also be approximated, for example, we
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can use the REINFORCE trick [Glynn, 1990; Williams, 1992] to rewrite the gradient of the expec-

tation, estimated using Monte Carlo sampling. the gradient of the function, which we can estimate

using Monte Carlo sampling. If the constraints can be expressed as logic, we can use approxima-

tions based on fuzzy logic that operate in the lifted domain, computing differentiable probabilities

of logical statements without grounding them, such as using product T-norms [Rocktäschel et al.,

2015]. PYLON contains implementations of these approaches that are directly compatible with

PyTorch, as shown in lines 16 and 17, including ones that utilize the structure in the user-defined

code for efficiency (T-norm- and circuit-based losses) and ones that work for any implementation

(brute-force and sampling), and is easily extensible to other techniques.

4.2 Scaling Tractable Probabilistic Circuits: A Systems Perspective

Many tasks require not only precise modeling of intricate, high-dimensional data distributions but

also the efficient execution of probabilistic inference on the learned model. To satisfy inference-

side demands, tractable deep generative models are designed to support efficient computation of

various probabilistic queries. Probabilistic Circuits (PCs) [Choi et al., 2020b; Vergari et al., 2020]

are a unified framework that abstracts a myriad of tractable model families. PCs have been ap-

plied to many domains such as explainability and causality [Correia et al., 2020a; Wang and

Kwiatkowska, 2023], graph link prediction [Loconte et al., 2023], and neuro-symbolic AI [Xu

et al., 2018a; Manhaeve et al., 2018; Ahmed et al., 2022b]. In particular, there is a trend of using

PCs’ tractability to control expressive deep generative models, including (large) language mod-

els [Zhang et al., 2023b], image diffusion models [Liu et al., 2024b], and reinforcement learning

models [Liu et al., 2023d].

The backbone of the application-side advancements is the recent breakthroughs on the model-

ing and learning side of PCs, which include designing better PC structures [Peharz et al., 2020b;

Correia et al., 2023; Mathur et al., 2023; Loconte et al., 2024; Gala et al., 2024], effective struc-

ture learning algorithms [Gens and Pedro, 2013; Dang et al., 2020, 2022a; Yang et al., 2023], and
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distilling from expressive deep generative models [Liu et al., 2023b]. Despite such algorithmic

innovations, a fundamental obstacle to further scaling up PC learning and inference is the time and

memory inefficiency of existing implementations, hindering the training of large PC models and

their application to large-scale datasets.

In this work, we develop an efficient and flexible system called PyJuice that addresses various

training and inference tasks for PCs. As shown in Table 4.1, PyJuice is orders of magnitude

faster than previous implementations for PCs (e.g., SPFlow [Molina et al., 2019], EiNet [Peharz

et al., 2020a], and Juice.jl [Dang et al., 2021]) as well as Hidden Markov Models2 (e.g., Dynamax

[Murphy et al., 2023]). Additionally, as we shall demonstrate in the experiments, PyJuice is more

memory efficient than the baselines, enabling us to train larger PCs with a fixed memory quota.

Unlike other deep generative models based on neural network layers that are readily amenable

to efficient systems (e.g., a fully connected layer can be emulated by a single matrix multiplication

and addition kernel plus an element-wise activation kernel), PCs cannot be efficiently computed

using well-established operands due to (i) the unique connection patterns of their computation

graph,3 and (ii) the existence of log probabilities at drastically different scales in the models, which

requires to properly handle numerical underflow problems. To parallelize PCs at scale, we propose

a compilation phase that converts a PC into a compact data structure amenable to block-based

parallelization on modern GPUs. Further, we improve the backpropagation process by indirectly

computing the parameter updates by backpropagating a quantity called PC flow [Choi et al., 2021]

that is more numerically convenient yet mathematically equivalent.

In the following, we first formally define PCs and discuss common ways to parallelize their

computation in Sec. 4.2.1. Sec. 4.2.2 examines the key bottlenecks in PC parallelization. Sec. 4.2.3

and 4.2.4 explains our design in details.

2Every HMM has an equivalent PC representation.

3Commonly used neural network layers mainly employ “regular” tensor operations such as matrix multiplications
and tensor inner-/outer-products. In contrast, PC layers can contain nodes that are sparsely connected.

97



Table 4.1: Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch
of 60K samples for PyJuice and the baselines SPFlow [Molina et al., 2019], EiNet [Peharz et al.,
2020a], Juice.jl [Dang et al., 2021], and Dynamax [Murphy et al., 2023]. We adopted four PC
structures: PD, RAT-SPN, HCLT, and HMM. All experiments were carried out on an RTX 4090
GPU with 24GB memory. To maximize parallelism, we always use the maximum possible batch
size. “OOM” denotes out-of-memory with batch size 2. The best numbers are in boldface.

PD [Poon and Domingos, 2011]

# nodes 172K 344K 688K 1.38M 2.06M
# edges 15.6M 56.3M 213M 829M 2.03B

SPFlow >25000 >25000 >25000 >25000 >25000

EiNet 34.2±0.0 88.7±0.2 456.1±2.3 1534.7±0.5 OOM
Juice.jl 12.6±0.5 37.0±1.7 141.7±6.9 OOM OOM
PyJuice 2.0±0.0 5.3±0.0 15.4±0.0 57.1±0.2 203.7±0.1

RAT-SPN [Peharz et al., 2020b]

# nodes 58K 116K 232K 465K 930K
# edges 616K 2.2M 8.6M 33.4M 132M

SPFlow 6372.1±4.2 >25000 >25000 >25000 >25000

EiNets 38.5±0.0 83.5±0.0 193.5±0.1 500.6±0.2 2445.1±2.6

Juice.jl 6.0±0.3 9.4±0.3 25.5±2.4 84.0±4.0 375.1±3.4

PyJuice 0.6±0.0 0.9±0.1 1.6±0.0 5.8±0.1 13.8±0.0

HCLT [Liu and Van den Broeck, 2021]

# nodes 89K 178K 355K 710K 1.42M
# edges 2.56M 10.1M 39.9M 159M 633M

SPFlow 22955.6±18.4 >25000 >25000 >25000 >25000

EiNet 52.5±0.3 77.4±0.4 233.5±2.8 1170.7±8.9 5654.3±17.4

Juice.jl 4.7±0.2 6.4±0.5 12.4±1.3 41.1±0.1 143.2±5.1

PyJuice 0.8±0.0 1.3±0.0 2.6±0.0 8.8±0.0 24.9±0.1

HMM [Rabiner and Juang, 1986]

# nodes 33K 66K 130K 259K 388K
# edges 8.16M 32.6M 130M 520M 1.17B

Dynamax 111.3±0.4 441.2±3.9 934.7±6.3 2130.5±19.5 4039.8±38.3

Juice.jl 4.6±0.1 18.8±0.1 91.6±0.1 OOM OOM
PyJuice 0.6±0.0 1.0±0.0 2.9±0.1 10.1±0.2 39.9±0.1

4.2.1 Preliminaries and Related Work

Many probabilistic inference tasks can be cast into computing sums of products. By viewing them

from a computation graph standpoint, PCs provide a unified perspective on many bespoke represen-

tations of tractable probability distributions, including Arithmetic Circuits [Darwiche, 2002, 2000],

Sum-Product Networks [Poon and Domingos, 2011], Cutset Networks [Rahman et al., 2014], and

Hidden Markov Models [Rabiner and Juang, 1986]. Specifically, PCs define distributions with
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computation graphs consisting of sum and product operations, as elaborated below.

Definition 4.1 (Probabilistic Circuit). A PC defined over variables X is represented by a param-

eterized Directed Acyclic Graph (DAG) with a single root node nr. Every leaf node in the DAG

represents an input node that defines a primitive distribution over some variable X ∈X. Every

inner node n is either a sum node or a product node, which merges the distributions encoded by

its children, denoted ch(n), to construct more complex distributions. The distribution represented

by every node is defined recursively as:

pn(x) :=


fn(x) n is an input node,∏

c∈ch(n) pc(x) n is a product node,∑
c∈ch(n)θn,c ·pc(x) n is a sum node,

(4.4)

where fn(x) is an univariate input distribution (e.g., Gaussian, Categorical), and θn,c denotes

the parameter corresponding to edge (n, c). Intuitively, sum nodes model mixtures of their input

distributions, which require the mixture weights to be in the probability simplex:
∑

c∈ch(n) θn,c=1

and ∀c ∈ ch(n), θn,c ≥ 0. And product nodes build factorized distributions over their inputs. The

size of a PC, denoted |p|, is the number of edges in its DAG.

The key to guaranteeing exact and efficient computation of various probabilistic queries is to

impose proper structural constraints on the DAG of the PC. As an example, with smoothness and

decomposability [Poon and Domingos, 2011], computing any marginal probability amounts to a

forward pass (children before parents) following Equation 4.4, with the only exception that we

set the value of input nodes defined on marginalized variables to be 1. Please refer to Choi et al.

[2020b] for a comprehensive overview of different structural constraints and what queries they

enable.

Although different algorithms are used for different training and inference tasks, they are

mostly based on (variants of) the following subroutines: a feedforward pass (Eq. (4.4)) that com-

putes log pnr(x), and a backward pass computing

∀n, ∂ log pnr(x)

∂ log pn(x)
and ∀θn,c,

∂ log pnr(x)

∂θn,c
. (4.5)
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For example, Peharz et al. [2020a] demonstrate how the above parameter gradients can be used

to apply Expectation-Maximization (EM) updates, and Vergari et al. [2021] elaborates how the

forward pass can be used to compute various probabilistic and information-theoretic queries when

coupled with PC structure transformation algorithms. Therefore, the speed and memory efficiency

of these two procedures largely determine the overall efficiency of PCs.

Related work on accelerating PCs. There has been a great amount of effort put into speeding

up training and inference for PCs. One of the initial attempts performs node-based computations

on both CPUs [Lowd and Rooshenas, 2015] and GPUs [Pronobis et al., 2017; Molina et al., 2019],

i.e., by computing the outputs for a mini-batch of inputs (data) recursively for every node. Despite

its simplicity, it fails to fully exploit the parallel computation capability possessed by modern GPUs

since it can only parallelize over a batch of samples. This problem is mitigated by also parallelizing

topologically independent nodes [Peharz et al., 2020a; Dang et al., 2021]. Specifically, a PC is

chunked into topological layers, where nodes in the same layer can be computed in parallel. This

leads to 1-2 orders of magnitude speedup compared to node-based computation.

The regularity of edge connection patterns is another key factor influencing the design choices.

Specifically, EiNets [Peharz et al., 2020a] leverage off-the-shelf Einsum operations to parallelize

dense PCs where every layer contains groups of densely connected sum and product/input nodes.

Mari et al. [2023] generalize the notion of dense PCs to tensorized PCs, which greatly expands the

scope of EiNets. Dang et al. [2021] instead focus on speeding up sparse PCs, where different nodes

could have drastically different numbers of edges. They use custom CUDA kernels to balance the

workload of different GPU threads and achieve decent speedup on both sparse and dense PCs.

Another thread of work focuses on designing computation hardware that is more suitable for

PCs. Specifically, Shah et al. [2021] propose DAG Processing Units (DPUs) that can efficiently

traverse sparse PCs, Dadu et al. [2019] introduce an indirect read reorder-buffer to improve the

efficiency of data-dependent memory accesses in PCs, and Yao et al. [2023] use addition-as-int

multiplications to significantly improve the energy efficiency of PC inference algorithms.

Applications of PCs. PCs have been applied to many domains such as explainability and
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Figure 4.2: Layering a PC by grouping nodes with the same topological depth (as indicated by the
colors) into disjoint subsets. Both the forward and the backward computation can be carried out
independently on nodes within the same layer.

causality [Correia et al., 2020a; Wang and Kwiatkowska, 2023], graph link prediction [Loconte

et al., 2023], lossless data compression [Liu et al., 2022a], neuro-symbolic AI [Xu et al., 2018a;

Manhaeve et al., 2018; Ahmed et al., 2022b,c], gradient estimation [Ahmed et al., 2023c], graph

neural networks rewiring [Qian et al., 2023], and even large language model detoxification [Ahmed

et al., 2023b].

4.2.2 Key Bottlenecks in PC Parallelization

This section aims to lay out the key bottlenecks to efficient PC implementations. For ease of

illustration, we focus solely on the forward pass, and leave the unique challenges posed by the

backward pass and their solution to Sec. 4.2.4.

We start by illustrating the layering procedure deployed for PCs. Starting from the input nodes,

we perform a topological sort of all nodes, clustering nodes with the same topological depth into a

layer. For example, in Figure 4.2, the PC on the left side is transformed into an equivalent layered

representation on the right, where nodes of the same color belong to the same layer. The forward

pass proceeds by sequentially processing each layer, and finally returns the root node’s output.
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Summary of the PC structure

Figure 4.3: Runtime breakdown of the feedforward pass of a PC with ∼150M edges. Both the IO
and the computation overhead of the sum layers are significantly larger than the total runtime of
product layers. Detailed configurations of the PC are shown in the table.

To avoid underflow, all probabilities are stored in the logarithm space. Therefore, product layers

just need to sum up the corresponding input log-probabilities, while sum layers compute weighted

sums of input log-probabilities utilizing the logsumexp trick.

Assume for now that all nodes in every layer have the same number of children. A straightfor-

ward strategy is to parallelize over every node and every sample. Specifically, given a layer of size

M and batch size B, we need to compute in total M×B output values, which are evenly distributed

to all processors (e.g., thread-blocks in GPUs). We apply this idea to a PC with the PD structure

[Poon and Domingos, 2011]. The PC has ∼1M nodes and ∼150M edges. Additionally, all nodes

within a layer have the same number of children, making it an ideal testbed for the aforementioned

algorithm.

Figure 4.3 illustrates the runtime breakdown of the forward pass (with batch size 512). As

shown in the pie chart, both the IO and the computation overhead of the sum layers are much

larger than that of the product layers. We would expect sum layers to exhibit a higher computation

overhead due to (i) the number of sum edges being ∼85x more than the product edges (see the

table in Fig. 4.3), and (ii) sum edges requiring more compute compared to product edges. How-

ever, we would not expect the gap in IO overhead to be as pronounced as indicated in the pie chart.

Specifically, with batch size 512, the ideal memory read count of product layers should be roughly

[batch size]× [#sum nodes] ≈ 102M since all children of product nodes are sum or input nodes
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(the number of input nodes is an order of magnitude smaller and is omitted). Similarly, the num-

ber of memory reads required by the sum layers is approximately [batch size]× [#prod nodes]+

[#parameters]≈571M, which is only 5.6x compared to the product layers. The ideal memory write

count of product layers should be larger since there are about 4x more product nodes compared to

sum nodes.

While the ideal IO overhead of the sum layers is not much larger than that of the product layers,

the drastic difference in runtime (over 50x) can be explained by the significant amount of reloads

of child nodes’ probabilities in the sum layers. Specifically, in the adopted PD structure, every sum

node has no more than 12 parents, while most product nodes have 256 parents.4 Recall that the

parents of product nodes are sum nodes and vice versa. As a result, each sum layer needs to reload

the output of every product node multiple times. Although this does not lead to 256x loads from

the GPU’s High-Bandwidth Memory (HBM) thanks to its caching mechanism, such excessive IO

access still significantly slows down the algorithm.

The fundamental principle guiding our design is to properly group, or allocate, sum edges to

different processors to minimize the reloading of product nodes’ outputs. As an added benefit,

this allows us to interpret part of the core computation as matrix multiplications, allowing us to

harness Tensor Cores available in modern GPUs and resulting in a significant reduction in sum

layers’ computational overhead.

4.2.3 Harnessing Block-Based PC Parallelization

This section takes gradual steps toward demonstrating how we can reduce both the IO and com-

putation overhead using block-based parallelization. Specifically, we first utilize a fully connected

sum layer to sketch the high-level idea (Sec. 4.2.3.1). Consequently, we move on to the general

case, providing further details of the algorithm (Secs. 4.2.3.2, 4.2.3.3).

4Only the children of the root sum node have 1 parent.
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Figure 4.4: Illustration of block-based parallelization. A processor computes the output of 2 sum
nodes, by iterating through blocks of 2 input product nodes and accumulating partial results.

4.2.3.1 Fully Connected Sum Layers

Consider a fully connected sum layer comprised of M sum nodes, each connected to the same set

of N product nodes as inputs. Under the parallelization strategy mentioned in Sec. 4.2.2, with a

single sample, we have M processors each computing the output of a sum node. Since the layer is

fully connected, every processor loads all N input log-probabilities, which results in M reloads of

every input.

The key to reducing excessive IO overhead is by parallelizing over blocks of nodes/edges.

Specifically, we divide the M sum nodes into blocks of KM nodes and the N product nodes into

blocks of KN nodes. We assume without loss of generality that M and N are divisible by KM and

KN , respectively.5 Instead of independently computing the output of every sum node, we calculate

the KM outputs of a sum node block in a single processor. To achieve this, we iterate through every

product node block to compute and accumulate the partial results from the KM×KN edges between

the corresponding sum node block and product node block.

In every step, the processor loads a block of θ∈RKM×KN parameters and a vector of pprod∈RKN

input probabilities, where we (temporarily) omit the fact that all probabilities are stored in the log-

5When the number of product and sum nodes are not divisible by the respective block size, we can add at most
KM −1 (or KN −1) placeholder nodes to make them divisible by the block size. The incurred additional computation
overhead can be small since we can achieve good efficiency with relatively small block sizes (e.g., 32 or 64) given that
the number of nodes in a layer is typically greater than a few thousand.
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Figure 4.5: A sum layer (left) with a block-sparse parameter matrix (middle) is compiled into two
kernels (right) each with a balanced workload. During execution, each kernel uses the compiled
sum/prod/param indices to compute the outputs of m0, . . . ,m5.

arithm space. The partial outputs psum ∈ RKM are computed via a matrix-vector multiplication

between θ and pprod. Note that if we add a second “batch” dimension to pprod and psum, the com-

putation immediately becomes a matrix-matrix multiplication, which can be computed efficiently

using GPU Tensor Cores.

For example, in Figure 4.4, define KM = KN = 2, we compute the output of m0 and m1 by

first calculating the weighted sum w.r.t. the input probability of n0 and n1 in step #1, and then

accumulate the probabilities coming from n2 and n3 in step #2. With the new parallelization

strategy, every processor that computes KM output values needs to load every input probability

only once, and the number of reloads is reduced from M to M/KM .

4.2.3.2 Generalizing To Practical Sum Layers

Many sum layers in practical PCs are not fully connected (e.g., in Dang et al. [2022a]; Liu et al.

[2023b]). However, as we shall demonstrate, they can still harness the advantages of block-based

parallelization. Specifically, consider a sum layer with M sum nodes and N product nodes as

inputs. Following Sec. 4.2.3.1, we partition the sum and the product nodes into blocks of KM

and KN nodes, respectively. For every pair of sum and product node blocks, if it is either fully

connected (i.e., featuring KM×KN edges) or unconnected (i.e., no edge between them), we call the
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layer block-sparse. In the following, we focus on efficiently parallelizing block-sparse PCs (whose

sum layers all exhibit block-sparsity). We show in Sec. C.1.4.1 that many widely-adopted PCs are

indeed block sparse w.r.t. large block sizes. In Sec. 4.2.3.4, we describe how our implementation

can speed up sparse PCs. We also show in Sec. 4.2.5.1 that PyJuice speeds up sparse PCs.

As an example, the layer illustrated in Figure 4.5 (left) exhibits block sparsity with block sizes

KM =KN =2. This is evident as each pair of sum and product node blocks is either fully connected

(e.g., {m2,m3} and {n0, n1}) or disjoint (e.g., {m4,m5} and {n2, n3}). In Figure 4.5 (middle), this

pattern is more discernible in the parameter matrix, where aligned 2×2 blocks display either all

non-zero parameters (indicated by the colors) or all zero parameters.

Similar to the procedure outlined in Sec. 4.2.3.1, computing the outputs of a block of KM sum

nodes involves iterating through all its connected product node blocks. This introduces two addi-

tional problems: (i) how to efficiently index the set of connected product node blocks, which may

vary for each sum node block; (ii) different sum node blocks could connect to different numbers of

product node blocks, which causes an imbalanced workload among processors. For instance, con-

sider the layer in Figure 4.5. The first issue is exemplified by the two sum node blocks {m0,m1}

and {m4,m5}, both of which possess a single child node block, albeit different ones. The second

issue is illustrated by the node block {m2,m3}, which connects to two child node blocks, while

the others connect to only one.

4.2.3.3 Efficient Implementations by Compiling PC Layers

We address both problems through a compilation process, where we assign every node an index,

and precompute index tensors that enable efficient block-based parallelization. The first step is to

partition the sum node blocks into groups, such that every node block within a group has a similar

number of connected child node blocks. We then pad the children with pseudo-product node blocks

with probability 0 such that all sum node blocks in a group have the same number of children. The

partition is generated by a dynamic programming algorithm that aims to divide the layer into the
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Algorithm 9 Forward pass of a sum layer group
1: Inputs: log-probs of product nodes lprod, flattened parameter vector θflat, sum_ids, prod_ids, param_ids
2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: log-probs of sum nodes lsum
6: Kernel launch: schedule to launch CM × CB thread-blocks with m=0, . . . , CM−1 and b=0, . . . , CB−1
7: cum← (−∞)KM×KB∈ RKM×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index
9: for n = 0 to CN−1 do

10: ps, ns← param_ids[m, n], prod_ids[n, b]
11: Load θ←θflat[ps :ps+KM ·KN ].view(KM ,KN) to SRAM
12: Load l← lprod[ns :ns+KN , bs :be]∈RKN×KB to SRAM
13: lmax ← max(l, dim=0) ∈ R1×KB ▷ Compute on chip
14: pp ← exp(l− lmax) ∈ RKN×KB

15: ps ← matmul(θ,pp) ∈ RKM×KB ▷ With Tensor Cores

16: cum← where(lmax > cum,

log(ps + exp(cum− lmax) + lmax,

log(exp(lmax − cum) · ps + 1) + cum)

17: lsum[ms :ms+KM , bs :be]←acc (where ms←sum_ids[m])

smallest possible number of groups while ensuring that the fraction of added pseudo-node blocks

does not exceed a pre-defined threshold. Due to space constraints, we elaborate the node block

partitioning algorithm in Sec. C.1.1.1. We also discuss its optimality and time/memory efficiency.

We move on to construct the index tensors for each group. In addition to assigning every node

an index, we create a vector θflat, a concatentation of all the PC parameters. For every sum node

block in a group with CN child node blocks, we record (i) the starting index of the sum node

block, (ii) the set of initial indices of its CN child node blocks, and (iii) the corresponding set

of CN parameter indices (that point to the first parameter in the respective block of parameters

in θflat). These parameter indices each denote the starting point for the KM×KN parameters of

the corresponding pair of sum and product node blocks. Let CM represent the total number of

node blocks in the group. Following the indices described above, we record the following tensors:

sum_ids ∈ ZCM containing indices of all sum node blocks; prod_ids, param_ids ∈ ZCM×CN ,

whose ith row represent the child indices and parameter indices of the ith sum node block (i.e., the

node block with the start index sum_ids[i]), respectively.
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Figure 4.5 (right) illustrates the compiled index tensors of the sum layer shown on the left.

Recall that we use the block sizes KM =KN = 2. The layer is then divided into two groups: the

first group including two sum node blocks, {m0,m1} and {m4,m5}, each having one child node

block, and the second group including one sum node block, {m2,m3}, which has two child node

blocks. Take, for instance, the first group. sum_ids stores the start indices (i.e., m0 and m4) of the

two sum node blocks. prod_ids stores the initial indices of the child node blocks (i.e., n0 and n4)

of the two sum node blocks, respectively. param_ids encodes the corresponding initial parameter

indices θ0 and θ2.

Partitioning a layer into groups with the same number of children allows us to use different

kernel launching hyperparameters according to the specific setup of every node group (e.g., number

of nodes) to achieve better performance.

For every group in a sum layer, the three index tensors serve as inputs to a CUDA kernel

computing the log-probabilities of the sum nodes in the group. Define lprod ∈ RN×B and lsum ∈

RM×B (B is the batch size) as the set of input and output log-probabilities, respectively. Consider

a group with CM sum node blocks and CN child node blocks per sum node block. Algorithm 9

computes the log-probabilities of the CM sum node blocks and stores the results in the proper

locations in lsum. Specifically, we also divide the B samples into blocks of size KB, leading to

CB :=B/KB blocks (assume w.l.o.g. that B is divisible by KB). Algorithm 9 schedules to launch

CM×CB thread-blocks, each responsible for computing KM×KB outputs (line 6). The main loop

in line 9 iterates over all CN child node blocks. In every step, we first load the corresponding

parameter matrix θ ∈RKM×KN (line 11) and input matrix l∈RKN×KB (line 12). Since l contains

log-probabilities, we apply a variant of the logsumexp trick: we first convert l to the arithmetic

space by subtracting the per-sample maximum log-probability (lines 13-14), then compute the

(partial) output probabilities from the current set of KM×KN edges via matrix multiplication (line

15), and in line 16 aggregate the results back to the accumulator cum defined in line 7. Finally, we

store the log-probabilities to the target locations in lsum (line 17).
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Figure 4.6: Runtime and IO overhead of a sum layer from the PD structure (with 29K nodes
and 30M edges). The results demonstrate significant performance gains from our block-based
parallelization, even with small block sizes.

4.2.3.4 Analysis: IO and Computation Overhead

We analyze the efficiency and IO complexity of our block-based parallelization strategy. Specifi-

cally, we benchmark on the largest sum layer in the PD structure adopted in Sec. 4.2.2. The layer

consists of 29K nodes and 30M edges. In addition to the computation time, we record two types

of IO overhead: (i) the IO between the L1/texture cache and the L2 cache, and (ii) the reads/writes

between the L2 cache and the GPU High-Bandwidth Memory (HBM). We vary the block sizes KM

and KN exponentially from 1 to 64. To ensure a fair comparison, we implement a dedicated kernel

for KM =KN =1, which directly parallelizes over sum node/sample pairs, allowing for better work-

load allocation. For other block sizes, we adjust KB and other kernel launching hyperparameters

(e.g., warps per block) and report the best runtime for every case. Results of the backward pass

(w.r.t. inputs) are also reported for completeness.

Results are shown in Figure 4.6. As the block size increases, both the forward and the back-

ward pass become significantly faster. Notably, this is accompanied by a significant drop in IO

overhead. Specifically, with a large block size, the kernel consumes 2x fewer reads/writes between

the L2 cache and the HBM, and 25-50x fewer IO between the L1 and L2 cache. This corroborates

the hypothesis stated in Sec. 4.2.2 that the extensive value reloads significantly slow down the

computation.
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Additionally, we note that even with small block sizes (e.g., 2 or 4), the speedup is quite

significant compared to the baseline case (KM = KN = 1), which allows us to speed up sparse

PCs. Specifically, with the observation that every sparse PC can be viewed as a block-sparse PC

with block size 1, we can transform a sparse PC into a block-sparse one, and pad zero parameters

to edges belonging to the block-sparse PC but not the sparse PC. For PCs with relatively regular

sparsity patterns, increasing the block sizes to even small values like 2 or 4 can lead to significant

speedup even though a relatively large number of pseudo edges need to be padded.

the speedup obtained by having a larger block size outpaces the overhead caused by padded

edges with zero parameters, which leads to speed-ups.

4.2.4 Optimizing Backpropagation with PC Flows

The previous section focuses on speeding up sum layers by reducing excessive memory reloads

and leveraging Tensor Cores. However, when it comes to backpropagation, directly adapting Algo-

rithm 9 by differentiating lines 13-16 would lead to poor performance due to the following. First,

we need to either store some intermediate values (e.g., lmax and pp) in the forward pass or recom-

pute them in the backward pass. Next, since different thread-blocks could access the same product

node log-probabilities in line 12, they both need to write (partial) gradients of it, which introduces

inter-thread-block barriers that slow down the execution.

We overcome the problems by leveraging PC flows [Choi et al., 2021], which is only a factor

of θn,c away from the desired gradients (Eq. 4.5). PC flows exhibit a straightforward recursive

definition, facilitating a seamless transformation into an efficient implementation for the backward

pass.

Definition 4.2 (PC flows). For a PC pnr(X) rooted at node nr and a sample x, the flow Fn(x) of

every node n is defined recursively as follows (assume that no consecutive sum nodes or product
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nodes exist in the PC):6

Fn(x) :=



1 n is the root node,∑
m∈pa(n)

Fm(x) n is input or sum,

∑
m∈pa(n)

θm,n·pn(x)
pm(x)

·Fm(x) n is a product node,

where pa(n) is the set of parents of n. Similarly, the edge flow Fn,c(x) w.r.t. the sample x (c∈ch(n))

is defined as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

While similar results have been established in a slightly different context [Peharz et al., 2020a],

we prove the following equations in Sec. C.1.4.2 for completeness:

Fn(x) =
∂ log pnr(x)

∂ log pn(x)
and Fn,c(x) = θn,c ·

∂ log pnr(x)

∂θn,c
.

Following Definition 4.2, we can compute Fn(x) for every node n utilizing the same set of

layers created for the feedforward pass. Specifically, we first set the flow of the root node to 1

following its definition. We then iterate through the layers in reverse order (i.e., parent layers

before child layers). While processing a layer, all flows of the nodes in the layer are computed by

the preceding layers. And our goal is to compute the (partial) flows of the child nodes of the layer.

Similar to the forward pass, we compile every layer by grouping child node blocks with a similar

number of parents, and use block-based parallelization to reduce reloads of parent log-probabilities.

We provide the full details of the backpropagation algorithm in Sec. C.1.2.

Another important design choice that leads to a significant reduction in memory footprint is to

recompute the product nodes’ probabilities in the backward pass instead of storing them all in the

GPU memory during the forward pass. Specifically, we maintain a scratch space on GPU HBM

that can hold the results of the largest product layer. All product layers write their outputs to this

same scratch space, and the required product node probabilities are re-computed when requested by

6If such nodes exist, we can always collapse them into a single sum or product node.
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a sum layer during backpropagation. Since product layers are extremely fast to evaluate compared

to the sum layers (e.g., see the runtime breakdown in Fig. 4.3), this leads to significant memory

savings at the cost of slightly increased computation time.

4.2.5 Experiments

We evaluate the impact of using PyJuice to train PC models. In Sec. 4.2.5.1, we compare PyJuice

against existing implementations regarding time and memory efficiency. To demonstrate its gen-

erality and flexibility, we evaluate PyJuice on four commonly used dense PC structures as well as

highly unstructured and sparse PCs. Next, we demonstrate that PyJuice can be readily used to scale

up PCs for various downstream applications in Sec. 4.2.5.2. Finally, in Sec. 4.2.5.3, we benchmark

existing PCs on high-resolution image datasets, hoping to incentivize future research to develop

better PC structures as well as learning algorithms.

4.2.5.1 Faster Models with PyJuice

We first benchmark the runtime of PyJuice on four commonly used PC structures: PD [Poon

and Domingos, 2011], RAT-SPN [Peharz et al., 2020b], HCLT [Liu and Van den Broeck, 2021],

and HMM [Rabiner and Juang, 1986]. For all models, we record the runtime to process 60,000

samples (including the forward pass, the backward pass, and mini-batch EM updates). We vary

their structural hyperparameters and create five PCs for every structure with sizes (i.e., number

of edges) ranging from 500K to 2B. We compare against four baselines: SPFlow [Molina et al.,

2019], EiNet [Peharz et al., 2020a], Juice.jl [Dang et al., 2021], and Dynamax [Murphy et al.,

2023]. Dynamax is dedicated to State Space Models so it is only used to run HMMs; SPFlow and

EiNet are excluded in the HMM results because we are unable to construct homogeneous HMMs

with their frameworks due to the need to share the transition and emission parameters at different

time steps. We describe how PyJuice implements PCs with tied parameters in Sec. C.1.3. All

experiments in this subsection are carried out on an RTX 4090 GPU with 24GB memory.
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Figure 4.7: Comparison on memory efficiency. We take two PCs (i.e., an HCLT w/ 159M edges
and an HMM w/ 130M edges) and record GPU memory usage under different block sizes.7

Table 4.1 reports the runtime in seconds per epoch with mini-batch EMs. PyJuice is orders of

magnitude faster than all baselines in both small and large PCs. Further, we observe that most base-

lines exhaust 24GB of memory for larger PCs (indicated by “OOM” in the table), while PyJuice

can still efficiently train these models. Additionally, in Sec. C.1.6.1, we show the efficiency of

the compilation process. For example, it takes only ∼8.7s to compile an HCLT with 159M edges.

Note that we only compile the PC once and then reuse the compiled structure for training and

inference.

In Figure 4.7, we take two PCs to show the GPU memory consumption with different batch

sizes. The results demonstrate that PyJuice is more memory efficient than the baselines, espe-

cially in the case of large batch sizes (note that we always need a constant-size space to store the

parameters).

We move on to benchmark PyJuice on block-sparse PCs. We create a sum layer with 209M

edges (see Appx. C.1.5.1 for details). We partition the sum and input product nodes in the layer

into blocks of 32 nodes respectively. We randomly discard blocks of 32×32 edges, resulting in

block-sparse layers. As shown in Figure 4.8, as the fraction of removed edge blocks increases, the

runtime of both the forward and the backward pass decreases significantly.

7In the adopted HMM, running Dynamax with batch size≥128 leads to internal errors, and thus the results are not
reported.
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Figure 4.8: Runtime of a block-sparse sum layer as the function of the fraction of kept (non-
dropped) edge blocks. The error bars represent standard deviations over 5 runs.

Finally, we proceed to evaluate the runtime of sparse PCs. We adopt the PC pruning algorithm

proposed by Dang et al. [2022a] to prune two HCLTs with 10M and 40M edges, respectively. We

only compare against Juice.jl since all other implementations do not support sparse PCs. As shown

in Figure 4.9, PyJuice is consistently faster than Juice.jl, despite the diminishing gap when over

90% edges are pruned. Note that with sparse PCs, PyJuice cannot fully benefit from the block-

based parallelization strategy described in Sec. 4.2.3, yet it can still outperform the baseline.
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Figure 4.9: Runtime per epoch (with 60K samples) of two sparse HCLTs with different fractions
of pruned edges. The error bars represent standard deviations over 5 runs.

4.2.5.2 Better PCs At Scale

This section demonstrates the ability of PyJuice to improve the state of the art by simply using

larger PCs and training for more epochs thanks to its speed and memory efficiency. Specifically, we

take the HMM language model proposed by Zhang et al. [2023b] and the image model introduced
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Table 4.2: Perplexity of HMM language models trained on the CommonGen benchmark [Lin et al.,
2020].

Zhang et al. [2023b] PyJuice

# hidden states 4096 4096 8192

Perplexity 9.78 8.81 8.65

by Liu et al. [2023e] as two examples.

HMM language models. Zhang et al. [2023b] use the Latent Variable Distillation (LVD) [Liu

et al., 2023b] technique to train an HMM with 4096 hidden states on sequences of 32 word tokens.

Specifically, LVD is used to obtain a set of “good” initial parameters for the HMM from deep

generative models. The HMM language model is then fine-tuned on the CommonGen dataset [Lin

et al., 2020], and is subsequently used to control the generation process of (large) language models

for constrained generation tasks. Following the same procedure, we use PyJuice to fine-tune two

HMMs with hidden sizes 4096 and 8192, respectively.

As shown in Table 4.2, by using the same HMM with 4096 hidden states, PyJuice improved the

perplexity by∼1.0 by running many more epochs in less time compared to the original model. We

also train a larger HMM with 8192 hidden states and further improved the perplexity by a further

0.16. We refer the reader to Sec. C.1.5.2 for more details.

Sparse Image Models. Liu et al. [2023e] design a PC learning algorithm that targets image

data by separately training two sets of PCs: a set of sparse patch-level PCs (e.g., 4×4 patches) and

a top-level PC that aggregates outputs of the patch-level PC. In the final training step, the PCs are

supposed to be assembled and jointly fine-tuned. However, due to the huge memory consumption

of the PC (with over 10M nodes), only the top-level model is fine-tuned in the original paper.

With PyJuice, we can fit the entire model in 24GB of memory and fine-tune the entire model. For

the PC trained on the ImageNet32 dataset [Deng et al., 2009], this fine-tuning step leads to an

improvement from 4.06 to 4.04 bits-per-dimension. See Sec. C.1.5.3 for more details.
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Table 4.3: Density estimation performance of PCs on three natural image datasets. Reported
numbers are test set bits-per-dimension.

Dataset PD-mid PD-large HCLT-mid HCLT-large

ImageNet32 5.22 5.20 4.36 4.33
ImageNet 4.98 4.95 3.57 3.53
CelebA-HQ 4.35 4.29 2.43 2.38

4.2.5.3 Benchmarking Existing PCs

We use PyJuice to benchmark the performance of the PD and the HCLT structure on three natural

image datasets: ImageNet [Deng et al., 2009] and its down-sampled version ImageNet32, and

CelebA-HQ [Liu et al., 2015b]. For all three datasets, we train the PCs on randomly sampled

16×16 patches, which results in a total of 16×16×3=768 categorical variables each with 28=256

possible values. As a preprocessing step, the image patches are converted into the YCoCg color

space since it is observed that such color space transformations lead to improved density estimation

performance. Note that due to the lossy transformation between the RGB space and the YCoCg

space, our results are not directly comparable to the results obtained from RGB images.

We adopt two PD structures (i.e., PD-mid with 107M edges and PD-large with 405M edges)

as well as two HCLT structures (i.e., HCLT-mid with 40M edges and HCLT-large with 174M

edges). Details of the adopted models are described in Sec. C.1.5.4. We experiment with different

optimization strategies and adopt full-batch EM as it yields consistently better performance across

models and datasets. Specifically, the computed PC flows are accumulated across all samples in

the training set before doing one EM step.

Results are shown in Table 4.3. Notably, we achieve better results compared to previous papers.

For example, Liu et al. [2023b] reports 4.82 bits-per-dimension (bpd) for HCLT on ImageNet32,

while we achieved 4.33 bpd. The performance improvements stem from more training epochs and

the ability to do more hyperparameter search thanks to the speedup. We highlight that the goal of

this section is not to set new records for tractable deep generative models, but to establish a set of

baselines that can be easily reproduced to track the progress of developments in PC modeling and
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learning. In Sec. C.1.5.4, we include additional benchmark results on the WikiText dataset [Merity

et al., 2016].
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CHAPTER 5

Applications

The methods developed have seen many applications. One such application is weakly-supervised

learning, where high-quality labels are often very scarce, whereas data with partial labels is more

readily available due to privacy or budget constraints. These weak labels typically dictate the

frequency of each respective class over a set of instances. The insight that we bring forth is that

such weak supervision can very often be construed as enforcing constraints on label counts of

data. At the heart of our approach is the ability to compute the probability of exactly k out of n

outputs being set to true, as well as any symmetric functions thereof. Building upon the previous

computation, we derive a count loss penalizing the model for deviations in its distribution from

an arithmetic constraint defined over label counts. Another application is learning the structure of

graph neural networks, where we proposed probabilistically rewired message-passing graph neural

networks (PR-MPNNs). Building upon SIMPLE, we learn to add relevant edges while omitting

less beneficial ones, sidestepping many of the pitfalls of state-of-the-art algorithms.

5.1 A Unified Approach to Count-Based Weakly-Supervised Learning

Weakly supervised learning [Zhou, 2018] enables a model to learn from data with restricted, par-

tial or inaccurate labels, often known as weakly-labeled data. Weakly supervised learning fulfills

a need arising in many real-world settings that are subject to privacy or budget constraints, such as

privacy sensitive data [Wojtusiak et al., 2011], medical image analysis [Bortsova et al., 2018], clin-

ical practice [Quellec et al.], personalized advertisement [Bekker and Davis, 2020] and knowledge

base completion [Galárraga et al., 2015; Zupanc and Davis, 2018], to name a few. In some settings,
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Table 5.1: A comparison of the tasks considered in the three weakly supervised settings, LLP (cf.
Section 5.1.1.1), MIL (cf. Section 5.1.1.2) and PU learning (cf. Section 5.1.1.3), against the
classical fully supervised setting for binary classification, using digits from the MNIST dataset.

instance-level labels are unavailable. Instead, instances are grouped into bags with corresponding

bag-level labels that are a function of the instance labels, e.g., the proportion of positive labels in

a bag. A key insight that we bring forth is that such weak supervision can very often be construed

as enforcing constraints on label counts of data.

More concretely, we consider three prominent weakly supervised learning paradigms. The first

paradigm is known as learning from label proportions [Quadrianto et al., 2008]. Here the weak

supervision consists in the proportion of positive labels in a given bag, which can be interpreted as

the count of positive instances in such a bag. The second paradigm, whose supervision is strictly

weaker than the former, is multiple instance learning [Maron and Lozano-Pérez, 1997; Dietterich

et al., 2001]. Here the bag labels only indicate the existence of at least one positive instance in a

bag, which can be recast as to whether the count of positive instances is greater than zero. The

third paradigm, learning from positive and unlabeled data [De Comité et al., 1999; Letouzey et al.,

2000], grants access to the ground truth labels for a subset of only the positive instances, providing

only a class prior for what remains. We can recast the class prior as a distribution of the count of

positive labels.

Leveraging the view of weak supervision as a constraint on label counts, we utilize a simple,

efficient and probabilistically sound approach to weakly-supervised learning. More precisely, we

train a neural network to make instance-level predictions that conform to the desired label counts.
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To this end, we propose a differentiable count loss that characterizes how close the network’s distri-

bution comes to the label counts; a loss which is surprisingly tractable. Compared to prior methods,

this approach does not approximate probabilities but computes them exactly. Our empirical evalu-

ation demonstrates that our proposed count loss significantly boosts the classification performance

on all three aforementioned settings.

5.1.1 Problem Formulations

In this section, we formally introduce the aforementioned weakly supervised learning paradigms.

For notation, let X ∈ Rd be the input feature space over d features and Y = {0, 1} be a binary

label space. We write x ∈ X and y ∈ Y for the input and output random variables respec-

tively. Recall that in fully-supervised binary classification, it is assumed that each feature and

label pair (x,y) ∈ X × Y is sampled independently from a joint distribution p(x,y). A classifier

f is learned to minimize the risk R(f) = E(x,y)∼p[ℓ(f(x),y)] where ℓ : [0, 1] × Y → R≥0 is

the cross entropy loss function. Typically, the true distribution p(x,y) is implicit and cannot be

observed. Therefore, a set of n training samples, D = {(xi,yi)}ni=1, is used and the empirical

risk, R̂(f) = 1
n

∑n
i=1 ℓ(f(xi),yi), is minimized in practice. In the count-based weakly supervised

learning settings, the supervision is given at a bag level instead of an instance level. We formally

introduce these settings as below.

5.1.1.1 Learning from Label Proportions

Learning from label proportions (LLP) [Quadrianto et al., 2008] assumes that each instance in the

training set is assigned to bags and only the proportion of positive instances in each bag is known.

One example is in light of the coronavirus pandemic, where infection rates were typically reported

based on geographical boundaries such as states and counties. Each boundary can be treated as a

bag with the infection rate as the proportion annotation.

The goal of LLP is to learn an instance-level classifier f : X → [0, 1] even though it is
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trained on bag-level labeled data. Formally, the training dataset consists of m bags, denoted by

D = {(Bi, ỹi)}mi=1 where each bag Bi = {xj}kj=1 consist of k instances and this k could vary

among different bags. The bag proportions are defined as ỹi =
∑k

j=1 yj/k with yj being the

instance label that cannot be accessed and only ỹi is available during training. An example is

shown in Figure 5.1b. We do not assume that the bags are non-overlapping while some existing

work suffers from this limitation including Scott and Zhang [2020].

5.1.1.2 Multiple Instance Learning

Multiple instance learning (MIL) [Maron and Lozano-Pérez, 1997; Dietterich et al., 2001] refers to

the scenario where the training dataset consists of bags of instances, and labels are provided at bag

level. However, in MIL, the bag label is a single binary label indicating whether there is a positive

instance in the bag or not as opposed to a bag proportion defined in LLP. A real-world application

of MIL lies in the field of drug activity [Dietterich et al., 2001]. We can observe the effects of a

group of conformations but not for any specific molecule, motivating a MIL setting. Formally, in

MIL, the training dataset consists of m bags, denoted by D = {(Bi, ỹi)}mi=1, with a bag consisting

of k instances, i.e., Bi = {xj}kj=1. The size k can vary among different bags. For each instance

xj , there exists an instance-level label yj which is not accessible. The bag-level label is defined as

ỹi = maxj{yj}. An example is shown in Figure 5.1c.

The main goal of MIL is to learn a model that predicts a bag label while a more challenging

goal is to learn an instance-level predictor that is able to discover positive instances in a bag. In

this work, we aim to tackle both by training an instance-level classifier whose predictions can be

combined into a bag-level prediction as the last step.

5.1.1.3 Learning from Positive and Unlabeled Data

Learning from positive and unlabeled data or PU learning [De Comité et al., 1999; Letouzey

et al., 2000] refers to the setting where the training dataset consists of only positive instances

121



Table 5.2: A summary of the labels and objective functions for all the settings considered in the
paper.

TASK LABEL LABEL LEVEL OBJECTIVE

Classical Fully Supervised Binary y Instance Level −y log p(y)− (1− y) log(1− p(y))

Learning from Label Proportion Continuous ỹ =
∑

i yi/k Bag Level − log p(
∑

ŷi = kỹ)

Multiple Instance Learning Binary ỹ = max{yi} Bag Level −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

i ŷi = 0)

Learning from Positive
and Unlabeled Data Binary ỹ Instance Level

1) DKL(Bin(k, β) ‖ p(
∑

i ŷi))
2) − log p(

∑
ŷi = kβ)

and unlabeled data, and the unlabeled data can contain both positive and negative instances. A

motivation of PU learning is persistence in the case of shifts to the negative-class distribution

[Plessis et al., 2015], for example, a spam filter. An attacker may alter the properties of a spam

email, making a traditional classifier require a new negative dataset [Plessis et al., 2015]. We note

that taking a new unlabeled sample would be more efficient, motivating PU learning. Formally,

in PU learning, the training dataset D = Dp ∪ Du where Dp = {(xi, ỹi = 1)}np

i=1 is the set of

positive instances with xi from p(x | y = 1) and ỹ denoting whether the instance is labeled, and

Du = {(xi, ỹi = 0)}nu
i=1 the unlabeled set with xi from

pu(x) = β p(x | y = 1) + (1− β) p(x | y = 0), (5.1)

where the mixture proportion β := p(y = 1 | ỹ = 0) is the fraction of positive instances among

the unlabeled population. Although the instance label y is not accessible, its information can be

inferred from the binary selection label ỹ: if the selection label ỹ = 1, it belongs to the positively

labeled set, i.e., p(y = 1 | ỹ = 1) = 1; otherwise, the instance x can be either positive or negative.

An example of such a dataset is shown in Figure 5.1d.

The goal of PU learning is to train an instance-level classifier. However, it is not straightforward

to learn from PU data and it is necessary to make assumptions to enable learning with positive and

unlabeled data [Bekker and Davis, 2020]. In this work, we make a commonly-used assumption for

PU learning, selected completely at random (SCAR), which lies at the basis of many PU learning

methods.
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Algorithm 10 Count Probability p(
∑k

i=1 ŷi = s)

Input: A set of k log probabilities {ti}ki=1 with ti := log p(ŷi = 1), the number of instances k,
and a label sum s
Output: log probabilities log p(

∑k
i=1 ŷi = s) or a set of log probability {log p(

∑k
i=1 ŷi = s)}ks=0

// A[i,m] = log p(
∑i

j=1 yj = m) ∀i, m
Initialize an array A to be −Inf everywhere
A[0, 0] = 0 // p(

∑0
j=1 yj = 0) = 1

Compute t′i ← log1mexp(ti) // log p(yi = 0)
for i = 1 to k do

for m = 0 to s do
a+ = A[i− 1,m− 1] + ti
a− = A[i− 1,m] + t′i
A[i,m] = logsumexp(a+, a−)

return A[k, s] or A[k, :]

Definition 11 (SCAR). Labeled instances are selected completely at random, independent from

input features, from the positive distribution p(x | y = 1), that is, p(ỹ = 1 | x,y = 1) = p(ỹ =

1 | y = 1).

5.1.2 A Unified Approach: Count Loss

In this section, we derive objectives for the three weakly supervised settings, LLP, MIL, and PU

learning, from first principles. Our proposed objectives bridge between neural outputs, which can

be observed as counts, and arithmetic constraints derived from the weakly supervised labels. The

idea is to capture how close the classifier is to satisfying the arithmetic constraints on its outputs.

They can be easily integrated with deep learning models, and allow them to be trained end-to-end.

For the three objectives, we show that they share the same computational building block: given

k instances {xi}ki=1 and an instance-level classifier f that predicts p(ŷi | xi) with ŷ denoting the

prediction variable, the problem of inferring the probability of the constraint on counts
∑k

i=1 ŷi = s
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is to compute the count probability defined below:

p(
k∑

i=1

ŷi = s | {xi}ki=1) :=
∑
ŷ∈Yk

J k∑
i=1

ŷi = sK k∏
i=1

p(ŷi | xi)

where J·K denotes the indicator function and ŷ denotes the vector (ŷ1, · · · , ŷk). For succinctness,

we omit the dependency on the input and simply write the count probability as p(
∑k

i=1 ŷi = s).

Next, we show how the objectives derived from first principles can be solved by using the count

probability as an oracle. We summarize all proposed objectives in Table 5.2. Later, we will show

how this seemingly intractable count probability can be efficiently computed by our proposed

algorithm.

LLP setting. Given a bag B = {xi}ki=1 of size k and its weakly supervised label ỹ, by

definition, it can be inferred that the number of positive instances (count) in the bag is kỹ. Our

objective is to minimize the negative log probability − log p(
∑

i ŷi = kỹ). Notice that when each

bag consists of only one instance, that is, when the bag-level supervisions are reduced to instance-

level ones, this objective is exactly cross-entropy loss. We further show that our method is risk-

consistent, that is, the optimal classifier under our proposed loss provides predictions consistent

with the underlying risk as in the supervised learning setting. Details of the risk analysis can be

found in Appendix D.1.1.

MIL setting. Given a bag B = {xi}ki=1 of size k and a single binary label ỹ as its weakly

supervised label, we propose a cross-entropy loss as below

ℓ(B, ỹ) = −ỹ log p(
∑

ŷi ≥ 1)− (1− ỹ) log p(
∑

ŷi = 0).

Notice that in the above loss, the probability term p(
∑

ŷi = 0) is accessible to the oracle for

computing count probability, and the other probability term p(
∑

ŷi ≥ 1) can simply be obtained

from 1− p(
∑

ŷi = 0), i.e., the same call to the oracle since all prediction variables ŷi are binary.

PU Learning setting. Recall that for the unlabeled dataDu in the training dataset, an unlabeled
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instance xi is drawn from a mixture distribution as shown in Equation 5.1 parameterized by a

mixture proportion β = p(y = 1 | ỹ = 0). Under the SCAR assumption, even though only a class

prior is given, we show that the mixture proportion can be estimated from the dataset.

Proposition 5.1. With SCAR assumption and a class prior α := p(y = 1), the mixture proportion

β := p(y = 1 | ỹ = 0) can be estimated from dataset D.

Proof. First, the label frequency p(ỹ = 1 | y = 1) denoted by c can be obtained by

c =
p(ỹ = 1,y = 1)

p(y = 1)
=

p(ỹ = 1)

p(y = 1)
(by the definition of PU learning).

that is, c = p(ỹ = 1)/α. Notice that p(ỹ = 1) can be estimated from the dataset D by counting the

proportion of the labeled instances. Thus, we can estimate the mixture proportion as below,

β =
p(ỹ = 0 | y = 1)p(y = 1)

p(ỹ = 0)
=

(1− p(ỹ = 1 | y = 1))p(y = 1)

1− p(ỹ = 1)
=

(1− c)α

1− αc
.

The probabilistic semantic of the mixture proportion is that if we randomly draw an instance xi

from the unlabeled population, the probability that the true label yi is positive would be β. Further,

if we randomly draw k instances, the distribution of the summation of the true labels
∑k

i=1 yi

conforms to a binomial distribution Bin(k, β) parameterized by the mixture proportion β, i.e.,

p(
k∑

i=1

yi = s) =

(
k

s

)
βs(1− β)k−s. (5.2)

Based on this observation, we propose an objective to minimize the KL divergence between the

distribution of predicted label sum and the binomial distribution parameterized by the mixture

proportion for a random subset drawn from the unlabeled population, that is,

DKL

(
Bin(k, β) ‖ p(

k∑
i=1

ŷi)

)
=

k∑
s=0

Bin(s; k, β) log
Bin(s; k, β)

p(
∑k

i=1 ŷi = s)
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Figure 5.1: An example of how to compute the count probability in a dynamic programming
manner. Assume that an instance-level classifier predicts three instances to have p(y1 = 1) = 0.1,
p(y2 = 1) = 0.2, and p(y3 = 1) = 0.3 respectively. The algorithm starts from the top-left cell and
propagates the results down right. A cell has its probability p(

∑i
j=0 yj = s) computed by inputs

from p(
∑i−1

j=0 yj = s) weighted by p(yi = 0), and p(
∑i−1

j=0 yj = s − 1) weighted by p(yi = 1)
respectively, as indicated by the arrows.

where Bin(s; k, β) denotes the probability mass function of the binomial distribution Bin(k, β).

Again, the KL divergence can be obtained by k + 1 calls to the oracle for computing count prob-

ability p(
∑k

i=1 ŷi = s). The KL divergence is further combined with a cross entropy defined over

labeled data Dp as in the classical binary classification training as the overall objective.

As an alternative, we propose an objective for the unlabeled data that requires fewer calls to

the oracle: instead of matching the distribution of the predicted label sum with the binomial distri-

bution, this objective matches only the expectations of the two distributions, that is, to maximize

p(
∑k

i=1 ŷi = kβ) where kβ is the expectation of the binomial distribution Bin(k, β). We present

empirical evaluations of both proposed objectives in the experimental section.

5.1.3 Tractable Computation of Count Probability

In the previous section, we show how the count probability p(
∑k

i=1 ŷi = s) serves as a computa-

tional building block for the objectives derived from first principles for the three weakly supervised

learning settings. With a closer look at the count probability, we can see that given a set of instances,

the classifier predicts an instance-level probability for each and it requires further manipulation to

obtain count information; actually, the number of joint labelings for the set can be exponential in
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the number of instances. Intractable as it seems, we show that it is indeed possible to derive a

tractable computation for the count probability based on a result from Ahmed et al. [2023c].

Proposition 5.2. The count probability p(
∑k

i=1 ŷi = s) of sampling k prediction variables that

sums to s from an unconstrained distribution p(y) =
∏k

i=1 p(ŷi) can be computed exactly in time

O(ks). Moreover, the set {p(
∑k

i=1 ŷi = s)}ks=0 can also be computed in time O(k2).

The above proposition can be proved in a constructive way where we show that the count

probability p(
∑k

i=1 ŷi = s) can be computed in a dynamic programming manner. We provide an il-

lustrative example of this computation in Figure 5.1. In practice, we implement this computation in

log space for numeric stability which we summarized as Algorithm 10, where function log1mexp

provides a numerically stable way to compute log1mexp(x) = log(1 − exp(x)) and function

logsumexp a numerically stable way to compute logsumexp(x, y) = log(exp(x) + exp(y)). No-

tice that since we show it is tractable to compute the set {p(
∑k

i=1 ŷi = s)}ks=0, for any two given

label sum s1 and s2, a count probability p(s1 ≤
∑

i ŷi ≤ s2) where the count lies in an interval, can

also be exactly and tractably computed. This implies that our tractable computation of count prob-

abilities can potentially be leveraged by other count-based applications besides the three weakly

supervised learning settings in the last section.

5.1.4 Related Work

Weakly Supervised Learning. Besides settings explored in our work there are many other weakly-

supervised settings. One of which is semi-supervised learning, a close relative to PU Learning

with the difference being that labeled samples can be both positive and negative [Zhu and Gold-

berg, 2022; Zhu, 2005]. Another is label noise learning, which occurs when our instances are

mislabeled. Two common variations involve whether noise is independent or dependent on the

instance [Frénay and Verleysen, 2013; Song et al., 2022]. A third setting is partial label learning,

where each instance is provided a set of labels of which exactly one is true [Cour et al., 2011a]. An

extension of this is partial multi-label learning, where among a set of labels, a subset is true [Xie
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and Huang, 2018].

Unified Approaches. There exists some literature in regards to “general" approaches for

weakly supervised learning. One example being the method proposed in Hüllermeier [2014],

which provides a procedure that minimizes the empirical risk on “fuzzy” sets of data. The paper

also establishes guarantees for model identification and instance-level recognition. Co-Training

and Self-Training are also examples of similar techniques that are applicable to a wide variety of

weakly supervised settings [Blum and Mitchell, 1998; Yarowsky, 1995]. Self-training involves

progressively incorporating more unlabeled data via our models prediction (with pseudo-label)

and then training a model on more data as an iterative algorithm [Karamanolakis et al., 2021]. Co-

Training leverages two models that have different views of the data and iteratively augment each

other’s training set with samples they deem as well-classified. They are traditionally applied to

semi-supervised learning but can extend to multiple instance learning settings [Lu et al., 2011; Xu

et al., 2013; Liu et al., 2023c].

LLP. Quadrianto et al. [2008] first introduced an exponential family based approach that used

an estimation of mean for each class. Others seek to minimize “empirical proportion risk” or EPR

as in Yu et al. [2014], which is centered around creating an instance-level classifier that is able to

reproduce the label proportions of each bag. As mentioned previously, more recent methods use

bag posterior approximation and neural-based approaches [Ardehaly and Culotta, 2017; Tsai and

Lin, 2020]. One such method is Proportion Loss (PL) [Tsai and Lin, 2020], which we contrast

to our approach. This is computed by binary cross entropy between the averaged instance-level

probabilities and ground-truth bag proportion.

MIL. MIL finds its earlier approaches with SVMs, which have been used quite prolifically

and still remain one of the most common baselines. We start with MI-SVM/mi-SVM [Andrews

et al., 2002] which are examples of transductive SVMs [Carbonneau et al., 2018] that seek a stable

instance classification through repeated retraining iterations. MI-SVM is an example of an instance

space method [Carbonneau et al., 2018], which identifies methods that classify instances as a

preliminary step in the problem. This is in contrast to bag-space or embedded-space methods that
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omit the instance classification step. Furthermore, Wang et al. [2018] remains one of the hallmarks

of the use of neural networks for Multi-Instance Learning. Ilse et al. [2018], utilize a similar

approach but with attention-based mechanisms.

PU learning. Bekker and Davis [2020] groups PU Learning paradigms into three main classes:

two step, biased, and class prior incorporation. Biased learning techniques train a classifier on

the entire dataset with the understanding that negative samples are subject to noise [Bekker and

Davis, 2020]. We will focus on a subset of biased learning techniques (Risk Estimators) as they

are considered state-of-the-art and relevant to us as baselines. The Unbiased Risk Estimator (uPU)

provides an alternative to the inefficiencies in manually biasing unlabeled data [du Plessis et al.,

2014; Plessis et al., 2015]. Later, Non-negative Risk Estimator (nnPU) [Kiryo et al., 2017] ac-

counted for weaknesses in the unbiased risk estimator such as overfitting.

Count Loss. To our knowledge, viewing the computation of the “bag posterior” as proba-

bilistic is new. However, the prior approaches do this implicitly. Many approaches have tried

to approximate the “bag posterior” by averaging the instance-level probabilities in a bag [Arde-

haly and Culotta, 2017; Tsai and Lin, 2020]. In MIL settings, among instance-level approaches,

the MIL-pooling is an implicit “bag posterior” computation. These include mean, max, and log-

sum-exp pooling to approximate the likelihood that a bag has at least one positive instance [Wang

et al., 2018]. But again, these are all approximations of what our computation does exactly. In PU

Learning, to our best knowledge, the view of unlabeled data as a bag annotated with the mixture

proportion is new.

Neuro-Symbolic Losses. In this paper, we have dealt with a specific form of distributional

constraint. Conversely, there has been a plethora of work exploring the integration of hard sym-

bolic constraints into the learning of neural networks. This can take the form of enforcing a hard

constraint [Ahmed et al., 2022b], whereby the network’s predictions are guaranteed to satisfy the

pre-specified constraints. Or it can take the form of a soft constraint [Xu et al., 2018a; Manhaeve

et al., 2018; Ahmed et al., 2021, 2022c,a, 2023a] whereby the network is trained with an additional

loss term that penalizes the network for placing any probability mass on predictions that violate
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Table 5.3: LLP results across different bag sizes. We report the mean and standard deviation of the
test AUC over 5 seeds for each setting. The highest metric for each setting is shown in boldface.

Dataset Dist Method 8 32 128 512

Adult [0, 12 ] PL 0.8889± 0.0024 0.8782± 0.0036 0.8743± 0.0039 0.8678± 0.0085

Adult [0, 12 ] LMMCM 0.8728± 0.0019 0.8693± 0.0047 0.8669± 0.0041 0.8674± 0.0040

Adult [0, 12 ] CL (Ours) 0.8984± 0.0013 0.8848± 0.0041 0.8743± 0.0052 0.8703± 0.0070

Adult [12 , 1] PL 0.8781± 0.0038 0.8731± 0.0035 0.8699± 0.0057 0.8556± 0.0180

Adult [12 , 1] LMMCM 0.8584± 0.0164 0.8644± 0.0052 0.8601± 0.0045 0.8500± 0.0186

Adult [12 , 1] CL (Ours) 0.8854± 0.0022 0.8738± 0.0039 0.8675± 0.0043 0.8607± 0.0056

Adult [0, 1] PL 0.8884± 0.0030 0.8884± 0.0008 0.8879± 0.0025 0.8828± 0.0051
Adult [0, 1] LMMCM 0.8831± 0.0026 0.8819± 0.0006 0.8821± 0.0017 0.8786± 0.0052

Adult [0, 1] CL (Ours) 0.8985± 0.0010 0.8891± 0.0013 0.8871± 0.0021 0.8790± 0.0056

Magic [0, 12 ] PL 0.8900± 0.0095 0.8510± 0.0032 0.8405± 0.0110 0.8332± 0.0149

Magic [0, 12 ] LMMCM 0.8918± 0.0077 0.8799± 0.0113 0.8753± 0.0157 0.8734± 0.0092

Magic [0, 12 ] CL (Ours) 0.9088± 0.0056 0.8830± 0.0097 0.8926± 0.0049 0.8864± 0.0107

Magic [12 , 1] PL 0.9066± 0.0016 0.8818± 0.0108 0.8769± 0.0101 0.8429± 0.0443

Magic [12 , 1] LMMCM 0.8911± 0.0083 0.8790± 0.0091 0.8684± 0.0046 0.8567± 0.0292

Magic [12 , 1] CL (Ours) 0.9105± 0.0020 0.8980± 0.0059 0.8851± 0.0255 0.8816± 0.0083

Magic [0, 1] PL 0.9039± 0.0029 0.8870± 0.0037 0.9002± 0.0092 0.8807± 0.0200

Magic [0, 1] LMMCM 0.9070± 0.0026 0.9048± 0.0058 0.9113± 0.0058 0.8934± 0.0097

Magic [0, 1] CL (Ours) 0.9173± 0.0018 0.9102± 0.0057 0.9146± 0.0051 0.9088± 0.0039

the constraint. While in this work we focus on discrete linear inequality constraints defined over bi-

nary variables, there is existing work focusing on hybrid linear inequality constraints defined over

both discrete and continuous variables and their tractability [Belle et al., 2015; Zeng et al., 2021,

2020b]. The development of inference algorithms for such constraints and their applications such

as Bayesian deep learning remain an active topic [Zeng and Van den Broeck, 2019; Kolb et al.,

2019; Zeng et al., 2020a; Zeng and Broeck, 2023].
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5.1.5 Experiments

In this section, we present a thorough empirical evaluation of our proposed count loss on the three

weakly supervised learning problems, LLP, MIL, and PU learning.1 We refer the readers to the

appendix for additional experimental details.

5.1.5.1 Learning from Label Proportions

We experiment on two datasets: 1) Adult with 8192 training samples where the task is to predict

whether a person makes over 50k a year or not given personal information as input; 2) Magic

Gamma Ray Telescope with 6144 training samples where the task is to predict whether the elec-

tromagnetic shower is caused by primary gammas or not given information from the atmospheric

Cherenkov gamma telescope [Dua and Graff, 2017].2

We follow Scott and Zhang [2020] where two settings are considered: one with label propor-

tions uniformly on [0, 1
2
] and the other uniformly on [1

2
, 1]. Additionally, we experiment on a third

setting with label proportions distributing uniformly on [0, 1] which is not considered in Scott and

Zhang [2020] but is the most natural setting since the label proportion is not biased toward either

0 or 1. We experiment on four bag sizes n ∈ {8, 32, 128, 512}.

Count loss (CL) denotes our proposed approach using the loss objective defined in Table 5.2 for

LLP. We compare our approach with a mutual contamination framework for LLP (LMMCM) [Scott

and Zhang, 2020] and against Proportion Loss (PL) [Tsai and Lin, 2020].

Results and Discussions We show our results in Table 5.3. Our method showcases superior

results against the baselines on both datasets and variations in bag sizes. Especially in cases with

lower bag sizes, i.e., 8, 32, CL greatly outperforms all other methodologies. Among our baselines

are methods that approximate the bag posterior (PL), which we show to be less effective than

1Code and experiments are available at https://github.com/UCLA-StarAI/CountLoss

2Publicly available at archive.ics.uci.edu/ml
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Table 5.4: MIL experiment on the MNIST dataset. Each block represents a different distribution
from which we draw bag sizes—First Block: N (10, 2), Second Block: N (50, 10), Third Block:
N (100, 20). We run each experiment for 3 runs and report mean test AUC with standard error. The
highest metric for each setting is shown in boldface.

Training Bags 50 100 150 200 300 400 500

Gated Attention 0.775± 0.034 0.894± 0.012 0.935± 0.005 0.939± 0.006 0.963± 0.002 0.959± 0.002 0.966± 0.003
Attention 0.807± 0.026 0.913± 0.006 0.940± 0.004 0.942± 0.007 0.957± 0.002 0.961± 0.005 0.965± 0.004

CL (Ours) 0.818 ± 0.024 0.906± 0.009 0.929± 0.005 0.946± 0.001 0.952± 0.004 0.962± 0.002 0.963± 0.002

Gated Attention 0.943± 0.005 0.949± 0.009 0.970± 0.005 0.977± 0.001 0.983± 0.002 0.986± 0.004 0.987± 0.002
Attention 0.936± 0.010 0.962± 0.006 0.970± 0.001 0.977± 0.002 0.981± 0.002 0.987± 0.001 0.987± 0.002
CL (Ours) 0.939± 0.010 0.960± 0.002 0.964± 0.007 0.972± 0.002 0.982± 0.003 0.982± 0.001 0.987± 0.002

Gated Attention 0.975± 0.003 0.981± 0.004 0.992± 0.002 0.987± 0.004 0.996± 0.001 0.998± 0.001 0.990± 0.004

Attention 0.984± 0.001 0.982± 0.001 0.996± 0.000 0.987± 0.007 0.992± 0.004 0.994± 0.002 0.998± 0.000

CL (Ours) 0.981± 0.007 0.989± 0.000 0.996± 0.002 0.995± 0.001 0.996± 0.002 0.993± 0.003 0.999± 0.001

Table 5.5: MIL: We report mean test accuracy, AUC, F1, precision, and recall averaged over 5
runs with std. error on the Colon Cancer dataset. The highest value for each metric is shown in
boldface.

Method Accuracy AUC F1 Precision Recall

Gated Attention 0.909± 0.014 0.908± 0.013 0.886± 0.021 0.916± 0.020 0.879± 0.020

Attention 0.893± 0.015 0.890± 0.008 0.876± 0.017 0.908± 0.016 0.879± 0.018

CL (Ours) 0.915± 0.008 0.912± 0.010 0.903± 0.010 0.936± 0.014 0.898± 0.007

optimizing the exact bag posterior with CL.

5.1.5.2 Multiple Instance Learning

We first experiment on the MNIST dataset [LeCun, 1998] and follow the MIL experimental setting

in Ilse et al. [2018]: the training and test set bags are randomly sampled from the MNIST training

and test set respectively; each bag can have images of digits from 0 to 9, and bags with the digit 9

are labeled positive. Moreover, the dataset is constructed in a balanced way such that there is an

equal amount of positively and negatively labeled bags as in Ilse et al. [2018]. The task is to train

a classifier that is able to predict bag labels; the more challenging task is to discover key instances,

that is, to train a classifier that identifies images of digit 9. Following Ilse et al. [2018], we consider
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Figure 5.2: MIL MNIST dataset experiments with decreased numbers of training bags and lower
bag size. Left: bag sizes sampled from N (10, 2); Right: bag sizes sampled from N (5, 1). We plot
the mean test AUC (aggregated over 3 trials) with standard errors for 4 bag sizes. Best viewed in
color.

three settings that vary in the bag generation process: in each setting, bags have their sizes gener-

ated from a normal distribution being N (10, 2),N (50, 10),N (100, 20) respectively. The number

of bags in training set n is in {50, 100, 150, 200, 300, 400, 500}. Thus, we have 3× 7 = 21 settings

in total. Additionally, we introduce experimental analysis on how the performance of the learning

methods would degrade as the number of bags and total samples in training set decreases, by modu-

lating the number of training bags n to be {10, 20, 30, 40} and selecting bag sizes fromN (5, 1) and

N (10, 2).

< 10−6 0.9997 < 10−6 < 10−6 6×10−6 < 10−6 < 10−6

< 10−6 < 10−6 < 10−6 < 10−6 1.0000 < 10−6

Figure 5.3: A test bag from our MIL experiments, where
we set only the digit 9 as a positive instance. Highlighted
in red are digits identified to be positive with correspond-
ing probability beneath.

We also experiment on the Colon

Cancer dataset [Sirinukunwattana

et al., 2016] to simulate a setting

where bag instances are not indepen-

dent. The dataset consists of 100 to-

tal hematoxylin-eosin (H&E) stained

images, each of which contains images of cell nuclei that are classified as one of: epithelial, in-

flammatory, fibroblast, and miscellaneous. Each image represents a bag and instances are 27× 27

patches extracted from the original image. A positively labeled bag or image is one that contains

the epithelial nuclei. For both datasets, we include the Attention and Gated Attention mecha-
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nism [Ilse et al., 2018] as baselines. We also use the MIL objective defined in Table 5.2.

Results and Discussions For the MNIST experiments, CL is able to outperform all other base-

lines or exhibit highly comparable performance for bag-level predictions as shown in Table 5.4.

A more interesting setting is to compare how robust the learning methods are if the number of

training bags decreases. Wang et al. [2018] claim that instance-level classifiers tend to lose against

embedding-based methods. However, we show in our experiment that this is not true in all cases

as seen in Figure 5.2. While Attention and Gated Attention are based on embedding, they suffer

from a more severe drop in predictive performance than CL when the number of training bags

drops from 40 to 10; our method shows great robustness and consistently outperforms all baselines.

The rationale we provide is that with a lower number of training instances, we need more supervi-

sion over the limited samples we have. Our constraint provides this additional supervision, which

accounts for the difference in performance.

We provide an additional investigation in Figure 5.3 to show that our approach learns effectively

and delivers accurate instance-level predictions under bag-level supervision. In Figure 5.3, we can

see that even though the classifier is trained on feedback about whether a bag contains the digit 9

or not, it accurately discovers all images of digit 9. To reinforce this, Table D.1 and Table D.2, in

Appendix D.1.2, show that our approach outperforms existing instance-space methods on instance-

level classification.

Our experimental results on the Colon Cancer dataset are shown in Table 5.5. We show that

both our proposed objectives are able to consistently outperform baseline methods on all metrics.

Interestingly, we do not expect CL to perform well when instances in a bag are dependent; however,

the results indicate that our count loss is robust to these settings.

5.1.5.3 Learning from Positive and Unlabeled Data
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Table 5.6: PU Learning: We report accuracy and standard deviation on a test set of unlabeled data,
which is aggregated over 3 runs. The results from CVIR, nnPU, and uPU are aggregated over 10
epochs, as in Garg et al. [2021], while we choose the single best epoch based on validation for our
approaches. The highest metric for each setting is shown in boldface.

Dataset Network CL-expect (Ours) CL (Ours) CVIR nnPU nPU

Binarized MNIST MLP 95.9± 0.15 96.4± 0.01 96.3± 0.07 96.1± 0.14 95.2± 0.19

MNIST17 MLP 98.7± 0.17 99.0± 0.19 98.7± 0.09 98.4± 0.20 98.4± 0.09

Binarized CIFAR ResNet 79.2± 0.27 80.1± 0.34 82.3± 0.18 77.2± 1.03 76.7± 0.74

CIFAR Cat vs. Dog ResNet 76.5± 1.86 74.8± 1.64 73.3± 0.94 71.8± 0.33 68.8± 0.53

Figure 5.4: MNIST17 setting for PU Learning:
We compute the average discrete distribution for
CL and CVIR, over 5 test bags, each of which
contain 100 instances. A ground truth binomial
distribution of counts is also shown.

We experiment on dataset MNIST and

CIFAR-10 [Krizhevsky and Hinton, 2009],

following the four simulated settings from

Garg et al. [2021]: 1) Binarized MNIST: the

training set consist of images of digits 0 − 9

and images with digits in range [0, 4] are pos-

itive instances while others as negative; 2)

MNIST17: the training set consist of images

of digits 1 and 7 and images with digit 1 are

defined as positive while 7 as negative; 3) Bi-

narized CIFAR: the training set consists of

images from ten classes and images from the first five classes is defined as positive instances while

others as negative; 4) CIFAR Cat vs. Dog: the training set consist of images of cats and dogs and

images of cats are defined as positive while dogs as negative. The mixture proportion is 0.5 in all

experiments. The performance is evaluated using the accuracy on a test set of unlabeled data.

As shown in Table 5.2, we propose two objectives for PU learning. Our first objective is

denoted by CL whereas the second approach is denoted by CL-expect. We compare against the

Conditional Value Ignoring Risk approach (CVIR) [Garg et al., 2021], nnPU [Kiryo et al., 2017],

and uPU [Plessis et al., 2015].
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Results and Discussions Accuracy results are presented in Table 5.6 where we can see that our

proposed methods perform better than baselines on 3 out of the 4 simulated PU learning settings.

CL-expect builds off a similar “exactly-k” count approach, which we have shown to work well in

the label proportion setting. The more interesting results are from CL where we fully leverage the

information from a distribution as supervision instead of simply using the expectation. We think of

this as applying a loss on each count weighted by their probabilities from the binomial distribution.

We provide further evidence that our proposed count loss effectively guides the classifier towards

predicting a binomial distribution as shown in Figure 5.4: we plot the count distributions predicted

by CL and CVIR as well as the ground-truth binomial distribution. We can see that CL is able to

generate the expected distribution, proving the efficacy of our approach.
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5.2 Probabilistically Rewired Message-Passing Neural Networks

Graph-structured data is prevalent across various application domains, including fields like chemo-

and bioinformatics [Barabasi and Oltvai, 2004; Jumper et al., 2021; Reiser et al., 2022], com-

binatorial optimization [Cappart et al., 2023], and social-network analysis [Easley et al., 2012],

highlighting the need for machine learning techniques designed explicitly for graphs. In recent

years, message-passing graph neural networks (MPNNs) [Kipf and Welling, 2017; Gilmer et al.,

2017; Scarselli et al., 2008b; Veličković et al., 2018] have become the dominant approach in this

area, showing promising performance in tasks such as predicting molecular properties [Klicpera

et al., 2020; Jumper et al., 2021] or enhancing combinatorial solvers [Cappart et al., 2023].

However, MPNNs have a limitation due to their local aggregation mechanism. They focus

on encoding local structures, severely limiting their expressive power [Morris et al., 2019, 2021;

Xu et al., 2019]. In addition, MPNNs struggle to capture global or long-range information, possi-

bly leading to phenomena like under-reaching [Barcelo et al., 2020] or over-squashing [Alon and

Yahav, 2021]. Over-squashing, as explained by Alon and Yahav [2021], refers to excessive infor-

mation compression from distant nodes due to a source node’s extensive receptive field, occurring

when too many layers are stacked.

Topping et al. [2021]; Bober et al. [2022] investigated over-squashing from the perspective of

Ricci and Forman curvature. Refining Topping et al. [2021], Di Giovanni et al. [2023] analyzed

how the architectures’ width and graph structure contribute to the over-squashing problem, show-

ing that over-squashing happens among nodes with high commute time, stressing the importance

of graph rewiring techniques, i.e., adding edges between distant nodes to make the exchange of

information more accessible. In addition, Deac et al. [2022]; Shirzad et al. [2023] utilized ex-

pander graphs to enhance message passing and connectivity, while Karhadkar et al. [2022] resort

to spectral techniques, and Banerjee et al. [2022] proposed a greedy random edge flip approach to

overcome over-squashing. Recent work [Gutteridge et al., 2023] aims to alleviate over-squashing

by again resorting to graph rewiring. In addition, many studies have suggested different versions
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Figure 5.5: Overview of the probabilistically rewired MPNN framework. PR-MPNNs use an
upstream model to learn priors θ for candidate edges, parameterizing a probability mass function
conditioned on exactly-k constraints. Subsequently, we sample multiple k-edge adjacency matrices
(here: k = 1) from this distribution, aggregate these matrices (here: subtraction), and use the
resulting adjacency matrix as input to a downstream model, typically an MPNN, for the final
predictions task. On the backward pass, the gradients of the loss ℓ regarding the parameters θ are
approximated through the derivative of the exactly-k marginals in the direction of the gradients of
the point-wise loss ℓ regarding the sampled adjacency matrix. We use recent work to make the
computation of these marginals exact and differentiable, reducing both bias and variance.

of multi-hop-neighbor-based message passing to maintain long-range dependencies [Abboud et al.,

2022; Abu-El-Haija et al., 2019; Gasteiger et al., 2019; Xue et al., 2023], which can also be inter-

preted as a heuristic rewiring scheme. The above works indicate that graph rewiring is an effective

strategy to mitigate over-squashing. However, most existing graph rewiring approaches rely on

heuristic methods to add edges, potentially not adapting well to the specific data distribution or

introducing edges randomly. Furthermore, there is limited understanding to what extent probabilis-

tic rewiring, i.e., adding or removing edges based on the prediction task, impacts the expressive

power of a model. In contrast to the above lines of work, graph transformers [Chen et al., 2022;

Dwivedi et al., 2022b; He et al., 2023; Müller et al., 2023; Rampášek et al., 2022] and similar

global attention mechanisms [Liu et al., 2021; Wu et al., 2021] marked a shift from local to global

message passing, aggregating over all nodes. While not understood in a principled way, empirical

studies indicate that graph transformers possibly alleviate over-squashing; see, e.g., Müller et al.

[2023]. However, due to their global aggregation mode, computing an attention matrix with n2

entries for an n-order graph makes them applicable only to small or mid-sized graphs. Further,

to capture non-trivial graph structure, they must resort to hand-engineered positional or structural
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encodings.

Overall, current strategies to mitigate over-squashing rely on heuristic rewiring methods that

may not adapt well to a prediction task or employ computationally intensive global attention mech-

anisms. Furthermore, the impact of probabilistic rewiring on a model’s expressive power remains

unclear.

Present work By leveraging recent progress in differentiable k-subset sampling [Ahmed et al.,

2023c], we derive probabilistically rewired MPNNs (PR-MPNNs). Concretely, we utilize an up-

stream model to learn prior weights for candidate edges. We then utilize the weights to parame-

terize a probability distribution constrained by so-called k-subset constraints. Subsequently, we

sample multiple k-edge adjacency matrices from this distribution and process them using a down-

stream model, typically an MPNN, for the final predictions task. To make this pipeline trainable

via gradient descent, we adapt recently proposed discrete gradient estimation and tractable sam-

pling techniques [Ahmed et al., 2023c; Niepert et al., 2021a; Xie and Ermon, 2019]; see Figure 5.5

for an overview of our architecture. Our theoretical analysis explores how PR-MPNNs overcome

MPNNs’ inherent limitations in expressive power and identifies precise conditions under which

they outperform purely randomized approaches. Empirically, we demonstrate that our approach

effectively mitigates issues like over-squashing and under-reaching. In addition, on established

real-world datasets, our method exhibits competitive or superior predictive performance compared

to traditional MPNN models and graph transformer architectures.

Overall, PR-MPNNs pave the way for the principled design of more flexible MPNNs, making

them less vulnerable to potential noise and missing information.

5.2.1 Related Work

MPNNs are inherently biased towards encoding local structures, limiting their expressive power [Mor-

ris et al., 2019, 2021; Xu et al., 2019]. Specifically, they are at most as powerful as distinguishing

non-isomorphic graphs or nodes with different structural roles as the 1-dimensional Weisfeiler–
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Leman algorithm [Weisfeiler and Leman, 1968], a simple heuristic for the graph isomorphism

problem; see Sec. 5.2.2. Additionally, they cannot capture global or long-range information, often

linked to phenomena such as under-reaching [Barcelo et al., 2020] or over-squashing [Alon and

Yahav, 2021], with the latter being heavily investigated in recent works.

Graph rewiring Several recent works aim to circumvent over-squashing via graph rewiring. Per-

haps the most straightforward way of graph rewiring is incorporating multi-hop neighbors. For

example, Brüel-Gabrielsson et al. [2022] rewires the graphs with k-hop neighbors and virtual

nodes and also augments them with positional encodings. MixHop [Abu-El-Haija et al., 2019],

SIGN [Frasca et al., 2020], DIGL [Gasteiger et al., 2019], and SP-MPNN [Abboud et al., 2022]

can also be considered as graph rewiring as they can reach further-away neighbors in a single

layer. Particularly, Gutteridge et al. [2023] rewires the graph similarly to Abboud et al. [2022] but

with a novel delay mechanism, showcasing promising empirical results. Several rewiring methods

depend on particular metrics, e.g., Ricci or Forman curvature [Bober et al., 2022] and balanced For-

man curvature [Topping et al., 2021]. In addition, Deac et al. [2022]; Shirzad et al. [2023] utilize

expander graphs to enhance message passing and connectivity, while Karhadkar et al. [2022] resort

to spectral techniques, and Banerjee et al. [2022] propose a greedy random edge flip approach to

overcome over-squashing. Refining Topping et al. [2021], Di Giovanni et al. [2023] analyzed how

the architectures’ width and graph structure contribute to the over-squashing problem, showing

that over-squashing happens among nodes with high commute time, stressing the importance of

rewiring techniques. Contrary to our proposed method, these strategies to mitigate over-squashing

either rely on heuristic rewiring methods or use purely randomized approaches that may not adapt

well to a given prediction task. Furthermore, the impact of existing rewiring methods on a model’s

expressive power remains unclear and we close this gap with our work.

There also exists a large set of works from the field of graph structure learning proposing

heuristical graph rewiring approaches; see Sec. D.2.1 for details.

Graph transformers Different from the above, graph transformers [Dwivedi et al., 2022b; He

et al., 2023; Müller et al., 2023; Rampášek et al., 2022; Chen et al., 2022] and similar global atten-
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tion mechanisms [Liu et al., 2021; Wu et al., 2021] marked a shift from local to global message

passing, aggregating over all nodes. While not understood in a principled way, empirical studies

indicate that graph transformers possibly alleviate over-squashing; see, e.g., Müller et al. [2023].

However, all transformers suffer from their quadratic space and memory requirements due to com-

puting an attention matrix.

5.2.2 Background

In the following, we provide the necessary background.

Notations Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] := {1, . . . , n} ⊂ N. We use {{. . . }} to

denote multisets, i.e., the generalization of sets allowing for multiple instances for each of its

elements. A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges

E(G) ⊆ {{u, v} ⊆ V (G) | u 6= v}. If not otherwise stated, we set n := |V (G)|, and the graph

is of order n. We also call the graph G an n-order graph. For ease of notation, we denote the

edge {u, v} in E(G) by (u, v) or (v, u). Throughout the paper, we use standard notations, e.g., we

denote the neighborhood of a vertex v by N(v) and ℓ(v) denotes its discrete vertex label, and so

on; see Sec. D.2.2 for details.

1-dimensional Weisfeiler–Leman algorithm The 1-WL or color refinement is a well-studied

heuristic for the graph isomorphism problem, originally proposed by Weisfeiler and Leman [1968].

Formally, let G = (V (G), E(G), ℓ) be a labeled graph. In each iteration, t > 0, the 1-WL com-

putes a node coloring C1
t : V (G) → N, depending on the coloring of the neighbors. That is, in

iteration t > 0, we set

C1
t (v) := RELABEL

((
C1

t−1(v), {{C1
t−1(u) | u ∈ N(v)}}

))
,

for all nodes v ∈ V (G), where RELABEL injectively maps the above pair to a unique natural

number, which has not been used in previous iterations. In iteration 0, the coloring C1
0 := ℓ. To

test if two graphs G and H are non-isomorphic, we run the above algorithm in “parallel” on both
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graphs. If the two graphs have a different number of nodes colored c ∈ N at some iteration, the

1-WL distinguishes the graphs as non-isomorphic. Moreover, if the number of colors between two

iterations, t and (t + 1), does not change, i.e., the cardinalities of the images of C1
t and C1

i+t are

equal, or, equivalently,

C1
t (v) = C1

t (w) ⇐⇒ C1
t+1(v) = C1

t+1(w),

for all nodes v and w in V (G), the algorithm terminates. For such t, we define the stable coloring

C1
∞(v) = C1

t (v), for v in V (G). The stable coloring is reached after at most max{|V (G)|, |V (H)|}

iterations [Grohe, 2017]. It is easy to see that the algorithm cannot distinguish all non-isomorphic

graphs [Cai et al., 1992]. Nonetheless, it is a powerful heuristic that can successfully test isomor-

phism for a broad class of graphs [Babai and Kucera, 1979]. A function f : V (G) → R2
d, for

d > 0, is 1-WL-equivalent if f ≡ C1
∞; see Sec. D.2.2 for details.

Message-passing graph neural networks Intuitively, MPNNs learn a vectorial representation,

i.e., a d-dimensional real-valued vector, representing each vertex in a graph by aggregating infor-

mation from neighboring vertices. Let G = (G,L) be an attributed graph, following, Gilmer et al.

[2017] and Scarselli et al. [2008a], in each layer, t > 0, we compute vertex features

h(t)
v := UPD(t)

(
h(t−1)
v ,AGG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))
∈ R2

d,

where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks,

and h
(t)
v = L⃗v. In the case of graph-level tasks, e.g., graph classification, one uses

hG := READOUT
(
{{h(T )

v | v ∈ V (G)}}
)
∈ R2

d,

to compute a single vectorial representation based on learned vertex features after iteration T .

Again, READOUT may be a differentiable parameterized function, e.g., a neural network. To

adapt the parameters of the above three functions, they are optimized end-to-end, usually through
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a variant of stochastic gradient descent, e.g., Kingma and Ba [2015], together with the parameters

of a neural network used for classification or regression.

5.2.3 Probalistically rewired MPNNs

Here, we outline probabilistically rewired MPNNs (PR-MPNNs) based on recent advancements

in discrete gradient estimation and tractable sampling techniques [Ahmed et al., 2023c]. Let An

denote the set of adjacency matrices of n-order graphs. Further, let (G, X⃗) be a n-order attributed

graph with an adjacency matrix A⃗(G) ∈ An and node attribute matrix X⃗ ∈ Rn×d, for d > 0. A

PR-MPNN maintains a (parameterized) upstream model hv : An × Rn×d → Θ, typically a neural

network, parameterized by v, mapping an adjacency matrix and corresponding node attributes to

unnormalized edge priors θ ∈ Θ ⊆ Rn×n.

In the following, we use the priors θ as parameters of a (conditional) probability mass function,

pθ(A⃗(H)) :=
n∏

i,j=1

pθij(A⃗(H)ij),

assigning a probability to each adjacency matrix in An, where pθij(A⃗(H)ij = 1) = sigmoid(θij)

and pθij(A⃗(H)ij = 0) = 1 − sigmoid(θij). Since the parameters θ depend on the input graph G,

we can view the above probability as a conditional probability mass function conditioned on the

graph G.

Unlike previous probabilistic rewiring approaches, e.g., [Franceschi et al., 2019], we introduce

dependencies between the graph’s edges by conditioning the probability mass function pθij(A⃗(H))

on a k-subset constraint. That is, the probability of sampling any given k-edge adjacency matrix

A⃗(H), becomes

p(θ,k)(A⃗(H)) :=


pθ(A⃗(H))/Z if ‖A⃗(H)‖1 = k,

0 otherwise,
with Z :=

∑
B⃗∈An : ∥B⃗∥1=k

pθ(B⃗). (5.3)
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The original graph G is now rewired into a new adjacency matrix ¯⃗
A by combining N samples

A⃗(i) ∼ p(θ,k)(A⃗(G)) for i ∈ [N ] together with the original adjacency matrix A⃗(G) using a differ-

entiable aggregation function g : A
(N+1)
n → An, i.e., ¯⃗

A := g(A⃗(G), A⃗(1), . . . , A⃗(N)) ∈ An. Subse-

quently, we use the resulting adjacency matrix as input to a downstream model fd⃗, parameterized

by d⃗, typically an MPNN, for the final predictions task.

We have so far assumed that the upstream MPNN computes one set of priors hv : An×Rn×d →

Rn×n which we use to generate a new adjacency matrix ¯⃗
A through sampling and then aggregating

the adjacency matrices A⃗(1), . . . , A⃗(N). In Sec. 5.2.5, we show empirically that having multiple

sets of priors from which we sample is beneficial. Multiple sets of priors mean that we learn an

upstream model hv : An×Rn×d → Rn×n×M where M is the number of priors. We can then sample

and aggregate the adjacency matrices from these multiple sets of priors.

Learning to sample To learn the parameters of the up- and downstream model ω = (v,u) of the

PR-MPNN architecture, we minimize the expected loss

L(A⃗(G), X⃗, y;ω) := EA⃗(i)∼p(θ,k)(A⃗(G))

[
ℓ
(
fu

(
g
(
A⃗(G), A⃗(1), . . . , A⃗(N)

)
, X⃗
)
, y
)]

,

with y ∈ Y , the targets, ℓ a point-wise loss such as the cross-entropy or MSE, and θ = hv(A⃗(G), X⃗).

To minimize the above expectation using gradient descent and backpropagation, we need to effi-

ciently draw Monte-Carlo samples from p(θ,k)(A⃗(G)) and estimate∇θL the gradients of an expec-

tation regarding the parameters θ of the distribution p(θ,k).

Sampling To sample an adjacency matrix A⃗(i) from p(θ,k)(A⃗(G)) conditioned on k-edge con-

straints, and to allow PR-MPNNs to be trained end-to-end, we use SIMPLE [Ahmed et al., 2023c],

a recently proposed gradient estimator. Concretely, we can use SIMPLE to sample exactly from the

k-edge adjacency matrix distribution p(θ,k)(A⃗(G)) on the forward pass. On the backward pass, we

compute the approximate gradients of the loss (which is an expectation over a discrete probability
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mass function) regarding the prior weights θ using

∇θL ≈ ∂θµ(θ)∇A⃗ℓ with µ(θ) := {p(θ,k)(A⃗(G)ij)}ni,j=1 ∈ Rn×n,

with an exact and efficient computation of the marginals µ(θ) that is differentiable on the backward

pass, achieving lower bias and variance. We show empirically that SIMPLE [Ahmed et al., 2023c]

outperforms other sampling and gradient approximation methods such as GUMBEL SOFTSUB-ST

[Xie and Ermon, 2019] and I-MLE [Niepert et al., 2021a], improving accuracy without incurring

a computational overhead.

Computational complexity The vectorized complexity of the exact sampling and marginal infer-

ence step is O(log k log l), where k is from our k-subset constraint, and l is the maximum number

of edges that we can sample. Assuming a constant number of layers, PR-MPNN’s worst-case

training complexity isO(l) for both the upstream and downstream models. Let n be the number of

nodes in the initial graph, and l = max({ladd, lrm}), with ladd and lrm being the maximum number

of added and deleted edges. If we consider all of the possible edges for ladd, the worst-case com-

plexity becomes O(n2). Therefore, to reduce the complexity in practice, we select a subset of the

possible edges using simple heuristics, such as considering the top ladd edges of the most distant

nodes. During inference, since we do not need gradients for edges not sampled in the forward pass,

the complexity is O(l) for the upstream model and O(L) for the downstream model, with L being

the number of edges in the rewired graph.

5.2.4 Expressive Power of Probabilistically Rewired MPNNs

We now, for the first time, explore the extent to which probabilistic MPNNs overcome the inherent

limitations of MPNNs in expressive power caused by the equivalence to 1-WL in distinguishing

non-isomorphic graphs [Xu et al., 2018b; Morris et al., 2019]. Moreover, we identify formal condi-

tions under which PR-MPNNs outperform popular randomized approaches such as those dropping

nodes and edges uniformly at random. We first make precise what we mean by probabilistically
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separating graphs by introducing a probabilistic and generally applicable notion of graph separa-

tion.

Let us assume a conditional probability mass function p : An → [0, 1] conditioned on a given

n-order graph, defined over the set of adjacency matrices of n-order graphs. In the context of

PR-MPNNs, p is the probability mass function defined in Sec. 5.2.3 but it could also be any other

conditional probability mass function over graphs. Moreover, let f : An → R2
d, for d > 0, be a

permutation-invariant, parameterized function mapping a sampled graph’s adjacency matrix to a

vector in R2
d. The function f could be the composition of an aggregation function g that removes

the sampled edges from the input graph G and of a downstream MPNN. Now, the conditional

probability mass function p separates two graphs G and H with probability ρ with respect to f if

EḠ∼p(·|G),H̄∼p(·|H)

[
f(A⃗(Ḡ)) 6= f(A⃗(H̄))

]
= ρ,

that is, if in expectation over the conditional probability distribution, the vectors f(A⃗(Ḡ)) and

f(A⃗(H̄)) are distinct with probability ρ.

In what follows, we analyze the case of p being the exactly-k probability distribution defined

in Equation 5.3 and f being the aggregation function removing edges and a downstream MPNN.

However, our framework readily generalizes to the case of node removal, and we provide these

theoretical results in the appendix. Following Sec. 5.2.3, we sample adjacency matrices with ex-

actly k edges and use them to remove edges from the original graph. We aim to understand the

separation properties of the probability mass function p(k,θ) in this setting and for various types of

graph structures. Most obviously, we do not want to separate isomorphic graphs and, therefore,

remain isomorphism invariant, a desirable property of MPNNs.

Theorem 3. For sufficiently large n, for every ε ∈ (0, 1) and k > 0, we have that for almost

all pairs, in the sense of Babai et al. [1980], of isomorphic n-order graphs G and H and all

permutation-invariant, 1-WL-equivalent functions f : An → R2
d, d > 0, there exists a probability

mass function p(θ,k) that separates the graph G and H with probability at most ε with respect to f .
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Theorem 3 relies on the fact that most graphs have a discrete 1-WL coloring. For graphs where

the 1-WL stable coloring consists of a discrete and non-discrete part, the following result shows

that there exist distributions p(θ,k) not separating the graphs based on the partial isomorphism

corresponding to the discrete coloring.

Proposition 5.3. Let ε ∈ (0, 1), k > 0, and let G and H be graphs with identical 1-WL stable

colorings. Let VG and VH be the subset of nodes of G and H that are in color classes of cardinality

1. Then, for all choices of 1-WL-equivalent functions f , there exists a conditional probability

distribution p(θ,k) that separates the graphs G[VG] and H[VH ] with probability at most ε with

respect to f .

Existing methods such as DropGNN [Papp et al., 2021] or DropEdge [Rong et al., 2020] are

more likely to separate two (partially) isomorphic graphs by removing different nodes or edges

between discrete color classes, i.e., on their (partially) isomorphic subgraphs. For instance, in

the appendix, we prove that pairs of graphs with m edges exist where the probability of non-

separation under uniform edge sampling is at most 1/m. This is undesirable as it breaks the

MPNNs’ permutation-invariance in these parts.

Now that we have established that distributions with priors from upstream MPNNs are more

likely to preserve (partial) isomorphism between graphs, we turn to analyze their behavior in sep-

arating the non-discrete parts of the coloring. The following theorem shows that PR-MPNNs are

more likely to separate non-isomorphic graphs than probability mass functions that remove edges

or nodes uniformly at random.

Theorem 4. For every ε ∈ (0, 1) and every k > 0, there exists a pair of non-isomorphic graphs G

and H with identical and non-discrete 1-WL stable colorings such that for every 1-WL-equivalent

function f ,

(1) there exists a probability mass function p(k,θ) that separates G and H with probability at

least (1− ε) with respect to f ;
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Table 5.7: Comparison between PR-MPNN and baselines on three molecular property prediction
datasets. We report results for PR-MPNN with different gradient estimators for k-subset sampling:
GUMBEL SOFTSUB-ST [Maddison et al., 2017; Jang et al., 2017; Xie and Ermon, 2019], I-MLE
[Niepert et al., 2021a], and SIMPLE [Ahmed et al., 2023c] and compare them with the base down-
stream model, and two graph transformer architectures. The variant using SIMPLE consistently
outperforms the base models and is competitive or better than the two graph transformers. We use
green for the best model, blue for the second-best, and red for third. We note with + EDGE the
instances where edge features are provided and with - EDGE when they are not.

ZINC OGBG-MOLHIV ALCHEMY

- EDGE ↓ + EDGE ↓ + EDGE ↑ + EDGE ↓

G
IN

B
A

C
K

B
O

N
E

K-ST SAT 0.166±0.007 0.115±0.005 0.625±0.039 N/A
K-SG SAT 0.162±0.013 0.095±0.002 0.613±0.010 N/A
BASE 0.258±0.006 0.207±0.006 0.775±0.011 11.12±0.690

BASE W. PE 0.162±0.001 0.101±0.004 0.764±0.018 7.197±0.094

PR-MPNNGMB (OURS) 0.153±0.003 0.103±0.008 0.760±0.025 6.858±0.090

PR-MPNNIMLE (OURS) 0.151±0.001 0.104±0.008 0.774±0.015 6.692±0.061

PR-MPNNSIM (OURS) 0.139±0.001 0.085±0.002 0.795±0.009 6.447±0.057

P
N

A

GPS N/A 0.070±0.004 0.788±0.010 N/A
K-ST SAT 0.164±0.007 0.102±0.005 0.625±0.039 N/A
K-SG SAT 0.131±0.002 0.094±0.008 0.613±0.010 N/A

(2) removing edges uniformly at random separates G and H with probability at most ε with

respect to f .

Finally, we can also show a negative result, namely that there exist classes of graphs for which

PR-MPNNs cannot do better than random sampling.

Proposition 5.4. For every k > 0, there exist non-isomorphic graphs G and H with identical

1-WL colorings such that every probability mass function p(θ,k) separates the two graphs with the

same probability as the distribution that samples edges uniformly at random.

5.2.5 Experimental Evaluation

Here, we explore to what extent our probabilistic graph rewiring leads to improved predictive

performance on synthetic and real-world datasets. Concretely, we answer the following questions.
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Figure 5.6: Comparison between PR-MPNN and DropGNN on the 4-CYCLES dataset. PR-MPNN
rewiring is almost always better than randomly dropping nodes, and is always better with 10 priors.

Q1 Can probabilistic graph rewiring mitigate the problems of over-squashing and under-reaching

in synthetic datasets?

Q2 Is the expressive power of standard MPNNs enhanced through probabilistic graph rewiring?

That is, can we verify empirically that the separating probability mass function of Sec. 5.2.4

can be learned with PR-MPNNs and that multiple priors help?

Q3 Does the increase in predictive performance due to probabilistic rewiring apply to (a) graph-

level molecular prediction tasks and (b) node-level prediction tasks involving heterophilic

data?

An anonymized repository of our code can be accessed at https://anonymous.4open.

science/r/PR-MPNN.

Datasets To answer Q1, we utilized the TREES-NEIGHBORSMATCH dataset [Alon and Yahav,

2021]. Additionally, we created the TREES-LEAFCOUNT dataset to investigate whether our method

could mitigate under-reaching issues; see Sec. D.2.5 for details. To tackle Q2, we performed ex-

periments with the EXP [Abboud et al., 2020] and CSL datasets [Murphy et al., 2019] to assess

how much probabilistic graph rewiring can enhance the models’ expressivity. In addition, we uti-

lized the 4-CYCLES dataset from Loukas [2020]; Papp et al. [2021] and set it against a standard

DropGNN model [Papp et al., 2021] for comparison while also ablating the performance difference

concerning the number of priors and samples per prior. To answer Q3 (a), we used the established
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molecular graph-level regression datasets ALCHEMY [Chen et al., 2019], ZINC [Jin et al., 2017;

Dwivedi et al., 2020], OGBG-MOLHIV [Hu et al., 2020a], QM9 [Hamilton et al., 2017], LRGB

[Dwivedi et al., 2022b] and five datasets from the TUDATASET repository [Morris et al., 2020].

To answer Q3 (b), we used the CORNELL, WISCONSIN, TEXAS node-level classification datasets

[Pei et al., 2020].

Baseline and model configurations For our upstream model hv, we use an MPNN, specifically

the GIN layer [Xu et al., 2019]. For an edge (v, w) ∈ E(G), we compute θvw = ϕ([hT
v ||hT

w]) ∈ R,

where [·||·] is the concatenation operator and ϕ is an MLP. After obtaining the prior θ, we rewire

our graphs by sampling two adjacency matrices for deleting edges and adding new edges, i.e.,

g(A⃗(G), A⃗(1), A⃗(2)) := (A⃗(G) − A⃗(1)) + A⃗(2) where A⃗(1) and A⃗(2) are two sampled adjacency

matrices with a possibly different number of edges, respectively. Finally, the rewired adjacency

matrix (or multiple adjacency matrices) is used in a downstream model fu : An × Rn×d → Y ,

typically an MPNN, with parameters u and Y the prediction target set. For the instance where

we have multiple priors, as described in Sec. 5.2.3, we can either aggregate the sampled adjacency

matrices A⃗(1), . . . , A⃗(N) into a single adjacency matrix Ā that we send to a downstream model as

described in Figure 5.5, or construct a downstream ensemble with multiple aggregated matrices

Ā1, . . . , ĀM . In practice, we always use a downstream ensemble before the final projection layer

when we rewire with more than one adjacency matrix, and we do rewiring by both adding and

deleting edges, please consult Table D.13 in the Appendix for more details.

All of our downstream models fd⃗ and base models are MPNNs with GIN layers. When we have

access to edge features, we use the GINE variant [Hu et al., 2020b] for edge feature processing. For

graph-level tasks, we use mean pooling, while for node-level tasks, we take the node embedding

h⃗T
v for a node v. The final embeddings are then processed and projected to the target space by an

MLP.

For ZINC, ALCHEMY, and OGBG-MOLHIV, we compare our rewiring approaches with the base

downstream model, both with and without positional embeddings. Further, we compare to GPS

[Rampášek et al., 2022] and SAT [Chen et al., 2022], two state-of-the-art graph transformers. For
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Figure 5.7: Example graph from the TREES-
LEAFCOUNT test dataset with radius 4 (left). PR-
MPNN rewires the graph, allowing the down-
stream MPNN to obtain the label information
from the leaves in one massage-passing step
(right).
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Figure 5.8: Test accuracy of our
rewiring method on the TREES-
NEIGHBORSMATCH [Alon and Yahav,
2021] dataset, compared to the reported
accuracies from Müller et al. [2023].

the TUDATASET, we compare with the reported scores from Giusti et al. [2023b] and use the same

evaluation strategy as in Xu et al. [2019]; Giusti et al. [2023b], i.e., running 10-fold cross-validation

and reporting the maximum average validation accuracy. For different tasks, we search for the best

hyperparameters for sampling and our upstream and downstream models. See Table D.13 in the

appendix for the complete description. For ZINC, ALCHEMY, and OGBG-MOLHIV, we evalu-

ate multiple gradient estimators in terms of predictive power and computation time. Specifically,

we compare GUMBEL SOFTSUB-ST [Maddison et al., 2017; Jang et al., 2017; Xie and Ermon,

2019], I-MLE [Niepert et al., 2021a], and SIMPLE [Ahmed et al., 2023c]. The results in terms

of predictive power are detailed in Table 5.7, and the computation time comparisons can be found

in Table D.14 in the appendix. Further experimental results on QM9 and LRGB are included

in Sec. D.2.7 in the appendix.

Experimental results and discussion Concerning Q1, our rewiring method achieves perfect test

accuracy up to a problem radius of 6 on both TREES-NEIGHBORSMATCH and TREES-LEAFCOUNT,

demonstrating that it can successfully alleviate over-squashing and under-reaching, see Figure 5.8.

For TREES-LEAFCOUNT, our model can create connections directly from the leaves to the root,

achieving perfect accuracy with a downstream model containing a single MPNN layer. We provide

a qualitative result in Figure 5.7 and a detailed discussion in Sec. D.2.5. Concerning Q2, on the

4-CYCLES dataset, our probabilistic rewiring method matches or outperforms DropGNN. This ad-

vantage is most pronounced with 5 and 10 priors, where we achieve 100% task accuracy using 20
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Table 5.8: Comparison between the base GIN
model, PR-MPNN, and other more expressive
models on the EXP dataset.

MODEL ACCURACY ↑

GIN 0.511±0.021

GIN + ID-GNN 1.000±0.000

OSAN 1.000±0.000

PR-MPNN (OURS) 1.000±0.000

Table 5.9: Comparison between the base GIN
model and probabilistic rewiring model on
CSL dataset, w/o positional encodings.

MODEL ACCURACY ↑

GIN 0.100±0.000

GIN + POSENC 1.000±0.000

PR-MPNN (OURS) 0.998±0.008

PR-MPNN + POSENC (OURS) 1.000±0.000

samples, as detailed in Figure 5.6. On the EXP dataset, we showcase the expressive power of prob-

abilistic rewiring by achieving perfect accuracy, see Table 5.8. Besides, our rewiring approach can

distinguish the regular graphs from the CSL dataset without any positional encodings, whereas the

1-WL-equivalent GIN obtains only random accuracy. Concerning Q3 (a), the results in Table 5.7

show that our rewiring methods consistently outperform the base models on ZINC, ALCHEMY, and

OGBG-MOLHIV and are competitive or better than the state-of-the-art GPS and SAT graph trans-

former methods. On TUDATASET, see Table 5.10, our probabilistic rewiring method outperforms

existing approaches and obtains lower variance on most of the datasets, with the exception being

NCI1, where our method ranks second, after the WL kernel. Hence, our results indicate that prob-

abilistic graph rewiring can improve performance for molecular prediction tasks. Concerning Q3

(b), we obtain performance gains over the base model and other existing MPNNs, see Table D.16

in the appendix, indicating that data-driven rewiring has the potential of alleviating the effects of

over-smoothing by removing undesirable edges and making new ones between nodes with similar

features. The graph transformer methods outperform the rewiring approach and the base models,

except on the TEXAS dataset, where our method gets the best result. We speculate that GIN’s

aggregation mechanism for the downstream models is a limiting factor on heterophilic data. We

leave the analysis of combining probabilistic graph rewiring with downstream models that address

over-smoothing for future investigations.
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Table 5.10: Comparison between PR-MPNN and other approaches as reported in Giusti et al.
[2023b]; Karhadkar et al. [2022]; Papp et al. [2021]. Our model outperforms existing approaches
while keeping a lower variance in most of the cases, except for NCI1, where the WL Kernel is the
best. We use green for the best model, blue for the second-best, and red for third.

MODEL MUTAG PTC_MR PROTEINS NCI1 NCI109

GK (k = 3) [SHERVASHIDZE ET AL., 2009] 81.4±1.7 55.7±0.5 71.4±0.3 62.5±0.3 62.4±0.3

PK [NEUMANN ET AL., 2016] 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A
WL KERNEL [SHERVASHIDZE ET AL., 2011] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 N/A

DGCNN [ZHANG ET AL., 2018] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A
IGN [MARON ET AL., 2019B] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5

GIN [XU ET AL., 2019] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 N/A
PPGNS [MARON ET AL., 2019A] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4

NATURAL GN [DE HAAN ET AL., 2020] 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 83.0±1.9

GSN [BOURITSAS ET AL., 2022] 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 83.5±2.3

CIN [BODNAR ET AL., 2021] 92.7±6.1 68.2±5.6 77.0±4.3 83.6±1.4 84.0±1.6

CAN [GIUSTI ET AL., 2023A] 94.1±4.8 72.8±8.3 78.2±2.0 84.5±1.6 83.6±1.2

CIN++ [GIUSTI ET AL., 2023B] 94.4±3.7 73.2±6.4 80.5±3.9 85.3±1.2 84.5±2.4

FOSR [KARHADKAR ET AL., 2022] 86.2±1.5 58.5±1.7 75.1±0.8 72.9±0.6 71.1±0.6

DROPGNN [PAPP ET AL., 2021] 90.4±7.0 66.3±8.6 76.3±6.1 81.6±1.8 80.8±2.6

PR-MPNN (10-FOLD CV) 98.4±2.4 74.3±3.9 80.7±3.9 85.6±0.8 84.6±1.2
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CHAPTER 6

Conclusion and Future Directions

This dissertation has demonstrated unmistakable strides in neuro-symbolic AI, by viewing ML

systems as inducing a distribution and reasoning about it. Still, much remains to be done.

Toward Real-Time Reasoning Modern neural network architectures have attained unprecedented

expressivity while retaining efficiency, enabling self-driving cars to perform real-time perception.

Exact neuro-symbolic AI makes use of tractable representations of constraints that make it possible

to efficiently perform reasoning on the learned distribution by means of posing and answering

probabilistic queries. These remain quite limited both in terms of the class of functions that can be

efficiently represented and the speed with which we could reason about them. I plan to investigate

exact and efficient representations when possible, developing approximate representations with

guarantees otherwise. I will also intensify systems development efforts, collaborating with systems

and software engineering colleagues to develop GPU-utilizing, sound and user-friendly systems.

Towards Ever-Changing Environments Constraints are often assumed to be given, an assump-

tion that holds true in many applications of interest, but in many other cases does not. Take for

instance a self-driving car trained on data from one city and deployed in another governed by un-

known, possibly differing traffic rules which has to learn the rules underlying the world from raw

data. This is a vital direction that should receive significant attention if we are to attain truly intelli-

gent systems. I plan to develop approaches for extracting knowledge in the form of symbolic rules

from unstructured data, collaborating with colleagues working on learning and perception.

From Single Queries to Logical Reasoning The existing literature on neuro-symbolic AI often

concerns itself with posing a single query to a probability distribution to solve a specific problem.
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There, the amount of “reasoning” involved is restricted to one-shot inference. This, however, ad-

mits a rather limited view of neuro-symbolic AI: A self-driving car should have a belief as to the

current state of the world, and that belief should be continually updated as new information is made

available, and as more reasoning is performed. I aim to move beyond answering single queries and

towards logical reasoning in a sense that involves a chain of queries interleaved with observations,

as well as actively seeking out more data to update the models beliefs.
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Appendix A

Learning with Constraints

A.1 Neuro-Symbolic Entropy Regularization

A.1.1 Compiling Logical Formulas into Tractable Circuits

At a high level, there exist off-the-shelf compilers [Choi and Darwiche, 2013; Oztok and Darwiche,

2015; Darwiche, 2004; Muise et al., 2012; Lagniez and Marquis, 2017; Toda and Soh, 2016] uti-

lizing SAT solvers, essentially through case analysis, to compile a logical formula into a tractable

logical circuit. NeSy Entropy is agnostic to the exact flavor of circuit so long as the properties

outlined in Section 2.1.2.2 are respected. In our experiments, we use PySDD1 a python SDD

compiler [Darwiche, 2011a; Choi and Darwiche, 2013]. We will now step through an example of

compiling a logical formula. Consider the circuit in Figure 2.2 encoding constraint

(A ∧ B) =⇒ C,

to be construed as encoding, animal ∧ barks =⇒ dog.

Intuitively, our aim is to transform the above logical formula into a compact target form repre-

senting all possible assignments to A,B and C satisfying the logical formula. We compile such

a constraint by proceeding in a bottom up fashion, where bottom-up compilation can be seen as

composing Boolean sub-functions whose domain is determined by a variable ordering. Concretely,

starting from circuits for literals A and B, we compile a circuit β = A ∧ B. We compose the

1https://github.com/wannesm/PySDD
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previously compiled circuit β with the circuit for literal C. We point out that this is achieved us-

ing a couple of simple API calls to a bottom-up compiler. We will now step through the actual

construction of the circuit. We introduce logical circuits representing the literals

A ¬A B ¬B C ¬C

The compiler disjoins literals A with ¬A, and B with ¬B, introducing deterministic and smooth

OR nodes.

A ¬A B ¬B

An OR node represents disjoint solutions to the logical formula, meaning there exists distinct

assignments, characterized by the children, satisfying the constraint e.g. a,¬a, b and ¬b all occur

as part of distinct solutions to the constraint.

Compilation proceeds by conjoining constraint circuits for A ∨ ¬A with B ∨ ¬B, ¬A with

B ∨ ¬B and A with ¬B.

A ¬B ¬A

A ¬A B ¬B

Decomposable AND nodes compose functions over disjoint sets of variables. These AND

nodes represent Boolean functions (A ∨ ¬A) ∧ (B ∨ ¬B), ¬A ∧ (B ∨ ¬B), and A ∧ ¬B.

The compiler disjoins ¬A∧ (B ∨¬B), with A∧¬B and (A∨¬A)∧ (B ∨¬B) with true, the

multiplicative identity, guaranteeing alternating AND and OR nodes, for convenience. It is worth

reiterating that every child of an OR node encodes disjoint solutions over the same set of variables.
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So far, we have compiled logical circuits for the formula

(¬A ∧ (B ∨ ¬B)) ∨ (A ∧ ¬B) (A.1)

as well as for the fomula

(A ∨ ¬A) ∧ (B ∨ ¬B) (A.2)

What remains is to conjoin Equation A.1 with C, and Equation A.2 with ¬C, and disjoin the

resulting circuits. What we get is a disjunction over the possible solutions of the constraint: pre-

dicting the presence of a barking animal implies the presence of a dog. Otherwise, there might or

not be a dog.

C ¬C

A ¬B ¬A

A ¬A B ¬B

Compilation techniques like the one we illustrated do not, however, escape the hardness of the

problem: the compiled circuit can be exponential in the size of the constraint, in the worst case.

In practice, however, we can obtain compact circuits because real-life logical constraints exhibit

enough structure (e.g., repeated sub-problems) that can be easily exploited by a compiler [Dar-

wiche and Marquis, 2002].
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A.2 A Pseudo-Semantic Loss for Autoregressive Models with Logical Con-

straints

A.2.1 Circuit Construction

Any logical formula can be compiled into a smooth, deterministic and decomposable logical cir-

cuit: every disjunction factorizes the solution space into mutually exclusive events whereas every

conjunction factorizes the function into two sub-functions over disjoint sets of variables. Here

is a simple albeit potentially sub-optimal recipe: order variables lexicographically. Alternate OR

and AND nodes. An OR node branches on the current variable being true or false, and has two

children: a left (right) AND node whose children are the positive (negative) literal and the subtree

corresponding to substituting the positive (negative) literal into the formula. Repeat while vari-

ables remain. We use the PySDD compiler which outputs circuits satisfying the above properties,

in addition to structured-decomposability, which asserts that functions, or constraints, over the

same variables decompose in the same manner. We say the above recipe is potentially sub-optimal

as we use a fixed variable order. In general, there can be an exponential gap in the size of the

logical circuit obtained using the worst and best variable order. Finding the best such order is, in

general, NP-hard. However, in practice, compilers (PySDD included) use search heuristics that

yield demonstrably-good orders.

A.2.2 Language Detoxification

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz,

2 NVIDIA RTX A6000, and 252 GB RAM. Our LLM detoxification experiments utilized both

GPUs using the Huggingface Accelerate [Gugger et al., 2022] library.

In order to construct our constraint, we start with the list of bad words2 and their space-prefixed

2List downloaded from here.
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variants3. We then tokenize this list of augment bad words, yielding 871 unique possibly-bad

tokens (some tokens are only bad when considered in context with other tokens), in addition to

an extra catch-all good token to which remaining tokens map to. Our constraint then disallows

all sentences containing any of the words on the augmented list, starting at any of the sentence

locations 0 through len(sentence) - len(word). The code to process the list of words, the code to

create the constraint as well as the constraint itself will be released as part of our code.

Similar to SGEAT [Wang et al., 2022], the SoTA domain-adaptive training approach to detox-

ification, we finetune our model on self-generations as opposed to any external dataset. More

specifically, we unpromptedly generate 100k samples using GPT-2 through Hugging Face [Wolf

et al., 2020], which are then filtered through Perspective API, keeping only the 50% most nontoxic

portion of the generations. We leverage the curated nontoxic corpus to further fine-tune the pre-

trained LLM with standard log-likelihood loss and adapt it to the nontoxic data domain. Unlike

the two other tasks where we use model samples, we use the toxic portion of the corpus to which

we apply our newly proposed pseudo-semantic loss. The intuition here is that the local perturba-

tions of a toxic sentence are also toxic, and these are exactly the assignments whose probability we

would like to penalize.

Our training script is adapted from that provided by Hugging Face4. We use a batch size of

16, a learning rate of 1e-5 with the AdamW optimizer [Loshchilov and Hutter, 2017] with other-

wise default parameters. We did a grid search over the pseudo-semantic loss weight in the values

{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8}. All other hyperparameters were left unchanged. Sim-

ilar to [Wang et al., 2022], we use use nucleus sampling with p = 0.9 and a temperature of 1 during

generation. A randomized 10k portion of the RealToxicityPrompts dataset was used to determine

early stopping.

For only this task, our implementation of the pseudo-semantic loss makes use of top-k to

construct the pseudo-likelihood distribution (lines 7-12 in Algorithm 4) due to the lack of computa-

3A word will be encoded differently whether it is space-prefixed or not.

4Downloaded from here.
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tional resources. We constructed our distribution using only the top-10 good words and the top-470

toxic words.

A.2.3 Sudoku

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz,

2 NVIDIA RTX A6000, and 252 GB RAM. Training utilized only one of the two GPUs.

We follow the experimental setting and dataset provided by Wang et al. [2019], consisting of

10K Sudoku puzzles, split into 9K training examples, and 1K test samples, all puzzles having 10

missing entries. Our model consists of an RNN with an input size of 9, a hidden dimension of 128,

5 layers, a tanh nonlinearity and a dropout of 0.2. We used Adam with default PyTorch parameters

and a learning rate of 3e-4. We did a grid search over the pseudo-semantic loss weight in the values

{0.01, 0.05}. Our constraint disallows any solution in which the rows, columns and square are not

unique.

A.2.4 Warcraft Shortest Path

The experiments were run on a server with an AMD EPYC 7313P 16-Core Processor @ 3.7GHz,

2 NVIDIA RTX A6000, and 252 GB RAM. Training utilized only one of the two GPUs. We

follow the experimental setting and dataset provided by Pogančić et al. [2019]. Our training set

consists of 10, 000 terrain maps curated using Warcraft II tileset. We use a CNN-LSTM model for

this task. Precisely, a ResNet-18 encodes the map to an embedding of dimension 128. An LSTM

with 1 layer, and a hidden size of 512 then predicts the next edge in the shortest path conditioned

on the input map and all previous edges. We used Adam with the default PyTorch parameters

and a learning rate of 5e-4. We did a grid search over the pseudo-semantic loss weight in the

values {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. Our constraint disallows any prediction not a valid

path connecting the upper left and lower right vertices.
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Appendix B

Guarantees Within and Without Neural Networks

B.1 Semantic Probabilistic Layers for Neuro-Symbolic Learning

B.1.1 Proofs

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and cK(Y,X) are two smooth, decompos-

able and compatible circuits, then computing Equation 3.2 can be done in O(|q| |c|) time, where

| · | denotes the circuit size. Furthermore, if they are also deterministic, then computing the MAP

state can be done in O(|q| |c|) time. .

We prove the first statement by first showing that the partition function Z(x) in Equation 3.2

can solved exactly in timeO(|q| |c|). It will then follow from it that computing Equation 3.2 can be

done inO(|q| |c|+ |q|+ |c|) ≈ O(|q| |c|) where the last two additive factors derive from evaluating

q and c for an input configuration (x,y).

To do so, we will exploit two ingredients: i) the product of q and c can be represented as a

smooth and decomposable circuit in time O(|q| |c|) [Vergari et al., 2021] and ii) any smooth and

decomposable circuit guarantees tractable marginalization in time linear in its size [Choi et al.,

2020a]. The next two propositions formalize these statements.

Proposition B.1 (Tractable product of circuits). Let q(Y;Θ) and cK(Y,X) be two smooth, decom-

posable circuits that are compatible over Y then computing their product as a circuit rΘ,K(X,Y) =

q(Y;Θ) · cK(Y,X) that is decomposable over Y can be done in O(|q| |c|). If both q and c are

also deterministic, then r is as well.
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Proof. The proof directly follows from Theorem 3.2 from Vergari et al. [2021].

Note that O(|q| |c|) is a loose upperbound and the size of r is in practice smaller [Vergari et al.,

2021].

Proposition B.2 (Tractable marginalization of circuits). Let r(X,Y) be a circuit that is smooth

and decomposable over Y with input functions over Y that can be tractably marginalized out.

Then for any variables Y′ ⊆ Y and their assignment y′, the marginalization
∑

y′ r(y′,y′′,x) can

be computed exactly in time linear in the size of r, where Y′′ = Y \Y′.

Proof. The proof follows by considering that i) the input functionals in SPLs are simple distribu-

tions such as Bernoullis and indicators and can be easily marginalized inO(1) and ii) that for every

configuration x of variables X, r(Y,x) is a circuit only over Y and therefore Proposition 2.1 from

Vergari et al. [2021] can be directly applied.

Analogously, the second statement of Theorem 1 follows from Proposition B.1 and by recalling

that the MAP state of a deterministic circuit can be computed in time linear in its size.

Proposition B.3 (Tractable MAP state of circuits (Choi et al. [2020a])). Let r(X,Y) be a circuit

that is smooth and decomposable and deterministic over Y then for a configuration x its MAP

state argmaxy r(x,y) can be computed in time O(|r|).

B.1.2 Compiling logical formulas into circuits

For our experiments we use standard compilation tools to obtain a constraint circuit starting from

a propositional logical formula in conjunctive normal form. Specifically, we use Graphillion1 to

compile the constraints in the Warcraft pathfinding experiment into an SDD. For all other experi-

ments, we use PySDD2 [pys, 2017] a python SDD compiler [Darwiche, 2011b; Choi and Darwiche,

2013].

1https://github.com/takemaru/graphillion

2https://github.com/wannesm/PySDD
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We now illustrate step-by-step one example of such a compilation for a simple logical formula.

Consider the constraint circuit c in Figure 3.3 encoding the constraint

(Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal). (B.1)

Intuitively, our aim is to compile the above logical formula into a compact form representing

all possible assignments to Ycat, Ydog, Yanimal satisfying the above constraint. We compile such a

constraint by proceeding in a bottom up fashion, where bottom-up compilation can be seen as

composing Boolean sub-functions whose domain is determined by a variable ordering, also called

vtree (see Sec. 3.1.2.3). In this example, we assume the function f(Yanimal, Ycat, Ydog) decomposes

as f1(Yanimal) · f2(Ydog) · f3(Ycat) We therefore start by compiling a constraint circuit that is a

function of Ycat and Ydog, and compose it with a constraint circuit that is a function of Yanimal We

first introduce input functionals representing indicators associated with Ycat, Ydog, Yanimal. We will

denote by Yi the indicator 1{Yi = 1} and by ¬Yi the indicator 1{Yi = 0}.

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0} 1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

We start by disjoining the indicator Ycat with ¬Ycat. This corresponds to introducing determin-

istic and smooth sum units in our circuits.

1{Y2 = 0}

1{Y2 = 1}

Deterministic sum units represent disjoint solutions to the logical formula, meaning there

exists distinct assignments, characterized by the children, that satisfy the logical constraint e.g.

Ycat, Ydog, Yanimal and ¬Ycat, Ydog, Yanimal are two distinct assignments which satisfy the constraint.

The compilation process proceeds by conjoining the constraint circuits for Ycat ∨ ¬Ycat with

Ydog, Ycat ∨ ¬Ycat with ¬Ydog, and ¬Ycat with ¬Ydog.
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1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

A decomposable product unit decomposes functions over disjoint sets of variables. The above

products represent the Boolean functions (Ycat∨¬Ycat)∧Ydog, (Ycat∨¬Ycat)∧¬Ydog, and ¬Ydog∧

¬Ycat.

We disjoin (Ycat ∨ ¬Ycat) ∧ Ydog with (Ycat ∨ ¬Ycat) ∧ ¬Ydog, and ¬Ydog ∧ ¬Ycat with true, the

logical multiplicative identity, guaranteeing alternating sum and product nodes, as mentioned in

Sec. 3.1.2.1.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

So far, we have compiled constraint circuits for the logical formulas

((Ycat ∨ ¬Ycat) ∧ Ydog) ∨ ((Ycat ∨ ¬Ycat) ∧ ¬Ydog)) (B.2)

and

¬Ydog ∧ ¬Ycat. (B.3)

What remains is to conjoin Equation B.2 with Yanimal, and Equation B.3 with ¬Yanimal, and

disjoin the resulting constraint circuits. What we get is a mixture over the possible solutions: If we
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predict there is a dog or a cat, or both, in e.g., an image, we better predict that there’s an animal.

Conversely, the absence of a dog and a cat from an image implies nothing as to the presence of an

animal in the image.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

Compilation techniques like the one we illustrated do not, however, escape the hardness of

the problem: the compiled circuit can be exponential in the size of the constraint, in the worst

case. In practice, nevertheless, we can obtain compact circuits because real-life logical constraints

exhibit enough structure (e.g., they encode repeated sub-problems) that can be easily exploited by

a compiler. We refer to the literature of compilation for details on this [Darwiche and Marquis,

2002].

B.1.3 Overparameterizing the single-circuit SPL

As mentioned in Def. 10, SPLs can be realized as a single circuit by first compiling a complex

logical constraint into a deterministic constraint circuit, and then parameterizing it using a gating

function of the network embeddings. Intuitively, this parameterization induces a probability dis-

tribution over the possible solutions of a logical formula encoded in the constraint circuit. The

expressiveness of this distribution depends on the number of parameters of the constraint circuit,

i.e., the number of weighted edges associated to sum units. As we would like to endow our single-

circuit SPL with the ability to induce complex distributions, we devise two strategies to introduce

more parameters than what the constraint circuit alone can offer: replication and mixture multipli-

cation.

Replication works by maintaining m copies of the circuit, and taking their weighted average,
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Algorithm 11 OVERPARAMETERIZE(c, k, cache, first_call)
1: Input: a smooth, deterministic, and structured-decomposable circuit c over variables X, an

overparameterization factor k, and a cache for memoization, and a flag to denote the first call
2: Output: an overparameterized, smooth, and structured-decomposable circuit c over X
3: if q ∈ cache then
4: return cache [q]

5: if c is an input unit then
6: nodes← [c]
7: else if c is a sum unit then
8: elements← [ ]
9: //For every product unit that is an input of c

10: //recursively overparameterize its inputs,
11: //which are sum units, and take their cross (cartesian) product
12: for (cL, cR) ∈ ch(c) do
13: left← OVERPARAMETERIZE(cL, k)
14: right← OVERPARAMETERIZE(cR, k)
15: elements.APPEND([CROSSPRODUCT(left, right)]

16: ch(c)← elements
17: nodes = [c] + [COPY(c) for i = 1 to k]

18: if first_call then
19: //Create a sum unit whose inputs are nodes
20: //and whose parameters are 1s.
21: nodes← SUM(nodes, {1}|nodes|i=1 )

22: cache(c)← nodes
23: return nodes

i.e., introducing a sum unit that mixes them [Peharz et al., 2020b]. Mixture multiplication, instead,

substitutes a single local marginal distribution encoded by a sub-circuit rooted into a sum unit with

k mixture models over the same scope. In practice, we create k − 1 copies of each sum units and

rewire them by computing a cross product of their inputs as in Peharz et al. [2020b]. Algorithm 11

formalizes this process.

As mentioned in Def. 10, both strategies relax determinism. However, note that they do not

alter the support of the underlying distribution. This guarantees that all the predictions will be

consistent with the encoded constraint (D3) (Sec. 3.1.1).
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B.1.4 Additional experimental details

B.1.4.1 Simple path prediction and preference learning

In the simple path prediction task, given a source and destination node in an unweighted grid

G = (V,E), the neural net needs to find the shortest unweighted path connecting them. We

consider a 4 × 4 grid. The input (x,y) is a binary vector of length |V | + |E|, with the first |V |

variables indicating the source and destination nodes, and the subsequent |E| variables indicating

a subgraph G′ ⊆ G. Each label is a binary vector of length |E| encoding the unique shortest path

in G′. For each example, we obtain G′ by dropping one third of the edges in the graph G uniformly

at random, filtering out the connected components with fewer than 5 nodes, to reduce degenerate

cases, and then sample a source and destination node uniformly at random from G′. The dataset

consists of 1600 such examples, with a 60/20/20 train/validation/test split.

In the preference learning task, given a user’s ranking over a subset of items, the network has

to predict the user’s ranking over the remaining items. We encode an ordering over n items as a

binary matrix Yij , where for each i, j ∈ 1, . . . , n, Yij indicates whether item i is the jth element in

the ordering. The input x consist of the user’s preference over 6 sushi types, and the model has to

predict the users preferences (a strict total order) over the remaining 4. We use preference ranking

data over 10 types of sushi for 5, 000 individuals, taken from [Mattei and Walsh, 2013b], and a

60/20/20 split.

We follow Xu et al. [2018a] in employing a 5-layer with 50 hidden units each and sigmoid

activation functions, and 3-layer MLP with 50 hidden units each as a baseline for the simple path

prediction, and preference learning, respectively. We equip this baselines with a FIL and addition-

ally with the Semantic Loss [Xu et al., 2018a] (MLP+LSL) or its entropic extension [Ahmed et al.,

2022c] (MLP+NESYENT).

We compile the logical constraints into an SDD [Darwiche, 2011b] and then turn it into a

constraint circuit cK that is used for LSL, NESYENT (Sec. 3.1.3) and our 1-circuit implementation

of SPLs. To obtain the results for SPL in Table 3.2, we perform a grid search using the validation
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set for a maximum of 2000 iterations, similar to Xu et al. [2018a]. We search over the learning

rates in the range {1 × 10−3, 5 × 10−3, 1 × 10−4, 5 × 10−4}, the overparameterization factor k in

the range {2, 4, 8}, as well as the number of circuit mixtures m in the range {2, 4, 8}, evaluating

the model with the best performance on the validation set.

B.1.4.2 Hierarchical Multi-Label Classification

We follow the experimental setup of Giunchiglia and Lukasiewicz [2020] and evaluate SPL on 12

real-world HMLC tasks spanning four different domains: 8 functional genomics, 2 medical images,

1 microalgea classification, and 1 text categorization. These tasks are especially challenging due

to the limited number of training samples, the large number of output classes, ranging from 56

to 4130, as well as the sparsity of the output space. We used the same train-validation-test splits

and experimental setup as [Giunchiglia and Lukasiewicz, 2020]. For numeric features we replaced

missing values by their mean, and for categorical features by a vector of zeros, and standardized

all features. We used the validation splits to determine the number of layers in the gating function

in the range {2, 4, 8}, the overparameterization factor in the range {2, 4, 8}, and the number of

mixtures in the range {2, 4, 8}, keeping all other hyperparameters fixed. The final models were

obtained by training using a batch size of 128 and early stopping with a patience of 20 on the

validation set.

B.1.4.3 Warcraft pathfinding

We evaluate SPL on the more challenging task of predicting the minimum cost path in a weighted

12 × 12 grid imposed over terrain maps of Warcraft II [Pogančić et al., 2019]. Our setting differs

from the one proposed by Pogančić et al. [2019] in two ways: i) a node only neighbors four nodes

as instead of eight, excluding the diagonals; ii) the neural network predicts the edges in the path,

as opposed to the vertices, resolving ambiguities in the previous task (note that a set of vertices can

might ambiguously encode more than one path). Each vertex is assigned a cost corresponding to
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the type of the underlying terrain (e.g., earth has lower cost than water). The minimum cost path

between the top left and the bottom right vertices of the grid is encoded as an indicator matrix, and

serves as a label.

We use Graphillion3 to compile the path constraint, limiting our constraint to the set of paths

whose length is less than 29, as determined on the training set.

As in [Pogančić et al., 2019] we use a ResNet18 [He et al., 2016b] with FIL optionally with

LSL as a baseline. Given the largest size of the compiled constraint circuit cK in this case 1010, we

use a two-circuit implementation of SPL. We use the identity function as our gating function and

do a grid search over only the number of mixtures in the range {2, 4, 8} in our model, keeping all

other hyperparameters as proposed in [Pogančić et al., 2019].

B.1.4.4 A study on the effect of overparameterization in SPL

We now illustrate the effect that overparameterization has on the performance of the single-circuit

SPL. To that end, we performed an ablation study, comparing single-circuit SPLs comprising a

different number of circuit copies m for our replication strategy, a different number of layers in the

gating function, denoted by Gates, and the overparameterization factor k as used in Algorithm 11

in our mixture multiplication strategy.

We report the exact match percentage of the predicted labels on the validation set of the 12

HMLC datasets in Table B.1. As a general trend, we can see that our overparameterization strate-

gies pay off and in general more mixture nodes help (k = 4) as well as using more replicas (m ≥ 4).

The effect of employing a deeper gating function is less striking instead, with a two-layer gating

function achieving highest performances on 9 datasets.

3https://github.com/takemaru/graphillion
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Table B.1: A comparison of the performance of single-circuit SPL with different parameters: m,
the number of circuit copies in our replication strategy; gates, the number of layers in the gat-
ing function; and k the overparameterization factor in the mixture multiplication strategy (Algo-
rithm 11). We report the percentage of exact matches of the predicted labels on the validation set of
the HMLC dataset, highlighting the best numbers in boldface. As can be seen, all datasets benefit
from overparameterization.

DATASET m: 2 m: 4 m: 8

GATES: 2 GATES: 4 GATES: 2 GATES: 4 GATES: 2 GATES: 4

k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4

CELLCYCLE 4.25 4.48 4.48 4.01 4.60 4.83 4.25 4.48 4.36 4.13 4.36 4.13

DERISI 2.26 2.02 2.14 2.26 2.49 2.26 2.38 2.38 2.49 2.38 2.26 2.49

EISEN 6.05 6.05 6.05 6.05 5.86 6.43 6.81 6.24 6.43 6.43 6.05 6.43

EXPR 5.42 4.83 5.18 5.30 4.83 5.54 5.54 5.18 5.54 5.42 5.18 5.42

GASCH1 5.56 5.79 5.67 5.91 5.44 5.67 6.03 6.26 5.79 5.79 6.26 6.03

GASCH2 4.00 4.24 4.83 4.95 4.12 4.00 4.12 4.36 4.24 3.53 4.24 4.59

SEQ 7.74 7.74 7.51 7.85 8.19 7.28 7.96 7.17 7.96 7.39 7.51 8.42

SPO 2.27 2.15 2.15 2.51 2.39 2.27 2.51 2.51 2.87 2.27 2.39 2.63

DIATOMS 53.71 54.68 50.16 51.29 53.23 52.10 49.35 48.23 52.90 52.58 46.61 47.26

ENRON 19.53 18.52 17.85 19.87 19.87 20.20 20.54 20.20 19.53 20.20 19.53 19.87

IMCLEF07A 86.97 87.03 86.27 86.60 87.00 87.33 86.50 86.70 87.07 86.90 87.00 86.83

IMCLEF07D 85.93 85.80 85.87 85.73 85.60 86.50 85.87 85.90 85.87 85.83 86.10 85.50
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GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)

cost: 55.22 cost:∞ cost:∞ cost: 55.22

cost: 57.31 cost:∞ cost:∞ cost: 58.09

cost: 30.50 cost:∞ cost:∞ cost: 30.80

cost: 39.31 cost:∞ cost:∞ cost: 45.09

Figure B.1: More examples of shortest path predictions in SPLs and competitors. SPLs
always deliver valid paths and even when these do not exact match the ground truth, they are very
close in terms of their global cost. Paths from the baselines might yield a higher Hamming score
(as they have more overlapping edges with the ground truth) but are invalid.

172



B.1.5 Timings

Table B.2: A comparison of the timings of the different methods used throughout our experiments.
All timings are in seconds. The timings for HMLC datasets are obtained by averaging over the
timings of an entire epoch. All other timings are the average over three function calls. An empty
cell, denoted by a dash, indicates the method was not used for that dataset, and therefore its timing
is unavailable.

DATASET
COMPILATION LSL NESYENT

SPLS

PARAMETERIZE CROSS-ENTROPY MAP

CELLCYCLE 68 - - 0.03 0.41 0.74

DERISI 68 - - 0.01 0.21 0.37

EISEN 29 - - 0.01 0.16 0.28

EXPR 68 - - 0.00 0.11 0.19

GASCH1 68 - - 0.02 0.42 0.77

GASCH2 68 - - 0.03 0.40 0.74

SEQ 66 - - 0.01 0.22 0.36

SPO 67 - - 0.03 0.40 0.74

DIATOMS 8 - - 0.00 0.09 0.14

ENRON 0.04 - - 0.01 0.16 0.28

IMCLEF07A 0.35 - - 0.00 0.06 0.11

IMCLEF07D 0.08 - - 0.00 0.05 0.10

WARCRAFT 457 16.30 - 0.21 14.11 15.59

PREFERENCE [XU ET AL., 2018A] 0.024 0.035 0.00 0.00 0.01

SIMPLE PATH [XU ET AL., 2018A] 0.34 0.49 0.00 0.13 0.19

B.2 SIMPLE: A Gradient Estimator for k-subset sampling

B.2.1 Proofs

Theorem 1. Let pθ(
∑

j zj = k) be the probability of exactly-k of the unconstrained distribution

parameterized by logits θ. Let αi := log pθ(zi) denote the log marginals. For every variable Zi,
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its conditional marginal is

pθ

(
zi |
∑

j zj = k
)
=

∂

∂αi

log pθ(
∑

j zj = k). (B.4)

Proof. We first rewrite the marginal pθ(
∑

i zi = k) into a summation as the probability for all

possible events by definition as follows.

pθ(
∑

j zj = k) =
∑

z:
∑

j zj=k

∏
j:zj=1 exp(αj)

∏
j:zj=0(1− exp(ᾱj)) (B.5)

Here we assume that the probability of zj = 0 is a constant term w.r.t. parameter αj , i.e., ∂
∂αj

(1−

exp(ᾱj)) = 0.4 Further, the derivative of pθ(
∑

j zj = k) w.r.t. αi is as follows,

∂

∂αi

pθ(
∑

j zj = k) =
∂

∂αi

∑
z:
∑

j zj=k∧zi=1

∏
j:zj=1

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

=
∂

∂αi

exp(αi)
∑

z:
∑

j zj=k∧zi=1

∏
j:zj=1,j ̸=i

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

= exp(αi)
∑

z:
∑

j zj=k∧zi=1

∏
j:zj=1,j ̸=i

exp(αj)
∏

j:zj=0

(1− exp(ᾱj))

= pθ(
∑

j zj = k ∧ zi = 1),

where the first equality holds since terms corresponding to zi 6= 1 has their derivative to be zero

w.r.t. αi. It further holds that

∂

∂αi

log pθ(
∑

j zj = k) =
∂

∂αi
pθ(
∑

j zj = k)

pθ(
∑

j zj = k)

=
pθ(
∑

j zj = k ∧ zi = 1)

pθ(
∑

j zj = k)

= pθ

(
zi |
∑

j zj = k
)

4In practice, this can be easily implemented. For example, in framework Tensorflow, it can be done by setting
tf.stop_gradients.
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which finishes our proof.

Proposition 3. Let Entropy be defined as in Algorithm 8. Given variables Z1, · · · , Zn and a

k-subset distribution pθ(z |
∑

i zi = k) parameterized by θ, Algorithm 8 computes entropy of

pθ (z |
∑

i zi = k).

Proof. In a slight abuse of notation, let zn denote zn = 1, and let z̄n denote zn = 0. Furthermore,

we denote by σk
n, σ

k
n−1 and σk−1

n−1 the events
∑n

i=0 = k,
∑n−1

i=0 = k and
∑n−1

i=0 = k−1, respectively.

The entropy of the k-subset distribution is given by

H(Z) = −Ez∼pθ(z|σk
n)
[log p(z)] = −

∑
z:σk

n

pθ(z | σk
n) log pθ(z | σk

n)

We start by simplifying the expression for pθ(z | σk
n), where, by the chain rule , the above is

∑
z:σk

n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) + pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)

Plugging the above in the expression for the entropy, distributing the sum over the product, we get

= −
∑
z:σk

n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n)

· log
[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn)

]
+ pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)

· log
[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n) + pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn)

]
,

where, since the two events z̄n and zn are mutually exclusive, we can simplify the above to

−
∑
z:σk

n

pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) · log

[
pθ(z̄n | σk

n) · pθ(σk
n−1 | σk

n, z̄n)
]

175



+ pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn) · log

[
pθ(zn | σk

n) · pθ(σk−1
n−1 | σk

n, zn)
]
.

Expanding the logarithms, rearranging terms, and using that conditional probabilities sum to 1 we

get

pθ(z̄n | σk
n) log pθ(z̄n | σk

n) + pθ(zn | σk
n) log pθ(zn | σk

n)

+ pθ(z̄n | σk
n) · pθ(σk

n−1 | σk
n, z̄n) log pθ(σ

k
n−1 | σk

n, z̄n)

+ pθ(zn | σk
n) · pθ(σk−1

n−1 | σk
n, zn) log pθ(σ

k−1
n−1 | σk

n, zn)

= −Ezn∼pθ(zn|σk
n)

[
− log pθ(zn | σk

n)
]
+ Ezn∼pθ(zn|σk

n)

[
H(Z :n−1|σk

n, zn)
]

= Hb(Zn | σk
n) + Ezn∼pθ(zn|σk

n)

[
H(Z :n−1|σk

n, zn)
]
.

That is, simply stated, the entropy of the k-subset distribution decomposes as the entropy of the

constrained distribution over Zn, and average entropy of the distribution on the remaining vari-

ables.

As the base case, the entropy of the k-subset distribution when k = n is 0; there is only

one way in which to pick to choose n of n variables, and the k-subset distribution is therefore

deterministic.

B.2.2 Optimized Algorithms

Algorithm 12 is the optimized version of Algorithm 5, both of which compute the marginal prob-

ability of the exactly-k constraint. Algorithm 13 is the optimized version of Algorithm 6, both of

which sample faithfully from the k-subset distribution.
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Algorithm 12 PrExactlyk(θ, l, u, k)

Input: The logits θ of the distribution, range

of variable indices [l, u], and the subset size

k

Output: The exact marginal probability of vari-

ables summing up to k, P (
∑u

i=l Xi = k)

if l > u then return 0

if l = u then return pθ(Xl = k)

for m = 0 to k do

pm = PrExactlyk(θ, l, bu/2c,m)∗

PrExactlyk(θ, bu/2c+1, u, k−m)

return
∑k

m=0 pm

Algorithm 13 Sample(θ, l, u, k)

Input: The logits θ of the distribution, range

of variable indices [l, u], and the subset size

k

Output: A sample z = (z1, . . . , zn) from

pθ(z |
∑

i zi = k)

define p(x = m) = pm, m = 0, · · · , k

// with pm as defined in Algorithm 12

sample m∗ from p

zl:⌊u/2⌋ = Sample(θ, l, bu/2c,m∗)

z⌊u/2⌋+1:u = Sample(θ, bu/2c+1, u, k−m∗)

return Concat(zl:⌊u/2⌋, z⌊u/2⌋+1:u)

B.2.3 Experimental Details

B.2.3.1 Synthetic Experiments

In this experiment we analyzed the behavior of various discrete gradient estimators for the k-subset

distribution. We were interested in three different metrics: the bias of the the gradients estimators,

the variance of the gradient estimators, as well as the average deviation of each estimated gradient

from the exact gradient. We used cosine distance, defined as 1− cosine similarity as our measure

of distance, as we typically care about the direction, not the magnitude of the gradient; the latter

can be recovered using an appropriate learning rate. Following Niepert et al. [2021b], we chose a

tractable 5-subset distribution, where n = 10, and were therefore limited to
(
10
5

)
= 252 possible

subsets. We set the loss to L(θ) = Ez∼pθ(z|
∑

i zi=k)[‖z − b‖2], where b is the groundtruth logits

sampled from N (0, I). We used a sample size of 10000 to estimate each of our metrics.
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B.2.3.2 Discrete Variational Auto-Encoder

We tested our SIMPLE gradient estimator in the discrete k-subset Variational Auto-Encoder (VAE)

setting, where the latent variables model a probability distribution over k-subsets, and has a di-

mensionality of 20. The experimental setup is similar to those used in prior work on the Gumbel

softmax tricks [Jang et al., 2017] and IMLE [Niepert et al., 2021b] The encoding and decoding

functions of the VAE consist of three dense layers (encoding: 512-256-20x20; decoding: 256-512-

784). As is commonplace in discrete VAEs, the loss is the sum of the reconstruction loss (binary

cross-entropy loss on output pixels) and KL divergence of the k−subset distribution and the uni-

form distribution, known as the evidence lower bound, or the ELBO. The task being to learn a

sparse generative model of MNIST. As in prior work, we use a batch size of 100 and train for

100 epochs, plotting the test loss after each epoch. We use the standard Adam settings in Ten-

sorflow 2.x, and do not employ any learning rate scheduling. The encoder network consists of

an input layer with dimension 784 (we flatten the images), a dense layer with dimension 512 and

ReLu activation, a dense layer with dimension 256 and ReLu activation, and a dense layer with

dimension 400(20 × 20) which outputs θ and no non-linearity SIMPLE takes θ as input and out-

puts a discrete latent code of size 20 × 20. The decoder network, which takes this discrete latent

code as input, consists of a dense layer with dimension 256 and ReLu activation, a dense layer

with dimension 512 and ReLu activation, and finally a dense layer with dimension 784 returning

the logits for the output pixels. Sigmoids are applied to these logits and the binary cross-entropy

loss is computed. To obtain the best performing model of each of the compared methods, we

performed a grid search over the learning rate in the range [1 × 10−3, 5 × 10−4], λ in the range

[1×10−3, 1×10−2, 1×10−1, 1×100, 1×101, 1×102, 1×103], and for SoG I-MLE, the temparature

τ in the range [1× 10−1, 1× 100, 1× 101, 1× 102]

We will now present a formal proof on how to compute the KL-divergence between the k-

subset distribution and a uniform distribution tractably and exactly.

Proposition B.4. Let pθ (z |
∑

i zi = k) be a k-subset distribution parameterized by θ and U(z)
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be a uniform distribution on the constrained space C = {z |
∑

i zi = k}. Then the KL-divergence

between distribution pθ (z |
∑

i zi = k) and U(z) can be computed by

DKL(pθ(z |
∑
i

zi = k) || U(z)) = −H(z) + log

(
n

k

)
,

where H denote the entropy of distribution pθ (z |
∑

i zi = k).

Proof. By the definition of KL divergence, it holds that

DKL(pθ(z |
∑
i

zi = k) || U(z))

=
∑
z∈C

pθ(z |
∑
i

zi = k) · log pθ(z |
∑

i zi = k)

U(z)

= (
∑
z∈C

pθ(z |
∑
i

zi = k) log pθ(z |
∑
i

zi = k))−
∑
z∈C

pθ(z |
∑
i

zi = k) logU(z)

= −H(z) + log

(
n

k

)
.

The last equality holds since U(z) ≡ 1/
(
n
k

)
.

B.2.3.3 Learning to Explain

The BEERADVOCATE dataset [McAuley et al., 2012] consists of free-text reviews and ratings

for 4 different aspects of beer: appearance, aroma, palate, and taste. The training set has 80k

reviews for the aspect APPEARANCE and 70k reviews for all other aspects. The maximum review

length is 350 tokens. We follow Niepert et al. [2021b] in computing 10 different evenly sized

validation/test splits of the 10k held out set and compute mean and standard deviation over 10

models, each trained on one split. In addition to the ratings for all reviews, each sentence in the

test set contains annotations of the words that best describe the review score with respect to the

various aspects. Following the experimental setup of recent work [Paulus et al., 2020; Niepert

et al., 2021b], we address the problem introduced by the L2X paper [Chen et al., 2018] of learning
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a k-subset distribution over words that best explain a given aspect rating. Subset precision was

computed using a set of 993 annotated reviews. We use pre-trained word embeddings from Lei

et al. [2016]5 We use the standard neural network architecture from prior work Chen et al. [2018];

Paulus et al. [2020] with 4 convolutional and one dense layer. This neural network outputs the

parameters θ of the k-subset distribution over k-hot binary latent masks with k ∈ {5, 10, 15}.

We train for 20 epochs using the standard Adam settings in Tensorflow 2.x, and no learning rate

schedule. We always evaluate the model with the best validation MSE among the 20 epochs.

5http://people.csail.mit.edu/taolei/beer/.
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Appendix C

Scaling

C.1 Scaling Tractable Probabilistic Circuits: A Systems Perspective

C.1.1 Algorithm Details

In this section, we provide additional details of the design of PyJuice. Specifically, we introduce the

layer partitioning algorithm that divides a layer into groups of node blocks with a similar number

of children in Sec. C.1.1.1, and describe the details of the backpropagation algorithm in Sec. C.1.2.

C.1.1.1 The Layer Partitioning Algorithm

The layer partitioning algorithm receives as input a vector of integers nchs where each number

denotes the number of child node blocks connected to a node block in the layer. It also receives

as input the maximum number of groups to be considered (denoted G) and a sparsity tolerance

threshold tol ∈ (0, 1]. Our goal is to search for a set of n (at most G) groups with capacities

g1, . . . , gn, respectively. Every number in nchs is then placed into the group with the smallest

capacity it can fit in. Every number in nchs must fit in a group. Assume there are ki numbers

assigned to group i, the overhead/cost w.r.t. a partitioning {g1, . . . , gn} is defined as
∑

i∈[n] ki ·gi.

Our goal is to find a partitioning with overhead smaller than sum(nchs)·(1+tol).
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Algorithm 14 Partition a layer into groups
1: Inputs: a list of child node (block) counts of the current layer nchs∈ZN (N is the number of node blocks in the layer)

2: Inputs: the maximum number of groups G, the sparsity tolerance threshold tol∈(0, 1]

3: uni_nchs, counts ← unique(nchs, sorted = True) (get the unique values and their appearance counts; we require the

numbers in uni_nchs to be sorted in ascending order)

4: L← length(uni_nchs)

5: target_overhead← ⌈sum(uni_nchs ∗ counts) ∗ (1.0 + tol)⌉ (get the target overhead)

6: cum_counts← cumsum(counts)

7: dp, backtrace← (0)L×G+1 ∈ RL×G+1, (0)L×G+1 ∈ ZL×G+1

8: for i = 0 to L− 1 do
9: dp[i, 1]← uni_nchs[i] ∗ cum_counts[i]

10: # Main DP algorithm

11: target_n_group← G

12: for n_group = 2 to G do

13: dp[0, n_group]← uni_nchs[0] ∗ cum_counts[0]

14: backtrace[0, n_group]← 0

15: for i = 1 to L− 1 do

16: min_overhead, best_idx← inf,−1

17: for j = 0 to i− 1 do

18: curr_overhead← dp[j, n_group− 1] + uni_nchs[i] ∗ (cum_counts[i]− cum_counts[j])

19: if curr_overhead < min_overhead then

20: min_overhead, best_idx← curr_overhead, j

21: dp[i, n_group], backtrace[i, n_group]← min_overhead, best_idx

22: if dp[−1, n_group] <= target_overhead then

23: target_n_group← n_group

24: # Backtrace

25: group_sizes← (0)target_n_group ∈ Ztarget_n_group

26: i← L− 1

27: for n = target_n_group to 1 do

28: group_sizes[n− 1]← i

29: i← backtrace[i, target_n_group]

30: return group_sizes

We use a dynamic programming algorithm that is based on the following main idea. We first

sort the numbers in nchs in ascending order. Denote L as the size of nchs, we maintain a scratch

table of size L× G whose ith row and jth column indicates the best possible overhead achieved by

the first i numbers in nchs when having in total at most j partitions. The update formula of the DP
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table is

dp[i, j]← min
k∈[i−1]

dp[k, j − 1] + nchs[i] · (i− k), (C.1)

where we try to find the best place (k) to put a new group/partition. By simultaneously maintaining

a matrix for backtracking, we can retrieve the best partition found by the algorithm.

The algorithm is shown in Algorithm 14. A practical trick to speed it up is to coalesce the

identical values in nchs as done in line 3. Lines 7-9 initialize the buffers, and lines 11-23 are the

main loop of the DP algorithm. Finally, the result partitioning is retrieved using lines 25-29.

Theoretical guarantee. Algorithm 14 is guaranteed to find an optimal grouping given a

pre-specified number of groups, and is fairly efficient in practice. We formally state the problem

in the following and provide the proof and analysis as follows.

As described in Appendix A.1, the grouping algorithm essentially takes as input a list of “#

child node blocks” for each parent node block in a layer, and the goal is to partition all parent node

blocks into K groups such that we minimize the following cost: the sum of the cost of each group,

where the cost of a group is the maximum “# child node blocks” in the group times the number of

parent node blocks in the group. In the following, we first demonstrate that the proposed dynamic

programming (DP) algorithm (Algorithm 2) can retain the optimal cost for every K. We then

proceed to analyze the time and space complexity of the algorithm.

To simplify notations, we assume the input is a vector of integers [n1, . . . , nN ]. We assume

without loss of generality that the numbers are sorted because if not, we can apply any sorting

algorithm. The main idea of the DP algorithm is to maintain a table termed dp of size N times K,

where dp[i, j] indicates the optimal cost when partitioning the first i integers into j groups. For the

base cases, we can set dp[i, 1] = ni(∀i) and dp[1, j] = n1(∀j). For the inductive case, we have

Equation C.1. It is straightforward to verify that when dp[k, j − 1](∀k ∈ [1, i − 1]) are optimal,

dp[i, j] is also optimal. Therefore, for any K, Algorithm 14 computes the optimal grouping strategy

for K groups.
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Efficiency. We then focus on the runtime. Given N and K, Algorithm 14 requires O(KN2)

runtime and O(KN) memory, which is undesired for large N (in practice, we set K to be smaller

than 10). However, as demonstrated in Algorithm 14 (line 3), we only need to enumerate through

the unique values in [n1, . . . , nN ], which could potentially lower the computation cost significantly.

Even when we are dealing with highly non-structured PCs, we can always round the numbers up

to a minimum integer that is divisible by a small integer such as 10. This allows us to achieve a

decent approximated solution with much less computation time.

C.1.2 Details of the Backpropagation Algorithm for Sum Layers

Algorithm 15 Backward pass of a sum layer group w.r.t. parameters
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector

θflat, sum_ids, prod_ids, param_ids

2: Inputs: # sum nodes: M , # product nodes: N , batch size: B

3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively

4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of params fparams

6: Kernel launch: schedule to launch CM × CN thread-blocks with m=0, . . . , CM−1 and n=0, . . . , CN−1

7: cum← (0)KM×KN∈ RKM×KN ▷ Scratch space on SRAM

8: ms, me← sum_ids[m], sum_ids[m] +KM

9: ns, ne← prod_ids[m, n], prod_ids[m, n] +KN

10: for b = 0 to CB−1 do

11: bs, be← b ·KB , (b+ 1) ·KB ▷ Start and end batch index

12: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM

13: Load lp← lprod[ns :ne, bs :be]∈RKN×KB to SRAM

14: log_nf← log(f s)− ls

15: log_nf_max← max(log_nf, dim=0) ∈ R1×KB ▷ Compute on chip

16: log_nf_sub← exp(log_nf− log_nf_max) ∈ RKM×KB

17: scaled_emars← transpose(exp(pp + log_nf_max)) ∈ RKB×KN

18: partial_flows← matmul(log_nf_sub, scaled_emars) ∈ RKM×KN ▷ With Tensor Cores

19: cum← cum+ partial_flows

20: ps, pe← param_ids[m, n], param_ids[m, n] +KM ·KN

21: fparams[ps :pe]← fparams[ps :pe] + θflat[ps :pe] ∗ cum.view(KM ∗KN )
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We compute the backward pass with respect to the inputs and the parameters of the sum layer in

two different kernels as we need two different layer partitioning strategies to improve efficiency. In

the following, we first introduce the backpropagation algorithm for the parameters since it reuses

the index tensors compiled for the forward pass (i.e., sum_ids, prod_ids, and param_ids).

The algorithm is shown in Algorithm 15. In addition to the log-probabilities of the product

nodes (i.e., lprod), the log-probabilities of the sum nodes (i.e., lsum), and the flattened parameters

(i.e., θflat), the algorithm takes as input the flows fsum computed for the sum nodes. Following

Definition 4.2, we can compute the flow w.r.t. the sum parameters as

Fn,c(x) := θn,c · pc(x)/pn(x) · Fn(x).

Similar to Algorithm 9, we partition the sum nodes, product nodes, and samples into blocks of size

KM , KN , and KB, respectively. We schedule to launch CM×CN thread-blocks, each responsible for

computing the parameter flows for a block of KM×KN parameter flows. The main loop (line 10)

iterates through blocks of KB samples. In every iteration, we first load the log-probabilities (i.e.,

ls and lp) and the sum node flows (i.e., f s) to compute the partial flow pc(x)/pn(x) · Fn(x) for

the block of samples (note that this equals Fn,c(x)/θn,c. The partial flows are accumulated in the

matrix cum initialized in line 7. After processing all blocks of samples, we add back the parameter

flows by accumulating cum ∗ [the corresponding parameters] in line 21.

As elaborated in Sec. 4.2.4, if we use the same set of index tensors used in the forward pass,

we have the problem of different thread-blocks needing to write (partial) flows to the same input

product node blocks. Therefore, we do a separate compilation step for the backward pass. Consider

a sum layer with sum node blocks of size KM and child product node blocks of size KN . We first

partition the CN children into groups such that every child node block in a group has a similar

number of parents. This is done by the dynamic programming algorithm described in Sec. C.1.1.1.

Similar to the compilation procedure of the forward pass, for a group with CN child node blocks

(assume every block has CM blocks of parents), we generate three index tensors: ch_ids ∈ ZCN
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and par_ids, par_param_ids∈ZCN×CM . ch_ids contains the initial index of all CN child node

blocks belonging to the group. For the ith node block in the group (i.e., the product node block with

the initial index ch_ids[i]), par_ids[i, :] encode the start indices of its parent sum node blocks,

and par_param_ids[i, :] represent the corresponding initial parameter indices.

The main algorithmic procedure is very similar to Algorithm 9. Specifically, the kernel sched-

ules to launch CN×CB thread-blocks each computing a block of KN×KB product node flows. In the

main loop (line 9), we iterate through all CM parent node blocks. In lines 13-16, we are essentially

computing θn,c/pn(x) · Fn(x) (notations inherited from Definition 4.2) for the block of KN×KB

values using the logsumexp trick. Finally, we store the results back to fprod.

Algorithm 16 Backward pass of a sum layer group w.r.t. inputs
1: Inputs: log-probs of product nodes lprod, log-probs of sum nodes lsum, flows of sum nodes fsum, flattened parameter vector

θflat, ch_ids, par_ids, par_param_ids
2: Inputs: # sum nodes: M , # product nodes: N , batch size: B
3: Inputs: block sizes KM , KN , KB for the sum node, product node, and batch dimensions, respectively
4: Inputs: number of sum node blocks CM ; number of product node blocks CN ; number of batch blocks CB

5: Outputs: flows of inputs fprod
6: Kernel launch: schedule to launch CN × CB thread-blocks with n=0, . . . , CN−1 and b=0, . . . , CB−1
7: cum← (−∞)KN×KB∈ RKN×KB ▷ Scratch space on SRAM
8: bs, be← b ·KB , (b+ 1) ·KB

9: for m = 0 to CM−1 do
10: ps, pe← par_param_ids[n, m]
11: Load f s←fsum[ms :me, bs :be] ∈ RKM×KB and ls← lsum[ms :me, bs :be] ∈ RKM×KB to SRAM
12: Load θ←transpose(θflat[ps :pe].view(KM ,KN ))∈RKN×KM to SRAM
13: log_nf← log(f s)− ls

14: log_nf_max← max(log_nf, dim=0) ∈ R1×KB ▷ Compute on chip
15: log_nf_sub← exp(log_nf− log_nf_max) ∈ RKM×KB

16: partial_flows← matmul(θ, log_nf_sub) ∈ RKM×KN ▷ With Tensor Cores

17:

cum← where(log_nf_max > cum,

log(partial_flows+ exp(cum− log_nf_max) + log_nf_max,
log(exp(log_nf_max− cum) · partial_flows+ 1) + cum)

18: ns, ne← ch_ids[n], ch_ids[n] +KN

19: fprod[ns :ne, bs :be]← exp(cum+ lprod[ns :ne, bs :be])

C.1.3 PCs with Tied Parameters

Formally, PCs with tied parameters are PCs containing same sub-structures in different parts of

its DAG. Although the nodes in these sub-structures could have different semantics, they can have

shared/tied parameters. For example, in homogeneous HMMs, although the transition probabilities
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between different pairs of consecutive latent variables are represented by different sets of nodes

and edges in the PC, they all have the same set of probability parameters.

PyJuice can be readily adapted to PCs with tied parameters. For the forward pass, we just

need the compiler to assign the same parameter indices in param_ids. Similarly, we only need to

slightly change the compilation procedure of par_param_ids. One notable difference is that in the

backward pass w.r.t. the parameters, multiple thread-blocks would need to write partial flows to the

same memory addresses, which leads to inter-thread-block barriers. We implemented a memory-

IO tradeoff by letting the compiler create new sets of memory addresses to store the parameter

flows when the number of thread-blocks writing to the same address is greater than a predefined

threshold (by default set to 4).

C.1.4 Additional Technical Details

C.1.4.1 Block-Sparsity of Common PC Structures

Most commonly-adopted PC structures such as PD [Poon and Domingos, 2011], RAT-SPN [Peharz

et al., 2020b], and HCLT [Liu and Van den Broeck, 2021] have block-sparse sum layers because

one of the key building blocks of the structure is a set of sum nodes fully connected to their inputs.

Therefore, every sum layer must contain multiple fully-connected blocks of sum and product nodes,

and hence they are block sparse.

C.1.4.2 Relation Between PC Flows and Gradients

We first show the equality for the node flows:

Fn(x) =
∂ log pnr(x)

∂ log pn(x)
. (C.2)

We do the proof by induction. As a base case, we have by definition that Fnr(x) = ∂ log pnr(x)/∂ log pnr(x) =

1.
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Next, suppose n is a sum or an input node, and for all its parents m, we have Equation C.2 is

satisfied by induction. Since all parents of n are product nodes, we have

Fn(x) =
∑

m∈pa(n)

Fm(x) =
∑

m∈pa(n)

∂ log pnr(x)

∂ log pm(x)
=

∑
m∈pa(n)

∂ log pnr(x)

∂ log pn→m(x)
=

∂ log pnr(x)

∂ log pn(x)
,

where pn→m(x) denotes the probability carried by the edge from n to m.

Finally, suppose n is a product node and thus all its parents are sum nodes. We have

Fn(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· Fm(x) =
∑

m∈pa(n)

θm,n · pn(x)
pm(x)

· ∂ log pnr(x)

∂ log pm(x)
, (C.3)

=
∑

m∈pa(n)

θm,n · pn(x) ·
∂ log pnr(x)

∂pm(x)
. (C.4)

Denote pn→m(x) = θm,n · pn(x) as the probability carried on the edge (m,n). Since pm(x) =∑
n′∈ch(m) pn′→m(x), we have

∀n ∈ ch(m),
∂ log pnr(x)

∂pm(x)
=

∂ log pnr(x)

∂pn→m(x)
.

Plug in the above equation on Fn(x), this results in

Fn(x) =
∑

m∈pa(n)

pn→m(x) ·
∂ log pnr(x)

∂pn→m(x)
=

∑
m∈pa(n)

∂ log pnr(x)

∂ log pn→m(x)
=

∂ log pnr(x)

∂ log pn(x)
. (C.5)

We move on to demonstrate the following relation:

Fn,c(x) = θn,c ·
∂ log pnr(x)

∂θn,c
=

∂ log pnr(x)

∂ log θn,c
,

where n is a sum node and c is one of its children. We reuse the results derived in Equations C.4
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and C.5, where we replace n with c and m with n:

Fn,c(x) =
θn,c · pc(x)

pn(x)
· Fn(x) = θn,c · pc(x) ·

∂ log pnr(x)

∂pn(x)
=

∂ log pnr(x)

∂ log pc→n(x)
=

∂ log pnr(x)

∂ log θn,c
.

C.1.5 Experimental Details

C.1.5.1 The Adopted Block-Sparse PC Layer

The PC layer contains 200 independent fully-connected sets of nodes. Every connected subset

consists of 1024 sum nodes and 1024 product nodes. When compiling the layer, we divide the

layer into blocks of size 32. When dropping 32×32 edge blocks from the layer, we ensure that

every sum node has at least one child.

C.1.5.2 Details of Training the HMM Language Model

Following Zhang et al. [2023b], we first fine-tune a GPT-2 model with the CommonGen dataset.

We then sample 8M sequences of length 32 from the fine-tuned GPT-2. After initializing the HMM

parameters with latent variable distillation, we fine-tune the HMM with the sampled data. Specifi-

cally, following Zhang et al. [2023b], we divide the 8M samples into 40 equally-sized subsets, and

run full-batch EM on the 40 subsets repeatedly. Another set of 800K samples is drawn from the

fine-tuned GPT as the validation set.

C.1.5.3 Details of Training the Sparse Image Model

Following Liu et al. [2023e], we fine-tune the model with an equivalent batch size of 6400 and a

step size of 0.01 in the mini-batch EM algorithm. Specifically, suppose θ are the current parame-

ters, θnew are the new set of parameters computed by the EM update. Given step size α, the update

formula is θ ← (1− α)θ + αθnew.
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C.1.5.4 Additional Benchmark Results

Hyperparameters of the adopted HCLTs. We adopt two HCLTs [Liu and Van den Broeck,

2021] with hidden sizes 256 and 512, respectively. The backbone CLT structure is constructed

using 20,000 randomly selected training samples.

Hyperparameters of the adopted PDs. Starting from the set of all random variables, the

PD structure recursively splits the subset with product nodes. Specifically, consider an image

represented as a H×W×C (H is the hight; W is the width; C is the number of channels), the PD

structure recursively splits over both the height and the width coordinates, where every coordinate

has a set of pre-defined split points. For both the height and the width coordinates, we add split

points with interval 2. PD-mid has a hidden dimension of 128 and PD-large has 256.

Benchmark results on WikiText-103. Table C.1 illustrates results on WikiText-103. We

train the model on sequences with 64 tokens. We adopt two (homogeneous) HMM models, HMM-

mid and HMM-large with hidden sizes 2048 and 4096, respectively.

Table C.1: Density estimation performance of PCs on the WikiText-103 dataset. Reported numbers
are test set perplexity.

Dataset HMM-mid HMM-large

WikiText-103 146.59 167.65

C.1.6 Additional Experiments

C.1.6.1 Speed of the Compilation Process

In Table C.2, we show the compilation speed of PCs with different structures and different sizes.

Experiments are conducted on a server with an AMD EPYC 7763 64-Core Processor and 8 RTX

4090 GPUs (we only use one GPU). The results demonstrate the efficiency of the compilation

process, where even the PD model with close to 1B parameters can be compiled in around 30

seconds.
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Table C.2: Average (± standard deviation of 3 runs) runtime (in seconds) of the compilation pro-
cess of four PCs.

Structure HMM PD HCLT RAT-SPN

# nodes 130K 1.38M 710K 465K

# edges 130M 829M 159M 33.4M

Compilation time (s) 1.50±0.02 30.57±0.86 8.70±0.32 4.72±0.16

C.1.6.2 Runtime on Different GPUs

In addition to the RTX 4090 GPU adopted in the experiments in Table 4.1, we compare the runtime

of PyJuice with the baselines on an NVIDIA A40 GPU. As shown in the following table, PyJuice

is still significantly faster than all baselines for PCs of different sizes.

Table C.3: Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch
of 60K samples for PyJuice and the baselines on five RAT-SPNs [Peharz et al., 2020b] with differ-
ent sizes. All other settings are the same as described in Sec. 4.2.5.1.

# nodes 58K 116K 232K 465K 930K

# edges 616K 2.2M 8.6M 33.4M 132M

EiNet 60.29±0.30 136.85±0.13 282.58±0.27 690.73±0.08 1936.28±0.26

Juice.jl 4.41±0.21 11.57±0.07 32.74±1.86 121.25±0.43 331.98±2.87

PyJuice 1.53±0.07 3.11±0.07 6.47±0.08 13.62±0.37 30.69±0.19

C.1.6.3 Runtime on Different Batch Sizes

As a supplement to Table 4.1, we report the runtime for a RAT-SPN [Peharz et al., 2020b] with

465K nodes and 33.4M edges using batch sizes {8, 16, 32, 64, 128, 256, 512}. To minimize dis-

tractions, we only record the time to compute the forward and backward process, but not the time

used for EM updates. Results are shown in the table below.
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Table C.4: Average (± standard deviation of 5 runs) runtime (in seconds) per training epoch
(excluding EM updates) of 60K samples for PyJuice and the baselines on a RAT-SPNs [Peharz
et al., 2020b] with 465K nodes and 33.4M edges. All other settings are the same as described in
Sec. 4.2.5.1. OOM denotes out-of-memory.

Batch size 8 16 32 64 128 256 512

EiNet 332.87±0.21 OOM OOM OOM OOM OOM OOM

Juice.jl 1045.04±0.06 853.15±0.03 775.87±0.02 642.54±0.04 324.23±0.02 163.68±0.02 80.57±0.01

PyJuice 43.09±0.04 18.63±0.02 7.38±0.01 4.58±0.01 3.50±0.01 3.04±0.01 2.76±0.03
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Appendix D

Applications

D.1 A Unified Approach to Count-Based Weakly-Supervised Learning

D.1.1 Proofs

Lemma 5. Let Rllp be our risk estimator defined over p(x, ỹ) as Rllp(f) =
1

k(k+1)
Ep(xk,ỹ)[ℓ(f(x),y)].

Following the assumptions in Section 3.1 from Kobayashi et al. [2022], our proposed method is

risk-consistent.

Proof. In Kobayashi et al. [2022], it is shown that the risk R in classical multi-class classification

can be reduced to a risk Rrc over p(xk, ỹk) as shown in Equation 1 in Kobayashi et al. [2022] under

certain assumptions.

Consider binary classification and follow our notations, we rewrite the Equation 1 in Kobayashi

et al. [2022] as below,

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)

∑
y∈Yk

∏k
j=1 p(yj | xj)∑

y′∈Yk,
∑

j y
′
j=ỹ

∏k
j=1 p(y

′
j | xj)

ℓ(f(xk),y)

We notice that the weight term attached to the loss can be further rewritten as a constrained proba-
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bility as follows,

∏k
j=1 p(yj | xj)∑

y′∈Yk,
∑

j y
′
j=ỹ

∏k
j=1 p(y

′
j | xj)

= p(y |
k∑

j=1

yj = ỹ,xk)

This allows us to further rewrite the risk Rrc with likelihood loss being ℓ(f(xk),y) = −p(
∑k

j=1 yj =

kỹ | xk):

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)−∑

y∈Yk

p(y |
k∑

j=1

yj = kỹ,xk)p(
k∑

j=1

yj = kỹ | xk)


=

1

k(k + 1)
Ep(xk,ỹ)

−∑
y∈Yk

p(y,
k∑

j=1

yj = kỹ | xk)


=

1

k(k + 1)
Ep(xk,ỹ)

[
−p(

k∑
j=1

yj = kỹ | xk)

]

=
1

k(k + 1)
Ep(xk,ỹ)[ℓ(f(x

k),y)] = Rllp(f)

The last few lines follow from the definition of conditional probabilities. This shows that the

risk Rrc(f) = Rllp(f), meaning that the reduction from risk Rrc(f) to the classical risk R(f) in

Kobayashi et al. [2022] is applicable to our risk estimator Rllp , which proves that our learning

method is risk-consistent.

Proposition D.1. Assume that the loss function ℓ(f(x),y) is ρ-Lipschitz with respect to f(x) for

any y ∈ Y bounded by some constant. Let fllp be the hypothesis that minimizes the empirical risk,

and f ∗
llp is the hypothesis that minimizes the true risk, then fllp converges to f ∗

llp as m→∞.

Proof. This claim immediately follows Lemma 5, where we shows that Rrc(f) = Rllp(f). There-

fore, it holds that Rllp(f̂) − Rllp(f
∗) = R(sc)(f̂) − R(sc)(f

∗), where the latter term, an always

positive term, is shown in Theorem 3.1 in Kobayashi et al. [2022] that it converges to 0 at rate
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√
m.

Proposition 5.2 The count probability p(
∑k

i=1 ŷi = s) of sampling k prediction variables with

summation being s from an unconstrained distribution p(y) =
∏k

i=1 p(ŷi) can be computed exactly

in time O(ks). Moreover, the set {p(
∑k

i=1 ŷi = s)}ks=0 can also be computed in time O(k2).

Proof. The claim that p(
∑k

i=1 ŷi = s) can be computed exactly in timeO(ks) follows immediately

from Proposition 1 in Ahmed et al. [2023c]: in Ahmed et al. [2023c], the unconstrained distribution

is a factorized distribution obtained from k outputs from a single neural network model while in

our case, the unconstrained distribution p(y) is obtained from applying a classifier that gives a

single output p(yi) on k inputs; the constructive proof of Proposition 1 in Ahmed et al. [2023c]

still applies in our case. Moreover, the computation of p(
∑k

i=1 ŷi = k) is done in a dynamic

programming manner in the sense that for any s < k, p(
∑k

i=1 ŷi = s) is an intermediate result for

computing p(
∑k

i=1 ŷi = k). By caching the intermediate result, the set {p(
∑k

i=1 ŷi = s)}ks=0 can

be obtained by the time p(
∑k

i=1 ŷi = k) is computed, which finishes our proof.

D.1.2 Instance MIL Experimental Results

In this section, we provide results for instance level feedback in the MIL setting. The baselines

that we used in our experiments, Gated-Attention and Attention are both examples of embedding

based approaches and do not make instance-level predictions. We compare against one baseline

approach, which is based on Instance-Max from Ilse et al. [2018]. This uses the maximum instance

probability as an approximation for the "positiveness" of a bag. We then train it with a binary cross

entropy. Note that max pooling is stated in the literature as the best performing option and makes

the most sense in the MIL setting [Ilse et al., 2018; Wang et al., 2018].

Our results show that for bags of size less than or equal to 150, our method greatly improves

upon the baseline and is better for bag sizes greater than or equal to 200. We notice that across

both methods, performance goes down as bag size increases; we expect this because we have

less supervision on positive bags (at least 1 label is less meaningful for bigger bags). However,
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Table D.1: MIL experiment on MNIST dataset on instance-level classification. Each block rep-
resents a different distribution from which we draw bag sizes—First Block: N (10, 2), Second
Block: N (50, 10), Third Block: N (100, 20). We run each experiment for 3 runs and report mean
test accuracy with standard error. We bold the highest value and both if the standard-errors overlap.

Training Bags 50 100 150 200 300 400 500

Instance-Max 0.8714± 0.0015 0.9577± 0.0096 0.9494± 0.0232 0.9845± 0.0009 0.9885± 0.0004 0.9903± 0.0008 0.9908± 0.0004

CL (Ours) 0.9551± 0.0055 0.9780± 0.0015 0.9826± 0.0014 0.9864± 0.0005 0.9906± 0.0001 0.9905± 0.0007 0.9916± 0.0003

Instance-Max 0.9398± 0.0010 0.9415± 0.0008 0.9513± 0.0113 0.9686± 0.0123 0.9849± 0.0010 0.9848± 0.0008 0.9867± 0.0008
CL (Ours) 0.9732± 0.0009 0.9776± 0.0009 0.9799± 0.0010 0.9816± 0.0005 0.9839± 0.0013 0.9864± 0.0006 0.9865± 0.0014

Instance-Max 0.9446± 0.0007 0.9462± 0.0005 0.9583± 0.0076 0.9700± 0.0035 0.9750± 0.0017 0.9776± 0.0008 0.9695± 0.0097

CL (Ours) 0.9695± 0.0010 0.9717± 0.0011 0.9759± 0.0013 0.9764± 0.0006 0.9780± 0.0001 0.9805± 0.0008 0.9798± 0.0003

Table D.2: MIL experiment on MNIST dataset on instance-level classification. Each block repre-
sents a different distribution from which we draw bag sizes—First Block: N (10, 2), Second Block:
N (50, 10), Third Block: N (100, 20). We run each experiment for 3 runs and report mean test AUC
with standard error. We bold the highest value and both if the standard-errors overlap.

Training Bags 50 100 150 200 300 400 500

Instance-Max 0.4904± 0.0054 0.8171± 0.0465 0.7740± 0.1072 0.9288± 0.0064 0.9460± 0.0022 0.9562± 0.0037 0.9603± 0.0016

CL (Ours) 0.8341± 0.0135 0.9040± 0.0146 0.9291± 0.0070 0.9394± 0.0005 0.9571± 0.0021 0.9592± 0.0029 0.9647± 0.0012

Instance-Max 0.4956± 0.0007 0.4965± 0.0003 0.5960± 0.0821 0.7297± 0.0959 0.8566± 0.0088 0.8554± 0.0080 0.8733± 0.0048
CL (Ours) 0.7518± 0.0090 0.7900± 0.0081 0.8125± 0.0106 0.8261± 0.0064 0.8473± 0.0064 0.8717± 0.0063 0.8709± 0.0120

Instance-Max 0.4974± 0.0002 0.5007± 0.0016 0.6170± 0.0571 0.7099± 0.0311 0.7546± 0.0164 0.7792± 0.0080 0.7102± 0.0867

CL (Ours) 0.7008± 0.0077 0.7214± 0.0102 0.7617± 0.0130 0.7673± 0.0059 0.7832± 0.0011 0.8085± 0.0084 0.8007± 0.0032

our approach is able to recover this gap compared to the baseline methodology. In the case of

less overall training bags, less than 150 training bags, we find that Instance-max really suffers on

AUC while our objective guides the model to learning something more meaningfulshowcasing the

robustness of our methodology.

D.1.3 Experimental Details

In this section, we will provide relevant training details as it relates to each of our settings including

hyperparameters and dataset details.
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Table D.3: Illustration of Adult and Magic datasets showing the number of training bags for each
bag size. Note that we test on the same number of instances in all variations of bag size for both
experiments: 16280 for Adult and 3804 for Magic. The breakdown of training bags is the same
across all distributions of label proportion as well, i.e., [0, 1

2
], [1

2
, 1], [0, 1].

Bag Size Training Bags Adult Training Bags Magic

8 1024 768
32 256 192
128 64 48
512 16 12

D.1.3.1 Label Proportion

Adult Dataset

Hyperparameters. We use a learning rate of 0.00001 with the Adam Optimizer and β1 =

0.9, β2 = 0.999. The weight decay value is set to 0.001. We also notice that adding in L1 reg-

ularization of 0.001 improved the performance of our method. We train for 10000 epochs and

use a set number of warm epochs for our experiments. All parameters were obtained by using a

holdout of 12.5% of training data for validation on the [0, 1] uniform setting. The network shown

in Table D.4 was also obtained grid search on this same validation set.
Table D.4: Network used for Adult dataset in LLP Experiments.

Layer Type

1 fc - 2048 + ReLU
2 fc - 64 + ReLU
3 fc - 1 + logsigmoid

Training Procedure. For CL, we use the parameters and network described in the previous

paragraph and early stopping criterion based on validation loss from a held out validation set

(12.5% of training data). For PL, we use the parameters and network except that we do not use L1

as we found this improves performance. We also use an early stopping criterion based on validation

loss from a held out validation set (12.5% of training data).
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Computing Resources. Trained on Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHzU and AMD

EPYC 7313P 16-Core Processor CPU.

Magic Dataset

Hyperparameters. We use a learning rate of 0.0001 with the Adam Optimizer and β1 = 0.9, β2 =

0.999. The weight decay value is set to 0.001. We also notice that adding in L1 regularization of

0.001 improved the performance of our method. We train for 10000 epochs and use a set number

of warm epochs for our experiments. All parameters were obtained by using a holdout of 12.5%

of training data for validation on the [0, 1] uniform setting. The network shown in Table D.5 was

also obtained grid search on this same validation set.
Table D.5: Network used for Magic dataset in LLP Experiments.

Layer Type

1 fc - 2048 + ReLU
2 fc - 1 + logsigmoid

Training Procedure. For CL, we use the parameters and network described in the previous para-

graph and early stopping criterion based on validation loss from a held out validation set (12.5%

of training data). For PL, we use the parameters and network except that we do not use L1 regu-

larization as we found this improves performance. We also use an early stopping criterion based

on validation loss from a held out validation set (12.5% of training data). In Table 5.3, there are

two instances where we reran our method with no validation set, i.e. Magic [0, 1
2
] and Magic [1

2
, 1]

because early stopping proved to be unstable with a small amount of validation samples. In these

experiments, we only use 87.5% of training data and ran for a fixed number of epochs: 2000. This

is because with only one validation bag, we can find ourselves with some instability in the training

procedure. Note that PL did not benefit from rerunning with this method.
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Computing Resources. Trained on Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHzU and AMD

EPYC 7313P 16-Core Processor CPU.

D.1.3.2 Multi-Instance Learning

MNIST-Bags

Dataset Details. We experiment on various modulations of training bag size and number of

training bags. In the main experiment, we draw bag size from: {N (10, 2),N (50, 10),N (100, 20)}

and modulate number of training bags from {50, 100, 150, 200, 300, 400, 500}. In total, this makes

21 different settings. In our follow up experiment where we limit the number of training bags and

overall bag size, we draw bag size from: {N (5, 1),N (10, 2)}. For each experiment, we sample

1000 test bags with size coorelating to the normal distribution associated.

Hyperparameters. All of our hyperparameters derive from Ilse et al. [2018]. This includes using

the Adam optimizer with β1 = 0.9, β2 = 0.999, a learning rate of 0.0005, weight decay of 0.0001,

and max epochs of 200. For the main experiment, we use a validation holdout of 20% to find a

class weight for balancing the loss on positive bags versus negative bags. (We omit this step for

our limited data experiments.)
Table D.6: Network used for all MNIST experiments in MIL settings. Derived from the same
network shown in Ilse et al. [2018].

Layer Type

1 conv(5, 1, 0) - 20 + ReLU
2 maxpool(2, 2)
3 conv(5, 1, 0) - 50 + ReLU
4 maxpool(2, 2)
5 fc-500 + ReLU
6 fc-1 + logsigmoid
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Training Procedure. For CL, we train on all the training data for the maximum number of

iterations: 200. We also use all of the hyperparameters described in the last paragraph and Ilse

et al. [2018]. Because we were unable to reproduce the values in Ilse et al. [2018] for the Attention

and Gated Attention mechanisms, we reran their experiments with our own implementation. To

try and reproduce their results, we follow their optimization procedure. Specifically, we use a

holdout of training data (20%) and validation loss + error for early stopping. We found that doing

so provided the best values for Attention and Gated Attention.

Instance Pooling. To pool together instance level classification at the final stage, there are several

operations that have been considered in the literature. Some include using the max and mean

operator [Wang et al., 2018]. We propose a new method based on our constraint. We compute

the relevant probabilities defined in 5.1.2 for the MIL setting. More specifically, we compute the

probability that a bag has at least one positive instance. We then round the probability of at least

one positive instance to obtain our bag level classification.

Computing Resources. Trained on AMD EPYC 7313P 16-Core Processor CPU.

Colon Cancer Dataset

Dataset Details. The dataset consists of 100 H&E images of which we use 99 of them. There are

a total of 51 positive bags and 48 negative bags. We use a series of data augmentations including

flipping, cropping, and rotation1. Note that these data augmentations do not align with those in the

original paper by Ilse et al. [2018], so we reran their baseline methods.

Hyperparameters. We derive our set of hyperparameters from Ilse et al. [2018]. We use the

Adam optimizer for all experiments with β1 = 0.9, β2 = 0.999. This includes weight decay of

0.0005, learning rate of 0.0001, and a maximum of 100 epochs.

1Refer to https://github.com/utayao/Atten_Deep_MIL for the preprocessed data generation code
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Table D.7: MIL: Network used for CL in colon cancer dataset. Derived from the same network
shown in Ilse et al. [2018].

Layer Type

1 conv(4, 1, 0) - 36 + ReLU
2 maxpool(2, 2)
3 conv(3, 1, 0) - 48 + ReLU
4 maxpool(2, 2)
5 fc-512 + ReLU
6 dropout
7 fc - 512 + ReLU
8 dropout
9 fc-2 + logsigmoid

Training Procedure. We perform 10-fold cross-validation and average the mean value of each

metric over 5 seeds. For CL, we do not use early stopping and train on all data for the maxi-

mum number of epochs using the hyperparameters mentioned in the previous paragraph. For our

baselines, Attention and Gated-Attention, we use the same hyperparameters as mentioned above.

However, we follow the optimization procedure detailed in Ilse et al. [2018] to give try and repro-

duce the results given in the paper. This involves using a held out validation set for early stopping

with validation loss + error as the stopping criteria. For this experiment, this validation set is

assumed to be the size of 1 fold or one-ninth of the training data. (We find that including early

stopping helps increase performance for both baselines.)

Computing Resources. Trained on NVIDIA RTX A6000 GPU.
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D.1.3.3 PU Learning

MNIST Dataset

Dataset Details. Our settings derive from Garg et al. [2021]. We construct two main datasets

from the original MNIST dataset. This includes the Binarized MNIST and MNIST-17 as detailed

in Table D.9. In the Binarized MNIST setting, we assign digits [0 − 4] as positive and [5 − 9] as

negative. In the MNIST-17 setting, we assign digit 1 as positive and 7 as negative. The test set for

both settings are chosen from a set of unlabeled data.
Table D.8: Network used for MNIST data in PU Learning experiments. Resembles the network in
Garg et al. [2021] except we replace the last layer with a single output and logsigmoid instead of
softmax.

Layer Type

1 fc - 5000 + ReLU
2 fc - 5000 + ReLU
3 fc - 50 + ReLU
4 fc-1 + logsigmoid

Hyperparameters. We fix weight decay to be 0.0005 and Adam optimizer for all experiments

with β1 = 0.9, β2 = 0.999. We use a learning rate of 0.0001 and train for a maximum of 2000

epochs in all experiments for both CL and CL-expect. We use a validation set with size equal to

10% of training data in order to weigh the loss on positive data versus loss on unlabeled data.

Training Procedure. For MNIST dataset experiments, we use a fully connected multi-layer per-

ceptron (MLP) defined in Table D.8. We train CL and CL-expect with the hyperparameters defined

in the previous paragraph. Furthermore, we use a held out validation set, equivalent to 10% of train-

ing data, for early stopping. While as results in Garg et al. [2021] are aggregated over 10 epochs,

we choose to pick a single epoch based on our early stopping as this makes the most sense for our

optimization technique.
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Table D.9: Table taken almost directly from Garg et al. [2021]. Table shows the break down of the
various simulated PU datasets that we train on.

Dataset Simulated PU Dataset P vs N Training Test
Positive Unlabeled Unlabeled

CIFAR
Binarized CIFAR [0− 4] vs. [5− 9] 12500 12500 2500

CIFAR Cat vs. Dog 3 vs. 5 3000 3000 500

MNIST
Binarized MNIST [0− 4] vs. [5− 9] 15000 15000 2500

MNIST-17 1 vs. 7 3000 3000 500

Computing Resources. Trained on a singular NVIDIA RTX 2080-Ti GPU.

CIFAR Dataset.

Dataset Details. Our settings derive from Garg et al. [2021]. We construct two main datasets

from the original CIFAR dataset. This includes the Binarized CIFAR and CIFAR Cat vs. Dog as

detailed in Table D.9. In the Binarized CIFAR setting, we assign classes [0 − 4] as positive and

classes [5− 9] as negative. In the CIFAR Cat vs. Dog setting, we assign Cats (class 3) as positive

and Dogs (class 5) as negative. The test set for both settings are chosen from a set of unlabeled

data.

Hyperparameters. We fix weight decay to be 0.0005 and Adam optimizer for all experiments

with β1 = 0.9, β2 = 0.999. We use a learning rate of 0.0001 for all experiments except for CL-

expect in the CIFAR Cat vs. Dog setting where we use 0.001. We use a validation set with size

equal to 10% of training data in order to weigh the loss on positive data versus loss on unlabeled

data.

Training Procedure. We use a ResNet-18 architecture for all CIFAR experiments. We train CL

and CL-expect with the hyperparameters defined in the previous paragraph. Furthermore, we use

a held out validation set, equivalent to 10% of training data, for early stopping. While as results in
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Garg et al. [2021] are aggregated over 10 epochs, we choose to pick a single epoch as this makes

the most sense for our optimization technique.

Computing Resources. Trained on a singular NVIDIA 2080-Ti GPU.

Early Stopping

The early stopping procedure that we used in our experiments was a bit unique. Using our holdout

of validation data, we do early stopping using the proximity to the class prior and validation loss

to break ties. We can imagine that if we perfectly identify all positive and unlabeled samples and

then calculate accuracy against the actually provided labels, we would get an accuracy equivalent

to the class prior. This is because all the positive samples in the unlabeled set would be labeled

incorrect.

D.2 Probabilistically Rewired Message-Passing Neural Networks

D.2.1 Additional related work

In the following, we discuss additional related work.

Graph structure learning The field of graph structure learning (GSL) is a topic related to graph

rewiring. Motivated by robustness and more general purposes, several GSL works have been

proposed. Jin et al. [2020] optimizes a graph structure from scratch with some loss function as

bias. More generally, an edge scorer function is learned, and modifications are made to the original

graph structure [Chen et al., 2020; Yu et al., 2021; Zhao et al., 2021]. To introduce discreteness

and sparsity, Kazi et al. [2022]; Franceschi et al. [2019]; Zhao et al. [2021] leverage Gumbel and

Bernoulli discrete sampling, respectively. Saha et al. [2023] incorporates end-to-end differentiable

discrete sampling through the smoothed-Heaviside function. Moreover, GSL also benefits from

self-supervised or unsupervised learning approaches; see, e.g., Zou et al. [2023]; Fatemi et al.
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[2021]; Liu et al. [2022b,c]. For a comprehensive survey of GSL. see Fatemi et al. [2023]; Zhou

et al. [2023]. In the context of node classification, there has been recent progress in understanding

the interplay between graph structure and features [Castellana and Errica, 2023].

The main differences to the proposed PR-MPNN framework are as follows: (a) for sparsifi-

cation, existing GSL approaches typically use a k-NN algorithm, a simple randomized version of

k-NN, or model edges with independent Bernoulli random variables. In contrast, PR-MPNN uses a

proper probability mass function derived from exactly-k constraints. Hence, we introduce complex

dependencies between the edge random variables and trade-off exploration and exploitation during

training, and (b) GSL approaches do not use exact sampling of the exactly-k distribution and recent

sophisticated gradient estimation techniques. However, the theoretical insights we provide in this

paper also largely translate to GSL approaches with the difference that sampling is replaced with

an argmax operation and, therefore, should be of independent interest to the GSL community.

D.2.2 Extended notation

A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges E(G) ⊆

{{u, v} ⊆ V (G) | u 6= v}. If not otherwise stated, we set n := |V (G)|, and the graph is of

order n. We also call the graph G an n-order graph. For ease of notation, we denote the edge

{u, v} in E(G) by (u, v) or (v, u). A (vertex-)labeled graph G is a triple (V (G), E(G), ℓ) with

a (vertex-)label function ℓ : V (G) → N. Then ℓ(v) is a label of v, for v in V (G). An attributed

graph G is a triple (V (G), E(G), a) with a graph (V (G), E(G)) and (vertex-)attribute function

a : V (G) → R2
1×d, for some d > 0. That is, contrary to labeled graphs, we allow for vertex

annotations from an uncountable set. Then a(v) is an attribute or feature of v, for v in V (G).

Equivalently, we define an n-order attributed graph G := (V (G), E(G), a) as a pair G = (G,L),

where G = (V (G), E(G)) and L in R2
n×d is a node attribute matrix. Here, we identify V (G)

with [n]. For a matrix L in R2
n×d and v in [n], we denote by Lv· in R2

1×d the vth row of L

such that Lv· := a(v). Furthermore, we can encode an n-order graph G via an adjacency matrix

A⃗(G) ∈ {0, 1}n×n, where Aij = 1 if, and only, if (i, j) ∈ E(G). We also write R2
d for R2

1×d.
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The neighborhood of v in V (G) is denoted by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)} and

the degree of a vertex v is |N(v)|. Two graphs G and H are isomorphic and we write G ' H if

there exists a bijection φ : V (G)→ V (H) preserving the adjacency relation, i.e., (u, v) is in E(G)

if and only if (φ(u), φ(v)) is in E(H). Then φ is an isomorphism between G and H . In the case

of labeled graphs, we additionally require that l(v) = l(φ(v)) for v in V (G), and similarly for

attributed graphs. Further, we call the equivalence classes induced by ' isomorphism types.

A node coloring is a function c : V (G) → R2
d, d > 0, and we say that c(v) is the color of

v ∈ V (G). A node coloring induces an edge coloring ec : E(G)→ N, where (u, v) 7→ {c(u), c(v)}

for (u, v) ∈ E(G). A node coloring (edge coloring) c refines a node coloring (edge coloring) d,

written c v d if c(v) = c(w) implies d(v) = d(w) for every v, w ∈ V (G) (v, w ∈ E(G)).

Two colorings are equivalent if c v d and d v c, in which case we write c ≡ d. A color class

Q ⊆ V (G) of a node coloring c is a maximal set of nodes with c(v) = c(w) for every v, w ∈ Q. A

node coloring is called discrete if all color classes have cardinality 1.

D.2.3 Missing proofs

In the following, we outline missing proofs from the main paper.

Theorem 6 (Theorem 3 in the main paper). For sufficiently large n, for every ε ∈ (0, 1) and

k > 0, we have that for almost all pairs, in the sense of Babai et al. [1980], of isomorphic n-order

graphs G and H and all permutation-invariant, 1-WL-equivalent functions f : An → R2
d, d > 0,

there exists a conditional probability mass function p(θ,k) that separates the graph G and H with

probability at most ε regarding f .

Before proving the above result, we first need three auxiliary results. The first one is the well-

known universal approximation theorem for multi-layer perceptrons.

Theorem 7 (Cybenko [1992]; Leshno et al. [1993]). Let σ : R2 → R2 be continuous and not

polynomial. Then for every continuous function f : K → R2
n, where K ⊆ R2

m is a compact set,

and every ε > 0 there is a depth-two multi-layer perceptron N with activation function σ(1) = σ
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on layer 1 and no activation function on layer 2 (i.e., σ(2) is the identity function) computing a

function fN such that

sup
x⃗∈K
‖f(x⃗)− fN(x⃗)‖ < ε.

Building on the first, the second result shows that an MPNN can approximate real-valued node

colorings of a given finite graph arbitrarily close.

Lemma 8. Let G be an n-order graph and let c : V (G)→ Rd, d > 0, be a 1-WL-equivalent node

coloring. Then, for all ε > 0, there exists a (permutation-equivariant) MPNN f : V (G) → R2
d,

such that

max
v∈V (G)

‖f(v)− c(v)‖ < ε.

Proof sketch. First, by [Morris et al., 2019, Theorem 2], there exists an 1-WL-equivalent MPNN

m : V (G)→ R2
d such that

c ≡ m.

Since the graph’s number of vertices, by assumption, is finite, the cardinality of the image K :=

m−1 is also finite. Hence, we can find a continuous function g : K → Rd such that (g ◦m)(v) =

c(v) for v ∈ V (G). Since K is finite and hence compact and g is continuous, by Theorem 7, we

can approximate it arbitrarily close with a two-layer multi-layer perceptron, implying the existence

of the MPNN f .

The third result lifts the previous result to edge colorings.

Lemma 9. Let G be an n-order graph and let c : E(G)→ Rd, d > 0, be a 1-WL-equivalent edge

coloring. Then, for all ε > 0, there exists a (permutation-equivariant) MPNN f : E(G) → R2
d,
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such that

max
e∈E(G)

‖f(e)− c(e)‖ < ε.

Proof sketch. The proof is analogous to the proof of Lemma 8.

We note here that we can extend the above results to any finite subset of n-order graphs. We

are now ready to prove Theorem 6.

Proof sketch. Following Babai et al. [1980], for a sufficiently large order n, the 1-WL will compute

a discrete coloring for almost any n-order graph. Concretely, they showed that an algorithm equiv-

alent to the 1-WL computes a discrete coloring of graphs sampled from the ErdsRényi random

graph model G(n, 1/2) with the probability of failure bounded by O(n−1/7). Since the G(n, 1/2)

model assigns a uniform distribution over all graphs, the 1-WL succeeds on “almost all” graphs.

By the above, and due to Lemmas 8 and 9, every node, and thereby any edge, can be assigned

a distinct arbitrary prior weight with an upstream MPNN. Consequently, there exists an upstream

MPNN that returns a high prior θij for exactly k edges (θi for exactly k nodes) such that sampling

from the exactly-k distribution returns these k edges (nodes) with probability at least
√
1− ε.

Specifically, we know that the upstream MPNN can return arbitrary priors θij , and we want to

show that, given some δ ∈ (0, 1), there exists at least one θ such that for a set S of k edges (nodes)

of G, we have pθ,k(S) ≥ δ.

Let m be the number of edges in the graph G That is, from our probability definition, we obtain

pθ(S) ≥ δZ. Without losing generality, let w1 and w2 be two prior weights with w1 > w2 such

that θi = w1 for the edges (nodes) in S and θi = w2 otherwise. Then pθ(S) ≥ δZ becomes

wk
1 ≥ δ(

∑k
i=0

(
k
i

)(
m−k
k−i

)
wi

1w
k−i
2 ). We use the upper bound Z ≤ wk

1 +(
(
m
k

)
− 1)w2w

k−1
1 and obtain

w2 ≤ (1 − δ)w1δ
−1(
(
m
k

)
− 1)−1. Therefore, a prior θ exists, and we can obtain it by using the

derived inequality. Now, we can set δ =
√
1− ε. The sampled k edges (nodes) are then identical

for both graphs with probability at least
√
1− ε

2
= 1 − ε and, therefore, the edges (nodes) that
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Figure D.1: Example graphs used in the theoretical analysis.

are removed are isomorphic edges (nodes) with probability at least 1 − ε. When we remove pairs

of edges (nodes) from two isomorphic graphs that are mapped to each other via an isomorphism,

the graphs remain isomorphic and, therefore, must have the same 1-WL coloring. Since the two

graphs have the same 1-WL coloring, an MPNN downstream model f cannot separate them.

Proposition D.2 (Proposition 5.3 in the main paper). Let ε ∈ (0, 1), k > 0, and let G and H

be graphs with identical 1-WL stable colorings. Let VG and VH be the subset of nodes of G and

H that are in color classes of cardinality 1. Then, for all choices of 1-WL-equivalent functions

f , there exists a conditional probability mass function p(θ,k) that separates the graphs G[VG] and

H[VH ] with probability at most ε regarding f .

Proof sketch. Since the graphs G[VG] and H[VH ] have a discrete coloring under the 1-WL and

the graphs G and H have identical 1-WL colorings, it follows that there exists an isomorphism

φ : G[VG]→ H[VH ].

Analogous to the proof of Theorem 3, we can now show that there exists a set of prior weights

that ensures that the exactly-k sample selects the same subset of edges (nodes) from, respectively,

the same subset of edges from G1[V1] and G2[V2] (the same subset of nodes from VG and VH)

with probability at least
√
1− ϵ. Note that the cardinality of the sampled subsets could also be

empty since the priors could be putting a higher weight on nodes (edges) with non-discrete color

classes.

Regarding uniform edge removal, consider the two graphs in Figure D.1 (b) and (c). With

a distribution based on an MPNN upstream model, the probability of separating the graphs by
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Figure D.2: The graphs used in the proof of Theorem 10 for node sampling.

Figure D.3: The graphs used in the proof of Theorem 10 for edge sampling.

removing edges in the isomorphic subgraphs induced by the nodes with colors 4 to 5 + t can be

made arbitrarily small for any t. However, the graphs would still be separated through samples in

the parts whose coloring is non-discrete. In contrast, sampling uniformly at random separates the

graphs in these isomorphic subgraphs with probability converging towards 1 with increasing t.

Theorem 10. For every ε ∈ (0, 1) and every k > 0, there exists a pair of non-isomorphic graphs G

and H with identical and non-discrete 1-WL stable colorings such that for every 1-WL-equivalent

function f

(1) there exists a probability mass function p(k,θ) that separates G and H with probability at

least (1− ε) with respect to f ;

(2) removing edges uniformly at random separates G and H with probability at most ε with

respect to f .

Proof. We distinguish the two cases: (1) sampling nodes to be removed and (2) sampling edges to

be removed from the original graphs.
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For case (1), where we sample nodes to be removed, consider the graphs in Figure D.2. For

k = 1, we take the graphs (a) and (b). Both of these graphs have the same 1-WL coloring, indicated

by the color numbers of the nodes. To separate the graphs, we need to sample and remove one of

the nodes with color 1 or 2. Removing a node with color 3 would lead again to an identical color

partition for the two graphs. Removing nodes with color 1 or 2 is achievable by placing a high

prior weight θu on nodes of one of the corresponding color classes; see Lemma 8. Without loss

of generality, we choose all nodes u in color class 2 and set the prior weight θu such that a node

in this color class is sampled with probability
√
1− ε. Since a random sampler would uniformly

sample any of the nodes, we simply have to increase the number t of nodes with color 3 such that

the probability of randomly sampling a node of the color classes 1 or 2 is smaller than or equal to
√
ϵ.

For k > 1, we construct the graphs depicted in Figure D.2 (c) and (d) for k = 2. These are

constructed by first taking a (k+1)-cycle and connecting to each node of the cycle the nodes with

color class 1 in the two ways shown in Figure D.2 (c) and (d). Finally, we connect t nodes of color

class 3 to each of the nodes in the cycle. These graphs can be separated by sampling k nodes from

either the color class 1 or 2. For instance, removing k nodes from color class 2 always creates k

disconnected subgraphs of size 2 in the first parameterized graph but not the second. By Lemma 8,

we know that we can find an upstream model that leads to prior weights θu such that sampling k

nodes from a color class has probability at least
√
1− ϵ; see the proof of Theorem 6. As argued

before, by increasing the number of nodes with color class 3, we can make the probability that a

uniform sampler picks a node with color classes 1 or 2 to be less than or equal to
√
ϵ.

For case (2), where we sample edges to be removed from the original graph, consider the

graphs in Figure D.3. For k = 1, we take the graphs (a) and (b). Both of these graphs have the

same 1-WL coloring, indicated by the color numbers of the nodes. To separate the graphs, we need

to sample from each graph an edge (u, v) such that either C1
∞(u) = C1

∞(v) = 1 or C1
∞(u) = 1

and C1
∞(v) = 2. Removing an edge between two nodes with color class 3 in both graphs would

lead again to an identical color partition of the two graphs. Removing an edge between the color
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classes (1, 1) and (1, 2) is possible by Lemma 9 and choosing a prior weight large enough such that

the probability of sampling an edge between these color classes is at least
√
1− ϵ; see the proof

of Theorem 6. Since a random sampler would sample an edge uniformly at random, we simply

have to increase the number of nodes with color class 3 such that the probability of sampling an

edge between the color classes (1, 2) or (1, 2) is smaller than
√
ϵ.

For k > 1, we construct the graphs depicted in Figure D.3(c) and (d) for k = 2. We first take

a (k + 1)-cycle and connect to each node of the said cycle the nodes with color classes 1 in the

two different ways shown in Figure D.3(c) and (d). Finally, we again add pairs of connected nodes

with color class 3. The two graphs can be separated by sampling k edges between the color classes

(1, 1), (1, 2), and (2, 2). For instance, sampling k edges between nodes in color class 2 leads to

a disconnected subgraph of size 3 in the first graph but not the second. By Lemma 9, we know

that we can learn an upstream MPNN that results in prior edge weights θuv for all edges (u, v)

where both u and v are in color class 2, such that sampling k of these edges has probability at least
√
1− ϵ; see the proof of Theorem 6. Again, by increasing the number of nodes with color class

3, we can make the probability that a uniform sampler picks an edge between the color classes

(1, 1), (1, 2) or (2, 2) to be less than or equal to
√
ϵ.

Finally, we can also show a negative result, i.e., graphs exist such that PR-MPNNs cannot do

better than random sampling.

Proposition D.3 (Proposition 5.4 in the main paper). For every k > 0, there exist non-isomorphic

graphs H and H with identical 1-WL colorings such that every probability mass function p(θ,k)

separates the two graphs with the same probability as the distribution that samples nodes (edges)

uniformly at random.

Proof. Any pair of graphs where the 1-WL coloring consists of a single color class suffices to

show the result. For instance, consider the graphs in Figure D.1(d), where all nodes have the

same color. In fact, any pair of non-isomorphic d-regular graphs for d > 0 works here. An MPNN
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upstream model cannot separate the prior weights of the nodes and, therefore, behaves as a uniform

sampler.

D.2.4 SIMPLE: Subset Implicit Likelihood

In this section, we introduce SIMPLE, which is a main component of our work. The goal of SIMPLE

is to build a gradient estimator for ∇θL(X⃗, y;ω). It is inspired by a hypothetical sampling-free

architecture, where the downstream neural network fd⃗ is a function of the marginals, µ := µ(θ) :=

{pθ(zj |
∑

i zi = k)}nj=1, instead of a discrete sample z, resulting in a loss Lm s.t.

∇θLm(X⃗, y;ω) = ∂θµ(θ)
⊤∇µℓm(fu(µ, X⃗), y).

When the marginals µ(θ) can be efficiently computed and differentiated, such a hypothetical

pipeline can be trained end-to-end. Furthermore, Domke [2010] observed that, for an arbitrary

loss function ℓm defined on the marginals, the Jacobian of the marginals w.r.t. the logits is sym-

metric. Consequently, computing the gradient of the loss w.r.t. the logits,∇θLm(X⃗, y;ω), reduces

to computing the directional derivative, or the Jacobian-vector product, of the marginals w.r.t. the

logits in the direction of the gradient of the loss. This offers an alluring opportunity, i.e., the condi-

tional marginals characterize the probability of each zi in the sample, and could be thought of as a

differentiable proxy for the samples. Specifically, by reparameterizing z as a function of the condi-

tional marginal µ under approximation ∂µz ≈ I as proposed by Niepert et al. [2021a], and using

the straight-through estimator for the gradient of the sample w.r.t. the marginals on the backward

pass, SIMPLE approximate

∇θL(X⃗, y;ω) ≈ ∂θµ(θ)∇zL(X⃗, y;ω),

where the directional derivative of the marginals can be taken along any downstream gradient,

rendering the whole pipeline end-to-end learnable despite the presence of sampling.
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Now, estimating the gradient of the loss w.r.t. the parameters can be thought of as decomposing

into two sub-problems: (P1) Computing the derivatives of conditional marginals ∂θµ(θ), which

requires the computation of the conditional marginals, and (P2) Computing the gradient of the loss

w.r.t. the samples ∇zL(X⃗, y;ω) using sample-wise loss, which requires drawing exact samples.

These two problems are complicated by conditioning on the k-subset constraint, which introduces

intricate dependencies to the distribution and is infeasible to solve naively, e.g., by enumeration.

Next, we will show the solutions that SIMPLE provide to each problem, at the heart of which is the

insight that we need not care about the variables’ order, only their sum, introducing symmetries

that simplify the problem.

Derivatives of conditional marginals In many probabilistic models, the marginal inference is

a #P-hard problem [Roth, 1996], and this is not the case for the k-subset distribution. Theorem 1

in Ahmed et al. [2023c] shows that the conditional marginals correspond to the partial derivatives

of the log probability of the k-subset constraint. To see this, note that the derivative of a multi-

linear function regarding a single variable retains all the terms referencing that variable and drops

all other terms; this corresponds exactly to the unnormalized conditional marginals. By taking the

derivative of the log probability, this introduces the k-subset probability in the denominator, leading

to conditional marginals. Intuitively, the rate of change of the k-subset probability w.r.t. a variable

only depends on that variable through its length-k subsets. They further show in Proposition 1

in Ahmed et al. [2023c] that the log probability of the exactly-k constraint pθ(
∑

j zj = k) is

tractable is tractable as well as amenable to auto-differentiation, solving problem (P1) exactly and

efficiently.

Gradients of loss w.r.t. samples What remains is estimating the loss value, requiring faithful

sampling from the k-subset distribution.To perform exact sampling from the k-subset distribution,

SIMPLE starts by sampling the variables in reverse order, that is, it samples zn through z1. The

intuition is that, having sampled (zn, zn−1, · · · , zi+1) with a Hamming weight of k − j, it samples

Zi with a probability of choosing k−j of n−1 variables and the nth variable given that we choose
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k − j + 1 of n variables, providing an exact and efficient solution to problem (P2).

By combining the use of conditional marginal derivatives in the backward pass and the exact

sampling in the forward pass, SIMPLE can achieve both low bias and low variance in its gradient

estimation. We refer the readers to SIMPLE [Ahmed et al., 2023c] for the proofs and full details of

the approach.

D.2.5 Datasets

Here, we give additional information regarding the datasets. The statistics of the datasets in our pa-

per can be found in D.10. Among them, ZINC, ALCHEMY, MUTAG, PTC_MR, NCI1, NCI109,

PROTEINS, IMDB-B, and IMDB-M are from TUDatasets [Morris et al., 2020]. Whereas PEPTIDES-

FUNC and PEPTIDES-STRUCT are featured in Dwivedi et al. [2022b]. Besides, CORNELL, TEXAS

and WISCONSIN are WebKB datasets [Craven et al., 1998] also used in Pei et al. [2020]. The OGB

datasets are credited to Hu et al. [2020a]. Moreover, we also incorporate synthetic datasets from

the literature. EXP dataset consists of partially isomorphic graphs as described in Abboud et al.

[2020], while the graphs in the CSL dataset are synthetic regular graphs proposed in Murphy et al.

[2019]. The construction of TREES-NEIGHBORSMATCH dataset is introduced in Alon and Yahav

[2021].

Similar to the TREES-NEIGHBORSMATCH dataset, we propose our own TREES-LEAFCOUNT

dataset. We fix a problem radius R > 0 and retrieve the binary representation of all numbers fitting

into 2R bits. This construction allows us to create 2R unique binary trees by labeling the leaves

with “0" and “1" corresponding to the binary equivalents of the numbers. A label is then assigned

to the root node, reflecting the count of leaves tagged with “1". From the resulting graphs, we

sample to ensure an equal class distribution. The task requires a model to predict the root label,

thereby requiring a strategy capable of conveying information from the leaves to the root.

We aim to have a controlled environment to observe if our upstream model hu⃗ can sample mean-

ingful edges for the new graph configuration. Conventionally, a minimum of R message-passing
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Table D.10: Dataset statistics and properties for graph-level prediction tasks, †—Continuous vertex
labels following Gilmer et al. [2017], the last three components encode 3D coordinates.

DATASET
PROPERTIES

NUMBER OF GRAPHS NUMBER OF TARGETS LOSS ∅ NUMBER OF VERTICES ∅ NUMBER OF EDGES VERTEX LABELS EDGE LABELS

ALCHEMY 202 579 12 MAE 10.1 10.4 3 3

QM9 129 433 13 MAE 18.0 18.6 3(13+3D)† 3(4)
ZINC 249 456 1 MAE 23.1 24.9 3 3

EXP 1 200 2 ACC 44.5 55.2 3 7

CSL 150 10 ACC 41.0 82.0 7 7

OGBG-MOLHIV 41 127 2 ROCAUC 25.5 27.5 3 3

CORNELL 1 5 ACC 183.0 298.0 3 7

TEXAS 1 5 ACC 183.0 325.0 3 7

WISCONSIN 1 5 ACC 251.0 515.0 3 7

TREES-LEAFCOUNT(R = 4) 16 000 16 ACC 31 61 3 7

TREES-NEIGHBORSMATCH(R = 4) 14 000 7 ACC 31 61 3 7

PEPTIDES-FUNC 15 535 10 AP 150.9 153.7 3 3

PEPTIDES-STRUCT 15 535 11 MAE 150.9 153.7 3 3

MUTAG 188 2 ACC 17.9 19.8 3 3

PTC_MR 344 2 ACC 14.3 14.7 3 3

NCI1 4 110 2 ACC 29.9 32.3 3 7

NCI109 4 127 2 ACC 29.7 32.1 3 7

PROTEINS 1 113 2 ACC 39.1 72.8 3 7

IMDB-M 1 500 3 ACC 13.0 65.9 7 7

IMDB-B 1 000 2 ACC 19.7 96.5 7 7

layers is required to accomplish both tasks [Barcelo et al., 2020; Alon and Yahav, 2021]. However,

a single-layer upstream MPNN could trivially resolve both datasets, provided the rewired graphs

embed direct pathways from the root node to the leaf nodes containing the label information. To

circumvent any potential bias within the sampling procedure, we utilize the self-attention mecha-

nism described in Sec. 5.2.3 as our upstream model hu⃗, along with a single-layer GIN architecture

serving as the downstream model fd⃗. For each problem radius, we sample exactly k = 2D edges.

Indeed, our method consistently succeeded in correctly rewiring the graphs in all tested scenarios,

extending up to a problem radius of R = 6, and achieved perfect test accuracy on both datasets.

Figure 5.7 presents a qualitative result from the TREES-LEAFCOUNT dataset, further illustrating

the capabilities of our approach.

D.2.6 Hyperparameter and Training Details

Experimental Protocol Table D.13 lists our hyperparameters choices. For all our experiments, we

use early stopping with an initial learning rate of 0.001 that we decay by half on a plateau.

We compute each experiment’s mean and standard deviation with different random seeds over

a minimum of three runs. We take the best results from the literature for the other models, ex-
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cept for SAT on the OGBG-MOLHIV, where we use the same hyperparameters as the authors use

on ZINC. We evaluate test predictive performance based on validation performance. In the case

of the WEBKB datasets, we employ a 10-fold cross-validation with the provided data splits. For

PEPTIDES, OGBG-MOLHIV, ALCHEMY, and ZINC, our models use positional and structural em-

beddings concatenated to the initial node features. Specifically, we add both RWSE and LAPPE

[Dwivedi et al., 2022a]. We use the same downstream model as the base model for the rewiring

models.

Our code can be accessed at https://github.com/chendiqian/PR-MPNN/.

D.2.7 Additional Experimental Results

Here, we report on the computation times of different variants of our probabilistic graph rewiring

schemes and results on synthetic datasets.

Training times We report the average training time per epoch in Table D.14. The RANDOM entry

refers to using random adjacency matrices as rewired graphs.

Extended TUDatasets In addition to Table 5.10 in the main paper, we report the results of IMDB-

B and IMDB-M datasets in Table D.12. We also propose a proper train/validation/test splitting and

show the results in Table D.11.

QM9 We compare our PR-MPNN with multiple current methods on QM9 dataset, see Table D.15.

The baselines are R-GNN in Alon and Yahav [2021], GNN-FiLM [Brockschmidt, 2020], SPN

[Abboud et al., 2022] and the recent DRew paper [Gutteridge et al., 2023]. Following the settings

of Abboud et al. [2022] and Gutteridge et al. [2023], we train the network on each task separately.

We use the normalized regression labels for training and report the de-normalized numbers. Sim-

ilar to Abboud et al. [2022] and Gutteridge et al. [2023], we also exclude the 3D coordinates of

the datasets. It is worth noting that our PR-MPNN reaches the overall lowest mean absolute er-

ror on HOMO, LUMO, gap, and Omega tasks while gaining at most 14.13× better performance

compared with a base GIN model.
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Table D.11: Extended results between our probabilistic rewiring method and the other approaches
reported in Giusti et al. [2023b]. Besides the 10-fold cross-validation, as in Giusti et al. [2023b];
Xu et al. [2019], we provide a train/validation/test split. In addition, we also provide results on the
IMDB-B and IMDB-M datasets. We use green for the best model, blue for the second-best, and
red for third.

MODEL MUTAG PTC_MR PROTEINS NCI1 NCI109 IMDB-B IMDB-M

PR-MPNN (10-FOLD CV) 98.4±2.4 74.3±3.9 80.7±3.9 85.6±0.8 84.6±1.2 75.2±3.2 52.9±3.2

PR-MPNN (TRAIN/VAL/TEST) 91.0±3.7 58.9±5.0 79.1±2.8 81.5±1.6 81.8±1.5 71.6±1.2 45.8±0.8

WebKB To show PR-MPNNs’s capability on heterophilic graphs, we carry out experiments on the

three WebKB datasets, namely CORNELL, TEXAS, and WISCONSIN, Table D.16. We compare

with diffusion-based GNN [Gasteiger et al., 2019], Geom-GCN [Pei et al., 2020], and the recent

graph rewiring work SDRF [Topping et al., 2021]. Besides the MPNN baselines above, we also

compare them against graph transformers. PR-MPNNs consistently outperform the other MPNN

methods and are even better than graph transformers on the TEXAS dataset.

LRGB We apply PR-MPNNs on the two Long Range Graph Benchmark tasks [Dwivedi et al.,

2022b], PEPTIDES-FUNC and PEPTIDES-STRUCT, which are graph classification and regression

tasks, respectively. The baseline methods are also reported in Gutteridge et al. [2023]. Notably, on

PEPTIDES-STRUCT, PR-MPNNs reach the overall lowest mean absolute error.

D.2.8 Robustness analysis

A beneficial side-effect of training PR-MPNNs is the enhanced robustness of the downstream

model to graph structure perturbations. This is because PR-MPNNs generate multiple adjacency

matrices for the same graph during training, akin to augmenting training data by randomly drop-

ping or adding edges, but with a parametrized "drop/add" distribution rather than a uniform one.

To observe the performance degradation when testing on noisy data, we conduct an experiment

on the PROTEINS dataset. After training our models on clean data, we compared the models test

accuracy on the clean and corrupted graphs. Corrupted graphs were generated by either deleting or

adding a certain percentage of their edges. We report the change in the average test accuracy over

218



Table D.12: Extended comparison on the IMDB-B and IMDB-M datasets from the TUDATASET

collection. We use green for the best model, blue for the second-best, and red for third.

MODEL IMDB-B IMDB-M

DGCNN [ZHANG ET AL., 2018] 70.0±0.9 47.8±0.9

IGN [MARON ET AL., 2019B] 71.3±4.5 48.6±3.9

GIN [XU ET AL., 2019] 75.1±5.1 52.3±2.8

PPGNS [MARON ET AL., 2019A] 73.0±5.7 50.4±3.6

NATURAL GN [DE HAAN ET AL., 2020] 74.8±2.0 51.2±1.5

GSN [BOURITSAS ET AL., 2022] 77.8±3.3 54.3±3.3

CIN [BODNAR ET AL., 2021] 75.6±3.2 52.5±3.0

PR-MPNN (10-FOLD CV) 75.2±3.2 52.9±3.2

PR-MPNN (TRAIN/VAL/TEST) 71.6±1.2 45.8±0.8

5 runs, comparing the base model with variants of PR-MPNN in Table D.18.
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Table D.14: Train and validation time per epoch in seconds for a GINE model, the SAT Graph
Transformer, and PR-MPNN using different gradient estimators on OGBG-MOLHIV. The time is
averaged over five epochs. PR-MPNN is approximately 5 times slower than a GINE model with a
similar parameter count, while SAT is approximately 30 times slower than the GINE, and 6 times
slower than the PR-MPNN models. Experiments performed on a machine with a single Nvidia
RTX A5000 GPU and a Intel i9-11900K CPU.

MODEL #PARAMS TOTAL SAMPLED EDGES TRAIN TIME/EP (S) VAL TIME/EP (S)

GINE 502k - 3.19 ±0.03 0.20 ±0.01

K-ST SATGINE 506k - 86.54 ±0.13 4.78 ±0.01

K-SG SATGINE 481k - 97.94 ±0.31 5.57 ±0.01

K-ST SATPNA 534k - 90.34 ±0.29 4.85 ±0.01

K-SG SATPNA 509k - 118.75 ±0.50 5.84 ±0.04

PR-MPNNGmb 582k 20 15.20 ±0.08 1.01 ±0.01

PR-MPNNGmb 582k 100 18.18 ±0.08 1.08 ±0.01

PR-MPNNImle 582k 20 15.01 ±0.22 1.08 ±0.06

PR-MPNNImle 582k 100 15.13 ±0.17 1.13 ±0.06

PR-MPNNSim 582k 20 15.98 ±0.13 1.07 ±0.01

PR-MPNNSim 582k 100 17.23 ±0.15 1.15 ±0.01
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Table D.15: Performance of PR-MPNN on QM9, in comparison with the base downstrem model
(Base-GIN) and other competing methods. The relative improvement of PR-MPNN over the base
downstream model is reported in the paranthesis. The metric used is MAE, lower scores are better.
We note the best performing method with green, the second-best with blue, and third with orange.

PROPERTY R-GIN+FA GNN-FILM SPN DRew-GIN BASE-GIN PR-MPNN

MU 2.54±0.09 2.38±0.13 2.32±0.28 1.93±0.06 2.64±0.01 1.99±0.02 (1.33×)

ALPHA 2.28±0.04 3.75±0.11 1.77±0.09 1.63±0.03 7.67±0.16 2.28±0.06 (3.36×)

HOMO 1.26±0.02 1.22±0.07 1.26±0.09 1.16±0.01 1.70±0.02 1.14±0.01 (1.49×)

LUMO 1.34±0.04 1.30±0.05 1.19±0.05 1.13±0.02 3.05±0.01 1.12±0.01 (2.72×)

GAP 1.96±0.04 1.96±0.06 1.89±0.11 1.74±0.02 3.37±0.03 1.70±0.01 (1.98×)

R2 12.61±0.37 15.59±1.38 10.66±0.40 9.39±0.13 23.35±1.08 10.41±0.35 (2.24×)

ZPVE 5.03±0.36 11.00±0.74 2.77±0.17 2.73±0.19 66.87±1.45 4.73±0.08 (14.13×)

U0 2.21±0.12 5.43±0.96 1.12±0.13 1.01±0.09 21.48±0.17 2.23±0.13 (9.38×)

U 2.32±0.18 5.95±0.46 1.03±0.09 0.99±0.08 21.59±0.30 2.31±0.06 (9.35×)

H 2.26±0.19 5.59±0.57 1.05±0.04 1.06±0.09 21.96±1.24 2.66 ±0.01 (8.26×)

G 2.04±0.24 5.17±1.13 0.97±0.06 1.06±0.14 19.53±0.47 2.24±0.01 (8.24×)

CV 1.86±0.03 3.46±0.21 1.36±0.06 1.24±0.02 7.34±0.06 1.44±0.01 (5.10×)

OMEGA 0.80±0.04 0.98±0.06 0.57±0.04 0.55±0.01 0.60±0.03 0.48±0.00 (1.25×)
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Table D.16: Quantitative results on the heterophilic and transductive WEBKB datasets. Best over-
all; Second best; Third best. Rewiring outperforms the base models on all of the datasets. Graph
transformers have an advantage over both the base models and the ones employing rewiring.

HETEROPHILIC & TRANSDUCTIVE

CORNELL ↑ TEXAS ↑ WISCONSIN ↑

M
P

N
N

S

BASE 0.574±0.006 0.674±0.010 0.697±0.013

BASE W. PE 0.540±0.043 0.654±0.010 0.649±0.018

DIGL [GASTEIGER ET AL., 2019] 0.582±0.005 0.620±0.003 0.495±0.003

DIGL + UNDIRECTED [GASTEIGER ET AL., 2019] 0.595±0.006 0.635±0.004 0.522±0.005

GEOM-GCN [PEI ET AL., 2020] 0.608± N/A 0.676± N/A 0.641± N/A

SDRF [TOPPING ET AL., 2021] 0.546±0.004 0.644±0.004 0.555±0.003

SDRF + UNDIRECTED [TOPPING ET AL., 2021] 0.575±0.003 0.703±0.006 0.615±0.008

PR-MPNN (OURS) 0.659±0.040 0.827±0.032 0.750±0.015

G
T

S

GPS (LAPPE) 0.662±0.038 0.778±0.010 0.747±0.029

GPS (RWSE) 0.708±0.020 0.775±0.012 0.802±0.022

GPS (DEG) 0.718±0.024 0.773±0.013 0.798±0.090

GRAPHORMER (DEG) 0.683±0.017 0.767±0.017 0.770±0.019

GRAPHORMER (DEG + ATTN BIAS) 0.683±0.017 0.767±0.017 0.770±0.019
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Table D.17: Comparison between PR-MPNN and other methods as reported in Gutteridge et al.
[2023]. Best overall; Second best; Third best. PR-MPNN obtains the best score on the
PEPTIDES-STRUCT dataset from the LRGB collection, but ranks below Drew on the PEPTIDES-
FUNC dataset.

MODEL
PEPTIDES-FUNC PEPTIDES-STRUCT

AP ↑ MAE ↓

GCN 0.5930±0.0023 0.3496±0.0013

GINE 0.5498±0.0079 0.3547±0.0045

GATEDGCN 0.5864±0.0077 0.3420±0.0013

GATEDGCN+PE 0.6069±0.0035 0.3357±0.0006

DIGL+MPNN 0.6469±0.0019 0.3173±0.0007

DIGL+MPNN+LAPPE 0.6830±0.0026 0.2616±0.0018

MIXHOP-GCN 0.6592±0.0036 0.2921±0.0023

MIXHOP-GCN+LAPPE 0.6843±0.0049 0.2614±0.0023

TRANSFORMER+LAPPE 0.6326±0.0126 0.2529±0.0016

SAN+LAPPE 0.6384±0.0121 0.2683±0.0043

GRAPHGPS+LAPPE 0.6535±0.0041 0.2500±0.0005

DREW-GCN 0.6996±0.0076 0.2781±0.0028

DREW-GCN+LAPPE 0.7150±0.0044 0.2536±0.0015

DREW-GIN 0.6940±0.0074 0.2799±0.0016

DREW-GIN+LAPPE 0.7126±0.0045 0.2606±0.0014

DREW-GATEDGCN 0.6733±0.0094 0.2699±0.0018

DREW-GATEDGCN+LAPPE 0.6977±0.0026 0.2539±0.0007

PR-MPNN 0.6825±0.0086 0.2477±0.0005
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Table D.18: Robustness results on the PROTEINS dataset when testing on various levels of noise,
obtained by removing or adding random edges. The percentages indicate the change in the average
test accuracy over 5 runs. PR-MPNNs consistently obtain the best results for both removing k = 25
and k = 50 edges.

NOISE

MODEL
GINE PR-MPNNk=25 PR-MPNNk=50

RM 10% -7.68% +0.04% +0.34%
RM 30% -11.87% -2.56% -0.56%
RM 50% -9.18% -3.50% -0.21%

ADD 10% -5.93% +0.28% +0.80%
ADD 30% -11.14% -1.27% +0.28%
ADD 50% -21.75% -1.99% -0.43%
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Jurica Levatić, Dragi Kocev, and Sašo Džeroski. The importance of the label hierarchy in hier-

archical multi-label classification. Journal of Intelligent Information Systems, 45(2):247–271,

2015.

Tao Li and Vivek Srikumar. Augmenting neural networks with first-order logic. In ACL, 2019.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consis-

tency of neural models. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing, 2019.

246

https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/ijcai.2017/93


Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and

Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense

reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages

1823–1840, 2020.

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. Advances in

Neural Information Processing Systems, 34, 2021.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic

circuits. International Conference of Learning Representations, 2022a.

Anji Liu, Hongming Xu, Guy Van den Broeck, and Yitao Liang. Out-of-distribution generalization

by neural-symbolic joint training. In Proceedings of the 37th AAAI Conference on Artificial

Intelligence, feb 2023a.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent vari-

able distillation. In Proceedings of the International Conference on Learning Representations

(ICLR), 2023b.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A

systems perspective. In Proceedings of the 41st International Conference on Machine Learning

ICML, 2024a.

Anji Liu, Mathias Niepert, and Guy Van den Broeck. Image inpainting via tractable steering of

diffusion models. 2024b.

Fayao Liu, Guosheng Lin, and Chunhua Shen. Crf learning with cnn features for image segmenta-

tion. Pattern Recognition, 48(10):2983–2992, 2015a.

Kangning Liu, Weicheng Zhu, Yiqiu Shen, Sheng Liu, Narges Razavian, Krzysztof J Geras, and

Carlos Fernandez-Granda. Multiple instance learning via iterative self-paced supervised con-

247



trastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3355–3365, 2023c.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 44(12):10270–10276, 2021.

Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, and Chuan Shi. Compact graph structure

learning via mutual information compression. In Proceedings of the ACM Web Conference 2022,

pages 1601–1610, 2022b.

Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Expressive modeling is insufficient

for offline rl: A tractable inference perspective. arXiv preprint arXiv:2311.00094, 2023d.

Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Understanding the distillation process

from deep generative models to tractable probabilistic circuits. In International Conference on

Machine Learning, pages 21825–21838. PMLR, 2023e.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsuper-

vised deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pages

1392–1403, 2022c.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.

In Proceedings of International Conference on Computer Vision (ICCV), 2015b.

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your knowl-

edge graph embeddings into generative models. In Thirty-seventh Conference on Neural Infor-

mation Processing Systems, 2023.

Lorenzo Loconte, Aleksanteri M Sladek, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas Gillis,

and Antonio Vergari. Subtractive mixture models via squaring: Representation and learning. In

Proceedings of the International Conference on Learning Representations (ICLR), 2024.

248



Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-

ference on Learning Representations, 2017.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International

Conference on Learning Representations, 2020.

Daniel Lowd and Amirmohammad Rooshenas. The libra toolkit for probabilistic models. Journal

of Machine Learning Research, 16:2459–2463, 2015.

Huchuan Lu, Qiuhong Zhou, Dong Wang, and Ruan Xiang. A co-training framework for visual

tracking with multiple instance learning. In 2011 IEEE International Conference on Automatic

Face & Gesture Recognition (FG), pages 539–544, 2011. doi: 10.1109/FG.2011.5771455.

Sidi Lu, Tao Meng, and Nanyun Peng. Insnet: An efficient, flexible, and performant insertion-

based text generation model. In Advances in Neural Information Processing Systems 35

(NeurIPS), 2022a.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.

Neurologic decoding:(un) supervised neural text generation with predicate logic constraints. In

Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies (NAACL), 2021.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,

Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic a*esque

decoding: Constrained text generation with lookahead heuristics. In Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL), 2022b.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identification of enti-

ties, relations, and coreference for scientific knowledge graph construction. In EMNLP, 2018.

249



Chris J Maddison, Daniel Tarlow, and Tom Minka. A∗ sampling. In Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems, volume 27. Curran Associates, Inc., 2014.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous

relaxation of discrete random variables. In 5th International Conference on Learning Represen-

tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-

Review.net, 2017.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc

De Raedt. Deepproblog: Neural probabilistic logic programming. In S. Ben-

gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-

ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. Approximate Inference for Neural Proba-

bilistic Logic Programming. In Proceedings of the 18th International Conference on Principles

of Knowledge Representation and Reasoning, pages 475–486, 11 2021. doi: 10.24963/kr.2021/

45. URL https://doi.org/10.24963/kr.2021/45.

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding overparame-

terized circuit representations via low-rank tensor decompositions. In The 6th Workshop on

Tractable Probabilistic Modeling, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph

networks. In Advances in Neural Information Processing Systems, pages 2153–2164, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant

graph networks. In International Conference on Learning Representations, 2019b.

250

https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://doi.org/10.24963/kr.2021/45


Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. In M. Jor-

dan, M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems,

volume 10. MIT Press, 1997.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and

multi-label classification. In International conference on machine learning, pages 1614–1623.

PMLR, 2016.

Saurabh Mathur, Vibhav Gogate, and Sriraam Natarajan. Knowledge intensive learning of cutset

networks. In Uncertainty in Artificial Intelligence, pages 1380–1389. PMLR, 2023.

Nicholas Mattei and Toby Walsh. Preflib: A library of preference data HTTP://PREFLIB.ORG. In

ADT, 2013a.

Nicholas Mattei and Toby Walsh. PrefLib: A library for preferences. In International conference

on algorithmic decision theory, pages 259–270. Springer, 2013b.

Julian McAuley, J. Leskovec, and Dan Jurafsky. Learning attitudes and attributes from multi-aspect

reviews. 2012 IEEE 12th International Conference on Data Mining, pages 1020–1025, 2012.

David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In

Proceedings of the main conference on human language technology conference of the North

American Chapter of the Association of Computational Linguistics. Association for Computa-

tional Linguistics, 2006.

Geoffrey J. McLachlan. Iterative reclassification procedure for constructing an asymptotically op-

timal rule of allocation in discriminant analysis. Journal of the American Statistical Association,

70(350):365–369, 1975.

Mattia Medina Grespan, Ashim Gupta, and Vivek Srikumar. Evaluating relaxations of logic for

neural networks: A comprehensive study. In Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI-21, pages 2812–2818, 8 2021.

251



Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-

decomposed oracle. In Advances in Neural Information Processing Systems 35 (NeurIPS), 2022.

Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured predic-

tion and attention. In International Conference on Machine Learning, pages 3462–3471. PMLR,

2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture

models. arXiv preprint arXiv:1609.07843, 2016.

Octavio César Mesner and Cosma Rohilla Shalizi. Conditional mutual information estimation for

mixed discrete and continuous variables with nearest neighbors. arXiv: Statistics Theory, 2019.

Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Adversarial sets

for regularising neural link predictors. In UAI, 2017.

Pasquale Minervini, Luca Franceschi, and Mathias Niepert. Adaptive perturbation-based gradient

estimation for discrete latent variable models. In AAAI, 2023.

Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. Virtual adversarial training:

a regularization method for supervised and semi-supervised learning. IEEE transactions on

pattern analysis and machine intelligence, 2018.

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola

Di Mauro, Pascal Poupart, and Kristian Kersting. Spflow: An easy and extensible library

for deep probabilistic learning using sum-product networks. arXiv preprint arXiv:1901.03704,

2019.

Paolo Morettin, Samuel Kolb, Stefano Teso, and Andrea Passerini. Learning weighted model

integration distributions. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-

ume 34, pages 5224–5231, 2020.

252



Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav

Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609,

2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv

preprint arXiv:2007.08663, 2020.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,

Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so

far. arXiv preprint arXiv:2112.09992, 2021.

Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast d-dnnf

compilation with sharpsat. Canadian AI’12, pages 356–361, Berlin, Heidelberg, 2012. Springer-

Verlag. ISBN 9783642303524. doi: 10.1007/978-3-642-30353-1_36. URL https://doi.

org/10.1007/978-3-642-30353-1_36.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Explainable

prediction of medical codes from clinical text. arXiv preprint arXiv:1802.05695, 2018.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph

transformers. arXiv preprint arXiv:2302.04181, 2023.

Kevin Murphy, Scott Linderman, Peter G Chang, Xinglong Li, Aleyna Kara, Giles Harper-

Donnelly, and Gerardo Duran-Martin. Dynamax, 2023. URL https://github.com/

probml/dynamax.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling

for graph representations. In International Conference on Machine Learning, pages 4663–4673.

PMLR, 2019.

253

https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://github.com/probml/dynamax
https://github.com/probml/dynamax


Yatin Nandwani, Abhishek Pathak, Mausam, and Parag Singla. A Primal-Dual Formulation for

Deep Learning with Constraints. 2019.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with

noisy labels. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates,

Inc., 2013.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation ker-

nels: efficient graph kernels from propagated information. Machine learning, 102:209–245,

2016.

Vlad Niculae and André F. T. Martins. Lp-sparsemap: Differentiable relaxed optimization for

sparse structured prediction. In ICML, 2020.

Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable

sparse structured inference. In ICML, 2018.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: backpropagating through

discrete exponential family distributions. Advances in Neural Information Processing Systems,

34:14567–14579, 2021a.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating

through discrete exponential family distributions. Advances in Neural Information Processing

Systems, 34, 2021b.

Masaaki Nishino, Norihito Yasuda, Shin ichi Minato, and Masaaki Nagata. Compiling graph

substructures into sentential decision diagrams. In AAAI, 2017.

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In

Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages

3141–3148. AAAI Press, 2015. ISBN 9781577357384.

254



Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random

dropouts increase the expressiveness of graph neural networks. Advances in Neural Information

Processing Systems, 34:21997–22009, 2021.

Kyubyong Park. Can convolutional neural networks crack sudoku puzzles? https://github.

com/Kyubyong/sudoku, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-

ume 32. Curran Associates, Inc., 2019.

Max B Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient

estimation with stochastic softmax tricks. arXiv preprint arXiv:2006.08063, 2020.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical

properties of sum-product networks. In Artificial Intelligence and Statistics, pages 744–752.

PMLR, 2015.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable interpre-

tation in sum-product networks. IEEE transactions on pattern analysis and machine intelligence,

39(10):2030–2044, 2016.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,

Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and

scalable learning of tractable probabilistic circuits. In International Conference on Machine

Learning, pages 7563–7574. PMLR, 2020a.

255

https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku


Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,

Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and

effective approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pages

334–344. PMLR, 2020b.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-

metric graph convolutional networks. In International Conference on Learning Representations,

2020.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. In Pro-

ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages

1504–1519, 2019.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Learning with algorithmic

supervision via continuous relaxations. Advances in Neural Information Processing Systems, 34,

2021.

Hieu Pham and Quoc V Le. Semi-supervised learning by coaching. Submitted to the 8th In-

ternational Conference on Learning Representations, 2019. https://openreview.net/

forum?id=rJe04p4YDB.

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decom-

posability. In AAAI, volume 8, pages 517–522, 2008.

Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for learning from

positive and unlabeled data. In Proceedings of the 32nd International Conference on Machine

Learning, volume 37, 2015.

Tobias Plötz and Stefan Roth. Neural nearest neighbors networks. In Samy Bengio, Hanna M.

Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-

256

https://openreview.net/forum?id=rJe04p4YDB
https://openreview.net/forum?id=rJe04p4YDB


tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages

1095–1106, 2018.
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