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ABSTRACT

The Gaia era opens new possibilities for discovering the remnants of disrupted satellite galaxies in

the Solar neighborhood. If the population of local accreted stars is correlated with the dark matter

sourced by the same mergers, one can then map the dark matter distribution directly. Using two

cosmological zoom-in hydrodynamic simulations of Milky Way-mass galaxies from the Latte suite of

Fire-2 simulations, we find a strong correlation between the velocity distribution of stars and dark

matter at the solar circle that were accreted from luminous satellites. This correspondence holds for

dark matter that is either relaxed or in kinematic substructure called debris flow, and is consistent

between two simulated hosts with different merger histories. The correspondence is more problematic

for streams because of possible spatial offsets between the dark matter and stars. We demonstrate

how to reconstruct the dark matter velocity distribution from the observed properties of the accreted

stellar population by properly accounting for the ratio of stars to dark matter contributed by individual

mergers. After demonstrating this method using the Fire-2 simulations, we apply it to the Milky

Way and use it to recover the dark matter velocity distribution associated with the recently discovered

stellar debris field in the Solar neighborhood. Based on results from Gaia, we estimate that 42+26
−22%

of the local dark matter that is accreted from luminous mergers is in debris flow.
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1. INTRODUCTION

In the ΛCDM paradigm, a dark matter (DM) host

halo is built up hierarchically from galaxy merg-

ers (White & Rees 1978; Diemand et al. 2008; Springel

et al. 2008; Klypin et al. 2011). These satellites also

contribute stars, which may hold clues to the underly-

ing DM distribution in the Milky Way. In this work,

we use simulations of Milky Way-mass galaxies from

the Feedback in Realistic Environments (Fire)1

project (Hopkins et al. 2018) to study the correlation

between accreted stars and DM, and its dependence on

galactic merger history.

The chemical abundance and phase-space distribution

of an accreted stellar population can be used to in-

fer properties of its parent galaxy (Helmi et al. 2003;

Bullock & Johnston 2005; Robertson et al. 2005; Font

et al. 2006; De Lucia & Helmi 2008; Deason et al.

2016). In this fashion, Belokurov et al. (2018) and

Helmi et al. (2018) argued that the population of lo-

cal accreted stars consists predominantly of debris from

a disrupted satellite galaxy with original stellar mass

M∗,total ∼ 107−8 M�. This merger can potentially ex-

plain the observed density break in the halo at Galac-

tocentric radii of ∼ 20 kpc (Deason et al. 2018), as well

as the population of globular clusters on highly radial

orbits (Myeong et al. 2018b). Referred to as the Gaia

Sausage or Gaia Enceladus, this substructure comprises

the majority of the local distribution of accreted stars

(identified by both metallicity and kinematics), with the

remaining fraction appearing to be nearly isotropic and

metal poor.

Necib et al. (2018) showed that these findings have

important implications for the local DM distribution, as

they suggest that a non-trivial fraction is in substruc-

ture. This argument depends on whether stars that are

tidally stripped from a satellite galaxy trace the DM

that is removed from the same source. The DM-stellar

correspondence is not guaranteed for a variety of rea-

sons. First, stars are typically more tightly bound to-

wards the center of a galaxy than DM, and thus have

different initial phase-space structure. In an extreme

case, a cuspy DM halo can admit a cored stellar dis-

tribution (Breddels & Helmi 2013). Additionally, the

majority of stars are stripped only after the majority

of DM because the latter is preferentially removed in

the initial stages of satellite disruption. Second, the

mass-to-light ratio varies by orders of magnitude be-

tween galaxies (McConnachie 2012), so the relative mass

1 http://fire.northwestern.edu

of stars to DM that each contributes differs. Therefore,

even if one satellite contributes a significant fraction of

accreted stars it may not contribute an equivalent frac-

tion of the DM. These effects can be further exacerbated

when restricting to a spatial volume like the solar neigh-

borhood.

In this work, we demonstrate how to reconstruct the

properties of DM that is accreted from luminous satel-

lites. To organize the discussion, we classify the DM

into three separate components that are delineated by

relative accretion time. The first component includes

DM that was accreted at redshifts z & 3 from the old-

est mergers. We refer to this component as ‘relaxed’ in

this work, though it has also been referred to as ‘virial-

ized’ in the literature. Herzog-Arbeitman et al. (2018a)

demonstrated that this old DM population is well-traced

by metal-poor stars using the Eris hydrodynamic sim-

ulation (Guedes et al. 2011). In this case, convergence

in the velocity distributions was reached for stars with

iron abundance [Fe/H] . −3. This result motivated a

first study using the RAVE-TGAS dataset to recover

the velocity distribution of the local relaxed DM com-

ponent (Herzog-Arbeitman et al. 2018b).

We divide DM accreted from younger mergers into

two separate categories: debris flow and streams. Debris

flow is an example of kinematic substructure that is spa-

tially mixed on large scales. It arises from the accretion

of one or more older satellites that completed several or-

bital wraps (Lisanti & Spergel 2012; Kuhlen et al. 2012).

In this case, any structure in position-space is washed

out, while velocity-space features are preserved (Helmi

et al. 1999; Gómez et al. 2010). The properties of de-

bris flow are quite similar between stars and DM, likely
because the tidal debris is older and therefore more well-

mixed (Lisanti et al. 2015). These conclusions are based

on studies of the Via Lactea DM-only simulation (Die-

mand et al. 2008) where star ‘particles’ were painted

onto the most bound DM ‘particles’ in the satellite. It

should be repeated using a full hydrodynamic simula-

tion, as we do here.

Streams, in contrast, are relics of the youngest merg-

ers and are neither spatially nor kinematically mixed.

They result from tidal debris that is torn off a satellite

as it completes a small number of orbits (Zemp et al.

2009; Vogelsberger et al. 2009; Diemand et al. 2008;

Kuhlen et al. 2010; Maciejewski et al. 2011; Vogelsberger

& White 2011; Elahi et al. 2011). For these accretion

events, the stars may not necessarily act as adequate

tracers for the DM as has been noted in simulations of

merging dwarf galaxies (Peñarrubia et al. 2008) or of the

Sagittarius stream (Purcell et al. 2012).

http://fire.northwestern.edu
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In this work, we study the correlation between stars

and DM accreted from luminous satellites in two Milky-

Way–mass halos with differing merger histories. These

two simulated galaxies share general properties of the

Galactic disk and stellar halo (Sanderson et al. 2018),

and are thus excellent systems in which to study the

DM-stellar correlations of interest here. Our approach

is to identify the stars and DM that originate from a

given satellite galaxy and follow them as a function of

time to see where they eventually end up relative to each

other. We find that stars from the oldest mergers trace

the relaxed DM. Stars and DM in debris flow are also

well-correlated. The correspondence is not as robust for

younger mergers leaving behind streams, because spatial

offsets between the DM and stars can lead to localized

variations in their velocity components.

We demonstrate how to recover the total DM distribu-

tion in the solar neighborhood in cases where it is dom-

inated by a relaxed population and debris flow. After

successfully demonstrating this procedure with simula-

tions from the Fire project, we apply it to the Milky

Way and the recently discovered debris field in the So-

lar neighborhood. This procedure pertains specifically

to DM accreted from luminous satellites and therefore

does not account for contributions from non-luminous

satellites, which requires further study. Additionally,

the conclusions are specific to the solar circle (defined

as |r − r�| < 2 kpc and |z| ≤ 1.5 kpc with r� the solar

radius), which is the volume studied in this work.

This paper is organized as follows. Sec. 2 introduces

the Fire simulations and provides more details about

the two host halos studied in this work. Sec. 3 describes

the breakdown of the DM and stars within the solar cir-

cle of the hosts in terms of their accretion time and pro-

genitor characteristics. Sec. 4 discusses the correlation

between the stars and DM for the relaxed, debris flow,

and stream categories described above. Sec. 5 demon-

strates how to build the total DM distribution; this new

strategy is applied to the Milky Way in Sec. 6. We

conclude in Sec. 7. The Appendix includes additional

figures that supplement the main results of the paper.

2. FIRE-2 SIMULATIONS

2.1. The Host Halos

We analyze two cosmological zoom-in (Katz & White

1993; Onorbe et al. 2014) hydrodynamic simulations

from the Latte suite (Wetzel et al. 2016) of Fire-2

simulations (Hopkins et al. 2018). Fire-2 simulations

are run using the GIZMO code2 (Hopkins 2015) with the

mesh-free finite-mass (“MFM”) Lagrangian Godunov

2 http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.
html

method for hydrodynamics, while gravity is solved using

a version of the Tree-PM solver from GADGET-3 (Springel

2005). We briefly review the details of these simulations

that are most relevant for our study; see Hopkins et al.

(2018) and Sanderson et al. (2018) for more details.

Fire-2 simulations include heating from a meta-

galactic background (Faucher-Giguère et al. 2009)

and cooling from local stellar sources from T ∼
10–1010 K. Star formation occurs in locally self-

gravitating (Hopkins et al. 2013), Jeans-unstable, self-

shielding (Krumholz & Gnedin 2011) molecular gas.

Stellar feedback occurs through photoionization, photo-

electric heating, radiation pressure, supernovae Ia & II,

and stellar winds from primarily O, B and AGB stars.

Inputs are taken directly from stellar evolution models

using STARBURST99 v7.0 (Leitherer et al. 1999, 2014)

and assume the Kroupa (2001) IMF. The Latte simu-

lations that we use also include sub-grid turbulent dif-

fusion of metals in gas (Hopkins et al. 2018; Su et al.

2017), which produce more realistic metallicity distri-

butions (Escala et al. 2018).

We focus on the galaxies m12i (introduced in Wetzel

et al. 2016) and m12f (introduced in Garrison-Kimmel

et al. 2017b), which provide contrasting formation his-

tories: the latter experiences more mergers at late cos-

mic times. Both m12i and m12f assume a ΛCDM cos-

mology with ΩΛ = 0.728, Ωm = 0.272, Ωb = 0.0455,

h = 0.702, σ8 = 0.807, and ns = 0.961. The initial

mass of baryonic particles is 7070 M� (though because

of stellar mass loss, the typical star particle has mass

≈ 5000 M� at redshift z = 0); the gravitational soft-

ening length is 4 pc (Plummer equivalent) for stars and

gas has adaptive softening/smoothing down to 1 pc. DM

particles in the zoom-in region have mass 3.5× 104 M�
and softening length of 40 pc.

At redshift z = 0, the primary host halo in m12i has

M200m = 1.2 × 1012 M� and R200m = 336 kpc, defined

via the radius containing 200 times the average mat-

ter density. Within this radius, the host halo contains

Nparticle = 5.08 × 107 DM, gas, and star particles. The

corresponding properties for the host halo in m12f are as

follows: M200m = 1.7× 1012 M�, R200m = 380 kpc, and

Nparticle = 7.44 × 107. Each host halo is selected to be

isolated, with no equally massive halos within 5R200m.

The host galaxies of m12i and m12f are similar in

many respects to the Milky Way (Sanderson et al. 2018).

For example, the total stellar mass of the Galactic

disk is (5± 1)× 1010 M� (Bland-Hawthorn & Gerhard

2016), compared to 5.5 × 1010 and 6.9 × 1010 M� in

m12i and m12f, respectively (this differs from the to-

tal mass inside R200m as it excludes satellites). Addi-

tionally, these simulations provide a reasonable match

to the observed morphology of Milky Way-like galax-

ies (Garrison-Kimmel et al. 2017; Sanderson et al. 2018),

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
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disk kinematics and abundance gradients (Ma et al.

2017), satellite dwarf galaxy stellar masses, velocity

dispersions, metallicities, and star-formation histories

(Wetzel et al. 2016; Garrison-Kimmel et al. 2018; Es-

cala et al. 2018), and properties of the thick disk and

stellar halo (Sanderson et al. 2017; Bonaca et al. 2017).

We identify DM (sub)halos using the Rockstar

phase-space finder3 (Behroozi et al. 2013b), and we

generate merger trees using ConsistentTrees (REF)

across 600 snapshots from redshifts z = 0–99. We ran

the halo finder on only the DM particles, and we as-

signed stars to each halo in post-processing (see below).

2.2. Tracking Dark Matter and Stars

To understand the origin of stars and DM near the

solar circle, we track the location of DM/star particles

over all snapshots. To start, we identify all the DM

particles in the solar circle of the host (|r − r�| < 2

kpc and |z| ≤ 1.5 kpc) at the present day. We then

follow the location of every particle at each previous

snapshot, checking if it falls within the virial radius

R200m of a (sub)halo and if its velocity lies within 3σ

of the (sub)halo’s internal velocity (i.e., the maximum

between its maximum circular velocity and its velocity

dispersion). If these conditions are met, we mark the

(sub)halo as the particle’s host, further requiring that

the DM is associated with the same (sub)halo for 6 out

of the last 9 snapshots to avoid contamination by fly-

bys that happen to fall within the velocity dispersion.

We mark zacc as the last redshift at which the particle

was bound to the (sub)halo; the particle is bound to

the primary host halo in the following snapshot. These

requirements lead to an unassociated DM fraction of

69% (74%) for m12i (m12f).

The procedure to associate stars to each subhalo is

similar. A star particle must lie within a subhalo’s virial

radius and have a velocity that falls within 2.5σ of the

subhalo’s stellar velocity dispersion (computing mem-

bership and velocity dispersion iteratively until conver-

gence). We include as ‘galaxies’ only subhalos that con-

tain at least 10 stars. We also require that a star particle

is part of the same subhalo for at least 3 out of the last 4

snapshots.4 We quote the stellar mass of a given subhalo

at the particle’s zacc.

In this manner, we identify the subhalo progenitor of

each DM/star particle observed today in the solar circle

of the primary host galaxy. We also store information

on the progenitor subhalo, such as its total DM and

3 https://bitbucket.org/pbehroozi/rockstar-galaxies

4 Because stars are born from gas, requiring them to be asso-
ciated for 6 out of 9 snapshots like the DM could bias us towards
an older stellar population.

stellar mass. Because of tidal stripping, the total mass

of a subhalo at zacc is typically smaller than its initial

mass before falling into the primary host. Thus we also

use the subhalo peak mass, Mpeak, computed from the

merger trees.

There are two important resolution effects that affect

our ability to track all the DM and star particles in the

solar circle. First, there is a minimum mass for luminous

subhalos in the simulation set by the mass of each star

particle (∼ 5000 M� at redshift z = 0). Because we

only track galaxies with at least 10 star particles, this

leads to an effective lower limit on the total stellar mass

of a satellite to be ∼ 105 M�, which corresponds to a

halo mass of ∼ 5 × 108 M�. Thus, we conservatively

label the subset of subhalos with Mpeak & 109 M� to be

luminous in this work.

Second, there is a minimum (sub)halo mass of ∼
106 M� because of the DM mass resolution. When

tracking the origin of a DM particle, we may find that

it is not associated with a specific progenitor. This may

either be because its (sub)halo is not resolved or because

the DM was never associated with a (sub)halo and was

accreted smoothly. We cannot distinguish between these

two possibilities.

Throughout the paper, we will separate the DM into

two components. The first is the component that orig-

inates from luminous subhalos with Mpeak > 109 M�.

The second is the component that originates from ei-

ther a subhalo whose galaxy was not adequately re-

solved, a dark subhalo, an unresolved subhalo, or

smooth accretion. We will refer to this component as

‘Dark/Unresolved.’

3. ACCRETION HISTORY AT THE

SOLAR CIRCLE

Because the primary focus of this work is the local DM

velocity distribution, we restrict the study of m12i and

m12f to the volume within distances |z| ≤ 1.5 kpc of

the midplane and galactocentric radii r�±2 kpc, where

r� = 8 kpc. This is justified because the scale radii of

the simulated disks are comparable to those of the Milky

Way (Sanderson et al. 2017). We refer to this volume

as the ‘solar circle.’ There are a total of ∼ 1.70 × 105

(2.19 × 105) DM and ∼ 9.78 × 105 (1.48 × 106) star

particles within this region of m12i (m12f).

The total fraction of accreted stars at redshift z = 0

constitutes only 1.5% (2.2%) of all stars in the so-

lar circle of m12i (m12f).5 The vast majority of the

stars are born in-situ—that is, they are born within the

host galaxy (Zolotov et al. 2009; Font et al. 2011; Mc-

5 Note that when we refer to ‘accreted stars,’ we do not include
stars that formed from gas that accreted onto the host early on.

https://bitbucket.org/pbehroozi/rockstar-galaxies
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FIRE m12i Host Halo FIRE m12f Host Halo

I II III I II III

Mpeak [M�] 6.5× 1010 3.6× 1010 3.8× 1010 1.5× 1011 8.1× 1010 3.2× 1010

〈[Fe/H]〉 −1.47 −1.82 −1.85 −0.90 −1.14 −1.83

Mpeak/M∗,total 122 101 228 82 66 162

Stellar Mass Fraction 34% 24% 22% 47% 34% 6.0%

Dark Matter Mass Fraction 24% 32% 14% 23% 33% 8.0%

Stellar Accretion Redshift (zacc) 1.07–1.70 2.06–2.27 2.90–3.30 0.17–0.39 0.73–0.94 3.70–3.80

MDM/M∗ at Solar Circle 19 35 18 6 12 17

Table 1. Properties of the top three mergers (labeled as I–III) in m12i and m12f, ranked by the fraction of accreted stellar
mass each contributes to the solar circle. For each galaxy, we list the peak mass of its dark matter halo (Mpeak), average stellar
metallicity (〈[Fe/H]〉), and peak halo-to-stellar mass ratio (Mpeak/M∗,total). We also provide the stellar and dark matter mass
fractions contributed by each satellite galaxy within the solar circle. Note that all fractions are taken with respect to the total
accreted material from subhalos with Mpeak > 109 M� in the simulation. The range of accretion redshifts (zacc) for the stars
that are stripped from each satellite is also listed. The final row corresponds to the ratio of dark matter mass to stellar mass
contributed by each satellite within the solar circle (|z| ≤ 1.5 kpc and r� ± 2 kpc, where r� = 8 kpc).

Carthy et al. 2012; Pillepich et al. 2015; Cooper et al.

2015; Bonaca et al. 2017). However, the fraction of ac-

creted stars increases towards lower metallicities. The

probability of a star being accreted with a metallicity

[Fe/H] < −2 is 66% (89%) for m12i (m12f). This in-

creases to 95% (99%) for m12i (m12f) when requiring

[Fe/H] < −3.

Table 1 lists the top three satellite galaxies that con-

tribute the greatest fraction of accreted stellar mass at

the solar circle of m12i. We see that 34% of these stars

were accreted between redshifts of zacc = 1.07–1.70 from

a 6.5 × 1010 M� satellite. The next 24% of stars were

accreted at zacc = 2.06–2.27 from a 3.6×1010 M� satel-

lite. In contrast, the majority of the local stellar halo in

m12f formed at lower redshifts. For example, nearly half

of the stellar mass at the solar circle today was accreted

between zacc = 0.17–0.39.

Because the dominant mergers in m12f are typically

younger relative to those of m12i, they are more lumi-

nous and have a smaller ratio of peak mass to stellar

mass with Mpeak/M∗,total = 66–162 compared to 101–

228 for m12i. This also leads to a more metal-rich pop-

ulation of accreted stars for m12f relative to m12i, with

mean metallicities of the dominant mergers closer to

〈[Fe/H]〉m12f ∼ −1.3 compared to 〈[Fe/H]〉m12i ∼ −1.7.

Mergers I–III contribute nearly all of the local accreted

stellar mass in m12i and m12f, and a comparable frac-

tion of the accreted DM. ‘Accreted DM’ refers to the DM

that originates from subhalos with Mpeak > 109 M�,

and excludes the ‘Dark/Unresolved’ component. In

m12i, for example, 80% of the accreted stellar mass

comes from Mergers I–III, whereas 70% of the accreted

DM does. In m12f, the top three mergers contribute

87% of the accreted stars and 64% of the accreted DM.

Fig. 1 shows the cumulative fraction of DM as a func-

tion of accretion redshift for m12i (left) and m12f (right).

We separately show the total DM that was accreted

from galaxies with Mpeak > 109 M� in green and the

‘Dark/Unresolved’ component in aqua. As discussed in

Sec. 2, Mpeak ∼ 109 M� is roughly the lower limit for

luminous satellites in the simulation given the resolved

star particle mass. Luminous satellites in the simulation

with halo masses above this limit offer an opportunity

to compare the final positions of accreted stars and DM.

Fig. 1 shows the cumulative fraction of the stars ac-

creted from these satellites in dashed red. The distinct

steps in the cumulative stellar fraction occur at the aver-

age zacc for stars stripped from Mergers I–III (indicated

by the arrows in the figure). Similar steps are observed

in the cumulative DM fraction at roughly the same red-

shifts. This explicitly demonstrates that the mergers

dragged in significant amounts of both DM and stars to

the solar circle at approximately the same times.

The fact that the jumps in the DM cumulative fraction

closely align with those in the stars suggests that it is

the most bound DM of each satellite that contributes at

the solar circle. In general, we expect that tides start to

remove DM from a satellite earlier than its stars because

the halo is more extended. By the time the satellite’s or-

bit sinks down to the inner parts of the galaxy, however,

most of its DM halo has been stripped off, leaving be-

hind only the most bound portion. This is confirmed by

looking at the overall ratio of DM mass to stellar mass

contributed by Mergers I–III to the solar circle (bottom

row of Table 1). Importantly, these ratios are roughly

an order of magnitude below Mpeak/M∗,total, suggesting

that a large fraction of the halo’s DM has already been

removed by the time it has sunk to the inner parts of the
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Figure 1. The cumulative fraction of dark matter and stars at the solar circle of simulated host m12i (left) and m12f (right).
The dark matter is divided into two separate contributions. The first (green solid) is from luminous satellite galaxies with peak
halo mass Mpeak > 109 M�. The second (aqua solid) is dark matter that originates from either a subhalo whose galaxy was
not adequately resolved, a truly dark subhalo, an unresolved subhalo, or smooth accretion; due to the finite mass resolution of
the DM and star particles in the simulation, it is not possible to further distinguish its origin. The dashed red line corresponds
to the cumulative fraction of accreted stars. The cumulative fraction is defined with respect to the total number of particles of
each kind found in the solar circle at redshift z = 0. The deficit below unity at zacc = 0 for the stellar distribution corresponds
to its in-situ fraction.

host galaxy. This is a crucial observation, as it suggests

why the DM and stars from these mergers should share

similar kinematics near the solar position. By the time

a massive satellite passes near the sun, its outer halo has

mostly been stripped away, and the DM being removed

is concentrated near the central parts of the satellite,

similar to the stars. In this respect, the sun’s location

at the inner galaxy is fortuitous for reconstructing the

DM velocities from stellar orbits.

4. CORRELATIONS BETWEEN ACCRETED

STARS AND DARK MATTER

The phase-space distribution of the DM and stars
within the solar circle is intimately linked with the

galaxy’s accretion history. DM and stars that accreted

onto the host at early epochs (zacc & 3) are fully re-

laxed. More recent accretion events, however, continue

to build up the local mass profile. If this debris is not

fully phase mixed, it can be identified as substructure

in either position or velocity space.

Fig. 2 demonstrates how the stars in both the relaxed

and substructure populations cluster in metallicity-

velocity space. In general, elemental abundances pro-

vide an important handle when linking stellar debris to

a progenitor galaxy (Johnston et al. 1995, 1996; Helmi

& White 1999; Bullock et al. 2001; Bullock & Johnston

2005; Purcell et al. 2007; De Lucia & Helmi 2008); we

focus on the iron abundance [Fe/H] here. Fig. 2 shows

the distributions of [Fe/H] against vr, vθ, vφ for stellar

debris of m12f (top) and m12i (bottom). Note that we

use spherical Galactocentric velocities throughout, with

φ oriented with the disk rotation. The relaxed stellar

component is shown in green, while the stellar popula-

tions associated with Mergers I and II are shown in blue

and pink, respectively. Merger III is included in the re-

laxed population. Clearly, a wide variety of kinematic

features are possible. While the relaxed stellar popu-

lation appears to be nearly isotropic, the more recent

mergers exhibit distinctive kinematic features. Taken

together, the chemical abundance and kinematics of stel-

lar populations can play an important role in identifying

their origin.

In this section, we explore in detail the phase-space

evolution of DM and stars from mergers in m12i and

m12f. We systematically study the contributions to the

solar circle, from the oldest to the youngest accreted

material. In this way, we will see how the velocity dis-

tribution of the accreted stars is built up as a function

of time, and how well it traces the DM as the two evolve

and grow together. Host halo m12f provides a contrast-

ing example to m12i, because its merger history is more

active up until redshift z ∼ 0.3.

The results of this section pertain specifically to

DM that is sourced by luminous satellites (Mpeak &
109 M�). The kinematic distributions of DM from the

‘Dark/Unresolved’ component is discussed in Sec. 5.2.

4.1. The Relaxed Component

Violent relaxation plays an important role in mix-

ing stars and DM that accreted from a galaxy’s oldest

mergers. Non-adiabatic transformations of the poten-

tial change the energies of the stars and DM, causing
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Figure 2. The 66% containment region in metallicity-velocity space for stars within the solar circle of m12f (top) and m12i (bot-
tom) that are stripped from Mergers I and II (blue and pink solid, respectively). We also show the corresponding distributions
for the relaxed component (green dashed), defined as the subset of stars accreted before redshift zacc > 3. Note that Merger III
is included in this population. Velocities are in spherical Galactocentric coordinates, with φ the azimuthal direction aligned
with the disk rotation.

their orbits to fill the available phase space. These ef-

fects are particularly important in the period when the

proto-Milky Way is forming. This process is distinct

from changes to the course-grained phase-space distri-

bution that arise as a system evolves in time following

Liouville’s theorem. In this process, both the original

phase-space volume and energy are conserved as time

evolves. This phase-mixing process drives the evolution

of streams and debris flow, as described in Sec. 4.2.

We begin by focusing on the present-day distribution

of stars and DM in m12i and m12f that were accreted

from the earliest mergers (zacc > 3). There are 21 signifi-

cant mergers that contribute to this population in m12i,

and 34 for m12f. Note that the relaxed population in

both hosts includes Merger III. The average metallicity

of the stars from these mergers is 〈[Fe/H]〉m12i = −2.04

(0.52 dex spread) for m12i, and 〈[Fe/H]〉m12f = −1.89

(0.48 dex spread) for m12f.

The velocity distributions of the relaxed stellar com-

ponent in m12i is indicated by the red lines in the bot-

tom panel of Fig. 3. The distributions are approx-

imately isotropic, with dispersions of {σr, σθ, σφ} =

{139, 127, 125} km/s. Notably, the stellar and DM dis-

tributions, which are indicated in black, trace each other

closely. The discrepancies between the two are small,

ranging from 0.5–17% in any given bin, but closer to

∼ 50% along the tails. As the top panel of Fig. 3 shows,

these results are similar for m12f.

Using the Eris simulation, Herzog-Arbeitman et al.

(2018a) demonstrated that metal-poor stars act as kine-

matic tracers for the relaxed DM component.6 To test

whether the same results are reproduced with Fire, we
compare the relaxed distributions to those of all stars

(not just the accreted subset) with a metallicity cut of

[Fe/H] < −2 (green dashed). For m12i, the metal-poor

stars trace the relaxed component of DM and stars al-

most exactly. The correspondence for m12f is also very

good, especially for vθ and vφ. For the radial distri-

bution, the distribution of metal-poor stars is clearly

more extended. This arises from contamination of the

high-radial velocity lobes of Merger II, which extend be-

low [Fe/H] < −2 (see Fig. 2). Tightening the metal-

6 Note that what we refer to as ‘relaxed’ here is referred to as
‘virialized’ in Herzog-Arbeitman et al. (2018a). The Eris study
did not break down the DM into components from older versus
more recent mergers. The fact that a good correspondence was
already observed with metal-poor stars in this case suggests that
the shape of the local DM distribution in that host was not sig-
nificantly affected by substructure, dark subhalos, and/or smooth
accretion.
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Figure 3. Present-day velocity distributions for the stars (red solid) and dark matter (black solid) accreted before redshift
zacc > 3 in m12f (top) and m12i (bottom). We also show the corresponding distributions for all stars (not just the accreted
subset) with [Fe/H] < −2 (green dashed). The discrepancy between the low-metallicity stellar sample and the relaxed dark
matter distribution in the radial distribution of m12f is due to contamination by Merger II below [Fe/H] . −2. Applying more
sophisticated clustering algorithms to the stellar data could help reduce such contamination. Fig. S1 of the Appendix shows the
corresponding distributions for [Fe/H] . −3.

licity requirement to [Fe/H] < −3 brings the metal-

poor distributions even more in-line with the relaxed

distributions—see Fig. S1 of the Appendix.

In practice, it is possible to reduce the contamination

of more recent mergers, such as Merger II of m12f, to the

reconstructed distributions of the relaxed population. A

more sophisticated clustering algorithm, such as that

performed in Necib et al. (2018), can group stars based

both on their metallicities and velocities. Applied to the

local stellar halo of m12f, for example, such a procedure

could potentially distinguish the stars with [Fe/H] < −2

that are kinematically more similar to Merger II versus

the relaxed population.

Fig. 4 shows how the ratio of the relaxed stellar to

DM velocity distributions varies across the solar circle.

We sample the stars and DM in spheres of radius 4 kpc

that are centered at a Galactic distance of r� = 8 kpc.

The solid purple line in Fig. 4 denotes the mean value

over ten sampled locations, and the band indicates the

1σ spread. For each velocity component, the mean is

consistent with unity over the majority of the velocity

range, with small overall spread between regions. Dis-

crepancies are typically . 10%, but increase to ∼ 50% in

the largest velocity bins, where the statistics are limited.

These results underline the fact that the DM-stellar cor-

relation observed for the relaxed population is consistent

in localized regions throughout the solar circle.

4.2. Substructure Component

After a host galaxy’s last major merger, its potential

changes adiabatically as DM and stars continue to be

accreted through relatively smaller mergers. The mate-

rial that is stripped is initially confined to a small region

in phase space, but it evolves with time to eventually be-

come fully mixed. The observable features of this debris

depend on the elapsed time since the merger. For ex-

ample, when the time t since accretion is on the order

of the dynamical time of the system (t ∼ tdyn), the re-

mains of a disrupted satellite are not well-mixed either

spatially or kinematically and manifest as a stream, a

structure that is dynamically cold and typically coherent

in speed. Stellar streams have been observed through-

out the Milky Way halo—see Grillmair & Carlin (2016)

and references therein—with the most studied example

coming from Sagittarius (Ivezic et al. 2000; Yanny et al.

2000). DM streams have been studied in numerous N -

body simulations (Zemp et al. 2009; Vogelsberger et al.

2009; Diemand et al. 2008; Kuhlen et al. 2010; Maciejew-

ski et al. 2011; Vogelsberger & White 2011; Elahi et al.

2011).
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Figure 4. The ratio of the stellar to dark matter (DM) velocity distributions for the relaxed population of m12f (top) and
m12i (bottom). Results are shown separately for the separate Galactocentric velocity components. The distributions are
sampled in 10 locations throughout the solar circle, within spheres of radius 4 kpc centered at a Galactic distance of r� = 8 kpc.
The mean ratio over these regions is indicated by the solid purple line and the colored band indicates the 1σ spread.

The most significant merger within the solar circle of

m12f leaves behind a stream. The top row of Fig. 5

shows the radial and tangential velocity distributions, as

well as the speed distribution, for the DM and stars from

this merger. The stellar distribution (purple) is broad in

the radial direction, while its tangential distribution is

peaked at ∼ 400 km/s. The stars are reasonably coher-

ent in speed, as demonstrated in the right-most panel.

The corresponding DM distributions are shown in blue.

While the DM and stellar kinematics share similar fea-

tures, they do not trace each other exactly. For example,

the discrepancies between the stellar and DM speed dis-

tributions are within 3−80%, but reach a factor of ∼ 2–4

at the tails.

The top panel of Fig. 6 shows the spatial distribu-

tion of the stars (left) and DM (right) from Merger I of

m12f. The stars are clustered around x ∼ 10 kpc along

the midplane. Their spatial distribution is distinct from

that of the DM, which is more uniformly distributed al-

though still clustered in the midplane. The fact that the

stars and DM have different spatial distributions results

in large local variations in their kinematic distributions.

The top panel of Fig. 7 shows how the ratio of the stel-

lar to DM velocity distributions varies across the solar

circle.7 On average, the ratio of the stellar and DM

distributions is unity, but the spread is quite large—

reaching discrepancies of & 2 in certain locations. The

discrepancies are particularly pronounced in the speed

distribution.

As time proceeds (t > tdyn), the velocity dispersion of

any individual stream decreases as the stars spread out

in position space following Liouville’s theorem (Helmi

& White 1999). Debris flow (Lisanti & Spergel 2012;

Kuhlen et al. 2012; Lisanti et al. 2015) consists of mul-

tiple wraps of these streams, as well as any shells that

formed in the process of satellite disruption. While these

contributions are individually cold, their sum is dynam-

ically hot.8 Debris flow is therefore the intermediate

state of tidal debris before it becomes fully mixed with

the host halo at t � tdyn. It is identified as kinematic

substructure that is coherent over large spatial regions.

Merger II of m12i, whose velocity distributions are

provided in the bottom panel of Fig. 5, is an example of

7 In a few of the locations, the most significant merger of m12f is
not Merger I from Table 1, but rather Merger II.

8 We also note that debris flow may arise from more than one
disrupted satellite if the two happened to be on similar orbits and
were accreted at comparable times.
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Figure 5. Present-day velocity distributions for the debris of Merger I of m12f (top) and Merger II of m12i (bottom) that falls
within the solar circle. The radial (left), tangential (middle), and speed (right) distributions are shown for the stars (purple
solid) and dark matter (blue solid). The details of the mergers are provided in Table 1; the corresponding distributions for the
other mergers listed in the table are provided in Fig. S2 and Fig. S3 of the Appendix. As discussed in the text, Merger I of
m12f is an example of a stream, while Merger II of m12i is an example of debris flow.

debris flow. The stellar material from this satellite was

accreted at zacc ∼ 2 and is therefore older than Merger I

of m12f. In this case, the DM and stars trace each other

closely in all velocity components. The deviations be-

tween the distributions are typically under 15% in each

bin, reaching ∼ 30% in some bins along the tails. Addi-

tionally, the DM and stellar debris from this merger are

spatially uniform within the solar circle, as shown in the

bottom panel of Fig. 6.

The velocity distribution of the stars and DM of

m12i’s Merger II retain important features that corre-

spond to the satellite’s orbital properties, even if the

sharp coherence in speed is lost. For example, the radial

velocity distribution is extended and box–like, a feature

of satellites on radial orbits. In such cases, most of the

debris is stripped as the satellite moves towards/away

from the galactic center, resulting in two peaks of the

same radial speed, but opposite direction (±vr). If the

dispersion of these peaks is considerably larger than vr,

then they bleed into each other, forming a box-like dis-

tribution. This is expected if the turning points of the

orbit do not fall near or within the solar circle, so one is

primarily sampling material that is removed while the

satellite is on a radial trajectory.

Because the spatial variation of the DM and stars is

uniform in this case, their velocity distributions are con-

sistent across localized regions of the solar circle. The

bottom panel of Fig. 7 shows the ratio of DM to stellar

velocity distributions for this merger. In this case, the

ratio is tightly centered about unity over all the regions

sampled.

While we only discussed Merger I of m12f and

Merger II of m12i in this subsection, the conclusions

remain unchanged when studying the other significant

mergers in both hosts. The DM and stellar velocity dis-

tributions for these mergers are provided in Fig. S2 and

Fig. S3 of the Appendix.

5. THE TOTAL DARK MATTER DISTRIBUTION

In the previous section, we saw that the kinematics

of the DM and stars accreted from luminous satellites

are well-correlated for older mergers—specifically, the

relaxed component and debris flow. In this section, we

will describe how to combine the separate contributions

from these populations with the goal of constructing the

DM speed distribution at the solar circle. Sec. 5.1 will fo-

cus on summing the contributions from the relaxed DM

with that originating from Mergers I and II in m12i. As

we will see in Sec. 6, this methodology will have impor-

tant applications for the Milky Way, given its similarities

to m12i. Sec. 5.2 will discuss the ‘Dark/Unresolved’ DM

component.
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Figure 6. Present-day spatial density distribution in the x− z plane for the stars (left) and dark matter (right) from Merger I
of m12f (top) and Merger II of m12i (bottom). In each panel, the dashed circle corresponds to the region |r − r�| < 2 kpc
while the dashed green rectangle corresponds to |z| < 1.5 kpc. The intersection of these two regions, denoted by the solid blue
rectangle, is the solar circle.

5.1. Component from Luminous Satellites

Taking m12i as an example, let us consider the sce-

nario where the local stellar halo is dominated by two

large mergers (e.g., Merger I and II) in addition to a re-

laxed stellar component. The speed distributions for

each of these stellar populations is fI(v), fII(v), and

fr(v), respectively, with each normalized to unity. The

total stellar distribution is therefore given by

fstellar(v) = ξ∗,r fr(v) + ξ∗,I fI(v) + ξ∗,II fII(v) , (1)

where the ξ∗’s are the observed stellar mass fractions for

the components and ξ∗,r + ξ∗,I + ξ∗,II = 1. These values

are provided in the first row of Table 2. Note that we

have renormalized the values under the assumption that

all of the accreted stars belong to either Merger I, II, or

the relaxed population, to simplify the discussion.

The left-most panel of Fig. 8 shows the stacked speed

distributions for the stars associated with the relaxed

component (green solid), Merger I (blue solid), and

Merger II (purple solid), combined according to Eq. (1).

This corresponds to the total speed distribution for the

accreted stars. Let us compare this to the stacked dis-

tributions for the DM associated with these same popu-

lations (shown in gray). Clearly, the two do not match.

We have already seen that the stellar distributions for

the separate populations of m12i reproduce those of the

DM (see Fig. 3, Fig. 5, and Fig. S2). Therefore, the

source of the discrepancy arises from using the stellar

mass fractions in Eq. (1).

To reproduce the total DM distribution, we should in-

stead use the DM mass fraction ξdm for each component

as its appropriate weight in the sum:

fdm(v) = ξdm,r fr(v) + ξdm,I fI(v) + ξdm,II fII(v) . (2)

The ξdm values are provided in the second row of Table 2.

Using these exact weights, we can stack the stellar dis-

tributions according to Eq. (2); the result is shown in

the middle panel of Fig. 8 and reproduces the total DM

distribution, as desired.
In reality, we do not know the exact DM mass fraction
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Figure 7. Same as Fig. 4, except for the radial, tangential and speed distributions of Merger I of m12f (top) and Merger II of
m12i (bottom).

of each component, so we need a way to infer its value.

To do so, it will be useful to recast Eq. (2) as follows:

fdm(v) = N

(
ξ∗,r fr(v) +

cI
cr
ξ∗,I fI(v) +

cII
cr
ξ∗,II fII(v)

)
,

(3)

where N is a normalization constant, and c = MDM/M∗
for each population. The value of c tells us about the

relative amount of DM and stars that each merger leaves
at the solar circle. The DM-stellar mass fractions are

provided in the third row of Table 2, and the true values

of cI(II)/cr are provided in the sixth row.

To approximate the value of MDM/M∗ for a given

merger, we will use its mass-to-light ratio. That is, we

will assume that c ≈ Mpeak/M∗,total. Note that the

relaxed population is itself the sum of several merg-

ers. Moving forward, we treat these old mergers as

a single population with some average metallicity and

Mpeak/M∗,total.

At first glance, this may seem like a poor approx-

imation as the true Mpeak/M∗,total ratio (fourth row

of Table 2) is approximately an order of magnitude

larger than the corresponding MDM/M∗ ratio. How-

ever, the reduction between the two ratios is roughly

consistent between the separate populations, and thus

cancels out when taking cI(II)/cr. We therefore conclude

that c ≈ Mpeak/M∗,total is an adequate approximation

so long as each satellite loses roughly the same fraction

of DM from its halo before it reaches the solar circle.

To extrapolate the mass-to-light ratio, we use the

present-day stellar mass-metallicity (M∗,total−〈[Fe/H]〉)
and peak halo mass–stellar mass (Mpeak −M∗,total) re-

lations. We now demonstrate this within the context

of m12i, saving a discussion of the Milky Way appli-

cation to Sec. 6. The left and middle panels of Fig. 9

show the M∗,total− [Fe/H] and Mpeak−M∗,total relations

for m12i.9 Taken together, these can be used to obtain

the dependence of the Mpeak/M∗,total ratio on 〈[Fe/H]〉,
which is provided in the right panel of Fig. 9. The mass-

to-light ratio Mpeak/M∗,total is inversely proportional to

the metallicity, with the more DM-dominated galaxies

typically associated with more metal-poor stars. The

approximately linear relationship is well-fit by

log10

(
Mpeak

M∗,total

)
= 1.48− 0.44 〈[Fe/H]〉 , (4)

indicated by the solid black line in Fig. 9 (right). Given

the average metallicities for Mergers I–II in m12i, we

infer that Mpeak/M∗,total = {135, 192}, respectively,

9 Note that Fig. 9 only includes the progenitor subhalos that
eventually contribute debris within the solar circle. However, the
corresponding relations for the Milky Way are provided for all
observed dwarf galaxies at redshift z = 0.
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FIRE m12i Host Halo FIRE m12f Host Halo

Relaxed I II Relaxed I II

Stellar Fraction at Solar Circle 0.17 0.49 0.34 0.13 0.45 0.41

Dark Matter Mass Fraction 0.18 0.35 0.47 0.17 0.34 0.49

MDM/M∗ at Solar Circle 30 19 35 14 6 12

True Mpeak/M∗,total 523 122 101 562 82 66

Inferred Mpeak/M∗,total 239 135 192 176 54 71

True ci/cr — 0.6 1.2 — 0.4 0.8

Inferred ci/cr — 0.6 0.8 — 0.3 0.4

Table 2. Relevant fractions at the solar circle for the m12i and m12f host halos, divided by the relaxed population and Mergers
I–II. Note that Merger III is included in the relaxed component. From top to bottom, we provide the following: (i) the stellar
mass from each component at the solar circle assuming only the relaxed component and Mergers I–II; (ii) the dark matter
mass from each component, relative to the total accreted dark matter mass at the solar circle from the relaxed component
and Mergers I–II; (iii) the dark matter mass from each component, relative to its stellar mass at the solar circle; (iv) the true
Mpeak/M∗,total from the simulation; (v) the inferred Mpeak/M∗,total from the procedure described in the text; (vi) the true ci/cr
(i = I or II) values; (vii) the inferred ci/cr values using the estimated mass-to-light ratio.
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inferred from the corresponding stellar populations are shown by the colored lines (green, blue, and purple, respectively). To
add the stellar speed distributions, we (left) use the stellar mass fractions as per Eq. (1); (middle) follow Eq. (2) and take the
exact values of the dark matter mass fractions; (right) follow Eq. (3) and take the inferred values of ci/cr from the mass-to-light
ratios. A similar plot for m12f is provided in the Appendix as Fig. S4.

which are O(1) of the true values {122, 101}. The

slight offset is evident in Fig. 9 (right) where Mergers

I–II are denoted by the colored stars and fall slightly

above/below the best-fit line. Similarly, we estimate

that the relaxed population10 is comprised of mergers

with 〈Mpeak/M∗,total〉 = 239 given that their average

metallicity is 〈[Fe/H]〉 = −2.04.

Given an inferred Mpeak/M∗,total for each stellar com-

ponent, we can estimate ci/cr (i = I, II). The values for

10 There are many ways to compute the mean of Mpeak/M∗,total
of the relaxed population. In Table 2, we present the values of the
mean over all relaxed subhalos, however these values might be
artificially high. If one were to weigh the average by the subhalo
mass for example, the value for m12i(m12f) would drop to 329
(213).

Mergers I–II of m12i are provided in the seventh row of

Table 2, and they compare well to the true values. Using

these weights in Eq. (3), the distribution inferred from

the stars is an excellent approximation of the underly-

ing DM distribution, even if not an exact reproduction.

The final result is shown in the right panel of Fig. 8.

We apply the same procedure to m12f and provide the

corresponding figure in the Appendix as Fig. S4. In this

case, the inferred values of ci/cr are close to their true

values (see Table 2) but the stellar distributions do not

do a good job reconstructing the total DM. The failure

is due to the discrepancy in the DM and stellar speed

distribution for Merger I (a stream), which we discussed

in Sec. 4.2.

5.2. Untracked Component
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Next, we consider the DM in the ‘Dark/Unresolved’

component. As already discussed, this component con-

sists of DM that originates from subhalos whose galaxies

are not adequately resolved, truly dark subhalos, unre-

solved subhalos, or smooth accretion. In the first case,

the component may actually be tracked by stars. For

the other cases, we do not expect stars to be brought

in along with the DM. Because we cannot further dis-

tinguish between these separate contributions, we con-

servatively group them together and study their total

velocity distribution.

Fig. 10 plots the radial, tangential, and speed distri-

butions for the ‘Dark/Unresolved’ component of m12i.

The distributions are stacked on top of the distributions

for the relaxed population and Mergers I–II. We also

include the contribution from DM that originates from

sub-dominant mergers with Mpeak > 109 M�; this con-

tribution is similar to that of Mergers I–II. The addi-

tional DM from the ‘Dark/Unresolved’ component has

two important effects. First, it decreases the overall dis-

persion in the radial velocity, smoothening out the kine-

matic structure left behind by the recent mergers. Sec-

ond, it shifts the peak in the speed distribution to a value

that lies closer (but still above) that of the relaxed com-

ponent. As we see from Fig. 1, the ‘Dark/Unresolved’

contribution enters the solar circle at redshift zacc . 2,

which explains why its overall speed is faster, on aver-

age, than that of the relaxed component.

We emphasize that it is not possible to infer the frac-

tion of DM originating from smooth accretion and/or

dark subhalos in the Milky Way directly from simula-

tions. The primary challenge is that both depend sen-

sitively on the accretion history of the simulated host

halo, which may not replicate that of the Milky Way.

The wide halo-to-halo variation has already been under-

scored by a separate study of ten Aquarius halos (Wang

et al. 2011), which found large variations in the frac-

tional contribution of each population between different

Milky Way realizations. It is therefore imperative to

develop methods of characterizing the DM contribution

from smooth accretion and dark subhalos empirically.

This requires its own dedicated study.

6. THE LOCAL DARK MATTER DISTRIBUTION

IN THE MILKY WAY

We now apply the formalism developed in Sec. 4 and 5

to our own Galaxy with the aim of inferring the local

DM speed distribution from observations. Necib et al.

(2018) characterized the velocity distribution of the lo-

cal accreted stellar population using a cross-match of

Gaia DR2 data (Lindegren et al. 2016; Gaia Collabo-

ration et al. 2018) and SDSS (Ahn et al. 2012). They

characterized a metal-poor ‘halo’ population with av-

erage metallicity 〈[Fe/H]〉halo = −1.82 that is nearly

isotropic and comprises ∼ 24% of the local accreted

stars within heliocentric distances of 4 kpc and above

|z| > 2.5 kpc of the midplane.11 It is the parallel of

the relaxed population discussed in Sec. 4.1. The Milky

Way’s relaxed component constitutes a larger fraction of

the stellar halo and is moderately more metal-rich than

that of m12i or m12f.

Additionally, the authors characterized the kinematics

of a younger stellar population with average metallicity

〈[Fe/H]〉subs = −1.39. This substructure, referred to as

the Gaia Sausage or Gaia Enceladus, is an example of

debris flow. Like Merger II of m12i, its velocity distri-

bution is highly radial and spatially uniform within the

11 Note that the volume of study in Necib et al. (2018) is outside
the solar circle, as defined in this work.
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SDSS footprint. However, it contributes a much larger

fraction of the local accreted stars (∼ 76%) than does

Merger II of m12i (∼ 30%).

As the inner Milky Way appears to be dominated by

the stellar debris of one single large merger, its compo-

sition is simpler than that of either m12i or m12f. Con-

sequently, we need only consider the sum of two terms

when building the distribution of local DM speeds in the

Galaxy:

fdm(v) = N

(
ξ∗,halo fhalo(v) +

csubs

chalo
ξ∗,subs fsubs(v)

)
,

(5)

where the first term corresponds to the relaxed compo-

nent and the second term corresponds to the substruc-

ture. Note that we identify these contributions with the

terms ‘halo’ and ‘subs’ as in Necib et al. (2018). The

ratio csubs/chalo can be determined following the proce-

dure outlined in Sec. 5.1, but using relations specific to

the Milky Way.

We adopt the M∗,total − [Fe/H] relation from Kirby

et al. (2013):

〈[Fe/H]〉 = (−1.69±0.04)+(0.30±0.02) log10

(
M∗,total

106 M�

)
,

(6)

which applies to dwarf galaxies of the Milky Way at

redshift z = 0. The root-mean-square about the best-fit

line is 0.17 dex. This linear relation holds over many

orders of magnitude in stellar mass, from M∗,total ∼
104–109 M�. Data from SDSS suggest that the trend

roughly continues up to M∗,total ∼ 1012 M� (Gallazzi

et al. 2005). Eq. (6) is similar to the M∗,total − [Fe/H]

relation recovered in the Fire-2 simulations (see e.g.,

Fig. 9). However, while the simulations reproduce the

observed slope, they find systematically lower values of

iron abundance (Escala et al. 2018). This offset is likely

due to specific choices made in the modeling of the delay

time distribution and yields of Type Ia Sne.

The Kirby et al. (2013) relation applies to observed

dwarf galaxies at redshift z = 0, while the desired quan-

tity is the stellar mass of galaxies disrupted at earlier

redshifts. In this work, we assume that there is no red-

shift dependence to the stellar mass-metallicity relation.

To estimate the size of this dependence, we can combine

Eq. (6) with the redshift evolution inferred from sim-

ulations. Taking as an example the work of Ma et al.

(2016), we assume a shift in average metallicity that

goes as ∆[Fe/H] = 0.67 [(exp(−0.5z)− 1]. For a merger

at redshift z = 1, this leads to ∆[Fe/H] = −0.26. A

merger at redshift z = 3, is associated with a shift of

−0.52. This correction shifts the expected metallicity

down by some constant at any given redshift. In our

case, though, we are only interested in the relative dif-

ference in metallicities between the substructure and

halo populations—and this does not change with red-

shift evolution. As a result, csubs/chalo is unaffected.

To estimate the peak halo mass, we follow the same

procedure outlined by Garrison-Kimmel et al. (2017a).

Above Mpeak & 1011.5 M�, this Mpeak −M∗,total rela-

tion maps onto that of Behroozi et al. (2013a), which

has a constant log-normal scatter of σ = 0.2 dex about

the median value of M∗,total. For lower-mass galaxies

with Mpeak . 1011.5 M�, the stellar mass is effectively a

power law in peak halo mass. Specifically, M∗ ∝Mα
peak

where the slope α depends on the assumed log-normal

scatter, σv, about the mean value of M∗,total. We use the

growing-scatter model of Garrison-Kimmel et al. (2017a)

where the value of σv is allowed to grow linearly as

log10Mpeak decreases. That is,

σv = 0.2 + v × (log10Mpeak − log10M1) , (7)



16

−3.0 −2.5 −2.0 −1.5 −1.0

〈[Fe/H]〉 [dex]

101

103

105

107

M
p

ea
k
/M
∗,t

ot
al

H
al

o

S
u

b
s

v = −0.1
0.0

0.2

0.4

0.6

0.8

1.0

N
orm

alized
C

ou
nts

Figure 11. Estimated Mpeak/M∗,total−〈[Fe/H]〉 relation, as-
suming the growing-scatter model of Garrison-Kimmel et al.
(2017a) with v = −0.1. The average metallicities of the halo
and substructure components in the Milky Way, as derived
in Necib et al. (2018) are indicated by the red dashed lines.

where M1 ∼ 1011.5 M� and v sets how the scatter in-

creases. The best-fit power-law slope in this case is

α ' 0.25 v2 − 1.37 v + 1.69 . (8)

We take v = −0.1 as our benchmark value.

We note that this M∗,total−Mpeak relation was derived

for DM-only simulations and that the presence of a bary-

onic disk can have important effects. The expectation

is that the disk will tidally destroy infalling subhalos,

requiring that the predicted M∗,total (for given Mpeak)

must be shifted to higher values in order to recover the

Milky Way’s cumulative stellar mass function (Garrison-

Kimmel et al. 2017b). This, in turn, would result in a

more shallow power-law fall off.

We perform a Monte Carlo procedure to estimate the

relative amount of local DM in substructure as opposed

to the halo population (e.g., csubs/chalo). The procedure

is as follows:

1. We use the Mpeak −M∗,total relation to estimate

the associated stellar mass, for a given Mpeak.

The value of M∗,total is randomly selected from

a normal distribution with mean given by the

growing-scatter model of Garrison-Kimmel et al.

(2017a), with self-consistent v, σv, and α from

Eq. (7) and Eq. (8). This yields a prediction

for the Mpeak/M∗,total ratio. We demand that

Mpeak > 5M∗,total.

2. Using this stellar mass, we estimate the metallic-

ity by randomly selecting 〈[Fe/H]〉 from a normal

distribution with mean given by Eq. (6) and dis-

persion of ∼ 0.17 dex.

3. We repeat the previous two steps 500 times

to build a distribution of Mpeak/M∗,total versus

〈[Fe/H]〉. The result is shown in Fig. 11.

4. We randomly select a point with metallicity

〈[Fe/H]〉 ∼ −1.39, as per the substructure pop-

ulation, and another with metallicity 〈[Fe/H]〉 ∼
−1.82, as per the halo population. The ratio of

their respective Mpeak/M∗,total values yields the

csubs/chalo weighting factor. Repeating this 8×106

times allows us to quantify the 16-50-84th per-

centiles of this factor.

For the v = −0.1 benchmark, we find that

csubs

chalo
= 0.23+0.43

−0.15 . (9)

Substituting this back into Eq. (5), we find that 42+26
−22%

of the local DM that originates from luminous satellites

is in debris flow.12 This value is consistent, within the

range of uncertainty, with values estimated using kine-

matic arguments in Evans et al. (2018).

One might notice that Eq. (9) is systematically lower

than the reweighting factors found for m12i. This is be-

cause there is a greater difference in metallicity between

the relaxed and substructure populations in m12i, com-

pared to what is observed in the Milky Way. Because the

halo and substructure populations in the Milky Way are

closer to each other in average metallicity, the amount

of DM that each contributes is commensurate between

the two.

Fig. 12 shows the heliocentric velocity distribution in-

ferred from the SDSS-Gaia DR2 data. The halo and

substructure distributions (red dashed and blue dot-

ted, respectively) were derived in Necib et al. (2018).

When summing their contributions (black solid), the

relative fraction is set by Eq. (5) and Eq. (9). The

gray band denotes the uncertainty from the inferred
value of csubs/chalo. For comparison, we also show

the Standard Halo Model (gray dashed), assuming a

Maxwell-Boltzmann distribution with a dispersion σ =

220/
√

2 km/s.

7. CONCLUSIONS

In this paper, we studied two cosmological zoom-in

hydrodynamic simulations of Milky Way-mass galaxies

from the Latte suite of Fire-2 simulations. Our primary

goal was to understand how the DM and stars accreted

from luminous satellite galaxies trace each other in the

inner regions of a Milky Way–like galaxy. In each of

these host galaxies, we focused on the accreted material

in the solar circle (defined as |r− r�| < 2 kpc and |z| ≤

12 To simplify this calculation, we did not convolve the error
on the stellar fraction from the best fit in Necib et al. (2018). We
expect it to be subdominant to the error from Eq. (9).
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1.5 kpc with r� the solar radius), which is most relevant

for ground-based DM direct detection experiments.

The accreted DM and stars in the solar circle can be

divided into three separate components whose general

behavior is summarized as follows:

• The ‘relaxed’ DM and stellar component is ac-

creted from the oldest mergers (zacc & 3). At

these early times, the proto-galaxy is still evolv-

ing and changes to the galactic potential redis-

tribute the energies of the DM and stellar de-

bris, mixing them fully in phase space. As a re-

sult, the present-day velocity distributions of the

DM and stars from these oldest mergers are well-

correlated. The metal-poor sub-component of lo-

cal stars is an adequate proxy for the relaxed

population. We find that stars with metallicity

[Fe/H] . −2 to −3 trace the relaxed distribu-

tions reasonably well in the Latte hosts, consis-

tent with previous results from Herzog-Arbeitman

et al. (2018a). It is possible that the low-

metallicity sample may be contaminated by stars

from more recent mergers whose metallicity dis-

tributions have low-metallicity tails. Statistical

clustering algorithms—such as that used in Necib

et al. (2018)—can ameliorate such contamination.

• Once the proto-galaxy is in place, smaller merg-

ers continue to the present day. The tidal debris

from these mergers evolves in phase space follow-

ing Liouville’s theorem. As a satellite falls into the

galaxy, it leaves behind a trail of tidal debris. If

the time since infall is relatively short, then this

material is typically in a stream, and is clustered in

both position and velocity space. In such cases, we

find that there can be significant spatial variations

in the DM and stars, which lead to discrepancies

in their velocity distributions.

• If the time since infall is longer and the satellite has

completed multiple orbital wraps, then the spatial

distribution of its tidal debris is well-mixed, but

the kinematic substructure is still preserved. This

class of substructure is referred to as debris flow.

We find that the velocity and spatial distributions

of the DM and stars from these mergers are well-

correlated. Unlike the case of stellar streams, the

distributions do not exhibit large local variations.

As we have demonstrated with the Latte Fire-2 simu-

lations, the DM-stellar correlations are robust for both

the relaxed and debris flow populations, and hold de-

spite the significant differences in the merger histories

of the two host halos studied here. The conclusions are

specific to the solar circle, where our study is focused.

For the most significant mergers (Mergers I–III in Ta-

ble 1), we find that much of the halo has been stripped

off by the time the satellite has sunk to the solar radius.

As a result, the DM being removed as the satellite passes

through the solar circle is the most bound, similar to the

stars.

In the case of streams, care needs to be taken in ex-

trapolating the kinematic DM properties from the stel-

lar distributions due to large localized variations that

can arise. Dedicated simulations may be needed to bet-

ter quantify the expected discrepancies between the DM

and stellar debris from a particular merger. Such sim-

ulations may be warranted to study the potential DM

contribution from stellar streams, such as S1, in the so-

lar neighborhood (Myeong et al. 2018a; Myeong et al.

2018; O’Hare et al. 2018).

The total DM velocity distribution at the solar cir-

cle can be built up from the separate components de-

scribed above if one can infer the relative amounts

of DM brought in by each merger. We provide a

simple procedure to do so, which combines the mass-

metallicity relation with abundance matching to re-

late the Mpeak/M∗,total ratio to the average metallicity

〈[Fe/H]〉 of a merger. This relation allows us to estimate

the relative amounts of DM to stars brought in by each

merger. In this way, we can build the total velocity dis-

tribution for the DM associated with luminous mergers.

The results of our work on the Latte hosts is pertinent

in light of the recently discovered stellar debris field in

the Solar neighborhood (Belokurov et al. 2018; Helmi

https://linoush.github. io/DM_Velocity_Distribution/
https://linoush.github. io/DM_Velocity_Distribution/
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et al. 2018). These stars can be divided into a metal-

poor and nearly isotropic population and a more metal-

rich and radially-biased population. Using a Gaussian

clustering algorithm, Necib et al. (2018) recently ex-

tracted the velocity distributions of these two compo-

nents using data from the SDSS-Gaia cross-match. The

two components correspond to a relaxed stellar popu-

lation and debris flow and should be well-traced by the

DM removed from the same set of mergers, following our

study of the Latte hosts. Using the rescaling relations

from Sec. 6, we estimate that 42+26
−22% of the local DM

accreted from luminous satellites is in debris flow.

The method described in this paper does not, by as-

sumption, account for DM contributions from dark sub-

halos or smooth accretion, which should not be asso-

ciated with stars. In the Latte hosts studied here, we

are not able to distinguish this contribution from DM

arising from unresolved DM (sub)halos or halos whose

galaxies are not resolved. However, the distinguishing

power will improve as the stellar and DM mass resolu-

tion improves. In the Latte hosts, this DM contribution

(which we label as ‘Dark/Unresolved’) comes in at red-

shifts z . 2, so it has, on average, larger speeds than

the older relaxed component.

It is challenging to extract conclusions regarding dark

subhalos or smooth accretion in simulations to our own

Galaxy. Previous studies using high-resolution DM-only

N -body simulations have found considerable variation

in the potential origin of DM in the solar neighborhood.

For example, the DM halo in the Via Lactea simula-

tion is rapidly built up around redshift z ∼ 1.7 and then

remains essentially stationary until present time (Die-

mand et al. 2007). In some Aquarius halos, the DM

in the solar neighborhood is nearly all in place before

z ∼ 6, whereas in others, most of the DM accreted more

recently (Wang et al. 2011). This variation underscores

the importance of studying a variety of simulated halos

to better understand how the fraction of local DM from

dark subhalos or smooth accretion depends on merger

history. Only in this way can we robustly extrapolate

conclusions to the Milky Way.

Finally, we emphasize that all results regarding the

DM-stellar correspondence that we draw from the Fire-

2 simulations assume cold, collision-less DM. It will be

important to understand how these conclusions gener-

alize to a broader class of DM models where the DM

and stellar trajectories may be different, by assumption.

Some classic examples include self-interacting or ultra-

light scalar DM models.

For readers who would like to use the empirical ve-

locity distributions from Necib et al. (2018) to model

the local DM distribution from luminous satellites, we

provide interpolated functions at https://linoush.

github.io/DM_Velocity_Distribution/. The sepa-

rate contributions from the halo and substructure dis-

tributions can be combined following the prescription in

Sec. 6.

https://linoush.github.io/DM_Velocity_Distribution/
https://linoush.github.io/DM_Velocity_Distribution/
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APPENDIX

In this Appendix, we provide some additional figures that supplement the discussion in the main text. Fig. S1

compares the velocity distributions of the relaxed populations to that of stars with [Fe/H] < −3. Figs. S2 and S3 shows

the velocity distributions of other significant mergers in m12i and m12f. Fig. S4 shows the results of estimating the

total dark matter distribution in m12f, and Fig. S5 plots the velocity distributions for all the dark matter components

in m12f.
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Figure S1. As in Fig. 3, this figure shows the present-day distributions for the stars (red solid) and dark matter (black solid)
accreted before redshift zacc > 3 in m12f (top) and m12i (bottom). Here, however, we show the corresponding distributions for
all stars (not just the accreted subset) with [Fe/H] < −3 (green dashed), as opposed to [Fe/H] < −2.
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Figure S2. Same as Fig. 5, except for Merger I and III of m12i.
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Figure S3. Same as Fig. 5, except for Merger II and III of m12f.
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Figure S4. Same as Fig. 9, except for m12f.
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