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Abstract: Twenty-seven methods of estimating vertical ground reaction force first peak, loading
rate, second peak, average, and/or time series from a single wearable accelerometer worn on the
shank or approximate center of mass during running were compared. Force estimation errors were
quantified for 74 participants across different running surfaces, speeds, and foot strike angles and
biases, repeatability coefficients, and limits of agreement were modeled with linear mixed effects to
quantify the accuracy, reliability, and precision. Several methods accurately and reliably estimated
the first peak and loading rate, however, none could do so precisely (the limits of agreement exceeded
±65% of target values). Thus, we do not recommend first peak or loading rate estimation from
accelerometers with the methods currently available. In contrast, the second peak, average, and time
series could all be estimated accurately, reliably, and precisely with several different methods. Of
these, we recommend the ‘Pogson’ methods due to their accuracy, reliability, and precision as well as
their stability across surfaces, speeds, and foot strike angles.

Keywords: wearables inertial measurement units (IMUs); in-field kinetics; over-ground gait
biomechanics; machine learning

1. Introduction

Ground reaction forces (GRFs) are external reaction forces created with equal mag-
nitude and opposite sense to the force that the foot applies to the ground with each step.
Quantifying GRFs is fundamental to running biomechanics research because: (1) per New-
ton’s second law, GRFs dictate center of mass (COM) acceleration and can therefore be used
to study whole-body motion; (2) this whole-body motion both causes, and is caused by,
muscle activity and thus GRF provides insight into that activity [1]; (3) in combination with
this muscle activity, GRF contributes to the internal loads experienced by structures within
the body (e.g., bone, ligament, tendon, cartilage), leading to its frequent (though much
contested) investigation as a risk-factor for injury [2–10]; (4) the magnitude and sense of
GRF is used to assess running performance [11–14]; finally, (5) because GRFs are critical to
inverse dynamics calculations, allowing for the estimation of joint forces and moments and
more advanced analysis of behavior. Thus, accurate quantification of GRF during running
is an important goal.

Accurate quantification of GRF is relatively easy with a force plate or instrumented
treadmill, however, this equipment is generally ‘captive’ to lab environments that may
not represent the actual conditions that runners experience. To increase ecological validity,
previous research has attempted to replicate field conditions within the lab [15–19]. Even
with such attempts, however, spatial constraints may cause participants to alter their gait
on a treadmill or short running track [20], and temporal constraints still limit the duration
and volume of data collection. Thus, lab measured GRFs may not accurately represent
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the millions of GRFs that occur over many long bouts of running in the field, limiting our
understanding of GRF and its relation to other variables.

Some of these constraints have been overcome through the advancement of force sens-
ing insoles [21–26], wearable load cells [27–29], and instrumented shoes [30–32]. However,
this equipment still suffers from issues with durability, comfort, changing the mechanical
properties of a shoe (i.e., making it more rigid) and interfering with the foot–ground (or foot–
shoe) interface. Consequently, biomechanists remain largely reliant on ‘captive’ technology
to measure GRF, decreasing the ecological validity and volume of available data.

Accelerometers offer a promising alternative to overcome this reliance on ‘captive’
technology. These small, low-cost wearable devices may allow the capture of greater vol-
umes of more ecologically valid data than traditional ‘captive’ equipment. Sets of multiple
wearables can estimate GRFs during walking [33–36] and running [37–39] and several
methods have been proposed that truly capitalize on the advantages of accelerometers
(minimizing system complexity, preparation time, participant discomfort, and costs) by
estimating GRFs with a single accelerometer. These single-accelerometer methods often
place the accelerometer on the shank or locations intended to approximate whole body
COM such as the hip, lower back, or upper back (other locations such as the wrist have
also been investigated but show poor correlations with GRFs [40,41]).

Researchers attempting to estimate GRFs from shank accelerations build on obser-
vations that shank acceleration and GRF signals are closely related [42–44] and therefore
should allow for the estimation of one from the other [45–47]. Furthermore, some argue that
forces applied at the ground are damped as they travel up the body and thus, measuring
accelerations at the shank better reflects GRFs than more proximal mounting locations [48].
Researchers also point to similarities in the timing of peaks in the tibial acceleration and
GRF signals [49] (cf. [50]) and argue for a mechanical coupling of these peaks [51].

Relations between GRF and accelerometers mounted on the approximate COM have
also been explored [40,52]. Use of COM locations is based on Newton’s second law that
states that whole body acceleration is inversely proportional to the mass of a body and
proportional to the net forces acting on that body [53–56]. Given a constant mass, if
forces other than GRF are relatively small (e.g., air resistance), then COM acceleration
is a function of gravitational force and GRF. A limitation of this ‘COM’ approach is the
assumption that a single accelerometer with a static position can capture whole body
COM acceleration even though the COM location can move during running (due to limb
movements and changes in posture). Despite this movement, previous research supports
this assumption and demonstrates that a sacrum-mounted accelerometer captures whole
body COM acceleration during running fairly well [57–61].

Based on these arguments, there have been many attempts to estimate GRF from
acceleration at these two mounting locations [62]. However, only one study has conducted
a head-to-head comparison of methods and that study only compared two of the many
methods available [63]. Thus, there are no comprehensive recommendations to guide users
on which method to use for a given application. To overcome this gap in the literature,
methods to estimate GRF from a single accelerometer were replicated and compared.
Methods were required to be non-participant or -trial specific (cf. [64]), non-proprietary
(cf. [50,65,66]), report promising results (cf. [67]), and be capable of providing stance-by-
stance estimates of at least one feature of the vertical GRF (first peak, loading rate, second
peak, average, or time series) (cf. [56]) using only easy-to-measure anthropometrics and/or
features of an acceleration input signal (cf. [16,56,68,69]) from a single sensor on the shank
or COM (cf. [37–39,70–72]). In total, 27 methods derived from 13 publications met these
criteria The 13 original publications are described in Table 1 while the methods derived
from those publications and the vertical GRF feature they are capable of estimating are
described in Table 2.
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Table 1. Thirteen publications met our inclusion criteria and presented one or more methods to
estimate at least one feature of the vertical GRF (first peak, loading rate, second peak, average, or
time series) from a single accelerometer on the shank or approximate COM (hip, sacrum, lower back,
or upper back).

Publication Sample Foot-
Strike Speed Surface Placement Signals Range and

Frequency Targets Ground
Truth Sync

Neugebauer
2012, 2014

[73,74]

n = 35 (20 F 15 M)
children [73]

n = 39 (20 F 19 M)
injury free adults

[74]

NR

2.2-3.9 m/s
[73]

2.2–4.1 m/s
[74]

90 [73] and
15 m [74]

over-
ground

Right iliac crest

αWCSres
[73]

αWCSx,y
[74]

NR
40 Hz [73]
±6 g

100 Hz [74]

Fy,max
Force plate

1000 Hz

Average 30
[73] or 10 s

[74]

Charry
2013 [75] n = 3 NR 1.7–7.2 m/s Overground Medial

mid-tibia αWCSy
±24 g

100 Hz Fy,second
Force plate

300 Hz Video

Wundersitz
2013 [54]

n = 17 (5 F 12 M)
uninjured team

sport
NR 2.5–7.4 m/s 10 m over-

ground
2nd Thoracic

vertebra αWCSy,res
±8 g

100 Hz Fy,max
Force plate

100 Hz Video

Meyer 2015
[76]

n = 13 (3 F 10 M)
moderately

active children
NR 1.7–2.8 m/s 10 m over-

ground Hip αWCSy
±8 g

100 Hz Fy,max
Force plate

2400 Hz
Average

8–15 steps

Gurchiek
2017 [55] n = 15 (3 F 12 M) NR Sprinting and

cutting Overground Sacrum αGCSx,y,z
±24 g
450 Hz

Fy,t
Fy,average

Force plate
1000 Hz

Counter-
movement

jumps

Thiel 2018
[48]

n = 3
elite sprinters NR Sprint Overground Above medial

malleolus αWCSx,y,z
±16 g
250 Hz Fy,max

Force
plates

1000 Hz
LED flash

Kiernan
2020 [77] n = 40 (NR) NR NR 25 m

Overground
Sacrum; iliac

crest αSCSy
±100 g

1000 Hz
Fy, f irst
Fy,second

Force plate
1000 Hz TTL pulses

Kim 2020
[78] n = 7 (0 F 7 M) NR 2.9 m/s Treadmill Sacrum αWCSx,y,z 200 Hz Fy,t

Force plate
400 Hz NR

Pogson
2020 [79]

n = 15 (5 F 10 M)
team sport

players
NR 2.0–8.0 m/s Overground Back of upper

torso αWCSx,y,z
±16 g

100 Hz Fy,t
Force plate

3000 Hz
Synchronous

recording

Day 2021
[80]

n = 30 (21 F 9 M)
NCAA Div 1
cross country

NR 3.8–5.4 m/s Treadmill Posterior
waistband αWCSx,y,z 500 Hz Fy,t

Fy,max

Instrumented
treadmill
500 Hz

Average
10 s

(jump)

Higgins
2021 [40]

n = 30 (15 F 15 M)
healthy NR ~1.8–5.0 m/s 23 m over-

ground

Superior to
lateral

malleolus; hip
αWCSy,res

±8 g
100 Hz

Fy, f irst
dy
dx Fy, f irst

Force plate
1000 Hz

Vertical
jumps

Veras 2022
[63]

n = 131 (52 F
79 M) adults NR 1.9–3.9 m/s Treadmill

Superior to
lateral

malleolus; iliac
crest; sacrum

αWCSy&res
±16 g

100 Hz

dy
dx Fy, f irst
Fy,max

Instrumented
treadmill
1000 Hz

Manual
correction
and cross-
correlation

M—male; F—female; NR—not reported; α—acceleration; SCS—segment coordinate system; WCS—wearable
coordinate system; GCS—global coordinate system (coordinate conventions defined below); Fy, f irst—first (or ‘im-

pact’) peak; dy
dx Fy, f irst—loading rate to first peak; Fy,second—second (or ‘active’) peak; Fy,max—maximum, assumed

to correspond to the second (or ‘active’) peak; Fy,t—time series.

Table 2. Twenty-seven methods were derived or adapted from the 13 publications in Table 1. Methods
are sorted by accelerometer placement location. Methods that originally placed accelerometers on
the lumbar or thoracic spine have been adapted to the sacrum. Not all methods could estimate
all potential vertical GRF features. If a method was originally designed to estimate a feature, it is
specified as ‘designed’ and highlighted in blue. If a method was designed to estimate a time series,
all discrete vertical GRF features were then derived from that time series. These are marked ‘derived’
and highlighted pink.

Estimated Force Variable

Sensor
Location Method First Peak Loading Rate Second Peak Average Time Series

Sh
an

k

Charry designed
Thiel designed

Veras shank res designed designed
Veras shank y designed designed
Higgins shank designed designed

H
ip

Neugebauer designed
Meyer designed

Kiernan hip designed designed
Veras hip res designed designed
Veras hip y designed designed
Higgins hip designed designed
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Table 2. Cont.

Estimated Force Variable

Sensor
Location Method First Peak Loading Rate Second Peak Average Time Series

Sa
cr

um

Gurchiek derived derived derived designed designed
Kim acceleration derived derived derived derived designed

Kim displacement derived derived derived derived designed
Kiernan sacrum designed designed
Veras sacrum res designed designed
Veras sacrum y designed designed

Day 5 Hz derived derived designed derived designed
Day 10 Hz derived derived designed derived designed
Day 30 Hz derived derived designed derived designed

Wundersitz 10 Hz designed
Wundersitz 15 Hz designed
Wundersitz 20 Hz designed
Wundersitz 25 Hz designed
Wundersitz raw designed

Pogson derived derived derived derived designed
Pogson xynormed derived derived derived derived designed

To evaluate which of these 27 methods provides the most accurate, reliable, and precise
estimate of the vertical GRF first peak, loading rate, second peak, average, and/or time
series, errors were calculated relative to a gold-standard force plate. For each method, errors
were compared across a range of speeds, foot strike angles, and running surfaces to explore
whether the method’s performance varied across these conditions. The results demonstrate
the best method to estimate vertical GRF parameters from a single accelerometer under
given surface, foot strike, and running speed conditions. Code to automatically execute
each of the methods on stance-segmented accelerometer data is provided at https://github.
com/DovinKiernan/MTFBWY_running_vGRF_from_a, accessed on 12 September 2023.

2. Methods

Data from this study were first reported in a separate analysis [15], but methods are
repeated here for convenience.

2.1. IMU Calibration

Adapting methods from Coolbaugh et al. [81], tri-axial IMUs (ProMove MINI, Inertia
Technology, Enschede, The Netherlands; ±16 g primary, ±100 g secondary, ±34.91 rad/s,
1000 Hz; see https://inertia-technology.com/wp-content/uploads/2022/02/ProMove-
mini-datasheet.pdf, (accessed on 11 Oct 2023) for further details on device specifica-
tions and operation) were calibrated with a centrifuge (ClearPath MCVC, Teknic, Vic-
tor, NY, USA) and custom 3D printed jigs (SOLIDWORKS 2019, Dassault Systèmes,
Vélizy-Villacoublay, France). After calibration, IMU primary accelerometer errors were
≤0.01 ± 0.04 g, secondary accelerometer errors were ≤0.05 ± 0.07 g, and gyroscope errors
were ≤0.01 ± 0.01 rad/s (Supplement SA.1).

2.2. Participants

Seventy-seven participants were recruited from the University of California, Davis,
local running clubs, and the community at large. Participants were ≥18 years old and
reported running ≥16.09 km per week for ≥6 months. Three participants were excluded
from the analysis due to movement of an IMU (n = 2) or inability to complete the protocol
as instructed (n = 1), leaving a final sample of 74 (32 males; 42 females; 0 non-binary; age
28 ± 12 years; Figure 1). All participants provided written informed consent, and proce-
dures were approved by the University of California, Davis Institutional Review Board.

https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a
https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a
https://inertia-technology.com/wp-content/uploads/2022/02/ProMove-mini-datasheet.pdf
https://inertia-technology.com/wp-content/uploads/2022/02/ProMove-mini-datasheet.pdf
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Figure 1. Participant (A) sex, (B) age, (C) height, (D) mass, and (E) self-reported average distance
run per week. The white horizontal line represents the mean; dark blue represents ±95% confidence
interval (±1.96 SEM) around the mean; and light blue represents ±1 SD around the mean. Gray dots
represent participants outside ±1 SD.

2.3. Protocol

Participant mass, height, and distance of the left and right lateral malleolus, fibular
head, lateral epicondyle, and superior aspect of greater trochanter from the ground were
measured. Using adhesive-bonded hook-and-loop fasteners, IMUs were attached to neo-
prene belts with anti-slip silicone inners, then wrapped with elastic straps as tightly as
possible, within the limit of participant comfort. IMUs were placed anterior and superior to
the lateral malleoli (shank), on the superior aspect of the iliac crests in line with the greater
trochanter (hip), and on the superior aspect of the sacrum in line with the spine (sacrum)
(Figure 2).
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Figure 2. (A) IMU placement and coordinate conventions. For consistency, different conventions
used across methods have been standardized to ISB conventions [82]: Segment coordinate systems
(SCS) were defined as anterior (+x), proximal (+y), and medial-lateral (with right defined as +z);
wearable coordinate systems (WCS) were defined square to the IMU housing, which was roughly
aligned with the direction of progression (+x), longitudinal axis (+y proximal), and right (+z); tilt-
corrected coordinate systems (TCCS) were defined as vertical (+y) and the projections of direction of
progression (+x) and the medial-lateral axis (+z right) onto the horizontal plane. (B) Belt design and
IMU fixation. (C) Experimental setup.

Participants wore their own shoes and ran a 25 m runway with an embedded force
plate (Kistler 9281, Kistler Group, Winterthur, Switzerland; 1000 Hz). The running speed
was recorded using two custom-built laser speed gates, placed 2.5 m on each side of force
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plate center. Participants warmed up and practiced striking the force plate three times
per side at their slowest (“the slowest pace you would use on a run”), typical (“the pace
you use for the majority of your running”), and fastest (“the fastest pace you would use
on a run”) self-selected speeds (Figure 3). During this warmup, markers on the lateral
calcaneus and base of the fifth metatarsal were recorded using a conventional video camera
(Exilim EX-FH25, Casio, Shibuya City, Tokyo, Japan; 120 Hz). Foot strike angle was
calculated by subtracting a neutral standing foot angle from the foot angle at initial contact
(Kinovea 0.9.5). Positive values indicate a more dorsiflexed foot at initial contact with
values > 0.14 radians corresponding to rear-foot strike, −0.03 to 0.14 radians to mid-foot
strike, and <−0.03 radians to forefoot strike [83]. After warm-up, five stances per side were
collected at each speed for two surface conditions: (1) with a track surface covering the
runway and force plate, and (2) with no covering on the hardwood floor of a basketball
court. Participants always progressed from their slowest to fastest speeds, but the order of
foot and surface was pseudo-randomized.
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±1 SD around the mean. Gray dots represent participants outside ±1 SD. RFS is rear foot strike, MFS
is mid foot strike, and FFS is fore foot strike.

IMU data were synchronized within 100 ns of each other with a wireless network hub
(Advanced Inertia Gateway, Inertia Technology, Enschede, The Netherlands). This hub
sent voltage pulses that were synchronously recorded by IMU software (Inertia Studio
v3.5.0, Inertia Technology, Enschede, The Netherlands) and a custom MATLAB script that
simultaneously recorded speed and force data (R2018b, MathWorks, Natick, MA, USA).
Pulse trains were cross correlated to synchronize signals. During data processing, we
observed small timing discrepancies caused by the initialization of discrete MATLAB data
acquisitions and small variances between the sampling rates of the IMU and MATLAB
systems. Although extremely small, these discrepancies could accumulate over the course
of the ~60 min data collection, leading to timing differences between the first and last synch
events of a data collection (on the order of 10 s of ms). To ensure the input acceleration data
were perfectly matched with the target force data, a conservative approach was used and
only trials containing a synch event were analyzed (642 of 4440 trials). All other trials were
discarded to ensure millisecond-level accuracy.
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2.4. IMU Data Processing

Calibration matrices were applied to the IMU data. Quiet periods were identified
(angular velocity < 0.5 rad/s and jerk < 0.01 m/s3 for at least 100 ms) and used to remove
biases. Saturated frames from the primary accelerometer (|a| > 15.5 g) were replaced
with corresponding frames from the secondary accelerometer. Data were filtered with a
4th-order 50-Hz low-pass Butterworth filter. Angular velocity was drift-corrected using a
Madgwick filter [84–87]. Starting at each quiet period, accelerations were used to estimate
the IMU position in the inertial reference frame, then angular velocities were used to
estimate frame-by-frame changes in IMU orientation and remove the gravity component
from accelerations [88]. Data were then expressed in a segment coordinate system based
on the principal component that explained the most variance in angular velocity during
running (the medial-lateral axis) and the gravity vector during quiet standing [89,90]. IMU
data during stance were extracted based on the instant the time-synchronized vertical force
crossed a 10 N threshold. For more detailed IMU processing, see Supplement SA.

2.5. Force Data Processing

Force data were filtered with a 4th-order 50-Hz low-pass Butterworth filter. A vertical
force threshold of 10 N was used to define the start and end of stance. The first (or
‘impact’) peak was identified by performing a Fourier transform on the vertical GRF, then
reconstructing a time domain signal from the ≥ 10 Hz high frequency (‘HiF’) components
with an inverse Fourier transform [91]. First peak magnitude was defined as the magnitude
of the original vertical GRF signal at the time when the HiF signal achieved its earliest peak
occurring after 5% of stance duration. The loading rate was calculated from 20 to 80% of
stance onset to first peak [92]. The second (or ‘active’) peak was defined as the maximum
magnitude of the vertical GRF (or the magnitude of the second peak if two peaks were
present). The average was also calculated across stance. These methods are depicted for a
single stance in Figure 4.
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Figure 4. Vertical GRF (blue) and HiF reconstruction (red) for an example stance. Vertical dashed
lines indicate the timing of first and second vertical GRF peaks. Note, although the first peak is
difficult to visually identify in the original signal (blue), a consistent point in the HiF signal can still be
identified (red). The yellow highlighted region from 20 to 80% of the first peak was used to calculate
the loading rate.
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2.6. Analysis

The first peak, loading rate, second peak, average force, and force time series were
estimated with each capable method (Table 2). For methods that required a model to be built
(see Supplement SB), these features were estimated using a leave one out analysis where
74 models were iteratively trained with data from 73 participants, then used to estimate
features for the single participant the model was not trained on. Errors were calculated
by subtracting the ground truth force plate value from the estimated value (for first peak,
loading rate, second peak, or average) or by calculating the RMSE (for time series).

One sample t-tests were used to compare each method’s error to the gold standard
(0 error). Significance was set at p ≤ 0.05 with a false discovery rate (FDR) procedure to
correct for multiple comparisons.

To account for the non-independence of the data (642 trials from 74 participants) and
ensure proper estimation of variance, an adaptation of the Bland–Altman method was
used [93]. Errors were entered into linear mixed-effects models in R (v4.2.2; R Founda-
tion for Statistical Computing, Indianapolis, IN, USA) as described in Carstensen et al.’s
approach to linked replicates [94,95]:

ymethod,participant,trial = amethod + bparticipant + Cmethod,participant + Dparticipant,trial + εmethod,participant,trial (1)

where y corresponds to the model estimated error, lower case terms correspond to fixed
effects, upper case terms correspond to random effects, and ε corresponds to error. Model
assumptions of independence, normality, and homoscedasticity were validated by plotting
within-participant variances against within-participant means, histograms of residuals,
residuals for each level of random effect, and residuals as a function of fitted value. Method-
specific variance components were extracted using the ‘MethComp’ package for R [96]:

Cmethod,participant ∼ N
(

0, τ2
method

)
(2)

εmethod,participant,trial ∼ N
(

0, σ2
method

)
(3)

where the values of C and ε are normally distributed about zero with variances of τ2
method

and σ2
method for each method. This allowed for the estimation of: (1) method biases that

quantify accuracy (mean error); (2) repeatability coefficients (RC) that quantify the largest
absolute difference predicted between two measurements on the same participant un-
der identical circumstances; and (3) limits of agreement (LOA) that quantify precision
(limits within which 95% of future errors for a given method are expected to fall), using
the equations:

RCmethod = ± 2.83σmethod (4)

LOAmethod = ± 1.96
√

τ2
0 + τ2

method + σ2
0 + σ2

method (5)

where τ2
0 and σ2

0 correspond to variances for the gold standard.
To evaluate if any potential explanatory variables affected error, a second set of linear

mixed effects models was developed for each method. These models added surface, speed,
and foot strike angle as fixed effects. A p ≤ 0.05 for any fixed effect was interpreted as that
fixed effect accounting for a significant amount of a method’s error (i.e., model-estimated
force was significantly affected by the running surface, speed, and/or foot strike angle).

3. Results
3.1. First Peak

Using Carstensen’s method for linked replicates [94], biases, RCs, and LOAs were
calculated for each method capable of first peak estimation (Figure 5; Table 3). First peak
magnitude was estimated at the shank by one method, which was among the best perform-
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ing (biases < 200 N): ‘Higgins shank’ (+16.46 ± 879.51 N or +1.35 ± 72.23%; bias ± LOA).
At the hip by ‘Kiernan hip’ (−43.18 ± 957.18 N or −3.55 ± 78.61%) and ‘Higgins hip’
(+16.46 ± 906.02 N or +1.35 ± 74.41%). At the sacrum by nine methods, with four among
the best performing: ‘Kim displacement’ (−132.74 ± 823.12 N or −10.90 ± 67.60%), ‘Kier-
nan sacrum’ (−33.81 ± 961.22 N or −2.78 ± 78.94%), ‘Pogson’ (−101.25 ± 839.57 N or
−8.32 ± 68.95%), and ‘Pogson xynorm’ (−115.06 ± 850.78 N or −9.45 ± 69.87%).

Sensors 2023, 23, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 5. Bias (white bar), ± RC (dark blue), and ± LOA (light blue) in first peak estimation for each 
capable method. Gray dots represent trials falling outside the LOA. Values outside ± 1000 N are 
plotted at the axis limits. A value of 0 represents perfect agreement with the force plate. Positive 
values indicate the method overestimated the first peak. Negative values indicate the method un-
derestimated the first peak. The method with a white background on the left is for accelerometers 
on the shank, methods with a gray background are for the hip, and methods with a white back-
ground on the right are for the sacrum. 

Table 3. Best performing first peak estimation methods. Overall performance shown as biases (ac-
curacy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green) 
to absolute maximum (purple) values observed within-column. Biases that significantly differed 
from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across conditions shown as coefficients 
for the intercept of surface (added to model-estimated error for the track condition but not the floor 
condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If surface, speed, 
or foot strike explains a significant (p ≤ 0.05) amount of error it is highlighted pink and marked *. 

 Overall Performance Performance across Conditions 
Method Bias (N) RC (N) LOAs (N) Speed Surface Foot Strike 

Higgins shank +16.46 343.88 879.51 −83.70 * 11.89 −243.59 * 
Kiernan hip −43.18 * 194.73 957.18 −191.48 * −5.69 −300.01 * 
Higgins hip +16.46 395.53 906.02 −131.03 * −1.19 −231.61 * 

Kim displacement −132.74 * 115.26 823.12 −181.87 * −12.86 −387.83 * 
Kiernan sacrum −33.81 * 134.60 961.22 −183.19 * −11.26 −312.66 * 

Pogson −101.25 * 273.04 839.57 −135.50 * −14.55 −535.86 * 
Pogson xynormed −115.06 * 247.59 850.78 −170.00 * 2.42 −427.28 * 

     

  

Figure 5. Bias (white bar), ±RC (dark blue), and ±LOA (light blue) in first peak estimation for each
capable method. Gray dots represent trials falling outside the LOA. Values outside ± 1000 N are
plotted at the axis limits. A value of 0 represents perfect agreement with the force plate. Positive
values indicate the method overestimated the first peak. Negative values indicate the method
underestimated the first peak. The method with a white background on the left is for accelerometers
on the shank, methods with a gray background are for the hip, and methods with a white background
on the right are for the sacrum.

Table 3. Best performing first peak estimation methods. Overall performance shown as biases
(accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green)
to absolute maximum (purple) values observed within-column. Biases that significantly differed
from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across conditions shown as coefficients
for the intercept of surface (added to model-estimated error for the track condition but not the floor
condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If surface, speed,
or foot strike explains a significant (p ≤ 0.05) amount of error it is highlighted pink and marked *.

Overall Performance Performance across Conditions

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot Strike
Higgins shank +16.46 343.88 879.51 −83.70 * 11.89 −243.59 *

Kiernan hip −43.18 * 194.73 957.18 −191.48 * −5.69 −300.01 *
Higgins hip +16.46 395.53 906.02 −131.03 * −1.19 −231.61 *

Kim displacement −132.74 * 115.26 823.12 −181.87 * −12.86 −387.83 *
Kiernan sacrum −33.81 * 134.60 961.22 −183.19 * −11.26 −312.66 *

Pogson −101.25 * 273.04 839.57 −135.50 * −14.55 −535.86 *
Pogson xynormed −115.06 * 247.59 850.78 −170.00 * 2.42 −427.28 *
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A second set of linear mixed effects models were performed on each of the best
performing methods (biases < 200 N) to examine the role of running speed, surface, and
foot strike angle as potential explanatory variables. These models revealed that error in
each of the best performing methods was significantly explained by running speed and
foot strike angle (p values ≤ 0.05) but not by running surface (p values > 0.05) (Table 3).
To illustrate these effects, model-predicted biases were plotted as a function of speed
and foot strike angle (Figure 6). Yellow, red, and purple colors in these plots correspond
to overestimations (positive errors where the estimate has a greater magnitude than the
gold standard), while darker blue colors correspond to underestimations (negative errors
where the estimate has a smaller magnitude than the gold standard). All methods showed
the same general pattern with overestimates at low speeds and foot strike angles, and
underestimates at high speeds and foot strike angles.
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Figure 6. Bias in first peak estimates predicted by mixed effects models for each of the best performing
methods, plotted as a function of speed and foot strike angle. Green values represent perfect agree-
ment with the gold standard; yellow, red, and purple values represent positive biases (overestimates);
darker blue values represent negative biases (underestimates). Foot strike angles corresponding to
rear-, mid-, and fore-foot strike patterns are labelled (RFS, MFS, and FFS) and divided with dashed
white lines.
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3.2. Loading Rate

Three methods were capable of estimating loading rate from shank accelerations
and were among the best performing methods (biases < 10 kN/s): ‘Veras shank res’
(+4.37 ± 62.56 kN/s or +8.26± 118.16%; bias± LOA), ‘Veras shank y’ (−3.25 ± 59.96 kN/s
or −6.13 ± 113.25%), and ‘Higgins shank’ (−1.71 ± 56.69 kN/s or −3.23 ± 107.08%). Three
were capable of estimating loading rate from hip acceleration but only ‘Higgins hip’ was
among the best performing (+0.02 ± 52.36 kN/s or +0.04 ± 98.90%). Ten methods were
capable of estimating loading rate from sacrum acceleration, of these, the best perform-
ing were: ‘Kim displacement’ (−6.34 ± 50.52 kN/s or −11.98 ± 95.43%), ‘Veras sacrum
res’ (−1.95 ± 49.34 kN/s or −3.68 ± 93.19%), ‘Veras sacrum y’ (−1.04 ± 50.52 kN/s or
−1.96 ± 95.42%), ‘Pogson’ (−5.32 ± 51.82 kN/s or −10.04 ± 97.87%), and ‘Pogson xynorm’
(−7.83 ± 51.21 kN/s or −14.80 ± 96.73%) (Figure 7).
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≤ 0.05) but not by running surface (p values > 0.05) (Table 4). All methods showed a similar 

Figure 7. Bias (white bar), ± RC (dark blue), and ± LOA (light blue) in the loading rate for each
capable method. Gray dots represent trials falling outside the LOA. Values outside ± 50 kN/s are
plotted at the axis limits. A value of 0 represents perfect agreement with the force plate. Positive values
indicate the method overestimated loading rate. Negative values indicate the method underestimated
loading rate. Methods with a white background on the left are for accelerometers on the shank,
methods with a gray background are for the hip, and methods with a white background on the right
are for the sacrum.

The linear mixed effects models examining the role of running speed, surface, and
foot strike angle on the best performing methods (biases < 10 kN/s) revealed that er-
ror in all methods was significantly explained by running speed and foot strike angle
(p values ≤ 0.05) but not by running surface (p values > 0.05) (Table 4). All methods showed
a similar pattern of overestimating loading rates at low speeds and foot strike angles and
underestimating at high speeds and foot strike angles (Figure 8).
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Table 4. Best performing loading rate estimation methods. Overall performance shown as biases
(accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green)
to absolute maximum (purple) values observed within-column. Biases that significantly differed from
0 (p ≤ 0.05 with FDR correction) are marked *. Performance across conditions shown as coefficients
for the intercept of surface (added to model-estimated error for the track condition but not the floor
condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If surface, speed,
or foot strike explains a significant (p ≤ 0.05) amount of error, it is highlighted pink and marked *.

Overall Performance Performance across Conditions

Method Bias (kN/s) RC (kN/s) LOAs (kN/s) Speed Surface Foot Strike
Veras shank res +4.37 * 36.96 62.56 −8.28 * −0.29 −36.00 *
Veras shank y −3.25 * 32.96 59.96 −9.14 * −0.52 −33.12 *
Higgins shank −1.71 29.99 56.69 −3.47 * 0.92 −16.17 *

Higgins hip +0.02 20.58 52.36 −10.66 * −0.61 −21.41 *
Kim displacement −6.34 * 11.98 50.52 −6.90 * −1.45 −37.74 *
Veras sacrum res −1.95 9.47 49.34 −12.36 * −0.96 −22.08 *
Veras sacrum y −1.04 10.18 50.52 −13.83 * −0.96 −27.55 *

Pogson −5.32 * 16.78 51.82 −5.98 * −1.04 −40.57 *
Pogson xynorm −7.83 * 17.25 51.21 −5.99 * −1.03 −42.16 *
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3.3. Second Peak 
Four methods could estimate second peak from shank accelerations, all were among 

the best performing methods (biases < 100 N): ‘Charry’ (+58.48 ± 478.42 N or +3.53 ± 
28.85%; bias ± LOA), ‘Thiel’ (−90.32 ± 1162.97 N or −5.45 ± 70.12%), ‘Veras shank res’ 
(−98.67 ± 470.96 N or −5.95 ± 28.40%), and ‘Veras shank y’ (−88.75 ± 471.45 N or −5.35 ± 
28.43%). Five methods could estimate second peak from hip accelerations, with two 
among the best performing: ‘Neugebauer’ (+14.04 ± 488.09 N or +0.85 ± 29.43%) and 
‘Kiernan hip’ (−7.56 ± 572.04 N or −0.46 ± 34.49%). At the sacrum, 16 methods could esti-
mate second peak, with seven among the best performing: ‘Kim acceleration’ (−27.21 ± 
721.47 N or −1.64 ± 43.50%), ‘Kim displacement’ (+20.68 ± 696.86 N or +1.25 ± 42.02%), 
‘Kiernan sacrum’ (−4.20 ± 563.80 N or −0.25 ± 33.99%), ‘Veras sacrum y’ (−74.18 ± 492.08 N 
or −4.47 ± 29.67%), ‘Wundersitz 20 Hz’ (+34.19 ± 1089.85 N or +2.06 ± 65.71%), ‘Pogson’ 
(+25.36 ± 745.01 N or +1.53 ± 44.92%), and ‘Pogson xynorm’ (−2.39 ± 730.18 N or −0.14 ± 
44.02%) (Figure 9). 

The linear mixed effects models examining the role of running speed, surface, and 
foot strike angle on the best performing methods revealed that error in all methods was 
significantly explained by running speed (p values ≤ 0.05). Foot strike angle also signifi-
cantly explained error in eight of 13 methods (p values ≤ 0.05) but not in ‘Kim acceleration’, 
‘Kim displacement’, ‘Wundersitz 20 Hz’, ‘Pogson’, and ‘Pogson xynorm’ (p values > 0.05). 
Surface explained significant variation in only one method: ‘Wundersitz 20 Hz’ (all other 
p values > 0.05) (Table 5). Most methods showed the same general pattern with overesti-
mates at low speeds and high foot strike angles. There were two exceptions: ‘Thiel’ had 
underestimates at low speeds and foot strike angles and overestimates at high speeds and 
foot strike angles, while ‘Pogson’ showed generally stable performance with a small (but 
significant) increase in error at faster speeds (Figure 10). 
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Figure 8. Bias in loading rate estimates predicted by mixed effects models for each of the best
performing methods, plotted as a function of speed and foot strike angle. Green values represent
perfect agreement with the gold standard; yellow, red, and purple values represent positive biases
(overestimates); darker blue values represent negative biases (underestimates). Foot strike angles
corresponding to rear-, mid-, and fore-foot strike patterns are labelled (RFS, MFS, and FFS) and
divided with dashed white lines.
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3.3. Second Peak

Four methods could estimate second peak from shank accelerations, all were among
the best performing methods (biases < 100 N): ‘Charry’ (+58.48± 478.42 N or +3.53 ± 28.85%;
bias ± LOA), ‘Thiel’ (−90.32 ± 1162.97 N or −5.45 ± 70.12%), ‘Veras shank res’
(−98.67 ± 470.96 N or −5.95 ± 28.40%), and ‘Veras shank y’ (−88.75 ± 471.45 N or
−5.35 ± 28.43%). Five methods could estimate second peak from hip accelerations, with
two among the best performing: ‘Neugebauer’ (+14.04 ± 488.09 N or +0.85 ± 29.43%)
and ‘Kiernan hip’ (−7.56 ± 572.04 N or −0.46 ± 34.49%). At the sacrum, 16 methods
could estimate second peak, with seven among the best performing: ‘Kim accelera-
tion’ (−27.21 ± 721.47 N or −1.64 ± 43.50%), ‘Kim displacement’ (+20.68 ± 696.86 N
or +1.25 ± 42.02%), ‘Kiernan sacrum’ (−4.20 ± 563.80 N or −0.25 ± 33.99%), ‘Veras sacrum
y’ (−74.18 ± 492.08 N or −4.47 ± 29.67%), ‘Wundersitz 20 Hz’ (+34.19 ± 1089.85 N or
+2.06 ± 65.71%), ‘Pogson’ (+25.36 ± 745.01 N or +1.53 ± 44.92%), and ‘Pogson xynorm’
(−2.39 ± 730.18 N or −0.14 ± 44.02%) (Figure 9).
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Wundersitz 20 Hz 34.19 729.30 1089.85 −51.84 * 63.98 * 205.90 

Figure 9. Bias (white bar),± RC (dark blue), and± LOA (light blue) in the second peak estimation for
each capable method. Gray dots represent trials falling outside the LOA. Values outside ± 1000 N are
plotted at the axis limits. A value of 0 represents perfect agreement with the force plate. Positive values
indicate the method overestimated second peak. Negative values indicate the method underestimated
second peak. Methods with a white background on the left are for accelerometers on the shank,
methods with a gray background are for the hip, and methods with a white background on the right
are for the sacrum.

The linear mixed effects models examining the role of running speed, surface, and
foot strike angle on the best performing methods revealed that error in all methods was
significantly explained by running speed (p values ≤ 0.05). Foot strike angle also signifi-
cantly explained error in eight of 13 methods (p values ≤ 0.05) but not in ‘Kim acceleration’,
‘Kim displacement’, ‘Wundersitz 20 Hz’, ‘Pogson’, and ‘Pogson xynorm’ (p values > 0.05).
Surface explained significant variation in only one method: ‘Wundersitz 20 Hz’ (all other
p values > 0.05) (Table 5). Most methods showed the same general pattern with overesti-
mates at low speeds and high foot strike angles. There were two exceptions: ‘Thiel’ had
underestimates at low speeds and foot strike angles and overestimates at high speeds and
foot strike angles, while ‘Pogson’ showed generally stable performance with a small (but
significant) increase in error at faster speeds (Figure 10).



Sensors 2023, 23, 8719 14 of 25

Table 5. Best performing second peak estimation methods. Overall performance shown as biases
(accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green)
to absolute maximum (purple) values observed within-column. Biases that significantly differed from
0 (p ≤ 0.05 with FDR correction) are marked *. Performance across conditions shown as coefficients
for the intercept of surface (added to model-estimated error for the track condition but not the floor
condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If surface, speed,
or foot strike explains a significant (p ≤ 0.05) amount of error, it is highlighted pink and marked *.

Overall Performance Performance across Conditions

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot Strike
Charry 58.48 * 79.70 478.42 −20.20 * 4.46 200.08 *
Thiel −90.32 * 1006.17 1162.97 192.97 * 17.93 484.50 *

Veras shank res −98.67 * 0.53 470.96 −30.82 * 3.04 182.12 *
Veras shank y −88.75 * 10.07 471.45 −29.67 * 3.88 178.48 *
Neugebauer 14.04 116.89 488.09 −23.53 * 1.69 244.81 *
Kiernan hip −7.56 157.16 572.04 −44.59 * 9.34 113.21 *

Kim acceleration −27.21 * 74.26 721.47 −39.70 * 0.25 102.31
Kim displacement 20.68 250.96 696.86 −61.10 * 1.81 75.90

Kiernan sacrum −4.20 156.73 563.80 −60.27 * 8.40 138.82 *
Veras sacrum y −74.18 * 132.12 492.08 −22.25 * 4.19 268.09 *

Wundersitz 20 Hz 34.19 729.30 1089.85 −51.84 * 63.98 * 205.90
Pogson 25.36 233.50 745.01 28.92 * 2.74 −27.38

Pogson xynorm −2.39 429.45 730.18 −23.62 * 18.74 93.89
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Figure 10. Bias in second peak estimates predicted by mixed effects models for each of the best
performing methods, plotted as a function of speed and foot strike angle. Green values represent
perfect agreement with the gold standard; yellow, red, and purple values represent positive biases
(overestimates); darker blue values represent negative biases (underestimates). Foot strike angles
corresponding to rear-, mid-, and fore-foot strike patterns are labelled (RFS, MFS, and FFS) and
divided with dashed white lines.
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3.4. Average Force

Eight sacrum methods could calculate the average force from an estimated time series,
the four best performing (biases < 100 N) were: ‘Kim acceleration’ (−67.76 ± 381.52 N or
−6.87 ± 38.68%; bias ± LOA), ‘Kim displacement’ (+7.66 ± 394.37 N or +0.78 ± 39.98%),
‘Pogson’ (−3.18 ± 367.81 N or −0.32 ± 37.29%), and ‘Pogson xynorm’ (−4.87 ± 278.80 N
or −0.49 ± 28.26%) (Figure 11).
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Figure 11. Bias (white bar), ± RC (dark blue), and ± LOA (light blue) in average force estimation for
each capable method. Gray dots represent trials falling outside the LOA. Values outside ± 1000 N
are plotted at the axis limits. A value of 0 represents perfect agreement with the force plate. Positive
values indicate the method overestimated the average force. Negative values indicate the method
underestimated the average force. All methods were for the sacrum.

The linear mixed effects models examining the role of running speed, surface, and
foot strike angle on each of the best performing methods revealed that error in all methods
except ‘Pogson’ was significantly explained by running speed (p values ≤ 0.05). Foot strike
angle significantly explained error in only ‘Pogson’ (all other p values > 0.05). Surface
significantly explained error in only ‘Pogson xynorm’ (all other p values > 0.05) (Table 6).
Three methods showed the same general pattern with overestimates at low speeds. ‘Pogson’
was an exception, showing generally stable performance with a small (but significant)
increase in error at lower foot strike angles (Figure 12).

Table 6. Best performing average force estimation methods. Overall performance shown as biases
(accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green)
to absolute maximum (purple) values observed within-column. Biases that significantly differed from
0 (p ≤ 0.05 with FDR correction) are marked *. Performance across conditions shown as coefficients
for the intercept of surface (added to model-estimated error for the track condition but not the floor
condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If surface, speed,
or foot strike explains a significant (p ≤ 0.05) amount of error, it is highlighted pink and marked *.

Overall Performance Performance across Conditions

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot Strike
Kim acceleration −67.76 * 245.71 381.52 −66.45 * 3.96 −24.06

Kim displacement 7.66 265.11 394.37 −67.73 * 5.20 −36.48
Pogson −3.18 261.96 367.81 −5.48 3.68 −59.42 *

Pogson xynorm −4.87 169.92 278.80 −54.79 * 14.12 * −24.00
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3.5. Time Series 
Eight sacrum methods could estimate force time series, of these the four best per-
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mean ± LOA), ‘Kim displacement’ (240.43 ± 215.57 N or 24.37 ± 21.85%), ‘Pogson’ (237.33 

Figure 12. Bias in average force estimates predicted by mixed effects models for each of the best
performing methods, plotted as a function of speed and foot strike angle. Green values represent
perfect agreement with the gold standard; yellow, red, and purple values represent positive biases
(overestimates); darker blue values represent negative biases (underestimates). Foot strike angles
corresponding to rear-, mid-, and fore-foot strike patterns are labelled (RFS, MFS, and FFS) and
divided with dashed white lines.

3.5. Time Series

Eight sacrum methods could estimate force time series, of these the four best per-
forming (RMSEs < 250 N) were: ‘Kim acceleration’ (245.69 ± 212.85 N or 24.91 ± 21.58%;
mean ± LOA), ‘Kim displacement’ (240.43 ± 215.57 N or 24.37 ± 21.85%), ‘Pogson’
(237.33 ± 218.09 N or +24.06 ± 22.11%), and ‘Pogson xynorm’ (180.32 ± 230.62 N or
18.28 ± 23.38%) (Figure 13).
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Figure 13. Mean RMSE (white bar),± RC (dark blue), and± LOA (light blue) in time series estimation
for each capable method. Gray dots represent trials falling outside the LOA. Values > 1000 N are
plotted at the axis limit. A value of 0 represents perfect agreement with the force plate. Positive
values indicate larger errors. All methods were for the sacrum.
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The linear mixed effects models examining the role of running speed, surface, and foot
strike angle on each of the best performing methods (RMSEs < 250 N) revealed that error in
all methods was significantly explained by running speed (p values ≤ 0.05) but not by foot
strike angle or running surface (p values > 0.05) (Table 7). All methods showed the same
general pattern with higher predicted RMSEs at higher speeds but ‘Pogson xynorm’ had
lower predicted mean RMSEs than any other method across its entire range (Figure 14).

Table 7. Best performing force time series estimation methods. Overall performance shown as
biases (accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum
(green) to absolute maximum (purple) values observed within-column. RMSEs that significantly
differed from 0 (p ≤ 0.05 with FDR correction) are marked *. Performance across conditions shown as
coefficients for the intercept of surface (added to model-estimated error for the track condition but
not the floor condition) and slopes for running speed (in m/s) and foot strike angle (in radians). If
surface, speed, or foot strike explains a significant (p ≤ 0.05) amount of error, it is highlighted pink
and marked *.

Overall Performance Performance across Conditions

Method RMSE (N) RC (N) LOAs (N) Speed Surface Foot Strike
Kim acceleration 245.69 * 88.18 212.85 36.30 * −3.45 −32.21

Kim displacement 240.43 * 115.29 215.57 11.64 * 4.84 −10.52
Pogson 237.33 * 116.38 218.09 16.84 * −4.09 −40.05

Pogson xynorm 180.32 * 153.83 230.62 34.94 * 0.31 −0.85
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The ‘Kim acceleration’ and ‘Kim displacement’ methods produced highly stereo-
typed time series with little variation (i.e., regardless of the input acceleration, the output 
force estimate was similar) (Figure 15). This caused relatively large errors, particularly at 
the locations of the first and second peak. In contrast, ‘Pogson xynorm’ had much more 
variation in its estimated values and better fit the data (lower errors), however, errors 
remained high around the first peak. 

Figure 14. Mean RMSE in the estimated force time series predicted by mixed effects models for each
of the best performing methods, plotted as a function of speed and foot strike angle. Green values
represent perfect agreement with the gold standard; yellow, red, and purple values represent higher
predicted mean RMSEs. Foot strike angles corresponding to rear-, mid-, and fore-foot strike patterns
are labelled (RFS, MFS, and FFS) and divided with dashed white lines.



Sensors 2023, 23, 8719 18 of 25

The ‘Kim acceleration’ and ‘Kim displacement’ methods produced highly stereotyped
time series with little variation (i.e., regardless of the input acceleration, the output force
estimate was similar) (Figure 15). This caused relatively large errors, particularly at the
locations of the first and second peak. In contrast, ‘Pogson xynorm’ had much more
variation in its estimated values and better fit the data (lower errors), however, errors
remained high around the first peak.
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Figure 15. Mean time series estimated by each method (dark blue line) ± 1 SD (light blue shading)
and the error between the gold standard time series (dark red line) ± 1 SD (light red shading). A red
line at 0 indicates perfect agreement with the force plate, values above 0 indicate an overestimation of
force at that time point, values below 0 indicate an underestimation of force at that time point.

4. Discussion

Performance was evaluated for 27 methods of estimating vertical GRF during running
from a single wearable accelerometer on the shank or approximate COM. For each method,
forces were estimated from 74 runners across two different surfaces (wood floor, running
track), three self-selected speeds (slowest, typical, fastest), and a range of foot strike angles
(including fore-, mid-, and rear-foot strike patterns). Errors were quantified as the difference
between the estimated and ground truth forces.

Based on the observed errors, we recommend the ‘Pogson’ or ‘Pogson xynorm’ meth-
ods for several reasons: First, these methods use a single accelerometer on the sacrum to
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estimate bilateral forces. This is advantageous over shank and hip methods that either
(a) do not allow for the estimation of bilateral forces, (b) require an assumption of bilateral
symmetry, or (c) require two accelerometers. Second, in contrast to most other methods,
these methods can estimate every feature of the vertical GRF investigated here (first peak,
loading rate, second peak, average, and time series). Third, these methods had relatively
stable performance across speeds, foot strike angles, and running surfaces. Fourth, these
methods were consistently high performers (had low biases, RCs, and LOAs) for the second
peak, average, and time series estimation. Potential users should, however, balance their
own design needs when choosing a method. For example, if estimating the second peak
under known speed and foot strike conditions, other methods may have similar accuracy
but better reliability and precision (e.g., the ‘Neugebauer’, ‘Kim’, or ‘Kiernan’ methods).

For first peak and loading rate estimation, the ‘Pogson’ methods were outperformed
by other methods (e.g., ‘Higgins’, ‘Kiernan’, or ‘Veras’). However, this does not affect our
overall recommendation due to the high LOAs observed for the first peak and loading rate
estimation: Even the best performing methods had LOAs exceeding ±67.60 and ±93.19%
of first peak and loading rate target magnitudes. These LOAs are likely larger than any
potential between-group effects or within-participant changes, suggesting that first peak
and loading rate cannot be estimated with sufficient precision with any of the methods
investigated here. Given these results, we do not currently recommend the estimation of
first peak or loading rate from accelerometers.

Despite the poor results for first peak and loading rate estimation, the observed biases
for all estimated vertical GRF features were at or below those originally reported for nine
of the 13 publications from which methods were derived [48,54,63,73,75–79]. Some of the
error we did observe was attributable to speed, surface, and foot strike angle. Thus, one
approach to decrease error may be to include these explanatory variables as model inputs.
For example, Alcantara et al. [16] added speed, slope of the running surface, and foot
strike pattern to their force prediction model and reported RMSEs of 106.78 N (or 6.4%) for
time series estimation. These results are an improvement over the methods recommended
here (although direct comparison is difficult as Alcantara et al. included the prediction of
zero forces during swing in their RMSE calculations, which may have reduced their errors
relative to our analysis of stance phase only when forces are non-zero) (see also: [56,68,79]).
Thus, including speed, foot strike angle, and surface may improve the performance of
future methods, provided that these variables can be quantified precisely and accurately in
the field (e.g., [97–99]).

The inclusion of other explanatory variables may also improve performance. Thir-
teen of the 27 methods investigated here estimated force using linear regressions that
included anthropometrics (mass, height, and/or leg length), sex, and/or age as explanatory
variables [40,48,63,73,77–79]. Although these methods did not receive our final recommen-
dation, many had very reasonable results. These results are particularly salient in contrast
to the poor performance of methods that estimated force by simply multiplying acceler-
ation by mass without additional explanatory variables [54,55,75,80]. This performance
difference suggests that including explanatory variables improved the performance and
may be warranted in future models.

Reductions in error could also be achieved by fitting participant-specific models. For
example, Kiernan et al. [79] reported that including a random effect of participants reduced
the error in their model by ~40% (see also: [40,63,78]). Thus, participant-specific models
likely offer more accuracy, reliability, and precision than participant-general models and
should be used when time and resources allow. Participant-specific models were not
examined here to ensure that the methods studied were broadly applicable and accessible.
This design choice maximizes their in-field utility and allows them to be applied to novel
participants without the necessity of taking gold-standard measurements in-lab and using
computational resources to develop a model for each participant.

Conversely, the choice to use acceleration data that were time synchronized to target
force data with millisecond accuracy stands in contrast to the goal of applying these
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methods in-field. This choice was made to ensure that errors in accelerometer-based stance
identification did not affect our results and lead to erroneous conclusions. When taking
measures outside the lab, however, the use of time synchronized force plate data is not
available. Currently, even the best methods to identify stance have errors of −30.4 ± 118.8
and −2.8 ± 149.9 ms (bias ± LOA) for initial and terminal contact, respectively [15]. These
errors may interfere with accurate segmentation of acceleration data during stance and thus,
until more exact acceleration-based stance identification is possible, acceleration signals
will vary in duration relative to their target force signals. It is likely that the regression
methods that used peak acceleration values to estimate discrete force variables are more
robust to these discrepancies in duration [40,48,63,73,77–79]. The peaks used by these
methods tend to be greater than the acceleration values immediately pre- or proceeding
the initial and terminal contact and tend to be ~mid-stance, so are unlikely to be removed
accidentally (see Supplement SB). In contrast, methods attempting to estimate continuous
force time series are likely vulnerable to errors in input data duration.

To explore this, errors for the recommended ‘Pogson xynorm’ method were recal-
culated using acceleration input data that were stance-segmented based on acceleration
signal features instead of a force plate threshold (using the ‘Auvinet’ stance identifica-
tion method [100] as implemented by Kiernan et al. [15]) In contrast to the expectation
that errors would increase, they were comparable to those observed when segmenting
based on the time synchronized force signal (first peak: −104.75 ± 876.71 N; loading rate:
−4.71 ± 53.31 kN/s; second peak: −5.03 ± 683.64 N; average: −5.83 ± 341.02 N; time se-
ries: 178.25 ± 207.58 N;). Model performance may have been maintained due to providing
a more stereotyped input (i.e., acceleration data segmented based on acceleration features)
and/or due to providing a larger set of training data (since millisecond accuracy was not
required, all 4440 trials were used vs. the 642 exactly synchronized trials available for the
other methods). In any case, the ‘Pogson_Auvinet’ method’s performance demonstrates
the promise of current methods to estimate vertical GRF second peak, average, and time
series in the field.

Before applying these force estimation methods in the field, potential users should
consider the conditions and participants used to develop and validate these methods.
It should not be assumed that these methods will work under other conditions or for
other participants. For example, only over-ground running on two level surfaces was
quantified here, so it should not be assumed that results will hold for incline/decline
running, treadmill running, or running on other surfaces (e.g., sand, grass/turf, asphalt,
concrete). That said, consistent with previous findings that changes in surface do not affect
vertical GRF [101], results demonstrated that surface rarely explained error, suggesting that
the estimated forces were robust to changes in surface. Potential users should also consider
that the current sample represents a relatively homogenous group of runners (Figure 1).
Thus, if studying participants drawn from different populations, these results may not
be representative, and the included code/models may not produce estimations with the
accuracy, reliability, and precision reported here.

Careful consideration should also be given to any differences in acceleration pro-
cessing and/or coordinate conventions as any differences in acceleration inputs could
affect force outputs. For example, the ‘Wundersitz’, ‘Meyer’, ‘Gurchiek’, and ‘Day’ meth-
ods [54,55,75,80] all used the same general approach of multiplying acceleration by mass to
estimate force. Despite this common approach, results differed across these methods due
to differences in acceleration processing. Expressing accelerations in different coordinate
systems will also change the input and affect the output. All but two of the publications
the methods were derived from used a WCS (Table 1). These coordinate systems assume
alignment with segments or the inertial vector and may be particularly prone to altering
acceleration inputs. For example, an accelerometer placed on the sacrum could deviate
from its assumed inertial alignment due to lumbosacral curvature and adiposity or a par-
ticipant leaning forward during running [102,103]. Any discrepancies in the placement of
an accelerometer could also change the data. More consistent data may be obtained with
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SCS and TCCS. Thus, all analyses in this paper are presented in the SCS. Although not
included here, analyses were repeated in the WCS and TCCS. In contrast to the a priori
expectation that SCS and TCCS would outperform the WCS, a systematic effect of coor-
dinate system was only found in methods that multiplied acceleration by mass with no
other coefficients [54,55,75,80]. When unique model coefficients, weights, and/or biases
were calculated for each coordinate system, there were no systematic differences between
them (Supplement SC). This result should, however, be interpreted with caution: each of
the IMUs in this study was placed by the same experimenter, their positions were mon-
itored throughout data collection, and any movement of the IMU led to elimination of
a participant (n = 2). Thus, the WCS in this study is likely more consistent than under
field conditions, where wearables may be placed across many repeated data collections by
individuals with little training, leading to misalignment and inconsistency. Thus, we still
caution against the use of a WCS.

5. Conclusions and Practical Applications

We recommend the ‘Pogson’ methods to estimate vertical ground reaction force second
peak, average, and time series. We do not currently recommend the estimation of first
peak or loading rate due to the large observed limits of agreement for these variables. For
each method, code to automatically process stance-segmented accelerometer data is avail-
able at https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a, accessed on
12 September 2023. This code should be applied with careful consideration of the sample it
was developed and validated on and the data processing applied to the acceleration inputs
used to train the models. Future research should investigate whether the inclusion of an-
thropometrics, sex, age, field measures of speed and foot strike angle, or other explanatory
variables can improve model performance. The results reported here should be used as a
benchmark for the performance of future models and details on accuracy, reliability, and
precision should be reported.
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