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ABSTRACT OF THE DISSERTATION

Stochastic Processes Arising from Graph Manipulations

by

Jacob Taylor Hughes

Doctor of Philosophy in Mathematics

University of California San Diego, 2013

Professor Fan Chung Graham, Chair

In this thesis, we study a collection of stochastic properties arising from

graph manipulations. These manipulations may change the structure of the graph

itself, recolor the vertices, or alter other assigned properties. Our goal with each

process is to use a combination of combinatorial, spectral, and algebraic methods

to analyze the the stationary distribution, mixing times, and hitting times of these

stochastic processes. In particular, we do the following:

• We consider the random process on a class of semigroup known Left Regular

Bands induced my multiplying by randomly selected generators. Such a

process converges to a stationary distribution, and we present a bound the

convergence time which slightly improves previous results.

• We consider the random process induced by random Seidel switching on

a graph, an operation that transforms a graph by inverting the adjacency

relations at a vertex. By computing the spectrum of the state graph of this

process we show the process converges and bound the mixing time. We also

consider several generalizations of Seidel switching.

• We study a stochastic process arising from randomly playing the Lights Out

game on an arbitrary finite graph. In this game, the vertices are colored black

or white, and a toggle changes state of that vertex and all of its neighbors.

xi



We obtain a bounds on the mixing time and average hitting time of the all

black coloring.

• We investigate the random process on phylogenetic trees induced by nearest

neighbor interchanges, an operation that swaps two neighboring sub-trees.

We use a comparison theorem to bound the spectral gap of the state graph

and use this to bound the mixing time of the random nearest neighbor in-

terchange process.

• We introduce the multi-commodity dynamic demand model on a graph, a

variant of the standard contact process on graphs. Each vertex has a list of

demands for various commodities, and the demands of a vertex influence the

demands of its neighbors. We introduce a generalization of the PageRank

vector, Kronecker PageRank, and use it to bound the amount of commodities

needed to satisfy the demand at the vertices.
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Chapter 1

Preliminaries and Overview

1.1 Notation and Types of Graphs

Throughout this discussion we will use standard notation and terminology

for graphs. A graph G = G(V,E) consists of a set V of vertices and a set E of

pairs of vertices. If the edges are unordered pairs we say that G is an undirected

graph and write v ∼ w to denote {v, w} ∈ E, and say that v and w are adjacent .

A loop is an edge from a vertex to itself, and the term simple graph is used to

refer to an undirected graph with no loops.

If instead the edges are ordered pairs, we say that G is a directed graph

and write v → w to denote that (v, w) ∈ E. A graph G is a multigraph if the set

of edges is allowed to be a multi-set, that is multiple edges are allowed between

a pair of vertices. We will consider both directed and undirected multigraphs. A

weighted graph G = G(V, ω) consists of a set V of vertices and a non-negative

weight function ω : V ×V → R≥0. The case of an unweighted graph is then simply

the special case where ω(v, w) = 1{v∼w}, the 0 − 1 indicator function testing if v

and w are adjacent. Throughout this dissertation, all graphs will be finite.

The degree of a vertex v, denoted dv, is the number of vertices that are

adjacent to v. Each edge of a multigraph contributes 1 to the degree, and any

loops contribute 1. For a weighted graph, the degree is defined to be the sum of

1



2

the weights of edges beginning at v. That is,

dv =
∑
w∈V

ω(v, w)

A graph is k-regular if the degree of each vertex is k.

A walk of length k on a graph is a sequence of vertices (v0, v1, ..., vk) where

(vi, vi+1) ∈ E. A cycle of length k, also called a k − cycle, is a walk of length k

starting and ending at the same vertex. A graph G is connected if for any two

vertices v, w there is a walk from v to w. A directed graph is strongly connected if

for any two vertices v, w there is a walk from v to w and a walk from w to v.

For two vertices v, w the distance between v and w is the minimum length of

a walk between them. The diameter of a graph is the maximum distance between

two vertices in the graph.

For a subset S ⊆ V , the volume of S is defined by vol S =
∑
v∈S

dv. We often

will write vol G for vol V(G). Note that for a simple graph, vol G = 2|E|. The

Cheeger ratio of a subset S is the ratio

hG(S) :=
vol ∂S

min{vol S, vol S̄}

where S̄ is the complement of S, and ∂S := {v ∈ V \ S|∃w ∈ S,w ∼ v}. The

Cheeger constant of a graph G is

hG := max
S⊂V

hG(S)

A common way to compare two graphs is to define a function between

the sets vertices that preserves the adjacency relations. A graph homomorphism

between two graphs G, G′ is a function f : V (G)→ V (G′) such that for all vertices

v, w ∈ V (G), if v ∼ w then f(v) ∼ f(w). A graph isomorphism between two graphs

G, G′ is a bijection f : V (G)→ V (G′) such that for all vertices v, w ∈ V (G), v ∼ w

if and only if f(v) ∼ f(w). Two graphs are called isomorphic is there exists a graph

isomorphism between them. Isomorphic graphs are identical except for labelings

of the vertices. A graph automorphism of G is a graph isomorphism from G to

itself, or in other words a relabeling of the vertices. A graph G is vertex transitive

if for any two vertices v, w there is a graph automorphism f : V (G)→ V (G) such
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that f(v) = w. Informally, a vertex transitive graph is a graph where vertices are

indistinguishable except for labels.

1.2 Graph Spectra

For a graph G with n vertices, there are several n× n matrices associated

with G. In this section, we begin by defining several of the most commonly used

matrices, and then illustrate several properties of their spectra.

Definition 1.2.1.

The adjacency matrix of a simple graph is the symmetric matrix A with entries

A(v, w) =

{
1 if v ∼ w

0 if v 6∼ w

The adjacency matrix of a weighted graph G(V, ω) has entries

A(v, w) = ω(v, w)

Note that the adjacency matrix of a directed graph is not necessarily symmetric.

Definition 1.2.2.

The diagonal degree matrix is the diagonal matrix with entries

D(v, v) = dv

Definition 1.2.3.

The combinatorial Lapliacian, L, is defined by

L = D − A

Definition 1.2.4.

The normalized Laplacian, L, is defined by

L = I −D−
1
2AD−

1
2 = D−

1
2LD−

1
2

and thus has entries

L(v, w) =


1 if v = w

− 1√
dvdw

if v ∼ w

0 otherwise
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The advantage of working with these matrices is often graph properties

can be understood by studying the spectra of these matrices. While many classi-

cal spectral graph theory results primarily use the adjacency matrix A, many of

these results only hold for regular graphs. The advantage of using the normalized

laplacian L is the ability to extend these results to all matrices, see [20] for a full

discussion of L and its advantages.

1.3 Markov Processes and Random Walks

We assume basic knowledge of random variables and probability, and begin

this section reviewing the class of random variables that we will use.

Definition 1.3.1.

A sequence of random variables X1, X2, X3... is a Markov chain if

P(Xt+1 = x|X1 = x1, X2 = x2...Xt = xt) = P(Xt+1 = x|Xt = xt)

for all t.

A Markov chain is time homogeneous if

P(Xt+1 = x|Xt = y) = P(Xt = x|Xt−1 = y)

for all t. All Markov chains in this discussion will be time homogenous.

Suppose X0, X1, X2, X3, ... is a time homogeneous Markov chain with finite

state space. Let ft be the distribution at time t, that is

ft(x) = P(Xt = x).

The transition matrix is the matrix P with entries

P (x, y) = P(Xt+1 = y|Xt = x).

Note that since the Markov chain is time homogenous this quantity does not depend

on t. It is easy to see that P has the property that for any t,

ft+1 = ftP.
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As a consequence of this definition, if f is the distribution of X0, then Xt has

distribution fP t.

A Markov chain is reversible if there is a distribution π such that

π(x)P (x, y) = π(y)P (y, x)

for all vertices x, y.

π is called the stationary distribution of the Markov chain. A Markov chain

is ergodic if there is a unique stationary distribution π such that for any vertex v,

lim
t→∞

fP t(v) = π(v)

for any initial distribution f .

Definition 1.3.2.

Let G be a graph. A random walk on G is a sequence of random vertices {Xt}∞t=0

where the starting vertex X0 is chosen according to an initial distribution, and

P(xi+1 = v|xi) =

{
1/dxi if xi ∼ v

0 if xi � v
.

More generally, if G is a weighted, directed graph then

P(xi+1 = v|xi) =

{
1/dxi if xi → v

0 if xi 6→ v
.

We note that a random walk on a graph is time homogeneous Markov

process.

Proposition 1.3.3.

Let G be a connected, finite graph, and let {Xt}∞t=0 be a random walk on G. Then

this Markov process has transition matrix

P = D−1A

Proposition 1.3.4.

Let G be a connected, finite graph, and let {Xt}∞t=0 be a random walk on G with

initial distribution f . Then the distribution at time t is given by

ft = fP t
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where f is viewed as a row vector. That is,

P(Xt = v) = fP t(v),

the vth entry of the row vector fP t.

There is a very clean characterization of ergodic random walks on graphs,

see for example [20, Section 1.5].

Proposition 1.3.5.

A random walk on a weighted graph G is ergodic if and only if

1. G is irreducible. That is, for any v, w there is a time t such that P t(v, w) > 0

2. G is aperiodic. That is, the greatest common factor of the set

{t | ∃v, w s.t. P t(v, w) > 0} is 1.

Aperiodicity can be artificially imposed by considering a lazy random walk ,

which has transition matrix P ′ = 1
2
(P + I). This can be thought of as either the

original random walk where half the time no action is taken (hence the name).

Alternately, one can view it as a random walk on a modified graph where each

vertex is given a self loop with weight equal to the degree of the vertex. The

choice of using the constant 1
2

ensures the eigenvalues of P ′ fall in the range [0, 1],

though in some contexts it is more natural to use other values.

Proposition 1.3.6.

Let G be a (possibly weighted) connected graph, and let P be the transition matrix

for a random walk on G. If D is the diagonal degree matrix, then

1DP = 1D

where 1 is the all 1’s vector. Therefore a random walk on G has stationary distri-

bution

π(v) =
dv

vol G
.

Corollary 1.3.7.

Let G be a k-regular graph on n vertices. Then a random walk on G has stationary

distribution

π(v) =
1

n
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When studying a random walk (or any convergent process), we care not

only about the stationary distribution, but also about how quickly the process is

converging to this distribution. However, in order to express the speed of conver-

gence, we need a way of measuring the “distance” from the stationary distribution.

There are several commonly used metrics, and here we define three we will use in

this dissertation.

Definition 1.3.8.

Let P be the transition matrix of an ergodic random walk on a finite graph G. Let

π be the stationary distribution.

• The relative pointwise distance after t steps, ∆(t), is defined as

∆(t) := max
x,y

|P t(y, x)− π(x)|
π(x)

• The χ−squared distance after t steps, ∆′(t), is defined as

∆′(t) := max
x∈V (G)

 ∑
y∈V (G)

(P t(x, y)− π(y))2

π(y)

1/2

.

• The total variation distance after t steps, ∆TV(t), is defined as

∆TV(t) := max
A⊂V

max
y∈V

∣∣∣∣∣∑
x∈A

P t(y, x)− π(x)

∣∣∣∣∣
A term commonly used to discus the speed of convergence is the mixing

time, given by

τmix = min{t|∆(t) ≤ e−1}.

The choice of e−1 as the cut off constant, while traditional, is chosen pri-

marily for algebraic convenience (see [1] for a discussion of the result of choosing

a different constant). Our main results will actually provide bounds on the time

before ∆(t) is less than an arbitrary constant (or even a function of the number of

vertices).

For vertex transitive graphs, we can bound the ∆′ distance using a simple

expression, sometimes known as the Plancherel Formula. This theorem will be
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one our main analytic tools throughout this discussion, and we provide a proof to

illustrate some of the main techniques used for proving spectral results.

Theorem 1.3.9.

Let G be a vertex transitive graph on n vertices, and let W be the transition

matrix for an ergodic random walk on G. Let λi be the eigenvalues of W , with

−1 < λ1 ≤ λ2 ≤ ... ≤ λn = 1. Then the χ−squared distance after s steps is given

by

∆′(t) =

(∑
i 6=n

λ2t
i

)1/2

.

Proof. Let Ψx be the characteristic function of x, and let φi denote the i-th or-

thonormal eigenfunction of P . Let Jn = φ∗nφn be the projection matrix of of

projecting onto the eigenfunction φn. Since G is vertex transitive,

π(x) =
1

|G|
,

φn(x) =
1

|G|1/2

for all x. Therefore

ΨxJnΨ∗y = Ψxφ
∗
nφnΨ∗y = φn(x)φn(y) = π(y).

Also note that both P and Jn are symmetric. Since G is vertex transitive, the

quantity ∑
y∈V (G)

(P t(x, y)− π(x))
2

π(y)

is equal for all x ∈ V (G). Summing over all vertices x we obtain that

∆′(t)2 =
∑

x∈V (G)

π(x)
∑

y∈V (G)

(P t(x, y)− π(x))
2

π(y)
.
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Therefore

∆′(t)2 =
∑

x∈V (G)

∑
y∈V (G)

(P t(x, y)− π(x))2

=
∑

x∈V (G)

∑
y∈V (G)

(
Ψx(P

t − Jn)Ψ∗y
)2

=
∑

x∈V (G)

< Ψx(P
t − Jn),Ψx(P

t − Jn) >

=
∑

x∈V (G)

Ψx(P
t − Jn)2Ψ∗x

=
∑

x∈V (G)

Ψx(P
2t − Jn)Ψ∗x

Since Ψx =
∑
i

φi(x)φ(i), we can replace that in the above sum to obtain

∆′(t)2 =
∑

x∈V (G)

(∑
i

(φi(x)φi)(P
2t − Jn)

∑
j

φj(x)φ∗j

)

=
∑

x∈V (G)

∑
i

∑
j

φi(x)φj(x)
(
φi(P

2t − Jn)φ∗j
)

=
∑

x∈V (G)

∑
i

∑
j

φi(x)φj(x)
(
λ2t
i φiφ

∗
j − φiJnφ∗j

)
=

∑
x∈V (G)

∑
i

∑
j

φi(x)φj(x)
(
λ2t
i 1{i=j} − 1{i=j=0}

)
=

∑
x∈V (G)

∑
i

φi(x)2
(
λ2t
i − 1{i=0}

)
=

∑
x∈V (G)

∑
i 6=0

φi(x)2λ2t
i

=
∑
i 6=0

λ2t
i

∑
x∈V (G)

φi(x)2

=
∑
i 6=0

λ2t
i

�

The disadvantage of the above theorem is that it only applies to vertex
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transitive graphs. While several of the graphs we consider throughout this discus-

sion are veretex transitive, in Chapter 5 we will use the following more general

theorem, that applies to any undirected graph. For a proof see [20, Section 1.5].

Theorem 1.3.10.

Let G be a weighted, undirected graph. Then we can choose a lazy random walk

with transition matrix P so that

∆(t) < e−c

if

t ≥ 1

λ

(
log

vol G

minv dv
+ c

)
where λ = λ1 if 2 ≥ λn−1 + λ1 and λ = 2 λ1

λn−1+λ1
otherwise, where λ0 ≤ ... ≤ λn−1

are the eigenvalues of L.

The other property of random walks that we will examine is the hitting

time.

Definition 1.3.11.

Let X0, X1, ... be a Markov chain on a finite state space. Then the first hitting

time of a state x is defined by

Tx = min{t ≥ 0 | Xt = x}

Just as we used Theorem 1.3.9 to bound the mixing time of a random walk

on a vertex transitive graph using eigenvalues, we can also bound the hitting times

when the graph is vertex transitive using the results found in [1].

Theorem 1.3.12.

Let G be a vertex transitive graph on n verties and let v, w be two distinct vertices

of G. Let −1 < λ1 ≤ λ2 ≤ ... ≤ λn = 1 denote the eigenvalues of the transition

matrix P = D−1A. Consider a random walk starting at vertex v, and let Tw be the

first hitting time of w. Then

n

2
≤ E[Tw] ≤

n−1∑
k=1

1

1− λk
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Theorems 1.3.9, 1.3.10, 1.3.12 illustrate several ways to bound properties of

random walks using spectral information about the graph. In order to use these

theorems in a meaningful way, one must have a way to find the eigenvalues of a

graph. In section 1.4 we will outline methods for explicitly computing eigenvalues

of Cayley graphs. However, often it is sufficient to bound the eigenvalues using a

”comparison theorem”. Here we use the comparison theorem as presented in [20,

Section 4.5], though we note that there is a long history of similar results. In 1989,

Jerrum and Sinclair used it to approximate the permanent of a matrix. In 1991,

Diaconis and Strook proved several “Poincaré inequalities” using this method, and

showed how to obtain bounds on relaxation times in several examples. Further

work used this method to compare methods of shuffling cards [26,27]. We will use

the following theorem in Chapter 5.

Theorem 1.3.13.

Let G and G̃ be two connected regular graphs with the same vertex set, with second

smallest eigenvalues of the normalized laplacian λ1 and λ̃1 and degrees k and k̃

respectively. Suppose for each edge {x, y} in G̃, there is a path γ(x, y) in G joining

x and y of length at most `. Furthermore, suppose that every edge in G is contained

in at most m paths γ(x, y). Then

λ1 ≥
kλ̃1

k̃`m

A broad strategy we will employ several times is to interpret a process as a

random walk on a state graph, and then use several algebraic tools to understand

the spectral properties of the state graph. In particular, these state graphs often

have high degrees of symmetry, and in some cases are isomorphic to Cayley graphs

of finite groups. This is a great boon for us, as there are many useful and elegant

techniques for working with Cayley graphs, and in the following section we outline

several that we will employ throughout this discussion.
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1.4 Cayley Graphs and Finite Group Represen-

tations

Let Γ be a group and ω : Γ → R≥0 a non-negative function. We define the

Cayley graph with respect to ω, Cay(Γ, ω) to be the weighted, directed graph with

vertex set Γ and weighted adjacency matrix A(g, h) = ω(g−1h). We say that ω is

symmetric if ω(h) = ω(h−1) for all h.

For S ⊆ Γ, Cay(Γ, S) denotes Cay(Γ,1{S}). With this indicator function as

the weight, there is an edge between g and h if and only if there is an element s in

s such that gs = h. Typically, the set S is a generating subset, which ensures that

Cay(Γ, S) is connected. We say that S is symmetric in G if h ∈ S ⇐⇒ h−1 ∈ S.

If S is symmetric, then Cay(Γ, S) is undirected.

If S is instead a multi-set, then instead we use a counting function instead

of an indicator function for the number of edges, and Cay(Γ, S) is a multigraph

with number of edges between g and h equal to number of s in S such that gs = h.

In fact, this definition of a Cayley graph extends to the case where Γ is a

semigroup. We will use this interpretation in Chapter 2, where we study a class

of semigroups known as left regular bands. In that case, viewing the state graph

as the Cayley graph of a semigroup gives us a nice way to visualize the problem,

but is not crucial for our understanding. However, in Chapters 3 and 4, finding an

isomorphism between the state graph and a Cayley graph is one of the key steps

in our analysis, as it allows us to compute the eigenvalues.

Before we discus how to compute the spectrum of Cayley graphs, we begin

with two elementary facts about that we will use several times throughout this

discussion.

Proposition 1.4.1.

Let Γ be a finite group, and ω : Γ→ R≥0 a non-negative function. Then Cay(Γ, ω)

is vertex transitive.

Proposition 1.4.2.

Let Γ1,Γ2 be two finite groups, ω : Γ1 → R≥0 a non-negative function, and φ :
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Γ1 → Γ2 be a group isomorphism. Then φ acts as a graph isomorphism from

Cay(G1, ω) to Cay(G2, ω ◦ φ−1).

These propositions follow from the symmetry in Cayley graphs. In the case

where Γ is an abelian group, we can find the spectrum of the adjacency matrix of

a Cayley graph in terms of the irreducible characters of Γ.

Theorem 1.4.3.

Let Γ be a finite abelian group, ω : Γ → R≥0 a non-negative function on Γ, and

ρ : Γ→ C a one dimensional representation of Γ. If ρ is viewed as a row vector in

C
|Γ|, then ρ is an eigenvector of the adjacency matrix of Cay(Γ, S, ω) corresponding

to eigenvalue

λρ =
∑
g∈Γ

ω(g)ρ(−g).

Proof. Consider the s entry of the vector ρA.

(ρA)(s) =
∑
h∈Γ

ρ(h)A(h, s)

=
∑
h∈Γ

ω(s− h)ρ(h)

=
∑
g∈Γ

ω(g)ρ(s− g)

=
∑
g∈Γ

ω(g)ρ(s)ρ(−g)

= ρ(s)

(∑
g∈Γ

ω(g)ρ(−g)

)
�

Since Cayley graphs are regular, the spectrum of the transition matrix of a

(lazy) random walk follows immediately. Let |ω| =
∑
g∈Γ

ω(g). Then Cay(Γ, ω) is a

|ω|-regular, weighted graph. Thus if W = 1
2
(I +D−1A) is the transition matrix of

a lazy random walk on Cay(Γ, S) then W has eigenvalues given by

λρ =
1

2

(
1 +

1

|ω|
∑
g∈Γ

ρ(−g)ω(g)

)
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where ρ is a one-dimensional representation of Γ.

Thus the problem of determining the eigenvalues of a random walk on the

Cayley graph of an abelian group comes down to understanding the characters.

Thankfully, these are simple to compute due to the following classic result in

representation theory, see for example [39]

Theorem 1.4.4.

Let Γ = Zn1 × ... × Znk , and let θq = e
2πi
q for any positive integer q. For each

−→x ∈ Γ define ρ−→x : Γ→ C be the homomorphism where ρ−→x (ei) = θni where ei is the

cartesian product of the the additive generator 1 in the i-th group, and the identity

0 in all other groups. Then ρ−→x is an irreducible character of Γ, and moreover

every irreducible character of Γ is ρ−→x for some −→x ∈ Γ.

1.5 Overview

This remainder of this thesis is organized as follows. In Chapter 2 we

consider the random process on a class of semigroup known Left Regular Bands

induced my multiplying by randomly selected generators. Such a process converges

to a stationary distribution, and we present a bound the convergence time which

slightly improves previous results.

In Chapter 3, we consider the random process induced by random Seidel

switching on a graph, an operation that transforms a graph by inverting the ad-

jacency relations at a vertex. By computing the spectrum of the state graph of

this process we show the process converges and bound the mixing time. We also

consider several generalizations of Seidel switching.

In Chapter 4, we study a stochastic process arising from randomly playing

the Lights Out game on an arbitrary finite graph. In this game, the vertices are

colored black or white, and a toggle changes state of that vertex and all of its

neighbors. We obtain a bounds on the mixing time and average hitting time of

the all black coloring.

In Chapter 5, we study the random process on phylogenetic trees induced

by nearest neighbor interchanges, an operation that swaps two neighboring sub-
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trees. We use a comparison theorem to bound the spectral gap of the state graph

and use this to bound the mixing time of the random nearest neighbor interchange

process.

Finally, in Chapter 6, we introduce the multi-commodity dynamic demand

model on a graph, a variant of the standard contact process on graphs. Each vertex

has a list of demands for various commodities, and the demands of a vertex influ-

ence the demands of its neighbors. We introduce a generalization of the PageRank

vector, Kronecker PageRank, and use it to bound the amount of commodities

needed to satisfy the demand at the vertices.



Chapter 2

Random Walks on Left Regular

Bands

2.1 Introduction

In this chapter we consider random walks on a class of semigroups known

as Left Regular Bands (or LRB’s, for short) which are idempotent with the addi-

tional relation xyx = xy (see [41, 50, 52]). Many problems can be interpreted as

random walks on LRB’s, such as the move-to-front self-organizing schemes [14,30],

hyperplane arrangements [10] and graph coloring games [21]. It is known that

the random walks on Left Regular Bands have many amazing properties, includ-

ing having real eigenvalues which can be expressed in elegant formula [14, 15]. In

addition, Diaconis and Brown [16] gave a variation of the Plancherel formula for

bounding the total variation distance ∆TV(t) of a LRB random walk after t steps:

∆TV(t) ≤
∑

{l∈L∗ | l is co-maximal}

λtl (2.1)

where the eigenvalues are indexed by the co-maximal elements in the semilattice

L associated with S and the random walk under consideration is on the ideal of

chambers in S (definitions of these terms will be presented in the following section).

This is in contrast with the Plancherel formula for random walks on groups (or,

16
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on vertex transitive graphs), which states that

∆TV(t) ≤ 1

2

(∑
λi<1

λ2s
i

)1/2

where λi’s are eigenvalues of the transition probability matrix.

2.2 Semilattices and Left Regular Bands

The formula that we will use for for the eigenvalues of the random walk on

an LRB will use an associated semilattice and Möbius inverstion, so begin with

the required combinatorial definitions.

Definition 2.2.1.

A partially ordered set is a semilattice if each pair of elements has a unique least

upper bound.

Definition 2.2.2.

For a semilattice L, the Möbius function of L is the function µ : L × L → Z

defined by

µ(x, y) =


1 if x = y

−
∑

x≤z<y
µ(x, z) if x > 0̂

0 x � y

The main application of the Möbius function is in the following theorem.

Theorem 2.2.3.

Let L be a semilattice with Möbius function µ. Let f : L→ C. If g(x) =
∑
y≤x

f(y),

then

f(x) =
∑
y≤x

µ(y, x)g(y)

By definition, a semigroup S is a left regular band if for all x, y ∈ S it

satisfies the relations

x2 = x (2.2)

xyx = xy (2.3)
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This definition was introduced by Klein-Barman in 1940 [41] and independently

by Schtzenburger in 1947 [52]).

However, in 2000, Ken Brown gave an alternate characterization which we

will use [14].

Lemma 2.2.4.

A semigroup S is a LRB if and only if there is a semilattice L and a surjection

supp : S � L such that

supp xy = supp x ∨ supp y (2.4)

and

xy = x if supp y ≤ supp x (2.5)

We briefly illustrate one direction of the lemma, how to create such an L

and support map. For a semigroup S, there is a natural partial order <, defined

by:

x ≤ y ⇔ xy = y.

For x in S, we define

S≥x = {y ∈ S | y ≥ x}.

The semilattice L can be derived from S as follows. First we define a relation �
on S.

y � x⇔ xy = x.

The equivalence class under � containing x is defined to be the support of x,

denoted by supp x. For x, y in S, we have

supp xy = supp x ∨ supp y

and

x ≤ y ⇒ supp x � supp y.

Elements in L are called flats (following the terminology for semigroups associated

with matroids [14]). A flat l is co-maximal if

x � l⇒ x = 1̂,
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where 1̂ denotes the maximal element of L.

An element c ∈ S is said to be a chamber if cx = c for all x ∈ S. Therefore

supp c is maximal in the semilattice L. The set of all chambers forms an ideal of

S.

Below are several examples of LRBs that we will use throughout this chap-

ter.

2.2.1 The Tsetlin Library

Let T be the set of permutations of the elements of C = {c1, · · · , cm}.
We define the action of C on T as follows. For cj in C, and t = ci1ci2 · · · cim ,

then cjt = cjci1ci2 · · · ĉj · · · cim , where the ĉj means to delete cj where it appears

later in the string. It is not hard to check that T is the ideal of chambers of the

free semigroup generated by actions of C. This is known as the Tsetlin library,

a well studied LRB, which has many applications including the “move-to-front”

self-organizing search.

2.2.2 Strings of Colored Numbers

For given positive integers m, k, let C = {(i, j)}m,ki=1,j=1. It is convenient to

think of (i, j) as being the number i with color j. We define the strings of colored

numbers, SCN(m, k), to be the LRB consisting of strings of elements of C with

respect to the relation

(i, j0)x(i, j1) = (i, j0)x

for all x ∈ SCN(m, k). The support lattice L is the boolean lattice of the numbers

1, ...,m with supp (i, j) = i ∈ L. Thus the maximal ideal I consists of strings of

length m, with each number represented exactly once.

2.2.3 Edge Flipping in Graphs

Let G be a graph with with no isolated vertices and edges {e1, ..., em}. For

edge ei, define the function ri that colors the endpoints of ei red and bi that colors

them blue. Let C = {r1, r2, ..., rm, b1, ..., bm}, and let S be the set compositions
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of elements of C. Then S is a left regular band with respect to composition,

and its chambers are colorings of the graph which have all vertices colored by a

composition of elements of C. This operation is known as edge flipping and was

studied extensively in [21].

2.3 Random Walks on LRBs

We will consider random walks on LRBs. Let S be a LRB, C ⊆ S a set that

generates S, pC a probability distribution on C, and L the semilattice associated

with S. The random on walk on S is a Markov chain where at each step we move

from s to cs where c is a randomly chosen element of C. Formally,

P(Xt+1 = y | Xt = x) =
∑

{c∈C | cx=y}

pc

By definition, if s is a chamber, then cs is a chamber. Thus once the random walk

on S enters the ideal of chambers, it remains there. Thus, we consider the random

walk only on the chambers of S. to In [14, 16], Brown and Diaconis showed the

following about this random walk

Theorem 2.3.1.

Let S be a semigroup, C a subset that generates S, pc a probability distribution

on C, and L the semilattice associated with S. Consider a random walk on the

chambers of S where at each step we move from s to cs where c is a random element

of C. Then:

1. The random walk is ergodic

2. The transition matrix P is diagonalizable

3. For each X ∈ L there is an eigenvalue λX =
∑

supp c≤X
pc.

4. The multiplicity of λX , mX , satisfies∑
Y�X

mY = cX
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where cX is the cardinality of S�X = S≥x = {z ∈ S | z ≥ x} where x is any

element with support X.

Note that cX is independent of the choice of x. Additionally, we can calcu-

late the multiplicities directly using Möbius inversion to get the expression

mX =
∑
Y�X

µ(X, Y )cY

where µ is the Möbius function of the semilattice L.

We can view a random walk on an LRB as a random walk on a weighted,

directed graph. Define the function w : S × S → R by

w(u, v) =
∑

{c | cu=v}

pc.

Then a random walk on the weighted graph with vertex set the chambers

of S and weight function given by w has the transition probabilities as the random

walk on LRBs described above. For an illustration of why only the chambers are

used, see Figure ??. Any random walk will eventually reach and not leave the

strongly connected core consisting of the chambers of the Tsetlin Library, those

strings using all 3 numbers.

2.4 An Alternating Bound for the Mixing time

of a Random Walk on a Left Regular Bound

We will give a slightly improved formula of (2.1). The proof combines the

techniques of Diaconis-Brown in [16] and the methods of Bidigare, Hanlon, and

Rockmore [10] for random walks on chambers of hyperplane arrangements. A

similar result was independently obtained by Benjamin Steinberg [58].

Theorem 2.4.1.

For a random walk on chambers of an LRB semigroup, the total deviation distance
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Figure 2.1: The Cayley Graph for the Tsetlin library on the set {1,2,3}. Self loops

have been omitted for clarity.

after t steps is bounded by:

∆TV(t) ≤
∑
l∈L∗
−µ(l, 1̂)λtl ,

where µ(l, 1̂) is the Möbius function on the support lattice L, and L∗ denotes the

lattice L with its maximal element, 1̂, removed.

To show that Theorem 2.4.1 is an improvement of (2.1), we will show the

following.

Corollary 2.4.2.

∑
l∈L∗
−µ(l, 1̂)λtl ≤

∑
{l∈L∗ | l is co-maximal}

λtl .
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Figure 2.2: The Cayley Graph of the chambers of the LRB corresponding to edge

flipping of a 3-cycle. The thickness of the edge corresponds to its weight.

When L is a Boolean lattice of a set V, then we can index elements of

the lattice by subsets of V . For a subset Y ⊂ V , the Möbius function µ(Y, 1̂) =

(−1)|V \Y |.

Corollary 2.4.3.

If L is a Boolean lattice of a set V , then for a subset Y ⊂ V µ(Y, 1̂) = (−1)|V \Y |,

and therefore

∆TV (t) ≤
∑
Y⊂V

(−1)|V \Y |+1λtY

Proof of Theorem 2.4.1:

Let {ps} be a probability distribution on S, so that ps ≥ 0 and
∑
s

ps = 1. The
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transition probability matrix of the associated random walk is denoted by

P (u, v) =
∑
s

su=v

ps.

Let x1, x2, ... be an independent, identically distributed sequence of random

elements of S. We consider x(t) = x1x2...xt and xt,s = x(t)s, which is the location

of a random walk after t steps starting at s.

Note that if x(t) is a chamber then x(t)s1 = x(t)s2 for any s1, s2 ∈ S. We

define πt,s to be the distribution of xt,s, that is πt,s(u) = P (xt,s = u), for any

u ∈ S. Let π denote the stationary distribution of the random walk. Note that

if x(t0) is a chamber for a fixed time t0, then x(N) = x(t) for all N ≥ t0. Thus

π(u) = P (Cs = u) where C is a the random chamber first reached by x(t) as t

increases.

We consider the total variation distance

∆TV (t) := max
s∈S

max
A⊂S

| πt,s(A)− π(A)|.

where πt,s(A) = P (xt,s ∈ A) =
∑
u∈A

πt,s(u) and π(A) = P (Cs ∈ A) =
∑
u∈A

π(u). We

split up both events according to whether or not x(t) is a chamber. Let Bt be the

event that x(t) is a chamber. Then we have

πt,s(A) = P (Bt and x(t)s ∈ A) + P (¬Bt and x(t)s ∈ A)

π(A) = P (Bt and Cs ∈ A) + P (¬Bt and Cs ∈ A)

If Bt occurs then x(t) is a chamber, and thus the first term of each expression

is the same. This follows from the known fact that the stationary distribution in

the original (unbounded) process (with replacement) is the same as the stationary

distribution for the process without replacement. For detailed discussions, the

reader is referred to Section 4 in [21].

Therefore we have

|πt,s(A)− π(A)| = |P (¬Bt and x(t)s ∈ A)− P (¬Bt and Cs ∈ A)|

which is at most P (¬Bt), as both terms in the difference are between 0 and P (¬Bt).

Thus we have
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∆TV (t) ≤ P (¬Bt) = P (x(t) is not chamber).

By definition, the only way for x(t) not be a chamber is for some m ∈ L,m 6=
1̂, supp x(t) = m. Therefore,

∆TV (t) ≤
∑
m∈L∗

P (supp x(t) = m). (2.6)

Let us denote P (supp x(t) = m) by βt,m, then equation (2.6) becomes

∆TV (t) ≤
∑
m∈L∗

βt,m. (2.7)

We will evaluate βt,m using a Möbius inversion on the lattice L. From [14], we have

λm =
∑

supp c ⊆m

pc = P (supp x � m)

where P (x = c) = pc. Since x1, ..., xt are chosen independently, we have that

λtm = P (supp x1 � m)P (supp x2 � m)...P (supp xt � m) = P (supp x(t) � m).

(2.8)

Note that supp x(t) � m if and only if supp x(t) = l for some l � m. Thus

P (supp x(t) � m) =
∑
l�m

βt,l.

By (2.8) we have

λtm =
∑
l�m

βt,l.

Therefore we can use a Möbius inversion to derive

βt,m =
∑
l�m

µ(l,m)λtl .
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Plugging this into (2.7) we obtain

∆TV (t) ≤
∑
m∈L∗

∑
{l | l�m}

µ(l,m)λtl

=
∑
l∈L∗

∑
{m | l�m,m 6=1̂}

µ(l,m)λtl

=
∑
l∈L∗

 ∑
{m | l�m,,m 6=1̂}

µ(l,m)

λtl

=
∑
l∈L∗

(
−µ(l, 1̂)

)
λtl

as desired. �

Proof of Corollary 2.4.2:

We note that the bound given in (2.1) can be compared to the bound of Theorem

2.4.1 as follows:∑
{l∈L∗ | l is co-maximal}

λtl =
∑

{l∈L∗ | l is co-maximal}

P (supp x(t) ≤ l)

=
∑
m∈L∗

|{l | m � l and l is co-maximal}|P (supp x(t) = m)

≥
∑
m∈L∗

P (supp x(t) = m)

This last term is the right hand side of (2.6) above, which is equal to the bound

given in Theorem 2.4.1. Thus Theorem 2.4.1 is an improvement over Equation 2.1.

�

2.5 Examples Using the Alternating Bound

In this section we calculate and compare the bounds given by Equation 2.1

and Theorem 2.4.1 for the LRBs described earlier: The Tsetlin Library, Strings of

Colored Numbers, and Edge Flipping.
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2.5.1 The Tsetlin Library

Let T be the Tsetlin Library on a finite set C, and let us consider the

random walk on T with respect to the uniform distribution . The support lattice

L is the boolean lattice {0, 1}C . The eigenvalues for the random walk on T were

first determined by Phatarfod [50] in 1991. For each subset X ⊂ C, there is

an eigenvalue λX = |X|/m, with multiplicity equal to the so-called derangement

number dk where k = m− |X|. It is known that

dk = k!
k∑
j=0

(−1)j

j!
=

⌊
k!

e
+

1

2

⌋
.

Note that the derangement numbers dk satisfy∑
Y⊇X

dm−|Y | = cX = (m− |X|)!.

However, one of the advantages of both the bounds in (1) and Theorem 2.4.1 is

that they do not depend on the multiplicity of each eigenvalue. Equation (1) yields

the bound

∆TV(t) ≤ m

(
1− 1

m

)t
.

Theorem 2.4.1 improves this to

∆TV(t) ≤
m−1∑
k=1

(−1)k+1

(
m

k

)(
m− k
m

)t
.

Since the old bound is simply the first term of this alternating series, it has been

improved by
m−1∑
k=2

(−1)k
(
m

k

)(
m− k
m

)t
.

To illustrate the improvement, Figure ?? is a plot of the two bounds for

the case when m = 10.

2.5.2 Strings of Colored Numbers

Consider a random walk on the LRB SCN(m, k) where each color from

1, ..., k is assigned a probability pj of being chosen, where
∑
j

pj = 1, and each
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Figure 2.3: The bounds given by Equation 2.1 and Theorem 2.4.1 for the Tsetlin

Library on 10 elements

number has equal probability of being chosen. More explicitly, for (i, j) ∈ C,

p(i,j) =
pj
m

. Note that if k = 1, then we have the Tsetlin Library considered above.

The support lattice L is the boolean lattice {0, 1}m, and thus elements are indexed

by subsets Y ⊂ {1, ...,m}. The eigenvalues are thus

λY =
∑

supp c⊂Y

pc =
∑
(i,j)
i∈Y

pj
m

=
∑
i∈Y

∑
j

pj
m

=
∑
i∈Y

1

m

∑
j

pj =
|Y |
m
.

Thus the eigenvalues and support lattice are the same as in the Tsetlin library,

and so we have the same bound of

∆TV(t) ≤
m−1∑
k=1

(−1)k+1

(
m

k

)(
m− k
m

)t
.

It is interesting to note that the bound does not depend at all on the choice of

probabilities for a color pj, so long as each number has equal probability of being

chosen.

2.5.3 Edge Flipping

In [21], the following random process was studied: Initially each vertex of

a graph G is colored red or blue. At each step in the process, we select a random
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edge of G and (re-)color both its endpoints blue with probability p, or red with

probability q = 1− p. This process is then repeated some large number of times.

The color configuration of G changes at each step.

The re-coloring actions (each of which is associated with picking an edge e

and changing the colors of its endpoints) form a LRB with respect to composition,

and the chambers are simply the colorings of the graph G which are created by

this process.

It was shown in [21] that, for example, for the uniform case of p = 1/2, the

random walk on the state graph has, for each subset T of the vertex set V of G,

the eigenvalue λT (with multiplicity 1) being the ratio of the number of edges in

the induced subgraph of T divided by the total number of edges in G.

To bound the total variation distance, we can use Theorem 1 to improve

previous bounds since the negative terms in the Möbius function lead to cancela-

tions. For the example of the path P5, the bound given in [21] yields

∆TV(t) ≤ 2

(
3

4

)t
+ 6

(
1

2

)t
+ 10

(
1

4

)t
,

whereas Theorem 2.4.1 and Corollary 2.4.3 give the improved bound

∆TV(t) ≤ 2

(
3

4

)t
− 2

(
1

4

)t
.

2.6 Remarks

There is room for improvement in Theorem 2.4.1. In the proof, we use the

bound

|πt,s(A)− π(A)| = |P (¬Bt and x(t)s ∈ A)− P (¬Bt and Cs ∈ A)| ≤ P (¬Bt)

This is a crude estimate, and a more delicate handling of the term |πt,s(A)−π(A)|
may lead to a more precise bound.
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Chapter 3

Random Siedel Switching

3.1 Introduction

LetG = G(V,E) be a finite, simple graph. For a vertex v ∈ V , the operation

of switching at v transforms G to a new graph Gv by deleting all edges adjacent to

v, and adding all potential edges from v to vertices not previously connected. This

operation is also known as vertex switching, node switching, or Seidel Switching.

It was originally introduced by J.H. van Lint and J.J. Seidel [61] as tool to study

equilateral point sets in elliptic spaces.

Figure 3.1: Seidel switching on 4 vertices. We begin with a graph on 4 vertices,

select one vertex, then switch the adjacency relations for that vertex.

Two graphs G0 and Gk are said to be switching equivalent if there is a

sequence of vertices v1, v2, ..., vk such that Gi is obtained by switching vi in Gi−1

for i = 1, ..., k. It is easy to see that performing the sequence of operations in

30
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reverse order will transform Gk back to G0, and so the relation is both reflexive

and symmetric. Also note that this demonstrates each switching operation is

invertible, a fact that will be needed later. Transitivity follows immediately from

the definition, and so this is an equivalence relation among graphs on a fixed

number of vertices. The equivalence classes are known as switching classes. The

number of switching classes on n vertices is equal to the number of two-graphs with

n vertices [55] as well as Euler graphs [44]. Seidel Switching has applications to

spectral graph theory as illustrated by the following theorem, also due to Seidel [54].

Theorem 3.1.1.

Let G and G′ be two regular graphs of degree d in the same switching class. Then

G and G′ are cospectral.

In this chapter, we consider a randomized switching process. At each step

we randomly select a vertex, and apply a switching operation at that vertex. We

analyze this random process, and obtain results about the times of convergence to

the stationary distribution. Our method can be outlined as follows:

1. The set of compositions of switching operations is an abelian group, which

we denote ΓSS(n).

2. There is an isomorphism ν : ΓSS(n)→ Z
n−1
2

3. The random process can be understood as a lazy random walk on a Cayley

graph of ΓSS(n).

4. The eigenvalues of the transition matrix of this random walk can be found

using the irreducible representations of ΓSS(n), and can be used to bound

the convergence time to the stationary distribution.

This chapter is organized as follows. In Section 3.2 we formally introduce

randomized Seidel Switching, and show that the stationary distribution is uniform

and give bounds on the convergence time. We omit proofs in this section as

results are special cases of more general results stated in the following section.

In Section 3.3 we introduce two generalizations of Seidel switching. We consider
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both switching with multiple colors and restricted to a fixed host graph. We then

study a randomized version of this generalized switching, again showing how it can

be viewed as a random walk on a graph and use spectral methods to bound the

convergence times.

3.2 Randomized Seidel Switching

We wish to consider the behavior of the random process arising from a

random sequence of switchings on graphs with n vertices. It will be useful to think

of the switching actions as functions on the state space of all graphs on n vertices.

Let G(n) denote the set of all graphs on n labeled vertices. Let sv : G(n)→ G(n)

be the action of switching at vertex v, so that sv(G) = Gv for any graph G. We

let s∅ denote the identity function, and let Kn ∈ G(n) denote the empty graph on

n vertices.

Let {xt}∞1 be a sequence of vertices, independently chosen uniformly at

random among the n vertices. Consider the random process X̂(t) where

X̂(0) = Kn,

and for each t ≥ 1,

X̂(t+ 1) = sxt(X̂(t)).

As we will see later, this sequence may be periodic and so will not converge to a

stationary distribution. To eliminate this concern, we consider a “lazy version” of

this process where half the time no action is taken. We define the sequence X(t)

where

X(0) = Kn,

X(t+ 1) = syt(X(t))

where

P(yt = ∅) =
1

2

and

P(yt = xt) =
1

2
.
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Our goal is to analyze X(t). In particular, we wish to consider the following

questions:

1. How can we understand or interpret X(t)?

2. What is the stationary distribution of X(t)?

3. How fast does X(t) converge to its stationary distribution?

We begin by examining the algebraic structure of compositions of switching

functions sv. Again, proofs in this section are omitted, as the results stated are

special cases of results that appear in Section 3.3

Theorem 3.2.1.

Let ΓSS(n) be the group of all compositions of the switching operators {svi}ni=1

with respect to composition. Then ΓSS(n) ∼= Z
n−1
2 .

For our analysis, we will need to explicitly understand the isomorphism

between the groups, and in particular the image of the switching functions sv.

For the groups Z2× ...×Z2, let ei correspond to the cartesian product of the

the additive generator 1 in the i-th group, and the identity 0 in all other groups.

Corollary 3.2.2.

There exists an isomorphsim ν : ΓSS(n)→ Z
n−1
2 with

ν(svi) =


ei if i = 1, ..., n− 1
n−1∑
i=1

ei if i = n

The key idea in our analysis is recognizing that X(t) can be viewed a lazy

random walk on a state graph. Moreover, we will show that this state graph is

isomorphic to a Cayley graph of ΓSS(n).

We begin by defining the Switching State Graph as follows:

Definition 3.2.3.

The Switching State Graph of n vertices, denoted CSS(n), is a graph with vertex

set the set of all graphs on n (labeled) vertices in the same switching class as the

empty graph. For two graphs G and H, G ∼ H if there is a vertex v such that

sv(G) = H.
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The notion of the Switching Graph is useful because it allows us to view our

random process X(t) as a lazy random walk on a graph. At each step in a random

walk on CSS(n) one moves to a neighbor with probability 1
2
, and stays at the same

vertex with probability 1
2
. Since moving to a random neighbor is equivalent to

picking a random vertex v and applying the switching function sv, we have the

following proposition.

Proposition 3.2.4.

The random process X(t) described above is identically distributed to a lazy random

walk on the switching graph starting from the empty graph.

Thus we have reduced the problem of analyzing X(t) to that of understand-

ing the lazy random walk on CSS(n). We begin by recognizing that we can fully

understand the structure of CSS(n) in terms of the switching group ΓSS(n).

Proposition 3.2.5.

The Switching State Graph CSS(n) is isomorphic to Cay(Zn−1
2 , S), where S =

{ei}n−1
i=1 ∪

{
n−1∑
i=1

ei

}
and ei is the standard basis element of Zn−1

2 . This is the hyper-

cube of dimension n− 1 with diagonal chords added.
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Figure 3.2: The Switching State Graph for 4 vertices. The “vertices” of the state

graph are the graphs on 4 vertices that are in the same switching class as the empty

graph. Two graphs are adjacent if they differ by a single switching operation. Note

that the graph is bipartite, which demonstrates why we consider a lazy random

walk to guarantee convergence.

Using Propositions 3.2.4 and 3.2.5, along with the tools presented in Chap-

ter 1, we can answer the questions posed at the beginning of this section.

Theorem 3.2.6.

Let X(t) be the random graph at time t obtained from the randomized Seidel Switch-

ing switching process described above. Then

1. X(t) converges to a uniform distribution on all graphs in the switching class

of Kn.
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2. The χ-squared distance from the stationary distribution after t steps is

bounded by

∆′(t) ≤

(
n−1∑
j=1

(
n− 1

j

)(
1− j

n

)2t
) 1

2

3. ∆′(t) ≤ e−c if t > 1
2
n log n+ c for any c > 0

3.3 Restricted and Multi-colored Switching

One can generalize the switching operation to colorings of graphs in a num-

ber of ways. Consider if instead of two states (off or on) for any of the edges, there

are q states for some fixed integer q. It is natural to think of these as different

colors an edge. The switching operation is then some permutation π on the set

of potential colors of an edge. Brewster and Graves [12] considered the action of

an arbitrary, fixed permutation π and studied homomorphisms between colorings

of graphs. Cameron and Tarzi [18] considered the action under all transpositions,

as well as restricted cases where not all transpositions were allowed. We will con-

sider the case where π is the cyclic operation “+1 mod q”, though many of the

techniques generalize to arbitrary permutations.

Figure 3.3: An example of multi-color switching with q = 3. No edge corresponds

to state 0, a grey edge to state 1, and a black edge to state 2. After selecting

bottom left vertex, we increment the state of each adjacent edge by 1 mod 3

We consider a further generalization simultaneously. Previously, any non-

edge could become an edge. We consider instead when only certain edges can
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be created. For a fixed host graph H, we can define switching actions that are

restricted to colorings of the edges of H.

Figure 3.4: Switching restricted to the host graph H = C4. Note that switching

at the bottom left vertex only creates new edges that are in the host graph

We let Gq(H) be the set of all edge-colorings of H using q colors, that is all

functions τ : E(H)→ {0, 1, ..., q − 1}. We call τ a q-coloring of the edges of H.

Definition 3.3.1.

We define the q-H-switching of a vertex v to be the operator sv : Gq(H)→ Gq(H)

where

sv(τ)(e) = τ(e) + 1 mod q.

s∅ will refer to the identity map on Gq(H). The operators sv for v ∈ V will be

called the elementary q-H-switching operators.

Note that the Seidel Switching as explored in Section 3.2 is q-H-switching

with q = 2 and H = Kn.

3.3.1 The q-H Switching Group

It follows from definition 3.3.1 that the elementary switching operators com-

mute and that

sqv = s∅

for every v. Thus each elementary operator sv is invertible with

s−1
v = sq−1

v .
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Letting ΓqSS(H) be the set of all compositions of elementary q-H-switching oper-

ators, the following proposition follows.

Proposition 3.3.2.

ΓqSS(H) is an abelian group under composition.

We call ΓqSS(H) the q-H-switching group, or just switching group if q and

H are clear from context. We begin with a somewhat surprising result. We can

view ΓqSS(H) as the vector space over Zq spanned by {sv}v∈V , where here sv is

viewed as a vector in Z
E
q with 1 for all edges with endpoint v. Thus, ΓqSS(H) is

the column space over Zq of the edge-vertex adjacency matrix. It seems that such

an object should vary depending on the structure of the graph H, but it turns out

only to depend on whether H is bipartite or not, and on the parity of q.

Theorem 3.3.3.

Let H be a connected graph on n vertices.

ΓqSS(H) ∼=


Z
n−1
q if H is bipartite

Z
n
q if H is not bipartite and q is odd

Z
n−1
q × Zr H is not bipartite and q = 2r

Proof. Index the n generators of Znq by the vertices of H, and denote them by unit

vectors {fv}v∈V , where fv corresponds to a 1 in the v coordinate and 0 elsewhere.

We define the map φ : Znq → ΓqSS(H) by φ(fv) = sv, extended linearly so that φ is

a homomorphism.

We first note that φ is surjective, as any element in ΓqSS(H) occurs from

switching vertices ofH some number of times less than q. By the First Isomorphism

Theorem, ΓqSS(H) ∼= Z
n
q / kerφ.

It remains to analyze kerφ. We will view ΓqSS(H) as a module over Zq.

Suppose that g =
∑
v

αvfv ∈ kerφ, where αi ∈ Zq. The value on e = {u,w} is only

influenced by su and sw, so if (u,w) ∈ E(H), then

αu = −αw. (3.1)

So if vi1 , vi2 , ..., vik is a walk on the vertices of H, then

αil = (−1)l+1αi1 (3.2)
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That is, values alternate between c and q− c ∈ Zq for a fixed c as one moves along

the path. We now split into cases based on the structure of H.

Case 1. H is bipartite

Let A and B be the independent sets with respect to which H is bipartite,

and without loss of generality suppose that v1 ∈ A. Let c = α1. Since H is

connected, for any vertex vj, there exists a walk v1 = vi1 , vi2 , ..., vikj = vj for some

kj ∈ N. Thus

αj = (−1)kj−1α1.

Because H is bipartite, kj is even precisely when vj ∈ A. Therefore

αv =

{
c if v ∈ A
−c if v ∈ B

.

It follows that

kerφ = {
∑
v∈A

cfv +
∑
w∈B

(q − c)fw}q−1
c=0,

and thus kerφ ∼= Zq and

ΓqSS(H) ∼= Z
n
q /Zq

∼= Z
n−1
q .

Case 2. H contains an odd cycle

Suppose H contains a cycle of length j for some odd integer j. Let v1 be a

vertex in that cycle, and let v1 = vi1 , vi2 , ..., vij+1
= v1 be a walk around the cycle,

starting and ending at v1. Then

α1 = (−1)jαk = −α1.

Therefore 2α1 = 0.

Subcase 1. q is odd

If q is odd, 2α1 = 0 implies α1 = 0. Since H is connected, for every vertex

vi there is a walk from v1 to vi. Thus by Equation 3.2,

αi = 0

for all i. Thus kerφ = 0, so ΓqSS(H) ∼= Z
n
q .
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Subcase 2. q is even

If q is even, q = 2r, and 2α1 = 0 implies α1 = 0, or α1 = r. As above, if

α1 = 0, then αi = 0 for all i. Similarly, if α1 = r, αi = ±r for all i. But since

q = 2r, −r = r in Zq, so αi = r for all i. Thus

kerφ =

{
0,
∑
v

rfv

}
∼= Z2.

Thus kerφ ∼= Z2, and therefore

ΓqSS(H) ∼= Z
n
q /Z2

∼= Z
n−1
q × Zr.

�

For calculations later, it will be necessary to explicitly construct the iso-

morphism. In particular, we will need to determine the image of the elementary

switching operators sv.

Corollary 3.3.4.

1. When H is bipartite with respect to two disjoint subsets A,B ⊂ V , there

exists an isomorphsim ν : ΓqSS(H) → Z
n−1
q with ν(svi) = ei for i ≤ n − 1,

and ν(svn) =
∑

vi∈A,i 6=n
ei −

∑
vj∈B,j 6=n

ej.

2. When H is not bipartite, and q is odd, there exists an isomorphism

ν : ΓqSS(H)→ Z
n
q with ν(svi) = ei for all i.

3. When H is not bipartite, and q is even, there exists an isomorphism

ν : ΓqSS(H) → Z
n−1
q × Zr with ν(svi) = ei for all i. Note the final generator

en = (0, ...0, 1) is of order r, whereas all the other ei are order q = 2r.

Proof. As in the proof of Theorem 3.3.3, we let {fv}v∈V denote the standard basis

of Znq , indexed by the vertices of H. We let {ei} denote the standard generator of

Zn1 × ...Znk with a 1 in the i-th spot and 0 elsewhere.

To construct ν, we simply follow the standard proof of the First Isomor-

phism Theorem.
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Case 1. H is bipartite

The use of the First Isomorphism Theorem in the proof of Theorem 3.3.3

above yields the isomorphism φ̃ : Zn
q / kerφ→ Γn,q given by

φ̃(a+ kerφ) = φ(a).

Thus ΓqSS(H) corresponds to the cosets of

kerφ =

{∑
v∈A

cfv +
∑
w∈B

(q − c)fv

}q−1

c=0

.

Without loss of generality, suppose that vn ∈ B. There are q elements in each

coset, and we define the map ψ : Zn
q / kerφ→ Zn−1

q to be the map sending a+kerφ

to its representative with the coefficient of en = 0. This is an isomorphism, and so

we define ν : Γn,q → Z
n−1
q × Zr to be the composition of φ̃−1 and ψ. Tracing back

through the composition of maps we see that ν(svi) = ei for i ≤ n− 1, and

ν(svn) =
∑

vi∈A,i 6=n

ei −
∑

vj∈B,j 6=n

ej.

Case 2. H is not bipartite, q is odd

Let ν : ΓqSS(H)→ Z
n
q be the inverse of φ, that is ν(svi) = ei for all i.

Case 3. H is not bipartite, q is even, q > 2

As in the first case, the use of the First Isomorphism Theorem yields the

isomorphism φ̃ : Zn
q / kerφ→ ΓqSS(H) given by

φ̃(a+ kerφ) = φ(a).

Thus ΓqSS(H) corresponds to the cosets of

kerφ =

{
0,
∑
i

rfvi

}
.

There are two elements in each coset, and we define the map τ : Zn
q / kerφ →

Zn−1
q × Zr to be the map sending a + kerφ to its unique representative with the

coefficient of en lying in the set {0, 1, ..., r − 1}. This is an isomorphism, and so

we define ν : ΓqSS(H) → Z
n−1
q × Zr to be the composition of φ̃−1 and τ. Then

ν(svi) = ei for all i as required.
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Case 4. H is not bipartite, q = 2

As above, the use of the First Isomorphism Theorem yields the isomorphism

φ̃ : Zn
q / kerφ→ ΓqSS(H) given by

φ̃(a+ kerφ) = φ(a).

Thus, ΓqSS(H) corresponds to the cosets of

kerφ =

{
0,
∑
v

fv

}
.

There are two elements in each coset, and we define the map τ : Zn
q / kerφ→ Zn−1

q

as follows. For each coset a + kerφ there is a unique representative with the

coefficient of en equal to 0. We define τ(a + kerφ) to be the projection of this

element to Zn−1
2 . This is an isomorphism, and so we define ν : ΓqSS(H)→ Z

n−1
q ×Zr

to be the composition of φ̃−1 and τ. Then ν(svi) = ei for all i ≤ n − 1, and

ν(svn) =
∑
i

ei.

�

We have identified ΓqSS(H) for all connected H, but it remains to consider

the case when H is disconnected. Fortunately, the switching group decomposes as

a product of the switching groups of the connected components in the most natural

way possible. Suppose that H is the disjoint union of H1 and H2. Then for v ∈ Hi,

sv only changes the color of edges in Hi. Therefore there is no interaction between

the switching functions on H1 and H2. In other words, we have the following;

Proposition 3.3.5.

If H is the disjoint union of two subgraphs H1 and H2, then

ΓqSS(H) ∼= Γq(H1)× Γq(H2).

Proof. We note that if v ∈ H1, w ∈ H2, then sv⊥sw, when viewed as vectors in

Z
|E|
q . Thus span{sv}v∈H1⊥span{sv}v∈H2 , and so

Γq(H) ∼= span{su}u∈H ∼= span{sv}v∈H1 ⊕ span{sv}v∈H2
∼= Γq(H1)× Γq(H2)
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�

We can now give a classification of the structure of the abelian groups that

are isomorphic to ΓqSS(H) for any q and H.

Theorem 3.3.6.

1. Let H be a graph on n vertices. Then there exist b, c ≥ 0 such that 2b+3c ≤ n

and

ΓqSS(H) ∼=

{
Z
n−b−c
q × Zjr if q = 2r

Z
n−c
q if q is odd

2. If q = 2r, and b, c ≥ 0 such that 2b + 3c ≤ n, then there exists a graph H

on n vertices such that ΓqSS(H) ∼= Z
n−b−c
q ×Zjr. If q is odd and 2b ≤ n, then

there exists a graph H on n vertices such that ΓqSS(H) ∼= Z
n−b
q

Proof. Let H1×...×Hk be the connected components of H, and let n1, ..., nk be

the number of vertices in each component. Then by Proposition 3.3.5, ΓqSS(H) ∼=
ΓH1,q × ...× ΓHk,q. We first consider the case when q is even. By Theorem 3.3.3,

ΓHi,q
∼=

{
Zni−1
q × Zr if Hi is not bipartite

Z
ni−1
q if H is bipartite

.

Let b be the number of non-bipartite connected components and c the num-

ber of bipartite connected components. Then ΓqSS(H) ∼= Z
n−b−c
q × Z

j
r. For a

component Hi to be bipartite, ni ≥ 2, and to be non-bipartite, ni ≥ 3. Thus

2b+ 3c ≤ n. The case when q is odd is simpler; let b = 0 and let c be the number

of bipartite components. Then since

ΓHi,q
∼=

{
Zni
q if Hi is not bipartite

Z
ni−1
q if H is bipartite

,

ΓqSS(H) ∼= Z
n−c
q .

For the other half of the proof, suppose q = 2r and 2b+3c ≤ n. Let H be the

disjoint union of c 3-cycles, b−1 edges, and one path of length n+2−2b−3c. Then

H is a graph on n vertices and ΓqSS(H) ∼= Z
2j
q ×Zjr×Zi−1

q ×Zn+1−2b−3c
q

∼= Z
n−b−c
q ×Zjr.
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If q is odd, and 2b ≤ n, let H be a disjoint union of b − 1 edges, and one

path of length n + 2− 2b. Then H is a graph on n vertices with switching group

ΓqSS(H) ∼= Z
b−1
q × Zn+1−2b

q
∼= Z

n−b
q �

3.3.2 Random q-H-Switching

We wish to consider the process generated by a sequence of randomly cho-

sen q-H-switching operators. We introduce one further generalization. Let H be

a connected graph with vertex set V , and q ≥ 2 a positive integer. While in

Section 3.2 the operators were chosen uniformly at random, we now allow an ar-

bitrary probability distribution on the vertices. Formally, let ω : V → (0, 1) be a

probability distribution on V .

Let τ∅ refer to the 0 coloring of the edges; that is, τ∅(e) = 0 for all edges

e ∈ E. For an elementary switching operation sv, recall that its inverse s−1
v = sq−1

v .

Also, recall that s∅ refers to the identity operator.

Let {xt}∞1 be a sequence of independent identically distributed random

vertices, where P(xt = v) = ω(v). We consider the following random process.

Starting from the empty coloring, we pick a vertex at random and apply either the

q-H-switching operator or its inverse (with equal probability) at that vertex. To

guarantee convergence, we consider a lazy random process where half the time no

action is taken. Formally, this is the sequence X(t) where

X(0) = τ∅,

X(t+ 1) = σt(X(t))

where {σt} is a sequence of random independently chosen switching operators

where for q > 2,

P(σt = s∅) =
1

2
,

P(σt = sv) =
ω(v)

4
,

and

P(σt = s−1
v ) =

ω(v)

4
.
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When q = 2, then s−1
v = sv, and so

P(σt = s∅) =
1

2
,

P(σt = sv) =
ω(v)

2
.

Our immediate goal is to interpret X(t) as a random walk on a weighted

graph, then use the myriad of tools available for studying such processes. For an

arbitrary probability distribution ω on V , we define the symmetric distribution ω̂

on ΓqSS(H) by

ω̂(γ) =


ω(v)

2
if γ = sv, v ∈ V

ω(v)
2

if γ = sq−1
v , v ∈ V

0 otherwise

.

We define the switching state graph to be the directed, weighted graph

CqSS(H) = Cay(ΓqSS(H), ω̂).

Thus CqSS(H) has weighted adjacency matrix given by

A(τi, τj) = ω̂(τi ◦ τ−1
j ) =


ω(v)

2
if τj = sv(τi), v ∈ V

ω(v)
2

if τj = s−1
v (τi), v ∈ V

0 otherwise

That is, the weight on the edge from τi to τj corresponds to the elementary

operator or its inverse that sends τi to τj.

We will show that X(t) is equal in distribution to a lazy random walk on

the weighed graph CqSS(H) starting at the empty coloring. In order to guarantee

that CqSS(H) is connected we only consider distributions ω whose support on G

is a generating set.

Let W be the transition matrix of the lazy random walk on CqSS(H).

Proposition 3.3.7.

For any coloring τi in the q-H switching class of τ∅, P(X(t) = τi) = 1{τ∅}W
t(τi),

where 1{τ∅} a row vector with a 1 in the entry for τ∅ and 0 elsewhere.
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Proof. We must show that

P (X(t+ 1) = τi | X(t) = τj) = W (τj, τi)

for any t. W is the transition matrix of a lazy random walk on CqSS(H), so

W = 1
2
(I+D−1A), where I is the identity matrix, D the weighted diagonal degree

matrix, and A the weighted adjacency matrix of CqSS(H) = Cay(ΓqSS(H), ω). Since

ω is a probability distribution, the weighted out-degree of each vertex is 1, and so

W = 1
2
(I + A). If τi = τj, then W (τi, τi) = 1

2
= P(X(t + 1) = τi | X(t) = τi). For

τi 6= τj,

W (τi, τj) =
1

2
A(τi, τj) =


ω(v)

4
if sv(τi) = τj for some v ∈ V

ω(v)
4

if s−1
v (τi) = τj for some v ∈ V

0 otherwise

.

But this is precisely equal to P(X(t + 1) = τj|X(t) = τi). We have demonstrated

that X(t) is a Markov chain with transition matrix W , proving the proposition.

�

Since we can now understand X(t) as the lazy random walk on a con-

nected graph, it remains to analyze that graph. Since CqSS(H) is a Cayley graph

with respect to the symmetric distribution ω, it is a connected, vertex transitive,

undirected, weighted graph. Thus a lazy random walk converges to the uniform

distribution π. It remains to understand how quickly the walk converges.

We remark that in the case where q is odd and H is not bipartite, this

reduces to the case of a geometric random walk on Z
n
q , see for example [49].

By Theorem 1.3.9, the χ−squared distance can be calculated as

∆′(t) =

(∑
i 6=n

λ2t
i

)1/2

,

where λ1 ≤ λ2 ≤ ... ≤ λn = 1 are the eigenvalues of the transition matrix. Thus to

understand the rate of convergence of X(t) to its stationary distribution it remains

only to understand the eigenvalues of W .
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Theorem 3.3.8.

Let H be a connected graph on n vertices, ω a probability distribution on V , and

let θq = e
2πi
q denote a qth root of unity. Let W be the transition matrix of the

random walk on the state graph CqSS(H). Then the spectrum of W depends on the

parity of q and the structure of H as follows:

1. If q = 2, there is one eigenvalue of W corresponding to each vector −→x ∈ Zn−1
2

with

λ−→x =
1

2

(
1 + ω(vn)

n−1∏
i=1

(−1)xi +
n−1∑
i=1

ω(vi)(−1)xi

)
2. If H is bipartite with respect to subsets A,B ⊂ V , then there is one eigenvalue

of W corresponding to each vector −→x ∈ Zn−1
q with

λ−→x =
1

2

1 + ω(vn)<


∏

vi∈A,i 6=n
θxiq∏

vj∈B,j 6=n
θxiq

+
n−1∑
i=1

ω(vi)<(θxiq )


where <(·) denotes the real part.

3. If H is not bipartite and q is odd, then there is one eigenvalue of W corre-

sponding to each vector −→x ∈ Zn−1
q with

λ−→x =
1

2

(
1 +

n∑
i=1

ω(vi)<(θxiq )

)
.

4. If H is not bipartite and q ≥ 4 is even, q = 2r, then there is one eigenvalue

of W corresponding to each vector −→x ∈ Zn−1
q × Zr with

λ−→x =
1

2

(
1 +

n−1∑
i=1

ω(vi)<(θxiq ) + ω(vn)<(θxnr )

)
.

Proof. By Theorem 1.4.3, the eigenvalues of W are

λρ =
1

2
+
∑
g∈Γ

ω̂(g)ρ(−g)

where ρ is a one dimensional irreducible representation of ΓqSS(H). Theorem 1.4.4

states the irreducible representations of Znq are the functions ρ−→x for −→x ∈ Z
n−1
q
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where

ρ−→x (
n−1∑
i=1

αiei) =
n−1∏
i=1

θxiαiq .

We will handle each of the cases separately, though the techniques used for

each case are identical.

Case 1. q = 2

The irreducible representations of ΓqSS(H) are ρ−→x ◦ ν where ν : ΓqSS(H)→
Z
n−1
2 is the isomorphism defined by Corollary 3.3.4 with

ν(svi) = ei for i ≤ n− 1

ν(svn) =
n−1∑
i=1

ei.

Let ρ̃−→x : ΓqSS(H)→ C be the composition for ρ−→x and ν. Since the ρ̃−→x are

the irreducible characters of ΓqSS(H), we have that for each −→x ∈ Zn−1
2 there is an

eigenvalue

λ−→x =
1

2
+

1

2

∑
g∈ΓqSS(H)

ω̂(g)ρ̃−→x (−g) =
1

2
+

1

2

∑
v

ω̂(v)ρ̃−→x (sv) + ω̂(v)ρ̃−→x (s−1
v )

=
1

2
+

1

4

n∑
i=1

ω(vi)ρ−→x (ν(svi)) + ω(vi)ρ−→x (ν(s−1
vi

))

=
1

2
+

1

2

n∑
i=1

ω(vi)ρ−→x (ν(svi))

Let ζ−→x (i) = ω(vi)ρ−→x (ν(svi)). Then

λ−→x =
1

2
+

1

2

n∑
i=1

ζ−→x (i).

For i ≤ n− 1,

ζ−→x (i) = ω(vi)ρ−→x (ν(svi))

= ω(vi)ρ−→x (ei)

= ω(vi)(−1)xi
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It remains to calculate ζ−→x (n).

ζ−→x (n) = ω(vn)ρ−→x (ν(svn))

= ω(vn)ρ−→x

(
n−1∑
i=1

ei

)

= ω(vn)
n−1∏
i=1

(−1)xi

Thus

λ−→x =
1

2

(
1 + ω(vn)

n−1∏
i=1

(−1)xi +
n−1∑
i=1

ω(vi)(−1)xi

)

Case 2. H is bipartite

Let A,B ⊂ V be the subsets of vertices with respect to which H is bipartite.

Thus the irreducible representations of ΓqSS(H) are ρ−→x ◦ ν where ν : ΓqSS(H) →
Z
n−1
q is the isomorphism defined in Corollary 3.3.4 with

ν(svi) = ei for i ≤ n− 1

ν(svn) =
∑

vi∈A,i 6=n

ei −
∑

vj∈B,j 6=n

ej.

Let ρ̃−→x : ΓqSS(H)→ C be the composition for ρ−→x and ν. Since the ρ̃−→x are

the irreducible characters of ΓqSS(H), we have that for each −→x ∈ Znq there is an

eigenvalue

λ−→x =
1

2
+

1

2

∑
g∈ΓqSS(H)

ω̂(g)ρ̃−→x (−g) =
1

2
+

1

2

∑
v

ω̂(v)ρ̃−→x (sv) + ω̂(v)ρ̃−→x (s−1
v )

=
1

2
+

1

4

n∑
i=1

ω(vi)ρ−→x (ν(svi)) + ω(vi)ρ−→x (ν(s−1
vi

))

Let ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)
. Then

λ−→x =
1

2
+

1

4

n∑
i=1

ζ−→x (i).
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For i ≤ n− 1,

ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)

= ω(vi) (ρ−→x (ei) + ρ−→x (−ei))

= ω(vi)

(
θxiq +

1

θxiq

)
= ω(vi)

(
θxiq + θxiq

)
= ω(vi)2<(θxiq )

It remains to calculate ζ−→x (n).

ζ−→x (n) = ω(vn)
(
ρ−→x (ν(svn)) + ρ−→x (ν(s−1

vn ))
)

= ω(vn)

ρ−→x (
∑

vi∈A,i 6=n

ei −
∑

vj∈B,j 6=n

ej) + ρ−→x (
∑

vi∈A,i 6=n

−ei +
∑

vj∈B,j 6=n

ej)


= ω(vn)


∏

vi∈A,i 6=n
θxiq∏

vj∈B,j 6=n
θ
xj
q

+

∏
vj∈B,j 6=n

θ
xj
q∏

vi∈A,i 6=n
θxiq


= ω(vn)2<


∏

vi∈A,i 6=n
θxiq∏

vj∈B,j 6=n
θ
xj
q


Thus

λ−→x =
1

2
+

1

2

ω(vn)<


∏

vi∈A,i 6=n
θxiq∏

vj∈B,j 6=n
θ
xj
q

+
n−1∑
i=1

ω(vi)<(θxiq )


Case 3. H not bipartite, q odd

The irreducible representations of ΓqSS(H) are ρ−→x ◦ ν where ν : ΓqSS(H)→
Z
n
q is the isomorphism defined in Corollary 3.3.4 with

ν(svi) = ei for all n.

Let ρ̃−→x : ΓqSS(H) → C be the composition for ρ−→x and ν. Since the ρ̃−→x are the

irreducible characters of ΓqSS(H), we have that for each −→x ∈ Z
n
q there is an
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eigenvalue

λ−→x =
1

2
+

1

2

∑
g∈ΓqSS(H)

ω̂(g)ρ̃−→x (−g) =
1

2
+

1

2

∑
v

ω̂(v)ρ̃−→x (sv) + ω̂(v)ρ̃−→x (s−1
v )

=
1

2
+

1

4

n∑
i=1

ω(vi)ρ−→x (ν(svi)) + ω(vi)ρ−→x (ν(s−1
vi

))

Let ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)
. Then

λ−→x =
1

2
+

1

4

n∑
i=1

ζ−→x (i).

In this case,

ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)

= ω(vi) (ρ−→x (ei) + ρ−→x (−ei))

= ω(vi)

(
θxiq +

1

θxiq

)
= ω(vi)

(
θxiq + θxiq

)
= ω(vi)2<(θxiq ).

Thus,

λ−→x =
1

2

(
1 +

n∑
i=1

ω(vi)<(θxiq )

)
.

Case 4. H not bipartite, q ≥ 4 is even

Let q = 2r. The irreducible representations of ΓqSS(H) are ρ−→x ◦ ν where

ν : ΓqSS(H)→ Z
n−1
q × Zr is the isomorphism defined in Corollary 3.3.4 with

ν(svi) = ei for i ≤ n− 1

ν(svn) = en.

Recall that en here is the generator of Zr and is of order r, whereas the other ei

are of order q.

Let ρ̃−→x : ΓqSS(H)→ C be the composition for ρ−→x and ν. Since the ρ̃−→x are

the irreducible characters of ΓqSS(H), we have that for each −→x ∈ Zn−1
q × Zr there
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is an eigenvalue

λ−→x =
1

2
+

1

2

∑
g∈ΓqSS(H)

ω̂(g)ρ̃−→x (−g) =
1

2
+

1

2

∑
v

ω̂(v)ρ̃−→x (sv) + ω̂(v)ρ̃−→x (s−1
v )

=
1

2
+

1

4

n∑
i=1

ω(vi)ρ−→x (ν(svi)) + ω(vi)ρ−→x (ν(s−1
vi

))

Let ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)
. Then

λ−→x =
1

2
+

1

4

n∑
i=1

ζ−→x (i).

For i ≤ n− 1,

ζ−→x (i) = ω(vi)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vi
))
)

= ω(vi) (ρ−→x (ei) + ρ−→x (−ei))

= ω(vi)

(
θxiq +

1

θxiq

)
= ω(vi)

(
θxiq + θxiq

)
= ω(vi)2<(θxiq )

We calculate ζ−→x (n) in the same way.

ζ−→x (n) = ω(vn)
(
ρ−→x (ν(svi)) + ρ−→x (ν(s−1

vn ))
)

= ω(vn) (ρ−→x (ei) + ρ−→x (−ei))

= ω(vn)

(
θxir +

1

θxir

)
= ω(vn)

(
θxir + θxir

)
= ω(vn)2<(θxir )

Thus

λ−→x =
1

2

(
1 +

n−1∑
i=1

ω(vi)<(θxiq ) + ω(vn)<(θxnr )

)
.

�



53

Combining Theorem 1.3.9 and Theorem 3.3.8 yields the following bounds

on convergence times of the random generalized switching process.

Theorem 3.3.9.

Let H be a connected graph on n vertices, and let ω be a probability distribution on

the vertices. Let θq = e
2πi
q denote a qth root of unity. The random walk on CqSS(H),

and hence the random q-H-switching process after t steps has χ2 distance from the

stationary distribution bounded as follows:

1. If q = 2,

∆′(t) ≤ 1

2t

 ∑
−→x ∈Zn−1

2

(
1 + ω(vn)

n−1∏
i=1

(−1)xi +
n−1∑
i=1

ω(vi)(−1)xi

)2t
 1

2

2. If H is bipartite with respect to subsets A,B ⊂ V ,

∆′(s) ≤ 1

2t

 ∑
−→x ∈Zn−1

q

1 + ω(vn)<


∏

vi∈A,i 6=n
θxiq∏

vj∈B,j 6=n
θ
xj
q

+
n−1∑
i=1

ω(vi)<(θxiq )


2t

1
2

3. If H is not bipartite and q is odd,

∆′(t) ≤ 1

2t

 ∑
−→x ∈Znq

(
1 +

n∑
i=1

ω(vi)<(θxiq )

)2t
 1

2

4. If H is not bipartite and q ≥ 4 is even, q = 2r,

∆′(t) ≤ 1

2t

 ∑
−→x ∈Zn−1

q ×Zr

(
1 +

n−1∑
i=1

ω(vi)<(θxiq ) + <(θxnr )

)2t
 1

2



54

Corollary 3.3.10.

When q = 2 and ω(vi) = 1
n

, and H = Kn then we are considering randomized

Seidel Switching as discussed in Section 3.2. In this case, we obtain the bounds

1. ∆′(t) ≤

(
n−1∑
j=1

(
n−1
j

)
(1− j

n
)2t

) 1
2

2. ∆′(t) ≤ e−c if t > 1
2
n log n+ c.

Proof. There will be
(
n−1
j

)
vectors −→x ∈ Zn−1

2 with j 1’s, and (n − 1 − j) 0’s. For

each of these, λ−→x = 1
2
(1 + 1

n
(n− 1− 2j) + (−1)j

n
≤ (1− j

n
).

For the second fact, we note that(
n−1∑
j=1

(
n− 1

j

)(
1− j

n

)2t
) 1

2

≤

(
n−1∑
j=1

ej log(n−1)− 2jt
n

) 1
2

≤
(

(n− 1)e(n−1) log(n−1)− 2(n−1)t
n

) 1
2

= e
(n−1) log2(n−1)

2
− (n−1) log(n−1)t

n

≤ e−c

if
(n− 1) log2(n− 1)

2
− (n− 1) log(n− 1)t

n
≤ −c. (3.3)

Solving for t and simplifying shows that (3.3) is satisfied when

t >
1

2
n log n+ c.

�

Acknowledgement:

This chapter is based on the paper “Random Seidel Switching on Graphs” [37].

It has been accepted for publication in the Journal of Combinatorial Mathematics

and Combinatorial Computing.



Chapter 4

Random Lights Out Processes

4.1 Introduction

Lights Out is a single player game played on graph. The game begins with

a two-coloring of a graph, with vertices assigned a color of “0” or “1.” The goal is

to get all the vertices colored 0 via sequence of vertex toggles. Each vertex toggle

changes state of that vertex and all of its neighbors. This name comes from an

electronic toy introduced 1995 by Tiger Electronics, though the game had been

studied previously due to its connection to linear cellular autometa [59]. It is also

known as Sutner’s σ+ game [60].

The game can be played on any finite graph G. Let G = G(V,E) be a

graph on n vertices. Let F(G) denote the set of functions τ : V → Z2, which we

think of as colorings of the vertices of G. The “all 0 coloring” τ∅ will refer to the

function with τ∅(v) = 0 for all v ∈ V . For each vertex v, we define the toggling

operator sv : F(G) → F(G) to be the operator that changes the color of v and its

neighbors. We call the action of applying sv “toggling vertex v”, which switches

the color of v and all its neighbors. Formally,

sv(τ(w)) =

{
τ(w) + 1 if {w, v} ∈ E or w = v

τ(w) if {w, v} 6∈ E

where the addition occurs in Z2. We let s∅ denote the identity operator. A color-

ing τ is winnable if there are a sequence of vertices such that toggling them will

55
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transform τ to the all 0 coloring τ∅. A graph G is called always winnable if all

colorings τ ∈ F(G) are winnable.

Let r2 = r2(G) = RankZ2(A + I), where A is the adjacency matrix of G.

This is equal to n−PD(G), where PD(G) is the parity dimension of G investigated

in [4, 5]. r2(G) will be a key parameter in investigating the Lights Out game. For

example, the following lemma follows from [4].

Lemma 4.1.1.

A graph G on n vertices is always winnable if and only if r2(G) = n

Figure 4.1: An example demonstrating how the colorings change under two switch-

ing operations. Beginning with the “all 1” coloring, the top right vertex is toggled,

followed by the bottom left.

Many authors have investigated what graphs families of graphs are always

winnable or which colorings are winnable for particular families of graphs. Sutner

[59] showed that for any finite graph, the “all ones” coloring is winnable. The

Lights Out electronic toy consisted of a 5× 5 grid of buttons, and this version on

a 5× 5 grid was studied by Anderson and Feil [7] who used linear algebra over Z2

to study configurations where it is possible to win. Goldwasser, Klostermeyer, and

Trapp [34] studied the game on n ×m grids. Using Fibonacci Polynomials, they

classified which values of m and n yield an always winnable grid. Amin, Clark, and

Slater [4] studied this game on several families of graphs including trees, paths,

cycles, wheels, and fans. Their study was graph theoretic and focused on the parity

dimension of a graph, which is the rank of the nullspace of the matrix A+I, where

A is the adjacency matrix of the graph. In a follow up paper [5], Amin, Slater,
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and Zhang used an linear algebraic approach to expand upon their results, finding

the parity dimension for products of graphs. Giffen and Parker [33] considered a

generalization of the puzzle with multiple colors possible for each vertex. Edwards

et. al [29] generalized the techniques of both Amin, Clark, and Slater to the

multicolor generalization of Giffen and Parker to classified winnable configurations

for several families of graphs. Gervacio and Maehara [32] classified all the parity

state graphs, for which there solvability of a coloring τ depends only on the parity

of the number of 1’s assigned. Goldwasser, Wang, and Wu [35, 62] considered a

variant where one is only allow to toggle vertices colored 1, which we will discuss

briefly in the conclusion.

This previous work on the Lights Out Puzzle involved studying the parity

dimension of graphs and classifying graphs that are always winnable. In this

chapter, we consider a different problem. Given a fixed graph G, we will consider

the stochastic process arising from a sequence of random vertex toggles. This is the

first treatment of this random Lights Out process. We investigate the stationary

distribution of this process, the speed of convergence to the stationary distribution,

and the hitting times.

Our approach can be summarized as follows:

1. The random lights out process on a finite graph G, X(t), has the same

distribution as a random walk on the state graph of the configuration space,

denoted CLO(G) (Lemma 4.2.1)

2. The state graph CLO(G) is isomorphic to a Cayley graph of Zr22 (Corollary

4.2.6)

3. The eigenvalues of the transition matrix can be determined using the irre-

ducible representations of Zr22 . (Lemma 4.3.2, Corollary 4.3.3)

4. A lazy version of the process converges to the uniform distribution. The

χ−squared distance between the distribution of X(t) and the uniform dis-

tribution satisfies ∆′(t) ≤ e−c for all t > n
2
(1 + 1

r2
) log(r2) + c (Lemma 4.3.1,

Theorem 4.3.4)
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5. Let T0 be the hitting time of the empty coloring, that is min{t|Xτ (t) = τ∅}.
Then 2r2(G)−1 ≤ E[T0] ≤ 2n r2

r2−2−
√

2

(
r2
b r2

2
c

)
(Theorem 4.3.5)

4.2 Characterizing the State Graph

Let G = G(V,E) be a finite graph on n vertices. We wish to consider

the random process arising from applying a sequence of lights out toggles to the

vertices of G. Let {xt}∞1 be a sequence of independent random vertices, each

chosen uniformly among all vertices. Consider initially the random process X̂(t)

where

X̂(0) = τ∅,

X̂(t+ 1) = sxt

(
X̂(t)

)
.

We will analyze this process by viewing it as a random walk on a multigraph.

Let CLO(G) be the multigraph with vertex set consisting of winnable colorings of

G and edge set with an edge between colorings τ1 and τ2 for each vertex v ∈ G

such that toggling v changes between τ1 and τ2.

The following lemma is the key to our analysis of this process, reducing our

study of this process to that of a random walk on a graph.

Lemma 4.2.1.

The random lights out process X̂(t) on a finite graph G has the same distribution

as a random walk on CLO(G) starting at τ∅.

Proof. Let Y (t) the location of a random walk on CLO(G) after t steps. Note that

X̂(0) = Y (0), and that for any t > 0 and colorings τ1 6= τ2,

P(X̂(t+ 1) = τ1|X̂(t) = τ2) =
|{v ∈ V |sv(τ2) = τ1}|

n

= P(Y (t+ 1) = τ1|Y (t) = τ2).

�
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Figure 4.2: The Lights Out state graph CLO(G) for the 4-cycle. The vertices of

the state graph are the winnable colorings of the 4-cycle. Two graphs are adjacent

if they differ by the toggling of a single vertex. Note that the graph is bipartite,

which demonstrates why we consider a lazy random walk to guarantee convergence.

In general, this process may fail to be ergodic. For example, consider the

state graph for the lights out process of the cycle on 4 vertices shown in Figure

??. Since the graph is bipartite, a random walk will be periodic and hence not

ergodic and therefore may not converge a stationary distribution. To eliminate

this concern we consider a “lazy version” of this process where half the time no

action is taken. We define the sequence X(t) where

X(0) = τ∅,

X(t+ 1) = syt(X(t))
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where

P(yt = ∅) =
1

2
,

P(yt = xt) =
1

2
.

Lemma 4.2.2.

A lazy random walk on CLO(G) is ergodic.

Proof. The vertices of CLO(G) are winnable colorings, so by definition there is a

path from the all off coloring τ∅ to every vertex τ , so the graph is irreducible.

Aperiodicity comes from the fact that a lazy random walk has W (v, v) = 1
2
> 0

for all vertices. �

The choice to consider a lazy random walk as opposed to a random walk is

to ensure aperiodicity.

Since we have reduced the study of the random lights out process X(t) to

the study of a lazy random walk on CLO(G), we now characterize the structure of

CLO(G). We begin with the following observation about the toggling operations

sv.

Lemma 4.2.3.

Let ΓLO(G) denote the set of all compositions of the switching operators sv on a

graph G = G(V,E) along with identity s∅. Then ΓLO(G) is an abelian group with

respect to composition.

Before proving this lemma, we note that this is the main technique of An-

derson and Feil in [7], that of turning the Lights Out game on a 5× 5 grid into a

problem in linear algebra.

Proof. If we view a coloring τ ∈ F(G) as a vector in ZV2 , then the toggling operator

sv acts as addition of the vector with 1’s for v and all its neighbors, and 0’s other-

wise. Thus the sv commute, and s2
v = s∅, so s−1

v = sv. Since the sv commute, we

see that each composition of sv is also its own inverse, and also commute, proving

the lemma. �
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The reason we introduce the group ΓLO(G) is so we can interpret CLO(G)

as a Cayley graph of ΓLO(G).

Lemma 4.2.4.

CLO(G) is isomorphic to the Cayley graph Cay(ΓLO(G), S), where S = {sv}v∈V

Proof. Let φ : ΓLO(G)→ V (CLO(G)) be the map sending a composition of toggling

operations to the coloring of G obtained by applying those toggles to the all off

coloring τ∅, i.e.

φ(s) = s(τ∅).

Our goal is to show that this map between the vertex sets of CLO(G) and

Cay(ΓLO(G), S) is a graph isomorphism. Since V (CLO(G)) is by definition all

winnable colorings of G, φ is surjective. Suppose φ(s1) = φ(s2). Then

s1(τ∅) = s2(τ∅),

which implies that

s1s1(τ∅) = s1s2(τ∅),

and so

τ∅ = s1s2(τ∅).

Thus s1s2 does not toggle any vertices, so

s1s2 = s∅,

which implies

s1 = s−1
2 = s2.

Thus φ is a bijection. It remains to show that the number of edges between s1 and

s2 in Cay(ΓLO(G), S) is the same as those between φ(s1) and φ(s2) in CLO(G).

For two vertices v, w in a multigraph, let |E(v, w)| denote the number of

edges between v and w. We must then show that

E(s1, s2) = E(φ(s1), φ(s2)).
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E(s1, s2) is the number elements s ∈ S such that s s1 = s2. Since S = {sv}v∈V ,

this is the number of v ∈ V such that svs1 = s2. E(φ(s1), φ(s2)) is the number of

v such that toggling v will transform the coloring s1(τ∅) to s2(τ∅).

Suppose

svs1 = s2.

Then svs1(τ∅) = s2(τ∅), so

E(s1, s2) ≤ E(φ(s1), φ(s2)).

Conversely, suppose that svs1(τ∅) = s2(τ∅). We must show that

svs1(τ) = s2(τ) for all τ ∈ V (CLO(G)).

Fix a τ ∈ V (CLO(G)). Since τ is winnable, there exists a sequence of vertices

v1...vk such that

τ = sv1 ...svk(τ∅).

Since the sv commute, we see that

svs1(τ) = svs1sv1 ...svk(τ∅)

= sv1 ...svksvs1(τ∅) = sv1 ...svks2(τ∅)

= s2sv1 ...svk(τ∅)

= s2(τ).

Thus E(s1, s2) ≥ E (φ(s1), φ(s2)) proving the result. �

The previous lemma suggests that a way to proceed would be to characterize

ΓLO(G). The technique used in Lemma 4.2.3 of viewing the Lights Out process in

terms of linear algebra over Z2 can be used to give a much stronger result.

Theorem 4.2.5.

Let r2 denote the rank over Z2 of A + I, where A is the adjacency matrix of

CLO(G). There is an group isomorphism ν : ΓLO(G) → Z
r2
2 such that for each

generator ei ∈ Zr22 there is a vertex w such that ν(sw) = ei.
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Proof. Let ν1 : ΓLO(G) → Z
V
2 be the homomorphism described above sending sw

to the vector with 1’s for w and all its neighbors, and 0’s otherwise. We note that

ν1(sw) is the wth column of A + I, where A is the adjacency matrix of G, and I

is the identity matrix. Since composition of the sv corresponds to vector addition

of the ν1(sw), we see that the range of ν1 is simply the column space of A + I.

Let ν2 : Col(A+ I)→ Z
r2
2 be the canonical isomorphism between these two vector

spaces, sending the r2 linearly independent columns of A+ I to the generators of

Z
r2
2 . Letting ν to be the composition of ν1 and ν2 completes the proof. �

Since group isomorphism induce graph isomorphisms between cayley graphs

(see Proposition 1.4.2), we have the following corollary.

Corollary 4.2.6.

CLO(G) ∼= Cay(Zr2
2 , ν(S)), where S = {sw | w ∈ V } and ν is the isomorphism in

Theorem 4.2.5

4.3 Eigenvalues of the Lights Out Graph, Rates

of Convergence, and Hitting Times

Since we have reduced the study of the random Lights Out process X(t)

to a random walk on a graph, we can use tools from graph theory to investigate

X(t). We begin with a simple result.

Lemma 4.3.1.

For each coloring τ equivalent to τ∅,

lim
t→∞

P(X(t) = τ) =
1

2r2

Proof. The graph CLO(G) is undirected, connected, and regular (since it is isomor-

phic to a Cayley graph with a symmetric generating set), and so a lazy random

walk will converge to the uniform distribution. There are 2r2 vertices since CLO(G)

is isomorphic to a Cayley graph of Zr22 �
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We wish to investigate two further properties of the random Lights Out

process X(t): the mixing time and the hitting time. Informally, these are the

number of steps until the process converges to the stationary distribution, and the

number of steps until the process reaches the all 0 coloring, respectively. We will

begin with the mixing time.

In order to express the speed of convergence, we need a way of measuring

the “distance” from the stationary distribution. There are several commonly used

metrics (see section 1.3), in this chapter we will use the χ-squared distance.

Combining the results of Corollary 4.2.6, Theorem 1.4.3, and Theorem 1.4.4

we obtain the following key fact.

Theorem 4.3.2.

Let Γ = Zn1 × ...×Znk be an abelian group, and let ei correspond to the element of

Γ defined by the product of the generator 1 of Zni and the identity 0 in the others.

Let θq = e
2πi
q for any positive integer q. For each −→x ∈ Γ define ρ−→x : Γ→ C be the

homomorphism where ρ−→x (ei) = θni.

Then the eigenvalues of the transition matrix for a lazy random walk on

CLO(G) can be indexed by the vectors −→x ∈ {−1, 1}r2, with

λ−→x =
1

2

(
1 +

1

n

∑
w∈V

ρ−→x (ν(sw))

)

Proof. Since CLO(G) ∼= Cay(Zr2
2 , ν(S)), we can find the eigenvalues of the transition

matrix for a random walk on Cay(Zr2
2 , ν(S)). We will do this by exploiting two

facts about Cayley graphs of abelian groups.

We know that CLO(G) ∼= Cay(Zr2
2 , ν(S)) where S = {sw}w∈V . By Claim

1.4.4, the irreducible representations of Zr22 are ρ−→x : Zr22 → C where ρ−→x (ei) = xi, for

each −→x ∈ {−1, 1}r2 . Thus we can index the eigenvalues according to the vectors
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−→x and get

λ−→x =
1

2

1 +
∑
g∈Zr22

|g ∩ ν(S)|
|ν(S)|

ρ−→x (−g)


=

1

2

1 +
∑

s∈ΓLO(G)

|s ∩ S|
|S|

ρ−→x (−ν(s))


=

1

2

1 +
∑

s∈ΓLO(G)

|s ∩ S|
|S|

ρ−→x (ν(s))


=

1

2

(
1 +

∑
w∈V

1

n
ρ−→x (ν(sw))

)

�

Corollary 4.3.3.

Let −→x ∈ {−1, 1}r2 be a vector with j entries equal to −1, and r2 − j entries equal

to 1. Then

λ−→x ≤ 1− j

n

Proof. By Theorem 4.2.5, we know for ei ∈ Z
r2
2 there is a vertex v such that
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ν(sv) = ei. Let the set of these vertices be V1, and let V2 = V \ V1. Then

λ−→x =
1

2

(
1 +

1

n

∑
v∈V

ρ−→x (ν(sv))

)

=
1

2

(
1 +

∑
v∈V1

1

n
ρ−→x (ν(sv)) +

∑
v∈V2

1

n
ρ−→x (ν(sv))

)

=
1

2

(
1 +

1

n

r2∑
i=1

ρ−→x (ei) +
1

n

∑
v∈V2

ρ−→x (ν(sv))

)

=
1

2

(
1 +

1

n
(r2 − 2j) +

1

n

∑
v∈V2

ρ−→x (ν(sv))

)
(1)

≤ 1

2

(
1 +

1

n
(r2 − 2j) +

1

n

∑
v∈V2

1

)

=
1

2

(
1 +

r2 − 2j

n
+
n− r2

n

)
= 1− j

n

�

Putting all the pieces together, we can now state the main result concerning

convergence times.

Theorem 4.3.4.

Let G = G(V,E) be a connected graph on n vertices. Let X(t) be the random

lights out process on G. Let r2 denote the rank of A+ I over Z2. Let ∆′(t) be the

χ−squared distance between X(t) and the uniform distribution. Then

1. ∆′(t) =

( ∑
−→x 6=1

(
1
2

+ 1
2n

∑
v∈V

ρ−→x (ν(sv))

)2t
)1/2

2. ∆′(t) ≤

(
r2∑
j=1

(
r2
j

) (
1− j

n

)2t

)1/2

3. ∆′(t) ≤ e−c for all t > n
2
(1 + 1

r2
) log(r2) + c
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Proof. By Lemma 4.2.1, X(t) has the same distribution as a lazy random walk on

CLO(G), which is vertex transitive. Thus by Theorem 1.3.9 and Lemma 4.3.2

∆′(t) =

∑
−→x 6=1

λ2t−→x

1/2

=

∑
−→x 6=1

(
1

2
+

1

n

∑
v∈V

ρ−→x (ν(sv))

)2t
1/2

Using Corollary 4.3.3 and the fact that there will be
(
r2
j

)
vectors −→x with j ‘ − 1′

entries yields the second fact. Finally, since

∆′(t)2 ≤
r2∑
j=1

(
r2

j

)(
1− j

n

)2t

≤
r2∑
j=1

ej log(r2)− 2jt
n

≤ r2e
r2 log(r2)− 2r2t

n

= elog(r2)+r2 log(r2)− 2r2t
n ,

and so

∆′(t) < e−c if
2r2t

n
> log(r2) + r2 log(r2) + c.

Solving for t shows this holds for all t > n
2
(1 + 1

r2
) log(r2) + c. �

The other stochastic quantity we will study is the hitting time. Informally,

we want to answer the following question; if we start the random lights out process

at a winnable coloring τ1, how many steps does it take until we reach the all 0

coloring τ∅? Formally, let Xτ1(t) denote the lights out process starting from τ1

coloring after t steps. Then the define hitting time Tτ∅ = min{t|Xτ1(t) = τ∅}.
The expectation of the hitting time can bound in terms of the spectrum of the

transition matrix.

Theorem 4.3.5.

Let G be a connected graph on n vertices, and let r2 denote the rank of A+I over Z2.
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Let Xτ (t) be the random lights out process starting at a winnable coloring τ for any

τ 6= τ∅. Let T0 be the hitting time of the all 0 coloring, that is min{t|Xτ (t) = τ∅}.
Suppose that r2 > 5. Then

2r2(G)−1 ≤ E[T0] ≤ 2n

r2∑
j=1

(
r2

j

)
1

j
≤ 2n

r2

r2 − 2−
√

2

(
r2

b r2
2
c

)
.

Proof. Since the random Lights Out process is equivalent to a lazy random walk

on the (vertex transitive) state graph CLO(G), we can use Theorem 1.3.12 which

states that

2|V |−1 ≤ E[T0] ≤ 2
∑
λ 6=1

1

1− λ
.

The lower bound then follows the fact that Cay(ΓLO(G), S) is isomorphic to

Cay(Zr2
2 , ν(S)), and hence has 2r2 vertices. Using Corollary 4.3.3 to the upper

bound the eigenvalues yields

E[T0] ≤ 2n

r2∑
j=1

(
r2

j

)
1

j
. (4.1)

The upper bounds for r2 ≤ 5 can be computed directly from equation 4.1.

For values of r2 > 5, we use the following estimate

Claim 1.

For all r2 > 5,
r2∑
j=1

(
r2
j

)
1
j
≤ r2

(
r2
b r2

2
c

)
2

r2−2−
√

2

Proof of Claim. Let f(j) =
(
r2
j

)
1
j
. Consider f(j + 1)− f(j) = r2!

(j+1)!(r2−j−1)!(j+1)
−

r2!
(j)!(r2−j)!(j) = r2!

(j)!(r2−j−1)!

(
1

(j+1)2
− 1

(r2−j)(j)

)
. Thus

f(j + 1) > f(j)⇔ 1

(j + 1)2
>

1

(r2 − j)(j)

⇔ r2j − j2 > j2 + 2j + 1

⇔ j2 + (1− r2

2
)j +

1

2
< 0

⇔
r2 − 2−

√
(r2 − 2)2 − 8

4
< j <

r2 − 2 +
√

(r2 − 2)2 − 8

4
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Let b(r2) =
r2−2+

√
(r2−2)2−8

4
. If r2 > 5, then

r2−2−
√

(r2−2)2−8

4
< 1. Therefore, f(j)

is increasing for all j < br2 and decreasing for j ≥ br2 , and thus f(j) is maximized

at f(bbr2c+ 1).

f(bbr2c+ 1) =

(
r2

bbr2 + 1c

)
1

bbr2 + 1c

≤
(

r2

bbr2 + 1c

)
1

br2

=

(
r2

bbr2 + 1c

)
4

r2 − 2 +
√

(r2 − 2)2 − 8

≤
(

r2

bbr2 + 1c

)
2

r2 − 2−
√

2

�

To conclude, we note that br2 + 1 < r2
2

, and thus
(

r2
bbr2+1c

)
<
(
r2
b r2

2
c

)
. Thus

f(j) ≤
(
r2
b r2

2
c

)
2

r2−2−
√

2
for all j, giving the desired bound. �

Corollary 4.3.6.

The following table summarizes the results of Theorems 4.3.4 and 4.3.5 for certain

graphs where r2(G) is known.
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r2 ∆′(t) ≤ e−c for t > ≤ E[T0] ≤

Path, Pn

n ≡ 2 mod 3 n− 1 n2

2n−2
log(n− 1) + c 2n−2 2n2−2n

n−3−
√

2

(
n−1
bn−1

2
c

)
n 6≡ 2 mod 3 n n+1

2
log(n) + c 2n−1 2n2

n−2−
√

2

(
n
bn
2
c

)
Cycle, Cn

n ≡ 0 mod 3 n− 2 n2−n
2n−4

log(n− 2) + c 2n−3 2n2−4n
n−4−

√
2

(
n−2
bn−2

2
c

)
n 6≡ 0 mod 3 n n+1

2
log(n) + c 2n−1 2n2

n−2−
√

2

(
n
bn
2
c

)
Wheel, Cn−1 +K1

n 6≡ 1 mod 3, n odd n n+1
2

log(n) + c 2n−1 2n2

n−2−
√

2

(
n
n−1
2

)
n 6≡ 1 mod 3, n even n− 1 n2

2n−2
log(n− 1) + c 2n−2 2n2−2n

n−3−
√

2

(
n−1
n−2
2

)
n ≡ 1 mod 3, n odd n− 2 n2−n

2n−4
log(n− 2) + c 2n−3 2n2−4n

n−4−
√

2

(
n−2
n−3
2

)
n ≡ 1 mod 3, n even n− 3 n2−2n

2n−6
log(n− 3) + c 2n−4 2n2−6n

n−5−
√

2

(
n−3
n−4
2

)
Complete bipartite,

Kn1,n2

n1n2 even n n+1
2

log(n) + c 2n−1 2n2

n−2−
√

2

(
n
bn
2
c

)
n1n2 odd n− 1 n2

2n−2
log(n− 1) + c 2n−2 2n2−2n

n−3−
√

2

(
n−1
bn−1

2
c

)
k-hypercube,

Qk, n = 2k

k even n n+1
2

log(n) + c 2n−1 2n2

n−2−
√

2

(
n
n
2

)
k odd n

2
n+2

2
log(n

2
) + c 2

n−2
2

2n2

n−2
√

2

(n
2
n
4

)
5 by 5 grid 23 48 + c 4× 106 8× 107

Proof. The parity dimensions of paths, cycles, wheels, and complete bipartite

graphs were investigated in [4]. The hypercube was considered in [5], and the

5× 5 grid (the graph used in the original electronic toy) was analyzed in [7]. The

final columns follow from Theorems 4.3.4 and 4.3.5. �
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4.4 Remarks

There are two interesting generalizations that may be worth further con-

sideration. In this study, we considered colorings of graphs by elements of Z2.

While this was the original context of the Lights Out game, several papers [29,33]

consider a multi-color variation, where the colorings are instead over Zq for some

integer q. The random Zq lights out process on graphs could be interesting to

investigate. Most of the proofs in this chapter generalize in the case where q is a

prime (and so we can still do linear algebra over the finite field with q elements),

but the case where q is composite would require more care and possiblely new

techniques.

Another variant involves the “lit-only” restriction. In this version of Lights

Out, one can only toggle vertices that are currently colored 1. While initially

one would expect this would limit the number of winnable colorings, Goldwasser,

Wang, and Wu [35] proved the following surprising result;

Theorem 4.4.1.

Let G be a connected graph, and let τ1, τ2 ∈ F(G) with τ1 not equal to the all 0

coloring and τ2 not the all 1 coloring. Then it is possible to go from τ1 to τ2 in the

lights out game if and only if it is possible to do so in the lit-only lights out game.

One could consider the random lit-only lights out process, where at each

step the next vertex to toggle is chosen uniformly at random from all vertices

currently labeled 1. In this version, the state graph would be directed, but Theorem

4.4.1 implies that the state graph with the all 0 and all 1’s colorings removed is

strongly connected.

The lit-only process appears much more difficult to analyze, for several

reasons. For example, it is not regular, and so we cannot view the state graph

as the Cayley graph of a group or semi-group. However, experimental results on

several small graphs gives rise to the following conjecture.
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Conjecture 1.

Let G be a connected graph on n vertices. Let X(t) denote the location at time t

of the random lights out process starting at a random winnable coloring. Let T0

be the hitting time of the all 0 coloring, that is min{t|Xτ (t) = τ∅}. Similarly, let

X̃(t) and T̃0 be the location and hitting time of the random lit-only process. Then

E[T0] = (1 + o(1))E[T̃0]
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Chapter 5

Random Nearest Neighbor

Interchanges on Phylogenetic

Trees

5.1 Introduction

A phylogenetic tree is a tree structure that represents the evolutionary rela-

tionships within a group of organisms. Reconstructing phylogenetic trees from ge-

netic data an area of active biological research, and several approaches use Markov

Chain Monte Carlo (MCMC) methods, see for example [28, 43, 45, 57]. MCMC

methods depend on an underlying Markov chain against which one samples from

a distribution based on real data. While direct analysis of the data-dependent

chain is often intractable, an understanding of the properties of the base chain is

a natural first step.

In this chapter, we analyze a random walk on labeled unrooted bifurcating

trees. For the purposes of this discussion, the term phylogenetic tree will refer to

an unrooted tree with n ≥ 4 vertices of degree 1 labelled {1, 2, ..., n}, and n − 2

unlabelled internal vertices of degree 3. The edges are unweighted. The n labeled

vertices are called leaves, and the n − 2 internal nodes are called branch points.

The term cladogram is also used to describe such trees. An internal edge is an edge

73
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that is connects two branch points. Each internal edge is adjacent to 4 subtrees,

and a nearest neighbor interchange (NNI) interchanges two of these. Note that

interchanging two subtrees connected to the same branch point does not change

the tree. The (non-trivial) NNIs are called “crossovers” of the tree, and in general

the term nearest neighbor interchange refers to the non-trivial manipulations.

We consider the random process induced by random NNIs, where at each

step an internal edge and two adjacent subtrees are selected uniformly at random

and swapped. A variety of other chains on the space of phylogenetic trees have

been studied. Diaconis and Holmes use study a Markov chain on (rooted) phylo-

genetic trees using a bijection between perfect matchings of the complete graph

on 2n vertices and (rooted) phylogenetic trees. Aldous studied a chain based on

moving a random leaf to a random position [2]. This chain was further studied by

Schweinsberg, who obtained sharper bounds [53]. These chains all consider trees

with unweighed edges, though in practice most biological applications use weighted

trees where edges correspond to the degree of genetic similarity between species.

Štefankovič and Vigoda analyzed a chain based removing and reattaching subtrees

for a specific class of phylogenetic subtrees and showed it is rapidly mixing.

In Section 5.2 we discuss basic facts about phylogenetic trees and illus-

trate several common tree manipulations. In Section 5.3 we formally define the

Markov process mentioned above and the linear algebraic tools we use to study

its convergence. In Section 5.4 we use a comparison theorem and the results of

Schweinsberg to bound the spectral gap of the configuration graph for nearest

neighbor interchanges. In particular, we show that the spectral gap is Ω( 1
n4 ) and

thus the relaxation time is O(n4). We use this bound on the spectral gap to show

that the mixing time of the random NNI process for phylogenetic trees with n

leaves is O(n5 log n).

5.2 Phylogenetic Trees and Tree Manipulations

Let Tn denote the set all of all phylogenetic trees on n leaves. We note that

|Tn| = (2n − 5)!! = (2n−5)!
2n−3(n−3)

and that (2n − 5)!! ∼ 1
2
√

2

(
2
e

)n
nn−2 as n → ∞ [56].
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Each phylogenetic tree has 2n − 3 edges, and since n of these are connected to

leaves there are n− 3 internal edges. Each internal edge partitions the tree into 4

subtrees.

u v

S2

S3

S4

S1

e

Figure 5.1: An internal edge e = {u, v} and its four adjacent subtrees.

Let e be an internal edge joining branch points u and v. Let S1 and S2

denote the subtrees adjacent to u, S3 and S4 the subtrees adjacent to v. Then we

say that S1 and S2 are neighboring subtrees, and similarly for S3 and S4. Subtrees

adjacent to the same internal edge but not neighboring (e.g. S1 and S3) are said

to be separated by e. For a subtree S, we let S̄ denote the rooted subtree obtained

by adding the nearest edge and vertex, which becomes the root. For example, S̄1

has the vertex u as its root.

5.2.1 Tree Manipulations

There are many operations used to manipulate phylogenetic tree structures,

see for example [17]. Here we will define three operations: Nearest Neighbor In-

terchange (NNI), Subtree Prune and Regraft (SPR), and Leaf Pluck and Reattach

(LPR).

u v

S2

S3

S4

S1

e
u v

S2

S3

S4

S1

e
u v

S2

S3S4

S1

e

Figure 5.2: The two possible NNIs across an internal edge e
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Definition 5.2.1.

Let e be an internal edge of a phylogenetic tree T . A nearest neighbor interchange

(NNI) swaps two subtrees separated by e, as in Figure 5.2

Nearest Neighbor Interchanges were introduced in 1969 by D.F. Robinson

[51] and independently by Moore, Goodman, and Barnabas in 1973 [47]. The NNI

distance between two trees is the number of NNIs needed to transform one tree

into the other. This is a commonly used metric that is difficult to compute, see

for example [42] for a history of the problem and [3] for current results.

Robinson defined a graph with vertex set consisting of all phylogenetic trees

with n leaves, and an edge between two trees if there is an NNI that transforms

one to the other. This graph has become known as the Robinson Graph, which we

denote in this manuscript by Rn. Note that since every NNI is reversible, Rn is

undirected. Robinson proved showed that Rn is connected for all n. Because there

are two NNIs that can occur at each of the n − 3 internal edges, Rn is (2n − 6)-

regular. Although Rn is vertex transitive for n = 4, 5, it is not vertex transitive

for n ≥ 6 [8]. This graph has been extensively researched, see [8,9] for a thorough

study.

Figure 5.3: The Robinson graph for phylogenetic trees with 5 leaves.

We now define a more general tree operation, the Subtree Prune and Re-

graft.
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Definition 5.2.2.

A subtree prune and regraft (SPR) on a phylogenetic tree T is an operation

consisting of three parts. See Figure 5.4 for an illustration.

1. A subtree S is selected, and it is removed along with the edge from S to the

branch point v in to the rest of T

2. The two edges separated by v are joined into a single edge.

3. A new branch point u is created in the middle of an edge and S is connected

to that branch point

v

S2

S3

S4

S1

S5S0

S6

S2

S3

S4

S5

S0

S6

S2

S3

S4 S1

S5

S0 S6

u

S1

Figure 5.4: An example of an SPR move. The subtree S1 is removed, the edge

split by v is combined into a single edge, and S1 is attached to the edge connecting

S6 where the new branchpoint u is created.

Note that branch points are actually unlabeled, and are included in the

description above for clarity and to coincide with Figure 5.4

As noted in [3], the SPR operation is of particular note to biologists as it

is used to model biological processes such as horizontal gene transfer and recom-

bination, which are especially common among bacteria.

Definition 5.2.3.

A leaf pluck and regraft (LPR) is a SPR where the removed subtree consists of a

single leaf.

Let G̃n denote the configuration space with respect to LPR moves. That

is, G̃n has vertex set Tn and two trees are adjacent if there is an LPR move that

transforms one to the other. Since one can remove any of the n leaves and attach

it to any of 2n− 5 edges, G̃n is n(2n− 5)-regular .
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5.3 The Random Nearest Neighbor Interchange

Process on Phylogenetic Trees

We define a Markov chain {Xt}∞t=0 on the space of trees with n leaves. At

each step, an internal edge e of Xt is chosen uniformly at random. Two of the four

subtrees adjacent to e are selected uniformly at random and swapped to create

Xt+1. Note that if the two subtrees are neighboring then the swap does not alter

the tree and Xt+1 = Xt. For two trees T, T ′ ∈ Tn, we write T ∼ T ′ if there exists

a NNI that transforms T to T ′ (equivalently, if {T,T’} is an edge of the Robinson

Graph Rn). One third of the time the two selected subtrees will be neighbors,

resulting in no change so Xt+1 = Xt. The other two thirds of the time, Xt+1 is one

of Xt’s 2n − 6 neighbors in Tn. Therefore we see that the transition probabilities

for this Markov chain are given by

P (Xt+1 = T ′|Xt = T ) =

{
1

3n−9
if T ′ ∼ T

1
3

if T ′ = T
(5.1)

That is, the random Nearest Neighbor Interchange Process can be viewed as a lazy

random walk on Rn. Letting P be the matrix with entries indexed by elements of

Tn and P (T, T ′) = P (Xt+1 = T ′|Xt = T ), we see that

P =
1

3
· I +

2

3
·D−1 · A

=
1

3
· I +

2

3
· 1

2n− 6
· A

where I is the identity matrix and A and D are the adjacency and diagonal degree

matrices of the the Robinson Graph Rn, respectively. Another matrix associated

with the graph Rn is normalized Laplacian L = I − D−1/2AD−1/2. Since Rn is

(2n− 6)-regular,

L = I − 1

2n− 6
A,

and so

P = I − 2

3
L.

We let 0 = λ0 ≤ λ1 ≤ ... ≤ λ(2n−5)!!−1 ≤ 2 denote the eigenvalues of L. The second

smallest eigenvalue λ1 is known as the spectral gap, and is a crucial parameter

when considering the convergence of the process.
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Since Rn is undirected, non-bipartite, and connected, the process is ergodic

and converges to the uniform stationary distribution as n → ∞. We wish to

quantify the time it takes for the chain to converge to its stationary distribution,

commonly referred to as the “mixing time” of the process. In order to ask the

question “How long until the process’ distribution is close to the uniform distribu-

tion?”, we must first establish what metric we are using to measure the “distance”

from the stationary distribution. Here we will use the relative pointwise distance,

∆(t).

5.4 Bounding the Spectral Gap of the Robinson

Graph

We begin with one of our two main results, which bounds the size of the

spectral gap for the normalized laplacian of Rn. The following theorem will allow

us to upper bound the mixing time in Theorem 5.4.5

Theorem 5.4.1.

Let Rn denote the Robinson graph, the NNI configuration graph. Let A denote

the adjacency matrix of the Robinson graph, D the diagonal degree matrix, and

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ(2n−5)!!−1 denote the eigenvalues of the Normalized

Laplacian L = I −D−1/2AD−1/2. Similarly define Ã, L̃,
{
λ̃
}(2n−5)!!−1

i=0
for the LPR

configuration graph G̃n. Then

1. λ1 ≥ n(2n−5)λ̃1
(2n−6)(n−3)2(n−3)2

2. λ1 = Ω( 1
n4 )

The proof of the first statement uses on the so called “method of distin-

guished paths” or “comparison theorems” discussed in the introduction. We note

that it has been used specifically in the context of Phylogenetic Trees. A modifi-

cation of this method is the main tool used in [53] to bound the relaxation time of

a random walk on the LPR configuration graph, given by λ̃−1
1 .
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The goal is to use Theorem 1.3.13 to compare the Robinson Graph and the

LPR configuration graph. In order to do this, we must show two things:

1. For every edge {T1, T2} in G̃n, bound the length of a path γ(T1, T2) in Rn

connecting T1 and T2

2. For every edge E in Rn, bound the number of γ(T1, T2) that contain E, where

T1 and T2 differ by a single LPR move.

Lemmas 5.4.2 and 5.4.4 address these items. We remark that the diameter

of Rn is bounded above by n log n + O(n) [42], but the result of Corollary 5.4.3

will give a sharper bound in the case of two trees differing by a LPR. We begin by

bounding the NNI distance of two trees differing by a single SPR move. We note

that the proof of Lemma 5.4.2 uses a similar technique to that used by Robinson

to show that Gn is connected [51, Theorems 4 & 5].

Lemma 5.4.2.

Let T1 and T2 be two phylogenetic trees with n leaves. Suppose that T1 and T2

differ by a single SPR move, and the subtree moved contains k of the n labeled

leaves. Then the NNI distance is less than n− k − 2.

Proof. Let S1 denote the subtree of T1 that is pruned and regrafted. Let v1 denote

the root of S, where it attaches to T1, and note that v1 is an internal node of

T1. S1 has k + 1 leaves (the k labeled leaves, plus v1, and thus since it itself is

a phylogenetic tree it has 2(k + 1) − 2 = 2k vertices. Let e` denote the internal

edge of T1 where S1 is attached by the SPR move that transforms T1 to T2. Let

v` denote the endpoint of e` that is closest to v1, and label all the intermediate

vertices so that v1, v2, ..., v` is the unique shortest path from v1 to v`. Let ei denote

the edge between vi and vi+1, and let Si denote the subtree attached to vi not

containing ei−1 or ei. We first bound ` by a simple counting argument. Note first

that each of v1, ..., v` is an internal vertex of T1. Recall that a phylogenetic tree

on n leaves has n − 2 internal vertices. Since S has k + 1 leaves (including v1),

there are k − 1 internal vertices of T1 that are also internal vertices of S1. Thus
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Figure 5.5: An example of a sequence of NNIs corresponding to the SPR move in

Figure 5.4

there are n− k − 1 internal vertices of T1 that are not internal vertices of S, and

so ` ≤ n− k − 1.

We now show that a sequence of NNI moves, across each edge e1, ..., e`−1,

will transform T1 to T2. Begin with the NNI move across e1 that swaps S1 and S2.

Continue to swap S1 “down the line” so that at each step, S1 is swapped with Si+1

across the edge ei. This preserves the relative order of S2, ..., S`, and moves S1 so

that it is attached to the same vertex as S`+1. Also S0 and S2 are now connected

to the same vertex. This is exactly the result of the SPR move removing S̄1 and

regrafting at e`, so we have successfully transformed T1 to T2 in `− 1 ≤ n− k − 2

NNI moves. �

Corollary 5.4.3.

Let T1 and T2 be two phylogenetic trees with n leaves. Suppose that T1 and T2

differ by a single LPR move. Then the NNI distance is less than n− 3.

Lemma 5.4.4.

For any LPR move ϕ transforming T to T ′, let γ(ϕ) be the path in Rn correspond-

ing to the sequence of NNI moves between them constructed in the proof of Lemma

5.4.2. Let E be any edge of Rn. Then E is in contained in at most 2(n− 3)2 paths

γ(ϕ).
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Proof. E corresponds to a single NNI move between two phylogenetic trees T1, T2.

Let e denote the edge in T1 across which the NNI move is occurring, and let

{S1, S2, S3, S4} denote the four subtrees adjacent to e. Without loss of generality,

assume that S1 and S2 are adjacent, S3 and S4 are adjacent, and E corresponds

to swapping S1 and S4 (or, equivalently, swapping S2 and S3). This is the NNI

illustrated in Figure 5.2

Suppose there are j1, j2, j3, j4 nodes (including the root attached to e) in

S̄1, S̄2, S̄3, S̄4 respectively, where j1 + j2 + j3 + j4 − 4 = n. In every NNI in the

sequence γ(ϕ), (at least one) of the subtrees swapped is a leaf. We split into cases

based on the number of S1, S2, S3, S4 that are leaves.

Case 1. 1 Leaf

Without loss of generality, let S1 consist of a single node, l, and let S2, S3, S4 all

be subtrees with 2 or more leaves. Then the node l is the leaf being pushed “down

the line”, and the original LPR move ϕ must have moved l. We will bound the

number of LPR moves that could use E by first considering the number of starting

positions of l, and the number of ending positions. Note that j1 = 2 and ji ≥ 3 for

i = 2, 3, 4. Either l must originally have been attached to an edge in S2, or E is

the first move in γ(ϕ). Since S̄2 contains j2 nodes, there are 2j2 − 3 edges where l

could have originally been attached, and note that attaching l to the root edge of

S2 is the same as starting with T1.

We also see that φ moves l to an edge of S̄3. There are 2j3− 3 ≤ 2(n− 1−
j2)− 3 = 2n− 2j2 − 5 edges in S̄3 where l could be attached by ϕ.

So there are 2j2−3 possibilities for T , and 2n−2j2−5 possibilities for T ′, and

thus E is contained in at most (2n−2j2−5)(2j2−3) ≤ (n−4)2 paths. Therefore if

e has only one leaf attached, then there are at most (n−4)2 paths γ(ϕ) that use E.

Case 2. 2 Leaves

Now we consider the case where there are two leaves. We must consider the fact

that the original LPR move could have plucked and reattached either leaf. Again

we assume that S1 is a leaf l1, but now there are three cases corresponding to
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which other subtree is a leaf. Suppose first that the two leaves are on the same

side, that is that S2 consists of a single leaf and so j2 = 2. Then ϕ moves l1 to an

edge in S3 or l2 to an edge in S4, and the NNI move E is the first move in γ(ϕ).

Therefore E is involved in at most 2j3− 3 + 2j4− 3 = 2n− 6 paths γ(ϕ). The case

where j3 = 2 follows in the same manner. It remains to consider the case where

j1 = j4 = 2 (corresponding to single leaves l1, l4) and j2, j3 ≥ 3. In this case, the

leaf moved by ϕ could be either l1 or l4. Suppose first it is l1. Proceeding in a

manner similar to case 1, there are 2j2 − 3 places where l1 could have originally

been attached, and 2(j3)− 3 = 2(n− j2)− 3 edges of S3 where it could be moved.

If instead l4 is the leaf moved by ϕ, then there are 2(j3) − 3 = 2(n − j2) − 3

edges in S3 where it could have started, and 2j2 − 3 edges in S2 where it could be

placed. Thus at most 2(2(n−j2)−3)(2j2−3) ≤ 2(n−3)2 paths γ(ϕ) use the edge E.

Case 3. 3 Leaves

Without loss of generality, assume that S1, S2, S3 be the subtrees corresponding

to single leaves l1, l2, l3, and S4 the non-trivial subtree. We must consider each of

the three cases that ϕ moves l1, l2, l3. First suppose ϕ moves l1. l1 is adjacent to

another leaf both before and after E, so if ϕ moves l1 then γ(ϕ) = {E}. Suppose

that ϕ moves l2. Since l2 is initially adjacent to the leaf l1, E must be the first

move in γ(ϕ), and there are 2n−7 edges of S4 where l2 could be placed. Similarly,

if l3 is the leaf moved by ϕ, then E must be the last move in γ(ϕ). In this case,

there are 2n − 7 edges of S4 where it could have started. Therefore we find that

in the case of 3 leaves, there are at most 4n− 13 paths γ(ϕ) that use E.

Therefore we see that every edge E is contained in at most 2(n− 3)2 paths γ(ϕ).

�

Proof of Theorem 5.4.1. The first statement follows immediately from Theorem

1.3.13, and Corollary 5.4.3, and Lemma 5.4.4. The second statement follows from

the first, and the fact that λ̃1 = Ω( 1
n2 ) [53]. The third statement follows immedi-

ately from the second. �



84

Theorem 5.4.5.

Let Rn denote the Robinson Graph of phylogenetic trees with n leaves. Let ∆(t)

denote the relative pointwise distance between the location of a lazy random walk

and the stationary distribution after t steps. Let tf = min{t | ∆(t) ≤ e−f(n)}.
Then

tf = O(n5 log n+ n4f(n))

In particular, for any constant c, ∆(t) ≤ e−c after O(n5 log n) steps and thus

τmix = O(n5 log n).

Proof. From Theorem 1.3.10, we know that

∆(t) ≤ e−c

if

t ≥ log(2n− 5)!! + c

λ

where λ = 2
3
λ1. Since

(2n− 5)!! ∼ 1

2
√

2

(
2

e

)n
nn−2

log ((2n− 5)!!) = O(n log n).

Therefore tc = O(n5 log n+ cn4). �
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Chapter 6

Resource Allocation Using

pageRank Vectors

6.1 Introduction

Efficient allocation of resources to meet changing demands is a task arising

in numerous applications. For example, institutions such as governments or corpo-

rations respond to the needs of a populace, and wish to meet the demands within

allowed expenditure of resources. In some cases where demand spreads, one has to

be able to act before demand becomes unmanageable. In the case of an epidemic,

for instance, it is desirable to find a way to distribute medicine so that the disease

can be contained. Such problems have been studied in several contexts using the

contact process model [40] [31], [11], [48], [23]. In [23], it was demonstrated how

to use PageRank vectors to both restrict the number of nodes inoculated and to

provide certain containment guarantees.

In this chapter, we study a variant of the classical contact process, a con-

tinuous time Markov process on a contact graph. This model was previously used

for modeling the spread of disease. In our scenario, vertices in the graph each have

varying levels of demand for multiple commodities. Demand at a vertex propagates

to its neighbors at a rate depending on the current demand. Our model allows

for rich interactions between different commodities; for instance, demand for one

85
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commodity can influence demand for another. This fits many scenarios that arise,

for instance demand for iPhones may accelerate the demand for iPads. As another

example, demand at a node can sometimes be viewed as a measure of discontent

with the current supply of a resource. It is natural for an unhappy node to create

unrest in its neighbors. As the contact process continues, the demands at a vertex

are increased based on the demands at neighboring vertices and are decreased at a

satisfaction rate, which can be thought of as a frequency of shipments. The rates

at which demand spreads will be a linear combination of demands from neigh-

boring vertices. These rates will be encapsulated as a spread matrix, B, roughly

analogous to the infectivity parameter in the classical contact process. The goal

of this chapter is to find satisfaction rates, dependent on the spread matrix B and

the geometry of the contact graph which ensure that all vertices have no demand

and the process dies out. This process will be defined, in detail, in Section 6.2.

To satisfy the demands which evolve according to our model as defined in

Section 6.2, the goal is to ship commodities and supply to vertices with unsatis-

fied demands in an efficient way. The model here differs somewhat from typical

resource allocation problems in the sense that we do not specify the location of the

“warehouses” for the supply. We will not be concerned with either the sources of

the supply or the detailed incremental costs of shipping supply. Instead, our goal

is to identify how often to ship each commodity to a particular vertex, in order

to contain and satisfy demands, given an initial seed set. The reader is referred

to [19] for the usual resource allocation problem.

After we describe the demand model in Section 6.2, we proceed to analyze

our supply scheme. First, we introduce the Kronecker PageRank in Section 6.3

based on the PageRank originally introduced by Brin and Page [13]. Our analysis

is comprised of two parts. First, we give conditions which ensure that all demand

is satisfied in O(log n) time, with high probability, regardless of the initial demand.

This is a global solution, in this sense that it involves “scheduling shipments” to all

vertices in the graph in a way that will be made precise once the model is formally

introduced in Section 6.2 and Theorem 6.4.1. Next, in Section 6.5 we analyze a

situation where shipments are scheduled to only a subset of vertices containing the
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initial demand. In particular, when the contact graph has some clustering structure

we are interested in subsets so that the demand within the subset is satisfied quickly

(in O(log n) time) and demands reach a vertex not receiving shipments with low

probability. Precise results to this end are given in Section 6.5.

Our analysis provides a tradeoff in the following sense: On one hand, if one

would like to guarantee that the demand escapes a set with probability at most

ε, our results will allow us to use PageRank (or a sharper Kronecker PageRank

as defined in Section 6.3) to identify a subset of vertices where supplies will be

shipped, and provide a guarantee that this will be sufficient. On the other hand, if

one would like to send shipments to a particular set of vertices, then our analysis in

Theorem 6.5.3 allows a guaranteed bound on the escape probability which depends

on the clustering structure of the contact graph.

6.2 The Demand Model

We model the demand spreading along an undirected simple graph G =

(V,E). Let n be the number of vertices of G, A the adjacency matrix, D the

diagonal degree matrix, and W = D−1A the transition matrix of a random walk

on G.

If B is an k×k matrix, and A an n×n matrix, then the Kronecker product

A⊗B is the nk × nk block matrix

A⊗B =


a11B · · · a1nB

...
. . .

...

an1B · · · annB


An exponential random variable with parameter λ has probability density

function given by f(x) = λe−λx for x ≥ 0, and 0 for x < 0. This distribution will

be denoted Exp(λ). Exponential random variables are memoryless, that is to say,

if X is an exponential random variable then for any constants a, b > 0,

P(X > a+ b|X > a) = P(X > b).

IfX and Y are independent andX ∼ Exp(λ1), Y ∼ Exp(λ2) then min{X, Y } ∼
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Exp(λ1 + λ2). A Poisson point process at rate λ is a sequence of random variables

X1, X2, . . . so that Xi −Xi−1 has distribution Exp(λ).

Before we describe our model, let us briefly recall the contact process on

a graph G, which we denote CP (T, β,σ, G). In the contact process (see for ex-

ample [11] or [23]), a disease initially infects a set T ⊆ V (G). The disease has

an infectivity parameter, β, and each vertex has a certain amount of “medicine”

σv. Each infected vertex independently infects its neighbors at times given by a

Poisson point process at rate β, and each infected vertex is cured at times given

by a Poisson point process at rate σv. In the most frequently studied case, σ is

constant and the host graph is an infinite graph. The process ends when all ver-

tices are cured, and the basic problem is to determine under which conditions on

σ, and β the process ends almost surely. In the case of finite graphs, if σv > 0

for every vertex, it is easy to observe that the process ends a.s., so the problem

becomes determining how fast the process ends.

The k−commodity dynamic demand model on a graph G is a variant of the

contact process, DD(τ (0), B,σ, G). In this situation, the spread matrix B is an

k×k real matrix (not assumed to be symmetric, or even non-negative), along with

a supply function σ : V → R
k, and the initial demand τ (0) : V → N

k. At time t,

each node v has demand τ v(t) ∈ Nk, with each coordinate representing a different

product in demand. A node v is said to be satisfied at time t if τ v(t) = 0, and

unsatisfied otherwise. The state of the process is described by the demand vector

τ , where τ jv (t) is the demand for commodity j at node v at time t.

The spread matrix B = [βij] describes how the demand for one commodity

influences demands for other commodities. The i, j entry of B, βij, determines

the spread rate of the demand for commodity j that is caused by demand for

commodity i. In particular, we can describe the rate of spread events as follows.

If v is a node that is unsatisfied at time t, and w an adjacent vertex, then there

are spread events from v to w with rates max{τ v(t)B, 0}. That is the rate at

which τ jw increases due to the demand at v is given by max{
∑
i

τ iv(t)βij, 0}. Here,

when we say an event occurs with rate λ, we mean that the elapsed time until that

event takes place is distributed as Exp(λ). Because the minimum of exponential
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random variables is itself an exponential random variable, we can capture the

total spreading rates in a condensed form. We define the rate function at time t,

ρ(t) : V → R
k, by

ρv =
∑
w∼v

τw(t)B = (τ (t)(A⊗B))v ,

where τ (t) is viewed as a vector with indices indexed by V × k. ρiv(t) is the rate

at which τ iv is increasing at time t.

Supply events occur with rates given by τ (t)Diag(σ), independently of any

neighboring supply events. That is, the time until τ iv is decreased by 1 is distributed

as Exp(σivτ
i
v).

We briefly give a construction of the process, to show it is well-defined.

Let
−→
E denote the set of ordered edges; that is, ordered pairs that are edges in the

graph, so that uv and vu are distinct. We run independent Poisson point processes

{Xj,ρ
e }e∈−→E (G),j∈[k],ρ∈Nk so that Xj,ρ

e is at rate max{0, [τ vB]j} and independent Pois-

son point processes {X i,n
v }v∈V (G),i∈[k],n∈N so that X i,n

v is at rate nσiv. Then these

countably many point processes can easily be seen to define the entire process; a

spread event of type j from a vertex v to a vertex u which is currently in state ρ

is controlled by the point process Xj,ρ
vu with satisfaction events handled similarly.

An advantage of such a formulation is that it gives an easy coupling be-

tween processes that shows that if B′ ≤ B pointwise, the stochastic process

DD(τ (0), B,σ, G) stochastically dominates DD(τ (0), B′,σ, G) in the sense that

in the coupling the demands in the B process are always at least those in the B′

process. This is accomplished by noting that the rates ρB ≥ ρB′ pointwise for

all ρ ∈ N
l. We thus take point processes Y j,ρ

e at rate [ρB − ρB′]i. If the point

processes {Xj,ρ
e } and {X i,n

v } are used to determine DD(τ (0), B,σ, G), then the

point processes {Xj,ρ
e ∪Y j,ρ

e } and {X i,n
v } are used to determine DD(τ (0), B′,σ, G).

In particular, this allows us to replace B with B′, where B′ij = max{Bij, 0},
and conclusions about the extinction of the B′ process still hold for B. Further-

more, this turns out not to be entirely unreasonable; one hopes that the negative

entries in B would afford better bounds on the extinction time, but in many cases

with negative entries in B extinctions of some demand types mean that the process

is eventually run in a non-negative case. In light of this, we will assume for the
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rest of this chapter that B is non-negative for convenience.

Given an initial demand τ (0) and spread matrix B, our goal is to find a

supply function σ such that demand is satisfied. Ideally we would like to do this

with small supply rates. Furthermore, the supply rates should only depend on the

contact graph G, the spread matrix B, and the initial demand τ (0), but not on t

or τ (t).

6.3 The Kronecker PageRank

The notion of PageRank was first introduced by Brin and Page [13] in 1998

for Google’s search algorithms. Although the PageRank was originally used for

the Web graph, we can define the PageRank for any finite graph G. Here we will

use a modified version of the PageRank, called personalized PageRank which has

two parameters, a jumping constant α ∈ [0, 1] and a seed vector s which is some

probability distribution on the vertex set V of G.

The personalized PageRank vector pr(α, s) for jumping constant α and the

seed distribution s on V is given by

pr(α, s) = α
∞∑
l=0

(1− α)lsW l.

Note that here we view s as a row vector. We note that the PageRank vector is

also the solution to the recurrence relation

pr(α, s) = αs + (1− α)pr(α, s)W.

The original formulation of PageRank [13] is the special case where s is the uniform

distribution over all the vertices.

Recall that for a subset of vertices H ⊂ V , the volume of H is the sum

of degrees of the vertices of H. The Cheeger Ratio of H, h(H), measures the cut

between H and H̄ via the relationship

h(H) =
e(H, H̄)

min{vol (H), vol (H̄)}
.
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The α−core of a subset H is the set of vertices

Cα =

{
v ∈ H|pr(α, 1v)1H ≥ 1− h

α

}
A basic tool for analyzing PageRank is the fact (see [6]) that for a subset with

Cheeger ratio h, we can choose α, say, α = h/2, so that at least half of the vertices

of H is in the α-core of H. Therefore, if the seed is in α-core of H, then we can use

PageRank to identify a large part of H. Another advantage of using PageRank

is the fact that there are very efficient algorithms for approximating PageRank

vectors [6].

One tool that we will use to understand the k−commodity dynamic demand

model will be a the Kronecker PageRank vector, which we define below. This is a

generalization of the personalized PageRank vector.

Definition 6.3.1.

Let B be a square k × k matrix with spectral radius strictly less than 1, and W

be the transition matrix for a random walk on a graph G. Let s be a non-negative

vector in R
k×|V |. The Kronecker PageRank vector with parameters B and s is

defined as

Kpr(B, s) =
∞∑
l=0

s(W ⊗B)l =
∞∑
l=0

s(W l ⊗Bl)

The condition that the spectral radius of B less than 1 is necessary to ensure

convergence of the infinite sum, as the spectrum of W ⊗ B is the product of the

spectra of W and B. Since the eigenvalues of W have absolute value at most 1,

the sum will converge.

We note that in the case where B is a 1 × 1 matrix B = β < 1 and s is a

probability distribution, then we have the relationship

Kpr(B, s) =
∞∑
l=0

s(W ⊗ β)l =
∞∑
l=0

sβlW l =
1

1− β
pr(1− β, s),

so the Kronecker PageRank is a natural extension of personalized PageRank. We

will see in Theorem 6.5.3 that the Kronecker PageRank will arise naturally in our

analysis in Section 6.3, and give better bounds than those that will be afforded

by standard PageRank by incorporating the spread matrix. We remark that the
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Kronecker PageRank vectors can be efficiently computed and approximated along

the same line as that for the usual PageRank.

For a square matrix A, there are many different matrix norms that can be

used (see, for example, [36]). We will use the following notation for the following

norms:

1. ||A||1 =
∑
i,j

|aij| is the `1 norm.

2. |||A|||1 = max
j

∑
i

|aij| is the maximum column sum norm.

3. |||A|||∞ = max
i

∑
j

|aij| is the maximum row sum norm.

4. |||A|||2 = max{
√
λ | λ is an eigenvalue of A∗A} is the spectral norm.

6.4 A Solution that Supplies Every Vertex

Here we show that if supply rates are above a certain threshold, then with

probability approaching 1 demands will be satisfied.

Theorem 6.4.1.

Consider the k−commodity demand model on a graph G with n vertices parame-

terized by spread matrix B = [βij]. If the supply rates to each vertex v satisfy

σiv > dv

(∑
j

βij + βji
2

)
+ δ

for δ > 0, then with probability 1− ε all vertices are satisfied at time t for all

t >
1

δ

(
1

2
log(nk) + log(X(0)) + log

(
1

ε

))
.

Proof. We consider the expectation E[τ (t)]. Let X(t) = ||τ (t)||1, the total demand

at time t. We will begin by considering the quantity ∂
∂t
E[τ (t)].

From the discussion in section 6.2, we know that demand is increasing with

rates given by ρ(t) = τ (t) (A⊗B), but also demand decreases according to the

supply rates. Let S = diag(σ), the diagonal nk × nk matrix with entries given
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by the supply vector. Then we can see that demand decreases at each vertex

according to rates given by the supply rate vector τ (t)S.

To proceed, we need the following two well known and simple facts con-

cerning exponentially distributed random variables. We use the notation

f(h) = Oh→0(g(h))

to indicate that there exists a constant C such that f(h) ≤ Cġ(h) for h sufficiently

small.

Suppose X is an exponentially distributed waiting time with rate λ, then

P(X < h) = λh+Oh→0(h2). (6.1)

Equation 6.1 follows from the fact that the probability that an exponential waiting

time is at most h is given by∫ h

0

λe−λh = 1− e−λh = λh+Oh→0(h2).

As an immediate consequence, we see that if X and Y are independent exponen-

tially distributed waiting times with rates λ1, λ2, then

P(X, Y < h) = Oh→0(h2). (6.2)

Using these two facts, we will show that we can neatly encode the behavior

of the k-commodity demand model in a single differential equation.

Fix a vertex v and commodity i. We will show that

∂

∂t
E[τ iv(t)] = [E[τ (t)](A⊗B − S)]iv,

To do this, we compute the derivative by the definition, that is we compute

lim
h→0

E[τ iv(t)− τ iv(t+ h)]

h
.

To do this, consider the conditional expectation, E[τ iv(t)− τ iv(t+ h)|τ (t)].

Note that by Equation 6.2, the probability that two independent events (either

two spread events, or two satisfy events or a spread and a satisfy event) occur is

Oh→0(h2). On the other hand, given a neighbor u of v, and a commodity j, the
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probability of a spread event originating from this neighbor and commodity in time

(t, t+h) is exactly Bjiτ
j
u(t)h+Oh→0(h2). Likewise, the probability of a satisfaction

event in this time is τ iv(t)σ
i
vh+Oh→0(h2). Linearity of expectation yields

E[τ iv(t)− τ iv(t+ h)|τ (t)] = τ (t)(A⊗B − S)h+ o(h2).

Applying the tower property of conditional expectation yields the result for

this vertex v and commodity i. Since this holds for all choices of v and i, we obtain

the single equation

∂

∂t
E[τ (t)] = E[ρ(t)− τ (t)S] = E[τ (t)](A⊗B − S). (6.3)

Solving the matrix differential equation with initial condition E[τ (0)] =

τ (0) yields

E[τ (t)] = τ (0)et(A⊗B−S). (6.4)

Let Q = A ⊗ B − S. Then by [25], |||etQ|||2 ≤ etν , where ν is the largest

eigenvalue of Q+Q∗

2
. We note that Q+Q∗

2
= A ⊗ (B+B∗

2
) − S, which has diagonal

terms βii−σiv, ranging over all values of v and i. By the Gershgorin Circle Theorem,

the eigenvalues of Q+Q∗

2
are contained in the intervals

[−(dv − 2)βii − dv

(∑
j 6=i

βij + βji
2

)
− σiv, dv

(∑
j

βij + βji
2

)
− σiv].

Since σiv > dv

(∑
j

βij+βji
2

)
+δ all the eigenvalues of Q+Q∗

2
are less than −δ. There-

fore

E[X(t)] = ||τ(0)et(A⊗B−S)||1 ≤
√
nk||τ(0)et(A⊗B−S)||2

≤
√
nk||τ(0)||2|||et(A⊗B−S)|||2 ≤

√
nk||τ(0)||1etν

≤
√
nkX(0)e−tδ

Thus Markov’s inequality gives that P(X(t) > 0) < ε if

t > 1
δ

(
1
2

log(nk) + log(X(0)) + log
(

1
ε

))
. �
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We note that this approach works for all initial distributions τ (0). This

indicates that in many situations this approach may be overkill and that we could

have used smaller supply rates. In the next section, we analyze the process more

carefully and give conditions that depend on the initial distribution of demand.

6.5 A Solution that Supplies a Small Subset

For the remainder of the discussion, it is convenient to introduce refor-

mulation of the model that takes advantage of the fact that demands take on

integer values. Rather than view demands as a function τ : V → N
k, we view

demands as discrete objects sitting on each node. Borrowing language from chip-

firing games on graphs (see, for example, [46]) we view units of the demand as

chips located on vertices of the graph. For example, if k = 7 and for a vertex v

τ v(t) = (0, 1, 2, 0, 2, 0, 3) then we would say that at time t there was 1 “2-chip”,

2 “3-chips”, 2 “5-chips”, and 3 “7-chips” at vertex v, corresponding to 1 “unit of

demand” for commodity 2, etc. Unlike in classic chip-firing games, the number of

chips is not static, and the game is parameterized by continuous time. We restate

the possible transitions in terms of demand chips. For an i−chip at vertex v, there

are two types of transition events:

• For each vertex w ∼ v and each j = 1, ..., l, a j−chip is added at w with rate

βij. When this occurs we say that the new j−chip is created by the i−chip.

• The i−chip itself is removed with rate σiv.

It is important to note that due to the properties of exponential random variables,

the rates add linearly and the model is equivalent to the original description dis-

cussed in Section 6.2. The main advantage of this reformulation is the ability to

trace back the history of a chip. If there is a chip cl at vertex vl at time t, then

either cl existed at time t = 0, or there is a sequence of l chips (c0, ..., cl) located at

vertices along a path π = (v0, v1, ..., vl) where c0 existed at t = 0, and cr is created

by cr−1 for r = 1, ..., l . We allow π to have repeated vertices to allow for the case

where demand created more demand at the same vertex. If a chip c exists at time

0, we refer to it as an initial chip.
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For a path π = (v0, v1, ..., vl) and a chip c0 located at v0, we define the event

Sπ,c0 to be the event there is a sequence of m chips (c0, ..., cl) located respectively

at (v0, v1, ..., vl) and cr is created by cr−1 for r = 1, ..., l.

It is important to note that Sπ,c0 occurring does not imply that there is any

demand at vl at time t because it could be satisfied sometime before t. However,

if there is a demand at vl at time t, then Sπ,c must have occurred for some initial

chip c at vertex v0 and some walk π from v0 to vl.

We begin by showing that if supply rates are large enough, then the proba-

bility of demands spreading along a long walk is small. Inspired by Theorem 6.4.1

we make the assumption that supply rates are proportional to the degree of the

vertices. That is, we assume that σiv > µi(dv) for all v for constants µi > 0.

Lemma 6.5.1.

Let M = diag(µ1, ..., µk), B̂ = M−1B and ζ = min{|||B̂|||1, |||B̂|||∞}
Then for any chip c0 located at v0 and any walk π = (v0, ..., vl) of length l,

P (Sπ,c0) ≤ k
l∏

j=0

1

dvj
ζ l

Proof. Let Sr denote the event that a chip cr at vr creates a chip at vr+1. If cr

is an i−chip, then for it to create any chip at vr+1 a spread event must occur

before cr is removed. The time until cr creates a j−chip at vr+1 is an exponential

random variable with rate βij. Since the time until cr is removed is given by

Exp(σiv), the probability of cr creating a j−chip is
βij

βij+σiv
≤ βij

σiv
<

βij
µidvr

. Thus

P(Sr) <
∑
i,j

βij
µidvr

= 1
dvr
1B̂1∗.

For a walk π of length l, we want to consider the intermediate steps more

carefully. Since there are l transitions that occur, we can use the same reasoning

as above to obtain the bound

P(Sπ,c) <
l∏

r=0

1

dvr
1B̂l

1
∗ =

l∏
r=0

1

dvr
||B̂l||1 ≤ k

l∏
r=0

1

dvr
|||B̂l|||1 ≤ k

l∏
r=0

1

dvr
|||B̂|||l1

The factor of k that appears in the final lines above is just a consequence of

switching from the vector 1-norm ||B̂l||1 to maximum column sum norm |||B̂l|||1
(see [36]).
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We could have just as easily switched to the maximum row sum norm and

obtained the term k|||B̂|||l∞, and so it follows that

P(Sπ,c) < min{k
l∏

r=0

1

dvr
|||B̂|||l1, k

l∏
r=0

1

dvr
|||B̂|||l∞} = k

l∏
j=0

1

dvj
ζ l

�

We note that the decision to use ζ = min{|||B̂|||1, |||B̂|||∞} in Lemma 6.5.1

reflects the difficulty in working with arbitrary spread matrices B. For certain

classes of spread matrices (e.g. if B is symmetric or diagonalizable) it is possible

to obtain tighter bounds. While the previous lemma will be useful for obtaining a

bound using PageRank, a more careful analysis is possible which will lead naturally

to use of Kronecker PageRank which we explore in Theorem 6.5.3.

Theorem 6.5.2.

Suppose that initial demand is contained in S ⊂ H ⊂ V with and each vertex

v ∈ H has supply rates σiv > µidv, and σiw = 0 for w ∈ H̄. Let M = diag(µ1, ..., µk),

B̂ = M−1B and ζ = min{|||B̂|||1, |||B̂|||∞}. Let x(t) be defined by xv(t) =
∑
i

τ iv(t),

and X(t) = ||x(t)||1 = ||τ (t)||1. Let EH denote the event that demands spread

outside the set H. Then

1. P(EH) ≤ X(0)
ζ
pr
(

1− ζ, x(0)
X(0)

)
1∗
H̄

2. If S in the (1 − ζ) core of H, then P(EH) ≤ 2X(0)h(H)
ζ(1−ζ) , where h(H) is the

Cheeger ratio of H.

Proof. Let Pl denote the set of all paths of length l from an initial chip in S to H̄

such that the first k − 1 steps are in H. Let P =
⋃∞
l=1 Pl. The key observation is

that if w ∈ H̄ ever has demand, then Sπ,c must have occurred for some initial chip

c and path π from the location of c to w. Thus we can use the union bound to get
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that ∑
π∈P

P(Sπ,c) ≤
∑
l

∑
(π,c)∈Pl

P(Sπ,c)

≤
∑
l

∑
v0∈S

∑
c at v0

∑
vl∈H̄

∑
π=(v0,...,vl)∈Pl

P(Sπ,c)

≤
∑
l

∑
v0∈S

∑
c at v0

∑
vl∈H̄

∑
π=(v0,...,vl)∈Pl

ζ l
l∏

r=0

1

dvr

=
∑
l

x(0)ζ l(D−1A)l1∗H̄

=
∑
l

x(0)ζ lW l1∗H̄

=
X(0)

ζ
pr

(
1− ζ, x

X(0)

)
1∗H̄ ,

proving the first statement. The second statement follows the same proof as The-

orem 3.2 of [23]. �

Theorem 6.5.3.

Suppose that the initial demand is contained in S ⊂ H ⊂ V with and each vertex

v ∈ H has supply rates σiv ≥ µidv. Let M = diag(µ1, ..., µk), B̂ = M−1B and

ζ = ||B̂||1. Let X(t) = ||τ (t)||1, the total amount of demands at time t. Let EH
denote the event that demands spread outside the set H. Then EH can be bounded

above using the Kronecker PageRank vector via the relationship:

P(EH) ≤ X(0)Kpr

(
B̂,

τ(0)

X(0)

)
1H̄

Proof. Let f be a vector indicator function of commodity type on chips, that is

f(c) = ei if c is an i−chip, where ei denotes the ith standard basis vector for Rk.

Let C0 denote the set of initial chips. By the same methods that were used in the

proof of Lemma 6.5.1, we can bound the probability that demand originating from

c ever spreads along a path π = (v0, v1, ..., vl) by the sum

P(Sπ,c) ≤ f(c)B̂l
1
∗

l∏
r=0

1

dvr
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Therefore using the same technique as in the proof of Theorem 6.5.2 we obtain the

bound∑
π∈P

P(Sπ,c) ≤
∑
l

∑
u∈S

∑
π∈Bl

P(Sπ,u) ≤
∑
l

∑
c∈C0

∑
vl∈H̄

∑
π=(v0,...,vl)∈Pl

P(Sπ,u)

≤
∑
l

∑
c∈C0

∑
vl∈H̄

∑
π=(v0,...,vl)∈Pl

f(c)B̂l
1
∗

l∏
r=0

1

dvr
=
∑
l

τ(0)(D−1A⊗ B̂)l1H̄

=
∑
l

τ(0)(W ⊗ B̂)l1H̄ = X(0)Kpr(B̂,
τ(0)

X(0)
)1H̄

�

Let St denote the event that all of the vertices are satisfied at time t. In

order to complete the analysis of the local case, we would like to bound P(St|EH),

where EH is as in Theorems 6.5.2 and 6.5.3. Such a bound is not immediately given

by Theorem 6.4.1, but this is not difficult. To derive a bound on P(St|EH), consider

running a modified Dirichlet version which is identical to the standard process with

the same supply rates, except demand leaving H is ignored. Let S ′t denote the event

that in Dirichlet process, all of the events are satisfied at time t then P(S ′t) can be

bounded directly by Theorem 6.4.1 as this Dirichlet process restricted to vertices

in H is the standard process on H. Furthermore P(St ∩ EH) ≤ P(S ′t). Therefore

P(St|EH) =
P(St ∩ EH)

P(EH)
≤ P(S ′t)
P(EH)

.

Combining this observation along with Theorems 6.5.2 and 6.5.3, yields that the

probability of escape from H is bounded and if the process does not escape from

H it dies quickly.

Theorems 6.5.2 and 6.5.3 can be used in two different ways. As stated,

they provide a way to bound the probability demands escape from a given subset.

However, they can be also used to construct such a bounding subset. For example,

given initial demand τ (0) contained in an initial set of vertices S ⊂ V , we can

algorithmically construct H such that demand stays in H with probability 1− ε as

follows. We do this by constructing a increasing family of subsets {Hr}. We begin
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by setting H0 = S and pr = X(0)
ζ

pr
(

1− ζ, τ (0)
X(0)

)
. Then we follow the following

procedure:

1. Compute f(r) = 〈pr,1∗
H̄r
〉

2. If f(r) < ε, set H = Hr and end the process.

3. If f(r) ≥ ε, let Hr+1 = Hr ∪ v for some v 6∈ Hr, and return to step 1.

This process will eventually terminate, since |Hr+1| = |Hr|+ 1, and f(r) = 0 once

Hr = V .

6.6 Resource Allocation on a Random Geomet-

ric Graph

We conclude with an example calculation on synthetic data. Our graph G is

an instance of a random geometric graph. 200 vertices were placed uniformly at

random in a unit square, and two vertices are adjacent if the distance between
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them is less than .13 units. We let k = 3, and

B =


.4 .2 .3

.2 .3 .4

.3 .4 .5

 .

The initial demand is given by τ jv (0) = 1 for all commodities for the vertices

marked by triangles, and τ jv (0) = 0 for all other vertices. In addition we set µi = 3

for all i.

We demonstrate the difference between Theorems 6.5.2 and 6.5.3 in the

following way. The figure above shows the graph G. The demands start in the

green triangular vertices and spread outward from there. Theorem 6.5.3 states

that with 95% probability, demands stay in the blue square vertices. Theorem

6.5.2 states that with 95% probability, demands stay in the red diamond and blue

square vertices. This small example illustrates how the Kronecker PageRank can

be used to obtain improved results.
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