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Abstract

This paper studies the possible integration of long-haul operations by transportation mode
and service level (defined by guaranteed delivery time) for package delivery carriers. Specifically,
we consider the allocation of deferred items to excess capacity on alternative modes in ways that
allow all transportation modes to be utilized better. Model formulation and solution techniques
are discussed. The solution techniques presented produce efficient solutions for large-scale prob-
lem instances. Allowing deferred items to travel by air reduces long-haul transportation costs.
These savings increase with the amount of excess air capacity.
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scale optimization
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1 Introduction

Rapid growth in the package delivery industry has led carriers to offer a wide range of transportation
services (i.e., overnight delivery, two-day delivery, etc.) to capture a larger share of the package de-
livery market and to utilize resources more efficiently. As a result, new opportunities have emerged
in the integration of operations by transportation mode (air, ground) and service level (express,
deferred). This paper is part of a larger research project that combines continuous approximation
and discrete methodologies to study multimodal package delivery systems (see Smilowitz, 2001). It
is motivated by the need to study the various degrees of mode and service level integration within
the package delivery industry. Smilowitz and Daganzo (2002) show that integrating operations
can produce significant savings in local distribution costs. In addition, with integrated operations,
some deferred items (3+ day delivery windows) that normally travel by ground vehicles may be
sent by air if excess capacity exists. By intelligently choosing which deferred items to shift to the
air network, the ground network can be operated more efficiently and overall network capacity can
be better utilized.

In particular, this paper addresses the routing of deferred items and ground vehicles; called here
the “deferred item and vehicle routing problem” (DIVRP). Since aircraft schedules are determined
quarterly or yearly for express package delivery, it is reasonable to assume that aircraft schedules
are fixed when determining the routes of deferred items and ground vehicles. Modeling and solution
techniques to solve dynamic versions of this problem for large networks are presented. We perform
a computational study to evaluate the economic impact of sharing aircraft capacity.

Related literature is discussed in Section 2. Section 3 describes the deferred item and vehicle
routing network in further detail, and Section 4 presents the model formulation. Section 5 presents
the solution method used for large-scale instances. Computational results are discussed in Section
6. Finally, Section 7 proposes future work.

2 Related literature

The DIVRP is a special case of the service network design problem, with multiple commodities,
transshipment points, vehicle types, and service deadlines. For a review of service network design
problems with applications to transportation, see Crainic (2000) and Magnanti and Wong (1984).
Service network design problems are typically formulated as multicommodity network design prob-
lems. These problems have been studied extensively in the literature, both because of the many
applications that exist (especially in transportation) and because of the challenges of solving these
large-scale mixed integer network problems.

Solving even the linear programming (LP) relaxation of the problems is a challenge due to
the excessive size of formulations even for small instances. The LP relaxation does not often
produce good bounds (see Crainic (2000)). In addition, LP relaxations are highly degenerate for
large instances. To circumvent these problems, a variety of techniques have been proposed in the
literature; a sample of problems and techniques is listed below. Solution methods that decompose
the item and vehicle routing have been successful in solving large multicommodity network flow
problems (see Crainic and Rousseau (1986)). To route aircraft and packages in express delivery
networks, Armacost (2000) introduces composite variables to reduce the problem size. Kim et al.
(1999) use column generation techniques, combined with cutting planes. Holmberg and Yuan
(2000) use Lagrangian relaxation, combined with branch and bound techniques, to solve large-scale
capacitated network design problems. Cordeau et al. (2000) employ Benders decomposition as an
alternative to Dantzig-Wolfe decomposition and Lagrangian relaxation. Yano and Newman (2001)
develop a new solution procedure for a similar service network design problem with a single vehicle
type.

The DIVRP, which considers the simultaneous routing of deferred items and long-haul ground
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vehicles consistent with delivery time windows and availability of excess capacity, is formulated
as a multicommodity network design problem with flow balance constraints on the integer design
variables. As such, it exhibits many of the problems cited above, and even obtaining a feasible
solution for realistic-size instances is computationally challenging. We develop a solution approach
to address these issues, comprised of three tasks.

1) Solve linear programming relaxations using path-based reformulation with column generation
to overcome prohibitive memory requirements of the arc based formulations.

2) Implement recently developed cutting plane techniques to eliminate part of the fractional so-
lutions of linear relaxation.

3) Develop effective LP rounding heuristics to find feasible integer solutions.

Each task is described in detail in the paper, with comments on the different approaches tested.
Using this method, efficient solutions are found, even for the largest instances in our data set. The
gap between feasible integer solutions and the linear relaxation is large in many instances. However,
it is still possible to quantify the savings from integration.

3 Network description

The networks in question include two transportation modes: air and ground, and two service
levels: express and deferred. Express items are highly time sensitive; deferred items are not. All
regional transportation is conducted by ground vehicles (delivery vans, trucks, etc.), but long-haul
transportation can be performed by ground (tractor-trailers) and air. In non-integrated delivery
networks, express items are transported by air for long-haul trips due to restrictive time constraints.1

Deferred items are sent over ground long-haul networks. The DIVRP explores potential savings
obtained by integrating the transportation of items with different service levels. In particular, given
an aircraft schedule we test the impact of routing some deferred items on excess air capacity rather
than the ground network.

The time-space network, G = (N,A) is used to model the system, where each node in the set
N represents a physical location and an instant of discrete time within the planning horizon (see
Figure 1). Let C ⊂ N denote the consolidation terminal nodes, B ⊂ N denote the breakbulk
terminals nodes, and H ⊂ N denote the air hub nodes. Consolidation terminals act as the origins
and destinations of items.2 At breakbulk terminals, items are transferred between ground vehicles
for more efficient long-haul transportation. At air hubs, items are transferred between aircraft.
An item is transported either through the air hubs by aircraft or through breakbulk terminals by
ground vehicles.

The set of arcs, A, that link the nodes of the network is partitioned into three subsets: inventory
arcs (IA) for holding items at a node until the next time period, ground arcs (GA) for transporting
items by ground vehicle or repositioning ground vehicles, and express arcs (EA) for transporting
items by air. A ground arc from (l1, t1) to (l2, t2) for l1, l2 ∈ C ∪B will be included in the network
if the ground travel time between l1 and l2 is t2 − t1. Similarly, there is an air arc from (l1, t1) to
(l2, t2) for l1 ∈ C, l2 ∈ H or l1 ∈ H, l2 ∈ C, for all scheduled departure times t1 if the air travel time
between l1 and l2 is t2 − t1. Perfect information and time-dependent demand are assumed.

Because package delivery tends to be periodic in nature (e.g., weekly or daily cycles), an infinite
planning horizon can be simulated if one restricts oneself to the exploration of periodic solutions.
This is done by introducing periodic boundary conditions, which can be modeled by treating the
time dimension as a closed loop, i.e., by wrapping the network on a cylinder and linking the last time

1Express items with nearby destinations may not travel by air. Such items are ignored in this study.
2Local distribution routes feeding into consolidation terminals are unaffected by decisions to shift deferred freight.
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period with the first (see Figure 2). Item demand is specified by origin, arrival date, destination,
and due date. Arcs are placed on the cylinder, with some arcs connecting nodes at the end of one
rotation to nodes at the beginning of another.

4 Model formulation

The objective of the DIVRP is to minimize marginal item transportation costs by ground and air,
vehicle operating costs for ground transportation, and inventory costs. Figure 1 illustrates possible
routes from an origin (lo, to) to a destination (ld, td). Items can be routed between consolidation
terminals either by ground through a series of intermediate breakbulk terminals or by air through
an air hub. Aircraft schedules are determined quarterly or yearly for express package delivery; it
is assumed that aircraft schedules are fixed and excess air capacity is given for the flight legs in
the planning horizon. The routing of ground vehicles (and the resulting capacity on ground arcs)
is determined within the DIVRP. The following parameters and decision variables are included in
the model:

Parameters

ca marginal cost of sending an item over arc a ∈ A (both transportation and inventory arcs)($/item)
ca marginal cost of sending a vehicle over arc a ∈ GA ($/vehicle-mile)
vi ground vehicle capacity for vehicle type i ∈ V (items)

ea excess air capacity (items) for arc a ∈ EA
d(lo,to),(ld,td) origin-destination demands with origin times and delivery due dates

Variables

fka amount of commodity k ∈ K sent over arc a ∈ A, (items, continuous)
xia number of loaded and empty ground vehicles of type i ∈ V on arc a ∈ GA, (vehicles, integer)

Two equivalent arc-based formulations are derived from two commodity definitions for the set
K of commodities. In the first, a commodity k is defined by origin-destination pairs, (lo, to), (ld, td).
The origin-destination demands are expressed as dk > 0. The origin and destination associated
with a commodity k are denoted by Ok and Dk, respectively. In the second, demand for each origin
is aggregated over destinations and due dates and a commodity, k ∈ K, is defined by (lo, to) only;
and Dk now represents the set of destinations associated with k.

4.1 Formulation I: disaggregated origin-destination formulation

The disaggregated formulation of the deferred item and vehicle routing problem (DIVRP-D) is:

min
k∈K,a∈A

caf
k
a +

a∈GA,i∈V
cax

i
a (1a)
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subject to

(m,n)∈A
fkm,n −

(n,m)∈A
fkn,m =


−dk, if n = Ok
dk, if n = Dk
0, otherwise

∀n ∈ N, k ∈ K (1b)

k∈K
fka ≤ ea ∀a ∈ EA (1c)

k∈K
fka ≤

i∈V
vix

i
a ∀a ∈ GA (1d)

(m,n)∈GA
xim,n −

(n,m)∈GA
xin,m = 0 ∀n ∈ C ∪B, i ∈ V (1e)

xia ≥ 0, integer ∀a ∈ GA, i ∈ V (1f)

fka ≥ 0 ∀a ∈ A, k ∈ K. (1g)

We minimize the objective function, which is the sum of vehicle and item transportation costs
and inventory holding costs. The flow balance constraints (1b) ensure item flow conservation at
each node for all commodities. Built into these equations are delivery time windows implicit in
the time-space network: items cannot depart from an origin before the arrival date and must reach
the destination by the due date. Vehicle capacity constraints limit allocation to air by excess
capacity available (1c) and require sufficient ground vehicles to cover item flow (1d). Flow balance
constraints (1e) for ground vehicles create feasible routings between nodes. All decision variables
must be non-negative and ground vehicle variables must satisfy integrality constraints (1f and 1g).

4.2 Formulation II: demand aggregated by destination

As the problem size increases, the sets of variables and constraints in formulation DIVRP-D become
quite large as the number of commodities is quadratic in the number of consolidation terminals and
the number of constraints (1b) is cubic in the number of consolidation terminals. The aggregated
formulation (DIVRP-A) is more compact with fewer flow variables and fewer item flow balance
constraints. The remainder of the formulation is the same, including the integer variable count,
since the physical network has not changed.

Table 1 summarizes our computational experience with DIVRP-A and DIVRP-D for two in-
stances with twenty consolidation terminals (CT’s) and four breakbulk terminals (BBT’s). The
reduction in problem size in DIVRP-A translates to a reduction in solution time for the linear
relaxation of DIVRP-A (“CPU time” in the Table 1). Integer solutions for both formulations are
obtained with the CPLEX3 6.5.1 solver, using a branch and bound algorithm. Memory and time
constraints are the limiting factors in finding an optimal solution. While the optimality gaps are
quite small, solving a realistic size problem (hundreds or thousands of nodes and arcs) with either
DIVRP-A or DIVRP-D involves an excessive number of variables and constraints and the models
presented here cannot be solved without additional refinements. These refinements are presented
in the following sections.

5 Solution approach

A two-stage solution approach is proposed.

Stage 1: Lower bound. Solve the linear relaxation of DIVRP-A or D, using ap-
proaches described in Section 5.1.

3CPLEX is a trademark of ILOG, Inc.
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Stage 2: Upper bound. Obtain a feasible integer solution from the linear relaxation,
using approaches described in Section 5.2.

As explained in these sections, the procedure can be iterated to reduce the gap between bounds.

5.1 Lower bounding techniques

5.1.1 Path-based formulation

The arc-based formulations (DIVRP-D and DIVRP-A) become impractical to implement for large
problems due to excessive memory requirements. Therefore, a path-based formulation is introduced,
where the series of arcs that a commodity traverses from origin to destination is defined as a single
path variable. Here the decision variables are the sets of commodity flows over each path and (as
with the arc-based formulation) the set of loaded and empty vehicles over the ground arcs. Let λP
be the fraction of commodity k flowing over path P , comprised of arcs a ∈ P . Let Pk be the set of
available origin-destination paths for commodity k. We begin with the disaggregated path-based
formulation:

min
k∈K P∈Pk

cPλP +
a∈A,i∈V

cax
i
a (2a)

subject to

P∈Pk
λP = 1 ∀k ∈ K (2b)

k∈K P∈Pk:a∈P
dkλP ≤ ea ∀a ∈ EA (2c)

k∈K P∈Pk:a∈P
dkλP ≤

i∈V
xiavi ∀a ∈ GA (2d)

(m,n)∈GA
xim,n −

(n,m)∈GA
xin,m = 0 ∀n ∈ N,∀i ∈ V (2e)

xia ≥ 0, integer ∀a ∈ GA,∀i ∈ V (2f)

λP ≥ 0 ∀k ∈ K,P ∈ Pk (2g)

where

fka is the flow of commodity k on arc a, f
k
a =

P∈Pk:a∈P
λPd

k

cP is the cost of path P for commodity k,∀k ∈ K,∀P ∈ Pk, cP =
a∈P

cad
k.

The original item flow balancing constraints (1b) from the arc-based formulation are replaced with
“convexity constraints” (2b) that ensure the total demand for each commodity is satisfied. The
two sets of arc capacity constraints (2c) and (2d) maintain feasible arc flows. Again, the flow of
ground vehicles must be balanced (2e) and decision variables must be non-negative and ground
vehicle variables must satisfy integrality constraints ((2f) and (2g)).

Column generation

The number of path variables in formulation (2a) - (2g) is exponential in the number of arcs.
For large problems, rather than enumerating all origin-destination paths, the LP relaxation of the
formulation that has a feasible subset of the paths (master problem) is solved initially. Using column
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generation, new path variables are added iteratively if the inclusion of such paths in Pk could reduce
the total cost. A candidate path P is obtained by solving the following single-commodity shortest
path problem:

Pricing Problem

min
a∈A

(ca − πa)fka − σk (3a)

subject to

(m,n)∈A
fkm,n −

(n,m)∈A
fkn,m =


−dk, if n = Ok
dk, if n = Dk
0, otherwise

∀n ∈ N (3b)

fka ≥ 0 ∀a ∈ A. (3c)

The objective function of the shortest path problem corresponds to the reduced cost of the
candidate paths:

c̄P =
a∈A
(ca − πa)fka − σk,

where πa is the dual variable of the arc capacity constraint for arc a (2c) and (2d) and σk is the
dual variable for the commodity-specific convexity constraint for commodity k (2b). Since a shift
of flow to the new path P does not violate the ground vehicle balance constraints (2e) directly, the
dual variables of these constraints do not appear. If the reduced cost of candidate path P , c̄P , is
negative, then λP is added to the formulation and the master problem is resolved.

At each iteration of the master problem, dual variables are updated and the pricing problem is
run to check for new columns. Columns with highly positive reduced costs are removed from the
master problem to maintain a manageable problem size. This process is repeated until optimality
conditions of the linear relaxation are met for all commodities (all paths have non-negative reduced
costs).

Periodic boundary conditions can be implemented easily here. When paths that traverse mul-
tiple rotations are added to the master problem, they “wrap around” the cylinder.

Smilowitz (2001) compares the path-based formulations with disaggregated commodities, as
shown above, with an aggregated commodity formulation. While the aggregated formulation re-
quires the solution of fewer pricing problems at each master problem iteration, more master problem
iterations are required for convergence. These results are consistent with earlier results on mul-
ticommodity network flow problems by Jones et al. (1993), even with ground vehicle balancing
constraints added. Consequently a hybrid decomposition algorithm is used. Shortest path trees
from an origin to all destinations are obtained with aggregated pricing problems. A candidate
path P can be obtained for multiple origin-destination pairs by creating shortest path trees from
origin nodes (defined by origin location and time) to all destinations (defined by destination lo-
cations and due dates). These trees are then disaggregated by destination and a column for each
origin-destination path with a negative reduced cost is added to the formulation.

5.1.2 Cutting planes

In conventional applications, cutting planes are used to eliminate fractional LP solutions without
eliminating integer solutions and the optimal solution of the resulting LP is used as an improved
lower bound; sequences of cuts are then generated until an integer (optimal) solution is found (see
for example Nemhauser and Wolsey (1999)). Our application of cutting planes is unconventional
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because solving the new LP’s exactly is too time consuming. Instead, we solve the new LPs
approximately but quickly (as explained below) and then used the results to improve the upper
bounds. The upper bounding method is explained in Section 5.2.

Single capacity flow cuts

As shown in Figure 3, flow out of a node (including air and inventory arcs) must satisfy demand
at that node. In Figure 3(a), the node under consideration is a consolidation terminal in the first
time period. Inbound flow is equal to item flow arriving at the consolidation terminal from local
tours for distribution, plus demand from previous days that have wrapped around the cylinder.

For ease of explanation, cuts are described for the arc-based formulation4. In formulation
DIVRP-D, the flow balance constraints at the origin consolidation terminal n = Ok for commodity
k are given by (1b). Let A+n be the set of all arcs outbound from that node and let A−n be the set
of all inbound arcs. With this notation, (1b) can be written:

a∈A−n
fka −

a∈A+n
fka = −dk where n = Ok (4a)

Let S+n be a subset of outbound ground vehicle arcs for node n. Outbound flow can then be
decomposed by flow on arcs in S+n and other flow (including air and inventory arcs). Rearranging
the terms of (4a), we obtain

a∈S+n
fka +

a∈A+n \S+n
fka = d

k +

a∈A−n
fka where n = Ok (4b)

Let Kn be the set of all commodities with origin n and v be the capacity of vehicles serving
consolidation terminals. Let xa ∈ A be the flow of these vehicles.5 By summing constraint (4b)
over all commodities with origin n (i.e., in Kn) we obtain the following inequality, which applies to
a generic origin node:

a∈S+n
xav +

k∈Kn a∈A+n \S+n
fka ≥ Dn ∀n ∈ Ok (4c)

The inequality holds since the last term of (4b), which is non-negative, is dropped and the first
term is replaced by an upper bound.

The mixed integer cut-set inequality (Bienstock and Günlük (1996)) can be used, as a valid
cutting plane for our problems. It is defined as follows:

a∈S+n
rxa +

k∈Kn a∈A+n \S+n
fka ≥ r

Dn
v

∀n ∈ Ok (5)

where r = Dn − Dn
v − 1)V , and Dn

v is the minimum number of vehicles needed if all flow is
sent by ground arcs.

To generalize (4c), nodes for the same physical origin location are aggregated over multiple
time periods, as shown in Figure 3 (b) and (c). These aggregated nodes contain both nodes and
inventory arcs between nodes. Flow is then defined as flow inbound to and outbound from the
aggregated node. An equation of the same form as (4c) now holds for the aggregated nodes, and
cutting planes similar to (5) can be generated.

Let {x̂a, f̂ka } be an optimal solution to the LP relaxation found with column generation. A cut
of type (5) is found by letting S+n = {a ∈ A+n : k∈Kn

f̂ka < rx̂a}.
4Since the arc-based and path-based formulations are equivalent, the cuts are valid for both.
5We omit the superscript i for simplicity.

8



Additional cuts for multiple capacities

The single capacity inequalities (5) are used to cut off fractional vehicle variables for arcs between
consolidation terminals and breakbulk terminals. These arcs typically have smaller capacities than
the long-haul arcs between breakbulk terminals. This limits the possible improvements to the LP
relaxation as higher capacity long-haul arcs have been ignored. By expanding the aggregated nodes
shown in Figure 3 to include the breakbulk terminals accessible from the consolidation terminal,
long-haul arcs can be incorporated as well.

Consideration shows that inequalities similar to (4c) can be written when n includes nodes
served by more than one vehicle type (breakbulk terminals), and that the cut-set inequalities in
Atamtürk (2002) can be used to generalize (5) for this case. Therefore, cut-set inequalities can be
written for arbitrary sets of ground terminals. In addition to these inequalities, we also add residual
capacity inequalities (as proposed in Atamtürk and Rajan (2002) and Magnanti et al. (1993)) for
each ground arc.

Implementation of cutting planes

Single and multiple capacity cuts are added iteratively after the column generation phase. Once
cutting planes are added, further columns are not added to the formulation.6 The cuts produced
the largest improvements in the LP relaxations in the first five or six iterations when tested with
the cases described in Section 6.1. For the large problems, each iteration can take up to forty
minutes.

5.2 Upper bounding techniques

In this section, a summary of the rounding techniques explored to obtain feasible solutions is
presented. For further details on these rounding techniques, see Smilowitz (2001).

Rounding approach 1

Integer solutions are obtained by solving two auxiliary linear programs after the LP relaxation of
DIVRP-D is solved. First, all fractional ground vehicle variables are rounded up to the smallest
integer. These values are used as lower bounds on the arcs of a network flow model for ground
vehicles only (the vehicle flow problem) that minimizes the transportation costs of ground vehicles,
without considering item flows. Lower bounds on ground vehicles ensure sufficient capacity for the
items. Due to the total unimodularity of the network flow matrix and integral right-hand sides, the
solution is integer. Thus we have a feasible vehicle routing. Next, the item flow problem allows path
flows to be redistributed over the ground network obtained. This approach is described formally
below.

(a) Let {x̄a, f̄ka } be an optimal solution to the LP DIVRP-D. Round up fractional ground
vehicle values: i

a = x̄ia , ∀a ∈ GA,∀i ∈ V .
(b) Solve the vehicle flow problem to balance ground vehicle movements

min
a∈GA,i∈V

cax
i
a (6a)

subject to

(m,n)∈GA
xim,n −

(n,m)∈GA
xin,m = 0 ∀n ∈ N, i ∈ V (6b)

xa ≥ i
a ∀a ∈ GA, i ∈ V (6c)

6Therefore, cuts are not included in the lower bounds presented in Section 6.
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(c) Reflow items over the fixed ground network with integer values {x̂ia}, where x̂ is the
solution from step (b).

min
k∈K P∈Pk

cPλP +
a∈A,i∈V

cax̂
i
a (7a)

subject to

P∈Pk
λP = 1 ∀k ∈ K (7b)

k∈K P∈Pk:a∈P
λPd

k ≤ ea ∀a ∈ EA (7c)

k∈K P∈Pk:a∈P
λPd

k ≤
i∈V

x̂iavi ∀a ∈ GA (7d)

λP ≥ 0 ∀k ∈ K,P ∈ Pk (7e)

While this approach guarantees feasibility of capacity constraints and ground vehicle balancing
constraints, it could lead to a heavily over-capacitated ground network and a large optimality gap.

Rounding approach 2

Here near-integer variables are rounded to the nearest integer, either up or down in step (a). The
vehicle flow problem is run to ensure vehicle flow balancing constraints are met; however, step (c)
may be infeasible if there is insufficient capacity since variables may be rounded down in step (a).

Rounding approach 3

A variation of the first approach ignores step (b) and re-runs the entire DIVRP with a fraction of
ground vehicle variables fixed. This approach is run iteratively, fixing more variables at each step
and running DIVRP-D to check for feasible, integer solutions. It is implemented as follows:

(a) Define a set GA of candidate fractional ground vehicle variables to fix.

(b) Fix some variables in GA at integer values.

(c) Rerun DIVRP-D with selected ground variables fixed.

Repeat until no fractional values remain or an infeasible solution is reached.

The candidate set of ground vehicle variables can be defined in several ways, see Smilowitz
(2001). One example, shown below, is based on the near-integrality of variables x̄ia:

i. GA = {a ∈ GA : min{ x̄ia − x̄ia, x̄ia − x̄ia } < α} for α ∈ (0, 1].
ii. Select a fraction β of candidate variables where β > ρ, for some random number

ρ ∈ [0, 1] and fix these variables in step (b).
It is critical to choose an appropriate number of fractional variables to fix. Fixing too many

(high values of α and β) may lead to an infeasible solution, in terms of vehicle balance and item
capacity. Fixing too few (low values of α and β) may lead to a highly fractional solutions, much
like the linear relaxation itself, requiring many iterations to reach an integer solution.

Rounding approach 4

In a variation of approach 3, near-integer variables are bounded rather than fixed. This approach
provides a feedback loop where item and vehicle flows are adjusted to accommodate the new set of
bounds. The same options for selecting and rounding candidate variables from approach 3 are used.
Iterative solutions to approach 4 may not produce integer solutions; approach 1 can be employed
to obtain integer solutions from an existing fractional solution.
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Comparison of rounding approaches

The rounding approaches are applied at different stages of the column generation to improve the
upper bounds. In Figure 4, the trade-off between improved bounds and computation time is shown.
Lines join results for common test cases. In particular, test cases ID1 and ID7 are highlighted along
with the values of α and β, respectively, for approaches 3 and 4. As expected, lower values of α
and β often produce better bounds, yet require longer solution times. Fixing variables rather than
bounding them often led to infeasible solutions. Rounding approach 3 appears to produce the best
bounds; yet solution times are quite high. For larger problems, it may not be practical to run
approach 3; approach 1, with shorter solution times, may be preferred.

6 Results and discussion

A series of test cases is used to analyze the solution method and explore potential cost savings from
integration. The test cases are introduced in Section 6.1. The performance of the solution method
is discussed in Section 6.2.1, focusing on the quality of the solutions produced by the heuristic as
a function of problem size. Section 6.2.2 shows the extent to which excess capacity translates into
cost savings in long-haul transportation.

6.1 Implementation issues

Attempts are made to obtain realistic parameter estimates. However, as a result of modeling sim-
plifications and imperfect information, there are differences between results obtained here and those
found in the industry today. With the methodology developed, package delivery companies can be
more proactive and explore a wider range of “what if” scenarios; results provide valuable insight
into real world applications. While package delivery carriers have been consulted as part of this
research, there has been no direct sharing of private demand and cost information. Therefore, the
cost data and operating statistics is based on ealier work on package delivery from Han (1984), Han
and Daganzo (1985), and Kiesling (1995). Public company literature from public package deliv-
ery companies complement these studies, Federal Express Corporation (1998a), Federal Express
Corporation (1998b), and United Parcel Service (2000).

Network descriptions of the test cases are provided in Table 2. There is only one main air hub
in the network. The total number of nodes and arcs in the time-space graph is given. Arc counts
include ground vehicle and air arcs only, since the number of inventory arcs does not significantly
impact computation. The final columns show the initial number of rows and columns in the
Dantzig-Wolfe reformulation. A typical business day is divided into smaller time units, consistent
with pickup and delivery times; each test cases includes a three-day cyclic planning horizon with
four time intervals per day. A three-day delivery window is assumed with items arriving each
morning for distribution. Distances between nodes are converted into integer multiples of time
units based on vehicle travel speeds. Travel times include slack for expected delays. Cost estimates
and operating statistics are presented in Table 3. Demand information is derived randomly based
on estimated from Smilowitz (2001) where customer density is estimated with housing counts from
the 1990 United States census as a proxy for customer locations and population for demand.

6.2 Computational results

The solution method is applied to the test problems to evaluate potential savings from service and
mode integration. We look first at the performance of solution method, especially when applied to
larger problems. The solution algorithms are implemented with the CPLEX Callable Library on a
Sun Ultra 10 workstation.
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6.2.1 Solution heuristic performance

The test cases are compared for varying levels of excess capacity from no excess capacity to upwards
of 40% using the solution heuristic. The “capacity level” is the amount of excess capacity available as
a percentage of total deferred demand. The cost savings from excess capacity are approximated by
changes in lower bounds ∆LB and upper bounds ∆UB. The problems have different cost structures,
vehicle capacities and demand levels, so it is not be surprising that the gaps between upper and
lower bounds in the following discussion do vary, as some data characteristics favor tighter linear
relaxations.

Smaller test cases: ID1 - ID4

For small problems, it is possible to test the performance of the solution heuristic with CPLEX
branch-and-bound techniques to gain insight into the quality of the bounds and the resulting savings
measures. As problem size increases, this is not possible. Problems ID1 through ID4 are solved
both with the solution heuristic and with CPLEX using branch and bound with a time limit of one
hour. Results are shown in Table 4. Looking at the gaps between bounds, CPLEX significantly
outperforms the solution heuristic with problem ID1; however, the difference between the two
methods decreases with problem size. Therefore, the solution heuristic is run as a supplement to
CPLEX. The gaps obtained with a combination of CPLEX and our solution heuristic are shown in
the fifth column of Table 4. In 75% of these test cases, adding the heuristic to CPLEX improves
the gap between bounds. The combination of the methods appears to be a good option for the
mid-sized problems in our data set.

The test cases performed with CPLEX also reveal that the lower bounds are tighter than the
upper bounds for problems ID1 and ID2. The same statement can not be made conclusively for
problems ID3 and ID4, although results suggest lower bounds are tighter in these cases as well.

It is also possible to compare the path-based formulation of the linear relaxation with the
arc-based formulation for problems ID1 through ID4. The final column of Table 4 presents the
optimality gaps obtained with the arc-based formulation, using single capacity cuts to improve
lower bounds and CPLEX branch and bound techniques to obtain upper bounds.7 The gaps are
significantly higher than the optimality gaps obtained with the arc-based formulation for problems
of comparable size shown in Table 1. This can be explained by differences in cost and operating
parameters: most importantly vehicle capacities and fixed vehicle costs. In these cases, as the
problem instances increase in the number of nodes and arcs, the gaps become similar to the gaps
obtained with the combined solution heuristic and CPLEX.

Larger test cases: ID5 - ID11

The CPLEX diagnostic techniques used for smaller problems cannot be used for larger problems
since CPLEX cannot even find a feasible solution within one hour. Large gaps between upper and
lower bounds are observed for problems ID5 through ID11 in Table 5. Without knowing the true
optimal solution (or some estimate from CPLEX), it is difficult to say if the larger gaps are caused
by poor upper bounds, poor lower bounds, or both.

Another issue when using the solution heuristic on larger problems is solution time, as shown in
Table 5. The time required to run the column generation is divided into time spent generating new
columns with pricing problems and time spent solving the master problem. The total number of
master problem iterations (i.e., the number of times the master problem is solved with a new set of
columns) is listed. Solution times for the rounding approaches and cutting plane methods are listed.
The total solution time is provided in the last column. Solution time for linear relaxations within

7A ten hour time limit was imposed. Here cuts can be used to improve the lower bounds since all feasible routes
from origin to destination are included.
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column generation and cut generation appear to be the largest bottleneck in terms of processing
time. Rounding approaches 3 and 4 are not used for similar time reasons.

6.2.2 Savings from integration

For the smaller problems, cost savings measured by either changes in upper or lower bounds appear
consistent despite large gaps between bounds. In Figures 5 and 6, the cost savings from test cases
ID1 through ID4 (measured by the change in the best feasible solution, ∆UB) are shown when
CPLEX is used with the solution heuristic, and when only the heuristic is used, respectively. Cost
savings are plotted as a function of the amount of excess capacity available. The figures show that
savings increase significantly with available capacity. The rate of increase depends most strongly
on the relative cost of transporting an item for a mile by air and by truck. (Obviously, if ground
transportation were free, relative to air, then the savings would be zero.) Recall that fixed air
costs are not considered for these items as deferred items are sent by air via excess capacity on
existing aircraft routes. It is expected that networks with higher fixed ground vehicle costs will
experience greater savings. Cost savings should also depend on other characteristics of a problem
instance, such as the ratio of truck capacity to average airplane excess capacity, and the average
daily demand per origin-destination pair expressed in truckloads. An effort has been made to use
realistic values for these (and other) parameters in our examples. Therefore, the results of Figures
5 and 6 should be fairly representative for networks of similar size.

It is more difficult to quantify savings for larger problems because the gaps in the algorithms
are larger. Unlike the smaller problems, we obtain different measures of savings from integration
depending on the bounds used (∆LB versus ∆UB). However, Figure 7 shows positive savings and
definite trends for both the upper and lower bounds. Since the upper bound in the figure are the
best solutions that can be obtained (with existing methods), we can conclude that positive savings
and positive trends should be the rule if one uses the best method. The lower bound results, and
the results of Figures 5 and 6 suggest that this will continue to be true when improved methods
are developed.

7 Conclusions

For larger problems, the test cases illustrate that savings can be achieved, but the solution method
does not reach the necessary level of detail. New solution techniques to solve larger problems
should be explored. Since the time required to solve the master problem within column generation
is prohibitively large, this should be a major focus of future research. Other relaxations of the
problem are possible and could be explored in future work. In addition, it may be beneficial to
consider ways to decompose the problem, possibly by geographic location.

In addition, results from smaller test problems suggest the upper bounds are not tight. Round-
ing heuristics should be refined to account more explicitly for possibility of shifting items to air.
Approaches 3 and 4 should hold promise in reducing gaps; however, solution time is a limiting
factor on the use of these approaches. Another possible rounding heuristic would be to consider
fractional values in cycles in step (a) of approach 1, rather than as individual arcs. Ground vehicle
variables can be adjusted in cycles of the network in such a manner that would ensure that items
could flow feasibly over the network and ground vehicle balancing constraints could be maintained.

As these improvements are incorporated, the modeling approach for the DIVRP could be ex-
tended to examine networks with multimodal hubs. Multimodal hubs would enable inbound and
outbound transportation of deferred items to be modally decoupled at the hubs. Items traveling
between a given origin/destination pair could then be served by a combination of modes with the
mode transfer occuring at the main hub. This variation would provide greater flexibility to balance
loads on aircraft into and out of the hub. Another important area of future research would be to
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incorporate demand uncertainty into DIVRP models to make the models more useful for day-to-day
planning.
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Test problem 1 Test problem 2

DIVRP-D DIVRP-A DIVRP-D DIVRP-A

Problem size

CT’s 20 20 20 20

BBT’s 4 4 4 4

Time periods 8 8 12 12

Constraints 20,676 8,472 31,500 12,834

Total variables 49,164 29,436 74,268 47,736

Integer variables 4,704 4,704 7,008 7,008

Linear relaxation

CPU time (minutes) 1.4 0.9 0.4 0.3

Simplex iterations 24,231 21,465 15,226 13,878

Objective value 101,840 101,840 152,760 152,760

Integer solution

CPU time (minutes) 433 600 300 300

Branch and bound nodes 18,892 6,140 70 130

Best integer solution 102,350 102,513 154,141 154,141

Best linear solution 101,840 101,840 152,760 152,760

Optimality gap 0.5% 0.7% 0.9% 0.9%

Limiting factor Memory Time Time Time

Table 1: Problem size and solution statistics by formulation.

Problem CT’s BBT’s Commodities Nodes Arcs Initial rows Initial columns

ID1 4 2 36 84 240 372 348

ID2 6 4 90 132 720 858 942

ID3 8 4 168 156 1,380 1,224 1,704

ID4 11 5 330 204 2,634 2,208 3,150

ID5 23 8 1,518 384 7,593 6,699 9,450

ID6 38 15 4,218 648 7,425 11,187 12,270

ID7 40 12 4,680 636 5,688 9,744 10,920

ID8 50 15 7,350 792 12,630 16,644 20,742

ID9 62 15 11,346 936 12,327 21,201 24,474

ID10 135 18 54,270 1,848 102,681 94,875 158,274

ID11 141 17 59,220 1,908 35,223 77,751 94,368

Table 2: Description of test case problems 8
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Capacities Marginal costs Fixed costs

Problem regional long-haul regional long-haul air holding regional long-haul
ground ground ground ground ground ground

items items $/item $/item $/item $/item $/veh.mi. $/veh.mi.

ID1 50 200 0.1 0.35 0.075 0.001 80 90

ID2 75 400 0.1 0.35 0.075 0.001 80 90

ID3 40 150 0.1 0.35 0.075 0.001 80 90

ID4 100 500 0.1 0.35 0.075 0.001 80 90

ID5 400 750 0.1 0.35 0.075 0.001 80 90

ID6 500 1000 0.05 0.035 0.075 0.001 80 90

ID7 500 1000 0.05 0.035 0.075 0.001 80 90

ID8 500 1000 0.1 0.35 0.075 0.001 80 90

ID9 500 1000 0.1 0.05 0.01 0.0001 55 50

ID10 500 1000 0.05 0.035 0.075 0.001 80 90

ID11 500 1000 0.1 0.05 0.01 0.0001 55 50

Table 3: Cost estimates and operating statistics

Test Capacity Gap with Gap with Gap with Gap with
Case level heuristic CPLEX CPLEX & heuristic Arc-based

ID1 0 40% 9% 6% 4%

10% 35% 5% 6% 6%

20% 37% 4% 7% 4%

40% 34% 13% 6% NA

ID2 0 29% 31% 26% 11%

10% 31% 24% 23% 11%

20% 31% 27% 18% 12%

40% 37% 35% 23% NA

ID3 0 18% 12% 11% 18%

10% 17% 11% 10% 16%

20% 18% 14% 13% 23%

40% 24% 21% 11% NA

ID4 0 27% 23% 26% 19%

10% 25% 28% 26% 22%

20% 30% 42% 29% 21%

40% 39% 33% 34% NA

Table 4: Improvement in gaps between upper and lower bounds by combining CPLEX and solution
heuristic; smaller test cases: ID1 - ID4.
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Column Generation Bounding

Test Pricing Master
case problem problem Iterations Rounding Cuts Total Gap

ID5 0.03 0.6 11 0.2 14 15 65%

ID6 0.05 6 12 32 36 86 50%

ID7 0.03 4 9 50 5 68 26%

ID8 0.1 17 13 2 250 282 50%

ID9 0.2 41 19 313 797 1,170 44%

ID10 5 1,890 24 145 5,789 7,853 36%

ID11 2 472 25 99 NA 598 55%

Table 5: Time comparisons for larger test cases: ID5 - ID11 (minutes) 9
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Figure 1: Time-space representation of distribution network.

Figure 2: Cyclic network with periodic boundary conditions.
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Figure 3: Outbound cuts from consolidation terminals: (a) first time period (b) second (c) third.
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Figure 4: IP/LP objective value gaps versus computation time.
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Figure 5: Cost savings from smaller test cases: ID1 - ID4: solution heuristic with CPLEX.
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Figure 6: Cost savings from smaller test cases: ID1 - ID4: solution heuristic only.
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Figure 7: Cost savings from larger test cases: ID5 - ID11: solution heuristic only.
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