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BMC Medicine

NREM sleep as a novel protective cognitive 
reserve factor in the face of Alzheimer’s disease 
pathology
Zsófia Zavecz1*, Vyoma D. Shah1, Olivia G. Murillo1, Raphael Vallat1, Bryce A. Mander2, Joseph R. Winer3, 
William J. Jagust4,5 and Matthew P. Walker1,4* 

Abstract 

Background Alzheimer’s disease (AD) pathology impairs cognitive function. Yet some individuals with high amounts 
of AD pathology suffer marked memory impairment, while others with the same degree of pathology burden show 
little impairment. Why is this? One proposed explanation is cognitive reserve i.e., factors that confer resilience against, 
or compensation for the effects of AD pathology. Deep NREM slow wave sleep (SWS) is recognized to enhance func-
tions of learning and memory in healthy older adults. However, that the quality of NREM SWS (NREM slow wave activ-
ity, SWA) represents a novel cognitive reserve factor in older adults with AD pathology, thereby providing compensa-
tion against memory dysfunction otherwise caused by high AD pathology burden, remains unknown.

Methods Here, we tested this hypothesis in cognitively normal older adults (N = 62) by combining 11C-PiB (Pitts-
burgh compound B) positron emission tomography (PET) scanning for the quantification of β-amyloid (Aβ) with sleep 
electroencephalography (EEG) recordings to quantify NREM SWA and a hippocampal-dependent face-name learning 
task.

Results We demonstrated that NREM SWA significantly moderates the effect of Aβ status on memory function. 
Specifically, NREM SWA selectively supported superior memory function in individuals suffering high Aβ burden, i.e., 
those most in need of cognitive reserve (B = 2.694, p = 0.019). In contrast, those without significant Aβ pathological 
burden, and thus without the same  need for cognitive reserve, did not similarly benefit from the presence of NREM 
SWA (B = -0.115, p = 0.876). This interaction between NREM SWA and Aβ status predicting memory function was sig-
nificant after correcting for age, sex, Body Mass Index, gray matter atrophy, and previously identified cognitive reserve 
factors, such as education and physical activity (p = 0.042).

Conclusions These findings indicate that NREM SWA is a novel cognitive reserve factor providing resilience against 
the memory impairment otherwise caused by high AD pathology burden. Furthermore, this cognitive reserve func-
tion of NREM SWA remained significant when accounting both for covariates, and factors previously linked to resil-
ience, suggesting that sleep might be an independent cognitive reserve resource. Beyond such mechanistic insights 
are potential therapeutic implications. Unlike many other cognitive reserve factors (e.g., years of education, prior job 
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complexity), sleep is a modifiable factor. As such, it represents an intervention possibility that may aid the preservation 
of cognitive function in the face of AD pathology, both present moment and longitudinally.

Keywords Alzheimer’s disease, β-amyloid pathology, Memory, Sleep, Slow wave activity, Cognitive reserve, Resilience

Background
The prevalence of Alzheimer’s disease (AD) shows an 
almost exponential increase with age (currently averaging 
around 10% in individuals above the age of 65), causing 
the number of individuals affected by it to escalate as life 
expectancy increases [1, 2]. Further, Alzheimer’s disease 
and its associated pathologies of β-amyloid (Aβ) and tau 
are typified by cognitive impairment [3–10]. Consistent 
with this, individuals with high Aβ burden (Aβ positive, 
Aβ+) have a worse cognitive function and undergo faster 
cognitive decline than those with low Aβ burden (Aβ 
negative, Aβ- [3–6]).

However, a paradox has become increasingly clear: 
some individuals with high amounts of Aβ pathology suf-
fer marked memory impairment, while others with the 
same degree of pathology burden show little impairment 
[11]. Why is this? One proposed explanation is cogni-
tive reserve [12, 13], i.e., factors that offer compensation 
against the effects of substantive AD pathology.

Cognitive reserve factors identified to date include a 
greater number of years of education [14–16], higher 
occupational complexity [17, 18], and higher levels of 
physical activity [19, 20]. Nevertheless, even when com-
bining all reserve factors identified to date, they explain 
only a modest degree of the full magnitude of cognitive 
reserve expressed across individuals [21]. This indicates 
that other such factors must exist that have yet to be 
identified.

Here, we propose that one novel and currently unex-
plored factor supporting cognitive reserve in the face of 
Aβ pathology burden is sleep, and specifically the qual-
ity of non-rapid eye movement slow wave sleep (NREM 
SWS). Five lines of evidence support this hypothesis.

First, a  robust literature has demonstrated the ben-
eficial effect of sleep on cognitive performance, particu-
larly for hippocampal-dependent learning and memory 
[22, 23]. Second, manipulations of NREM SWS and the 
electroencephalographic (EEG) quality of NREM SWS 
(indexed in slow wave activity, SWA) causally enhance 
cognitive function in older adults, and in those with 
mild cognitive impairment [24, 25]. Third, selective dep-
rivation of NREM SWA in older adults causally impairs 
hippocampal activity and associated learning, espe-
cially for item-based memory [26]. Fourth, Aβ burden is 
associated with impairments in NREM SWA, which in 
turn, predicts worse memory performance [27]. Fifth, 
degraded memory performance is associated with worse 

sleep efficiency, most prominently in individuals with 
high Aβ burden [28].

Despite such converging evidence, the possibility that 
NREM SWA represents a neurophysiological cognitive 
reserve factor that supports superior memory function 
under conditions of high Aβ burden remains untested. 
Of note, the proposal of NREM SWA as a cognitive 
reserve factor is dissociable from existing findings that 
show that impaired sleep is associated with worse and 
declining memory in older adults, and in  those with 
AD pathology. Instead, the current hypothesis describes 
the opposite scenario: when facing severe AD pathol-
ogy burden, NREM SWA beneficially mitigates against 
that high AD pathological state and supports superior 
cognitive function as a result. That is, we propose a new 
pathway through which sleep and cognitive function are 
connected in AD, namely a cognitive reserve pathway 
wherein NREM SWA confers protective compensation 
against existing AD pathology burden.

We tested this overarching hypothesis by combin-
ing 11C-PiB (Pittsburgh compound B) positron emis-
sion tomography (PET) scanning, which offers in vivo 
estimates of Aβ burden, with sleep EEG recordings 
quantifying NREM SWA, and a behavioral test of sleep-
dependent hippocampal-related learning, focusing on 
item-based memory [26]. This design offered a test of the 
prediction that NREM SWA moderates the effect of Aβ 
pathology burden on memory function, such that NREM 
SWA supports superior cognitive performance under cir-
cumstances of high need for cognitive reserve, i.e., high 
Aβ burden. Thus, the study addressed the three formal 
components that have been described in the characteri-
zation of cognitive reserve [12, 13]: 1) a feature or disease 
measurement known to impact cognition (here, Aβ), 2) a 
measure of cognition (here, memory function), and 3) a 
variable that influences the relationship between Aβ and 
memory (here, NREM SWA).

Methods
Participants
Sixty-two cognitively normal older adults participated 
in the study. Thirty-one individuals were β-amyloid 
positive (Aβ+) and thirty-one were Aβ-, based on an 
established cutoff (1.065 global PiB distribution volume 
ratio (DVR) [29, 30], and see Table 1 and Fig. 1A). Data 
from twenty-six of these participants were included in 
a previous publication [27]. Participants were recruited 
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from the Berkeley Aging Cohort Study (BACS) which 
allowed for the selection and enrollment of participants 
with a full range of PiB DVR values. Exclusion criteria 
were history of neurologic, psychiatric, or sleep disor-
ders, current use of antidepressant or hypnotic medi-
cations, and presence of contraindications for exposure 
to the high magnetic field of MRI imaging. All partici-
pants scored ≥ 25 on the Mini-Mental State Examina-
tion (MMSE). Several factors motivated the inclusion 
of cognitively normal elderly individuals in the current 
study. First, in the early stages of Alzheimer’s disease 
(AD) pathology, the diversity and severity of different 
pathologies in the brain are less extensive and therefore 
more optimal when studying specific pathologies (i.e., 
Aβ) in isolation, as motivated by the current hypoth-
esis. Second, the early stages of the AD pathological 
cascade, such as Aβ pathology [10], allow for cogni-
tive reserve to the greatest extent, indicated by a higher 
proportion of cognitively normal elderly adults with 
only Aβ pathology than with Aβ pathology and neu-
rodegeneration [34, 35]. Finally, from a treatment per-
spective, results in such a population allow insights for 
early therapeutic intervention.

General experimental design
All participants completed three sessions. In one session, 
participants underwent PET scanning following 11C-PiB 
injection to measure Aβ burden. Within 2 years of 11C-
PiB PET scanning (median: 0.52 years, and see Table 1), 
participants completed the sleep study session. Partici-
pants spent two nights in the laboratory, where they were 
given 8-hour sleep opportunities monitored with poly-
somnography (PSG). This 8-hour interval was in accord-
ance with age-appropriate averages [36], and the total 
sleep time of the participants was in the normative range 
[37] (Table  1). The first night served as an adaptation 
night to prevent first-night effects [38, 39], whereas the 
second served as the experimental night. Following the 
experimental night, structural MRI scans were obtained 
from all participants in the morning to measure gray 
matter atrophy. Subsequently, participants completed a 
hippocampal-dependent face-name memory task [40]. 
Four participants had missing data in the memory task 
due to not completing the task (N = 2) and insufficient 
number of certain response types (N = 2) resulting in 
an inability to compute memory measures (N = 1 miss-
ing measure for item and N = 1 missing measure for 

Table 1 Demographics, PET, cognitive and sleep summary information (mean ± SD)

In line with previous findings [27], NREM SWA, defined as NREM relative delta power in the 0.5 to 4 Hz frequency range, was significantly higher in the Aβ+ group 
compared to the Aβ- group (p = 0.01, see section ‘Association between Aβ burden and spectral power in the delta frequency range’ and Figure S1 in Additional file 1 [27, 
31–33])

BMI Body Mass Index, PiB DVR Pittsburgh compound B Distribution Volume Ratio, PET Positron Emission Tomography, PSG Polysomnography, NREM Non-rapid eye 
movement, WASO Wake after sleep onset, SWA Slow wave activity, MMSE Mini-Mental State Examination

*p < 0.05

***p < 0.001
a N = 30
b N = 28

Variable Aβ+ group (N = 31) Aβ- group (N = 31)

Age (years) 75.97 ± 3.81 75.26 ± 6.08

Sex (% Female) 68 55

BMI 25.65 ± 3.91a 24.74 ± 4.16

Education (years) 16.65 ± 2.06 17.19 ± 1.49

Global PiB DVR 1.34 ± 0.26 1.02 ± 0.03***

Time interval between PET and PSG sessions (years) 0.63 ± 0.06 0.62 ± 0.08

Total sleep time (min) 325 ± 72 330 ± 63

NREM2 time (min) 178 ± 57 192 ± 60

NREM3 time (min) 64 ± 53 52 ± 36

REM time (min) 48 ± 19 48 ± 21

WASO (min) 121 ± 64 121 ± 53

NREM SWA (relative delta power) 0.73 ± 0.07 0.68 ± 0.08*

MMSE 29.13 ± 1.06 28.90 ± 1.19

Item memory (d-prime) 0.56 ± 0.34b 0.54 ± 0.41

Associative memory (d-prime) 0.51 ± 0.37b 0.46 ± 0.38

Memory composite score (z-score) -0.11 ± 0.78 -0.13 ± 0.93
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associative memory). Furthermore, BMI was not assessed 
for one participant and structural MRI was missing for 
one participant. All participants abstained from caffeine, 
alcohol, and daytime naps for 48 hours before and during 
the sleep study session. Participants kept habitual sleep-
wake rhythms for at least 1 week preceding the in-labora-
tory sleep session and completed the in-laboratory sleep 
study in accordance with their individual rhythms. In a 
separate session (on average within a half year from the 
experimental sleep session, median: 0.44 years), partici-
pants also completed multiple questionnaires and cogni-
tive tasks, including the assessment of physical activity in 
the last year [41] and a composite memory measure [42].

PET scanning
11C-PiB PET imaging, quantifying Aβ burden, was con-
ducted in 3D acquisition mode using an ECAT EXACT 
HR (N = 20) or BIOGRAPH Truepoint 6 scanner (Sie-
mens Medical Systems, Erlangen, Germany). 11C-PiB 
was synthesized at the Lawrence Berkeley National 
Laboratory Biomedical Isotope Facility using a pub-
lished protocol and described in detail previously [43]. 
After intravenous injection of ∼15 mCi of 11C-PiB into 
the antecubital vein, 90 minutes of dynamic acquisition 
frames were obtained (4 × 15, 8 × 30, 9 × 60, 2 × 180, 10 
× 300, and 2 × 600 s). For each 11C-PiB scan, a positron 
transmission scan or CT scan was obtained for attenua-
tion correction. PET images were reconstructed using an 
ordered subset expectation maximization algorithm with 
weighted attenuation. Images were smoothed with a 4 
mm Gaussian kernel with scatter correction.

11C-PiB data were realigned, and frames from the first 
20 minutes of the acquisition were averaged and coreg-
istered to participants’ corresponding structural MRI. 
Structural MRI was assessed using a 1.5T Siemens Mag-
netom Avanto scanner at Lawrence Berkeley National 
Laboratory (T1-weighted MPRAGE images, TR/TE 
= 2110/3.58 ms, FA = 15°, 1 × 1 × 1 mm resolution). 
Distribution volume ratios (DVRs) for 11C-PiB images 
were generated with Logan graphical analysis on 11C-PiB 
frames corresponding to 35-90 minutes after injection 
using a cerebellar gray matter reference region [44, 45]. 
Global 11C-PiB DVR was calculated as a weighted mean 
across FreeSurfer-derived native space frontal, tempo-
ral, parietal, and cingulate cortical regions as in previous 
studies [29, 30]. Participants were classified as Aβ+ if 
their global cortical 11C-PiB DVR was ≥1.065 in accord-
ance with previous studies [29, 30]. Experimenters were 
blinded to participants’ Aβ status during data collection.

Sleep monitoring and EEG analysis
Polysomnography on the nights of the sleep session 
was recorded using a Grass Technologies Comet XL 

system (Astro-Med, Inc., West Warwick, RI). This sys-
tem included a 19-channel EEG placed according to the 
10–20 system, electrooculography (EOG) recorded at 
the left inferior and right superior outer canthi, and elec-
tromyography (EMG) on the chin. Reference electrodes 
were left and right mastoid (A1, A2). Data were digitized 
at 400 Hz.

Data were scored using a validated automated sleep 
scoring software [46] and further assured with visual 
inspection by two trained sleep-scoring professionals 
(Z.Z. and O.M.) in accordance with standardized criteria 
[47]. In parallel to sleep scoring, 30-second epochs with 
major body movements were rejected based on visual 
inspection. Channels with marked artifact noise were 
also identified during visual inspection and omitted from 
subsequent analyses. To reduce artifacts, EEG data were 
re-referenced from the contralateral mastoids as needed 
to the average of the mastoids (N = 24) or a unilateral 
mastoid (N = 5). Furthermore, for any participant with 
slow drift artifacts due to sweating (N = 27), a semi-auto-
matic, amplitude-based rejection was applied to their 
EEG data. For each affected participant, a sweat artifact-
free, 30-second long epoch from deep sleep (NREM3 
stage) was selected based on visual inspection. For each 
participant and for each EEG channel, the average band-
power between 0.2 and 0.8 Hz in this sweat artifact-free 
epoch was computed. Further EEG data was rejected on a 
5-second basis whenever the bandpower between 0.2 and 
0.8 Hz exceeded 1.5 times the individual amplitude of 
the clean epoch in any of 3 frontal channels (F3, F4, Fz). 
Frontal channels were specifically selected as the sweat 
artifact was expressed the strongest in those channels.

Spectral power analysis of artifact-free segments was 
performed using the validated open-source Python tool-
box for sleep analysis (Yet Another Spindle Algorithm, 
YASA [48]). Data were first downsampled to 100 Hz and 
filtered between 0.5 and 35 Hz. Next, power spectrum 
was calculated for NREM and REM sleep stages sepa-
rately using Welch’s method, median-averaging 4-second 
intervals with 50% overlap, and employing Hamming 
windowing. The analyzed frequencies spanned between 
0.5 and 35 Hz with a 0.25 Hz bin resolution. Next, band-
power was calculated by integration (area under the 
curve) for the following frequency ranges: Delta (0.5-4 
Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Sigma (12-16 Hz), 
Beta (16-30 Hz), Gamma (30-35 Hz). Finally, relative 
power was computed by dividing the bandpowers by the 
total power observed in the 0.5 - 35 Hz frequency range. 
Analyses in the current report focused, a priori, on SWA, 
defined as relative delta spectral power during NREM 
(NREM2 and NREM3 stages) sleep. Comparing the 
adaptation night to the experimental night, NREM SWA 
showed high test-retest reliability (r = 0.76, p < 0.001).



Page 5 of 12Zavecz et al. BMC Medicine          (2023) 21:156  

Face-name memory task
Next-day memory was assessed using a validated, face-
name hippocampal-dependent task sensitive to age and 
sleep effects [40, 49, 50]. This task has been proven to 
have good reliability in older adults [51–53]. The task 
consisted of an encoding phase where 120 face-name 
pairs were introduced and a recognition test that fol-
lowed the end of the encoding phase after a 30-minute 
delay [40].

During the encoding phase, each face-name pair was 
shown a single time. The task consisted of 4 blocks, each 
containing 30 trials. Participants were given the opportu-
nity to rest between the blocks. Each block took approxi-
mately 5 minutes, with the entire encoding phase taking 
20 minutes. For each trial, a fixation was first presented 
for 0.5 seconds (white background, black Arial font, 24 
points, center screen), followed by a face-name pair for 
3.5 seconds. To ensure that participants attended to each 
face-name pair, each pair remained on the screen for an 
additional 2.75 seconds during which participants had 
to determine if the name “fit” the face [40]. Participants 
were instructed to remember each face-name pair for 
testing. Face stimuli were drawn from a standardized 
database [54] and were counterbalanced based on gen-
der (male, female) and age group (young: ages 18-49, old 
ages: 50-90). Names were drawn from the 1990 US cen-
sus and were counterbalanced for frequency of use in the 
US population. The presentation order was pseudo-ran-
domized such that no more than four faces of identical 
gender or age group were presented successively.

The recognition test consisted of 200 trials, with each 
face/face-name pair tested once. The whole test lasted 
approximately 45 minutes. Out of the 200 trials, 120 
contained faces presented during the encoding, and 80 
were novel faces (foils). Foil faces were balanced for age 
and gender similarly to the encoded material. For each 
recognition trial, a face was presented on the screen, at 
the same size and location as presented during encod-
ing. In a self-paced manner, participants first had to 
answer whether they had seen the face during the prior 
encoding phase (original) or not (new) by a correspond-
ing keyboard response [40]. Following this, with the face 
stimulus remaining on the screen, participants were 
presented with four options to choose from to test asso-
ciative memory recognition: (1) the original name pre-
viously paired with that face (correct ‘hit’ response), (2) 
a name previously seen before at encoding, but with a 
different face (incorrect ‘lure’ response), (3) a new name 
never shown during encoding (incorrect response), or 
(4) an option “new” rejecting the trial as a foil trial [40]. 
The four response options appeared horizontally on the 
screen with the first three always corresponding to names 
in a randomized order in regards to response type. New 

(foil) faces were presented with all new names never 
shown during encoding. As with encoding, faces were 
presented in a randomized order.

Two distinct d-prime sensitivity memory measures 
were computed based on the recognition test. Item 
memory performance was quantified by subtracting the 
standardized false alarm rate for the faces (the propor-
tion of faces falsely declared to be previously seen out of 
all the foil trials) from the standardized hit rate for pre-
viously encoded faces (the proportion of faces correctly 
recognized as previously seen out of all the encoded face 
trials). Associative memory was quantified by subtract-
ing the standardized lure (miss) rate (the proportion of 
misses, where participants chose the lure names instead 
of the correct answer out of all previously encoded tri-
als where the participant correctly identified the face 
as being previously studied) from the standardized hit 
rate of the face-name pairs (the proportion of faces and 
names correctly paired out of all previously encoded tri-
als where the participant correctly identified the face as 
being previously studied).

Physical activity assessment
Physical activity was quantified using a previously vali-
dated questionnaire [41]. A list of 15 leisure-time physi-
cal activities (e.g., cycling, dancing, swimming) was 
provided and participants were asked to report whether 
they engaged in each of the activities (or any other that 
was not included in the list). Further, for each activity, 
information was collected on the frequency (how often 
during the previous 2 weeks and how many months per 
year) and duration (time spent per session) of engage-
ment. Frequency and duration information were multi-
plied using an activity-specific intensity code indicating 
calorie expenditure [55] and summed to represent the 
intensity of physical activity (total kilocalories of energy 
expended) during the past year.

Memory composite score
Trait-like episodic memory function was measured 
by a composite score that consisted of short-delay and 
long-delay (after 20 min) free recall scores of both the 
California Verbal Learning Test [56] and the Visual 
Reproduction Test [57]. Individual scores were Z-trans-
formed using mean and SD from the first cognitive ses-
sion data of a larger sample of BACS participants. The 
composite score was calculated as the mean of the stand-
ardized individual test scores.

Structural MRI analysis
Selective atrophy within the medial prefrontal cortex 
(mPFC) has been shown to influence the relationship 
between sleep and cognitive performance in elderly 
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adults [58, 59]. Therefore, to measure mPFC atrophy, 
structural MRI scans were obtained from all participants 
during the sleep session. Structural MRI was assessed 
using a Siemens Trio 3T scanner. High-resolution 
T1-weighted MPRAGE images were acquired for every 
participant (TR/TE = 1900/2.52 ms, FA = 9°, 1 × 1 × 1 
mm resolution).

To measure gray matter volume, optimized voxel-based 
morphometry (VBM) [60] was performed using SPM12 
[61] with the Computational Anatomy Toolbox (CAT12) 
[62] and the Diffeomorphic Anatomical Registration 
through Exponentiated Lie algebra (DARTEL) [63] tool-
boxes. Gray matter and white matter segmentations were 
used to create a study-specific DARTEL template, which 
was then used to normalize individual brains into MNI 
space to improve the registration of older brains to the 
normalized template [64]. Modulated gray matter maps 
were then smoothed using an 8 mm Gaussian kernel.

To compute gray matter volume in the mPFC, the Ana-
tomical Automatic Labeling repository [65] within the 
Wake Forest University PickAtlas toolbox [66] was used 
to generate an anatomically-based ROI. Mean voxelwise 
gray matter volume within this ROI was extracted using 
the Marsbar toolbox [67]. Measures of total intracranial 
volume for each participant were estimated from the sum 
of gray matter, white matter, and CSF segmentation, and 
used to adjust mPFC gray matter volumetric measures to 
account for differences in head size.

Statistical analysis
Statistical analyses were conducted in R 4.1.0 [68] using 
the stats, sjPLot, and interaction packages [69, 70]. To 
compare the global PiB DVR, demographic, sleep, and 
cognitive measures between the Aβ+ and Aβ- groups, 
independent, two-sample t-tests were used. To test the 
hypothesis prediction that NREM SWA moderates the 
effect of Aβ pathology status on memory function, a 
multiple linear regression was employed with Aβ status, 
NREM relative delta power, NREM relative delta power 
by Aβ status interaction, and age, sex, Body Mass Index 
(BMI), gray matter atrophy, the time difference between 
the PET and sleep sessions, education, and physical 
activity as regressors predicting memory performance. 
Specifically, from this multiple regression, the interac-
tion between NREM relative delta power (SWA) and Aβ 
status indicated evidence of cognitive reserve. A post-
hoc statistical power analysis was performed in GPower 
3.1.9.7 to estimate the achieved power of this analysis. 
To explore regional specificity, multiple linear regres-
sions were computed with relative delta power for each 
EEG channel separately. To control for multiple testing 
in the topography analyses, False Discovery Rate (FDR) 
correction was applied. To assess frequency range and 

sleep stage specificity, similar multiple linear regressions 
were employed, by replacing NREM relative delta power 
with other NREM and REM frequency range spectral 
power measures. Similar to NREM SWA, the interac-
tion between Aβ status and spectral power measures was 
evaluated. To control for multiple testing in these non-
hypothesis-driven regression results, FDR correction 
was applied. Further, to differentiate trait and state-like 
memory benefit effects, a similar multiple regression was 
applied to evaluate the interaction between Aβ status and 
NREM SWA predicting the composite memory score 
that was assessed during a separate session from sleep. 
For all regressions, cognitive performance and sleep data 
were excluded on a case-by-case basis, when outside of 
the 1.5 interquartile range from the first and third quar-
tile across participants in the given Aβ group to ensure 
normal distribution (see Additional file  1: Table  S1 for 
final sample sizes for each regression by Aβ group).

Results
Consistent with prior findings [71] and the proposed 
framework of cognitive reserve under conditions of 
pathological burden, memory performance was similar 
in the Aβ+ and Aβ- groups (t = -0.17, p = 0.86 for item 
memory and t = -0.55, p = 0.58 for associative memory, 
Table  1). These data affirm the relative maintenance of 
cognitive performance in those with high Aβ burden, 
indicating the potential presence of cognitive reserve fac-
tors explaining a preservation of memory function in the 
face of such pathology.

We next tested the hypothesis that one novel reserve 
factor supporting memory preservation across individu-
als with high Aβ burden was NREM SWA quality. A mul-
tiple linear regression model was implemented to assess 
the interaction between NREM SWA and Aβ status in 
predicting memory function (Additional file 1: Table S2). 
Supporting the experimental prediction and a cognitive 
reserve function, NREM SWA demonstrated a significant 
interaction with the Aβ status in predicting item memory 
(std. β = 0.64, p = 0.042, Fig. 1B). Specifically, the extent 
of NREM SWA positively predicted superior next-day 
item memory performance in individuals with high Aβ 
burden (i.e., those with high cognitive reserve need: B 
= 2.694, 95% CI = [0.472, 4.92], p = 0.019), but not in 
individuals with low Aβ burden (B = -0.115, 95% CI = 
[-1.598, 1.37], p = 0.876). Post-hoc power analysis sug-
gested that the study sample size was adequate to detect 
this interaction effect (achieved power = 0.89, see sec-
tion “Achieved power” in Additional file 1).

To control for possible confounding factors, the multi-
ple regression model also included age, sex, Body Mass 
Index (BMI), gray matter atrophy (focused on the known 
NREM SWA-sensitive region of the prefrontal cortex 
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[58]), the time difference between the PET and the sleep 
session, and known reserve factors of years of education 
and overall physical activity state marked by total energy 
expenditure in the past year (in kCal, Additional file  1: 
Table S2). The interaction between NREM SWA and Aβ 
status was not only a significant predictor in the model, 
but notably, it was the strongest predictor of memory 
performance out of all the factors (std. β = 0.64 vs. all 
other |std. β|s ≤ 0.28, see Additional file  1: Table  S2). 
These findings indicate that the cognitive reserve con-
tribution of NREM SWA is potentially independent of 
other previously identified factors impacting cognition, 
including known reserve factors (for further information 
see section “Interaction of NREM SWA with previously 
identified cognitive reserve factors, education and physi-
cal activity” in Additional file 1).

To determine EEG frequency specificity, associations 
between memory performance and NREM EEG spec-
tral power in other frequency ranges were examined by 
employing multiple regression models similar to the 
NREM SWA model but replacing the delta frequency 

range spectral power with other frequencies. The inter-
action between Aβ status and spectral power was not 
significant in any other frequency range, indicating the 
selectivity of the NREM SWA frequency range (Addi-
tional file 1: Table S3). In addition, and indicating sleep-
stage selectivity, no significant interactions between Aβ 
status and EEG spectral power in REM sleep were evi-
dent after multiple comparison correction (Additional 
file 1: Table S3). These findings demonstrate both oscil-
lation frequency and sleep stage specificity regarding the 
association of sleep with cognitive reserve.

The above analyses established an association between 
cognitive function and NREM SWA averaged across the 
entire scalp. However, studies in older adults have dem-
onstrated regionally specific EEG channel associations 
of sleep with memory function, dominant over prefron-
tal cortex regions [27, 59, 72]. Motivated by these local 
cortical relationships, we next sought to explore whether 
the associations between NREM SWA and memory pres-
ervation in Aβ+ individuals were common in strength 
across all EEG derivations, or demonstrated regional 

Fig. 1 β-amyloid (Aβ) burden and sleep-related cognitive reserve in the Aβ+ and Aβ- groups. A Mean voxelwise 11C-PiB DVR PET maps in the 
Aβ+ (left) and Aβ- (right) groups demonstrating Aβ distribution. B Association between item memory and NREM SWA averaged across the scalp 
(indexed by relative delta bandpower) in the Aβ+ (red) and Aβ- (blue) groups after adjusting for age, sex, BMI, gray matter atrophy, education, 
physical activity, and the time difference between the PET and sleep sessions. NREM SWA supported superior memory function in individuals 
suffering high Aβ burden, i.e., those most in need of cognitive reserve, and not in those without such pathological abutment needs, i.e., those with 
low Aβ burden (regression line, 95% confidence interval, and individual subject data points illustrated in red and blue for each respective group). 
C EEG topographic plot of NREM SWA predicting memory function in the Aβ+ group (slopes adjusted for age, sex, BMI, gray matter atrophy, 
education, physical activity, and the time difference between the PET and sleep sessions). Asterisks indicate FDR corrected ps < 0.05. The strength of 
the associations was comparable over the scalp with the strongest associations observed over right frontal regions
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specificity. Examining the topography in the Aβ+ group, 
NREM SWA showed largely similar strength distribution 
over the entire scalp (Fig. 1C).

Finally, to test whether sleep’s support of memory 
function was a trait-like or a state-like effect, (i.e., gen-
eral or specific to performance the next day), a multi-
ple regression analysis was performed,  identical to that 
above  predicting next-day memory function, but with 
the composite memory score that was measured in a 
separate session from NREM SWA. Consistent with a 
state-like specificity of cognitive reserve function, this 
multiple regression, where sleep and memory function 
were assessed in separate sessions, did not reveal a sig-
nificant interaction between NREM SWA and Aβ status 
in predicting memory (std. β = 0.11, p = 0.473).

Discussion
Together, these findings are consistent with the proposal 
that NREM SWA represents a novel cognitive reserve 
factor supporting next-day memory function under con-
ditions of high resilience need, here, the circumstance of 
high Aβ burden. Adding specificity, no other significant 
positive predictive memory associations emerged with 
other spectral power characteristics of NREM or REM 
sleep in the Aβ+ group.

Furthermore, the association between NREM SWA 
and next-day memory function was significant when 
accounting for covariates, including age, sex, BMI, pre-
frontal gray matter atrophy, and those previously linked 
to resilience, i.e., education and physical activity. The lat-
ter finding might be reflective of sleep as an independent 
factor supporting cognitive reserve. This would suggest 
that combining the appliance of multiple resilience fac-
tors, including sleep, would be additive in their cognitive 
reserve benefit, rather than redundant.

Mechanistically, our findings may be accounted for 
by one or more of three non-mutually exclusive frame-
works. The first is the synaptic homeostasis hypothesis 
[73–75], which suggests that learning during wakeful-
ness increases synaptic strength in learning-dependent 
networks, while NREM SWA downscales and thus re-
normalizes synaptic strength, thereby restoring optimal 
learning. This becomes relevant for the current findings 
considering the aberrant conditions of synaptic poten-
tiation and hippocampal hyperactivity that have been 
linked to high Aβ burden detectable already in early dis-
ease stages [76–79]. Therefore, under conditions of high 
Aβ burden (Aβ+ participants), NREM SWA may play an 
especially critical role in the management of Aβ-related 
synaptic over-potentiation (e.g., within the hippocam-
pus), with the extent of NREM SWA therefore predicting 
the restored efficiency of next-day learning.

A second explanatory mechanism concerns the hip-
pocampal-neocortical transformation of memory, within 
which there is a recognized role for NREM SWA in pro-
moting superior memory consolidation and the resto-
ration of hippocampal learning the next day [80–83]. 
Specifically, newly acquired memory traces are further 
processed during SWS and through a hippocampal-
neocortical dialogue become increasingly hippocam-
pal-independent [84, 85]. Indeed,  preventing sleep and 
specifically, SWS, causally negates this transaction, and 
results in decreased next-day hippocampal encoding abil-
ity [26, 86–88]. Since high Aβ burden is associated with 
hippocampal hyperactivity [76, 78, 89], NREM SWA 
may be especially necessary for hippocampal-neocortical 
transformation in those with greater AD pathology bur-
den to restore the next-day functional activity state of the 
hippocampus and thus associated learning.

A third, novel mechanism concerns glymphatic clear-
ance of metabolic solutes from the brain during NREM 
SWS [90, 91], the glymphatic influx potency of which 
is predicted by NREM SWA [92]. Superior glymphatic 
clearance and higher cognitive functioning have been 
reported in older human adults [93] and rodents [94–96]. 
Within this proposed framework, those with a high Aβ 
burden (Aβ+) would benefit more from the mediating 
glymphatic-enhancing benefit of NREM SWA, expressed 
in superior cognitive reserve, relative to those with lower 
Aβ burden, as observed in the current study.

Beyond mechanism, the current findings have thera-
peutic implications. Unlike many of the previously identi-
fied cognitive reserve factors (such as years of education, 
prior occupation(s), or size of social network [14–18, 
97]), sleep is a modifiable target. As a result, NREM 
SWA may represent a novel therapeutic possibility aid-
ing cognitive reserve. Such a potential is present-day 
viable, considering that sensory (auditory tones, odors), 
transcranial electrical, and magnetic stimulation meth-
ods have all been demonstrated to increase NREM SWA 
[24, 25, 98–101]. This is similarly true for less technologi-
cally challenging methods, such as at-home possible body 
temperature manipulation [102, 103]. Harnessing these 
existing tools for the augmentation of NREM SWA could 
potentially aid in the preservation of cognitive function 
in the face of AD pathology, both in the present moment 
and, with repeated application, longitudinally.

Several testable hypotheses now emerge as next steps 
following the first establishment of a cognitive reserve 
association between NREM SWA and memory under high 
Aβ burden. First, does the enhancement of NREM SWA 
(described earlier) lead to causal improvement in cognition 
expressly under conditions of high Aβ burden, and less so 
under non-pathological demanding conditions of low Aβ 
load? Second, do those who maintain higher NREM SWA 
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quality in the long-term (years) demonstrate preservation 
of cognitive function longitudinally, even with the contin-
ued escalation of Aβ burden? Third, does sleep confer a 
similar cognitive reserve function in the face of the other 
common pathology components of the Alzheimer’s dis-
ease cascade, such as tau burden (that was not testable in 
the current study)? Notably, tau burden has recently been 
shown to correlate not with NREM SWA, but instead, to 
be linked with the precise coupling of slow waves with 
sleep spindle activity [31]. Therefore, it is possible that 
other sleep oscillations and/or sleep stages or even macro-
structure features (e.g., sleep efficiency [28]) offer cognitive 
reserve in response to different AD pathological features, 
or at different stages during the AD pathological cascade.

Finally, our study must be appreciated within the con-
text of important limitations. First, our findings describe 
an association between sleep and next-day memory per-
formance but do not establish directional causality. Sec-
ond, it is possible that other, unmeasured factors, such 
as tau pathology or structural brain changes (e.g., white 
matter atrophy), may explain additional variance in sleep-
dependent cognitive reserve expressed. Third, and relat-
edly, participants in the study consisted of a relatively 
healthy cohort that limits generalizability to the entire 
elderly population or those with AD.

Conclusions
In summary, we offer evidence that one novel and pre-
viously unexplored cognitive reserve factor in the face of 
Aβ burden is sleep, and specifically the quality of NREM 
SWS. Of therapeutic importance, and unlike many other 
cognitive reserve factors identified to date, sleep may 
represent a novel modifiable reserve factor and thus a 
promising treatment target.
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