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ABSTRACT

Small-form-factor, low-power wireless sensors—motes—are
convenient to deploy, but lack the bandwidth to capture and
transmit raw high-frequency data, such as human voices or
neural signals, in real time. Local filtering can help, but we
show that the right filter settings depend on changing ambi-
ent conditions and network effects such as congestion, which
makes them dynamic and unpredictable. Mote collection sys-
tems for high-frequency data must support iteratively-tuned,
deployment-specific filter settings as well as fast sampling.

VANGO, our software system for high-frequency data
collection, achieves these goals via integrated processing
across network tiers. Bandwidth-limited sensor nodes reduce
data in network but rely on microservers, which have greater
computational capabilities and a wider scope of observation,
to plan how. VANGO provides a cross-platform library for
data transformation, measurement, and classification; a fast
and low-jitter data acquisition system for motes; and a mech-
anism to control mote and microserver signal processing.
With VANGO we have developed new applications: the first
acoustic collection system for motes responsive to chang-
ing environmental conditions and user interests, and the first
neural spike acquisition application capable of supporting a
network of nodes.

Categories and Subject Descriptors:

D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; C.2.4 [Computer-Commu-
nication Networks]: Distributed Systems—Distributed ap-
plications; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication
General Terms: Measurement, Performance, Design, Ex-
perimentation

Keywords: Signal processing frameworks, sensor networks,
motes, acoustics, health monitoring
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1 INTRODUCTION

Low power wireless sensor platforms have been designed
and deployed to support long-lived, inexpensive, unobtrusive
and untethered collection of data from the physical world
[13, 15, 25, 26]. Although even the field’s first deployed
applications sampled the environment at much greater spa-
tial resolutions than previously possible, they have generally
been limited to low frequency data (e.g., temperature and hu-
midity) [3, 21, 22]. At the urging of their users, these de-
ployments [11] tend not to process data in-network in ways
that could potentially lose information; instead they collect
all data samples to a resource-rich server, where a researcher
can then search for patterns within a complete data set. At
such low sampling rates, the benefits of lossy in-network pro-
cessing and filtering have not been compelling: there is little
data per node to begin with and most systems have not yet
hit scaling limits. (Of course, lossless compression is valu-
able even at low sampling rates.)

High-data-rate applications, such as those that involve
acoustics, brain waves, seismometers, and imaging, pose new
challenges independent of energy considerations. They pro-
duce so much data per node that mote radios, with their ex-
treme bandwidth limitations, cannot send that data even one
hop in real time. Best-effort collection of such raw data sets
will result in significant data loss due to channel contention
(presuming a multiple access MAC) and network congestion.
Thus, nodes should reduce data before transmission.

If a system must lose data, it is of course better to dis-
card data the user wouldn’t want anyway: the system should
support application-specific filtering. For instance, the users
of an acoustic network might not be interested in quiet peri-
ods. Unfortunately, filter behavior is hard to predict, and ap-
plications will perform poorly when filtering is too aggres-
sive or otherwise poorly calibrated. Sometimes we know a
priori the filter parameters that will collect desired informa-
tion while minimizing transmission energy and bandwidth.
More often than not, however, engineering systems need to
be tuned while running. Which nodes have interesting data
is application- and environment-dependent and time-varying
(as our simple experiments confirm). Users interested in the
data that sensor networks produce do not know exactly the
best way to filter it, because they often haven’t seen such
spatially dense data before.

Ideally, then, our sensing system should let us experi-
ment with filtering and processing parameters at run time.
For instance, when we are calibrating our algorithms, test-
ing hypotheses, or simply searching for interesting patterns
within the data, the system could collect raw waveform sam-



ples to a user-accessible device with the processing and stor-
age capability to perform sophisticated signal analysis: a mi-
croserver. Bringing waveforms back to a microserver lets us
easily explore the consequences of different signal process-
ing parameters. When we’ve discovered a suitable set of pa-
rameters and signal processing elements implementable on
motes, the system could transfer data processing to the sen-
sor nodes themselves, saving bandwidth and increasing the
yield of interesting data. Additional tuning will also occur to
compensate for network effects. The calibration process may
be repeated when deployment conditions change, or period-
ically, to maintain confidence in our data.

We have constructed VANGO, a TinyOS-based [18] sys-
tem for high-rate data collection, around this tuning process.
VANGO is quite flexible—it supports several very different
applications—while being efficient enough to run on small
and very-low-power microcontroller-based sensor nodes. We
make four contributions: We have developed the first acous-
tic collection system for motes that we know of that is flex-
ible to changing environmental conditions and user inter-
ests, and the first neural spike acquisition application capable
of supporting a network of more than two nodes. We have
designed the software system on which these applications
run. This system includes a processing library for data mea-
surement, classification, filtering, transformation and com-
pression; a fast and low-jitter data acquisition system for
resource-constrained motes; and a mechanism to activate and
control mote and microserver processing of signals. Finally,
we demonstrate through experiments the fidelity tradeoffs in
bandwidth limited networks. We show that online calibra-
tion of our processing algorithms can dramatically improve
the yield of interesting data that is collected; and that in con-
gested networks we should filter our data differently than in
unconstrained environments.

2 PLATFORM AND APPLICATIONS

Two target applications motivated our work, each of which
collects data at a high rate. The Auricle system reports acous-
tic data, while the Neuromote system [4] detects and reports
neural spikes generated, for example, by a rat’s neurons. Both
of these applications are instances of VANGO.

The advantages of a mote including size, cost, deploy-
ment flexibility, ability to sleep deeply and wakeup quickly,
low energy consumption, and low environmental impact, re-
main important for these applications. However, mote-like
devices, including the relatively advanced TelosB mote we
use, cannot continuously transmit at the rates these appli-
cations require, and different deployments of either system
might require different data compression strategies. Our work
shows how a software design can collect high-rate data from
motes, even given low-rate radios. This section describes our
hardware platform and applications in more depth.

Sensor platform  VANGO applications use networks of
TelosB motes [25]. TelosB is a state-of-the-art platform for
untethered low-power data acquisition. Each TelosB node
has 10 KB of RAM, a 250 kbps radio, a 12-channel 12-bit
ADC, and a 16-bit MCU running at 4 MHz with no hard-
ware divide or floating point support. For reasons of cost and
power consumption, TelosB motes lack application-specific
DSPs that could compress raw data in sophisticated ways.

Radio bandwidth in TelosB networks can be fundamentally
scarce, depending on the number and density of nodes in de-
ployment and on the hardware resident on each node. Tradi-
tional techniques for signal compression don’t always apply:
for instance, GSM could significantly reduce bandwidth for
acoustics, but a TelosB cannot run its codec in real time.

Auricle  Macroscopic acoustic observations enabled by
dense deployments of untethered, unobtrusive sensor nodes
could provide scientists with a deeper understanding of wild-
life interactions. Proposed acoustic collection projects in-
clude monitoring West Coast acorn woodpeckers and mar-
mots [32, 33]. Equally important applications exist in other
settings, such as building monitoring and smart spaces.

Auricle collects acoustic data from a network of motes.
Each deployed node consists of a mote connected to an am-
plifier and microphone. Nodes are tasked by, and send pro-
cessed data back to, a microserver running our software. In
general, Auricle brings to audio monitoring the advantages
of mote-based sensors, including coverage and scale, low
power consumption, low cost, and easy deployment. Auri-
cle is designed to collect raw acoustic waveforms sampled at
more than 8 kHz. (The normal range of adult human hearing
is approximately 20 Hz to 16 kHz.) Acoustics have hereto-
fore been used by mote-grade platforms primarily for the
purpose of target localization; acoustic waveforms are dis-
carded after being measured but before transmission. Inter-
esting data is lost. In this sense, Auricle goes beyond these
prior systems [30, 34].

Neuromote Electrophysiological recording is a powerful
tool for investigating the mechanisms by which the brain cre-
ates and interprets signals. Recordings can help neuroscien-
tists understand the brain function that accompanies emo-
tions, such as fear and aggression, and diseases, such as epil-
epsy and Parkinson’s disease. Neural signals of interest range
from an electroencephalogram (EEG), a test to measure elec-
trical activity in the brain (on the order of 10 Hz) to hip-
pocampal fast ripples, high frequency activity (250-500 Hz)
of a population of neurons indicative of the onset of epileptic
seizure [1]. Spikes are waveforms with a period of a couple
milliseconds that represent the ion discharge of a single neu-
ron, which normally occur at a rate of 6-10 Hz [36]. To de-
tect neuron spikes, however, a sampling rate of at least 2 kHz
is necessary.

Existing wired electrophysiological techniques cannot be
used to study freely behaving and interacting test subjects
in an enriched natural and social environment, due to the
tethering caused by wires and harnesses. Thus, our Neuro-
mote neural sensing application runs on wireless TelosB sen-
sor nodes interfaced with test subjects (such as rats) via im-
planted depth electrodes and preamplifier circuitry. A Neu-
romote attachment restricts rat movement and behavior far
less than a wired tethering.

Discussion  Any system that collects and transmits data
at such high rates will clearly use a lot of energy. Energy-
limited deployments should sample at high rates only occa-
sionally—with duty cycling, say, or triggered by some other
event. We note, however, that Neuromote and similar deploy-
ments are not energy-limited as the term is conventionally



understood. Long-term disconnected operation is not impor-
tant for Neuromote, but form factor and portability require-
ments require small batteries too weak to power higher-band-
width radios.

3 CASE STUDY

To understand how VANGO is used to filter data in-network
appropriately, we consider a simple Auricle application: col-
lecting the sound of a ringing cell phone.

Ideal environment It is easy to detect, isolate, and col-
lect a ring heard by a single microphone in a low-noise en-
vironment. A mote classifies the captured waveform by its
amplitude—Iloud sections likely contain ringing while quiet
sections likely do not—and transmits only the loud sections.

Determining the right threshold between quiet and loud
is a matter of estimating the ambient noise level and ac-
counting for temporary and unpredictable shifts in that level.
In conventional settings, a noise estimator can differentiate
noise from signal automatically, so long as the ambient noise
level varies slowly and is noticeably below the signal level.
In the context of sensor networks, what we consider to be
noise—or uninteresting data—depends on the user. In an en-
vironment with guns firing and cell phones ringing, one user
might be interested only in the former, another only in the
latter. Determining the threshold between signal and noise
therefore must be an online process, because the definition
of noise changes.

When a cell phone rings in a quiet environment, a mote
that uses an amplitude classifier can save energy and reduce
radio use by discarding sections of the waveform that aren’t
loud enough to be interesting. To identify the right thresh-
old between interesting and uninteresting, a user could run
a sample waveform through a classifier running on a mi-
croserver, and when reasonably sure that the chosen clas-
sifier and parameters will be effective, activate the classifier
on the sensor nodes to save energy.

Figure 1 demonstrates this process in VANGO. (See Sec-
tion 5 for more detail.) The upper sub-figure shows the acous-
tic waveform of a cell phone ringing as sampled by an Au-
ricle mote and collected to a microserver. The environment
has low ambient noise. Analysis on the microserver identifies
sufficient classification software (a simple amplitude gate)
and parameters (the dashed lines) to detect periods of ring-
ing. This information is forwarded to the mote. The lower
sub-figure then shows the system’s response to another ring;
this time, noise-only periods are pre-filtered out.

Signal (mV)

0 2 4 6 8 10 12 14
Time(s)
Figure 1—VANGoO-collected waveforms with and without amplitude gat-

ing. Significant bandwidth and energy are conserved by not transmitting
uninteresting portions of the signal.

Environmental interference  After some time, the ambi-
ent noise level may increase until noise is no longer distin-
guishable from signal using amplitude alone. More sophis-
ticated processing is needed to isolate the interesting por-
tions of the signal. A waveform sample could be sent to a
microserver, which has the resources to, for example, define
a convolution filter that removes noise and preserves signal,
while being simple enough (of small enough order) to oper-
ate in real time on motes.! This filter could be applied to the
representative waveform in combination with an amplitude
classifier to test how well the filter and classifier together
isolate the interesting signal. Once the right parameters are
found, this processing could be activated on the motes.

Figure 2 shows this process in VANGO. No amplitude
gate can selectively filter out noise in a noisy environment
(top), so the user uses raw waveforms to develop an appro-
priate convolution filter (middle). This reveals an amplitude
gate level that preferentially selects the signal (dotted lines);
installing the filter—gate combination on the motes saves trans-
missions (bottom).
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Figure 2—A noisy environment requires an additional convolution filter.

Network interference A microserver receiving cell phone
rings from four different motes may notice gaps in all four re-
constructed signals due to channel contention. If correlation
across sensors is well understood, we could reduce channel
contention by disabling sensors that otherwise would pro-
duce redundant data. However, correlation is often not well
understood, or there may be no redundant sensors. Chan-
nel contention can then be reduced only by more aggressive
filtering before transmission, discarding weakly interesting
portions of the signal so as to provide room on the channel
to transmit strongly interesting portions. Using representa-
tive samples taken form each of the motes, a microserver
might experiment with filtering levels until data is produced
at a rate near the channel’s capacity. (The bitrate at which
the microserver had been receiving data would be a good es-
timate of this capacity.) Then filtering might be activated on
the motes and fine-tuned to actual network conditions.

Figure 3 shows this process in VANGO. Absent local
filtering, multiple motes collecting a signal contend for the
channel, leading to random gaps in each collected waveform
(a, b). Local filtering can select for data the mote closest to
the source (c) at the expense of collecting less information
from the more distant node (d).

IThe order of a filter determines the number of multiplications that must
be performed on each sample.
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Figure 3—Collection in the presence of congestion.

4 SYSTEM DESIGN

The Auricle and Neuromote applications require support for
both interactive experimentation and long-term collection of
high-rate data, and sample formats both uncompressed for
processing and compressed for transmission. We designed
and implemented the VANGO software stack to support these
and other high rate aplications. Its basic abstraction, the sam-
ple set, efficiently provides for sample processing and ap-
plication-specific format extensions. Each deployed config-
uration looks like a single filter chain, simplifying control
messages (and therefore interactive experimentation) and the
construction of new filters. The filter chain abstraction in-
troduces several challenges, including how to process time-
series data in discrete windows; how to format data passing
throught the system so as to be both flexible and efficient;
how to coordinate asynchronous data collection and trans-
mission with synchronous data processing; and how to com-
bine multiple filters.

Figure 4 describes a typical VANGO software configura-
tion. To support tuning and experimentation, the single fil-
ter chain spans two platforms. On motes, sensor data is in-
jected into the system by our data acquisition software and
pushed synchronously in a single call chain down through
the stack of processing filters. At the terminus of this chain
sample sets are marshaled into TinyOS packets and transmit-
ted to a microserver via one or more communication hops. A
microserver uses a TelosB attached via USB as its network
interface; this passes data packets to VANGO’s microserver
code. From there packets are unmarshaled and passed through
a similar processing chain, after which the data is exposed to
other applications.

4.1 Data Acquisition

The interrupt load of a sensor network application that inter-
acts with an ADC, radio, and timers will induce significant
sampling jitter. Furthermore, the interrupt load produced by
an ADC operating at a high rate will overload a system, pre-
venting it from doing much else. To collect high-rate data,
therefore, we make use of the DMA controller packaged with
the MSP430 MCU on TelosB. We wrote a driver for this
DMA and modified existing TinyOS code to use the DMA
to coordinate the transfer of samples from ADC conversion
registers to sequential words in RAM. As opposed to gen-

MSP430ADC12

MSP430DMA
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Double Buffer

lency Gate
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Figure 4—Data and control paths through a VANGO application, including
code running on a TelosB mote and on a microserver.

erating an interrupt after each sample conversion, the DMA
generates an interrupt each time it fills a RAM buffer with
data. In order to minimize the latency in providing the DMA
with a new buffer to fill, and hence to decrease the probabil-
ity that samples are missed while setting up the next buffer,
we prefetch a spare buffer that will be available the instant it
is requested.

The sampler operates asynchronously, reacting to the
DMA’s interrupts. We place a queue between the sampler
and the rest of the system to isolate this asynchrony. Our
queues are designed to work with dynamically allocated buft-
ers; internally, they maintain a circular buffer of pointers to
such buffers. To avoid polling by those wishing to dequeue,
the queue signals when it becomes non-empty.

We run the data acquisition subsystem with compression
software at rates up to 10 kHz. TelosB’s ADC is theoreti-
cally capable of generating 200 kilosamples per second. If
we do not intend to process or transmit data, our acquisition
subsystem can sustain rates of up to 115 kHz; insufficient
radio bandwidth, however, limits this rate to about 21 kHz
(and this presumes that no headers are transmitted and that
the channel is perfect and available all the time). In practice,
without compression, it is difficult to support above 4 kHz.

For Auricle, the data is generated using a low voltage
microphone preamplifier and an omnidirectional condenser
microphone.? For Neuromote, we AC-couple a pre-recorded

28SM2167 from Analog Devices and WM-61A from Panasonic, respec-
tively, as suggested by a reference design by Moteiv Corporation.



neural signal® to a neural preamplifier circuit* that we at-
tached to TelosB. The neural signals are acquired differen-
tially from a signal generator as they would be from a live
subject.’

4.2 Sample Sets

At the core of our system lies the sample set data structure,
which contains sensor data and metadata. Sample sets are dy-
namically allocated from a memory pool and travel through
the system much as messages do. Each sample set consists
of one metadata buffer and one linked data buffer. The DMA
engine described above writes its data directly into a sample
set’s data buffer. The metadata buffer contains fixed slots for
commonly needed information, such as modality, channel,
rate, and time, as well as an extensible scratchpad contain-
ing type-length-value tuples used by filters. The scratchpad
stores intermediate and final processing results. For exam-
ple, our spike detection algorithm will annotate a sample
set with the time, width and height of spikes found in the
raw waveform, while the ADPCM codec adds its state to the
scratchpad. The scratchpad also provides a convenient way
for filters earlier in the processing chain to share data with
filters later in the chain. For example, the Statistics fil-
ter produces a running mean deviation from the mean that is
used by the spikeDetector filter. Our Auricle application
has 372-byte sample sets, 68 bytes of which are allocated to
fixed metadata fields and the scratchpad. The resulting struc-
ture offers a tradeoff between flexibility (the scratchpad) and
space efficiency (the fixed metadata area).

Library functions marshal and unmarshal sample sets into
packet format, facilitating communication with microservers.
To make more efficient use of bandwidth, the sample set
contains a mask describing which fields to send. For exam-
ple, the field specifying the sensing modality may be omitted
when it is known by the microserver. Sampling and process-
ing components coordinate with the marshalling service to
ensure that sample set buffers are allocated to best fit into
packets. For example, a system with a 2 to 1 compression al-
gorithm will, at run time, determine that raw data buffers can
be twice as large as maximum space available for data in a
packet’s payload via a chain of per-filter function calls. This
chain originates at the data acquisition software, progresses
through all filters in the system, and ultimately terminates at
the marshaling service. The call path accumulates the aggre-
gate header size required by all filters; on the return path, the
packet size less this aggregate header size is scaled in accor-
dance with the data transformations each filter performs.

The sample set is VANGO’s universal interface for com-
municating data between all signal processing components
and across platforms. It supplies data to processing compo-
nents in discrete blocks, which makes it well-suited for batch
processing on constrained sensor nodes and for marshaling
into radio packets.

3Reproduced by a Hewlett Packard 33120A waveform generator.

4 Analog Devices AD627 instrumentation amplifier with gain set to 200.

5The amplified output is referenced to half the battery voltage via a
buffered (Texas Instruments OPA234) voltage divider circuit. The DC-
referenced output is applied directly to the ADC input of the TelosB mote,
while the amplifier ground is shared with the mote ground.

4.3 Filters

VANGO’s signal processing takes place on a single linear
chain of filters, each of which transforms input sample sets
into output sample sets. The order of filters in the processing
chain can only be changed at compile time and each filter
can appear at most once in each platform’s part of the chain.
Different sensor nodes can have different chains; however,
in our applications this hasn’t been useful. The linearity and
static composition of our processing chains is a limitation of
our current software rather than fundamental. However, al-
though linear chaining reduces processing generality, it has
not proven to be a limitation for the applications we are tar-
geting. It also has several important advantages, particularly
for motes: filters are easy to compose and performance of a
linear filter chain is relatively easy to analyze. Since chain
reordering at runtime and filter duplication may prove use-
ful as we develop more complicated applications, we are in
the process of porting VANGO to the Tenet architecture [9],
whose tasking aspects VANGO partially inspired. VANGO
filters implemented as Tenet tasks can be duplicated and re-
ordered at runtime.

Not all signal processing algorithms should run as fil-
ters on motes, of course. Many of even the simplest signal
processing functions are too CPU-hungry to function in real
time on a 4 MHz 16-bit processor with no hardware divide
or floating point support. For example, consider Fast Fourier
Transform (FFT), one of the most basic transformations in
signal processing. When optimized for speed, FFT over 512-
sample windows of an 8 kHz signal runs on TelosB at one
eighth real time (0.064 seconds of data runs in 0.5 seconds.)
Furthermore, these algorithms typically use large lookup ta-
bles (on the order of 2 kB) for computing sine. We must seek
even simpler processing elements that execute quickly, and
be willing to trade off some accuracy.

Our filter elements—classifiers, transformation and com-
pression algorithms, and measurements—operate in the time
domain directly on sample sets containing raw waveform
data, processed data, and measurement results. A data path
devoid of signal processing functionality appears like this:

Sampler [Filter] -> Packetizer;

(The syntax is from SNACK [10].) Filters are added in an
application-specific order between the Sampler, which ac-
quires sensor data, and the Packetizer, which marshals
and transmits it. For example, to add ADPCM compression,
we write:

Sampler [Filter] -> Adpcm -> Packetizer;

The mote and microserver halves of Auricle’s data process-
ing path are, respectively,

Sampler [Filter] -> Stats -> FIR -> AmplitudeGate
-> FrequencyGate -> Adpcm -> Packetizer;

and

Unpacketizer [Filter] -> AdpcmDecode -> AmplitudeGate
-> FrequencyGate -> PacketDevices;

(PacketDevices exposes data to a user.) The elements in
such a wiring are the processing elements that will be built
into an application; a runtime control mechanism can dy-

namically enable, configure, and enable or disable those ele-
ments.



We have written filters to analyze and annotate sample
sets, to classify sample sets as being worthy of transmission,
and to transform sample sets into more parsimonious or re-
vealing formats. The microcontroller utilizations of the fil-
ters presented in this paper are summarized in Figure 5, as
well as the utilization of our DMA-controlled sampling.

Measurement filters analyze sample sets, annotating each
set with its statistics using the scratchpad. This factors com-
mon analysis code out of other filters, which can simply ex-
amine the measurement filter’s analysis results. Additionally,
a filter pipeline might choose to throw out the actual sample
data, instead transmitting measured statistics.

We have implemented one measurement filter. Stats cal-
culates the running mean, mean deviation from the mean,
and standard deviation from the mean for a stream of sample
sets and annotates each passing sample set with the current
values of these statistics. In its default mode, stats works
on groups of 64 samples at a time. It calculates its three
statistics for each such group, then adds the three results
to three separate exponentially-weighted moving averages
(EWMAs). A handful of summary counters are carried over
from sample set to sample set, allowing these statistics to be
calculated even when sets don’t contain multiples of 64 sam-
ples. Each sample set is annotated with the three EWMA val-
ues after the packet is processed. This informs downstream
filters of historical statistics for the sample stream, allowing
them to detect unusual deviations. (The configurable EWMA
smoothness constant is set to a = 0.9375 in our experi-
ments.)

We use stats’s running mean to detect the DC offset
of the waveform, a basis for several classifiers that consider
signal amplitude and an indicator of biases in the underly-
ing sensing system. This is susceptible, of course, to alias-
ing effects. Removing aliasing would require extra circuitry
and also possibly some additional computationally signifi-
cant software, such as a convolution filter, depending on the
hardware solution. We implemented a heavyweight mote-
resident software convolution filter and use it to enhance in-
teresting frequency components of a signal. However, as our
sampling rate is generally above the Nyquist rate (eliminat-
ing most aliasing effects), the slight improvement in accu-
racy the convolution filter could bring to a measurement of
the mean is not worth the intense load on the microcontroller
that convolution incurs.

Classification filters classify each sample set as interesting
or uninteresting by modifying an annotation in the sample
set metadata. Each sample set begins as inferesting, but a
classification filter may change the set’s annotation to unin-
teresting. Thus, a sample set is marked interesting at the end
of a filter bank if and only if every intervening classifica-
tion filter thought it was interesting. The Packetizer com-
ponent only transmits interesting sample sets; uninteresting
sets are dropped. Other classifier methodologies are possi-
ble, of course. For example, sample sets can start as uninter-
esting and be marked interesting; this leads to sets that are
interesting if any (rather than all) of the classifiers were in-
terested. We have implemented three classifiers, two that are
generic and one designed specifically for Neuromote. In each
case, the challenge was to implement meaningful classifica-

Filter CPU utilization (%)

ADPCM 439
Amplitude Gate 33
... with summarization 3.4
Dominant Frequency Gate 4.1
... with summarization 4.1
Statistics 19.9
Format 2.8
Fragment 53
SpikeDetector 4.5
... with compression 5.4
FIR (Convolution) order 24 36.3
...order 48 61.1
Sampling (with DMA) 0.3

Figure 5—Worst-case microcontroller utilization of our data processing el-
ements for 304-byte (152-sample) data buffers. The most MCU-intensive
filter (FIR with order 48) consumes roughly 61% of available cycles when
sampling at 8 kHz.

tion with minimal computation—for example, to implement
a lightweight frequency estimator precise enough to support
meaningful classification decisions.

The AmplitudeGate filter finds high-amplitude data in-
teresting. It has two parameters: the threshold above the sig-
nal mean and the number of samples that must be above this
threshold to consider the sample set interesting. The signal
mean is read from the Stats annotation.

The FrequencyGate filter classifies sample sets based
on their dominant frequency. It uses perhaps the simplest
known time-domain dominant frequency estimator, namely
the rate at which the signal amplitude crosses the mean [16].
FrequencyGate maintains two exponentially-weighted
moving averages of dominant frequency. A sample set is
considered interesting if the faster-moving EWMA is within
a desired frequency range. Each time the signal transitions
to interesting, the slower-moving EWMA is set to the value
of the faster-moving EWMA; subsequent sample sets are
considered interesting so long as the slow-moving EWMA
is still within the desired range. This technique is sensitive
enough to avoid missing the beginning of an interesting event
in the signal, and provides hysteresis, allowing the gating
parameters to be set to a high level while reducing false
positives and false negatives. We found empirically by man-
ual experimentation with several acoustic sources similar to
those in Section 5 that smoothness parameters of a = 0.5
(fast-moving) and 0.96875 (slow-moving) work well; these
parameters might need to be retuned for other sources.

Finally, the SpikeDetector filter detects single neuron
activity in the form of a several-millisecond amplitude spike
in the neural signal. The filter’s single parameter is the min-
imum spike height, measured in standard deviations above
the mean; any sample above that height indicates a spike.
A sample set that contains at least one spike is interesting.
The spikeDetector saves information from previous sam-
ple sets so as not to miss spikes that occur near or across
sample set boundaries.

All of these filters use the statistics generated by Stats.

Finally, transformation and compression filters alter the
input waveform. A convolution filter, for example, transforms
an input signal by selectively amplifying and attenuating its
frequency components, while compression filters reduce a
sample set’s resolution, pack its samples more tightly, or
compress it using a stateful compression algorithm. The goal
is simply to reduce the data that the mote must transmit.

The F IR finite impulse response filter transforms an input



signal by direct convolution in the time domain. This tech-
nique takes the sum of the dot product of the filter coeffi-
cients with a sliding window of the samples. By designing
the appropriate filter, we can attenuate arbitrary segments of
the frequency band. We designed our filters (generated ap-
propriate filter coefficients) using GNU Octave signal pro-
cessing functions. The direct convolution technique is well
known and simple to implement, although filtering with fast
convolution using FFT is more common. Because of hard-
ware limitations, we only use short filters, for which direct
convolution is more efficient than FFT in practice.

The Format filter alters the precision and alignment of
samples within a buffer. Format can reduce sampling pre-
cision by truncating 12-bit samples to 8 bits each, or reduce
waste by packing pairs of 12-bit samples into 3 bytes each.
Since Format’s output is a valid sample set, annotated ap-
propriately with its precision and alignment, Format may
appear before or after other filters.

The Adpcm filter is an adaptive pulse-code modulation
compressor used in Auricle. Adaptive pulse-code modula-
tion is a well-known technique for lossy compression of voice
data. When compared to several other compression schemes,
including LPC schemes (GSM 6.10) and simple logarith-
mic encoding (u-law), ADPCM has the best combination of
sound quality and compression rate among the few viable for
real-time compression on motes. We use a variant of the In-
tel/DVI ADPCM codec, modified to eliminate multiplication
and division operations. Encoding with ADPCM reduces 12-
bit ADC samples to 4-bit values. These values are not sam-
ples, and cannot be operated on until they are expanded into
samples; thus, Adpcm must occur last in any filter chain of
which it is a part. ADPCM is stateful, so to ensure resiliency
to packet loss (and to Packetizer’s refusal to transmit un-
interesting sample sets), we include the state of the encoder
in each packet as a four-byte header extension.

Finally, SpikeDetector can be configured to compress
as well as classify. When configured in spike-only mode, it
filters out baseline noise to produce an abridged version of
the signal containing only time-referenced spike waveforms.
It also measures each spike’s height (amplitude) and width
(duration), as these help distinguish the neurons from which
it was generated; the sample set is annotated with these pa-
rameters, which might obviate most investigators’ need for
the raw waveform. The resulting data, like that of Adpcm,
uses a special format, so a SpikeDetector in spike-only
mode must occur last in the filter chain.

4.4 Tasking and Control

Motes collect, process, and transmit data. Data reception,
training of filter parameters, data refinement, data presenta-
tion, and the creation and dispatch of control messages are
the responsibility of the microservers in our network.

Our applications are comprised of two types of executa-
bles: one for the deployed motes to acquire and begin pro-
cessing the sensor data, and another for the microserver to
receive, finish processing and present it. To help integrate
these two executables into a single distributed application,
we write all our software modules in nesC [6] and com-
pose them into services using SNACK. On microservers, we
run nesC code linked to the EmTOS library [7]. From the

perspective of a mote, an EmTOS application appears to be
another mote; however, on the microserver it appears to be
a standard Linux process that may interact with other pro-
cesses using IPC. Using nesC as the base module descrip-
tion language for our entire system simplifies porting data
processing algorithms, control interpretation logic, and link
and routing code from motes to microservers and vice versa.
In most cases, the port requires no coding changes.

Individual filters may be activated and deactivated and
given new parameters at runtime. (A disabled filter passes
any sample set it is given to the next filter in the chain with-
out performing any processing.) Control over where and how
processing occurs is determined by a user connected to the
microserver. Processing on the microserver is invoked using
the same tasking syntax as is used to control deployed motes.

Control of the application is exposed via socket so that a
human user or controlling application may issue commands
from any device with an IP stack. Commands are specified
in ASCII and have the following syntax:

dest : cmd-name cmd-value [ ; cmd-name cmd-value ]* <CR>

For example, to tell all motes to set their amplitude gating
threshold to 200 and to enable ADPCM compression, the
following suffices:

broadcast: gate-threshold 200; adpcm-enable true

At the time of this writing, there are about 50 commands
defined in our system.

4.5 Communication Patterns

In single-hop scenarios, control messages are delivered di-
rectly to intended recipients, either by unicast or broadcast
addressing. In multi-hop scenarios, for reliability, control mes-
sages are flooded using the Drip [19] dissemination protocol
irrespective of the destination address. Relative to the band-
width consumed by our data traffic, the overhead even of
flooding control messages is small.

To avoid expending significant energy buffering sensor
data in Flash and to provide acoustics with low latency, data
is transmitted by sensor nodes very soon after it is produced.
It is collected using the MultiHopLQI routing protocol for
TelosB, which is based on Mintroute [39] and supplied as
part of TinyOS 1.x [18]. MultiHopLQI forms a collection
tree with best-effort transport, as opposed to end-to-end re-
liability. To support high-rate data transmissions, we mod-
ified this code to include a forwarding queue and config-
ured the underlying TinyOS link layer to retransmit at most
once. Presuming a clear channel, on TelosB this link layer’s
CSMA MAC supports a transmission rate close to 80 kbps;
on crowded links, this rate can be significantly less (e.g.,
50 kbps) as backoff delays induce utilization inefficiencies.

5 EVALUATION

This section presents an experimental evaluation of the Au-
ricle and Neuromote applications. We demonstrate that it is
actually possible to monitor high-rate traffic over low rate
radios: our simple and coarse signal processing filters and
classifiers can differentiate interesting data from uninterest-
ing data before it is transmitted, and thus reduce network
traffic. In one experiment, traffic was reduced by 78%. Fur-
thermore, we can dramatically improve the effectiveness of



our collection system through runtime configuration of filter-
ing parameters. For instance, by adjusting the gating levels
for different collections of motes, we can increase the signal
energy we recover by a factor of two.

Our experiments include tests in outdoor and laboratory
settings, using single-link and multi-hop communication ser-
vices, and with uniform filter settings as well as settings that
differ from node to node. We evaluate the performance of
several combinations of processing components, including
Adpcm, Stats, AmplitudeGate, FrequencyGate, and
SpikeDetector, and measure the resulting fidelity trade-
offs in our networks.

5.1 Auricle: Classifier Tuning

We first evaluate how effectively simple local filters can re-
duce contention in a densely-deployed sensor network. We
deploy Auricles sufficiently densely that many nodes can de-
tect source phenomena (i.e., noises), albeit with varying fi-
delity. We then install Amp1itudeGates with varying gating
levels; this essentially provides us with noise suppression, si-
lence elimination, and basic event detection. The evaluation
measures how much of the source phenomena signal energy
is recovered at the sink. Filtering is extremely effective: well-
chosen amplitude gate levels can increase this recovered sig-
nal energy by factors of 2.5 and more. However, the best am-
plitude gate is sensitive to user requirements (demonstrating
the necessity of on-line tuning) and significantly exceeds the
level of ambient noise.

We chose a general metric—recovered signal energy—
to show that effective in-network filtering of high-rate data
is highly sensitive to environmental factors, particularly RF
availability. Of course, in specific application contexts, such
as voice recognition or event detection, other metrics would
be more telling, like the accuracy of voice reconstruction and
percentage of events detected.

Methodology  Twelve Auricle motes were situated in a
straight line with each pair separated by six feet (Figure 6).
A loudspeaker was placed at the end of the line, six feet
from the first mote. Each mote was elevated three feet off the
ground. Motes transmitted acoustic data directly (one hop)
to a microserver sink that was deployed close to the middle
of the line. We played two minutes of a recording of former
president Jimmy Carter’s “Crisis of Confidence” speech, oc-
casionally interrupted by a cell phone ringing; voice and ring
volumes were roughly equal. We chose this input data set to
demonstrate simple audio feature detection; alternative ex-
amples such as gun blasts or birds chirping would also suf-
fice. We sampled at 4 kHz, which is enough to clearly un-
derstand a voice, albeit with a noticeable loss of quality. Ex-
periments were run outdoors at night in an open-space en-
vironment. Observed sound pressures varied throughout the
speech from 78—86 dBC at the closest mote to the speaker to
62-68 dBC at the farthest. The peak-to-peak amplitude of the
closest mote’s signal measured around 1.22 V, roughly half
the range of our ADC. Received signal energy was calculated
as E =Y 57, where s; denotes sample i’s AC-coupled value.
Only samples collected at the sink were counted. To establish
a baseline measurement of the signal energy each node is ca-
pable of providing to the sink, we collected recordings from
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Figure 6—Linear topology used for unicast experiments. White circles rep-
resent mote sensor nodes; the grey circle is the microserver sink.
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Figure 7—Recovered energy for three nodes of varying distances from an
audio source, expressed as the fraction of energy each node could send in
an error-free, high-bandwidth environment. Signal energy is maximized by
setting the gate threshold just high enough to reduce channel contention. As
distance from the audio source increases, peak recovered energy occurs at
lower gate levels.

each sensor node individually, with all others silent. Recov-
ered energy readings were normalized using these baseline
measurements. The amplitude threshold for AmplitudeGate
varied from O (that is, no gating) to 488 mV above the mean
and was uniform across all nodes.® In this first set of exper-
iments we seek to quantify how a globally uniform adjust-
ment of this threshold impacts performance. Each data point
represents an average of 3 trials.

Results  We analyze the results from different amplitude
gate settings twice, with different goals in mind. First, we
aim to recover the maximum per-node signal energy; then,
we aim to recover the maximum fotal signal energy from the
entire network. This is the simplest difference we could envi-
sion. Real applications would likely have more complex col-
lection goals, only enhancing the importance of application-
specific filter settings we demonstrate via simple experiments.

Figure 7 shows the per-node recovered energy as a func-
tion of the amplitude gate’s threshold for three nodes: one
close to the signal, one far away, and one in the middle. The
shape of this graph is dominated by two competing effects.
At very low thresholds, little signal is filtered before trans-
mission. This results in channel contention and packet loss;
since, in this one-hop scenario, no node gets greater access
to the channel than any other, approximately the same frac-
tion of each node’s total theoretical signal energy is received.
Contention becomes less severe as the threshold increases
and silent periods, as well as the lower-amplitude signals
at distant nodes, are proactively filtered. Acoustics attenu-
ate rapidly with distance, so nodes farther from the source
filter the source more quickly. At very high thresholds, so
much data is suppressed at the gate that not only is the chan-
nel underutilized, but significant features in the raw signal
are removed before transmission.

6Since the reference for our 12-bit ADC is 2.5 V, 488 mV corresponds to
800 ADC units above the mean. Calibrating voltages or ADC units to sound
pressure levels is a topic for future work.
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Figure 8—Total energy recovered at the sink from all nodes, expressed
as the fraction of the energy all nodes could send in an error-free, high-
bandwidth environment. The peak occurs at a gate setting of 230 mV, which
does not coincide with the maximum received energy of the mote in the
best position to capture the signal (Figure 7). This sharp peak expresses the
network-wide point at which congestion effects no longer dominate.

A threshold of 275 mV, the closest node’s peak, will
maximize the maximum per-node recovered energy. This set-
ting recovers more than 4.5 times the per-node signal en-
ergy of the 0 mV threshold (no gating). Although the general
trend is intuitive, we expected the maximum signal energy
to occur at a threshold just above ambient noise (at about
50 mV). The burstiness of human speech is commonly ex-
ploited to optimize voice communication systems; we be-
lieved that once our gate eliminated the background noise
between words and syllables, the aggregate received energy
would trend quickly upwards. Instead, we found that even
when gaps between words were filtered, the remaining traf-
fic was still great enough to induce contention-based packet
loss and decreased signal yield. Network effects are more
pronounced than we had initially expected.

However, users might want a more global metric for yield.
Thus, Figure 8 plots the network-wide total recovered energy
for the experiments of Figure 7. The Y axis shows the total
signal energy recovered from the network, as a fraction of
the total signal energy theoretically recoverable. In this fig-
ure, the peak occurs not at the best per-node threshold of
275 mV, but rather at 230 mV, which filters somewhat less
signal from farther nodes. This level recovers approximately
2.5 times the signal energy of a system without gates, and ap-
proximately 13% more signal energy than the 275 mV gate.

Without a concrete application it is unclear whether 13%
more total signal energy matters, but recovering a factor of
4.5 or 2.5 more signal energy is important for any collection
application we can imagine. The gating levels that lead to
these improvements depend on network topology (because
of contention), signal characteristics (such as attenuation),
and environmental characteristics (such as noise). Not all
these factors can be known in advance of deployment, and
many of them dynamically change, so the ability to dynami-
cally adjust the parameters of in-network filters is crucial.

5.2 Auricle: Filter Composition

We next see whether a combination of simple mote filters can
effectively handle a more complex collection task, namely
separating cell phone signals from voice signals. High-quality
acoustic signal separation is definitely beyond the capabili-
ties of a mote, but can a simpler mechanism drop uninterest-

Total Recovered Energy

0.4 T T T T T T T T T
Phone: Amp. Gate 245 MV =t
0.35 «. Phone: Amp. Gate 120 mV —+— |
OO Wemnb Phone: No Amp. Gate —+—
Weneag, Voice: Amp. Gate 245 mV ===x¢===
03 | *s, Voice: Amp. Gate 120 mV -=-x---
5{ Voice: No Amp. Gate ---x---

0.25 %=y
02

0.15

Fraction of Baseline Energy

01 F

0.05

0 L L L
0 100 200 300 400 500 600 700 800 900
Minimum Dominant Frequency (Hz)

Figure 9—Total signal energy recovered at the sink from all nodes, for in-
teresting (“Phone”) and uninteresting (“Voice”) signals, as we vary the mini-
mum dominant frequency to pass. Optimizing parameters for a composition
of filters cannot be done by optimizing each filter independently. Recov-
ered energy is normalized to the total theoretical energy for the relevant the
portion of the signal.

ing data without dropping too much interesting data? We use
FrequencyGate filters to discriminate between cell phone
rings and speech (rings have a higher dominant frequency).
The evaluation measures how well these filters cut back on
speech collection, allowing more space for cell phone col-
lection. We find that a combination of frequency and ampli-
tude gates allow motes to improve the signal-to-noise ratio of
cell phone signal collection by 13.6 dB, and reduce packets
transmitted by 78% over collection without filtering, while
not greatly affecting the raw amount of cell phone signal en-
ergy collected.

Methodology  33% of our audio recording was silent; dur-
ing 37% of the recording, Jimmy Carter was speaking with-
out interruption (this includes short periods of silence be-
tween words and syllables); and during 30%, the cell phone
was ringing over his speech. The cell phone was about as
loud as Jimmy Carter’s voice. We refer to that entire 30%
of the recording as “Phone” signal, and the other 70% as
“Voice” signal; note that Phone signal includes some speech
as well. While collecting baseline measurements (as before),
we noted when the cell phone was ringing, allowing us to
determine how much recovered energy is derived from pe-
riods when the cell phone is ringing and when it is not. The
FrequencyGate classifier filters out sample sets whose dom-
inant frequency is below a specified minimum; we vary this
minimum from 0 Hz to 920 Hz in steps of approximately
65 Hz. We also include an AmplitudeGate classifier, vary-
ing its threshold among 0 mV (off), 120 mV, and 245 mV.

Results  Figure 9 shows the amount of Phone signal (solid
lines) and Voice signal (dotted lines) recovered from the net-
work for various frequency and amplitude gate settings. The
amplitude filter is again effective; when the frequency gate
is off, Figure 8’s best gate level of 245 mV improves both
Voice and Phone signal recovery. On top of this, though, the
coarse frequency classifier is clearly effective on signals with
non-overlapping dominant frequencies: between thresholds
of 200 and 400 Hz, unwanted Voice energy sharply decreases
while Phone energy stays relatively constant, indicating that
the dominant frequency of the former, but not the latter, falls
in this range. In general, in order to execute on microcon-
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Figure 10—Grid topology used for multi-hop experiments. Diameter is
three hops. The grey shaded node represents the data sink.

trollers, VANGO’s classifiers tend to be too simple to dis-
criminate much more subtly.

The best setting to remove Voice while retaining Phone
signal lies around 500 Hz, depending on the desired com-
promise between false negative and false positive readings.
With an amplitude gating level of 245 mV and a minimum
dominant frequency level of approximately 525 Hz, almost
all Voice periods are suppressed: the ratio of Phone to Voice
energy is approximately 16.6:1, giving a signal-to-noise ratio
(SNR) of 12.2 dB. By comparison, when the dominant fre-
quency filter is effectively off, the energy ratio is 1:1.4, giv-
ing a SNR of —1.39 dB. Therefore, optimizing the dominant
frequency filter parameters results in a 13.6 dB improvement
in SNR. More concretely, this corresponds to a reduction in
packets transmitted by 78%.

Even with a perfectly tuned dominant frequency classi-
fier, an amplitude classifier can help increase the yield of in-
teresting data. Even after all Voice data has been suppressed,
if several nodes detect the same Ring waveform, their trans-
missions may contend with one another for the radio chan-
nel, resulting in data loss. Since motes have limited RAM
(10 kB in our deployments) and cannot queue their data for
long (1 second when sampling at 4 kHz), correlated detec-
tions can lead to channel contention even when acoustic events
are rare and short-lived. Hence, proactively filtering weakly
interesting signals so that strongly interesting ones have a
greater chance of being received will improve the yield of
signal energy. Figure 9 shows this in practice: after removal
of all Voice signal, amplitude gating improves Phone sig-
nal yield by 30%. Of course, as we proactively filter more
and more of our signal using the dominant frequency classi-
fier, the maximum channel utilization during any period will
eventually drop below 100%; at that point (roughly 725 Hz)
amplitude gating is no longer useful.

5.3 Auricle: Multi-Hop Collection

We now investigate whether our filters make it possible to
collect acoustics signals over multi-hop networks, and turn
our focus from a dense single-hop deployment to a sparser
multi-hop deployment. Can a simple classifier reduce un-
wanted traffic enough to significantly increase a multi-hop
network’s yield of interesting data? Does the distance of a
sensor node from a collection gateway affect how this classi-
fier should be tuned? We use the Amp1itudeGate with vary-
ing gating levels to discriminate strongly interesting speech
and cell phone rings from all other noise sources. We find
that although there is a noticeable performance decrease with
multi-hop networking, the integrated system as a whole oper-
ates well. Even in the presence of significant unwanted traffic
generators, filter parameters can be tuned to recover 5 times
the interesting signal energy generated by distant nodes over
what can be recovered without filtering.
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Figure 11—By fixing the gating level at an approximately optimal level
of 275 mV for half of the network around the nearby node (1-hop source),
and adjusting the gating level for the other half of the network, we achieve
approximately 55% of the theoretical energy.
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Figure 12—Fixing the gating level at 275 mV for half of the network around
the faraway node (2-hop source), and adjusting the gating level for the other
half of the network, we achieve at most approximately 40% of the theoreti-
cal energy. The difference between performance for the nearby and faraway
sources is packet drops on bottlenecked forwarding nodes.

Methodology  Fourteen TelosB motes were deployed in
a 3-by-5 grid, with nodes separated by 25 and 8 feet along
the length and width respectively. A sink was deployed at
one corner of the network, with sources six feet from the
nodes at two other corners; see Figure 10. Nodes close to one
source had one-hop connectivity to the base station, while
nodes close to the other had two-hop connectivity. Since the
likelihood of losing a packet to a forwarding queue over-
flow is independent of the packet’s source, delivery prob-
abilities along longer paths (3 hops and more) is very low
when many motes are generating traffic. We don’t present ex-
periments with these longer paths as lack of flow-level fair-
ness dominates system performance, an issue more for trans-
port protocol design. We placed the nodes directly on the
ground to increase RF attenuation, simplifying deployment
mechanics.’” For tree-based collection, Auricle uses Multiho-
pLQI [39] augmented to properly queue high-rate traffic. To
repeat experiments, we froze the routes once they stabilized.

We ran two sets of experiments for amplitude gate set-
tings. The nodes were divided into two groups, depending
on which source (the 1-hop source or the 2-hop source) was
physically nearest. In one set of experiments, we set the 1-

7When nodes are placed a meter above the ground, the nominal radio
range of the TelosB is between 300 and 600 feet depending on environmen-
tal conditions. Placing the nodes directly on the ground decreases this range
to about 50 feet.



hop source group’s gate to 275 mV and varied the gate for
the 2-hop source group; in the other set, we did the reverse,
fixing the 2-hop source group’s gate and varying that of the
1-hop source group. This procedure was designed to eval-
uate the impact of hop distance on optimum gating level.
As before, we compare against baselines measured once per
node in the absence of contention; the network-wide baseline
energy is approximately equal for each of the two acoustic
sources. Each point represents the best result of five trials.

Results  Figures 11 and 12 show the results. The maxi-
mum total recovered energy, 55% of the theoretical energy,
is obtained when the 1-hop and 2-hop source groups have
amplitude gates 275 and 450 mV, respectively; this point is
visible as the 2-hop source’s peak in Figure 11. The gating
level for the 2-hop source group is higher than that for the
1-hop source group probably because network contention
impacts multi-hop transmission proportionately more than
single-hop transmission. This is further visible in the dif-
ferences between Figure 11 and 12 at high gating levels:
even when all of the 1-hop source’s signal is filtered out, the
2-hop source with gating level 275 mV (right-hand side of
Figure 12) achieves less recovered energy than it does with
a higher gating level in Figure 11. Aggressive, topology-
dependent filtering can thus improve the recovered energy
from a network, and we have shown that filter tuning can
lead to a system that can successfully collect high-rate sig-
nals over low-rate radios, even over multiple hops.

5.4 Neuromote

The Neuromote application collects neural signals in real
time. In this section we study how effectively VANGO can
reduce network traffic while still capturing interesting neu-
ral spike information. We expect that at high sampling rates,
our network does not have the bandwidth to collect complete
neuron waveforms from several nodes in real time; however,
low sampling rates will result in poor spike detection and
characterization. Can we use the SpikeDetector filter to
accurately detect and collect spikes from several sources,
and can we help a scientist to trust the data? We apply the
SpikeDetector and adjust the sampling rate. The evalua-
tion measures the key parameters of interest to a scientist:
spike heights and widths, as well as the percentage of spikes
that are detected and recovered. We find that with the right
parameters, a Neuromote network can accurately collect neu-
ral data from as many as eight concurrently monitored test
subjects. Furthermore, we find that the process of determin-
ing the right filtering parameters—interactive and iterative
refinement—also instills a high degree of confidence in the
data the network produces.

Methodology  Our experimental setup consists of a wave-
form generator programmed to output pre-recorded neural
signals, a neural preamplifier circuit, and eight TelosB motes.
The data programmed into the waveform generator was orig-
inally acquired in vivo from freely moving rats.® Data were
recorded wide band (0.1 Hz to 5 kHz) and sampled at 10 kHz

8Using five four-channel MOSFET input operational amplifiers mounted
in the cable connector to remove movement artifacts.

with 12-bit precision.” The data set corresponds to one sec-
ond of neural activity over which there are seven spikes, each
with an amplitude of 1.85 V (at the motes’ ADC inputs) and
a peak-trough duration of approximately 1.34 ms.

We performed two sets of tests. One test measured the
percentage of spikes recovered for different sampling fre-
quencies and numbers of motes communicating in the net-
work. This test was performed in two modes of operation.
In the raw mode, the entire sampled signal was transmitted
by each node. In the spike-only mode, motes transmit only
the portions of the waveform that contain spikes. The second
test measured the extent of spike parameter variation result-
ing from different sampling rates on one to eight motes. The
spike parameters of interest are (a) spike height, which is
the voltage of the acquired signal peak, and (b) spike width,
which is the time difference between the spike’s peak voltage
and minimum voltage. Spikes that were lost due to packet
loss are not accounted for in this test. The sample data used
contained spikes from a single cell; therefore, each spike was
originally equal in amplitude.'”

Results  Figure 13 describes the percentage of recovered
spikes as a function of the number of nodes in the network at
sampling rates of 2 kHz and 8 kHz. When sending the com-
plete raw data set, we find that the network has the bandwidth
to support one or two motes sampling at 2 kHz, returning
nearly 100% of the data pertaining to spikes. However, even
at a 2 kHz sampling rate, with three transmitting motes the
spike delivery rate drops off significantly (to under 60%) and
decays to 20% when eight motes are active in the network. In
terms of the total number of spikes returned by the network,
when sending raw data we find that the maximum spike yield
occurs with two motes.

In contrast, when spike information is concatenated and
the noise between spikes is removed before transmission, the
network performs significantly better. At 2 kHz our yield is
above 90%, even for eight motes. At 8 kHz the network suf-
fers a bit from contention and the spike recovery rate decays
linearly from 100% with two motes to under 70% with eight
motes. In terms of the total number of spikes received, we
see that the maximum total spikes recovered (with 8 motes at
8 kHz) is roughly two and a half times greater than the max-
imum for our raw data experiments (with 2 motes at 2 kHz).

Figure 14 describes the effects of sampling rates on net-
works of one, two, and eight motes. Irrespective of whether
raw or abridged waveforms are sent, at below 2 kHz we wit-
ness considerable spike loss due to undersampling. This fig-
ure again shows that the network can support two nodes’
worth of raw data at up to a sampling rate of 2 kHz. This sug-
gests that when sending the complete waveform the only op-
erating point where nearly all spikes are detected is at 2 kHz
with exactly two motes.

Figure 14 also shows that network congestion penalizes
requests for raw waveforms. This penalty becomes more pro-

9The spikes were isolated from the local field potentials by applying a
high-pass filter with an f-3dB frequency of 600 Hz. The output signals from
the waveform generator are applied to the neural preamplifier circuit, which
amplifies and DC references the signals, which are then applied directly to
the ADC inputs of all eight TelosB motes.

19However, the the finite resolution and sampling rate of the original neu-
ral signal acquisition apparatus results in a deviation of 108 mV in the data
set that has been programmed into the waveform generator.



Number of Motes vs. Spike Recovery in Spike Only Mode
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Figure 13—Percentage of recovered spikes as a function of the number of
nodes in the network. In the continuous signal transmission mode (dotted
lines), 100% of spikes are only recovered with up to 2 motes, both of which
must be sampling at 2 kHz. However, when only the waveform containing
spike information is transmitted (solid lines), our spike recovery rate is near
100% for up to six motes sampling at 2 kHz and always above 65% when
sampling at 8 kHz
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Figure 14—Percentage of recovered spikes as a function of sampling rate
and node count in both continuous signal (dotted lines) and isolated spike
waveform (solid lines) transmission modes. In mote modes, spike loss is
observed below 2 kHz due to under-sampling. At 2 kHz and above, due to
channel contention the spike recovery rate drops with rate, but much less
significantly with abridged data. Packet loss is worse for larger networks.

nounced both as the number of motes and as the sampling
rate is increased. However, in the isolated spike waveform
transmission mode for 1 and 2 nodes the recovery rate is near
100% irrespective of sampling rate. We receive nearly 80%
of the spikes when running eight motes in this mode.

Figures 15 and 16 show how the key scientific parameters
recovered from raw waveforms—namely spike widths and
heights, respectively—differ as the sampling rate changes.
As expected, the greatest amount of variation can be ob-
served when the signal is being undersampled (1 kHz). The
parameter variation drops off with increasing sampling fre-
quency, leveling off between 2 and 3 kHz for both parame-
ters. At 3 kHz the variation of the spike heights and widths
approach those of the original pre-recorded data set.

Thus, with the right settings—a sampling rate of 2 kHz
and transmission of the abridged neural waveforms only—
Neuromote can capture the neural spikes from eight subjects
concurrently and accurately.

Neuromote, like Auricle, shows the tension between fil-
ter lossiness and network contention. The right filtering point
depends on many factors, so a priori knowledge is often in-
sufficient to determine the correct filtering parameters. Our
results shows that system performance follows general trends

Effects of Undersampling on Spike Width

0.004 T T T " T T
median spike width e
0.0035 -
I 0.003 B
°
c
8  0.0025 - i
Q
2
£ 0.002 B
3
=
> 0.0015 [ e
=
o
»n 0.001 - _
0.0005 B
L L L L L L

0
0 1000 2000 3000 4000 5000 6000
Rate (Hz)

Figure 15—Median spike width as a function of sampling rate. The error
bars indicate the Ist and 3rd quartiles. The dotted line at 0.0013 seconds
represents the median width for all spikes in the input. At frequencies below
2 kHz, the variation in the recovered spike widths is high due to undersam-
pling. As the sampling rate is increased, the reported median spike width
converges to the correct value. Recovering the median spike width with in-
creased accuracy enables investigators to classify the cell from which the
spike pattern originated with greater precision.

Effects of Undersampling on Spike Height
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Figure 16—Median spike height as a function of sampling rate. The er-
ror bars indicate the 1st and 3rd quartiles. The dotted line at 1.85V repre-
sents the actual median height for all spikes in the input. At frequencies
increase, the accuracy of the reported spike heights increases substantially.
Accurate reporting of spike height enables investigators to classify the cell
from which the spike pattern originated with greater precision.

with respect to filter settings. Thus, a few iterations of online
tuning will usually yield a significant improvement.

In addition, the collection and tuning process helps sci-
entists to trust the system. If nodes transmits filtered data,
how can a scientist know if the signal is being accurately
represented? How does the scientist know that the sensor is
connected correctly to a rodent’s brain (in particular, that the
attachment isn’t too close to neighboring neurons), that the
sampling rate is sufficient for characterization of the signal,
and that the network has enough bandwidth to transmit infor-
mation from several rodents concurrently? With Neuromote,
scientists may collect complete neural waveforms from one
or two nodes and adjust the sampling rate until the signal is
verified to be accurate. The network may then be instructed
to eliminate periods of noise between neural spikes to save
bandwidth.

6 RELATED WORK
6.1 High-Rate Sensor Network Applications

Several other systems sample at high rates, but usually tar-
get very specific applications or system services (localization
in particular), provide few configuration knobs, and collect



summary interpretations of the waveform, not the sampled
waveform itself.

Acoustics  Acoustic sensor networks are typically factory-
tuned to detect specific events. For example, several indoor
localization systems record ultrasonic pulses for the sole pur-
pose of noting their times of arrival. Cricket [27], Active-
Bat [35], and AHLoS [29] use these times to estimate the dis-
tance to a sender. While VANGO does not generate acoustic
and ultrasonic waveforms, it can detect and timestamp them.
More work would be needed to determine if VANGO’s ac-
curacy is sufficient for ranging. Likewise, the counter-snip-
er system [30] uses mote networks and significant comple-
mentary signal processing hardware (an FPGA on a custom-
designed sensor board) to detect gunshots and localize their
sources. While VANGO’s spike detection software could be
applied to detect gunshots, the 1 MHz required sampling rate
to perform fine-grained acoustic localization is beyond the
capabilities of the mote hardware VANGO uses. VigilNet [12],
a sensor network surveillance system, uses dual axis mag-
netometers, microphones, accelerometers, and photo sensors
to detect similarly application-specific events and then send
notifications. It can trade detection sensitivity for longevity,
but its design is otherwise rigid. VigilNet’s vehicle detection
logic, wakeup message format, logic to define the group of
nodes that are to be recipients of such messages, protocol for
duty-cycled rendezvous, and in-network cooperating aggre-
gation of tracking messages are all application-specific and
complicated; reusing the code in new applications will be
difficult. This contrasts the work of VANGO, which provides
software that is more generic and reusable. Finally, ENS-
Box [8] is a flexible platform for prototyping rapidly deploy-
able acoustic sensing systems that do significant in-network
processing. Unlike VanGeo, it is built atop Linux and is de-
signed with greater computational capabilities (ARM hard-
ware) in mind.

Biological signals  The CodeBlue [20] project has devel-
oped mote-based sensors with biological interface circuits,
some similar to those used for VANGO’s neural monitoring
application. These nodes have been used to acquire and wire-
lessly transmit biological signals, including pulse oximetry
and electrocardiogram (EKG) data. CodeBlue, however, was
not designed to acquire and filter data at the rates necessary,
for example, to obtain and transmit neural spike activity. The
EKG waveform, for example, is typically sampled at 120 Hz.

Other high-rate phenomena  The Cyclops imaging sys-
tem [28] produces low-frequency data but at a high resolu-
tion. Data reduction before transmission is thus often key to
promoting network longevity and meeting available band-
width. Cyclops is capable of performing a range of data ac-
quisition and manipulation options, but it has not yet been
successful in exposing this functionality in a manner which
can be composed at runtime to meet new application tasks;
we hope the data structures and filter organization of VANGO
will be helpful in this regard.

Accelerometers and cheaper seismoacoustic sensors have
been used in structural monitoring and the measurement of
seismic activity. Werner-Allen et al. [37, 38] deployed two
mote-based seismic arrays on volcanoes in Ecuador. Their
nodes sample at roughly 100 Hz. To reduce data in-network,

they use a detector similar to VANGO’s spike detector. Kim
et al. [17] monitored ambient vibration of the Golden Gate
Bridge using Mica2 motes and custom accelerometer boards.
Using carefully written embedded code, they were able to
achieve a sampling rate of 200 Hz with relatively low jitter—
much less of a problem with the newer TelosB mote and
DMA-based data acquisition software of VANGO. Likewise,
Wisden [41], a system for reliably transporting structural vi-
bration data from a collection of sensors to a base station,
incorporates Mica2 motes and a vibration card (accelerom-
eter), samples at a high rate (100Hz), and delivers data re-
liably over multiple hops to a base station where it can be
visualized.

6.2 Signal Processing Frameworks

Many other signal processing compositional frameworks ex-

ist. These systems typically offer extensive high-level libraries
and streamlined user interfaces. Their sophisticated user-level
support is complementary to the work of VANGO. While

they are sometimes capable of producing code for embed-

ded platforms, they are not designed explicitly for operation

on distributed microcontroller-based wireless sensing sys-

tems. Labview is a platform with a visual dataflow language

used for data acquisition, industrial automation, and instru-

ment control [14]. Labview applications depend on a runtime

engine and libraries designed for PCs. Simulink [23] and

Ptolomy II [2] are visual component composition systems for

modeling control and signal processing applications. When

Simulink is used with the real-time processing toolbox, it

can generate high performance code that is suitable for con-

strained embedded systems. Similarly, Ptolemy applications

can be compiled for an embedded target. Streamlt [31] is

a language and compiler for generating real-time streaming

systems on embedded platforms. It supports general purpose

uniprocessors and the MIT Raw machine.

6.3 Internet and Cellular Transcoding

The problem of reducing high-rate data to alleviate network
congestion has been studied extensively in the context of In-
ternet and cellular transcoding [5, 24, 40]. VANGO shares
one goal in particular with these projects, maximizing appli-
cation performance given bandwidth constraints. Unlike the
previous work, however, a sensor network application com-
petes with itself for bandwidth. This property alone can lead
to finer control over how data is collected and filtered, be-
cause a sensor network application can make network-wide
decisions about how to allocate and use bandwidth.

7 CONCLUSION

We have designed a heterogeneous software system capable
of high-rate data acquisition and single- and multiple-hop
wireless transmission. Not only does it efficiently process,
classify, measure, compress, and transform raw sensor data,
but it also provides cross-tier mechanisms to help users cal-
ibrate the system while it is running and thus improve its
performance. We presented high-rate collection applications
in two domains, acoustics and neurophysiological monitor-
ing. In both applications, simple filters can impact network



performance greatly, particularly in bandwidth-limited envi-
ronments. As we have shown with both applications, selec-
tive and informed filtering before transmission yields more
of the data that interests a user. A system designed around the
needs of both high-rate sampling and flexible runtime filter
tuning makes the benefits of mote data collection accessible
even to high-data-rate applications.
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