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ABSTRACT OF THE DISSERTATION

Mathematical modeling of tumor growth and angiogenesis

By

Weihao Tang
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Professor John S. Lowengrub, Chair

Tumor angiogenesis plays a crucial role in cancer progression and metastasis. Mathemat-

ical modeling has emerged as a powerful tool to unravel the complex dynamics of tumor

angiogenesis and to develop new therapeutic strategies. In this thesis, we focus on a com-

prehensive study on the mathematical modeling of tumor-induced angiogenesis, spanning

from the fundamental concepts to the development of a novel hybrid model that integrates

tumor growth and angiogenesis in a complex, realistic vascular network. We start from in-

vestigating a thermodynamically consistent mixture model for avascular solid tumor growth.

To simulate tumor growth, we develop a mass-conservative, adaptive, finite difference, non-

linear multigrid method that captures the evolution of tumor morphology accurately and

efficiently. Next, we present a hybrid model for angiogenesis growth based on the phase-field

theory. The model incorporates the dynamics of capillaries, angiogenic factors, and tip en-

dothelial cells (TECs), along with a discrete conceptualization of filopodia that enables TECs

to sense their microenvironment. Finally, we build a mathematical model of tumor-induced

angiogenesis that integrates tumor growth and angiogenesis in a complex, realistic vascular

network extracted from the vascularized microtumor (VMT) platform. The model combines

continuum and discrete modeling approaches to capture the key biological processes involved

in tumor angiogenesis, and is simulated by our new developed numerical method.
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Chapter 1

Introduction and Background

1.1 Introduction to cancer biology

Cancer is a major public health problem worldwide and one of the most fatal diseases of

recent times that causes several deaths every year. Globally, more than 19.3 million new

cancer cases were diagnosed and reported recently, leading to approximately 10 million deaths

in 2020 based on the reported data [79]. By 2040, there will be 28 million new cases of cancer

worldwide, leading to 16.3 million cancer-related deaths annually. Given the unique nature of

cancer, the precise mechanisms that cause cancer are unclear and there is a lot of controversy

over how exactly cancer is initiated.

The two groundbreaking studies, the key hallmarks of cancer, point out the relevance of

genetic mutations in the development of cancers [48, 49]. As outlined by Hanahan and Wein-

berg, the key hallmarks of cancer were proposed as a set of functional capabilities acquired

by human cells as they make their way from normalcy to neoplastic growth states, more

specifically capabilities that are crucial for their ability to form malignant tumors. Initially,

the hallmarks of cancer envisaged the complementary involvement of six distinct hallmark
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capabilities and later expanded this number to eight. The eight hallmarks currently comprise

the acquired capabilities for sustaining proliferative signaling, evading growth suppressors,

resisting cell death, enabling replicative immortality, inducing/accessing vasculature, acti-

vating invasion and metastasis, reprogramming cellular metabolism, and avoiding immune

destruction [47]. Cancer commonly begins with genetic mutations that lead to an enhanced

proliferation rate and the formation of an avascular tumor. In normal tissues, healthy cells

proliferate and divide according to the requirements of the organism. However, when cancer

develops, the ability to regulate growth and maintain homeostasis is disrupted. With the

accumulation of multiple changes, cells that should have grown old or damaged survive, and

new cells form unnecessarily. These extra cells divide uncontrollably, leading to abnormal

lumps called tumors.

1.2 The stages of solid tumor growth

There are three distinct stages (avascular, vascular, and metastatic) to cancer development.

The first stage is the avascular stage where the cells receive nutrients and oxygen from

existing blood vasculature. There is a balance between cells inside the tumor consuming

nutrients and nutrient diffusion into the tumor [66].

Angiogenesis is the formation of new blood vessels from a preexisting vessel. It is also the

process that tumors acquiring the ability develop their own blood supply from the host

vasculature which is one of the most important steps in malignant tumor growth. Once vas-

cularized, the tumor has access to enough nutrients, followed by rapidly growth[18]. Mean-

while, the tumor cells have the ability to escape the primary tumor via the circulatory

system(metastasis) and set up secondary tumors elsewhere in the body. After angiogenesis

and metastasis, the patient is left with multiple tumors in different parts of the body. These

tumors are very difficult to detect and even more difficult to treat [76].
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Over the course of several decades, researchers have turned to mathematical and compu-

tational models as essential tools for grasping and emulating tumor growth and various

frameworks have emerged to elucidate the spatial dynamics of tumors and their microenvi-

ronment, spanning a spectrum of complexity levels. See the recent reviews by Lowengrub et

al.[62], Yin et al.[94], Bekisz et al.[8], Humphrey et al.[55], and Metzcar et al. [65]

1.3 Mathematical modeling in cancer

Mathematical modeling has emerged as a powerful tool to better understand the dynamics of

cancer progression, treatment response, and the development of novel therapeutic strategies

[1]. These models aim to capture the key biological processes involved in cancer, such as

cell proliferation, apoptosis, angiogenesis, and metastasis, using mathematical equations and

computational simulations.

In recent years, various mathematical approaches have been employed to model different

aspects of cancer. These include ordinary and partial differential equations, agent-based

models, stochastic models, and hybrid models [36]. Evolutionary game theory has been

applied to study the competition and cooperation among different tumor cell sub-populations

[6]. Additionally, mathematical models have been used to optimize treatment schedules,

predict patient outcomes, and design personalized therapies [5].

Despite the significant progress made in mathematical modeling of cancer, challenges remain

in integrating the vast biological complexity and heterogeneity of tumors into tractable math-

ematical frameworks [89]. Future research will likely focus on developing multiscale models

that bridge the gap between molecular, cellular, and tissue-level processes, as well as incor-

porating patient-specific data to enable personalized predictions and treatment optimization

[75].
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In light of these challenges and opportunities, this dissertation aims to contribute to the

field of mathematical modeling of cancer by developing models and numerical methods that

accurately and efficiently describe tumor evolution.

1.4 Outline

This thesis is organized as follows: In Chapter 2, we develop a mass-conservative, adap-

tive, finite difference, nonlinear multigrid method to simulate the progression of solid tumor

growth using mixture models. After the mixture model is formulated, we discuss the details

of numerical algorithm. Then, we present numerical simulations of tumor growth in 2D and

3D along with comparisons between mass-conservative and non-mass-conservative schemes.

We incorporate stochastic effects to demonstrate the power of our numerical approach, in

both 2D and 3D.

In Chapter 3, we investigate the dynamics of angiogenesis using a hybrid model. We discuss

a multi-scale phase-field angiogenesis model that allows one to resolve capillaries at full

time scale and to simulate long-term dynamics of angiogenesis. First, we introduce various

components of the model, such as tumor angiogensis factor, capillaries, tip endothelial cells

and filopodia. Then, Then, we discuss the numerical method to undertake the coupling

between the discrete and continuous parts of the algorithm. Last, simulations are presented

to study the development of angiogenesis from pre-existing vessel networks in the simple

domain.

Building upon the foundations laid in Chapters 2 and 3, Chapter 4 presents a hybrid mathe-

matical model that integrates tumor growth and angiogenesis in a complex, realistic vascular

network extracted from the vascularized microtumor (VMT) platform. The model combines

continuum and discrete modeling approaches to capture the key biological processes involved

4



in tumor angiogenesis.

Finally, a summary of the thesis and its contained works is provided in Chapter 5 along with

directions for future studies and extensions.
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Chapter 2

A Mass-conservative Adaptive

Multigrid Algorithm for Simulating

Solid Tumor Growth using Mixture

Models

2.1 Introduction

The morphological evolution of a growing solid tumor is the result of the dynamics of a

nonlinear, multiscale complex system. Over the course of several decades, researchers have

turned to mathematical and computational models as essential tools for grasping and em-

ulating tumor growth and various frameworks have emerged to elucidate the spatial dy-

namics of tumors and their microenvironment, spanning a spectrum of complexity levels.

[43, 1, 4, 77, 9, 27, 41, 67, 73, 76]. See the recent reviews by Lowengrub et al.[62], Yin et

al.[94], Bekisz et al.[8] , Humphrey et al.[55] , Metzcar et al. [65]
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There are a variety of methods now available for performing nonlinear simulations of solid

tumor growth. Most tumor models can be categorized into two general categories : contin-

uous and discrete models [77]. The continuum approach considers the average of the global

cell population behavior and tracks cell elements or volume fractions and is governed by

PDE or integro differential equations [29, 28, 60, 68, 88, 91, 71]. The discrete approaches

track and update individual cell dynamics using a prescribed set of biophysical rules[65, 83].

While discrete models may be good for targeting cell and sub-scale processes, they are fairly

limited by rapidly increasing computational cost and studying analytically[83]. In larger-

scale systems (millimeter to centimeter scale), continuum methods provide a good modeling

alternative and mixture models provide the capability of simulating the interactions among

multiple cell species, interstitial fluid and extracellular matrix [55, 77].

Continuum theories of mixtures, which provide a realistic representation of a tumor growing

in a microenvironment, have been the focus of much research for many years[19]. In mixture

models of tumor growth, the governing equations consist of mass and momentum balance

equations for each species, interphase mass, and momentum exchange.

In this work, we simulate numerically a thermodynamically consistent mixture model for

avascular solid tumor growth which takes into account the nonlinear effects of cell-to-cell

adhesion, and taxis-inducing chemical and molecular species. The governing equations are

of Cahn-Hilliard type [20] and can be viewed as a regularization of previous mixture models,

e.g.[2, 19]. The equations are derived using mass-conservation equations for each component

together with momentum equations and momentum exchange between components that are

determined in a thermodynamically consistent way.

Fundamental challenges in solving these systems numerically include developing stable time

integration methods that remove the numerical stiffness introduced by high-order (e.g.,

fourth order) spatial derivatives in the models, and accurately solving the equations for

the evolving, complex tumor morphologies that emerge from the gain and loss of mass and
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stresses induced by cancer cell proliferation and death (apoptosis), as well as the effect

of a nonuniform microenvironment. To overcome these computational challenges, we have

developed a numerical algorithm based on a novel mass-conservative two-grid full approxi-

mation storage (FAS) solver, which extends the algorithm developed by Feng et al. in [38]

to time-dependent problems. The algorithm in [38] is essentially a standard adaptive full

approximation storage (AFAS) scheme, but with a modification that comes in the form of a

mass-conservative correction to the coarse-level force. This is facilitated by the introduction

of so-called zombie variables, which are ghost variables on the coarse grid that lie under a

fine grid refinement patch. The zombie variables are then used to create mass corrections

to the coarse-level force functions. In this way, the standard smoothing, prolongation and

restriction operations are independent of the flux-balancing procedure at the coarse-fine in-

terface. Here, the new feature is that the time dependence of the equation requires the

application of these techniques on the discrete solution at the previous time step but on the

newly updated mesh. The application of this method to a mixture model of tumor growth

is also new.

The paper is organized as follows. After the mixture model is formulated in Section 2, we

discuss the details of numerical algorithm in Section 3. In section 4, numerical simulations

of tumor growth in 2D and 3D are then presented, along with comparisons between mass-

conservative and non-mass-conservative schemes. We then incorporate stochastic effects to

demonstrate the power of our numerical approach, in both 2D and 3D. Conclusion and future

works are discussed in Section 5.
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2.2 Two component mixtures model: tissue and water

2.2.1 Nondimensionalization model formulation

In this section, we consider a local model of two-component mixtures consisting of tumor

tissue and water [28]. The model takes into account cell proliferation in response to a dif-

fusible nutrient, which represents the effects of all growth promoting factors, and chemotaxis

of cells up nutrient gradients. Following [28], we nondimensionalize the system using the

intrinsic taxis time scale and a nutrient diffusion length scale. The dimensionless variables

are:

• ϕ, the volume fraction of solid tumor components.

• µ, the chemical potential.

• σ, the concentration of nutrient.

See [28] for a derivation and details.

The evolution equation for ϕ is the following Cahn-Hilliard-type reaction-diffusion equation:

ϕt = ∇ · (M(ϕ)∇µ) + Pσϕ−Aϕ, (2.1)

M(ϕ) =
1

ϵ
ϕ2, (2.2)

µ = G−1(f ′(ϕ− ϵ2∆ϕ))− ϵXσσ, (2.3)

where P is a nondimensional growth rate, A is a nondimensional cell death rate, Xσ is a

nondimensional chemotaxis strength and G is a nondimensional measure of cell-cell adhesion

interactions. Further, ϵ is a small parameter that characterizes the width of the tumor-host

interface (e.g., strength of intermixing).
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Since nutrient diffusion occurs on a much faster time scale (e.g., minutes) than the cell-

proliferation time scale (e.g., day or more), the nutrient concentration can be governed by a

quasi-steady diffusion-reaction equation. We assume the consumption of the nutrient to be

proportional to the local nutrient concentration and cellular fraction. Thus, the nondimen-

sional quasi-steady nutrient equation can be given as

0 = ∇ · (D(ϕ)∇σ)− σϕ, (2.4)

where

D(ϕ) = ϕ+D(1− ϕ), (2.5)

and D is the ratio of the diffusion coefficients for the tumor and host tissue. The boundary

conditions are given by:

∇ϕ · n = ∇µ · n = 0 on ∂Ω, (2.6)

σ = 1 on ∂Ω. (2.7)

2.3 Details of the numerical algorithm

Due to the high order derivatives and the stiffness of our system Eqs. (2.1)-(2.4), we apply

the Crank-Nicolson (CN) method for the temporal discretization and the finite difference

method for the spatial discretization so that the scheme has second order accuracy in both

time and space. To solve the nonlinear equations at the implicit time level, we apply a

mass-conservative, adaptive, FAS (Full Approximation Storage) multigrid solver for the im-

plementations. Our multigrid solver is based on the work by Feng et al. [38]. In their

work, the standard FAS method is modified to correct the mass loss along the coarse-fine
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grid interface (where the coarse grid borders the fine grid), and global mass conservation is

guaranteed over the entire computational domain. However, the solver developed in [38] can

guarantee mass conservation only for fully implicit schemes. Therefore, we extend the solver

by adding a new feature that ensures mass conservation for semi-implicit schemes, including

but not limited to the CN method. In the following, we first present the CN discretization

in §2.3.1, and then show the finite difference discretization in §2.3.2, and finally demonstrate

the mass conservation property of our solver in §2.3.3.

2.3.1 Semi-implicit discretizations

As an illustration, we use the following CN-like semi-implicit scheme applied to Eqs. (2.1)-

(2.4):

ϕn+1 − ϕn

∆t
= ∇ ·

(
M(ϕ)∇µ

)n+ 1
2
+ sn+

1
2 , (2.8)

sn+
1
2 = P (σϕ)n+

1
2 −A ϕn+ 1

2 , (2.9)

µn+1 = G−1
(
f ′(ϕn+1)− ϵ2∆ϕn+1

)
− ϵXσσ

n+1, (2.10)

0 = ∇ ·
(
D(ϕ)∇σ

)n+1

− (σϕ)n+1, (2.11)

where ∗n+ 1
2 = 1

2
(∗n+1 + ∗n), (ϕn, µn, σn) are the solutions at time t = n∆t, ∆t is the time

step, and M(ϕ) and D(ϕ) are defined in Eqs. (2.2) and (2.5) respectively. Moreover, the

boundary conditions are given by:

∇ϕn · n = ∇µn · n = 0 on ∂Ω, (2.12)

σn = 1 on ∂Ω. (2.13)
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Figure 2.1: A simple two-level, “box-in-box” two-dimensional computational grid. The mesh
sizes in this example are m0 = 8 and m1 = 8. The unfilled squares (circles) represent the
locations of the ghost points for coarse (fine) grid. The cells contained in the four coarse-level
strips (shaded red and blue) just outside of the fine level patch are indexed by the sets Ins

0\1
(red) and Ωns

0\1 (blue), respectively.

2.3.2 Two-grid finite difference discretizations

We next show the two-grid finite difference discretizations. Here, we use a two-level adaptive

mesh as an illustration. Note that in the implementation, the solver is not restricted to two-

grid case, see [38] for more details. We consider a two-level composite mesh, denoted Ωχ

covering the domain Ω = (0, L0)
2. We assume that the root level uniform grid has size

mℓ ×mℓ |(ℓ=0) = m0 ×m0 and mesh spacing hℓ |(ℓ=0) = h0 =
L0

m0
, where ℓ(= 0, 1) stands for

the adaptive mesh level. In any case, the mesh spacing for the fine-level grid is invariably

half that of the coarse grid, hℓ =
hℓ−1

2
, where ℓ ∈ N+. Now, in the simplest possible case, we

may have what appears in Fig. 2.1, where embedded in the center of this coarse mesh is a

fine mesh of size m1 ×m1, where m1 is even. For the box-in-box two-level mesh in Fig. 2.1,

we have m0 = 8 and m1 = 8. However, everything that we describe can be generalized to

more complicated two-level meshes, for example, those shown in Figs. 2.4 and 2.8.

In all cases, we let I1 be the index set of the cell-centered points of the cells contained in

12



the fine-level grid, denoted Ω1. Similarly, let I0\1 be the index set of the cell-centered points

for the collection of coarse-level cells, denoted Ω0\1, that are not covered by the fine grid.

By I0#1 we denote the index set for the cell-centered points of the coarse-grid cells, denoted

Ω0#1, that lie underneath the fine grid. Therefore, Ω0\1 ∪Ω0#1 stands for all the coarse-grid

points.

For convenience of calculating the mass corrections, we define Iew
0\1 to be the index the cell-

centered points of the collection of coarse-grid cells, Ωew
0\1, that border the eastern and western

boundaries of the fine grid. These cells are shaded blue in Fig. 2.1. Likewise, let Ins
0\1 be

the index set for the cell-centered points of the set of coarse-grid cells, Ωns
0\1, that border the

northern and southern boundaries of the fine grid. These cells are shaded red in Fig. 2.1.

Finally, we define

Ω0\\1 := Ω0\1 −
(
Ωew

0\1 ∪ Ωns
0\1
)
.

The index set for the cell-centered points of the cells in Ω0\\1 is denoted as I0\\1.

For concreteness, let us clearly identify the index sets for the simple box-in-box mesh

(Fig. 2.1):

I1 = {(i, j) | 1 ≤ i, j ≤ m1} ,

I0#1 =
{
(i, j)

∣∣ m0
0 + 1 ≤ i, j ≤ m1

0

}
,

I0\1 = {(i, j) | 1 ≤ i, j ≤ m0} \ I0#1,

Iew
0\1 =

{
(i, j)

∣∣ i = m0
0,m

1
0 + 1, m0

0 + 1 ≤ j ≤ m1
0

}
,

Ins
0\1 =

{
(i, j)

∣∣ m0
0 + 1 ≤ i ≤ m1

0, j = m0
0,m

1
0 + 1

}
,

I0\\1 = I0\1 −
(
Iew
0\1 ∪ Ins

0\1
)
,

where m0
0 stands for the coarse grid point that is adjacent to the fine grid from the left or

the bottom, and m1
0 stands for the coarse grid point that is adjacent to the fine grid from
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the right or the top. In Fig. 2.1, m0
0 = 2 and m1

0 = 6.

We then show some basic definitions and notations for the finite difference discretization. In

general, let Ωℓ = (0, Lℓ)
2 be the domain of the ℓth level adaptive mesh, with Lℓ = mℓ × hℓ,

we consider the following sets

Cmℓ
= {xℓ,i |i = 1, ...,mℓ}, (2.14)

Cm̄ℓ
= {xℓ,i |i = 0, ...,mℓ + 1}, (2.15)

Emℓ
= {xℓ,i+ 1

2
|i = 0, ...,mℓ}, (2.16)

where the elements of Cmℓ
and Cm̄ℓ

are called cell-centered points, xℓ,i = (i − 1
2
) × hℓ and

Cm̄ℓ
/Cmℓ

are the ghost points. Emℓ
contains edge-centered points with xℓ,i+ 1

2
= i × hℓ. We

then define the following function spaces:

Cm̄ℓ×m̄ℓ
= {fc : Cm̄ℓ

× Cm̄ℓ
→ R}, (2.17)

Cmℓ×m̄ℓ
= {fc : Cmℓ

× Cm̄ℓ
→ R}, (2.18)

Cm̄ℓ×mℓ
= {fc : Cm̄ℓ

× Cmℓ
→ R}, (2.19)

Eew
mℓ×m̄ℓ

= {u : Emℓ
× Cm̄ℓ

→ R}, (2.20)

Ens
m̄ℓ×mℓ

= {v : Cm̄ℓ
× Emℓ

→ R}, (2.21)

for cell-centered functions fc: ϕ, µ and σ, and for east–west and north–south edge-centered

functions or operators respectively. According to different variable locations, we define the

average and difference operators as follows:

Aℓ,x and Dℓ,x : Cm̄ℓ×m̄ℓ
→ Eew

mℓ×m̄ℓ
, (2.22)

Aℓ,y and Dℓ,y : Cm̄ℓ×m̄ℓ
→ Ens

m̄ℓ×mℓ
, (2.23)

aℓ,x and dℓ,x : Eew
mℓ×m̄ℓ

→ Cmℓ×m̄ℓ
, (2.24)

aℓ,y and dℓ,y : E
ns
m̄ℓ×mℓ

→ Cm̄ℓ×mℓ
. (2.25)
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We also define the following composite operators for simplicity:

∗ℓ,A =

(
Aℓ,x 0

0 Aℓ,y

)
, ∇ℓ,D =

(
Dℓ,x

Dℓ,y

)
,

∗ℓ,a =
(
aℓ,x 0

0 aℓ,y

)
, ∇ℓ,d = (dℓ,x, dℓ,y), ∆ℓ = ∇ℓ,d ·∇ℓ,D. (2.26)

With the help of the above definitions, the two-grid finite difference discretizations for the

Eqs. (2.8)-(2.13) can be given as the following: find (ϕ, µ, σ)n+1
i,j ∈ Cm̄ℓ×m̄ℓ

by solving:

ϕn+1
i,j − ϕn

i,j

∆t
= ∇ℓ,d ·

(
M(ϕ)ℓ,A∇ℓ,D µ

)n+ 1
2

i,j
+ s

n+ 1
2

i,j , (2.27)

s
n+ 1

2
i,j = P (σϕ)

n+ 1
2

i,j −A ϕ
n+ 1

2
i,j , (2.28)

µn+1
i,j = G−1

(
f ′(ϕ)− ϵ2∆ℓϕ

)n+1

i,j
− ϵXσσ

n+1
i,j , (2.29)

0 = ∇ℓ,d ·
(
D(ϕ)ℓ,A∇ℓ,D σ

)n+1

i,j
− (σϕ)n+1

i,j , (2.30)

where (ϕ, µ, σ)ni,j ∈ Cm̄0×m̄0 are the solutions at time t = n∆t, ∆t is the time step, and

∗n+ 1
2 = 1

2
(∗n+1 + ∗n). In addition, M(ϕ) and D(ϕ) are defined in Eqs. (2.2) and (2.5)

respectively. Moreover, the boundary conditions are given by:

D0,x ϕ
n
1
2
,j
= D0,x µ

n
m0+

1
2
,j
= 0 for 1 ≤ j ≤ m0, (2.31)

D0,y ϕ
n
i, 1

2
= D0,y µ

n
i,m0+

1
2
= 0 for 1 ≤ i ≤ m0, (2.32)

A0,x σ
n
1
2
,j
= A0,x σ

n
m0+

1
2
,j
= 1 for 1 ≤ j ≤ m0, (2.33)

A0,y σ
n
i, 1

2
= A0,y σ

n
i,mℓ+

1
2
= 1 for 1 ≤ i ≤ m0. (2.34)
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2.3.3 Mass conservation

As discussed in [38], the mass fluxes of the diffusion terms are not balanced at the coarse-

fine grid interfaces, we need to find the ghost points and the mass change at coarse-fine grid

interfaces to ensure mass conservation on the adaptive grid. Conventional wisdom suggests

that a relatively higher order interpolation is normally needed for the ghost variables along

the coarse-fine grid interface on a composite mesh so that global second-order accuracy can

be maintained. For example, cubic interpolation is employed in [15, 63], for the composite

mesh in 2D. Only with very careful treatment along the coarse-fine grid interfaces [63, 69]

can the method conserve mass. In [38], the standard FAS multigrid solver is modified such

that even the combination of (low-order) linear interpolation paired with flux-balancing is

sufficient to maintain global second-order accuracy and mass conservation. However, the

solver is only restricted to fully implicit schemes. Here we extend their work by adding a

new feature such that the mass conservation for diffusion equations can be preserved for

semi-implicit schemes. For simplicity, we use Eq. (2.27) as an illustration. We first rewrite

Eq. (2.27) into the flux form:

ϕn+1
i,j − ϕn

i,j

∆t
= ∇ℓ,d ·

(
M(ϕ)ℓ,A∇ℓ,D µ

)n+ 1
2

i,j
+ s

n+ 1
2

i,j

=

(
F ew
ℓ,i+ 1

2
,j
− F ew

ℓ,i− 1
2
,j

hℓ
+
F ns
ℓ,i,j+ 1

2

− F ns
ℓ,i,j− 1

2

hℓ

)n+ 1
2

+ s
n+ 1

2
i,j , (2.35)

where we define the fluxes:

F ew
ℓ,i+ 1

2
,j
= −(Aℓ,xM)i+ 1

2
,j

µℓ,i+1,j − µℓ,i,j

hℓ
= −M ew

ℓ,i+ 1
2
,j

µℓ,i+1,j − µℓ,i,j

hℓ
,

F ns
ℓ,i,j+ 1

2
= −(Aℓ,yM)i,j+ 1

2

µℓ,i,j+1 − µℓ,i,j

hℓ
= −Mns

ℓ,i,j+ 1
2

µℓ,i,j+1 − µℓ,i,j

hℓ
, (2.36)

for ∗ew ∈ Eew
mℓ
, ∗ns ∈ Eew

mℓ
, ℓ = 0, 1, and (i, j) ∈ I0\1 when ℓ = 0, and (i, j) ∈ I1 when

ℓ = 1. The discrete homogeneous Neumann boundary conditions are enforced on the physical
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boundary:

F ew
0,0+ 1

2
,j
= F ew

0,m0+
1
2
,j
= 0, j = 1, · · · ,m0, (2.37)

F ns
0,i,0+ 1

2
= F ns

0,i,m0+
1
2
= 0, i = 1, · · · ,m0. (2.38)

u

u

u u

u

u

u u u u

u u u u u

u u u u u

u u u u u

u u u u u

u

u

u

Figure 2.2: Variable numbering scheme near the lower left double zombie point, shown in
red. This is a close-in view of the composite grid shown in Fig. 2.1.

In our solver, all the ghost points are obtained by using linear interpolations (LIF method,

see [38] for details), under which case the mass fluxes of the diffusion term are not balanced

at the coarse-fine grid interface. For simplicity, we use the mesh shown in Fig. 2.2 as an

example. For the point (ℓ = 0, i = 2, j = 3) on the coarse grid, we have the unbalanced mass

fluxes:

h0F
ew
0,2+ 1

2
,4
̸= h1F

ew
1,0+ 1

2
,3
+ h1F

ew
1,0+ 1

2
,4
. (2.39)
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To enforce mass conservation, we first calculate the mass change at that point:

Cew
0,2,3 = h0F

ew
0,2+ 1

2
,4
− h1F

ew
1,0+ 1

2
,3
− h1F

ew
1,0+ 1

2
,4
, (2.40)

we then insert this correction term as an extra source term to Eq. (2.35) for the corresponding

point on the mesh level ℓ = 0 to ensure local mass conservation. In general the mass

corrections on the coresponding coarse points can be given by

for j ∈ Iew
0\1, j̄ = 1, ...,m1/2 :

Cew
0,m0

0,j
= h0F

ew
0,m0

0,j
− h1(F

ew
1,0+ 1

2
,2j̄−1

− F ew
1,0+ 1

2
,2j̄
), (2.41)

Cew
0,m1

0,j
= −h0F ew

0,m1
0,j

+ h1F
ew
1,m1

1+
1
2
,2j̄−1

+ h1F
ew
1,m1

1+
1
2
,2j̄
, (2.42)

for i ∈ Ins
0\1, ī = 1, ...,m1/2 :

Cns
0,i,m0

0
= h0F

ns
0,i,m0

0
− h1F

ns
1,2̄i−1,0+ 1

2
− h1F

ns
1,1,2̄i,0+ 1

2
, (2.43)

Cns
0,i,m1

0
= −h0F ns

0,i,m1
0
+ h1F

ns
1,2̄i−1,m1+

1
2
+ h1F

ns
1,2̄i,m1+

1
2
. (2.44)

We then insert these correction terms as extra source to Eq. (2.35) to obtain the two-grid,

mass conservative finite difference discretization for Eq. (2.27)

ϕn+1
i,j − ϕn

i,j

∆t
=

(
F ew
0,i+ 1

2
,j
− F ew

ℓ,i− 1
2
,j

h0
+
F ns
ℓ,i,j+ 1

2

− F ns
ℓ,i,j− 1

2

h0

)n+ 1
2

+ s
n+ 1

2
i,j

+ δew0 (Cew
0,m0

1,j
)n+

1
2 + δew1 (Cew

0,m1
0,j
)n+

1
2

+ δns0 (Cns
0,i,m0

0
)n+

1
2 + δns1 (Cns

0,i,m1
0
)n+

1
2 , (2.45)

where

δew0 =


1, if ℓ = 0 & i = m0

0 & j ∈ Iew
0\1,

0, otherwise,

(2.46)
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δew1 =


1, if ℓ = 0 & i = m1

0 & j ∈ Iew
0\1,

0, otherwise,

(2.47)

δns0 =


1, if ℓ = 0 & i ∈ Ins

0\1 & j = m0
0,

0, otherwise,

(2.48)

δns1 =


1, if ℓ = 0 & i ∈ Ins

0\1 & j = m1
0,

0, otherwise.

(2.49)

The above method is then solved by using the FAS multigrid solver presented in [38], where

the difference is that the current discretizations contains the mass correction for the semi-

implicit scheme.

The adaptive process is comprised of two basic steps: starting with a multilevel, block-

structured mesh on which we have a computed solution, we (i) construct a new multilevel,

block-structured mesh, and (ii) solve the problem on the new mesh using the adaptive version

of the FAS multigrid method. New grids must be populated with data from the old mesh.

We assume that two fine grids, one old and one new, live simultaneously, where the field

variables are to be transferred from old to new. Both fine grids share the same parent grid,

the root grid. Data from the old root-level grid are copied into the new root-level grid.

Cell-centered data contained in the overlap of the old and new fine grids are simply copied.

The fine data in the old grid that are not in the overlap are averaged and copied to the new

root grid. The data in the new fine grid located where there is no overlap with an old fine

grid must be generated by interpolation from the cell-centered data in the root grid. See

[90] for more details.
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2.4 Numerical results

2.4.1 2D spherically symmetric mass conservative tumor growth

We first investigate a two-dimensional simulation of a tumor growing into a nutrient-poor

environment with D = 1. Assuming cell proliferation rate and cell apoptosis are extremely

small, we set P = 0 and A = 0. We focus on the parameters ϵ = 0.01, D = 1, and

Xσ = 10 (large nutrient taxis). The grid parameters are the following: the domain is

Ω = (0, 25.6)× (0, 25.6) with a root level grid of size 322. Five levels of refinement are used

so that the finest level has the effective resolution of a uniform grid 1024× 1024. Moreover,

we set the time step ∆t = 1.0×10−4. The initial tumor shape for the simulation is a slightly

elliptical mass with a diffuse interface. The ϕ = 0.5 level curve is given by

{(x, y)|(x− 12.8

2.1
)2 + (

y − 12.8

1.9
)2 = 1} (2.50)

In Fig. 2.3, three sets of simulations are computed by using the fully mass-conservative

scheme, the non-mass-conservative scheme, and the standard finite difference scheme on

uniform grid with equivalent effective mesh resolution. The evolution of the contours ϕ = 0.5,

together with the adaptive mesh are shown in Fig. 2.4. Here, the results of different schemes

are very similar. The tumor grows rapidly and develops an annular morphology as it expands

where tumor cells lie only in the annular region. Since the cell proliferation rate and cell

apoptosis rate are negligible, the mass of tumor cells is conserved but the volume fraction

near the center drops below the spinodal point (the point where d2f/d2ϕ changes sign)

because of increased cell death at the center due to the lack of nutrient. This creates a

cell-free zone in the center. As can be seen in Fig. 2.5, the nutrient concentration level near

the center is almost 0. The annular, or ring-like structure, is formed because the tumor cells

can not redistribute fast enough to maintain a uniform density due to the chemotaxis, low
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cell mobility, and cell-cell adhesion that pulls the cells from the inner region toward the more

nutrient-dense periphery. In Fig. 2.6, the total mass and surface area of tumor cells versus

time are plotted. Mass is indeed conserved by our new scheme. The surface area evolves

non-monotonically, but generally increases.

t=1 t=2t=0 t=3 t=4 t=5 t=6 t=7 t=8

Uniform

Mass
Conservative

Non-Mass
Conservative

Figure 2.3: Evolution of tumor in 2D with P = 0, A = 0, ϵ = 0.01 , D = 1 , Xσ = 10, and
initial tumor surface as in Eq. (2.50). The ϕ = 0.5 contour are based on uniform grid, mass
conservative scheme and non-mass conservative scheme.

t=2 t=4 t=8

Mass
Conservative

Non-Mass
Conservative

Figure 2.4: Evolution of the contours ϕ = 0.5, together with four levels adaptive mesh,
during growth.

We then consider the morphological evolution of tumors with a smaller interface thickness

ϵ = 0.005. All other parameters are the same as in the previous case. A smaller interface

thickness implies a larger cell mobility via Eq. (2.2). Therefore, more tumor cells are able

to reach the center. The tumor volume fraction near the center is higher than that with
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Figure 2.5: Up: 1D slice of nutrient concentration evolution at y = 12.8. Down: Contour
plots of nutrient concentration evolution corresponding to the simulation.
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Figure 2.6: The comparison between the mass-conservative scheme and the non-mass-
conservative scheme. Left: total mass. Right: surface area.

a smaller cell mobility, and therefore the tumor avoids forming a ring. Meanwhile, as ϵ is

reduced (from 0.01 to 0.005), the thickness of the diffuse interfacial region is reduced. Hence,

five levels of refinement are used to ensure that there are enough mesh points to resolve the

tumor interface. The mesh here has an effective resolution of a uniform grid 1024× 1024.

In Fig. 2.7, the dynamics of tumor simulations obtained on the adaptive mesh with the

fully mass-conservative scheme and the non-mass-conservative scheme are depicted, along

with the standard finite difference scheme on a uniform 10242 grid as the true solution for

comparison. We observe that the tumor starts to generate fingering patterns at t = 3,

increasing the surface area of the tumor and allowing better access to nutrient. At later

times, the fingers continue to stretch out and branched network-like pattern emerges. At

time t = 8, the non-mass conservative method is not able to simulate the thin fingers

accurately, and eventually the fingers become detached. The evolution of the contours ϕ =

22



0.5, together with the adaptive mesh are shown in Fig. 2.8. We remark that, because of its

mass conservation property, our mass-conservative scheme visibly outperforms the non-mass

conservative scheme. In Fig. 2.9, comparisons of the total mass and surface area confirm

this.

t=1 t=2t=0 t=3 t=4 t=5 t=6 t=7 t=8

Uniform

Mass
Conservative

Non-Mass
Conservative

Figure 2.7: Evolution of tumor in 2D with P = 0, A = 0, ϵ = 0.005, D = 1, Xσ = 10, and
initial tumor surface as in Eq. (2.50). The ϕ = 0.5 contour are based on uniform grid, mass
conservative solver and non-mass conservative solver.

t=4 t=8t=2

Mass
Conservative

Non-Mass
Conservative

Figure 2.8: Evolution of the contours ϕ = 0.5, together with five levels adaptive mesh, during
growth.

We now investigate tumor growth into a nutrient-poor microenvironment with a low prolif-

eration rate, P = 0.1. The other parameters are taken to be Xσ = 5 and ϵ = 0.01, with four

levels of mesh refinement. In Fig. 2.10, we observe that fingers develop, elongate, and form

long, slim and invasive fingers at time t = 15. In Fig. 2.11, we zoom in on the results at

time t = 20. Again, by comparing the results with those using a uniform mesh, we observe
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Figure 2.9: The comparison between the mass-conservative scheme and the non-mass-
conservative scheme. Left: total mass. Right: surface area.

that the mass-conservative scheme is more accurate than the standard non-mass-conservative

scheme.

t=5 t=10t=0 t=15 t=20 t=25 t=30 t=35

Uniform

Mass
Conservative

Non-Mass
Conservative

Figure 2.10: Evolution of tumor in 2D with P = 0.1, A = 0, ϵ = 0.01, D = 1, Xσ = 5, and
initial tumor surface as in Eq. (2.50). The ϕ = 0.5 contour are based on uniform grid, mass
conservative scheme and non-mass conservative scheme.

2.4.2 Convergence test

To show our method is second order accurate both in time and space, we carry out a con-

vergence test by considering the Cauchy sequence. We compute our scheme with the same

initial condition, computational domain and parameters as the simulation case in Fig.3

We save the data produced by the adaptive algorithm on an uniform grid 1024× 1024 using

linear interpolation, and then perform a time-step refinement test to obtain the order of

convergence in time by taking a linear refinement path for time step ∆t = 0.002/2k for

k = 0, ..., 6. The numerical errors are calculated as the difference between the solution of
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non-Mass conservative
Mass conservative
Uniform

Figure 2.11: Zoom in the time t = 20 of Fig. 2.10.

∆t errorϕ rate
2.0× 10−3 1.44× 10−2 -
1.0× 10−3 7.2× 10−3 1.9997
5.0× 10−4 3.7× 10−3 1.9591
2.5× 10−4 1.9× 10−3 1.9845
1.25× 10−4 9.35× 10−4 1.9865
6.25× 10−5 4.73× 10−4 1.9780
3.125× 10−5 2.37× 10−4 1.9943

Table 2.1: The L2 errors of the phase field variable ϕ obtained at t = 1 with different time
step ∆t.

coarse time step and that of the adjacent finer time step. We show the Cauchy sequence

of L2 errors at t = 1 with different time step sizes in Table 2.1, indicating a second order

convergence rate in time.

To compare solutions on different grids, we refine the mesh according to the rule m = 2k for

k = 5, 6, 7, 8, 9, where m is the number of grid points in both x direction and y direction.

Then, we interpolate the solution at the coarse grid up to the next fine grid to calculate the

difference in L2 norm. We show the Cauchy sequence of L2 errors at t = 1 with different

mesh grid points in Table 2.2. The convergence rate shows that our numerical method is

second order accurate.
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m error rate
32&64 4.72× 10−2 -
64&128 2.86× 10−2 1.6490
128&256 1.45× 10−2 1.9787
256&512 7.23× 10−3 1.9964
512&1024 3.61× 10−3 1.9957

Table 2.2: The L2 errors of the phase field variable ϕ obtained at t = 1 with different mesh
grid points m.

2.4.3 Performance of the solver in three dimensions

Here, we present three-dimensional simulations of tumor growth. Note that ϵ = 0.005 is

used in Fig. 2.12-2.13. The other biophysical parameters are the same as those used in the

first two-dimensional case, (Fig. 2.7). The initial tumor surface is

(
x− 12.8

2.1
)2 + (

y − 12.8

1.9
)2 + (

z − 12.8

1.9

2

) = 1, (2.51)

and the computational domain is Ω = (0, 25.6)3 with a root level grid of size 323. Four

levels of mesh refinement are used so that the finest level has the effective resolution of a

uniform grid 512 × 512 × 512. The evolution of the ϕ = 0.5 isosurface generated by the

mass-conservative scheme is shown in Fig. 2.12, along with the slice of ϕ = 0.5 at x = 12.8.

Unlike its two-dimensional counterpart, the three-dimensional tumor does not form fingers

and there is no tumor at center. The tumor interior becomes hollow and moves outward due

to the chemotaxis, low cell mobility, weak adhesion forces, and the limited nutrient supply.

The corresponding total mass and surface area comparisons are shown in Fig. 2.13. We

observe that the total mass of the mass-conservative scheme is constant and the surface area

increases but evolves non-monotonically.
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t=0.01 t=0.1 t=0.2 t=0.3

Figure 2.12: Up: The evolution of the ϕ = 0.5 isosurface during the growth of a symmetrical
3D tumor with P = 0, A = 0, ϵ = 0.005 , D = 1 , Xσ = 10. Down: The slice of ϕ = 0.5
isosurface at x = 12.8.

Mass

Time

Surface
   Area

Time

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
31.755

31.76

31.765

31.77

31.775

31.78

Mass conservative
non-Mass conservative

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.1

0.15

0.2

0.25

0.3

0.35

Mass conservative
non-Mass conservative

Figure 2.13: The comparison between the mass-conservative scheme and the non-mass-
conservative scheme. Left: total mass. Right: surface area.
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2.4.4 Tumor growth with stochastic effects

As another example of the power of our numerical approach, we investigate tumor growth

with stochastic effects and a low proliferation rate, P = 0.1. We further assume that the cell

death rate is small, A = 0. Thus, taxis dominates the cell dynamics. The other parameters

are taken to be ϵ = 0.01 and D = 1, Xσ = 5. An adaptive mesh is used where the root level

is 32 × 32 and four levels of mesh refinement are used to get the effective resolution of a

uniform grid 512×512. We set the time step ∆t = 1×10−3. As a simple model of biological

noise and variability, consider the nutrient uptake to be a stochastic variable. In particular,

the nutrient diffusion equation Eq. (2.4) is replaced by

0 = ∇ · (D(ϕ)∇σ)− λσϕ (2.52)

where λ is a truncated normally distributed random variable in space, with mean = 1 that is

bounded in [0, 2]. The variable λ is changed every 200 time steps. In Fig. 2.14, the results are

shown during growth. The initial asymmetrical tumor shape for the simulation is displayed

at time t = 0. It is clearly seen that the tumor acquires a highly complex spatial structure,

branches and forms a dense network.

In our last example, we present a three-dimensional tumor growth simulations with stochas-

tic effects. The parameters are the same as the previous two-dimensional simulation with

stochastic effects. In Fig. 2.15, as in the two-dimensional case, the tumor develops a highly

complex morphology.
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t=0 t=10 t=15 t=20

t=0 t=10 t=15 t=20

Figure 2.14: The evolution of an asymmetrical 2D tumor with stochastic effects. The pa-
rameters are : P = 0.1, Xσ = 5, ϵ = 0.01.

t=0 t=8 t=16 t=24 t=32 t=40

Figure 2.15: Evolution of the ϕ = 0.5 isosurface and during the growth of an asymmetrical
3D tumor with stochastic effects. The parameters are: P = 0.1, Xσ = 5, ϵ = 0.01.
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2.5 Summary and future work

In this work, we simulated numerically a thermodynamically consistent mixture model for

avascular solid tumor growth which was presented in [28]. The governing equations are Cahn-

Hilliard type that takes into account cell proliferation and death, the effects of cell-to-cell

adhesion, taxis inducing chemical and molecular species.

To solve the governing equations, the Crank-Nicolson (CN) method was used for the temporal

discretization so that the scheme was second order accurate in time and a finite difference

method was used for the spatial discretization to guarantee the second order accurate in

space. We developed a novel mass-conservative two-grid full approximation storage (FAS)

solver which extends the algorithm developed by Feng et al. in [38] to time-dependent

problems. We also extended the solver by adding a new feature that the mass can be

preserved for the semi-implicit scheme, including but not restricted to the CN method. The

algorithm is essentially a standard adaptive full approximation storage (AFAS) scheme, but

with a simple modification that comes in the form of a mass-conservative correction to the

coarse-level force. This is facilitated by the introduction of what we call a zombie variable,

analogous to a ghost variable, but defined on the coarse grid, and lying under a fine grid

refinement patch. To maintain global mass conservation, we need only modify the usual FAS

algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine

interface.

We presented tumor evolutions in nutrient-poor tissues with different mobility in 2D and

3D. The results shows that the mobility may drive fingering instabilities if it is large enough,

otherwise the tumor forms an annular ring structure. To show our scheme, we compared

our results with the simulations of the standard finite difference scheme on uniform grid

which is automatically mass conserved. We also presented simulations of tumor growth with

stochastic effects in 2D and 3D that demonstrate the capabilities of the algorithm simulating
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the progression of tumors with complex morphologies.

In the future, we plan to extend the algorithm to incorporate more cells types and more

physiological effects via tumor mixture models [93]. Eventually, we plan to develop a new

multiscale model of vascular solid tumor growth which couples both tumor growth and

angiogenesis models [87]. This is the subject of ongoing work.
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Chapter 3

Mathematical Modeling of

Angiogenesis

3.1 Introduction

Angiogenesis is a physiological and natural phenomenon by which new blood vessels emerge

from an existing vascular system. It was discovered nearly a century ago that angiogenesis

happens in the vicinity of tumors. It is essential to the regular processes involved in arthritis,

wound healing, and solid tumor growth.

Hypoxia inducible factor (HIFα) is activated by a drop in local oxygen levels, which in turn

stimulates the transcription and synthesis of angiogenic factors like vascular endothelial

growth factor (VEGF)-A, thereby initiating angiogenesis.[80]. These pro-angiogenic factors

diffuse outward from the hypoxic regions and eventually reach the neighboring blood vessels.

After being discovered by the ECs, pro-angiogenic factors begin secreting matrix degrading

enzymes that degrade the basement membrane and the extracellular matrix (ECM). Subse-

quently, ECs are activated to form tip endothelial cells (TECs), which become the leading
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edge of a new sprouting vessel [34]. Directly behind the TECs are stalk cells that proliferate,

elongate and form a local basement membrane [59]. They eventually align and surround a

vascular lumen with tubes of polarized ECs. The blood vasculature grows and is extended

when new or preexisting vessels unite through anastomosis.

Furthermore, during angiogenesis, VEGF and Notch signaling pathways are involved in

the differentiation of TECs in the vascular endothelium. Under the stimulation of VEGF,

the expression of Delta-like ligand 4 (Dll4) is up-regulated in TECs. Dll4 binds to Notch

receptors of nearby endothelial cells which, in turn, reduces their VEGF receptor expression,

consequently suppressing their TEC phenotype. See [13, 50] for more details.

Experimental evidence shows that vessels grow led by TECs [31]. TECs migrate mainly

following the gradient of Hypoxia inducible factors (HIFα) and also facilitated by filopodia

[51]. Filopodia are rod-like cell surface projections filled with bundles of parallel actin fila-

ments that function as antennae for TECs to probe their microenvironment [64, 37], shown

in Fig. 3.1. In particular, when filopodia sense the remnants of basement membrane, TECs

alter their direction towards them to use them as the path of minimum resistance in their

migration. Then, the vessels link with the old ones and form a network of loops during a

process called anastomosis. Filopodia-based sensing plays a major role in anastomosis and

loop formation and that chemotaxis itself is not enough to create connected networks that

favour blood flow and oxygenation. The resulting neovasculature provides the hypoxic region

with a direct supply of oxygen and other nutrients.

In the last few years, new or augmented mathematical models of angiogenesis have been

developed and vary in the extent of biological details they characterize. Most of them can

be summarized into three general categories: discrete, continuous and hybrid models (see

Fig. 3.2). In discrete models, endothelial cells and vasculature are treated as individual ob-

jects. The vasculature develops through time based on sets of rules dictating cell behavior.

Discrete models can resolve some local features but become computationally expensive as
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Figure 3.1: a, Original picture showing an embryonic endothelial tip cell obtained by elec-
tron microscopy. b, Confocal micrograph showing filopodia extensions at the leading tip
cell. c, Scheme from 1972 proposing several endothelial subtypes in the angiogenic sprout.
d, Schematic representation of a tip cell (green) extending filopodia toward an angiogenic
stimulus (red gradient), followed by stalk cells (purple), while phalanx cells (gray) remain
quiescent. Adapted from [31]
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the number of cells increases. Continuum models are based on ordinary or partial differen-

tial equations (PDEs) that describe the blood vessels through the endothelial cell density or

volume fraction that evolves in time. [29, 22, 3]. Continuum models are capable of captur-

ing macroscopic features related to vasculature, HIF, and ECM. Meanwhile, PDEs describe

movement due to diffusion, haptotaxis, and chemotaxis [40, 85]. While continuous models

offer advantages such as low computing costs and the utilization of parallel solvers, they are

limited in their ability to resolve local key features of the changing vasculature, including,

for example, the activation of TECs and the competition for the TEC phenotype among

other TECs and neighboring endothelial cells [54]. To balance both approaches and produce

robust and sophisticated vascular fields, Hybrid models integrate both continuum and dis-

crete descriptions into a single framework. In hybrid models, TECs are depicted as discrete

agents migrating chemotactically following the HIF gradient and endothelial cell density are

modeled using a continuum approach describing the movement, proliferation, and apoptosis.

We refer the interested reader to the reviews in [33, 34, 94, 26].

Motivated by the need to better understand the complex dynamics of angiogenesis and its

critical role in cancer progression, the objective of this work is to develop a hybrid math-

ematical model that captures the key biological processes involved. Specifically, we aim to

integrate hypoxia inducible factor dynamics, capillary sprouting, tip endothelial cells and the

role of specialized filopodia in guiding the formation of new vascular networks. By combin-

ing continuum and discrete modeling approaches, our hybrid framework seeks to bridge the

cellular and tissue scales, enabling the resolution of capillary-level features while simulating

long-term angiogenesis dynamics. In particular, we uniquely combine a focus on the filopodia

as modeled by a set of check points that mimic the high concentration of receptors of TECs.

Ultimately, this work aims to contribute to a mechanistic understanding of angiogenesis,

which could inform the development of more effective anti-angiogenic therapies and advance

our knowledge of cancer biology.
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Figure 3.2: Overview of cell-scale models of angiogenesis. Adapted from [54]

3.2 Mathematical model

In this chapter, we present a multiscale model for angiogenesis growth based on the phase-

field theory, developed by Vilanova et al [87, 86]. The model incorporates the dynamics

of capillaries, angiogenic factors, and tip endothelial cells (TECs), along with a discrete

conceptualization of filopodia that enables TECs to sense their microenvironment. Here, the

new feature is that the modeling of filopodia and filopodia-influenced migration are achieved

in a concise and more compatible manner. While steering clear of many potential bugs in

simulations, our model preserves biological mechanisms and demonstrates a strong capability

to simulate the development of angiogenesis with complex morphologies. This paves the way

for our future work in Chapter.4, specifically the development of a model that integrates

tumor growth and angiogenesis
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3.2.1 Capillaries

Following [87], the dynamics of capillaries is modeled using the phase-field theory, which

describes the evolution of a continuous variable c that represents the capillary [82]. The

phase-field theory is a mathematical formalism to derive models for problems with moving

interfaces. See [23, 35, 57] for reviews . In each of the phases, with a smooth change between

phase values in a thin layer of finite width around the interface. Here, phase fields are

used to indicate the locations of various cell types. Specifically, we employ two phase fields:

one to identify the position of endothelial cells, and the other to indicate the location of

hypoxic cells. The phase-field equation is derived from an energy functional that accounts

for the surface and chemical free energies of the system. According to the phase-field theory,

endothelial cell location is indicated by the order parameter c, which evolves in a way that

tends to adopt the configuration of minimum energy provided by the energy functional

ε(c, f) =

∫
Ω

(Ψs(c) + Ψc(c, f))dx, (3.1)

where Φs and Φc are the so-called surface free energy and chemical free energy, respectively.

The surface energy is defined as

Ψs(c) =
1

2
λ2|∇c|2, (3.2)

where λ is a positive constant proportional to the width of the capillary wall and | · | denotes

the magnitude of a vector. The chemical free energy is given by

Ψc(c, f) =
1

4
(c+ 1)2(c− 1)2 +

1

2
αγ(f)(c+ 1)2(2− c)2, (3.3)
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which is a double-well non-convex function with two local minimal, where α is a parameter

and γ(f) is a tilting function which defined as

γ(f) = exp[−exp(β(f − ffact))]− exp(−1), (3.4)

where β is an constant. Each local minimum presents a phase. At c = 1, the concentration

of endothelial cells reaches its maximum. While c = −1, there are no endothelial cells, that

is, extravascular tissue. The phase-field dynamic equation is

∂c

∂t
= −Mδε

δc
(3.5)

δε

δc
= −λ2∆c+ µ(c, f) (3.6)

µ(c, f) =
1

2
(c2 − 1)(c− 3αγ(f)) (3.7)

where M is the mobility, δε
δc

is the variational derivative of the energy ε, and µ(c, f) is the

derivative of the Ψc with respect to the order parameter. Gathering Eq. 3.5 - 3.6, we have

the following reaction–diffusion partial differential equation for capillary c:

∂c

∂t
=M(λ2δc− µ(c, f)). (3.8)

3.2.2 Hypoxia inducible factor (Angiogenic factor)

The angiogenesis generates a vascular network based on pro-and anti-angiogenic factors.

Some of these substances promote angiogenesis, such as VEGF or bFGF, while others in

some way hinder the development of new sprouts, such as TSP-1 or Ang-2. As a conse-

quence, hypoxic cells are ultimately able to draw endothelial cells from their tightly controlled

homeostatic condition through the unbalancing of the angiogenic factor equilibrium towards

angiogenesis [61]. Let f represents the net pro-angiogenic contribution of all these sub-
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stances. We assume that the net angiogenic factor (NAF) secreted by hypoxic cells (HYCs)

diffuses throughout the tissue, decays naturally, consumed by endothelial cells, forming well

defined spatial concentration gradients, and eventually triggers angiogenesis.

Hypoxic cells (HYCs) are modeled here as circular, mesh-free, discrete agents with a radius

R. These cells continuously release the HIF unless they receive sufficient nutrients, signifying

the presence of a capillary in close proximity to them (c > 0.9).

The dynamics of f is supposed to be governed by the reaction-diffusion equation

∂f

∂t
= ∇ · (D∇f) + P(d)(fhyc−f )− U(c)f, (3.9)

where D is the diffusion coefficient and fhyc is a constant representing the maximum NAF

concentration in the tissue. P is defined as

P =


P if d < R

0 if d ≥ R.

(3.10)

Here, P is the production rate, d is the distance to the closest hypoxic cells and R is an

average cell radius. The uptake function U is defined as

U =


Uuc if c > 0

−Udc if c < 0,

(3.11)

where Uu is the endothelial cell uptake rate, and Ud combines the AF decay rate and the

uptake rate by other cells.
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3.2.3 Tip endothelial cells

Sprouting angiogenesis is led by TECs, which specialized cells at the extremity of newly

formed capillaries that extend filopodia and guide capillary outgrowth [32]. Key features

of TECs are their location at the forefront of vessel branches, highly polarized nature, and

numerous filopodia probing the environment, while migrating toward an angiogenic stimulus,

such as the direction of increasing VEGF concentration [31].

When capillaries receive NAF signals, some privileged cells (TECs) acquire a migratory

phenotype and lead the growth of new sprouts. When an endothelial cell becomes a TEC,

it expresses Delta-like ligand 4 (Dll-4) [81]. Expression of the Notch ligand Delta-like-4

(Dll4) in TECs suppresses tip cell fate in neighboring stalk cells via Notch signaling. This

factor is overexpressed by TECs and binds to the Notch receptors of nearby endothelial cells,

preventing the adjacent cells from becoming TECs and thereby optimizing the number of

TECs [30, 50]. For supporting experimental evidence, we referred to [52, 42, 51].

The key job of TECs is to navigate, a process that relies on correct probing of microen-

vironmental cues, and translating them into a dynamic process of adhesion (at the front)

and deadhesion (at the rear), that ultimately leads to cell movement. To navigate, tip cells

become polarized and leading front extends filopodia, whereas their rear maintains contact

with trailing stalk cells to avoid branch desintegration [31]. Filopodia are able to sense their

microenvironment and increase the chemical sensitivity of TECs, facilitate their migration

following chemotactic cues and permit tip endothelial cells to detect nearby capillaries [10].

For these reasons, tip endothelial cells are modeled here as circular (with radius R), mesh-

free, discrete agents that can get activated and deactivated, spread filopodia, move following

chemotactic gradients of tumor angiogenic factor, detect nearby capillaries, and anastomose

with them [92].

Here, we show the details about deterministic rules as follow:
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• Activation

To active a new tip endothelial cell, the following conditions must be met:

1. c ≥ cact which guarantees that the point is inside a capillary;

2. f > fact the concentration of NAF is greater than a certain threshold;

3. ||x− xTEC || > δ4 the distance to any other tip endothelial cell is larger than δ4

which represents the diffusion length of the ligand Dll-4.

By preventing TECs to be formed in the surroundings of another active tip cell, we encode

the essential mechanism whereby Dll4 controls the density of the vascular network. Note

that whenever there are several points satisfying all the conditions listed above, we randomly

choose one for each iteration.

• Filopodia

We implement the filopodia around each tip cell (which mimics high concentration of

receptors) as a set of check points that capable of detect nearby vessels.

1. The filopodia check points are evenly positioned on the edge of an sector.

2. The angle of sector is θ = 2π
3
, centered around the chemotactic direction.

3. The radii of the sector is set to L = 4R, where R is the radius of TECs.

In [87], Vilanova et al. model filopodia as an annular sector but with 2 layers. The

internal and external radii of the annular sector are set to Lext = 2R and Lext =

4R, representing Lamellipodia and Filopodia, respectively. The role of external layer

filopodia is to detect a capillary and leading the the direction of migration. The role of

internal layer is to model anastomosis by testing whether the value of c. Different with

[87], We only utilize the edge of a sector, which consists of only one external layer, to

mimic the filopodia and implement direction guidance and anastomosis. The reasons

for doing this will be discussed after presenting the model.
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• Migration

Activated TECs have two types of migration scenarios:

1. Activated cells migrate through the extracellular matrix following chemotactic

cues with a velocity proportional to the gradient of net pro-angiogenesis fac-

tor(NAF), given by

v = χ
∇f
|∇f |

, (3.12)

where χ is the chemotactic constant and | · | denotes the Euclidean norm.

2. When any of the filopodia checkpoints detects a nearby capillary or basement

membrane, filopodia adhere and form focal contact points to connect the cy-

toskeleton to the extracellular matrix (ECM). This allows stress fibers of actin/myosin

filaments to pull the TEC toward these anchors, and induce forward movement

[31]. In our model, we record the adhesion points as the destination of the TECs.

the moving direction of the TEC changes towards the adhesion point and the

speed is maintained.

• Deactivation

When one of the following condition is met, TEC become deactivated and loses its

migratory phenotype:

1. TEC anastomoses with capillary. When the TEC move to the adhesion point

that identified by the filopodia checkpoint, indicating that the TEC is in contact

with the capillary, an anastomosis event occurs, leading to the deactivation of the

TEC.

2. f < fact When the NAF is scarce, the stimulus ceases, and the TEC become

deactivated.
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In [87], Vilanova et al. provide a complex filopodia model that attempts to closely follow

biological mechanisms and work in most case (See Fig. 3.3). However, they set the annular

sector centered around the chemotactic direction, and the annular sector direction remains

unchanged after the filopodia detect a capillary. This setting not only fails to conforms to

the biological mechanism but also introduces unnecessary bugs in the simulations. When

the filopodia-influenced migration brings a TEC close to the capillary, the annular sector

direction deviates from the the direction of movement and the degree of deviation depends

on the concentration difference of HIF.

For example, in Fig. 3.3, the concentration of HIF(f) around the capillary is much lower

than elsewhere due to its consumption by the capillary. Thus, when a TEC migrate close

to a capillary, the direction of its annular sector undergoes severe deviations due to a strong

change in the gradient of HIF. In simulations, it consistently occurs that capillaries cannot be

detected by the inner layer, or the inner layer detects its own stalk, leading to the overgrowth

of tip endothelial cells (TECs) or sudden stops, which are beyond expectations.

Surprisingly, relatively little is known about the processes regulating the assembly of these

cellular protrusions in ECs, which gives us more possibilities to improve this model. Here, in

Fig. 3.4, our model successfully addresses the problem in a concise and more compatible way

by using only the external layer to achieve detection and anastomosis. This improvement

avoids potential unexpected occurrences while preserving its biological mechanisms.

From a technical perspective, the fundamental challenge in developing hybrid model is the

need to bridge the cellular and tissue scales and couple the continuous variables and discrete

agents. In our work, the connection between these two parts of the model is that both the

TECs and the continuous variable c describe endothelial cells. Thus, we include TECs in the

phase-field variable using a straightforward approach: c is updated to c = 1 in those regions

of the computational domain occupied by TECs. We use smoothed-out radial Heaviside

functions which take approximately the value +1 inside the circular cell and −1 elsewhere
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Figure 3.3: The model of filopodia described in [87].
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Figure 3.4: The model of filopodia described in our model.
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as template function. Then we define simple approximations to a phase field representing a

single circular cell and use that as a template which moves following TECs.

3.3 Numerical results

3.3.1 Two main vessels

We start with a simulation to study the development of angionenesis from a pre-existing

vessel network with simple domain. We perform the simulation on a square domain, Ω =

(0, 300) × (0, 300) using a uniform mesh 256 × 256. The boundary conditions are zero-flux

conditions. The initial setup of the simulation shown in Fig. 3.5, we set up two straight

capillaries along the opposite edges of the square domain(top and bottom). In the central

region, we set an cluster of hypoxic cells within a tumor-like circular area that continuously

release HIF. 150 hypoxic cells with average cell radius R are randomly distributed in the

region which is equidistant to the top and bottom boundaries.

The simulation time T = 20 and the time step dt = 5 × 10−4. The parameter values in di-

mensionless units used in the computations are summarized in Table.3.1. The computational

simulation involves a finite difference scheme in a MATLAB script.

Fig. 3.6 shows the time evolution of the simulation. At t = 1, we observe that two TECs get

activated on both sides and initially migration following the chemotactic direction. In the

second snapshot, several time steps afterwards, two other TECs get activated from the top

and grow parallel to each other separated by a distance. One new TEC get activated from

the new capillary on the bottom which create the first branch. At t = 4, the network starts

to create more branches and bifurcation. Moreover, at t = 5, 6, as more capillaries grow

behind and branching, the distance between TECs and capillaries falls within the extension
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Figure 3.5: The initial setup of the angiogenesis model.

range of filopodia, which triggers the creation of anastomoses.
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Figure 3.6: Evolution of the formation of angiogenesis.
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Table 3.1: Parameters of the angiogenesis model in dimensionless units.

parameter description value

D tumor angiogenic factor diffusion coefficient 300.0

fhyc maximum tumor angiogenic factor concentration in
the tissue

1.0

P tumor angiogenic factor production by HYCs 350

R average cell radius 4.0

Uu tumor angiogenic factor endothelial cell uptake 60.875

Ud tumor angiogenic factor natural decay 15.35

λ interface width 1.0

M mobility 0.0975

χ chemotatic constant of tip endothelial cells 250.47

cact condition for TEC activation 0.9

fact condition for TEC activation 0.01

δ4 Dll-4 radius of action 28

δnox condition for HYC deactivation 10

3.4 Discussion

In this chapter, we proposed a multiscale model for angiogenesis growth. The model is

composed of two continuum variables and a set of discrete agents. The dynamics of capillaries

is modelled using the phase field theory at full scale to simulate long-term dynamics of

angiogenesis. The pro-angiogenic fact diffuse form the hypoxic cells and the dynamics is

governed by the reaction-diffusion equation. Tip endithelial cells are discrete agents in

our model. Simultaneously, we have included a discrete conceptualization of filopodia that

endows TECs with the ability to sense their microenvironment. The setup for filopodia

is simple, compatible, and aligns with biological mechanism, laying the groundwork for its

seamless integration with future tumor-induced angiogenesis models.
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Chapter 4

Mathematical Modeling of Tumor

Angiogenesis

4.1 Introduction

Tumor angiogenesis is intricate, a multiple-step process which resulting in the development of

solid malignancies. The observation that angiogenesis occurs around tumors was made nearly

100 years ago, and the hypothesis that tumors produce a diffusible angiogenic substance was

put forward in 1968 [21]. Due to its prominent role in cancer metastasis, tumor angiogenesis

is one of the major areas of cancer research in recent years [74, 56].

Angiogenesis is the formation of new blood vessels from the endothelial cells (ECs) of pre-

existing veins, arteries, and capillaries. The growth process is usually triggered by cells whose

oxygen or nutrient requirements are not satisfied by the current vasculature and it can happen

both in physiological and pathological conditions [87]. In normal tissues, angiogenesis is

carefully self-regulated and tightly controlled. However, in cancer, the vessels are structurally

and functionally abnormal. In the avascular stage of tumor growth, a significant amount of
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nutrients is consumed due to rapid proliferation of tumor cells. Inefficient nutrient delivery

to tumor cells results in regions of severe hypoxia that hinders tumor growth. This is

a trait observed in nearly all solid malignancies [84]. To overcome the oxygen-deficient

microenvironment, hypoxic tumor cells secrete tumor angiogenesis factor (TAFs), such as

vascular endothelial growth factor (VEGF, [53]), or basic fibroblast growth factor (bFGF,

[7]) which unbalance the equilibrium between pro- and anti-angiogenic substances and trigger

the formation of new blood vessels [56, 14]. TAFs diffuse outward from the hypoxic regions

of the tumor and eventually reach the neighboring blood vessels.

Blood vessels are lined by endothelial cells (ECs) and the growth of new sprouts requires

these cells to migrate and proliferate [58]. After being detected by ECs, TAFs secrete matrix

degrading enzymes that are able to break down the basement membrane and the extracellular

matrix (ECM). ECs begin to migrate from the original blood vessel towards the tumor.

Under the influence of TAFs , endothelial cells(ECs) differentiate into two phenotypes. The

first migrating ECs are termed tip endothelial cells (TECs) which can sense their environment

and direct the sprouting process. To establish a properly patterned vascular tree, TECs must

be followed by morphologically distinct EC, which form a lumenized tube growing behind the

TEC. In contrast to the tip cells, these follower cells termed stalk endothelial cells (SECs)

that exhibit proliferative behavior.

Furthermore, during angiogenesis, VEGF and Notch signaling pathways are involved in the

differentiation of TECs and SECs in the vascular endothelium. Under the stimulation of

VEGF, the expression of Delta-like ligand 4 (Dll4) is up-regulated in TECs. Dll4 binds

to Notch receptors of nearby endothelial cells which, in turn, reduces their VEGF receptor

expression, consequently suppressing their TEC phenotype. See [13, 50] for more details.

Experimental evidence shows that vessels grow led by TECs. TECs migrate mainly fol-

lowing the gradient of tumor-produced growth factors and also facilitated by filopodia [51].

Filopodia are rod-like cell surface projections filled with bundles of parallel actin filaments
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that function as antennae for TECs to probe their microenvironment [64, 37]. In particu-

lar, when filopodia sense the remnants of basement membrane, TECs alter their direction

towards them, using them as the path of minimum resistance in their migration. Then, the

vessels link with the old ones and form a network of loops during a process called anasto-

mosis. The resulting neovasculature provides the tumor with a direct supply of oxygen and

other nutrients. Nourished by this new vascular network, cancer cells begin a stage of rapid

proliferation.

Tumor growth is a complex process that involves the interplay of various cell types, including

cancer stem cells (CSCs), differentiated cancer cells, and dead cells [49]. Mathematical mod-

els of tumor growth can capture the dynamics of these cell populations, their interactions

with the microenvironment, and the influence of nutrients and signaling factors on tumor

progression[62]. In a general tumor growth model, tumor cells can proliferate, differenti-

ate, and die. They can also switch phenotypes depending on the local microenvironment

and signaling cues [44, 98]. Moreover, tumor cells can adapt their metabolic preferences

depending on the oxygen levels in their surroundings. In well-oxygenated regions, cells may

prefer oxidative phosphorylation (OXPHOS) for energy production, while in hypoxic areas,

they may switch to glycolysis, which is less efficient but does not require oxygen. Another

crucial aspect of tumor growth is the production of angiogenic factors by tumor cells[39, 11].

These factors, such as vascular endothelial growth factor (VEGF), stimulate the formation

of new blood vessels (angiogenesis) to supply the growing tumor with oxygen and nutrients.

Different tumor cell types may produce angiogenic factors at varying rates, depending on

their phenotype and the local oxygen concentration [72, 95]. For example, hypoxic cells may

secrete higher levels of angiogenic factors compared to well-oxygenated cells, as a response

to the lack of oxygen.

By coupling tumor growth models with angiogenesis model, we can gain a more compre-

hensive understanding of the intricate relationship between vascular development and tu-
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mor expansion, which is essential for developing effective anti-cancer therapies. The tumor

growth model presented in this work incorporates these key features, including cell prolif-

eration, differentiation, death, phenotypic switching, metabolic adaptation, and angiogenic

factor production, to provide a detailed representation of the complex dynamics of tumor

progression.”

Motivated by the need to better understand the complex dynamics of tumor-induced angio-

genesis and its critical role in cancer progression, the objective of this work is to develop

a comprehensive mathematical model that captures the key biological processes involved.

Specifically, we aim to integrate the distinct yet interconnected mechanisms of tumor growth,

angiogenic factor dynamics, capillary sprouting, and the role of specialized endothelial cells

(tip cells) in guiding the formation of new vascular networks. By coupling tumor growth

models with angiogenesis models, our hybrid framework seeks to bridge the cellular and

tissue scales, enabling the resolution of capillary-level features while simulating long-term

angiogenesis dynamics. Furthermore, by incorporating experimental data from the novel

vascularized microtumor (VMT) platform, we strive to validate our model against realistic

vascular morphologies and gain insights into the intricate interplay between tumor cells,

angiogenic factors, and the evolving vasculature. Ultimately, this work aims to contribute

to a mechanistic understanding of tumor-induced angiogenesis, which could inform the de-

velopment of more effective anti-angiogenic therapies and advance our knowledge of cancer

biology.
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4.2 Extraction of the initial vasculature network from

VMT device images

The vascularized microtumor (VMT) platform, developed by [46], is a novel in vitro system

that recapitulates the complex tumor microenvironment, including a perfused vascular net-

work, within a microfluidic device. The VMT platform allows for the co-culture of tumor

cells and endothelial cells in a three-dimensional extracellular matrix, enabling the formation

of a vascularized microtumor that closely mimics the in vivo tumor microenvironment. As

an example, a fluorescent image of VMT with a fully-developed vascular network is shown

in Fig. 4.1.

Figure 4.1: Fluorescent image of tissue chamber with a fully-developed vascular network.
Vessels in red. Adapted from [78]

The VMT device consists of a central chamber for co-culturing tumor cells and endothe-

lial cells, surrounded by microfluidic channels that allow for the perfusion of the vascular

network. The central chamber of the VMT device is filled with a three-dimensional extracel-

lular matrix, such as collagen or fibrin, which provides a supportive scaffold for the growth
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and organization of the tumor cells and endothelial cells. The composition and stiffness of

the extracellular matrix can be tailored to mimic the specific tumor microenvironment of

interest. Tumor cells and endothelial cells are seeded into the central chamber of the VMT

device, where they self-organize and form a vascularized microtumor. The endothelial cells

form a perfusable vascular network that supplies the tumor cells with oxygen and nutrients,

recapitulating the critical role of angiogenesis in tumor growth and progression. The vascu-

lar network within the VMT device is perfused with cell culture media or allowing for the

study of tumor-vasculature interactions under physiologically relevant flow conditions. The

optically transparent nature of the device enables real-time, high-resolution imaging of the

vascularized microtumor using fluorescent microscopy, confocal microscopy, or light sheet

microscopy.

The VMT platform recreates the complex tumor microenvironment, including a perfused

vascular network, which more closely resembles the in vivo situation compared to traditional

2D cell culture or avascular 3D models.

In the context of our hybrid model of tumor angiogenesis, the VMT platform serves as

a valuable source of experimental data for initializing and validating our simulations. By

extracting the initial vascular network from fluorescent images of the VMT device and in-

corporating it into our model, we can simulate tumor-induced angiogenesis in a biologically

relevant context and compare our results with the observed vascular morphologies in the

VMT platform. This integration of experimental data and computational modeling provides

a powerful approach for understanding the complex dynamics of tumor angiogenesis and

identifying potential therapeutic targets. We refer to [78, 70, 45, 46] for more details about

VMT platform.
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4.3 Mathematical model of tumor induced- angiogen-

esis

4.3.1 Angiogenesis model

The angiogenesis model is developed and described in Chapter 3, which incorporates the

dynamics of capillaries, angiogenic factors, and tip endothelial cells (TECs), along with

a discrete conceptualization of filopodia. The dynamics of capillaries are modeled using

a continuum approach describing the movement, proliferation, and apoptosis of the cells

within the capillaries. Reaction-diffusion equations are used to describe the dynamics of

chemical substances (VEGF). Meanwhile, the model of tumor and capillary growth is based

in a phase-field theory that allows one to resolve capillaries at full time case and to simulate

long-term dynamics of angiogenesis. TECs are identified within the field of capillaries based

on the concentration of TAF and lateral inhibition (no TECs are within a distance threshold

of the cell to be activated). Furthermore, a discrete conceptualization of filopodia has been

incorporated, granting TECs the ability to sense their microenvironment. See chapter.3 for

more details.

4.3.2 Tumor growth model

The tumor growth model presented in this work is based on a diffuse interface continuum

model of multispecies tumor growth that considers the dynamics of cancer stem cells (CSCs),

differentiated cancer cells (Wnt-Hi and Wnt-Mod), and dead cells. The model incorporates

the effects of nutrients (oxygen and glucose), signaling factors (Wnt, DKK4, FGF, FGF20

and BMP), and lactate on tumor cell proliferation, differentiation, and death. The model

is well-posed and consists of fourth-order nonlinear advection–reaction–diffusion equations
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(of Cahn–Hilliard-type) for the cell species. The self-renewal probabilities of CSCs and

differentiated cancer cells are regulated by the concentrations of Wnt, FGF, and BMP,

which are modeled using reaction-diffusion equations. The proliferation rates of tumor cells

depend on the availability of oxygen, glucose, and lactate, as well as the influence of signaling

factors. The schematic of the model is shown in Fig. 4.2

Tumor cells are modeled as volume fractions. The governing equations for each cell type

are derived from mass conservation equations that account for cell motility, proliferation,

apoptosis, and switching among cell types. Signaling pathways identified by the scRNAseq

analysis are modeled as spatiotemporally varying signaling factors that feedback on the

proliferation rates and self-renewal fractions of tumor cells.

The model is illustrated in Fig. 4.2. The tumor consists of cancer stem cells (CSC), Wnt-Hi,

and Wnt-Mod cells characterized by different levels of Wnt signaling, as well as dead cells

(not shown in the diagram). CSC have three possible outcomes when they divide: (1) CSC

may self-renew in regions with low levels of Wnt signaling, or (2) switch to Wnt-Hi cells in

regions with high Wnt signaling, or (3) switch to Wnt-Mod cells in regions with moderate

Wnt signaling. Similarly, Wnt-Hi and Wnt-Mod cells may self-renew at high or moderate

levels of Wnt signaling, respectively. They may also switch to other cell types, indicated

by the double arrows. We assume the tumor produces a factor F that belongs to the FGF

superfamily and signals through FGFR4 or FGFR3 to CSC. This factor is released by CSC

(and non-CSC at a much lower rate) and is essential for the proliferation and self-renewal of

CSC. Wnt-Hi and Wnt-Mod cells may switch to CSC when the factor F is present.

Wnt-Hi cells (together with other tumor cells at a lower rate) release Wnt as a short-range

activator, as well as its long-range inhibitor Dkk. The Wnt-Dkk system is responsible for

pattern formation [25]. When the Wnt level is low, tumor cells are oxidative. Cell prolifera-

tion requires oxygen, and cells may consume glucose or lactate. When Wnt is high, the tumor

switches to glycolysis, in which the cells consume glucose to proliferate. The proliferation
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rate is regulated by positive feedback factors (e.g., FGF) and negative feedback factors (e.g.,

BMP), both are released by all tumor cells, as indicated by the cell to cell communications

in Figure 2A. The stroma also releases FGF and Wnt that freely diffuses into the tumor.

See the Table.4.2 for model parameters. The complete model are described as follows.

Wnt signaling is necessary for tissue development and homeostasis, but aberrant, overactive

signaling is present in almost half of known human cancers [97, 24, 12]. Colorectal cancer is

the signature tumor type where chronically high Wnt signaling causes more than 80−90% of

cases. The mechanism by which Wnt signaling is overactivated is well understood: genetic

mutations that inactivate at least one component of a cytoplasmic ”destruction complex” for

the mediator β-catenin lead to its Wnt-ligand-independent translocation and accumulation in

the nucleus where it is recruited by TCF/LEF transcription factors for upregulation of Wnt

target genes It is the upregulation/dysregulation of targets that triggers cell transformation,

and it is assumed that every subsequent cancer cell with this mutation carries aberrantly

high levels of nuclear β-catenin and expression of target genes. Despite knowing these basics

for almost 20 years, there are no Wnt inhibitors in the clinic. A great deal of the problem

rests with the issue that biomarkers of active Wnt signaling (i.e. nuclear localized β-catenin

and target gene expression), are heterogeneous in human tumors [17, 16]). Most studies

have focused on the influence of the tumor microenvironment, noting that beta-catenin is

upregulated in cells near invading edges [17, 16]. But aside from making assumptions that

cancer associated fibroblasts signal to upregulate beta-catenin and that these cells are the

invasive portion of the tumor, there has been little progress in testing these assumptions.

Clearly, there is a need to better understand Wnt heterogeneity so that we have can better

target Wnt signaling in cancer.

Following previous studies of the three-dimensional multispecies mixture model [96, 93], we

present the complete set of equations for the tumor growth model. We assume the cells are

tightly packed, and cell species are modeled as volume fractions. Let φ0, φ1, φ2, and φD are
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Figure 4.2: Schematic of the tumor growth model.
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the volume fraction of CSC, Wnt-Hi, Wnt-Mod, and dead cells, respectively. The volume

fraction of total tumor cells is φT = φ0 + φ1 + φ2 + φD.

The volume fraction of total tumor cells (φT ) satisfies the mass conservation (advection-

reaction-diffusion) equation:

∂φT

∂t
+∇ · (usφT ) = ∇ · (MφT∇µ) + SrcT , (4.1)

SrcT = λm0φ0 + λm1φ1 + λm2φ2 − λLφD (4.2)

where M is the cell mobility, SrcT is the mass-exchange term of total tumor cells, λL is the

lysis rate of dead cells. We introduce the chemical potential µ and adhesion energy E:

µ =
δE

δφT

, (4.3)

E =
γ

ε

∫
Ω

f (φT ) + ε2 |∇φT |2 dx, (4.4)

where γ measures cell to cell adhesion, ε is the thickness of cancer-host interface, f (φT ) =

1
4
φT

2 (1− φT )
2 is a double-well potential that penalizes mixing of the cancer cells. δE

δφT
is

variational derivatives of the adhesion energy:

δE

δφT

=
γ

ε
(f ′(φT )− ε2∇2φT ), (4.5)

Mass-averaged velocity of solid components us defined by Darcy’s law

us = − (∇p− µ∇φT ) , (4.6)

where p is the solid pressure:

−∇2p = SrcT −∇ · ( δE
δφT

∇φT ). (4.7)
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We also model the advection of cell substrates with the interstitial liquid velocity uw by

Darcy’s law:

uw = −∇q (4.8)

where q is the water pressure and satisfies

−∇2q = −SrcT . (4.9)

4.3.3 Tumor cell species and lineage relationships

Following previous studies [40, 93], we assume Cell species and substrates in the schematic

from Fig. 4.2 are solved by the equations below:

The volume fractions of CSC cells (φ0) , Wnt-Hi (φ1) and Wnt-Mod (φ2): obey the mass

conservation (advection-reaction-diffusion) equations that shown below with their source

terms.

1. CSC(φ0):

∂φ0

∂t
+∇ · (u0φ0) = ∇ · (Mφ0∇µ) + Src0, (4.10)

The mass exchange terms for φ0 is

Src0 = (2P0 − 1)λm0φ0 + 2 (1− P1) (1− q1)
χ10CF0

1 + χ10CF0

λm1φ1

+ 2 (1− P2) (1− q2)
χ20CF0

1 + χ20CF0

λm2φ2 − λn0H (ñ0 − n)φ0. (4.11)

Here, λm0, λm1, and λm2 are the mitosis rate of CSC, Wnt-Hi, and Wnt-Mod, respectively.

λn0 is the necrosis rate of CSC. H(x) is the Heaviside function (H(x) = 1 when x > 0;
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H(x) = 0 otherwise). ñ0 is the nutrient threshold of necrosis of CSC. χ10 is the positive

feedback gain from FGF20 (CF0) on the switching rate from Wnt-Hi to CSC. χ20 is the

feedback gain on the switching rate from Wnt-Mod. See Eqns. (4-7) for the definition of

switching terms P1, P2, q1, q2.

2. Wnt-Hi (φ1):

∂φ1

∂t
+∇ · (usφ1) = ∇ · (Mφ1∇µ) + Src1

Src1 = (2P1 − 1)λm1φ1 + 2 (1− P0) q0λm0φ0

+ 2 (1− P2)

(
1− (1− q2)

χ20CF0

1 + χ20CF0

)
λm2φ2 − λn1H (ñ1 − n)φ1, (4.12)

3. Wnt-Mod (ϕ2):

∂φ2

∂t
+∇ · (usφ2) = ∇ · (Mφ2∇µ) + Src2

Src2 = (2P2 − 1)λm2φ2 + 2 (1− P0) (1− q0)λm0φ0

+ 2 (1− P1)

(
1− (1− q1)

χ10CF0

1 + χ10CF0

)
λm1φ1 − λn2H (ñ2 − n)φ2, (4.13)

where λn1 and λn2 are the necrosis rate of Wnt-Hi and Wnt-Mod, respectively. ñ1 and ñ2

are the nutrient threshold of necrosis of Wnt-Hi and Wnt-Mod, respectively.

4. Dead cells (φD):

∂φD

∂t
+∇ · (usφD) = ∇ · (MφD∇µ) + SrcD

SrcD = λn0H (ñ0 − n)φ0 + λn1H (ñ1 − n)φ1 + λn2H (ñ2 − n)φ2 − λLϕD, (4.14)

where λL is the lysis rate of dead cells.

We assume that tumor cell proliferation and differentiation are regulated by soluble factors
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that feedback on self-renewal probabilities (Youssefpour et al. 2012; Lander et al. 2009;

Kuncheet al. 2016). In particular, p0 is positively regulated by a self-renewal promoter W

with concentration Cw e.g., Wnt (Clevers et al. 2014; Schuijers and Clevers 2012).

The self-renewal fractions of CSC cells (φ0) , Wnt-Hi (φ1) and Wnt-Mod (φ2) are modeled

by:

P0 = (1− p2) (1− q0) ·
χ00CF0

1 + χ00CF0

χ0CF

1 + χ0CF

1

1 + ψ0CB

(4.15)

P1 = (1− p2) q0 ·
χ1CF

1 + χ1CF

1

1 + ψ1CB

(4.16)

P2 =

(
1− tanh tanh

(
CW − CW

)2
10

)
· χ2CF

1 + χ2CF

1

1 + ψ2CB

(4.17)

q0 = q1 = q2 =
1

2

(
1 + tanh tanh

CW − CW

1

)
, (4.18)

where CW is the characteristic Wnt level of Wnt-Mod. When CW = CW , all Wnt-Mod

self-renew. The tumor switches between oxidation (q0 = 0) and glycolysis (q0 = 1) based on

the Wnt level.

The proliferation rates of CSC cells( φ0) , Wnt-Hi ( φ1) and Wnt-Mod (φ2) are modeled by:

λm = λ ·
[
(1− q0)

(βGog + βLL)n

1 + (βGog + βLL)n
+ q0

βGGg

1 + βGGg

]
(4.19)

λm0 = λm · χv00CF0

1 + χv00CF0

χv0CF

1 + χv0CF

1

1 + ψv0CB

(4.20)

λm1 = λm · χv1CF

1 + χv1CF

1

1 + ψv1CB

(4.21)

λm2 = λm · χv2CF

1 + χv2CF

1

1 + ψv2CB

, (4.22)

where λ is the base proliferation rate of all tumor cells. βGo and βL are the proliferation

rate of glycolytic cells dependent on glucose (g) and lactate (L), respectively. βGG is the

proliferation of oxidative cells dependent on glucose. n is the oxygen concentration. χv00 is

the positive feedback gain of FGF20 (CF0) on the proliferation rate of CSC. χv0, χv1, and
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χv2 are the positive feedback gain of FGF (CF ) on the proliferation rate of CSC, Wnt-Hi,

and Wnt-Mod, respectively. ψv0, ψv1, and ψv2 are the negative feedback gains from BMP

(CB).

Following [96], we use a generalized Gierer–Meinhardt model for Turing-type pattern forma-

tion. We assume that CW is a short-range activator, and CWI is a long-range inhibitor of

CW , e.g., Dkk. The system of reaction–diffusion equations are as follow:

∂CW

∂t
+∇ · (uwCW ) = DW∆CW + γSrcW

SrcW = P · (pW + λFCF )
C2

W

CWI

+ P · pBW + pSW (1− φT )− dWCW , (4.23)

∂CWI

∂t
+∇ · (uwCWI) = DWI∆CWI + γSrcWI

SrcWI = P · pWIC
2
W + pSWI (1− φT )− dWICWI , (4.24)

P = (k0 + k1n+ k2g + k3L) (k4φ0 + (1− k4) (φ1 + φ2)) , (4.25)

where γ is the reaction rate. DW and DWI are the diffusivity of Wnt and Dkk, respectively.

DW and DWI are the natural decay of Wnt and Dkk, respectively.

P is the production rate of both Wnt and Dkk. k0 is the base production rate. k1, k2, and k3

are the production rate dependent on nutrient(n), glucose (g), and lactate (L), respectively.

k4 balances the production between CSC (φ0) and non-CSC (φ1 + φ2). For Wnt, pW is the

base nonlinear production rate, which is increased by FGF (λFCF ). p
B
W is the background

Wnt production in the tumor. pSW and pSWI are the stromal production rate of Wnt and Dkk,

respectively.

We assume that negative feedback regulators FGF (CF , CF0) and BMP diffuse rapidly, and
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the time derivatives and advection terms may be neglected. Note that CF is required by all

tumor cells and CF0 is required by CSC. The concentration of CF , CF0 and BMP satisfy

quasi-steady-state equations as follow:

FGF (CF and CF0)

0 = DF∆CF + pF (φT − φD) + pSF (1− φT )− dFCF

0 = DF0∆CF0 + pF0 (φ0) + p12F0 (φ1 + φ2)− dF0CF0, (4.26)

where DF and DF0 are the diffusivities, dF and dF0 are the natural decay rates. pF is the

production rate of CF by all tumor cells, pSF is the production rate of CF by the stroma. CF0

is produced by CSC at a rate of pF0, and non-CSC at a rate of p12F0.

BMP (CB):

0 = DB∆CB + pB (φT − φD)− dBCB, (4.27)

where DB, pB, and dB are the diffusivity, production rate by all tumor cells, and natural

decay rate, respectively.

In addition, we use similar idea to govern the oxygen concentration (n), the glucose concen-

tration (g) and the lactate concentration (L), because their diffusion occurs on a significantly

faster time scale cell (e.g., minutes) than the cell proliferation (e.g., days or more). Thus,

the quasi-steady equations can be given as follow:

Oxygen concentration (n):

0 = Dn∆n− un (1− q0) (φT − φD)n+ pnQ (1− φT ) (n− n) , (4.28)

where Dn and dn are the diffusivity and natural decay rate, respectively. un is the uptakes
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rate by oxidative tumor cells charactered by (1− q0). Q (φT ) ≈ 1 − φT approximates the

characteristic function of the stroma. pn is the nutrient supply rates from the microenviron-

ment. n is the nutrient concentration in the microenvironment.

The glucose concentration (g):

0 = Dg∆g − ug (αgq0 + αo (1− q0)) (φT − φD) g + (psgQ (1− φT ) + pvg · C)
(
g − g

)
,

(4.29)

where Dg and dg are the diffusivity and natural decay rate, respectively. ug is the uptakes

rate by oxidative tumor cells characterized by αgq0 and glycolytic tumor cells characterized

by αo (1− q0). Q (φT ) ≈ 1− φT approximates the characteristic function of the stroma. psg

is the glucose production rates from the stroma. pvg is the glucose supply rates from the

vessels. C is the continuous variable that describe vessel from angiogensis model. g is the

nutrient concentration in the microenvironment.

The lactate concentration (L):

0 = DL∆L− uL (1− q0) (φT − φD)L+ pL · 2uGαgg · q0 (φT − φD)

+ phLH (ñL − n) (φT − φD) , (4.30)

where DL and dL are the diffusivity and natural decay rate, respectively. uL is the uptakes

rate by oxidative tumor cells characterized by 1− q0. pL is the production rate by glycolytic

tumor cells characterized by q0. When one molecule of glucose is consumed, two molecules

of lactate are produced (2uGαgg). p
h
L is the production rate by hypoxic tumor cells, where

the oxygen level is less than a threshold ñL. H(x) is the Heaviside function.

Modified tumor angiogenic factor (f):

The model for tumor angiogenic factor(f) is different with what we described in Chapter.3.
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Here, (f) is produced in the background, by glycolytic Wnt-Hi cells, and by hypoxic tumor

cells (when nutrient is below a threshold, e.g. half the level in the stroma).

∂f

∂t
= Df∆f − (γf + uf · C)f + (p0f + p1fφ1 + phf (φT − φT )H(ñf − n))(1− f) (4.31)

where Df and γf are the diffusivity and natural decay rate, respectively. uf is the uptakes

rate by vessel. p0f is the production rate by background. p1f is the production rate by Wnt-Hi

cells. . phf is the production rate by hypoxic tumor cells, where the oxygen level is less than

a threshold ñf . H(x) is the Heaviside function.

Finally, to close the model, we need to couple the angiogenesis model and the tumor growth

model. In our tumor growth model, the tumor dynamics is strongly dependent on the glucose

(g) (See Eqs. (4.29) ). The glucose (g) , in turn , is released by vessel C that computed from

angiogenesis model. The location of C depends on the TAF distribution. This makes the

problem fully coupled.

Based on Chapter.3, the vessels are resolved to full scale and

Table 4.1: Parameters of the tumor growth model in dimensionless units.

Parameter Description Value

M Cell mobility 10

ϵ Diffuse interfacial thickness 0.05

γ Adhesion force -0.3

γ Reaction rate 25.0

λ Base division rate for viable cells 0.5

βGG Glycolytic cells utilizing glucose 1.0

βGo OXPHOS cells utilizing glucose 3.0

βL OXPHOS cells utilizing lactate 5.0

Continued on next page
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Table 4.1 – continued from previous page

Parameter Description Value

χ00 Positive gain from FGF20 on p0 40

χ10 Positive gain from FGF20 on Wnt-Hi switching to CSC 0.04

χ20 Positive gain from FGF20 on Wnt-Mod switching to CSC 0.04

χ0 Positive gain from FGF20 on p0 40

χ1 Positive gain from FGF20 on Wnt-Hi switching to CSC 0.04

χ2 Positive gain from FGF20 on Wnt-Mod switching to CSC 0.04

ψ0 Negative gain on p0 0.1

ψ1 Negative gain on p1 1.0

ψ2 Negative gain on p2 0.1

χv00 Positive gain from FGF20 on λm for CSC 100

χv0 Positive gain from FGF20 on λm for 0-cells 10

χv1 Positive gain from FGF20 on λm for 1-cells 15

χv2 Positive gain from FGF20 on λm for 2-cells 12

ψv0 Negative gain on λm for 0-cells 0.0

ψv1 Negative gain on λm for 1-cells 1.0

ψv2 Negative gain on λm for 2-cells 0.1

DF0 Diffusivity of FGF20 1.0

DF Diffusivity of FGF 1.0

DB Diffusivity of BMP 1.0

pF0 Production of FGF20 by stem cells 6.0

p12F0 Production of FGF by non-stem cells 0.5

pF Production of FGF20 by tumor cells 1.0

pB Production of BMP by tumor cells 1.0

pSF Production of FGF by stroma 2.0

Continued on next page
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Table 4.1 – continued from previous page

Parameter Description Value

dF0 Natural decay of FGF20 1.0

Dn Diffusivity of oxygen 1.0

Dg Diffusivity of glucose 2.0

DL Diffusivity of lactate 1.0

ñ0 0-cell oxygen threshold of necrosis 0.35

ñ1 1-cell oxygen threshold of necrosis 0.05

ñ2 2-cell oxygen threshold of necrosis 0.05

λn0 Necrosis rate of 0-cells 0.2

λn1 Necrosis rate of 1-cells 0.2

λn2 Necrosis rate of 2-cells 0.2

un Oxygen uptake rate by OXPHOS cells 1.0

ug Glucose uptake rate by cells 1.0

uL Oxygen uptake rate by OXPHOS cells 1.0

pn Oxygen production by host 1.0

n Oxygen level in stroma 1.0

g Glucose level in stroma 1.0

ñL Hypoxic threshold for lactate production 0.05

phL Production of lactate by hypoxic cells 1.0

pgL Production of lactate by glycolytic cells 1.0

pg Production of glucose by stroma 1.0

pn Oxygen production by host 1.0

αo Fraction of uptake by OXPHOS cells 0.0

αg Fraction of uptake by glycolytic cells 1.0

DW Diffusivity of Wnt 0.25

Continued on next page
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Table 4.1 – continued from previous page

Parameter Description Value

DWI Diffusivity of Wnt inhibitor 6.25

pW Production rate of Wnt 2.5

λF Upregulated production of Wnt by FGF 2.0

k4 Fraction of Wnt Production by SCs 0.3

CW Average Wnt signaling level 6.0

pBW Production rate of Wnt by viable tumor cells 1.0

pSW Production rate of Wnt by stroma 1.0

pWI Production rate of Wnt Inhibitor 1.0

pSWI Production rate of Wnt Inhibitor by stroma 0.0

dw Natural decay of Wnt 1.0

dWI Natural decay of Wnt Inhibitor 1.0

k0 Independent production of Wnt 0.1

k1 Oxygen dependent production of Wnt 0.4

k2 Glucose dependent production of Wnt 0.4

k3 Lactate dependent production of Wnt 1.0

Df Diffusivity of Angiogenic factor 1.0

γf Natural decay of Angiogenic factor 0.35

uf Angiogenic factor uptake rate by cells 15

phf Production of Angiogenic factor by hypoxic cells 10

p0f Production of Angiogenic factor by host 10

p1f Production of Angiogenic factor by Wnt-Hi cells 10

ñf Hypoxic threshold for Angiogenic factor production 0.1
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4.4 Numerical Results

To initialize our hybrid model with a realistic vascular network, we extract the initial vas-

culature from fluorescent images of the VMT device by segmenting the fluorescent images

of the VMT device using a combination of image processing techniques, such as threshold-

ing, morphological operations, and skeletonization [70]. The segmented vasculature is then

discretized and mapped onto the computational domain, providing a realistic starting point

for our simulations. The initial condition of our vasculature network obtained from the

fluorescent image of a VMT chamber is shown in Fig. 4.3.

Figure 4.3: Pre-existing vessel network image extracted from VMT device.

To investigate the model’s performance on the pre-existing complex vascular domain, we first

conduct a simulation of our angiogenesis model on the previously extracted VMT domain.

The model used here are described in Chapter.3.

The grid parameters are as follows: the domain is Ω = (0, 1491)×(0, 1491) with uniform grid

1491×1491 which is the pixel of the image. The boundary conditions the simulation is zero-

flux conditions. As a simulation time period, the interval (0, T ) with T = 40 is considered
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and the size of time step is given by ∆t = 2.0×10−4. The parameter values in dimensionless

units used in the computations are summarized in Table.4.2. The computational simulation

involves a finite difference scheme in a MATLAB script.

Table 4.2: Parameters of the angiogenesis model in dimensionless units.

parameter Description Value

D tumor angiogenic factor diffusion coefficient 400.0

fhyc maximum tumor angiogenic factor concentration in
the tissue

1.0

P tumor angiogenic factor production by HYCs 350

R average cell radius 5.0

Uu tumor angiogenic factor endothelial cell uptake 21.875

Ud tumor angiogenic factor natural decay 0.35

λ interface width 1.0

M mobility 0.0975

χ chemotatic constant of tip endothelial cells 250.47

cact condition for TEC activation 0.9

fact condition for TEC activation 0.01

δ4 Dll-4 radius of action 28

δnox condition for HYC deactivation 10

In Fig. 4.4, the time evolution of tumor angiogenesis simulations obtained from a complex

domain are depicted. The simulation begins with three clusters of hypoxic tumor cells

releasing TAFs, which triggers angiogenesis, as shown at t = 0. At time t = 1, we observe

that the activation of TECs occurs when the TAFs diffuses throughout the hypoxic region

and infiltrate the initial capillary. Note that all TECs are spaced apart from each other as

dictated by the lateral inhibition mechanism. The activated TECs migrate following the

chemotactic direction and the filopodia (red dot) are developed to detect nearby capillaries.

At time t = 2, as vessels grow , TECs create new branches and bifurcations, leading to the

formation of a tree-like network . Endothelial cells consume angiogenic factor and tumor
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cells that are close to capillaries become normoxic and stop releasing TAF. Thus, a small

number of TECs are deactivated due to the low level of TAFs. Furthermore, when the

filopodia detect the presence of a capillary, TECs alter their movement direction towards

the detected capillary. This event triggers the formation of anastomoses, eventually leading

to the deactivation of the TECs. At time t = 3, as the vasculature network continues to

develop, the frequency of anastomosis events increases rapidly. Consequently, the tree-like

network gradually evolves to a mesh-like one with loops that facilitate blood flow.

The simulations demonstrate the ability of our angiogenesis model to capture the key features

of angiogenesis, such as the activation and migration of TECs, the formation of new capillary

branches, and the influence of angiogenic factor gradients on the vascular morphology.

t=1

t=2

t=0

t=3

Figure 4.4: The evolution of the formation of angiogenesis in VMT

Next, we simulate the full tumor-induced angiogenesis model described in the previous Sec-

tion 4.3. The governing equations of tumor growth model are complex high-order nonlinear
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partial differential equations, and require sophisticated numerical methods to avoid severe

time-step restrictions for numerical stability, to accurately resolve phenomena on various spa-

tial scales, and to solve the equations efficiently. Thus, the equations of tumor growth model

and continue part of angiogenesis model are solved using the mass-conservative adaptive,

FAS (Full Approximation Storage), nonlinear multigrid method that we built and presented

in Chapter.2. The time-dependent equations are discretized by an semi-implicit second-order

Crank–Nicholson scheme. Spatial derivatives are discretized using central difference approx-

imations. We apply homogeneous Neumann boundary conditions for tumor cell speciesl,

Cw, and CWI in all boundaries. The concentration of n , CF , CF0, BMP , g, and L satisfy

the Dirichlet condition at all boundaries. The grid parameters are as follows: the domain

is Ω = (−20, 20) × (−20, 20) with root level grid of size 322. Three level of refinement are

used so that the finest level has the effective resolution of a uniform grid 256 × 256. We

set the time step ∆t = 1.0 × 10−3. Moreover, the initial condition is shown in Fig. 4.5.

The parameter values in dimensionless units used in the computations are summarized in

Table.4.1.

Fig. 4.6 presents a time-series of the tumor-induced angiogenesis simulations performed on

the complex vascular domain extracted from the VMT platform. At t = 4, the tumor cells

(represented by the green isosurface) have released sufficient TAFs to activate several TECs

within the nearby vessels. These activated TECs begin to sprout and migrate through the

vessel network, guided by the gradients of TAFs. The chemotactic response of the TECs

to the TAF gradients is a key driver of the angiogenic process, directing the growth of new

capillary branches towards the tumor.

As the simulation progresses (t = 8, t = 10, and t = 12), the activated TECs continue

to lead the sprouting and elongation of new capillary branches, forming a dense network

of vessels that penetrate the tumor mass. The branching and anastomosis of the growing

vessels result in the emergence of a highly connected, network-like vascular pattern. This
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Figure 4.5: The initial condition of the tumor-induced angiogenesis model in the VMT
platform. Vessel in grey, the tumor φ = 0.5 isosurface in green. 10 cluster of tumors are
seeded in the device.

75



t=4 t=8

t=10 t=12

Figure 4.6: The evolution of the tumor-induced angiogenesis in the VMT platform
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evolving vascular network is characterized by numerous loops and interconnections, which

are essential for establishing adequate blood flow and nutrient delivery to the tumor.

Notably, the complex geometry of the initial vascular network, derived from the VMT

platform, significantly influences the angiogenesis process. The new vessels must navigate

through the intricate, tortuous paths of the pre-existing vasculature, adding to the com-

plexity and realism of the simulation. The hybrid model successfully captures this interplay

between the discrete TECs, continuous vessel dynamics, and the realistic vascular geometry,

providing valuable insights into the spatiotemporal evolution of tumor-induced angiogenesis.
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4.5 Summary and future work

We presented a hybrid model for coupled tumor growth and angiogenesis. The model re-

solves the capillaries to full scale and simulate long-term dynamics of angiogenesis. Our

results demonstrate the capability of our hybrid mathematical model to simulate the in-

tricate dynamics of tumor-induced angiogenesis from a complex pre-existing vasculature

network (VMT). The simulations demonstrate how the discrete tip endothelial cells (TECs)

activated and guided by chemotactic cues from the TAF gradients, lead the sprouting and

migration of new capillary branches towards the hypoxic tumor regions.

Notably, the incorporation of discrete filopodia agents allows TECs to sense and navigate

towards nearby capillaries, facilitating the formation of anastomoses and the evolution of

a connected, loop-rich vascular network. The model accurately represents the lateral inhi-

bition process mediated by the Notch-Delta signaling pathway, which ensures an optimal

patterning of the vascular network by suppressing the formation of excessive tip cells. The

continuum phase-field approach for modeling capillary dynamics, coupled with the discrete

TEC agents, effectively couple the interplay between continuous and discrete processes dur-

ing angiogenesis.

However, it is important to acknowledge potential limitations of the current model. While

the phase-field approach allows for the resolution of capillary-scale features, it may not

fully capture the intricate dynamics of individual endothelial cells within the capillaries.

Additionally, the model assumes a simplified representation of the tumor microenvironment,

neglecting potential effects of other stromal components, such as pericytes, smooth muscle

cells, and the extracellular matrix.

Future extensions of the model could incorporate additional biological mechanisms, such as

the influence of haptotaxis, fluid flow, the role of stromal cells in vessel maturation, and

the impact of mechanical forces on capillary remodeling. Furthermore, coupling the angio-
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genesis model with a more comprehensive tumor growth model could provide insights into

the interplay between vascular development and tumor progression, potentially informing

therapeutic strategies that target both processes.

Overall, this hybrid mathematical model represents a valuable tool for studying the intricate

dynamics of tumor angiogenesis, bridging the gap between cellular and tissue scales. By

integrating biological mechanisms with computational modeling, it contributes to a deeper

understanding of the complex processes involved in cancer progression and may aid in the

development of more effective anti-angiogenic therapies.
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Chapter 5

Conclusions

In this thesis, we have presented a comprehensive study on the mathematical modeling of

tumor-induced angiogenesis, spanning from the fundamental concepts to the development of

a novel hybrid model that integrates tumor growth and angiogenesis in a complex, realistic

vascular network.

Chapter 1 introduced the significance of angiogenesis in cancer progression and the need for

mathematical models to better understand these complex processes. We reviewed existing

modeling approaches, including discrete, continuous, and hybrid models, and highlighted the

gaps in current literature that our work aims to address.

In Chapter 2, we focused on a thermodynamically consistent mixture model for avascular

solid tumor growth, which takes into account cell proliferation, death, cell-to-cell adhe-

sion, and taxis-inducing chemical and molecular species. We developed a mass-conservative,

adaptive, finite difference, nonlinear multigrid method to simulate the model efficiently and

accurately. The numerical results demonstrated the model’s ability to capture various tumor

morphologies and the importance of mass conservation in maintaining numerical accuracy.
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Chapter 3 introduced a multiscale model for angiogenesis growth based on the phase-field

theory. The model incorporates the dynamics of capillaries, angiogenic factors, and tip

endothelial cells (TECs), along with a discrete conceptualization of filopodia that enables

TECs to sense their microenvironment. We presented numerical simulations that showcased

the model’s capability to simulate the formation of a connected, loop-rich vascular network

from a simple initial vasculature.

Building upon the foundations laid in Chapters 2 and 3, Chapter 4 presented a hybrid

mathematical model that integrates tumor growth and angiogenesis in a complex, realistic

vascular network extracted from the vascularized microtumor (VMT) platform. The model

combines continuum and discrete modeling approaches to capture the key biological processes

involved in tumor angiogenesis. Our simulation results demonstrated the model’s ability to

recapitulate the complex dynamics of tumor-induced angiogenesis, including the activation

and migration of TECs, the formation of new capillary branches, and the emergence of a

connected vascular network.

While our hybrid mathematical model represents a significant advancement in the field,

it is important to acknowledge its limitations. Future extensions of the model could in-

corporate additional biological mechanisms, such as the influence of haptotaxis, fluid flow,

and mechanical forces on capillary remodeling. Coupling the angiogenesis model with a more

comprehensive tumor growth model could provide further insights into the interplay between

vascular development and tumor progression.

In conclusion, our work contributes to a deeper understanding of the complex processes

involved in tumor angiogenesis by developing a series of mathematical models that span from

avascular tumor growth to a hybrid model of tumor growth and angiogenesis in a realistic

vascular network. By integrating biological knowledge with computational modeling, we

can continue to unravel the intricacies of tumor angiogenesis and ultimately inform the

development of more effective anti-angiogenic therapies. The models presented in this paper
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provide a solid foundation for future research in this field and have the potential to make a

significant impact on our understanding of cancer progression and treatment.”
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