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Computational Urban
Science

Influence of urbanization on winter surface 
temperatures in a topographically asymmetric 
Tropical City, Bhubaneswar, India
Hara Prasad Nayak1,2*  , Gopinath Nandini1, V. Vinoj1, Kiranmayi Landu1, Debadatta Swain1, 
Uma Charan Mohanty3 and Dev Niyogi4 

Abstract 

Urban areas experience significant alterations in their local surface energy balance due to changes in the thermal 
properties of impervious surfaces, albedo, land use, and land cover. In addition, the embedded influence of urbani-
zation and heat-trapping in the urban canopy cause city temperature warmer compared to its surroundings peri-
urban regions. However, the influence of urbanization on winter surface temperatures remains unclear. In this study, 
the urbanization influence on winter surface temperature in Bhubaneswar, a tropical two-tier city in India, is assessed 
using a high-resolution (4 km × 4 km) urban canopy model coupled with the Weather Research and Forecasting 
model. Numerical experiments are conducted with no urban coupling (CTL) and with coupling of a single-layer urban 
canopy model (UCM) for the winters of 2004 and 2015. The study suggests that both model simulations exhibit a simi-
lar warm bias in mean surface temperature (~ 2.2 °C), but UCM’s surface temperature better agrees with the observa-
tions compared to CTL. The warm bias in both experiments is primarily contributed by a higher nighttime warm bias 
(~ 3.2 °C). The study reveals that urbanization contributes to ~ 0.4 °C increase in surface temperature in 2015, especially 
in the eastern lowland regions of the city, while the impact is minimal in 2004. In the western region, the influence 
is nullified, possibly due to lower surface specific humidity affecting longwave radiation in a higher terrain setting. 
This study underscores the significance of terrain and local microclimate conditions in shaping winter urban surface 
temperatures, shedding light on the complex interplay between urbanization and climate.

Keywords Winter surface temperature, Urbanization, Urban canopy model, Topography

1 Introduction
The urban weather and climate are of growing concern 
in recent years due to the environmental issues affect-
ing cities, such as floods, droughts, heat stress, and air 
pollution etc. Recent studies have highlighted the role 
of urbanization and human activities in exacerbating 
these issues (Li et  al., 2021; Niyogi et  al., 2020; Swain 
et al., 2023). Moreover, the urban population has been 
rapidly increasing in recent years. According to the 
World Urbanization Prospects 2014, approximately 
54% of the global population lives in cities, and this 
is projected to increase to about 66% by 2050 (United 
Nations, Department of Economic and Social Affairs, 
Population Division, 2015). As cities grow, natural 

*Correspondence:
Hara Prasad Nayak
hpnayak@ucla.edu
1 School of Earth Ocean and Climate Sciences, Indian Institute 
of Technology Bhubaneswar, Bhubaneswar, India
2 Department of Geography, University of California Los Angeles, Los 
Angeles, USA
3 Centre for Climate Smart Agriculture, Siksha ‘O’ Anusandhan Deemed 
to be University, Bhubaneswar, India
4 Jackson School of Geosciences, and Cockrell School of Engineering, 
University of Texas, Austin, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s43762-023-00112-y&domain=pdf
http://orcid.org/0000-0002-4190-7210


Page 2 of 14Nayak et al. Computational Urban Science            (2023) 3:36 

land is replaced by impervious urban surfaces, leading 
to changes in surface thermal properties and moisture 
feedback. These changes modify the surface energy and 
water budget over the urban region, altering the urban 
boundary layer processes, temperature (Li et al., 2018; 
Morris et  al., 2016; Zhong et  al., 2017), cloud (Zhong 
& Yang, 2015), rainfall (Kishtawal et  al., 2010; Niyogi 
et  al., 2020; Pielke Sr. et  al., 2011), and affecting the 
regional climate (Arnfield, 2003; Jin et al., 2005; Kalnay 
& Cai, 2003; Kaufmann et al., 2007; Li et al., 2016; Zhou 
et al., 2004). Under future climate projections, weather 
and climate extremes, such as heat waves, droughts, 
floods, thunderstorms, and heavy rainfall events, are 
likely to become more frequent (Intergovernmen-
tal Panel for Climate Change (IPCC) 5th assessment 
report, 2014). These effects of global climate change, 
when combined with various urban boundary layer 
processes, make city populations more vulnerable to 
weather and climate extremes. Therefore, understand-
ing the urban surface layer processes is imperative for 
predicting urban weather and mitigating the associated 
hazards.

The global temperature has risen by ~ 1 °C compared to 
the pre-industrial era (IPCC fifth assessment report, 2014), 
with human activities being the primary contributor to this 
temperature rise due to the increasing anthropogenic emis-
sions in the atmosphere (IPCC Fourth Assessment Report, 
2007). The impact of anthropogenic activities is more pro-
nounced in cities, which have higher population density 
and greater urbanization and industrialization. In addition, 
land use and land cover (LULC) changes also significantly 
affect regional and local surface temperatures (Grover & 
Singh, 2015; Mahmood et  al., 2010; Niyogi et  al., 2018). 
Previous studies have shown that LULC change has a clear 
influence on surface temperatures at both regional and 
local scales (Mohan et  al., 2012; Mohan & Kandya, 2015; 
Nayak & Mandal, 2012; Swain et al., 2017). The impact of 
LULC change on surface temperatures is more evident in 
urban areas (Nandini et al., 2022). It has been widely docu-
mented that cities are generally warmer than the surround-
ing rural areas, which is referred to as the Urban Heat 
Island (UHI) effect (Arnfield, 2003; Grimmond, 2007; Oke, 
1973; Zhao et  al., 2014). This phenomenon is primarily 
caused by the impervious urban surface, building geometry, 
and street canyons, which trap outgoing longwave radiation 
and create a warmer microclimate. The Urban Heat Island 
(UHI) effect and its impacts have been studied extensively 
in many cities worldwide (Clinton & Gong, 2013; Estoque 
et al., 2017; Hunt et al., 2018; Imhof et al., 2010; Peng et al., 
2012; Zhou et al., 2013). These studies have looked at vari-
ous factors that contribute to the UHI effect, such as land 
use, surface materials, and anthropogenic activities, as well 

as its effects on the urban environment, such as air quality, 
energy consumption, and human health.

The smart city of Bhubaneswar, the capital of the east-
ern state of Odisha in India, is also affected by urban 
heat stress. A recent observational study by Anasuya 
et al. (2019) found that the city’s built-up area increased 
by 77% between 2003 and 2017, which resulted in an 8% 
increase in summer land surface temperatures. They also 
demonstrated that the city’s temperature increased by 
9.84% during the recent five-year period (2013–2017). 
Gogoi et al. (2019) used the observation minus reanalysis 
method to show that the Eastern state of Odisha expe-
rienced accelerated warming (~ 0.9 °C) during recent 
decade (2001–2010), with 25–50% of the warming attrib-
uted to LULC change. Another modeling effort over 
Bhubaneswar revealed that urbanization is responsible 
for 60–70% of the overall increase in nighttime air tem-
perature between 2004 and 2015 (Nandini et al., 2022). 
Swain et  al. (2023) found that the timing of rainfall in 
the city is highly correlated with urban sprawl. However, 
modeling of urban surface processes is still in the incipi-
ent stage and require efforts to understand the urbani-
zation influence on surface temperature, especially in 
winter (Ma et al., 2017; Sharma et al., 2021; Wang et al., 
2021; Wang et  al., 2023; Wu et  al., 2021). Studies have 
demonstrated that winter surface temperatures exhibit 
a higher sensitivity (2–3 °C) to anthropogenic heat flux 
compared to summer surface temperatures (1–2 °C) (Fan 
& Sailor, 2005; Feng et  al., 2012; Ichinose et  al., 1999). 
Furthermore, the change in surface temperature due to 
the effect of anthropogenic heat flux depends on atmos-
pheric stratification and orographic factors (Block et al., 
2004; Narumi et al., 2009; Zhang et al., 2016). The ther-
mal stratification during winter nights prevents the dis-
sipation of anthropogenic heating into the atmosphere, 
thereby contributing to about 90% of the Urban Heat 
Island (UHI) effect (Ma et al., 2017). Moreover, the study 
region experiences a dry winter climate with the lowest 
rainfall occurrence, and thereby the associated cooling 
or warming effect on surface temperature is assumed to 
be minimal during the season. Furthermore, there have 
been limited studies conducted to understand the inter-
play between urbanization and climate that influences 
winter surface temperatures (Wang et  al., 2021; Wu 
et  al., 2021). The present work focuses on studying the 
urbanization effect on the winter surface temperatures 
of Bhubaneswar city.

Most numerical weather prediction (NWP) models do 
not explicitly account for urban canopy layer exchange 
processes. The current state-of-the-art land surface mod-
els (LSMs) are not adequately representing the thermal 
exchange processes that occur within the impervious 
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city surface, building structures, street canyons, and 
heat transfer in walls, roofs, and streets. To incorporate 
urban surface feedback in NWP models, one of the com-
mon efforts is to incorporate the thermal properties of 
the impervious surface in the slab model. The slab model 
considers urban geometry as flat surfaces with modi-
fied thermal properties. However, the effect of building 
geometry, such as building coverage ratio, and physical 
constant of urban structures such as buildings, roads, 
street canyons, etc., have considerable influence on sur-
face energy balance and therefore needs to be suitably 
parameterized in the NWP models. To this end, consid-
erable efforts have been made to parameterize the urban 
canopy layer over the city (Arnfield et al., 1998; Johnson 
et  al., 1991; Masson, 2000; Mills, 1993). Subsequently, a 
single-layer urban canopy model (SUCM; Kusaka et  al., 
2001; Kusaka & Kimura, 2004) is developed and has been 
successfully coupled with mesoscale atmospheric models 
(ARW/UCM) (Chen et al., 2004; Miao et al., 2009). The 
ARW/UCM has been applied to various cities around 
the world (Chen et  al., 2011; Patel et  al., 2022), includ-
ing Indian cities, to study rainfall characteristics (Niyogi 
et  al., 2020; Swain et  al., 2023) and surface temperature 
(Mohan et  al., 2020). However, urban feedback to the 
atmosphere is influenced by various factors such as the 

city’s thermal properties, climate, and urban morphol-
ogy. Therefore, it is necessary to conduct a city-specific 
assessment of the ARW/UCM system to accurately sim-
ulate surface temperature. This is because each city has 
unique characteristics that can affect the way urban areas 
interact with the atmosphere, and these characteristics 
need to be considered.

In this study, we utilized a high-resolution single-layer 
urban canopy model coupled with the Weather Research 
and Forecasting model (ARW/UCM) to understand the 
urbanization response to city winter surface temperature. 
To study the urbanization effect, two winter seasons are 
considered: 2004 and 2015. The model simulated tem-
perature is verified with observation and further analysis 
carried out to understand urbanization influence on city 
surface temperature. The study has implications for city 
planners and mitigation efforts, as well as future mod-
eling efforts that seek to address urban-induced heat 
stress.

2  Bhubaneswar geography and climate
Bhubaneswar is the capital city of the state of Odi-
sha, located in the coastal region approximately 40 km 
west of the north Bay of Bengal (Fig.  1). The city is 
surrounded by the Chandaka Forest in the west, the 

Fig. 1 a Geographical location of Bhubaneswar city, the capital of the eastern state Odisha, India. b), c) & d) represents the topography (m), 
vegetation fraction (%) and population density (number of persons per square kilometer) [×  103] around the city, respectively
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Kuakhai River (a tributary of the Mahanadi River) in the 
east, the Mahanadi River to the north, and agricultural 
land to the south. It has a unique topographical west-
east asymmetric feature, with upland areas (~ 180 m 
above sea level) in the west and lowland areas in the 
east (~ 20 m in the east-southeast), and benefits from a 
natural drainage with the ground sloping from west to 
east (Fig. 1b). The city has an average elevation of 45 m 
above sea level. The city’s population is approximately 
8.43 lakhs, according to the 2011 census report from the 
Government of India, and it covers an area of around 
233 sq. km.

The population density mostly confined over the center 
of the city with maximum density ~ 16 ×  103 (Fig.  1d). 
The vegetation fraction over the city is around 30–40% 
(Fig. 1c). The city belongs to the moderately humid tropi-
cal climate zone, with a maximum temperature of around 
44 °C, a minimum temperature of around 12 °C, and an 
annual rainfall of 1498 mm.

3  Data and methodology
In the present study, a regional climate modeling sys-
tem, the Weather Research and Forecasting model (ARW 
v4.0) (Skamarock et al., 2008), is used for the simulation 
of winter temperature over Bhubaneswar city in India. 
In order to accommodate the urban surface exchange 
processes, a single-layer urban canopy model (SUCM; 
Kusaka & Kimura, 2004) coupled with ARW is used 
(hereafter referred to as UCM). The SUCM is designed 
to incorporate the surface energy balance modification 
due to city surface properties such as thermal conductiv-
ity, heat capacity, and surface albedo, along with rough-
ness length, soil moisture availability, and city geometry, 
including street canyons. However, the present study is 
limited by the lack of detailed information about local 
thermal properties and urban morphology. The SUCM 
represents urban geometry as two-dimensional street 
canyons with infinite length, but considers the three-
dimensional nature of urban morphologies, including the 
shadowing from buildings and the reflection of radiation 
in the canopy layer. The SUCM calculates the prognostic 
variables such as surface skin temperature and heat fluxes 
produced from urban facets (building roofs, walls, and 
roads). The fraction of impervious surface in a grid cell 
is represented by the urban fraction parameter through 
which the SUCM coupling is carried out. The surface 
fluxes over the impervious surface are calculated by the 
SUCM, whereas the LSM calculates fluxes over the veg-
etated fraction of the grid cell. The total grid cell surface 
flux is calculated as the weighted average of their respec-
tive fractional coverage.

The ARW/UCM model is configured with three nested 
domains: outer, middle, and inner domains at 36 km, 

12 km, and 4 km grid spacing, respectively, surround-
ing Bhubaneswar city. The x-y dimensions of the outer, 
middle, and inner domains are (80× 80), (100× 100), and 
(61× 61), respectively. The model uses 61 log-linear verti-
cal pressure (sigma) coordinates with the Arakawa C-grid 
structure. The parameterization schemes used in the 
model include: the Boulac (Bougeault & Lacarrere, 1989) 
scheme for the planetary boundary layer, the community 
Noah-MP (Niu et al., 2011) scheme for the land surface, 
the Dudhia scheme for shortwave radiation (Dudhia, 
1989), the Rapid Radiative transfer model scheme for 
longwave radiation (Mlawer et  al., 1997), the WSM-6 
scheme for microphysics (Hong & Lim, 2006), and the 
Kain-Fritsch scheme (Kain, 2004) for convection.

Numerical experiments are conducted for winter (DJF) 
seasons in 2004 and 2015 using the ARW model. These 
two winter seasons are selected depending on the availa-
bility of local land use data. Moreover, preliminary studies 
suggest that Bhubaneswar city has undergone urbaniza-
tion after 2000, and the city has undergone considerable 
urbanization in recent years (Nandini et al., 2022). There-
fore, consideration of 2004 and 2015 are reasonable for 
studying the urbanization influence on surface tempera-
ture. For each year season, two land surface sensitive 
experiments are carried out using: 1) no urban coupling 
(hereafter referred to as (CTL) and 2) a single-layer urban 
canopy model coupled with the ARW model (hereafter 
referred to as UCM). Besides these changes, the rest of the 
model configurations remained the same in both experi-
ments. The initial and the boundary conditions at 6-hourly 
temporal frequency are provided from NCEP final analysis 
(1 ° × 1°). The local 19-category land use classification data 
is provided from National Remote Sensing Centre, India 
(National Remote Sensing Centre, India, 2008). This land 
use data is estimated at 56 m horizontal resolution, which 
is further rescaled to 30 arc sec (~ 0.925 km) and pro-
vided to the model. The soil and vegetation at the 30 arc 
sec are provided by the United States Geographical Sur-
vey (USGS) (Reynolds et  al., 2000). The model simulated 
air Temperature at 2 m (T2) is validated with the hourly 
in-situ measurements at Bhubaneswar airport (20.25 °N, 
85.80 °E). Besides, the study uses the city population data 
from Worldpop (https:// www. world pop. org/).

Figure 2 depicts the land use classification for the years 
2004 and 2015 over Bhubaneswar city. The figure shows 
that Bhubaneswar has undergone substantial LULC 
change during the period 2004–2015. The LULC changes 
are observed mainly in two dominant land use classifica-
tions, such as (1) built-up/ urban land and (2) dryland 
cropland pasture. The built-up/urban area increased 
by ~ 166% during the period 2004–2015, followed by 
dryland cropland and pasture (~ 39%) (Table  1). The 
increase in the built-up area is primarily due to dryland 

https://www.worldpop.org/
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transformations into build-up land. A similar transfor-
mation from irrigated cropland/grassland to dryland is 
also seen. Overall, the analysis indicates that the built-
up and dryland area increased in 2015 at the expense of 
vegetated grassland /dryland compared to 2004. Such 
change in LULC could influence the city surface temper-
ature, and the same is investigated through the city scale 
numerical modeling framework presented in the subse-
quent section.

4  Results and discussions
The model simulated near-surface temperature and 
10 m wind are analysed for Jan-Feb (JF) considering 
the first month (Dec) of simulation as model spin-up. 
The T2 simulation is verified against the AWS obser-
vation at Bhubaneswar. Note that the T2 verification 
is limited to only one station due to a lack of station 
observation over the city. Further analysis pertaining to 

Fig. 2 Land use classifications over the Bhubaneswar city for the year a) 2004 and b) 2015

Table 1 The number of grid boxes for each land use classification is presented for the year 2004 and 2015. The percentage of change 
during the period 2004–2015 for each classification type is presented. There is total 3600 (60 × 60) grid points in domain 3, out of 
which the number of grids under each classification is tabulated

Land use classification Number of grid boxes (in 2004) Number of grid boxes (in 2015) % Change

Urban and built-up land 21 56 166.7

Dryland cropland and pasture 1134 1577 39.1

Irrigated cropland pasture 304 206 − 32.2

Cropland grassland mosaic 386 31 −92

Shrubland 155 1 −99.3

Deciduous broadleaf forest 615 697 13.3

Evergreen broadleaf 6 4 −33.3

Mixed forest 5 25 400

Water bodies 933 933 0

Wooden wetland 3 1 −66.6

Barren or sparsely vegetated 38 69 81.6
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near-surface temperature characteristics and associated 
UHI effects is carried out.

4.1  Validation of T2
The model simulated 3-hourly T2 is validated against 
observations at Bhubaneswar airport (20.25 °N, 85.80 °E) 
station during JF 2004 and 2015 (Fig. 3). The least squares 
linear regression fit (y = mx + c) of the model simulated 
T2 against observations is better in the UCM experi-
ment (m = 0.73) than in the CTL experiment (m = 0.66) 
during JF 2004 (Fig.  3a). The correlation coefficient (r) 
and Mean Absolute Error (MAE) in the UCM experi-
ment (r = 0.90, MAE = 2.7 °C) also showed slightly better 
agreement with observations than the CTL experiment 
(r = 0.88, MAE = 2.7 °C). However, mean biases were 

found to be similar in both CTL (bias = 2.3 °C) and UCM 
(bias = 2.3 °C) experiments. The simulation of T2 during 
JF 2015 is consistent with 2004 in both UCM and CTL 
experiments (Fig. 3b). But the simulation skill is margin-
ally improved in both UCM (m = 0.76; c = 7.2) and CTL 
(m = 0.69; c = 9.2) experiments. The verification of model 
simulation with observation reveals that the T2m is bet-
ter simulated in UCM experiment as compared to the 
CTL.

4.1.1  Diurnal variation of temperature
Figure  3c shows the diurnal variation of observed T2 
(black lines) at Bhubaneswar compared with CTL (blue 
line) and UCM (orange line) experiments of 2004 (dot-
ted lines) and 2015 (thick lines). From observations, it 

Fig. 3 Validation of model simulated 2 m Temperature (T2) at Bhubaneswar airport AWS station. a Represents the scatter diagram of the model 
simulated 3-hourly T2 from CTL (blue dots) and UCM (orange dots) against observation during Jan-Feb, 2004. The black line represents the y = x 
line. The blue line (CTL) and orange line (UCM) represent the linear regression fit of the model simulated T2 against observation. The error 
statistics for the CTL experiment are provided at the top left corner of the figure, while for the UCM experiment, the error statistics are presented 
at the bottom right corner. b Represents the same as a) but for the year 2015. c Represents the diurnal variation of model simulated T2 from CTL, 
UCM and observation for Jan-Feb 2004 and 2015. d Represents the T2 difference between 2015 and 2004 from observation, CTL and UCM. 
e Represents the error in CTL and UCM simulations for both 2004 and 2015 as well as the difference between UCM and CTL simulations
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is seen that the maximum temperature  (Tmax) rises by 
0.2 °C in 2015 (mean  Tmax = 29.0 °C) as compared to 2004 
(mean  Tmax = 28.8 °C). Whereas the minimum tempera-
ture  (Tmin) rises by 1.37 °C in 2015 (mean  Tmin = 18.37 °C) 
as compared to 2004 (mean  Tmin = 17.0 °C). Moreover, T2 
during late afternoon to early morning is notably higher 
in 2015 as compared to 2004 whereas, the daytime T2 
remains similar. The cause of such a rise in T2 is a mat-
ter of further investigation. One of the primary causes 
is likely due to the contribution from LULC change, as 
reported in many previous studies (Gogoi et  al., 2019; 
Nandini et  al., 2022). However, such a rise of T2 is not 
only attributable to the LULC change; rather, the contri-
bution of the urban canopy cannot be ignored.

The simulated T2 performed better during the day-
time (8:30–14:30 IST), while the bias increased in the 
late afternoon and night with a bias of ~ 2–3 °C in both 
CTL and UCM. The T2 bias is higher at night (~ 3.2 °C) 
than during the day (~ 1.3 °C). This T2 bias is likely attrib-
uted to uncertainty in Noah-MP LSM, as reported in a 
recent study by Patel et  al. (2022), which demonstrated 
that Noah LSM could better simulate T2 than Noah-
MP. Their study also suggests that the utilization of more 
detailed urban classification, such as local climate zone 
data, could further enhance T2 simulation. When com-
paring both sensitive experiments, the UCM experi-
ments showed a warmer Tmax (by ~ 0.5 °C) and cooler 
Tmin (by 0.6 °C) than the CTL experiment. As a result, 
the mean T2 bias remained the same (~ 2.2 °C) in both 
experiments. Both model simulations could replicate 
the observed diurnal variation. Furthermore, the simu-
lated T2 standard deviation is lower (~ 1.6 °C to 2.8 °C) 
compared to the observation (2.5 °C to 3.5 °C) during the 
day, indicating a deficiency in the model’s ability to repli-
cate the observed variability. The T2 simulation at 17:30 
IST and 08:30 IST also has limitations in replicating the 
observed variability, highlighting the need for further 
analysis of surface energy partitioning.

Figure  3d shows the diurnal temperature difference 
between 2015 and 2004 for observation, CTL, and UCM 
experiments. The observation indicates warmer T2 in 
2015 compared to 2004 during the entire day. The T2 
warming is higher during the early morning (1.37 °C) and 
nighttime (increase by ~ 0. 7 °C), whereas daytime warm-
ing is modest. These inferences are clear indications of 
the rapid urbanization of Bhubaneswar city. Interestingly, 
the model simulation followed the observed T2 differ-
ence except at 08:30 and 20:30 IST. Nevertheless, UCM 
simulated T2 difference better followed the observa-
tion. Figure 3e depicts the error in the model simulations 
and the T2 differences due to the sensitive experiments 
(UCM-CTL). The T2 simulation has a maximum error 
(~ − 3.5 °C) at 17:30 and 05:30 IST, and the least error (~ 

− 0.5 to 0.2 °C) at 08:30 and 11:30 IST. In these instances, 
the observation shows higher variability, and model 
simulation has limitations in replicating such variability. 
In general, the errors are higher (~ − 3 °C) during night 
than in day time. Note that the T2 difference due to the 
UCM experiment is notable during the early morning (~ 
− 0.6 °C) and during mid-day (~ 0.5 °C). But the T2 differ-
ence is the least from 17:30 to 23:30. The errors in both 
simulations are likely attributed to the uncertainty in the 
LSM. In general, UCM shows cooling during the early 
morning and warming during the mid-day. Besides, the 
effect of surface energy partitioning on the T2 simulation 
is investigated further.

The preliminary analysis suggests that the T2 difference 
due to sensitive experiments is attributed to the surface 
longwave downward radiation partitioning, particularly 
during the night time. Figure 4 demonstrates the relation-
ship between T2 difference and surface downward solar 
and thermal radiation difference due to the UCM- CTL. 
It shows that the T2 difference is linearly related to sur-
face longwave downward radiation difference, whereas 
shortwave downward radiation does not exhibit such a 
relationship. Previous studies (Sugawara & Takamura, 
2006) have also highlighted the importance of longwave 
radiation flux from the urban canopy in determining T2. 
However, further analysis regarding the canopy layer 
radiation partitioning is limited by the lack of radiation 
observation.

4.2  Effects on surface temperature
The comparison of the model simulated T2, along with 
10 m wind, between CTL and UCM experiments of 
2004 and 2015 is depicted in Fig.  5. The figure shows 
that the urban region (especially the built-up areas) has 
higher T2 in both CTL and UCM experiments. The T2 
is ~ 2.0 °C higher in the city than in the surrounding 
peri-urban regions, and the higher T2 zone expanded 
in 2015 following the city’s expansion. In 2004, the 
UCM simulation did not show any significant change 
in T2 compared to the CTL experiment (Fig. 5c). How-
ever, the UCM simulation for 2015 exhibited warmer 
T2, particularly in the eastern part of the city, which is 
~ 0.4 °C higher than the CTL simulation (Fig.  5f ). The 
T2 warming followed the lowland regions of the city, as 
shown in Fig. 1. The cause of T2 warming in the UCM 
experiments is likely attributed to downwelling long-
wave radiation partitioning at the surface. Note that the 
region is complex with west-east inclined terrain and 
vegetation. The winter temperature varies following 
the topography and moisture distribution. In addition, 
downwelling longwave radiation is also influenced by 
the terrain. Study by Pluss and Ohmura (1997) provided 
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expression for the downwelling LW radiation over the 
complex terrain as provided in eq. (1)

Where  La
↓ and  Ls

↓ is the long wave radiation contrib-
uted by the atmosphere and terrain respectively.  LW↓ is 
the downwelling longwave radiation. Further,  La

↓ is func-
tion of the near-surface humidity and near-surface air 
temperature (Brutsaert (1975). Recent studies have dem-
onstrated that near-surface humidity and near-surface 
air temperature have a second-order effect on longwave 
radiation (Feldman et  al., 2022). Specifically, the surface 
specific humidity and air temperature are higher in the 
east compared to the west of the city, and downward 
radiation is sensitive to these parameters, especially to 
specific humidity (Chen et  al., 2014). Longwave radia-
tion sensitivity is generally higher when specific humidity 
is lower (Chen et al., 2014). Moreover, this sensitivity is 
more pronounced in winter than in summer (Naud et al., 
2013). In addition, downwelling longwave radiation sen-
sitivity is smaller at lower altitudes and higher humid-
ity due to the saturation of longwave absorption in the 
atmospheric window (Ruckstuhl et  al., 2007). Figure  6 
displays the difference in specific humidity (Q2) due to 
the UCM-CTL experiment. The drier specific humidity 

(1)LW
↓ = La

↓ + Ls
↓

in the UCM experiment likely influences the partition-
ing of downwelling longwave radiation, with greater sen-
sitivity to the west due to lower specific humidity levels, 
thereby mitigating the urbanization influence in the west. 
The drier specific humidity over the urban region com-
pared to rural region is called Urban Dry Island (UDI) 
effect and the phenomena is observed over various parts 
of the world (Meili et al., 2022). This UDI effect depends 
on various factor such as temperature, surface feedback 
due to the impervious urban surface and the moisture 
advection etc. However, understanding the UDI effect 
and its impact on urban energy and water balance is 
beyond the scope of this work. Additionally, Fig. 4 illus-
trates the difference in T2 due to the UCM experiment, 
which is linearly related to downwelling longwave radia-
tion, supporting this relationship. Note that the moisture 
distribution over the region is very complex, influenced 
by various factors including urban-rural moisture differ-
ences, topography, vegetation, and sea-land breeze circu-
lation. Our understanding of this phenomenon is still in 
its early stages and requires further investigation.

In addition, Fig. 5g and h also depict the T2 difference 
between 2015 and 2004 for the CTL and UCM experi-
ments, respectively. The results show that the mean T2 is 
significantly warmer in 2015 than in 2004. The northern 
and southern parts of the city experienced the highest 

Fig. 4 Relation between surface temperature simulation and downward LW and SW radiation partitioning in both CTL and UCM simulations
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warming, with temperature increases of 2–3 °C, while the 
central part of the city experienced a modest increase of 
approximately 0.5–1 °C. This rise in T2 is likely contrib-
uted by the LULC change. Notably, the Chandaka Forest 
region has the smallest T2 increase (~ 0.3 °C), indicating 
that vegetation cover can mitigate heat stress. The 10 m 
wind simulation showed that the prevailing surface wind 

direction in both CTL and UCM experiments is south-
easterly, with a speed of approximately 1 m/s. Interest-
ingly, the UCM experiment exhibited a 0.2 m/s decrease 
in wind speed compared to the CTL experiment, likely 
due to higher surface roughness (Cao & Lin, 2014). This 
decrease in wind speed is particularly noticeable in 
the lowland eastern part of the city. When comparing 

Fig. 5 Comparison of model simulated mean (JF) T2 between CTL and UCM simulations. The mean (JF) T2 from a) CTL, b) UCM experiments and c) 
their difference (UCM-CTL) for the year 2004 represented in first row. d-f Represents same as (a-c) but for the year 2015. g Represents mean T2 
difference between 2015 and 2004 from the CTL simulation and h) represents same as g) but for UCM simulation

Fig. 6 The specific humidity difference (g/kg) due to UCM-CTL in a) 2004 and b) 2015
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the wind simulations between 2015 and 2004, changes 
in wind direction and speed are evident. For instance, 
westward winds are observed in 2015 (Fig. 5g & h) com-
pared to 2004, and the wind speed is also increased (by 
~ 0.3 m s-1) in 2015. It is important to note that such 
changes in wind speed and direction in recent years may 
have consequences on city weather activities, particularly 
the pre-monsoon (March–May) thunderstorm activi-
ties over the city. The increase in wind speed, together 
with warmer temperatures over the city surface, could 

influence convection and local land-sea breeze activities. 
A recent study by Swain et al. (2023) suggests increases 
in winter and pre-monsoon precipitation intensity over 
Bhubaneswar in recent years, with the precipitation time 
shift and spatial reorganization linked with urbaniza-
tion. It is important to note that the present study only 
focuses on the winter (JF) season, and further studies are 
needed to investigate the potential impact of changes in 
wind speed and direction on convective activity over the 
region.

Fig. 7 The JF mean difference in Tmax between UCM and CTL experiments. a Represents the JF mean Tmax difference (UCM-CTL) with 10 m 
wind difference in the year 2004. b Depicts same as a) but for Tmin. c, d Represents same as a)-b) but for the year 2015. e and f represents diurnal 
temperature range for CTL and UCM experiment, respectively for the year 2004. g, h are same as e)-f) but for the year 2015
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Figure 7 displays the differences in Tmax, Tmin, 10 m 
wind, and diurnal temperature range (DTR) between 
the UCM and CTL experiments. The UCM experiment 
shows a warmer Tmax (by 0.5–1.0 °C) than the CTL 
experiment, whereas Tmin is cooler by ~ 0.6 °C. Addi-
tionally, the south-easterly wind over the city is weak-
ened by 0.2 m s-1 in the UCM simulation.

It is worth noting that the north-easterly wind at night 
may cause cold air advection from the Chandaka Forest 
regions, while the decrease in daytime wind speed could 
limit the warm air advection from the city. The DTR is 
increased by ~ 2 °C in the UCM experiment compared 
to the CTL experiment. However, the DTR is found to 
be much higher (2 °C - 4 °C) in the peri-urban region 
than the urban region, as seen in both CTL and UCM 
experiments.

4.3  Urban Heat Island effect
The urban and peri-urban temperature difference (∆T) 
surrounding the Bhubaneswar city is calculated, and the 
diurnal distribution of ∆T is presented in Fig. 8. The UHI 
differs due to the sensitive experiments during the day, 
whereas the nighttime UHI remains similar among sensi-
tive experiments. However, the UHI magnitude is weaker 
during the day as compared to the night. This find-
ing corroborates with prior studies (Eastin et  al., 2018; 
Yang et  al., 2013) conducted for other cities. The UHI 

magnitude is higher in 2015 compared to 2004, especially 
at nighttime, with UHI values of approximately 2.6 °C and 
1.6 °C in 2015 and 2004, respectively. Similar high night-
time UHI (2.7 °C) is also found over South China (Li et al., 
2021). However, the UHI difference due to the UCM - 
CTL is least at night. The daytime UHI is higher in the 
UCM simulation by 16% and 20% as compared to the 
CTL simulation in 2004 and 2015, respectively. Overall, 
the UHI effect comparatively lower in 2004 with UHI val-
ues 1.21 °C and 1.25 °C in the CTL and UCM simulations, 
respectively. Whereas, the UHI values are increased to 
1.62 °C and 1.77 °C for CTL and UCM, respectively in 
2015. The rise in UHI during 2015 as compared to 2004 
suggest the rapid urbanization of the Bhubaneswar city.

5  Summary
In this study, we assess the influence of urbanization 
on winter surface temperature in the rapidly growing, 
topographically west-east asymmetric city of Bhubane-
swar, India. We utilize a state-of-the-art regional cli-
mate modeling system coupled with the single-layer 
urban canopy model (ARW/UCM). Bhubaneswar has 
experienced significant population growth, economic 
development, and expansion of urban and built-up 
areas over the past two decades. Notably, there is a 
substantial increase in the built-up area from 2004 to 
2015, at the expense of dryland and irrigated cropland/

Fig. 8 Diurnal distribution of Urban Heat Island (UHI) effect of Bhubaneswar city obtained from CTL and UCM experiments of winter a) 2004 and b) 
2015
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grassland, which could affect the surface energy bal-
ance and, consequently, surface temperature. To study 
the impact of urbanization on winter temperature, we 
selected two winter seasons, 2004 and 2015, and con-
ducted two numerical experiments for each season: 1) 
with no SUCM coupling (CTL) and 2) with SUCM cou-
pling (UCM) using the atmospheric model (ARW). We 
employed local land use data from AWiFS for each sea-
sonal simulation.

The model simulated T2 matches reasonably with 
observations in both CTL and UCM experiments, with 
a mean bias of approximately 2.2 °C in both 2004 and 
2015. However, the UCM simulated T2 shows better 
skill than CTL in both years. The T2 mean bias is pri-
marily contributed by a high nighttime bias (~ 3.2 °C). 
Both CTL and UCM experiments demonstrate warmer 
winter surface temperatures (1.5–2.0 °C higher) over 
the city compared to the peri-urban region in both 2004 
and 2015. The warmer temperature region expanded in 
2015 following urban/build-up area expansion. In 2015, 
the UCM simulated T2 is ~ 0.4 °C warmer than in the 
CTL experiment, particularly in the eastern lowland 
regions of the city. This warming is likely attributed 
to downward longwave radiation partitioning. How-
ever, this effect is negated in the west, likely due to 
lower surface-specific humidity at relatively higher ter-
rain affecting downward longwave radiation. It’s worth 
noting that the relationship between surface-specific 
humidity and downward longwave radiation is non-
linear (Chen et al., 2014), especially over the higher ter-
rain regions, and further investigation is necessary to 
confirm this relationship in tropical regions. Moreover, 
it is noteworthy to investigate the effect of urbanization 
on surface temperature in other regions with similar 
geographical settings.

Besides, both simulations show a notable rise in win-
ter surface temperature during 2004–2015, especially 
in the city expansion regions, where T2 increased by 
2–3 °C. This temperature rise may be attributed to vari-
ous factors, including climate change embedded with 
urbanization and LULC change etc.

This study underscores the significance of terrain and 
local climate in modulating the urbanization effect on 
winter surface temperatures in Bhubaneswar, India. It 
represents a preliminary effort in demonstrating the 
impact of urbanization on winter surface tempera-
ture. We acknowledge uncertainties in the land sur-
face simulation, resulting in warm surface temperature 
bias, particularly at night. One caveat of the study is 
that it considers only two seasons for investigating the 
urbanization effect. Additionally, our study is limited 
by the use of non-local thermal properties for city sur-
faces. Future research that considers sub-urban classes 

and use of sophisticated urban canopy parameteriza-
tion may improve the city’s surface energy balance 
and, consequently, enhance simulations of city surface 
temperatures.
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